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SUMMARY

Classes of monotone functions from finite posets to chains are 
studied. These include order-preserving and strict order-preserving 
maps. When the maps are required to be bijective they are called 
linear extensions. Techniques for handling the first two types are 
closely related; whereas for linear extensions quite distinct methods 
are often necessary, which may yield results for order-preserving 
injections.

First, many new fundamental properties and inequalities of a 
combinatorial nature are established for these maps. Quantities 
considered here include the range, height, depth and cardinalities of 
subposets. In particular we study convexity in posets and similarly 
pre-images of intervals in chains. The problem of extending a map 
defined on a subposet to the whole poset is discussed.

We investigate positive correlation inequalities, having 
implications for the complexity of sorting algorithms. These express 
monotonicity properties for probabilities concerning sets of relations 
in posets. New proofs are given for existing inequalities and we 
obtain corresponding negative correlations, along with a generalization 
of the xyz inequality. The proofs involve inequalities in distributive 
lattices, some of which arose in physics. A characterization is given 
for posets satisfying necessary conditions for correlation properties 
under linear extensions.

A log concavity type inequality is proved for the number of strict 
or non-strict order-preserving maps of an element. We define an 
explicit injection whereas the bijective case is proved in the literature 
using inequalities from the theory of mixed volumes.

These results motivate a further group of such inequalities. But 
now we count numbers of strict or non-strict order-preserving maps of 
subposets to varying heights in the chain.

Lastly we consider the computational cost of producing certain 
posets which can be associated with classical sorting and selection 
problems. A lower bound technique is derived for this complexity, 
incorporating either a new distributive lattice inequality, or the log 
concavity inequalities.



CHAPTER 1 : PRELIMINARIES AND INTRODUCTION

1.1 PRELIMINARIES: NOTATION AND DEFINITIONS

We let Z, R denote the integers and reals respectively, while 

their non-negative parts are denoted Z+ and R +.

1.1.1 Structures

A partially ordered set or poset is a set in which a binary relation 

x <  y is defined, which satisfies for all x,y,z the following conditions

For all x, x <  x. (Reflexive)

If x < y and y <  x, then x = y. (Antisymmetry)

If x <  y and y <  z, then x <  z. (Transitivity)

Now < is called a partial ordering relation. If x < y and x ^ y 

we write x < y. Also P will denote a finite poset and we will assume 

|P| / 0.

A chain or linearly ordered set or totally ordered set is a partially 

ordered set satisfying the additional condition 

Given x and y, either x <  y or y <  x.

In other words any two distinct elements in a chain are comparable. We 

let C denote a finite non-empty chain.

Conversely an antichain is a partially ordered set such that any 

two distinct elements are incomparable (i.e., not comparable).

Theorem 1.1: (see [Bi]).

Any subset S of a poset P is itself a poset under the same inclusion 

relation (restricted to S). Any subset of a chain is a chain.

We may refer to such a subset S as a subposet.



For x,y incomparable in P, let P u ix < y) denote the smallest 

extension of P having x < y. That is P ll {x < y} stands for the 

transitive closure of P with the additional comparability x < y.

Hence we have p < q in P u {x < y) if p < q in P, or if p < x in P 

and y < q in P.

Let <P,0 be a partially ordered set. Clearly > (the inverse of <) 

is also a partial ordering and so we call <P,>> the dual of <PtO .  The 

duality principle says that if a statement on partially ordered sets 

is dualized, by replacing all <  by >  , then if the statement is true, 

so is its dual.

For x,y £ P we write x n. y if either x < y or x > y. The opposite 

of x 'v y is written x|y and means that x and y are incomparable. To 

make a binary comparison between x and y is denoted x?y. If Q,R are 

posets we let Q < R mean q < r for all q £ Q, r f. R. Also Q|R denotes 

q|r for all q € Q, r € R.

The partition P = Q u R where Q,R are posets means the following. 

Let Q = <Q’,0 and R = <R',0. Then Q' n R' = 0, but Q u R does not 

define P because it is necessary to know what relations if any exist 

between the elements of Q and R.

An upper bound of a subset S of a poset P is an element x e P 

greater than or containing every s € S. The least upper bound is an 

upper bound contained in every other upper bound; it is denoted l.u.b. S 

or sup S. By antisymmetry, sup S is unique if it exists. The notions 

of loner bound of S and greatest loner bound (g.l.b. S or inf S) of S 

are defined dually. Again by anti symmetry,inf S is unique if it exists.
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A lattice is a poset any two of whose elements have a g.l.b. or 

"meet" denoted by x a y, and a l.u.b. or "join" denoted by x v  y.

Any non-empty finite lattice contains a least element 0 and a 

greatest element I.

A lattice is distributive iff the following equivalent identities 

hold in it

(1.1) x a  (y v z) = (x a  y) v (x a  z) for all x,y,z,

(1.2) x v (y a  z) = (x v y) a  (x v z) for all x,y,z.

Note that for fixed individual elements x,y,z of a lattice the

equations in (1.1) and (1.2) are not equivalent.

A fundamental triviality is:

Lemma 1.1: (see [Bi])

Any chain is a distributive lattice.

The direct product J x K of lattices J, K is given by the Cartesian 

product

J x K = {(j,k) : j € J, k e K} 

with the product ordering

( j j  . k j ) a ( j g , k g )  a ( j ^  a j 2» k^ a kg)

j in J x K.
(j^#k^) v (jg.kg) = (jj v jg, kj v kg)

This is again a lattice because every identity on the operations a , v , 

which holds in J x K, will necessarily hold (since it holds termwise) 

in their direct product. It follows that any direct product of 

distributive lattices is distributive.
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A complemented lattice is a lattice with universal bounds 0 and I 

in which every element p has at least one complement x, with

p a  x = 0 and p v x = I.

A Boolean lattice is one which is both complemented and distributive.

An important Boolean lattice is the lattice of subsets of a set 

ordered by inclusion. For this lattice we define a  = n (intersection) 

and v = U (union).

A well-known result is:

Theorem 1.2: (see [Bi]).

Every distributive lattice can be embedded in the lattice of subsets 

of a (finite or infinite) set.

If A,B are subsets of a lattice and a is a real-valued function 

defined on the lattice, then we will let a(A) = l(a € A)a(a),

A a B = {a a  b: a e A, b € B) and A v B = {a v b : a £ A, b € B).

1.1.2 Monotonic Functions

Let P be a finite poset and C a finite chain. Four classes of 

monotonic functions from the elements of P into C are defined as follows.

For (P,C), a map uP:P C is order-preserving if, for all x,y € P, 

x < y implies u)°(x) <  o>°(y). Let = fi°(P,C) be the set of all such w0. 

(Some authors require |P| « |C|, but we do not need this restriction.)

For (P,C), a map w:P -*■ C is strict order-preserving if, for all 

x,y € P, x < y implies w(x) < w(y). Let fi = £l(P,C) be the set of all 

such a). (Note that u> need not be 1-1, and again we do not require 

|P| = |C|.)
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For (P,C), a map X*:P -*• C is an order-preserving injection if 

X1 is 1-1 and strict order-preserving. Let A* = A*(P,C) be the set 

of all such X .

A map X:P c | p | = {1 < 2 < ... < |P|} is an order-preserving 

bisection, or a linear extension of P, if X is an order-preserving 

injection. Let A = A(P) be the set of all such X.

Notice that the later conditions imply the earlier ones, namely

linear extension -► order-preserving injection -* strict 

order-preserving ■* order-preserving.

The range of S c  P over 8 is the subset ftS = {ws:w E B, S £ S)

of C. That is ftS is the union of all images wS of S where <*> e ft.

For x € P we often call iax the rank of x.

The pre—image of K c  C under w is the subset w = ix £ P:<̂ x £ K), 

and under ft it is ft = U too £ ft).

There are similar ranges, images, ranks and pre-images for each 

of ft0 , A1, A.

1.1.3 Subsets of Posets

Let S be a subset of P. We define the following 

above S = i x £ P :  3 s E S with s <  x),

below S = { x e P :  3 S € S with s > x}, 

comp S = above S U below S, 

incomp S ■ P^comp S.

We call II c  f an up-set or an upper ideal if U = above U. Similarly 

D c P  Is a down-set or a lower ideal if D - below D. Alternatively the
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intersection of all up-sets containing S is above S; below S is the 

corresponding intersection of down-sets.

Now S is convex if x,z € S and x < y < z in P imply y e S. The 

convex hull S of S is the minimal set containing S such that 5 is 

convex. In other words S is (above S) n (below S), and S is convex 

if S = S. Clearly up-sets and down-sets are each convex, and the 

empty set 0 is both an up-set and a down-set.

An interval in a chain denotes a convex subset of the chain.

If z > x in P but z > y > x for no y belonging to P we say z 

covers x; and a path of elements is a sequence of covering pairs. 

The elements and paths of P can be depicted by a Haase diagram. For 

example, if

We call x € P a minimal (maximal) element in P if there is no 

y € P with y < x (y > x). Hence x is minimal in P iff x is maximal 

in the dual of P. An element is isolated if it is both minimal and

P = (a < b and a < d and b < d and c < d and e}

then an associated Hasse diagram is given by:

Example 1.1:

P

maximal in P.
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1.1.4 Metrics for Posets

The height ht(S) of S c  P is the maximum m for which there is a 

chain s 1 < s2 < ... < sm in S. For x e P the height hts(x) of x with 

respect to S is ht (below {x}) in S, and similarly the depth dp$(x) of 

x is ht (above {x}) in S. We clarify these definitions with:

Example 1.2:

Then

ht(P) = 3 > ht(S) = 2, 

htp(x)= ht$(x) = 1, 

htp(y)= 2, ht$(y) - undefined, 

htp(z)= 3 > ht$(z) = 2.

We will denote htp(x) by ht(x) and dpp(x) by dp(x).

For x < y in P we let ct(x,y) be the maximum integer m for which 

there is a chain x = p( < p2 < ... < 5 y i" P. So ct(x,y) = ht((x,y)).

The height function x -*■ ht(x) (similarly depth function) partitions P 

into antichains A, ,A2,... by taking Ai to be the set of elements of

height i in P. This is known as the canonical partition of P.



1.2 INTRODUCTION

The basic concern of this dissertation is order. This is motivated 

by the binary relation "is contained in", "is less than or equal to".

An ordered set consists of a set of elements together with an ordering 

relation. The theory of ordered sets bears on topics throughout mathematics. 

Important links have been forged with algebra, combinatorics, geometry, 

model theory, set theory, and topology, and this theory has applications 

throughout computer science, operations research, and the physical and 

social sciences. The ubiquity of ordered sets in mathematics has called 

for its identification as a mathematical discipline. This year (1984) 

has seen the appearance of a new journal, entitled "Order", to help serve 

this purpose.

Our bias is towards the combinatorial nature of ordered sets and the 

important branch of lattice theory, along with their applications to 

theoretical computer science. A typical problem encountered by a 

computer scientist in this area is topological sorting. That is to sort 

a given partial ordering topologically, which is equivalent to our notion 

of determining a linear extension of the partial order.

This kind of application can be naturally viewed as mapping the 

elements of the poset to the integers in such a way as to preserve any 

ordering relation among them. In this way we have the idea of monotonicity 

in relation to partial orders, and it followed that we became interested in 

studying various classes of monotonic functions of posets.

We will restrict our study to finite posets (and thus finite lattices), 

an area which is rich in both problems and applications. We usually map 

onto an initial segment of the integers, a chain.



An important combinatorial result about posets was given by 

Dilworth in 1950. This deep theorem states a basic relationship 

between chains and antichains.

Theorem 1.3: (Dilworth [Di]).

A poset whose largest antichain has C elements is the union of c 

chains.

This theorem remains true if the words "chain" and "antichain" are 

interchanged.

Theorem 1.4: (Mirsky [M]).

A poset whose longest chain has C elements is the union of C anti­

chains.

More surprising than the fact that this is true is its triviality 

by comparison with Dilworth's theorem. For the result follows 

immediately from the canonical partition of P. We give a generalization 

of this result in Chapter 2.2, namely: the simultaneous decomposition 

of disjoint convex subposets into antichains.

Many fundamental combinatorial properties for monotonic functions 

are explored in the second chapter. We commence with the set of strict 

order-preserving maps, followed by inequalities for these maps. The 

features of interest are typically convex subposets, ranges and pre-images 

of elements, and height and depth functions. Corresponding results are 

established for linear extensions. For both kinds of maps we study the 

problem of completing partial mappings, and give necessary and sufficient 

conditions for a map defined on a subset to extend to the whole poset.
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Combinatorics is a discipline which frequently draws upon methods 

and results from other topics in mathematics. For example, a problem 

in graph theory may get reformulated as an algebraic question.

Proof techniques in this dissertation are often based upon the 

application of various inequalities. These inequalities may be quite 

elementary like the arithmetic-geometric mean inequality, or more exotic 

as in the case of the Alexandrov-Fenchel inequalities from the theory 

of mixed volumes.

The latter were employed by Stanley [St] in 1981 to establish log 

concavity for the sequence N^.N^,... ,N*|p| > where N*T counts the number 

of linear extensions such that an element x in P has rank i. This 

fundamental theorem motivated the parallel results by D.E. Daykin,

J.W. Daykin and M.S. Paterson [DDP] in 1984 for both strict and non- 

strict order-preserving maps. In this case we were able to construct 

an explicit injection to prove the inequality. These results are 

presented in Chapter 4.2.

In Chapter 5 the proof technique introduced in [DDP] is extended 

to derive a group of log concavity type inequalities. This constructive 

method has proved to be powerful enough to cover many generalizations.

An application of some of these inequalities from Chapters 4.2, 5.2 

and 5.3 arises in Chapter 6, in which our main idea is a new lower bound 

technique in complexity theory for classes of problems based on binary 

comparisons between elements. For the lower bound we can use concepts 

from lattice theory, and an inequality that we give for distributive 

lattices. This states an upper bound of a quarter of the lattice elements 

for the minimum of two pairwise incomparable subsets.
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Lattice inequalities also occur in the proofs in Chapter 3, where 

we look at positive and negative correlation properties of posets. The 

correlations refer to the probabilities of pairs of subposets being 

satisfied within the set of maps of a given poset. Usually the FKG 

inequality is used in the literature for these kinds of problems. This 

is a 1971 result of Fortuin, Kasteleyn and Ginibre, discovered in their 

research in physics. Special cases of their inequality are published 

in many different fields, and can be traced back to classical works of 

Chebyshev. In a different direction, extensions and related lattice 

results were given by R. Ahlswede and D.E. Daykin [AD] and D.E. Daykin 

and others (see [D2]). It is the latter which we find more applicable 

here.

Recently Graham [G2] remarked, "It is only natural to expect that 

many of the results which hold for linear extensions also hold for 

[strict] order-preserving maps. While this in fact may well be true, 

there are still relatively few theorems available for this class of 

maps (no doubt, due in part to the fact that they have not been studied 

as much)".

We verify this expectation for specific problems, and help to 

remedy the lack of such theorems by providing a collection of results 

for both strict and non-strict order-preserving maps. It will also be 

seen that proof techniques for these non-bijective maps are usually 

interchangeable with minor modifications. The contrast lies between 

these sets and the set of linear extensions, for which quite different 

methods are at times needed. Theorems for linear extensions may yield



\

analogies for order-preserving injections, sometimes with the help of 

the binomial coefficients to choose image points in the chain.

The theory of linear extensions of ordered sets is rich and varied: 

in the infinite case the main results and methods are typically set- 

theoretic and model-theoretic in nature; whereas in the finite case 

they are characteristically motivated by algorithmic or constructive 

considerations.

Currently the most well known results about linear extensions are 

encountered in the infinite case. In the finite case the corresponding 

statements are often a triviality. An example is this connection between 

partial orders and linear orders, established in 1930:

Theorem 1.5: (Szpilrajn [Sz]).

Any partial order on a set can be extended to a linear order on the 

same set.

From this, it follows that any partial order is the intersection 

of its linear extensions; equivalently, every ordered set can be 

represented as some subset of a Cartesian product of chains.

However there is a substantial body of results recently emerging 

about finite ordered sets, and in particular linear extensions. These 

have often been prompted by questions arising in theoretical computer 

science.

An area where the infinite case is studied in computer science is 

domain theory. The domains in the semantics of programming languages, 

describing sets of information, are posets. Moreover the finite cases 

are usually trivial here.

-12-
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In Sections 2.5 and 2.6 where we deal with the completion of 

monotonic functions, we cover mappings to both finite and infinite 

chains.

A reasonable starting point in the theory of monotonic functions 

is construction algorithms for generating the set of maps within a 

class, or algorithms for enumerating the class. The significance of 

enumerating linear extensions is that it provides a measure of the 

degree of ordering within the poset. At one extreme an n-element 

antichain has n! extensions, whilst a total order has but one; and 

similarly for the other monotonic maps. Wells [We] has given an 

enumeration algorithm for linear extensions. However it is felt that 

there is little hope for a unifying formula expressing this sum in 

terms of structural invariants of the set. Counting linear extensions 

in such a way has been found to be tractable only for some special and 

simple classes of ordered sets.

A possibility for tackling this problem is to see how likely is it that a 

typical extension of P contains x < y where x,y are elements in P.

One way is to define a "simple majority" criterion, i.e., the 

relation x 6 y if

|A(P u {x < y})| < |A(P u {x > y})|.

Notice that 6 need not impose a total ordering on P: if P is an antichain 

then |A(P U (x < y))| = |A(P U {x > y})| for each x ^ y, and so B leaves 

P totally unordered. Further, B need not even be a transitive relation on P. 

An example illustrating this was first put forward by Fishburn [FI13, 

exhibiting a "B-cycle" in a 31-element set. An instance of the binary



relation e is as follows. Let the elements of P represent candidates 

in an election. The order p < q in P stands for q is unanimously 

preferred to p. Now suppose each of A(P) electors ranks the candidates, 

i.e., gives a distinct linear extension of P. Then 6 summarizes the 

outcome according to simple majority rule.

In Chapter 3 we study a more encouraging direction along these 

lines, proposed in the series of articles D.E. Daykin [D3], Graham [G1 , 

G2], R.L. Graham, A.C. Yao and F.F. Yao [GYY], Kleitman and Shearer 

[Kl.Sh], Shepp [Sh1, Sh2] and Winkler [Wil,Wi2], These have all 

appeared since 1980, and contain results expressing the correlation of 

certain types of comparabilities among the elements of P. To date 

perhaps the most important result is the xyz inequality of Shepp [Sh2]. 

This states that for elements x,y,z in P,

prob(P u {x < y}) prob(P u {x < z}) < prob(P u {x < y and x < z}),

where prob(a) is the proportion cf monotonic maps of P in a class 

which satisfy a. Assuming that all linear extensions of P are equally 

likely, then the quantities in this inequality have implications in the 

expected efficiency of comparison algorithms like sorting.

We look further into the theory of sorting in Chapter 6. In 

particular, classical comparison based problems may be understood as 

the construction of certain posets. Hence the complexity of the problem 

is given in terms of the cost of producing a specified poset.

The three principal themes encountered in the study of linear 

extensions of finite ordered sets are:
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(i) what is the total number of linear extensions?

(ii) how is an optimal linear extension constructed?

(iii) what is the dimension of a poset?

We do not address these topics directly here but continue with briefly 

discussing the latter two.

Many situations arise where rather than determining the unique 

linear order underlying a poset, that is sorting, all that we require 

is some linear extension. Imagine sequencing the chapters for a book 

or a set of lecture courses. Constraints originate from the need to 

precede certain chapters or courses by others which contain the 

prerequisite skills. Any linear extension defines a sequential 

procedure through the contents. Moreover distinct extensions yield 

different benefits. A "breadth-first" linear extension, which traverses 

the canonical partition, gives a working knowledge of a variety of topics; 

whereas a "depth-first" approach, which traverses paths in the Hasse 

diagram, allows early specialization at the expense of diversity.

Questions concerning the construction of optimal linear extensions 

occur in the theory of deterministic sequencing and scheduling with 

precedence constraints. An important introduction with many applications 

is given by Lawler and Lenstra [LL]. Machine scheduling covers the 

allocation over time of scarce resources, in the form of machines or 

processors, to activities known as jobs or tasks. Jobs are considered 

independent if they can be performed in any order. Precedence constraints, 

for example technological considerations, impose a partial ordering on 

the job sequencing.

A linear extension defines a schedule but its optimality depends 

on the objectives of the schedule : earliest completion time, minimum 

maximum lateness, and so on.



-16-

Algorithmic results for machine scheduling problems are often 

complemented by results stating that satisfactory solution techniques 

for related problems will probably never be found, e.g., the problems 

are NP-hard.

The three classes of well-solved precedence constrained scheduling 

problems, i.e., those with polynomial time algorithms are:

(i) single machine problems, in the case of min-max optimization;

(ii) certain problems with series-parallel precedence constraints;

(iii) certain parallel machine problems.

As an example, suppose a single machine is to perform a set of jobs 

sequentially. A set of precedence constraints prohibits the start of 

particular jobs until others are completed. Any job x performed 

immediately after a job y, where x } y requires a "setup" or "jump" 

entailing some fixed additional cost. The object is to schedule the 

jobs so as to minimize the number of jumps. The "jump number problem" 

has a further appeal due to known links with Dilworth’s "chain decomposition" 

theorem.

Suppose x is incomparable to y in P. Then there are linear extensions 

X,p of P such that Xx < Xy and px > py. We can deduce from X npthat x|y in P; 

whereas if x < y  in X (1 p for every pair of extensions X,p then we infer x < y  in 

P. The (order) dimension is the least number of linear extensions required 

to determine P. For instance if P is an antichain then the dimension is 

two, as is seen by taking any extension and its dual.

To establish the dimension and to construct such a minimal set of 

linear extensions are quite old problems. An extensive literature with 

many deep results already exists about them; a definitive account is 

given by Kelly and Trotter [KT].



Another application of ordered sets to computer sciences is linear 

programming (see [Ho]). Ideas from ordered sets can be used to prove 

theorems in linear programming. Conversely, linear programming ideas 

help in proving theorems about ordered sets.

We see that a linear extension extends the partial order relation 

to a total order relation, without enlarging the underlying set. There­

fore applications of these maps may resemble the nature of sequential 

processing. However strict order-preserving maps need only respect 

chains within the poset, so any incomparable collection can be mapped 

to the same point. Hence these non-bijective maps have connections 

with parallelism. Consider a set of computations to be performed on 

a parallel machine. Precedence constraints over the computations 

define a poset. The minimal time for the machine to compute the set 

is given by the height of a maximal chain in the corresponding poset. 

Clearly many instances of both strict and non-strict order-preserving 

maps along with order-preserving injections exist naturally, and hence 

we are motivated to study them. Like any mathematical structure or 

function, the more we understand it, the more far reaching the 

applications can be.
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CHAPTER 2 COMBINATORIAL PROPERTIES OF MONOTONIC FUNCTIONS

2.1. INTRODUCTION

We start by considering the combinatorial nature of partial orders 

in this chapter, and obtain many elementary yet fundamental properties 

for monotonic functions of posets. Applications of some of these 

results are found in later chapters, and especially Chapter 3.

For strict order-preserving maps we commence with the rake up or 

down of a map over a subposet. We then consider the image of a 

singleton and a convex subset under u> and under il. Conversely, pre­

images of intervals in a chain under both w and are studied. Motivated 

by Mirsky's Theorem 1.4 we show the existence of a map linearly ordering 

a set of disjoint subsets of a poset.

Various inequalities for strict order-preserving maps are established. 

The quantities involved here are typically the height and depth of an 

element, and the cardinality of a subposet and its range or pre-image.

From these results are derived the Graham and Harper normalised matching 

conditions [GH].

By defining the push up or down of a map over a subposet the 

parallel results are obtained for linear extensions. But here the 

analogous inequalities do not arise.

For both these kinds of monotonic functions we discuss the problem 

of extending a map defined on aC^ubset of the poset to the whole poset, 

and give necessary and sufficient conditions for the completion of 

mappings. If a map on a subset cannot be completed we show how to 

partition the subset so that each part may be completed independently. 

These ideas arise in the concept of intricacy [B].
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It is natural to start our study with the most general kind of 

map: ordei— preserving. We would then proceed to the class of strict 

such maps, and finally to the more restricted classes of order­

preserving injections and linear extensions.

However, for n°(P,C) and an element p € P then obviously the 

range of p is the chain, that is iPp = C. It easily follows that 

fi°(P,C) is non-empty iff the chain C is non-empty, and so we may 

always assume that / 0. Since with order-preserving maps the whole 

poset can map onto a single point, any results about convex subsets, 

intervals and so on which are established for other kinds of maps, 

will carry over to these maps in a trivial way. So we will commence 

with strict order-preserving maps, followed by linear extensions, while 

results for order-preserving injections may also be omitted.

Most of the particular questions studied here originally occur in

the literature in [DD].



2.2 THE SET f2 OF STRICT ORDER-PRESERVING MAPS

The map p ■+ ht(p) is in ft iff ht(P) <  |C|. Dually the map 

p -*• |C| + 1 - dp(p) is in ft iff dp(P) <  |C|. Also

(2.1) ht(p) <  up <  |C| + 1  - dp(p) if p € P, u e ft.

Hence we immediately get:

Theorem 2.1:

ft / 0 iff ht(P) <  |C|.

From now on we think of P and C as fixed with £1/0. We remark that 

the set of strict order-preserving maps from a poset P to a poset Q 

is non-empty iff ht(P) <  ht(Q). For, using the canonical partition of 

Q, we can show without loss of generality that Q contains a chain and 

apply the above theorem.

Throughout this section the proofs rely on the concept of the 

rake down of a map over a subset S. Informally, given a mapping of S 

we want to move the image of S down the chain C. We start by moving 

down those elements having the highest rank, which may in turn push 

others down. Likewise we can define the rake up of a map over S.

So for any u € ft and S c P w e  define a map n:P -+2.* as follows.

If S = 0 then it = a). If S / 0 we let m = max (us:s e S} and 

T = {s e S:ws = m). If there is a t £ T with ht(t) = m then it = u. 

Otherwise we construct R c P by starting with R = T and iterating the 

rule that, if p e P, r e R, p < r and 1 + up = ur then p must be adjoined 

to R. Finally v is defined by irp * (up)-1 if p € R but irp = up otherwise.
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Clearly it € il and we call ir the rake down of u> over S. The rake up of u> 

over S is defined similarly.

An obvious result is:

Lemma 2.1:

In the above notation, |u>S| - 1 <  |irS| <  |wS| and if wS is an 

interval then irS is an interval.

The height function ht(p) may not map a convex set onto an interval 

as shown by:

Example 2.1:

But using this function it is easy to see:

Lemma 2.2:

If D <= P is a down-set then (ht(d) : d £ D) = C1,ht(D)].

The following theorem generalises Mirsky's Theorem 1.4 by showing 

that pairwise disjoint convex subsets can be simultaneously decomposed 

into antichains. Mirsky gave the canonical partition of the whole poset, 

which is of course convex.

Theorem 2.2:

Let S^,S2>.>>>Sn be pairwiee disjoint eubeet8 of P satisfying
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si £ Si* Sj € Sj* Si < Sj* 1 * j -  1 " j -

Suppose that (n+1)ht(P) <  |C|. Then there is an co £ il satisfying both

(2.2) 1 < i < j < n -» wSi < wSj,

(2.3) for 1 <  i <  n if Si is convex then is an interval of 

length ht(S^).

Proof:

Put UQ = P, Un+1 = 0 and Ui = above (Si U Si+1 U ... U SR) for 

1 <  i <  n so Un+1 c Un <= ... c  UQ. For 0 <  i <  n put T\ =

Then Ti considered as a possibly empty poset has its own height function 

htr  For 1 <  i < n we have S. <= T. and if Si is convex in P then Si is a 

down-set in Ti and Lemma 2.2 applies. Finally define u> by 

oip = i.ht(P) + ht.j(p) if p £ Ti for 0 < i < n. a

Choosing Si to be the minimal and maximal elements in a chain 

shows that, although IwS^ = ht(S.), we need convexity in (2.3) for 

the image of Si to be convex. Also, if S.. is not convex, we may get 

|u)S.j | > ht(S^) even though the image of S. is an interval. The latter 

point is illustrated in:

Example 2.2:

In this poset S1 * {s, ,s2,s3,s4 ), ht(P) - 4 and 4 - IwS^ >  htiS^ - 3.
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Two complementary examples help to justify the choice of the 

bound on |C| in Theorem 2.2. In both cases, we take P to be a 

disjoint union of chains. If the S ^ s  are as in Example 2.3, then 

|C| must be at least (n+1)ht(P)-n.

Alternatively, if P is defined by P = u S£ U ...u Sn where each S.. 

is a chain of ht(P) elements, then |C| must be chosen >  n.ht(P).

We now have that the range of a point is convex.

Theorem 2.3:

If p e P then flp = [ht(p), |C| + 1 - dp(p)].

Proof:

Starting with the map p ht(p) rake up repeatedly over {p>- o

In relation to the range of a convex subposet, and also the pre­

images of intervals in the chain we give:

Theorem 2.4:

If V c  P is convex, I c  C is an interval, c € C and u € fi then

(2.4) ilV is an interval provided 2ht(P) <  |C|,

(2.5) fi ’l is convex,

to ’l -£a convex and in particular w c is an antichain.( 2 . 6 )
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Proof Part (2.4):

Provided that 2ht(P) <  |C|, then, by Theorem 2.2 with n = 1 

and S1 = V, there is an u' e fi with w'V = [i,j]. Suppose v1 ,v2 e V,

,^2 € fi are such that

o,1v1 = min {a)V:v e V, w £ ft}= h 

and

^2^2 = max twv:v € V, a) € n}= k.

By Theorem 2.3 we have ftv̂  => [h.oi'v^] => [h,i] and fiv2 = [ V v 2 ,k] =  [j,k]. 

Hence [h,k] = [h,i] u [i,j] u [j,k] = fiV.

Part (2.5):

Suppose p,q,r € P are such that p < q < r and p ,r d il 1I.

Let I = [i.j]. Now there exists oij ,u>2 e nwlthc^p, w2r € I.

Suppose Ulq t I. Since is order-preserving we have 

i <  wjP <  j < câ q. Similarly if w2q t I then o>2q < i ■< o>2r <  j.

However, u^q.w^q € i2q and thus by Theorem 2.3, I cfiq.

Part (2.6):

Suppose p,q,r € P satisfy p < q < r and p,r € w 1I. Now w must 

have wp < wq < ur and so uq E I. a

Putting n = 1 in Example 2.3 shows that the condition on |C| in 

(2.4) cannot be reduced below 2ht(P)—2 <  |C|, but we do not know the 

optimal bound.

The interval in C for which the image of a convex subposet is 

again convex is now specified.
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I

Theorem 2.5:

Suppose that V <=. P is convex, and put k = ht(V), m = ht (below V), 

n = ht (above V). Also suppose that m + n - k <  |C|. If the interval 

1 c  [1 + m-k, |C| - n + k] has length |I| = k then there is an w £ SI 

with wV = I.

Proof:

Starting with the map p -*• |C| + 1 - dp(p) for p € P, rake down 

repeatedly over V. a

Suppose that V1,V2 <= P are convex. There does not always exist 

an oj e SI such that both wV, and u>V2 are intervals for any |C|, as 

shown by:

This example can be seen to also hold for linear extensions.
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2.3 INEQUALITIES FOR STRICT ORDER-PRESERVING MAPS 

Theorem 2.6:

If 0 t S c P and q covers p in P, then,

(2.7) ht(S) + |C| - ht(P) <  |«S|,

(2.8) 4 < dp(p) + ht(q) < 2 + |P|,

(2.9) ht(p) + dp(q) < ht(P),

(2.10) ht(p) + dp(p) < 1 + ht(P).

Proof Part (2.7):

We use a modification of the height function. For 0 < i < 

put i^p = ht(p) + i for all p € P, and note that |co0S| > ht(S). 

achieve |C| - ht(P) increments of the image of maximal elements

Part (2.8):

For the R.H.S. consider a maximal chain in below (q) and a 

chain in above {p>. □

Consider now the cardinality of the pre-image under fi of a 

of the chain.

Theorem 2.7:

If K c C  then |K|< |if 1K| ■< |P| if |K| < ht(P) but il'1K =

|C| - ht(P) 

We

in S.

maximal

subset

otheiw.se.
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Proof:

Wg may assumG that [K| *< n - ht(P) and that K c  (k^ ,k2 *.••>k̂ } c C. 

The result then follows because the map p -*• kht(p) for P e p is in D

Next we prove what Graham and Harper [GH] called normalized 

matching conditions (2.11), (2.12). It is well known that each implies 

the other.

Theorem 2.8:

We prove (2.12) using Theorem 2.7 as follows. If |K| < ht(P) then 

|K| <  |fi”1K| and we multiply this by |P| < |C|. If |K| >  ht(P) then 

|p| = |n~1K| and we multiply this by |K| < |C|. o

The example where K = Cm and |C| = ht(P) > m and P is of the form in

Example 2.5:

If | PI <  | C | and S c  P and K c C then both

(2.11) |s| |c| < |ns| |Pj,

(2.12) |K| |P| <  |if1K||C|.

Proof:

P

shows that we need |P| <  |C| in the last theorem, because |K| - |il_1K|

here.



In the following chapter we deal with results for the partition 

P = Q U R, and we go on to consider this partition.

Some obvious inequalities are:

Lemma 2.3:

Let P = Q U R and q < r with q e Q, r € R. Then

ht(P) > htq(q) + dpR(r).

For P = Q U R, the condition on range: 

q ^ r implies (n q) fl (nr) = 0 where q € Q, r £ R, 

is shown to be an interesting property in Chapter 3. We start here 

with some basic results for this range condition.

Theorem 2.9: * (i)

If p < q in P then (np) fl (nq) = 0 iff |C| <  dp(p) + ht(q) - 2.

Proof:

(i) Suppose (np) fl (nq) = 0. By Theorem 2.3 we have np=[ht(p),|C|+1-dp(p)] 

and nq=[ht(q),|C| + 1-dp(q)]. For any w€ n, u)p<o>q. Thus |CKl-dp(p) < ht(q).

1 + htg(q)

dpQ(q)

1 + dpR(r)
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(ii) Suppose |C| <  dp(p) + ht(q) - 2. By Theorem 2.3 

ftp c  {1,...,|C| + 1 - dp(p)} and ftq <= {ht(q) . . , |C|}. Since 

|C| + 1 - dp(p) < ht(q) these intervals are disjoint. o

Notice that in the above theorem it is not necessary for P to be 

partitioned. In Chapter 3.4 we give a complete characterization for 

posets satisfying an analogous range condition for A. No such nice 

characterization was forthcoming for ft, although Theorem 2.9 suggests 

a fast algorithm for checking if P satisfies this condition for n.

As expected it is not always possible to satisfy ht(P) <  |C| < 

dp(p) + ht(q) - 2. However we will show that when P is the union of 

two chains then there always exists a |C| such that ft(P,C) satisfies 

this condition on the range of q,r.

Theorem 2.10:

Suppose that P = Q U R where Q,R are disjoint chains. If q €. Q, 

r e R and q < r then ht(P) <  dp(q) + ht(r) - 2.

Proof:

Let L be a maximal chain in P, so |L| = ht(P). Let 

A = {q ' € QnL: q <  q 1} U {r1 € R fl L: r < r'}. Then there exists a 

chain up from q containing A, and so dp(q) >■ |A|. Now let 

B = (q’ € Q fl L: q >  q '} U {r‘ e R fl L: r >  r'}. Similarly 

ht(r) >  | B|. □

Theorem 2.11:

Suppose P = Q U R satisfies q £ ?, r £ R, q ^ r implies 

(ftq) fi (ftr) = 0. If there exists a maximal length chain in P with an 

element q in Q and an element r in R then ht(P) = |C|.
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Proof:

First we have q r, and we may assume that r covers q in P. 

Theorem 2.9 shows that |C| <  dp(q) + ht(r)-2, and since q and r are 

in a maximal chain, dp(q) + ht(r)-2 = ht(P). Equality follows from 

ht(P) <  |C|. a

This theorem is not true if no maximal chain has an element in 

Q andan element in R, as shown by:

Example 2.6:

In this case (fiq) n (ilr) = 0 provided that |C| <  2ht(P) - 2 by 

Theorem 2.9 , and so |C| does not necessarily equal ht(P).
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2.4 THE SET A OF LINEAR EXTENSIONS

In this case |C| = |P|, and these results contrast and correlate 

with those for n in Section 2.2. First we have

(2.13) |below (p}| <  Xp <  |P| + 1 - |above {p}| if p C P, X € A.

Theorem 2.12:(Szpilrajn [Sz]).

A t 0.

This section depends on the definition of the push up or down of a 

map over a subset S. This is an analogous concept to the rake up or 

down for n.

For any X£A and S c P w e  define a map p:P Z+ as follows. Put 

$ = max {xs:s € S} with the value 0 by convention if S = 0. If 

|below S| = g then p = X. Otherwise we put

Q = {p € P^below S:xp < 0} .

Since |below S| < 0 there is a unique q e Q with xq maximal. We put 

R = (r £ below S:xq < \r <  0)

and observe that qjr for all r € R. Finally p is defined for this 

case by

0 if p = q,
pp = { (Xp) - 1 if P £ R,

1 xp otherwise.

Clearly p € A and we call p the puah down of X over S. The push up of 

X over S is defined similarly.



An obvious result is:

Lemma 2.4:

In the above notation, if XS is an interval then yS is an interval. 

Lemma 2.5:

If c  Dj c  ... c Dn are down-sets of P there is a X € A such

that for all p 6 P, 1 < i < n we have Xp <  | |  iff p £ Dj.

Proof:

Push down repeatedly over D.,D2>...,Dn in any order. o 

Theorem 2.13:

Let S1,S2 ,...,Sn be pairwise disjoint subsets of P satisfying 

si e Si, Sj e Sj, si < sjt i / j  —  i < J - 

Then there is a X £ A satisfying both

(2.14) Si E Sit s. 6 Sj, i < j -Xs. < XSj,

(2.15) for 1 <  i < n if S. is convex then XS.. is an interval.

Proof:

For 1 < i <  n let Di = below (S, U S2 U ... U S<). Then 

D1 c D2 <= ... <= Dn are down-sets with n Sj = 0 for 1 <  i < j <  n.

Let \Q be the map of Lemma 2.5 which satisfies (2.14). For 1 <  i < n

consider the ,subposet where DQ = 0. Let X^ be XQ restricted
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to D... Let xi be the result of repeatedly pushing up X̂  over S.. in 

D... Notice that if Si is convex, then S.. is an up-set in Di, and 

hence X^S^ is an interval by the dual version of Lemma 2.5. Finally 

define X by Xj U ... U X^ U X^+1 where X^+1 is XQ restricted to FM)n. □

As an application of the last theorem, observe that if p^,P2 *•••»Pm 

is an antichain in P then there is a X £ A with XP-j+j = 1 + Xp^ for

1 <  i < m. Start by putting S. = ( p ^ .... Pm> and then clearly we

can permute the order of p^,...,pm in the interval XS^.

Theorem 2.14:

If p e P then Ap = [|below {p}|, |P| + 1 - |above {p}|].

Proof:

Push up and down repeatedly over {p}- a 

Theorem 2.15:

If V c  P -is convex, I e  C ia an interval and X € A then

(2.16) A V is an interval

(2.17) a"1i is convex,

(2.18) x"1i is convex.

Proof Part (2. 16):

By Theorem 2.13 with n=1 and S^V, there is a X' e A with

X'V = [1,j]. Suppose v1tv2 C V, X1,X2 £ A are such that

X1vl = min {xv:v € V, X £ A) = h and

X2v2 = max {xv:v £ V, X € A) = k.=
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By Theorem 2.14 we have Av1 => [h.X'v^ = [h,i] and Av2 = [X'v2,k] => [j,k]. 

Therefore [h,k] = [h,i] u [i,j] u [j ,k] = AV.

Part (2.17):

Suppose p,q,r e P are such that p < q < r and p,r e A 1I. Let 

Ap = [ar a2], Aq = [ B , ^ ] .  Ar = [y , ,Y2] and I = [i,,^]. We have 

labove (p)| > |above (q)| > |above (r)| and |below(p)| < |be1ow(q) | < |below(r)|. 

Hence by Theorem 2.14,a2 < B2 < Y2 and < B1 < Y1. By the hypothesis 

on p,r, I n Ap / J and I n Ar / (I. Now suppose I n Aq = 0. Then 

either i2 < B1 < Y1 which contradicts I n Ar / 0, or a2 < B2 < i1 

which contradicts I n Ap jf 0.

Part (2.18):

Suppose p,q,r € P satisfy p < q < r and p,r e X 1I. Now X must have 

Xp < Xq < Xr and so Xq e I. □

Theorem 2.16:

Suppose that V c  P is convex, and put k = |V|, m = |below V| , 

n = labove V|. Jf the interval I c [ 1  + m-k, |P| - n+k] has length 

|I| = k then there is a X e A with XV = I.

Proof:

Starting with the X of Theorem 2.13 push up and down repeatedly 

over V. o

We end this section with an analogous result to Theorem 2.9 for 

order-preserving injections from P into C. Therefore we assume here 

that |Cl >  |P|.
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Theorem 2.17:

If p < q in P then (A!p) n (AXq) = 0 iff |C| < |above {p}|+ |below {q}|-2.

Proof:

(i) Suppose (A*p) n (A^q) =0. We deduce from Theorem 2.14 that

A!p = Clbelow {p}| , |C|+1-|above{p}|] and A*q = [|below{q}|. |C|+1- |above{q}|]. 

For any X1 € A1 we must have X ^  < X*q and hence |C|+1-¡above {p}|<|below {q}|.

(ii) Suppose |C| <  ¡above {p}|+ ¡below {q}|-2. From Theorem 2.14 

we infer that A*p <=. {1.....|C| + 1 - ¡above {p}|}and

AJq c {¡below {q>|.... |C|}, and so the ranges of p and q must be

disjoint. o

In the special case when p is covered by q, Theorem 2.17 shows 

that a necessary and sufficient condition for (A*p) n (A q) = 9 

is that |C| < ¡above {p}| + ¡below (q}| - 2 <  |P| <  |C|. Thus in 

this case (A!p) n (A!q) = 0 iff A1 = A, the set of linear extensions.
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2.5. COMPLETION OF STRICT ORDER-PRESERVING MAPS

There is typically an iterative process involved in producing 

certain combinatorial structures. For example when colouring a graph, 

vertices are successively coloured until none remain to be coloured.

At any stage of such an algorithm we have a partial structure. We here 

consider necessary and sufficient conditions for the completion of 

partial monotonic mappings. First we deal with "partial-u>" and in 

the next section with "partial-X".

The concept of intricacy [B] can be described as follows. Given 

a combinatorial construction problem, determine the minimum number of 

parts which the structure can be partitioned into, so that each part 

may be completed independently. The intricacy of latin squares has 

been studied, where an n x n latin square is such that each row and 

each column is a permutation of 1,...,n. As an example the partial 

latin square:

Example 2.7:

1 2  ... n-1

n

can never be completed. On the other hand each of the n x n parts in 

Example 2.8 can be.
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Example 2.8:

n

1 2 ... n-1

Moreover the concept of delicacy concerns the removal of entries 

from such a structure to enable completion. In Example 2.7 removing 

any one entry will suffice.

Motivated by intricacy we then give a partition of a partial-cj 

so that each part may be completed. Similarly for a partial-X in 

the following section.

Let S c  P and Y c  Z and ij,:S + Y be strict order-preserving. We 

say {¡/ extends if there is a strict order-preserving map £:P -+ Y with 

£s = <|jS for all s e S. We first give the conditions for ^ to extend 

when Y = Z. Note that for any p < q in S the function ct(p,q) = ht({p,q}) 

is defined in P.

Theorem 2.18:

Let S c  P and ip:S -*■ Z  be strict order-preserving. Then extends

iff

(2.19) ct(s,t) -1 + ips <  ij/t for all s < t in S.

Proof:

Clearly condition (2.19) is necessary for ^ to extend, and it 

implies that ^ is strict order-preserving. So assume that (2.19) holds.
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We let p be any element of P^S and proceed to define î p so that (2.19) 

still holds in S u {p). Since P is finite, repetition will yield an 

extension of ip.

Case 1:

We have s < p for some s € S. Here we put

^p = max (ct(s,p) - 1 + ips:s € S, s < p}.

We must show that if p < t £ S then 

ct(p,t) - 1 + <J)P <  <J>t.

Now there is an r 6 S with r < p and 

^p = ct(r,p) - 1 +

Also

ct(r,p) + ct(p,t) - 1 <  ct(r.t) < 1  - <|»r + ijit, 

so the required inequality follows.

Case 2:

We have p < s for some s £ S but not s' < p, s' £ S. Here we put 

î p = min {1 - ct(p,s) + ij>s:s € S, p < s}.

Case 3*.

We have p|s for all s € S. Here we give î p any value in Z, which 

completes the proof of the theorem. □
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Recall that C denotes the finite interval [1,|C|] and ht(P) < |C|.

From the above theorem we deduce the conditions for iJj to extend when Y = C.

Theorem 2.19:

Let S c  P and xp: S C be strict order-preserving. Then ip extends 

to id 6 £2 iff both (2.19) holds and

(2.20) ht(s) <  ^s < |C| + 1 - dp(s) for all s e S.

Proof:

In view of Theorem 2.18 and (2.1) the conditions are clearly 

necessary for <J< to extend. To prove the sufficiency suppose that

(2.19) and (2.20) hold. Take r,t to be two new elements not belonging 

to P. Define a new posetP' = P u (r.t) by taking the existing relations 

of P and adding the additional relations r < p < t for all p £ P.

Similarly extend both S to S' = S U (r,t) and C to C  = [0, |C| + 1]. Then 

define xpr = 0 and ipt = |C| + 1. Now ip extends from S' to P' iff (2.19) 

holds in S’. We will show that (2.19), (2.20) holding in S imply that

(2.19) holds in S'. So let s,s‘ £ S.

Case 1:

When s < s' then (2.19) holding in S implies that it holds in S'.

Case 2:

For s < t we need to show ct(s.t) - 1 + xps <  ipt in S'. Now there 

exists a p £ P satisfying in P

ct(s,p) = dp(s) < |C| + 1 - xps.
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Also in P‘ we have

ct(s,p) = ct(s,t) - 1.

Hence in P'

ct(s,t) - 1 + î s = ct(s,p)+ ips = dp(s) + i|is < |C| +1, 

as required.

Case 3:

For r < s we must show ct(r,s) - 1 ♦ t|>r <  i|is in S'. Now there 

exists a p e P satisfying in P

ct(p,s) = ht(s) <  <|is.

Also in P‘ we have

ct(r,s) = 1 + ct(p.s).

Thus in P'

ct(r,s) - 1 + 4»r - ct(p,s) <  i|is.

Case 4:

For r < t we will show ct(r,t) - 1 + i|/r <  ijit in S'. We have by 

Theorem 2.1,

1 + ht(P) < |C| + 1 •= ijit.

We conclude that (2.19) holds in S’ and then apply Theorem 2.18 

toP'.S'. Notice that only Case 1 of Theorem 2.18 will apply to any 

element of P'^'. a
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With Y = Z again, we show how to partition S so that ijj extends 

from each of the parts of S independently.

Theorem 2.20:

Let S c  P and iJi:S -*• Z be strict order-preserving. If k = rht(P)/2"| 

then there is a partition S = U U ... U such that ip extends 

from any one .

Proof:

For 1 <  i <  k put

Si = {p e S r 2i-1 <  htp(p) < 2i}.

In each Si a chain has at most two vertices, so (2.19) holds, and 4/ 

extends from by Theorem 2.18. □

Consider the example where P is the chain Cm and S is the odd 

numbered vertices and for 1 <  i <  rm/21, \p(2i — 1) = i. This shows that 

the k in Theorem 2.20 cannot be reduced. For particular choices of S a 

smaller k would suffice.

We now prove the corresponding result for Y = C.

Theorem 2.21:

Let S c  P and ^:S -*■ C be a strict order-preserving map satisfying 

(2.20). If k = rht(P)/21 then there are »Ug»• • • e and a partition 

S = U S2 U ... U such that \p extends to from any one S...

Proof:

For 1 < i <  k define S.. as in the proof of Theorem 2.20. In 

each S.. a chain has at most two vertices, so (2.19) holds, and ¡p extends 

from S.j to (J by Theorem 2.19. o



-42-

2 .6  .IMAR EXTENSIONS FROM ORDER-PRESERVING INJECTIONS

This section is parallel to Section 2.5. Again we have S <= P 

anc let ji:S - Z be strict order-preserving. For R c  S define

max R = max {^r:r £ R}, min R = min (vr:r € R}.

The Tain result is:

Theorem 2.22: (D.E. Daykin [DO]).

If S c  P and ip:S -» Z is strict order^-preserving then y extends

to an trder-^pre serving injection iff

(2.21) V <  max V - min V ♦ 1 for all 9 + V e S.

See [DO] for a proof of the sufficiency of this result, which 

employs Hall's Marriage Theorem [H],

To •proroe the necessity of (2.21). Suppose that v extends to v:P •* Z 

as required. Since v is injective, if V c  S then

V| = ]{vq:q € V}|< nax (vq:q € V) - min (vq:q € V} ♦ 1.

Mow v is strict order-preserving so

max {vq:q € V) = nax {vq:q £ V} = max V,

and similarly for min V. o

The fact that is strict order-preserving does not imply that

(2.21) holds and vice versa. To see this, let V be the union of k 

chains Cm , and for every chain ipi * i where 1 <  i <  m. Then ^ is 

strict order-preserving, however
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2.6 LINEAR EXTENSIONS FROM ORDER-PRESERVING INJECTIONS

This section is parallel to Section 2.5. Again we have S c  P 

and let ip:S -*• Z be strict order-preserving. For R c S  define

max R = max (ipr:r e R}, min R = min {ipr:r € R}.

The main result is:

Theorem 2.22: (D.E. Daykin [DD]).

If S c  P and ip:S -*• Z is strict order-preserving then ip extends 

to an order-preserving injection iff

(2.21) |V| <  max V - min V + 1 for all M  V c  S.

See [DD] for a proof of the sufficiency of this result, which 

employs Hall's Marriage Theorem [H].

To prove the necessity of (2.21). Suppose that ip extends to v:P -*• Z 

as required. Since v is injective, if V c S  then

|V| = |{vq:q £ V}|< max {vq:q € V} - min {vq:q £ V} + 1.

Now v is strict order-preserving so

max {vq:q € V) = max (vq:q £ V) = max V,

and similarly for min V. o

The fact that ip is strict order-preserving does not imply that

(2.21) holds and vice versa. To see this, let V be the union of k 

chains Cm , and for every chain ipi = i where 1 <  1 <  m. Then ip is 

strict order-preserving, however
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|V| = |V| = km 4; m = max V - min V + 1.

Conversely, if V is Cm with tj>1=m, ij>m = 1 and ij*i = i for 1 < i < m, 

then (2 .21) holds but is not order-preserving.

However, both (2.21) and ^ being strict order-preserving together 

imply that ^ is injective. For let V = (s^Sg) and ijiŝ = i|/s2 = a- 

If s1 < s2 then this contradicts ^ being strict order-preserving. 

Otherwise s^|s2 and |V| = |V| = 2 ^  a - a +  1 = max V - min V + 1.

Hence we must have ipŝ  / tpŝ .

Theorem 2.23:

Let S c  P and ip:S C| p j be strict order-preserving. Then \p

extends to X 6 A iff for all 0 t V c  S we have (2.21) and both

(2.22) |above V| <  |P| - min V + 1,

(2.23) |below V| <  max V.

Proof:

By Theorem 2.22 condition (2.21) is necessary. Also in view of

(2.13) conditions (2.22), (2.23) are clearly necessary for ^ to extend. 

To prove the sufficiency suppose (2.21), (2.22) and (2.23) all hold.

Now define P'and S' as in the proof of Theorem 2.19. Similarly let 

C' = [0, | P| + 1] and define ^r = 0 and i|>t = |P| + 1. Now ^ will extend

from S' to P'by Theorem 2.22 iff (2.21) holds in S'. We now show that

(2.21), (2.22) and (2.23) holding in S imply that (2.21) holds in S'.

So let s,s' € S.
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Case 1:

(2.21) holding for {s,s'} in S implies it still holdsin S'.

Case 2:

For s < t we need to show |{s,t} |< |P| + 1 -  ips + 1inS'.

Now by (2.22),

|{s7t}| = |{p >  s:p £ P}| + 1 <  |P| " *s + 2 , 

as required.

Case 3:

For r < s we wi 11 show |{r,s}| <  ips - 0 + 1 in S'. From (2.23) 

we have

|{rTs}| = |(p <  s:p € P}| + 1 <  4»s ♦ 1.

Case 4 :

For r < t we must show |{r,t}| < | P | + 1 - 0 + 1 i n S ' .

Now the L.H.S. is|P' | which is |P| + 2.

Me conclude that (2.21) holds in S', and then apply Theorem 2.22

to  S ' c  P'. a

Theorem 2.24: Let S c P and ip:S Z be an order-preserving injection.

If  k = rht(P)/21 then there is a partition S = U Sg U ... U

such that i|> extends to an order-preserving injection from any one .

Proof:

For 1 <  i ■< k put

(p € S:21 — 1 <  htp(p) <  21}•
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In each Si a chain has at most two vertices, so (2.21) holds, and ip 

extends from by Theorem 2.22. d

It is not sufficient for the ip in Theorem 2.24 to be strict 

order-preserving. To see this define P to be the chain A1 < < ... < ^

where each is an antichain. If is Ai for some i and ^A^ = i 

then clearly <p cannot extend to an order-preserving injection.

Further consider the example where P is the chain [1,...,m] and 

S is [1.0, * < m and ip(i+1) = ipi + n for large n. This shows that 

the above ip will not extend to an order-preserving bijection. The 

example in the previous section shows the minimality of k in general.

Theorem 2.25:

Let S c  P and ip:S -*■ C| p| be an order-preserving injection 

satisfying (2.22) and (2.23). If k = Tht(P)/21 then there are

,Xg.... X^ € A and a partition S = S| U U ... U such that ip

extends to X- from any one S..

Proof:

Define Si as in the proof of Theorem 2.24, and similarly with

(2.21) holding in each then ip extends from Si by Theorem 2.23. □

We end this chapter by remarking that if S c  P and ip:S -*■ Z is 

order-preserving, then ip will always extend to an order-preserving 

map. For we can let <p(above S) = max S and ip(below S) = min S and 

set ip(incomp S) arbitrarily to any value in [min S, max S].



-46-

ÇHAPÎER.3 : CORRELATION INEgUALITIES_FOR_MONOTONIC FUNCTIONS

3.1 INTRODUCTION

In 1980 R.L. Graham, A.C. Yao and F.F. Yao [GYY] established some 

monotonicity properties of partial orders. Contributions followed by 

D.E. Daykin, Kleitman, Shearer, Shepp, Winkler and others.

The results show that if all maps of the poset are equally likely, 

then the probabilities of maps satisfying sets of comparabilities in 

the poset are positively correlated or mutually favourable. The maps 

considered are usually linear extensions and strict order-preserving 

maps.

One motivation for these monotonicity properties is algorithmically 

based. In the theory of sorting a typical operation is to make a binary 

comparison x ? y between elements x,y. Most algorithms for sorting a 

set proceed by using such comparisons to build successively stronger 

partial orders on the set until a linear order can be deduced. A 

fundamental quantity in analyzing the expected efficiency of such 

algorithms is prob (x < y), i.e., the probability that the result of 

x ? y is x < y assuming all linear extensions of the poset are equally 

likely. Such quantities are also important in establishing the complexity 

of selecting the kth largest element.

So for any class of monotonie maps we define prob (a) to be the 

proportion of the set of maps for which a holds. By way of illustration 

consider:

Example 3.1:

P
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Then for A(p),

prob(q1 < Tj) = 3/6, prob(q1 < r2) = 5/6,

prob(q1 < q2) = 1» prob (r2 < r^) * 0.

Conditional probabilities show

prob(q1 < r ^ P  U {q1 < r2}) =
I{A:q1 < r, and q1 < r?>[
---- —  ■ s 3/5,

liAiq, < r2>|

and prob(q1 < r2 |P u {r^ < q2>) = 4/5.

Various intuitive but nontrivial properties of prob(x < y) and 

related quantities are presented here. Some counter-intuitive features 

are also illustrated.

We begin with a motivating example. Suppose that the players in 

two tennis teams have been linearly ranked by skill, namely

will lose to player y when x < y. If the two teams have never met 

it is reasonable to assume that all relative rankings among the players 

of P = Q U R are equally likely, provided they respect the linear orders 

q ,r . Now if q1 ? r1 is the initial match, then

Consider the different situation where the teams have previously 

competed, with results

Q * {q, < q2 < ... < qm } and R = {r1 < r2 < ... < rn). So player x

* • • •

As we would expect
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prob(q1 < r^) = 3/6, prob(q1 < r2) = 5/6,

prob(q1 < q2) = 1» prob (r2 < = 0.

Conditional probabilities show

prob(q1 < r ^ P  U {q1 < r2J) =
|{A:q1 < r1 and q1 < r2>|
---------------- —-------  — 3/5,

ItAiq, < r2}|

and prob(q1 < r2|P U {r1 < q2>) = 4/5.

Various intuitive but nontrivial properties of prob(x < y) and 

related quantities are presented here. Some counter-intuitive features 

are also illustrated.

We begin with a motivating example. Suppose that the players in 

two tennis teams have been linearly ranked by skill, namely

will lose to player y when x < y. If the two teams have never met 

it is reasonable to assume that all relative rankings among the players 

of P = Q u R are equally likely, provided they respect the linear orders 

Q,R. Now if q1 ? r1 is the initial match, then

Consider the different situation where the teams have previously 

competed, with results

Q = < q2 < • • • < qm) and R = {r1 < r2 < ... < rR}. So player x

S = (q4 < r. , q. < r.11 '2 J 2• • • • »

As we would expect
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prob(q1 < r^P) <  prob(q1 < r(|P u S),

since the additional information indicates that the team R has stronger 

players.

Moreover, if y and $ are each sets of matches where various q's 

lost to r's, then our intuition is correct that y and $ are mutually 

favourable, i.e.,

probi^lP u S) < prob(y|P u S u i) 

or equivalently

probin'|P U S)prob($|P u S) <  prob(f and *|P u S).

We demonstrate several general theorems concerning such monotone 

properties. Existing proofs have mainly employed the classical FKG 

lattice inequality. New results are introduced on corresponding negatively 

correlated properties of posets. For both the positive and negative 

correlations we show how it is simpler to use a lattice inequality of 

D.E. Daykin rather than that of FKG.

Graham [G1] made a conjecture for linear extensions involving the 

concept of ranges of elements. We characterize such posets and discuss 

supporting results for the conjecture along with obtaining weak forms 

of his required correlations. It is shown that the proposed range 

conditions have fundamental importance in this area.

Shepp [Sh2] established an important transitivity inequality and 

we derive a generalization of this via direct products of lattices.
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Throughout this chapter we generally assume that the poset P has 

been partitioned as P = Q u R, and consider subposets defined on the 

elements of P whose relations are all of the form q < r where q e Q, r e R, 

though it is not assumed that either q % r o r q | r i n P .  We shall deal 

with results of the form "P = Q U R has the PCP or NCP for M", where M 

is or A, and so we define these terms.

Definition 3.1:

The partition P = Q U R has the PCP positive correlation property 

for M if, whenever both y and 4> are a disjunction of conjunctions of 

inequalities in which each inequality has the form q < r with q e Q, r e R, 

we have

(3.1) |{M:»}||{M:4}| <  |M||{M:f and *}|.

To see that we are dealing with probability results, many authors
2

divide (3.1) by |M| and express the result as 

prob(y) prob(<l>) <  prob(y and $).

Definition 3.2:

The partition P = Q U R has the NCP negative correlation property 

for M if, whenever y (respectively 4>) is a disjunction of conjunctions 

of inequalities in which each inequality has the form q < r (respectively 

q > r) with q e Q, r e R, we have

(3.2) |M| | {M:¥ and 4>) | <  |{M:4<}| |{M:4>}|.

Note that PCP can fail for A when y and 4> are as in Definition 3.2.
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Example 3.2 :

©
Q R

Given a (Q U R),

p p j
(j) = prob(q1 < r)prob(r < q2) 4: prob(q1 < r < q2) = y.

Similarly NCP can fail for A when V and 4> are as in Definition 3.1: 

with the above a (Q U R), take y = (q1 < r) and 4> = (q2 < r).

We first present some fundamentally important inequalities from 

the literature, commencing with a classical result of Chebyshev.

Theorem 3.1: (Chebyshev (see [HLP]))*

Let u(1).... u(n) € F + and f(1),... ,f(n) ,g(1),... ,g(n) CR.

If f(1) < ... <  f(n) and g(1) <  ... < g(n) or f(1) >  ... >  f(n) and 

g(1) > ... >  g(n) then

(3.3) (E y(x)f(x))(E y(x)g(x)) < (Eu(x))(E p(x)f(x)g(x)).
x x x x

If f(1) < ... <  f(n) and g(1) >  ... > g(n) then the inequality (3.3) 

is reversed.

A result which has just begun to be exploited in combinatorics 

is the following FKG inequality, named after its authors. This inequality 

represents a way of extending (3.3) to the situation in which the ground 

set is only partially ordered, as opposed to the total order 1 < 2 < ... < n 

occurring in (3.3).



If L is a lattice then a function f:L + K  is increasing if x <  y 

in L implies f(x) < f(y); f is decreasing if -f is increasing.

Theorem 3.2: (Fortuin, Kasteleyn and Ginibre [FKG]).

Let L be a finite distributive lattice and let y:L -► F satisfy

(3.4) y(x)y(y) < y(x v y)y(x a  y) for all x,y € L.

Let f ,g be both increasing (or decreasing) functions on L. Then

(3.5) ( z y(x)f(x))( z y(x)g(x)) <  ( Z y(x))( Z y(x)f(x)g(x)).
xeL x€L x€L x€L

A function y satisfying (3.4) is called tog supermodular, and if 

the inequality is reversed it is tog submodutar. When f is increasing 

and g is decreasing the inequality (3.5) is reversed.

So we have here a type of monotonicity property for distributive 

lattices. This 1971 result was derived by the authors in their work 

on the statistical mechanics of correlation properties of Ising 

ferromagnet spin systems. In turn the FKG inequality has stimulated 

research in various directions including generalizations, and applications 

particularly to computer science, the theory of posets and statistics. 

Applications to computer science of the FKG and related lattice inequalities 

include the important area of analysis of sorting algorithms based on 

partial orders.

A characterization of distributive lattices is given by:

Theorem 3.3: (D.E. Daykin [D1]).

A finite or infinite lattice is distributive iff |A||B| <  |AvB||AaB|, 

where A,B are subsets of the lattice elements.
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The above three inequalities belong to a group of special cases 

(see [D2]) of the following result:

Theorem 3.4: (R. Ahlswede and D.E. Daykin [AD]).

Let L be the family of all subsets of the set {1,2,...,n}. If 

a.B,y.6:L ■* V* satisfy

a(a)s(b) <  y(a v b) $(a a b) for all a,b e L,

then

a(A)g(B) < y( Av B) 6(A a B) for all A,B c: L.

(Recall from page 4, a(A) = z(a e A) a (a) etc.)

Using Theorem 1.2 we immediately have:

Corollary 3.1: (R. Ahlswede and D.E. Daykin [AD]).

Theorem 3.4 holds for any distributive lattice L. Here L, A, B 

may be infinite.

We introduce the use of Theorem 3.3 for proving that P has the PCP 

or NCP for M. Existing proofs using Theorem 3.2 typically take L to be 

a lattice including the set M (possibly in an encoded form - see Theorems 

3.5, 3.7 and 3.13 below), and let p be characteristic for M, f character­

istic for functions respecting y and g characteristic for functions 

respecting $. The natural correspondence between (3.5) and (3.1) 

yields PCP. In applying Theorem 3.3 to L for PCP, the sets A and B 

will respectively denote {M:y} and {M:*}, whilst A v B  will correspond 

to M and A a B will correspond to (M:4' and $}, or vice versa. The 

inequality |A||B|<|AvB| |Aa B| then implies (3.1). NCP is established 

analogously. Notice that A,B are arbitrary subsets whereas f,g are 

required to be increasing or decreasing functions. It will be seen 

that in using Theorem 3.3 a similar convexity property to (3.4) is necessary 

for all x In A and y in B rather than for all x,y in L.
With fewer conditions to satisfy 1t may be easier to find a suitable

lattice to prove a result, which tends to be the critical part of the proof.
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3.2 LINEAR EXTENSIONS OF TWO CHAINS

All the work in this chapter stems from the result of R.L. Graham, 

A.C. Yao and F.F. Yao [GYY] stating that, if P = Q u R and Q.R are 

disjoint chains then P has the PCP for A. Their proof used explicit

combinatorial pairings of certain maps in A. This entailed defining
2

lattice paths in Z to represent linear extensions, and "barriers" for 

any relations between the chains. Also they indicated that stronger 

monotonicity theorems may be established via the FKG inequality.

Indeed soon after [GYY] appeared contributions followed by Graham, 

Kleitman, Shearer, Shepp and others all involving the FKG. Included 

among these were rather short proofs by Kleitman and Shearer [KISh]

and independently Shepp [Sh1] of the above result.
2

Lattice paths in Z have been used in other areas when the poset 

is a union of two linear orders (an example is mentioned in Chapter 4.2). 

Since it is a useful technique we shall employ the construction given 

in [KISh], whilst using Theorem 3.3 instead of the FKG inequality to 

show:

Theorem 3.5: If P = Q U R and Q,R are disjoint chains then P has the 

PCP and the NCP for A.

Proof:

Let |Q| = m and |R| = n. The proof proceeds by assigning a subset 

S(x) of the unit squares in an m x n rectangle to each linear extension X 

of the partial order. Subsets of squares that correspond to such 

extensions will have the weighting a * 1; all other subsets of squares 

will have a = 0. We have that the set of 2 subsets of squares
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forms a distributive lattice. A and B will correspond to subsets of 

squares that obey the restrictions given by t, <t and P. Then 

D.E. Daykin's inequality yields the theorem. The proof is thus 

completed by supplying the following three steps:

(i) defining S(x);

(ii) verifying the inequality a(D)ct(E) <  a(D fl E)a(D U E) for 

subsets D,E of the rectangle;

(iii) defining A and B.

Given a linear extension of P, x̂  < X2 < * • • < \n+n* we c*raw a

lattice path in the plane starting from the origin consisting of m + n

unit steps, the ith step being vertical if the ith element in the

extension is an r e R, horizontal if it is a q 6 Q. Then S(x) consists of 

the squares of the m x n rectangle that are below and to the right of this 

path, which ends at the point (m,n).

Any inequalities q. < r., in y or $, can be interpreted as stating
* J

that in each extension x obeying it there are in the corresponding set 

no squares in the jth row before the (i+1)th. A conjunction of these 

involves several such restrictions, and a disjunction of such conjunctions 

has the obvious meaning.

Similarly any relation q.. 'v, r^, q^ € Q, r^ G R in P can be viewed 

as a vertical or horizontal barrier in the rectangle, through which the 

lattice path must not pass. Also given a pair of lattice paths suppose 

i < j and X^.Xj are common to both of them, with no x^ common to both 

where i < k < j. In [GYY] the closed region bounded by these two path 

segments is called an olive.



Suppose A,p are extensions of P with corresponding sets D(\), E(y). 

Then a(D)a(E) = 1. This means that the lattice paths for A,y do not 

cross any of the barriers. Now D n E is formed by choosing the squares 

below and to the right of the lower segment of every olive, which clearly 

respects all barriers, and so a(D n E) =1. Similarly D u E chooses 

the upper segments of olives which also defines a subset with a(D u E) = 1. 

This is step (ii).

First we will establish PCP. Let A = {Ar4*} and B = {A:<t>} . That is, 

A and B correspond to sets of subsets of squares with a = 1 satisfying some

conjunctions of horizontal barriers determined by y and $ respectively.

Then clearly A a  B c {A and $} and we have already shown that 

A v B c a . The result follows from Theorem 3.3, i.e., we have proved 

the theorem of R.L. Graham, A.C. Yao and F.F. Yao.

For the NCP case let A = A and B = {A : V and $}. Then any set 

of squares in B obeys some conjunctions of the horizontal barriers 

specified by h<, along with some conjunctions of vertical barriers given 

by 4>. Hence A a B c  {a : ¥}, while A v B c  {A : i). Again we apply 

Theorem 3.3, giving |A11 {A :V and 4>} | <  |A:*f} | |{A:#} |. o

Although we may expect an immediate analogue of Theorem 3.5 for 

strict order-preserving maps we do not get one.

Example 3.3:
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3.3 MONOTONICITY FOR TWO POSETS

A natural extension of Theorem 3.5 would be to weaken the 

restrictions on Q and R so that they are only partially ordered rather 

than totally ordered, and PCP for A was conjectured for a particular 

case of this situation in [GYY, preprint]. However, examples followed 

by Graham, Kleitman, Shearer, Shepp, A.C. Yao and F.F. Yao showing that 

this conjecture is not true when the poset may contain just one relation 

q i r, q £ Q, r £ R, even if it is of the type q < r. This is surprising 

since intuitively PCP is expressing that it is more likely that the 

elements of Q are generally lesser than those of R, as indicated by the 

tennis example, and a relation q < r in Q u R would reinforce this 

likelihood. Also as it was shown, when Q, R are each chains, PCP holds 

with any relations q < r or q > r in Q U R.

Soon followed:

Theorem 3.6: (Shepp CSh13).

If P = Q U R and Q,R are disjoint posets such that Q|R then P has 

the PCP for and for A.

The proportion of members of ii(P.C) which are injective tends to 1 

as |C| <», that is if P,Q are posets then

|A(Q n P)| ■ 1im |n(Q n _p ,c )| #
| a (p ) | |C|—  |n(P.c)|

Thus Shepp proved that his result for n implied the result for A.

This limiting process is very useful since as yet no lattices have 

been defined which capture bijectivity directly, except for when the poset 

can be covered by two chains.
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As |c| increases it can be seen that A(P) and n(P,C) appear to 

be very similar.

Using the same reasoning, the sets n and n® behave the same in 

the 1 imit |C|

Graham then suggested as a sufficient condition that the poset 

p = Q u R satisfy a range condition for n, namely

(3.6) q e Q ,  r e R ,  q-\-r -  (nq) fl (nr) = 0.

An incomplete proof for the PCP situation of the following theorem 

appears in [G1]; a special case also for PCP due to J.W. Daykin and 

R.L. Graham is in [G2]; the full version given here for PCP and NCP is 

presented in [DD]. Again we apply D.E. Daykin's inequality as opposed 

to the FKG, ar.d mention that the lattice was defined in [Sh1].

Theorem 3.7:

If P = Q U R and Q,R are disjoint posets satisfying 

q £ Q ,  r e  R with q -v r implies (nq) fl (nr) = 0 

then P has the PCP and the NCP for n.

Proof:

Let Q,R be disjoint sets and 0 be the set of all maps e:Q u R + C.

For 0^02 € 0 define 01 v 02,01 a  02 for q e Q, r 6 R by

(01 v 02)q = max ( O ^ q ^ q K  (0! a 02)q = nnn {0^q,02q)»

(01 v 02)r = min ( O ^ ^ r ) ,  (0̂  a  02)r « max (01r,02r),

and then it follows that
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(3.7) 0^q < 6^r -* (01 a 02)q < (01 a 02)r,

(3.8) 0 q̂ > 0 ^  •  (01 v 02)q > (0, v 02)r.

Clearly ©1 v 02, ©1 a 02 G 0.

Let q1,q2,...,qm and ri»r2 »**-*rn be the elements of Q and R

respectively. With each 0 € 0 associate the vector (0q1,...,0qm ,0r1.... 0rn )

considered as an element of the lattice L = Cm(C*)n , where C* is the 

dual of C. It follows that |L| = |C|m+n. Now C is a chain, and since L 

is a direct product of copies of C and C* it is distributive. The order 

relation of L is defined by 01 < 02 iff 0 ^  <  02q i and 0 ^  >  02r. for 

1 <  i <  m, 1 <  j <  n. Also the join and meet in L are given by 

v 02 and 01 a 02 respectively.

Claim 3.1:

Cl is a sublattice of L.

Proof:

It is required to show that if e il <= 0 then ^  vu^, € fi.

So first suppose that there exists a relation in Q, q.. < q^ say, 

and 01t02 € ©satisfy 0 ^  < 0 ^  and 02qi < 0 ^ .  Now

(01 v 02)qi = max ( 0 ^ , 0 ^ )  < max ( 0 ^  • > = (0j v ^ ^ j *

(01 a  02 )qi = min (0, ,q. ,0^ }  <min (0^ , 0^ )  ' (0( * e2^qj*

Since q.. < q^ was arbitrary then this means that v , a  preserve strict 

order-preserving mapping for relations in Q. Using the symmetry v a , 

q ++ r we deduce that these operators also respect any relations existing 

in R.
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Now suppose q £ Q, r e R and q < r in P. Also assume 9^q < 9^r 

and 02q < 02r. By Theorem 2.3 we know that fiq, fir are intervals in C. 

Using this fact along with (3.6) we have

(61 v 02)q = max { 0^,6^} < min {0^,0^} = (01 v 02)r, 

further by (3.7),

(81 a  02)q < (01 a  92)r,

and likewise for any relations in Q x R. The argument for relations in 

R x Q is similar, but requires (3.8), along with Theorem 2.3 and (3.6).

Therefore v , a  preserve monotonicity for all relations in P and we 

conclude that fi c L is closed under these operators. o

We are ready to apply Theorem 3.3. For the PCP case let 

A = {«:V) and B = {fi:4>} . Then A a B c  {fi:f and 4>) by (3.7), and 

A v B c  fi by Claim 3.1. Hence

| {fi:4'} 11 (fi:4>> | <  | (fi(P,C)} 11 {fi:f and 4>) |.

Now let A = {fi:'F and and B = fi. Then A a  B c {fi:¥} by (3.7), 

while A v B c  (fi:4>) by (3.8). Thus we get NCP. □

The hypothesis of Theorem 3.6 satisfies (3.6) vacuously. So 

Theorem 3.6 follows from Theorem 3.7 by letting |C| -*■ ».

It is important to mention that we cannot let |C| ■+■<*> to deduce 

the A case from that of fi in Theorem 3.7. Since fi depends on C, the 

assumption (3.6) must depend on C, and by Theorem 2.9 it is not satisfied 

when |C| is large.

However the proof of Theorem 3.7 yields an extended form of Theorem 

3.6: If P = Q U R  and Q.R are disjoint posets such that Q|R then P has the 

PCt and the NCP for both fi and A.
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Graham asked [G1] whether condition (3.6) is necessary for PCP 

in Theorem 3.7. Looking back at Example 3.3 we see that 

(nq2) n (n^) ji 0, i.e., (3.6) is not satisfied, and PCP fails. Hence 

the range condition is necessary here. This also shows that the 

closest analogue of Theorem 3.5 for il is given by Theorem 3.7, in which 

case Theorem 2.10 is relevant.

In relation to Theorem 3.7, Graham [G2] was interested in |C| 

for n(P,C). In particular he considered |C| = |P|. We have taken |C| 

to be arbitrary, and it is not difficult to find examples to show that 

the range condition is necessary when any of the following are true:

|C| < |P|, |C| = |P|, |C| > |P| or |C| = ht(P).



3.4 RANGE POSETS

Once Graham had proposed condition (3.6) it was natural for him 

to require that the poset P = Q U R satisfies a range condition for A, 

namely

(3.9) q € Q ,  r e R ,  q<vr-* (Aq) 0 Ur) = 0.

Upon studying (3.9) we will prove in Theorem 3.8 that the only 

posets which satisfy this condition are what we now define to be 

range posets.

Definition 3.3:

P = Q U R is a range poset if there are partitions

Q = Q̂  U U U Qm> R = R̂  l) R^ U ... li R^

such that

(3.10) Qi < Qj for 1 <  i < j < m.

(3.11) Ri < Rj for 1 <  i < j < n,

(3.12) either Q^|Rj or Q.¡ < R. or R.; < Q. for 1 <  i ■< m, 1 <  j <  n 
J J •

Lemma 3.1:

We can assume that m < 2n + 1 and n ^  2m + 1 in Definition 3.3.

Proof:
The intersection of R with above Qi, below Qi and incomp Qi yields 

three linearly ordered components in R. Repeating this for 1 <  i < m shows 

that n <  2m+1. Similarly we get m <  2n+1. o
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Graham suggested [G1] that if P = Q U R satisfies (3.9) then it 

has the pCP for A. We extend this interesting proposal into the Range 

Poset Conjecture:

Conjecture 3.1:

A range poset P has the PCP and the NCP for il(P,C) if |C| large, 

which implies it has the PCP and the NCP for A(P).

A simple calculation verifies that Example 3.3 does not break the 

conjecture.

We now give a complete characterization for range posets.

Theorem 3.8:

If P = Q U R then the following are equivalent

(3.13) q 6 Q ,  r e R ,  q'vr-* (Aq) n (Ar) = 0,

q £ Q ,  r 6 R , q < r * P =  (above (q>) U (below {r)).
(3.14) f

1 q £ o, r c R, q > r *  P = (below {q}) u (above (r>),

(3.15) P i8 a range poset as in Definition 3.3.

Proof Part (3.13) -► (3.14).

Suppose that q e Q, r e R and q < r. We assume the worst case, 

namely r covers q. Let U = above (q), D = below (r) and then |U n D| = 

|{q,r)| = 2. Since |P| = |Q| + |R|, by Theorem 2.14 we get 

Aq = [ |below (q}|, |P| + 1 - |U|] and Ar = [|D|,|P| +1 - |above {r}|D. 

From (3.13) we deduce that |P| + 2 - |U| <  |D|. On the other hand 

|(J| + |D| = 2 + |U u D| <  2 + |P|, so we have equality throughout,

and the first of the conditions in (3.14) follows. The second then 

follows in turn by the symmetry q *■* r.
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Part (3.14) - (3.15).

For each q € Q put

U(q) = R n above {q} and D(q) = R n below (q).

Claim 3.2:

If qr q2 € Q and either U(q1)^U(q2) t 0 or D(q2)'^D(q1) / 0 then

Proof:

Suppose that r e U(q1)^U(q2). Then q1 < r and so by (3.14) we have 

q2 € P = (above (q^) U (below {r}). Now r (. U(q2) so q2 { r and hence 

q2 i below (r). Therefore q2 € above (q^ and q̂  < q2. The rest of the 

claim follows in the same way. □

Next we define an equivalence relation a in Q by putting q̂  oq2 

iff both U(q^) = U(q2 ) and D(q^) = D(q2).

Claim 3.3:

If q1 ,q2 £ Q and q1 |q2 then q1 oq2*

Proof:

Suppose that r € UCq^). Then q1 < r and by (3.14) we deduce that 

q2 e below (r), and likewise for any such r. Hence Uiq^ c  U(q2) and 

reversing the argument yields U(q^) => U(q2). Similarly we get 

D(q1) = D(q2). □

Let ,Q2 1,6 different non-empty equivalence classes of o and let

q1 e Qjt Q2 e ^2* By C1a’m 3,3 we have q1 ^ q2‘ Since ^1 * ^2» by 

definition of o we have U(q1) t U(q2) or D(q,) t 0(q2). We may assume
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either U(q^ )-'U(q2) t 0 or D(q2)v-D(q^) / 0. Then Claim 3.2 shows that 

q1 < q2. If q3 £ Q1 then q1 oq^, and the same argument shows that 

q^ < q2- Hence we have proved that the equivalence classes of o are 

totally ordered. In other words we have obtained:

Claim 3.4:

We can let Q.| ,Q2 >* • • >Qm ^e t*le e<7uivalence classes of a numbered 

so that (3.10) holds.

We now repeat this whole procedure for R. So for each r £ R put

U(r) = Q n above {r} and D(r) = Q n below {r}.

Then let t be the equivalence relation on R with r1 t r2 iff both 

U(r.) = U(r2) and Di^) = D(r2). Finally we can assume that 

R^^.-.-.Rp are the equivalence classes of t  numbered so that (3.11) 

holds.

To see that (3.12) holds let q < r with q £ , r £ R^. If q1

is also in Qi then r £ U(q) = U(q^) so q̂  < r, and it follows that

Q. < R-. In a similar way we can see how Q .|R. and R. < Q. also hold.
1 J * J J ’

Part (3.15) -* (3.13).

Let q £ Q., r £ R. with q < r. In view of Theorem 2.14, if 
• J

Aq = [k.Jl] and Ar = [k'.i,1] then

t = |P| + 1 - |above {q}|

< |P| ♦ 1 - (|(q>l ♦ |QU1I ♦•••♦ |Qml + lRjl +*** + lRnl)
= |Qj I+...+ |Q̂ | + |R-| I +...+ I

< |below (r)| - k'.
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Hence (Aq) n (hr) = 0. If we now suppose q > r then using symmetry 

we have again that these ranges are disjoint, and (3.13) follows. 

This ends the proof of Theorem 3.8. □

We will show that the two parts of (3.14) are independent, 

i.e., only one of the conditions in (3.14) holding is not sufficient 

to ensure (3.13).

Example 3.4:

We have q < r^ P = (above {q}) u (below { } ) .

while r1 < q *  P = (above (r^) u (below {q}).

Now Aq = [2,3], Ar, = [1,2] and Ar3 = 4. This means 

(Aq) fl (Ar3 ) = 0 but (Aq) n (A^) t 0.

To see that condition (3.9) is necessary for the case of A in the 

Range Poset Conjecture consider:

Example 3.5:

P
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For A(P) we have (Aq2) n (A^) f 0.

Regarding PCP,

8 2 5
(-^) = prob(q1 < r1)prob(q2 < r2) ^ prob(q1 < r1 and ^  * r2' " T7 '

and NCP,

3 8 4
(■f?) = Prob^i < ri and ^2 > r2  ̂^  Prob^i < ^1)prob(q2 > r2) = (t y M yj-).

Example 3.5 had been given in [GYY], and various related examples 

appeared in the literature. Their purpose was to summarize the necessity 

that if P = Q u R has the PCP for A then, any relation q-vr, q e Q, r e R  

in P implies Q,R must be disjoint chains (as in Theorem 3.5); whilst if 

Q,R are posets we must have Q|R (as in Theorem 3.6). However, none of 

the posets in the examples is a range poset and hence they do 

not satisfy (3.9). So we reinterpret the observations to be that (3.9), 

and in particular the range poset structure, is necessary for PCP with A 

in Conjecture 3.1.

A special case of the Range Poset Conjecture is given by:

Theorem 3.9:

If P is a range poset with m = 1 then P has the PCP and the NCP 

for both il and A.

Proof:

If P= Q U R  is such that Q|R then the extended form of Theorem 3.6 on 

page 60 applies. So assume there exists aq'vr with qeQ, reR, and by Lemma 3.1 

we have n < 3. Suppose that f contains an inequality q̂  < rj with q̂  €Q and rj eRk> 

1 <  k <  3. Then prob(q^ < r^) is 1 if Q < Rk and 0 if Q > R^. Hence



-68-

without loss of generality we can assume all inequalities in v involve

Q and Rk where Q|Rk , and similarly for any inequalities qi < r. or

q . > r. in <t>. For 1 <  j <  k and Q < R. or Q > R. we let P' = P^R.,
1 J J J J

since Rj is independent by changing the probabilities only by a multi­

plicative factor. Finally the result is already established for P'. o 

Notice that we have Theorems 3.5, 3.6 and 3.9 supporting the 

Range Poset Conjecture, where the range poset of Theorem 3.5 is the 

special type in which all Q. and all Ri are singletons. Regarding this 

conjecture, if none of the relations in either y or $ involve some 

Q. (or R.), then we can assume that this CL (or R.) is linearly ordered,
1 J 1 J

as this will only affect the probabilities by a multiplicative factor.

We will establish a weak form of Conjecture 3.1. So let P be

the range poset in Definition 3.3, and call .Qg,... ,Qm the blocks

of Q and R.,R„,...,R the blocks of R.1 2  n

Definition 3.4:

We say that P has the weak PCP if Definition 3.1 holds except 

that the inequalities for $ are between blocks instead of elements.

Thus they now have the form Q. < R. with 1 <  i < m, 1 < j < n  instead
• J

of the form q < r with q € Q, r C R.

Definition 3.5:

P has the weak NCI* if Definition 3.2 holds except that now the 

inequalities for 4> are between blocks.

In both instances the inequalities for v are still between elements, 

and those for $ can be expressed in terms of large numbers of inequalities 

between elements. Our result is:
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Theorem 3.10:

A range poset P has the weak PCP and the weak NCP for A.

Proof:

If A £ A and S c  P then there is a unique ordering ŝ  ,s2 .. ,s ̂  | 

of the elements of S such that As^ < AS2 < ... < X£ |5 |* We ca^  

ŝ  < S2 < ... < S|5 | the chain which A makes out of S. For all 

A,vi € A we write A e p  if A and p make the same chain out of S for every 

block S of P. Thus e is an equivalence relation for A and we let £ 

denote the set of equivalence classes of e.

Let E,F € £ be fixed initially. Given a block S of P let 

s1 < ... < s|s | be the chain which every A £ E makes out of S. Also 

let t1 < ... c t|s | be the chain which every y £ F makes out of S.

We now use the concept of 1-1 mapping to relate the cardinalities 

of the sets E and F. Further detail of this proof technique is given in 

the next chapter.

Given a A £ E we will construct a unique y ‘ £ F as follows. For 

a block S of P define o^:S ■* S by o^si = t^ for 1 <  i < |S|. Since 

tj < ... < t|s| is monotonic for S then so is the map A05. Notice also 

that Asi =ii'oss...

Next we define tt:P + P by nP = osP for all p in each block S . Then 

n is a permutation of P because each permutes its block S. Also 

AS = AnS for every A £ E and block S. We showed that Air is monotonic 

on each block. Then since P is a range poset and A € E c  a it easily 

follows that An is a linear extension. Further the map A -*■ An produces 

Vi' £ F. Hence the relative ranking of blocks is given by a . whereas the 

order of elements within blocks is given by the chains in y. Clearly
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given u ' we can reconstruct X by substituting the chains for those of X. 

This means is unique. This in turn implies that |E| <  |F| and thus 

|E| = |F| by symmetry.

Since $ is defined in terms of inequalities between blocks we 

see that x € E respects <t> iff Xir € F respects <t. Therefore we have 

|{E:4>}| <  |{F:4>}| and so |{E:*}| = |{F:*}|.

Recall that any x € E makes a chain ŝ  < ... < out of each

block S. Let P£ be the poset obtained by adjoining to P all the 

relations in each of these chains. Thus P£ is a union of linear orders, 

namely U R^, where Q^, R^ are the chains which every X £ E makes out 

of Q,R respectively. Also E is simply the set of all linear extensions 

of P£.

Hence we can apply Theorem 3.5 to P£ to get

|{E:»}| |{E:4>}| <  |E| |{E:¥ and *}|,

and so

(3.16) |{E:y} | |{F:<t>} | <  |F||{E:¥ and *} |.

Forming the double sum of (3.16) over all E, F £ E gives

|(A:y)11{A:4>} | <  |A||{A:¥ and 4>}| , 

which is the weak PCP.

When the inequalities in <j> are of the form Qi > Rj , with 

Q.,R. € P, then we deduce from Theorem 3.5 and PE that
I J  t

|E||(E:f and *}| <  |{E:f)||<E:*}|, 

from which we obtain the weak NCP, and the proof is completed. o
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Given the disjoint union of two chains of singletons satisfying 

some correlation properties, upon replacing each singleton by an 

arbitrary poset, we have proved partial results for the same correlations.

This naturally suggests a technique worth exploring. Namely to 

take an existing partial order with an established property or 

structure. Then replace all or some elements by arbitrary posets, or 

special posets like chains, antichains, to be ordered in the same way 

as the elements. Then does the known property or structure apply to 

the extended partial order?

As an easy example suppose i2(P,C) satisfies the range condition 

(3.6). Define P‘ by repeatedly replacing singletons p,q in P by 

antichains A,B, where A < B iff p < q. Then (3.6) still holds in 

n(P',C) by Theorem 2.9.
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3.5 THE xyz INEQUALITY, AND UNIVERSAL CORRELATION

To date perhaps the most important result in this area is the xyz 

inequality. The 1981 conjecture was originally due to Rival and Sands, 

and extended by Winkler, Graham and others.

One motivation concerns transitivity. For A or i2 and elements

x.y.z,

prob(z < x|P u {z < y and y < x>) * 1.

However given partial information, z < y say, then it seems more likely 

that z is a "small" element. It is tempting to conjecture correctly 

that for any poset P,

prob(z < x|P) < prob(z < x|P u {z < y}).

Rival indicated that "transitivity inequality" is a more apt name for 

this result, which demanded much effort by combinatorialists.

The conjecture had appeared less tempting when it was known that for A 

and elements u,v,x,y the following analogous inequality is false,

prob(x < u < y|P) <  prob(x < u < y|P u {x < v < y>) -

Using the reasoning that x is "small" and y is "large" it had seemed 

reasonable for (x<u<y) and (x<v<y) to be positively correlated.

In 1982 appeared:

Theorem 3.11: (Shepp [Sh2]).

If x,y,z € P then given A

prob(z < x)prob(z < y) < prob(z < x and z < y).



-73-

Embedded in Shepp's FKG proof is the more general statement:

Theorem 3.12: (Shepp [Sh2]).

If P = {z} U R where Z f. R then P has the PCP for ft and for A .

He first proved the n case and then deduced the A case by letting

|C| as previously described.

We propose an extension to Theorem 3.12 involving direct products 

of the lattice defined by Shepp. With each lattice in the product we 

associate a poset, the PCP for a single poset being Shepp's result.

As usual we will apply Theorem 3.3 instead of Theorem 3.2.

Theorem 3.13:

Let the elements of the poset P be the disjoint union Z U Rj U ... U Rn 

where Z = {Z^ ,... .Z^} .. Assume further that if i ^ j then both

z^|Rj and R^|Rj. For 1 <  i < n let ,ŷ  £ R^. Then for both ft(P,C)

and A(P) we have,

probiz^x^ for all i)prob(z^<yi for all i)<prob(both z^<x^ and ẑ <y.. for all i)

Proof:

With n = 1 we prove the n case and then deduce the A case. After­

wards we indicate the proof for when n > 1.

Case n = i: Let m = |R̂ | and r1 = {1,2

Y = where each Yl € {1,2

Y <  y ' Iff

»• • • » » • • • »

t • • • *|C|}m+1 be the set of 

|C|>. We order r1 by

Y0 >  Yq and Yi - Y0 <  Y{ - Yq for 1 <  1 <  m *

It is easy to verify that •< is a partial ordering relation on r.. We
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define meet and join operators on r1 componentwise by

(Yi a  y -) = m-m^-Yo.Y.-Yo) + max(Y0,YQ) for 0 < i <  m,

(y , v y -) = n’ax(Yi-Y0,Y--Yo) + """(y q .Yq ) for 0 < i < m.

Since the components (Yi a  Y p » (y , v Y p  each belong to {1,2,...,| C|} , 

it follows that y A y 1« Y v Y ' G r^, which thus determines a lattice.

In order to show that is distributive, consider the map defined

by Winkler in [Sh2], namely

(y q »Yi »••• »Ym) (-Yq .Y^Yo .... Ym-Y0) = 6.

Now -y q € {-|C|,—  ,-1} and Y-j-Yg € {1-|C|,...,|C|-1J for 1 < i < m.

The set a of all such 6 is a direct product of chains, and thus a 

distributive lattice. The meet and join are componentwise min and max 

respectively in a . Clearly is isomorphic to a sublattice of A and 

so must also be distributive.

Let denote the elements of and R1 that is the set 

{z1,x1,y1,r3>...,rm). We associate each vector in with the elements 

of P1 as follows. If 0 is the set of all maps e:P1 -*• C then 

Yq = 0Z1» Yi = 9*1» Y2 = and Y-j = 9r-j when 3 <  i <  m.

Claim 3.5:

ft(P,|,C) ia a sublattioe of T| .

Proof:

It is required to prove that if y »y ‘ e Jl(P^C) c  Tj then y v y '» Y a  Y* € fl. 

So suppose < Pj is a relation of P1 and that y »y ‘ each respect this
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relation, namely y. < y. and y! < yl. Then
I J  * J

(y-j a y\) = min {Y-j”Yo»Yi-Yo> + max {Yo »Yq } <

min {yj'yg»Yj "Yq} + max {Yo »Yq> = (Yj a Yj )»

similarly (y. v y!) < (y. v y ‘.); and likewise for all relations of P1, 

implying that these operators preserve the necessary monotonicity. □

In order to apply Theorem 3.3, define A = {y e 

and 6 — {y* C il(P^,C)iz^ < y^}. Let y v y = 6 — (6q ,6^*..•*6^)• Then 

0 < yk-y0 <  6k-60 when k = 1 and 0 < yk-yg <  6k-6Q when k = 2* This 

means A v B c {y e n(P1,C):z1 < x1 and z1 < y ^  e  1^. From Claim 3.5 

we get A a B c  «(P^C) c: i^. Accordingly by Theorem 3.3, for n(P,j,C)

prob(z1 < x1)prob(z1 < y ^  <  prob(z1 < x 1 and z1 < y ^ .

To deduce the A case we let |C| ■+ °°. Then the probability that 

y. = y. for some i j tends to zero. Thus the above correlation holds 

for permutations induced by the variables Y q «Yi»•••»Ym *

We mention that by varying the index variable k above, the proof 

goes through for disjunctions of conjunctions of the form z1 < ri where 

ri e R|. Hence we have proved Shepp's Theorem 3.12.

Further, in the usual way, we can extend the proof to establish 

that for both n and a with respect to Pj,

probizj < x 1)prob(z1 > y ^  > prob(zj < x^ and z1 > y ^ .

This follows from setting A = {y € nfP^Cjrz^ < x̂  and ẑ  > y^J and 

B • n(P^,C). In the above notation, if 6 = y a y' then
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0 > y2 - Y0 > 62 " 60' Thus A A B c (y € i2(P1,C):z1 > while 

A V B c {y 6 n(P1,C):z1 < x^.

Case n > 1: Suppose 2 < j <  n, then in a similar way we define J

lattice r* = Tj x * ••• * rn*

Claim 3.6:

n(P,C) is a sublattice of T*.

Proof:

Any relation in P, between posets Pi and P. when i t j, must 

be of the form z. < z.. So suppose y*. 6* € r*, where

each defined componentwise. Regarding the ith and jth components of

to correspond to P. = {z^} u R.. Further, define the distributive 
J J J

this relation. Let y ^  e y ^  = (yg1  ̂,yj^.... y^’ £ ri where

SL = |R.j |, and similarly let y ^  e y ^ ,  6g^ € 6 ^  and 6 ^  e 6 ^ .  Then 

we have both y ^ <  Yq ^  and <60^' Now y* a 6* and Y* v 6* are

the meet, that is y ^  a 6 ^  and y ^  a 6 ^

and of the join

It follows that any relations in Z will be preserved under the meet 

and join operators in r** and by Claim 3.5 we deduce that each H e r .  € r* 

is likewise closed under these operators, establishing this claim. □
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Similarly to the previous case define A* = {y* £ n ( P , C ) : z . j  < xi for all i} 

cz r *  and B* = {y* e  i2(P,C):z^ < for all i} c  r* and apply 
Theorem 3.3, completing the case.

The proof can be seen to extend to yield the following for n and a 

with respect to P,

prob(z^<xi for all i)prob(zi>yi for all i)>prob(both z^x^ and zi>yi for all i),

and

prob(a)prob(e) <  prob(a and e),

where a,B are each disjunctions of conjunctions of inequalities in which

each inequality has the form ẑ  < r^ with r̂  € for any i. a
J 0

Theorem 3.4 has recently been applied by Fishburn [Fi2] to establish 

the following. Suppose x,y,z are pairwise incomparable elements in P.

Let li(xyz) be the number of linear extensions of the poset in which x 

precedes y and y precedes z. Define n = |P| and

k = Ji(yxz)li(zxy)_________________
ON(xyz) + Ii(xzy))(W(yzx) +M(zyx))

Then

k < (j£[)2 if n is odd, 

k < if n is even,

where these bounds are best-possible. Fishburn also showed that these 

bounds on k yield a simple proof of strict inequality in the nontrivial 

cases of the xyz inequality, which is when the elements x,y,z form an 

antichain.
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We mention some consequences of Theorems 3.11, 3.12. For 

x £ P, let

H ( X ) = i-.-r  £ XX
P I*] X£A

denote the average height of x in P. It seems reasonable that 

Hpu{X>y}(x) > H(x), and in fact more is true.

Theorem 3.14: (Winkler [Wi1]).

If x|y in P then

HPU{x>y}(x) >  1 + HPU{x<y}(x)'

Proof:

We have

Hp(x) = l {prob(x > z):z  ̂x} + 1.

Similarly

Hpu{x<y>(x) = z (Prob(x > zlx < y);z * x> + 1* 

HPU{X>y}(x) = S {prob(x > z|x > y):z + x} + 1.

For any two events E and F, prob(E|F) >  prob(E) iff 

prob(E and F) >  prob(E)prob(F) iff prob(E|F) >  prob(E|not F). 

The dual transitivity inequality states

prob(x > z|x > y) >  prob(x > z).

and thus it follows that
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prob(x > z|x > y) > prob(x > z|x < y)

for each z f x. Moreover in the case z = y we get

prob(x > z|x > y) = prob(x > y|x > y) = 1

and

prob(x > z|x < y) = prob(x > y|x < y) = 0.

By comparing sums, we have the strong average height result:

HPu{x>y}(x) * HPU{x<y}(x)*

This implies also the weak average height result:

HPU{x>y}(x  ̂ * Hp(x)* 13

If E and F are random variables, then E will be said to majorize 

F if for any r € R, prob(E > r) >  prob(F > r). Theorem 3.12 yields:

Theorem 3.15: (Winkler [Wi13)- If x|y in P then Ax|P U {x > y} majorizes 

XX (which in turn majorizes XX|P U (X < y}), where X € A.

Shepp and Mallows [Sh2] posed the general question, for which 

posets Q, R is it true that if the poset P contains the elements of 

Q and R, then given a (P)

(3.17) prob(Q|P)prob(R|P) <  prob(Q and R|P).

Such Q and R will be called universally positively correlated, and it is 

clearly necessary that they be consistent, i.e., the transitive closure of
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all the covering relations in Q u R is a poset. For example, the xyz 

inequality says that the pair of posets Q = {z < x} and R = {z < y} are 

universally positively correlated.

Winkler [Wi2] gave a complete characterization of the universally 

positively correlated pairs of posets, which showed that all nontrivial 

cases (a trivial case being Q or R is empty) are ultimately deducible from the xyz 

inequality. The theorem states that, the necessary and sufficient 

condition is that at least one of the following diagrams hold, which 

are unique up to duality and exchange of Q and R. In the diagrams the 

set of all edges labelled Q' is the set of covering relations of Q, and 

similarly for R' and R.

Figure 3.1

Figure 3.2
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A corollary of Winkler showed that if Q and R are not universally 

positively correlated, and |Q U R| = n, then there is a poset P having 

at most n + 1 elements for which (3.17) fails.

Suppose x,y,z are elements of P and X,Y,Z are subposets of P.

From Winkler's characterization, each of the pairs (z < x}, {z < y} 

and {z < X},{z < Y) are universally positively correlated. However 

the reasonable-looking pair {Z < x), {Z < y) are not, as illustrated 

by {z1 < x and z2 < x}, {z1 < y and z2 < y} not being covered by 

Figures 3.1, 3.2 or 3.3.

More recently D.E. Daykin [D3] has established pairs of posets 

Q,R which are universally negatively correlated, that is the reverse 

inequality in (3.17). Here it is obviously not required that Q and R 

are consistent.

For the statement of the theorem we need the two diagrams obtained 

by taking the dual of all the relations in Q' in Figures 3.1 and 3.2.

In attempting this for Figure 3.3 we find that Q and R become 

inconsistent. The theorem states that when at least one of these diagrams 

holds and both Q and R have at least one covering relation, then Q and R 

are universally negatively correlated.



The impact of any characterizations is such that in proceeding 

to study for A a wider class of pairs of correlated posets, e.g., our V 

and i>, the underlying poset must be constrained. We have investigated 

the poset being partitioned into two sets and satisfying a range 

condition. Also the form of the poset in Theorem 3.13 means that 

the result does not violate the known constraints for universal correlation.

Outstanding is the following:

Problem 3.1:

Characterize the pairs of posets Q,R which are universally 

positively and negatively correlated for 0.

-82-
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3.6 MONOTONICITY FOR THREE POSETS, AND ORDER-PRESERVING MAPS

A natural direction to investigate for further monotonicity 

properties of partial orders is the partition P = Q u R u S into 

disjoint posets Q,R,S. We could then specify that ¥ and 4> in 

Definition 3.1 are both a disjunction of conjunctions of inequalities 

in which each inequality has the form q < r < s with q £ Q, r e  R, s € S. 
Would we then get the corresponding PCP for A, say? No, for consider:

Example 3.6:

The poset in this example would satisfy any range condition 

analogous to (3.9) by virtue of Q, R, S being pairwise incomparable.

Alternatively we could allow the relations in y and $ to be of 

the form q < r or q < s or r < s in this context. The following proved 

to be useful for breaking any likely conjectures.

Q R S

Let m = IQI = |S|, then given m = 3 and A(Q u R U S), 
/ 2m \

prob (q3 < r < s3)prob(q < r <

prob(q3 < r < s1) = 2m+1 w nHl, ” 140 * 
m M  1 ;

à
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Example 3.7:

© © ©
P

For A(P),

3 2 1(^) = prob(q < r)prob(r < s) ^ prob(q < r < s) = -g.

In attempting an analogous characterization to range posets 

for the case P = Q u R u S ,  we were led to:

Conjecture 3.2:

Let P be covered by three non-empty disjoint chains , Cg, C^.

Suppose that if p, q £ P are in different chains and p < q then

P = (above {p}) u (below {q}). Then there is a partition P = R^U...URn

such that (3.11) holds, and further for 1 < i <  n, either R.. n = 0

for some j, or if p,q € Ri are in distinct chains then p|q.
*

If this conjecture is true, then with the help of Theorems 3.5 

and 3.6 we obtain probability results based on comparabilities 

c. < c., c. £ C ., c. c C. with 1 < i < j < 3.
I J  • I J  J

Lastly we consider correlation inequalities for order-preserving 

maps of the partition P = Q u R. Since the range of any element under 

these maps is the entire chain we can never have (n°q) n (ft*V) = 0 when 

q < r in P. But this condition is nonetheless necessary for PCT here, 

which translates to: if P = Q u R has the PCP for cP then Q|R.

* Whilat examining this thesis, J.M. Robson (Australian Rational University) 
proved Conjecture 3.2 using an inductive argument.
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Example 3.8:

Let P be defined as in Example 3.3. Then given j^(P,C2), with 

reference to PCP,

(j) 2 = prob(q1 < r1)prob(q2 < r2) prob(q1 < r1 and q2 < r2) = 0.

Let weak y, weak $ denote the situation where the relations in 

Definitions 3.1, 3.2 for PCP, NCP are all of the form q <  r, q > r as 

appropriate. Perhaps it is more natural to specify weak y, weak $ for 

correlation results with order-preserving maps, so that we would count 

the proportion of maps satisfying sets of inequalities of the type 

u)°q <  o)°r (or u)°q >  w°r), u° € n°. Again we have that Q|R is necessary 

for PCP with these weaker forms.

Example 3.9:

Let P be defined as in Example 3.5. Then given fi (P,C2),

- n o 8
(■ift) = prob(q1 < r1)prob(q2 <  r2) + prob(q1 <  r1 and q2 <  r2) = jp.

Theorem 3.16:

Theorems 3.7 and 3.12 hold with replaced by cP for both y, 4> and 

weak y, weak <J>.

Proof:

The proofs follow a parallel course to those for strict order­

preserving maps, and in either case they are based on the same lattices.

Consider first Theorem 3.7. For example, to show that is a 

sublattice of L, suppose q.. < q^ in Q and 6 ^ 2  e 0 satisfy 

e1qi <  e ^ j  and e2qi <  e2qj* Then
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(e1 V e2)qi = max { 0 ^ , 0 ^ }  <  max { 0 ^ , 0 ^ }  = ̂  v e2 q̂j*

(0 1 a 02)qi = min {0 ^  ,0 ^ }  <  min {e1qj.©2qj} = (e.| a 02 )qj.

For PCP set A = {n°:o} and B = while for NCP set

A = {n°:a and 3} and B = n°: in either case, for the strong inequalities 

a = f, 6 = 4>. whereas for the weak inequalities a = weak 4, 6 = weak 4>. 

The correlations for weak y and weak $ follow from

o.q <  0 ^  -► (01 a e2 )q <  (e1 a o2)r,

6 q̂ >  0^r -* (0  ̂ V 02 )q > (0j v 02)r.

Consider now Theorem 3.12 for which we refer to the proof of 

Theorem 3.13, Case n = 1. It is straightforward to modify Claim 3.5 

to demonstrate that is a sublattice of r^.

For VCP set A = {y € fi°(P,C):a} and B = {y £ n°(P,C):B>,

while to get NCP put A = {y € fi°(P,C): a and B> and B = iJ°(P,C): 

in either situation, for the strong inequalities a = f and B = 4>> 

while for the weak inequalities a = weak 4 and B = weak $.

To show PCP with weak y, weak 4> let y € A and y* e B. Suppose 

z <  r. is among the set of relations in weak v, and similarly z <  r. 

in weak <t>, where £ R. If y v y' * 6 * (6q ,61 .... ,6m ) then

0 <  Yi - yQ <  6^-6q and 0 <  yj-yg <  6j-l5o' Hence A v B «°(P.C>:

weak v and weak 4>}, while A a B c  fî (P,C) since [P is a sublattice.

We point out that Theorem 3.13 will likewise hold for sp with both 

strong and weak forms of the relations < x^, < y^. o
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We conclude this chapter with some comments. Suppose that 

the poset P = Q U R has the PCP and NCP for q or a . Under what 

conditions may we add a new relation g to the set of existing relations 

in P in order that these properties still hold in P U {g} ?

If P = {q1 and q2 and r̂  and r2>,according to Theorem 3.6 on page 60, 

P has the PCP and NCP for n and a . Putting g = {q2 < r ^  it follows 

from Example 3.5 that PCP and NCP fail for a (P u {8}). Similarly we 

can use Example 3.3 to illustrate for n.

Correlation inequalities for A1 will follow from thosefor A using 

the binomial coefficients, as indicated in the proof of Theorem 4.14.

A challenging area for further research would be to investigate 

correlation properties for monotonic functions from one partial order S, 

into another partial order T. By considering whether the preceeding 

inequalities also hold for these more general functions, we have for 

instance:

Question 3.1:

We say that u)*:S ■+ T is strict order-preserving if for all 

x,y 6 S, x < y implies u>*x < i»>*y; X*:S ■* T is an order-preserving 

bisection if |S| = |T| and x* is 1-1 and x* is strict order-preserving.

Then does the analogue of the transitivity inequality hold for either of 

these classes of maps? In other words is it true that for the poset 

P = Q U R where |Q| =1, the PCP and NCP hold for il*(P,T), the set 

of all such w* or for a*(P»T), the set of all such X*?

Notice that |a*(S,T)| <|A(S,C|S |)| , and unlike the set A of linear 

extensions of a poset, A* may be empty: trivially let S be a chain and 

T an antichain.
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CbAPIER.4 : LOG_CONCAVITY_FOR_MONOXONIC_FyNCTION̂

4.1 INTRODUCTION

In this chapter we consider the absolute values of the images of 

elements in a partial order. The main interest is in counting how 

many functions of some class map the element x to each of the points 

in the chain.

This is in contrast to the previous chapter where we were looking 

at the relative rankings of elements. The number of monotonic maps 

having x less than y was counted, regardless of the actual ranks of 

these elements.

The sequences of numbers of monotonic functions, according to the 

image of a fixed element,exhibit some interesting qualitative properties.

In 1981 Stanley [St] proved that, if n|t is the number of linear 

extensions of a poset P mapping an element x to rank i, then the 

sequence N^.N^,....N^p | is log concave. The main contribution in this 

section is to establish the corresponding results for both strict 

order-preserving and order-preserving maps. This requires a different 

proof technique from Stanley's. We also strengthen Stanley's Theorem 

to bring it into line with our results by showing that it holds in 

more general circumstances.

The FKG inequality led to a new inequality involving log convex 

sequences due to Seymour and Welsh [SW]. By studying mappings of 

minimal and dually maximal poset elements, we apply their inequality 

to sequences related to partial orders. We observe that the new 

inequality is a special case of Chebyshev's Theorem 3.1.



-89-

New results are presented on log concavity for the total numbers 

of non-bijective functions of the whole poset into a sequence of 

increasing length chains.

Finally we give probability inequalities of a new kind, which 

entail counting the number of functions taking an element in the 

poset to a fixed point in the chain. Counterexamples show limitations 

for this type of result.

All the proofs in this chapter construct explicit injections.

Let Wq .Wj ,... be a sequence of non-negative real numbers. The 

sequence is called logarithmically concave if

The sequence is unimodal if for some j we have Wg < Wj < . .xWj and

<  for 1 <  k.

Furthermore, the definition implies that

Hence

W, n|/ + p
< ... < u - for t,j > 0 

wk+i+jk+1+j

thus

W,
for all k.t.j > 0.

k+t+j
(4.1)

Wj > Wj+1 > ... . Log concavity implies unimodality but not vice versa. 

The sequence is called logarithmically convex if
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Well known examples of log concave sequences which frequently 

occur in combinatorics are the binomial coefficients, the Gaussian 

coefficients, the Eulerian numbers, the Stirling numbers of both 

kinds; for a proof see Kurtz [Ku]. Moreover, there are many other 

sequences of integers arising naturally in combinatorial structures 

which it is conjectured are log concave (or log convex) and hence 

unimodal. Examples are:

(i) the absolute values of the coefficients of the chromatic polynomial 

of a graph or the characteristic polynomial of a geometric lattice;

(ii) the Whitney numbers (of both the first and second type), of a 

geometric lattice.

In both this chapter and Chapter 5 we will adopt the following 

notation. Let P be a poset with n elements and C be the chain

1 < 2 < ... < c. If .... x. is a fixed subset in P and t1.... tk e Z+

then define N°(t1,...,tk) to be the number of order-preserving maps 

oP:P C such that w^(x^) = t^ for 1 < h < k; and define N^(tj,... ,tk) 

to be the number of strict order-preserving maps oj:P -*■ C such that

w(xh) = t^ for 1 <  h < k; also define N*(t^.... t^) to be the number

of order-preserving injections X*:P -► C such that X^(x^) = f°r

1 <  h < k; finally define NL(t1.... tk) to be the number of linear

extensions X:P -*• Cp such that Xix^)“ t^ for 1 < h <  k. Further, if 

th t C for any h then set N°(t1,...,tk) = 0 and similarly for 

NS , N1 and NL. Throughout we will put i,1.,... ,ik ,jj,...,jk € C.

When k = 1 we use the abbreviations: x = x^, N^(x), N^(x), N?(x) 

and n|t(x ). At times it will be convenient to let M.. denote N?,

N^, N? or N^, and M denote i^.fi.A1 or A.
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The development of log concavity results for partial orders was 

stimulated by an (unpublished) conjecture of R. Rivest that the

Graham [CFG] conjectured the stronger statement that this sequence 

is log concave and proved this for the case that P is a union of two 

linear orders. Soon afterwards Stanley established the conjecture 

and proved the following more general version of this fundamental 

result.

Theorem 4.1: (Stanley [St]).

Let < ... < X |̂ be a fixed chain in P. Suppose 1 <  j < k,

then

conjecture of Chung et at.

Graham [G1] then asked whether the analogue of Stanley's Theorem 

is true for strict order-preserving maps, and noted that the FKG inequality 

can be used very naturally to prove the log concavity of various sequences 

of a combinatorial nature. He further suggested [G2] that Stanley's 

result, and the analogue conjectured result for strict order-preserving 

maps, might have proofs based on the FKG inequality or the more general 

AD inequality (Theorem 3.4). But these had as yet eluded discovery.

sequence N^, n!;,• • • 9Nj; is unimodal. In 1980 Chung, Fishburn and

(4.2) NL(i1,• • • »

In particular, the case k = 1 yields N
L 2<  (N.j) , which is the
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Recently D.E. Daykin, J.W. Daykin and M.S. Paterson [DDP] established 

the analogue of Stanley's result for both strict order-preserving and 

order-preserving maps. That is (4.2) holds with each N̂" replaced by N , 

and with each NL replaced by N°, also under more general conditions.

These results were obtained by constructing an explicit injection, and 

to date neither Stanley's resultnor these analogues have been proved 

using lattice inequalities.
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4.2 LOG CONCAVITY FOR NON-BIJECTIVE MAPS

This chapter was mainly motivated by the log concavity result of 

Stanley. We may easily strengthen his theorem by removing the condition 

that the x's form a chain in P. For suppose {x^,...,x.} is an arbitrary 

subset of P, then using bijectivity, without loss of generality assume 

i,j < ... < i^. If we augment P with the new relations x̂  < ... < xk 

then NL is unchanged and Stanley's Theorem applies to the new partial 

order. Implementing (4.1) we can now write:

Theorem 4.2: (Stanley [St]).

Let Xj.... x^ be a fixed subset in P. If r,s,t € Z+ and

ih t [r,r + s + t] for 2 < h <  k, then

This inequality implies that the range of an element under linear 

extensions is an interval. In connection with this, it is straightforward 

to show the following, using the push up and down functions. Suppose

down functions, although the restriction i1 ♦ h / j. is not required in 

this case.

Stanley used the Aleksandrov-Fenchel inequalities to prove that 

certain sequences of combinatorial interest, including that in Theorem

4.2, are log concave (and therefore unimodal). These inequalities 

guarantee the logarithmic concavity of coefficients arising from the volume

* • • •

NL(i 1,j 1) / 0 and NL(i1+Jl,j1) / 0 and 0 < h < 1, then if i 1 + h / j1 

we have NL(i. + h,j.) ¿ 0 ;  and similarly for NS via the rake up and

i

s
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of weighted sums of m-dimensional polytopes.

Consider convex bodies K^.Kg.... Ks in F  . If .o^>• • • .as 6 F +

then define the convex body

K = + a2^2 + ••• + asvs:vJl e V *

As a function of the variables the volume V(K) of the set

K is a homogeneous polynomial of degree m,

s s
V(K) = E E

^=1 l2=]
. XJt, •”  Xi ’l =1 1 m 1 mm

where the coefficients V0 <, are uniquely determined by requiring
1 m

that they are symmetric in their subscripts. The coefficient  ̂ ^ ,
1 " ' ' m

also written as V ( .... ), is called the mixed volume of ,... .
1 m  1 m

The following inequality was proved independently by Alexandrov [Al] and 

Fenchel [Fe]

(V
1 2 m-1 m 1 m-1 m-1 1 m-Z m m

Surveys of mixed volumes appear in [BF, Bu, ED. It suffices to mention 

that these inequalities are naturally applicable to the bijective property 

of linear extensions, but not so for the other monotonic functions. Like 

the FKG and related lattice inequalities, the Alexandrov-Fenchel 

inequalities have just begun to be exploited in combinatorics.

Currently only two other applications of these inequalities are 

known in the literature. A reformulation of the inequalities led to the
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Alexandrov-Fenchel inequality on permanents, recently used by Egoritsjev 

[Eg] and independently by Falikman [F] to prove the infamous van der 

Waerden permanent conjecture (see [L,W]). Kahn and Saks [KS] have 

employed the inequalities to show that every poset that is not a chain 

contains a pair of elements x and y such that for A

3/11 < prob(x < y) < 8/11.

Explicitly defined injective functions may be used to prove 

inequalities on numbers of combinatorial structures. In this case 

we first wish to show N^(x)N^+s+t(x) < Nr+s^x N̂r+t^x^‘ The inJection 

consists of constructing, for each pair of strict order-preserving maps 

with w 1(x) = r and W2(x) = r+s+t» a unique pair of maps with w^x) =r+s 

and oj4(x)=r+t. That is if two ordered pairs of the form (u^.u^) are 

distinct, then their two associated pairs are distinct. This

ensures the required inequality, for otherwise two pairs

associated with distinct pairs would have to be identical.

An injective proof technique was used in [CFG] to derive log 

concavity for linear extensions. Since the case considered was when

P can be covered by two chains, the linear extensions could be represented
o

by lattice paths in Z , as described in the proof of Theorem 3.5.

For log concavity of strict order-preserving and order-preserving 

maps we present here slightly more general forms than those appearing 

in [DDP].

Theorem 4.3:

Let x^,...,X|( be a fixed 8ubeet in P. If r,S,t € Z+ and j^ <  ^  ♦ t
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for 2 <  h < k , then

NS(r,i2>...,ik)N^(r+s+t

In particular, the case k =

r $
•J 2 »•# # ^ ^ (r+s 9 i 2 * • • • * i ) N ( j 2

1 and s = t = 1 yields N^NJ^ <  ( N ^ ) 2.

We first make some informal comments on the method of proof. The 

construction proceeds by iteratively defining a subset D of P. Now D 

is a function of the pairs of monotonic maps to be associated with 

each of the poset elements, initially an operation is defined on the 

given fixed element {x^}= D in P. Using monotonicity, an element 

adjacent to any member of D may in turn become a member of this set, 

in which case it is operated on in the same manner. This is repeated 

until D can attract no more members, whereupon the process halts.

By way of explanation,D was chosen to stand for "Disease" in view 

of the "contagious" nature of the injection: "weak" elements succumbing 

to D whereas "strong" ones do not. We feel it is likely that there are 

other applications of such a contagious process on posets worth 

investigating.

As the injection considers only adjacent elements to D at each step, 

it does not retain a global consideration of the monotonic functions 

assigned to all of the elements. Hence if we commence with 1-1 mappings, 

this property may not be preserved.

So we have clear examples here of techniques for linear extensions 

being unsuitable for strict order-preserving maps and vice versa. Moreover, 

it will be seen that as is usual minor modifications to the techniques for 

strict order-preserving maps yield analogous results for order-preserving 

maps. Corresponding results for order-preserving injections are quite 

straightforward from the bijective case.



The following special case of Theorem 4.3 was established using 

the binomial coefficients, which lent supporting evidence to Graham's

conjecture.

Theorem 4.4:
S SLet P be a chain and X £ P. Then N^, N2> • • • »

Proof:

Without loss of generality assume c > ht(P) = n, and put 1 < i < c-1. 

Let ht(x) = u+1, dp(x) = v+1, ht(i+1) = r+1 and dp(i+1) = s+1. Now 

fj(P,C) behaves here like order-preserving injections, and so

Proof of Theorem 4.3:

Suppose that the L.H.S. of the inequality is not equal to zero, 

and that s > 0 for otherwise the result clearly holds. We will first

how it easily extends to k > 1.

Given any pair of strict order-preserving maps u)̂ ,u>2:P -*■ C with 

Wl(x) = r and id2( x ) = r+s+t, we will construct a unique pair of strict 

order-preserving maps w^.u^P ■* C with w^x) = r+s and w^(x) = r+t.

Since C is 1 < 2 < ... < c we will write C + t for 1 + t<2+t < ...<c+t. 

Now the pair u>1 ,(o2 may equally be regarded as a strict order-preserving 

map B into the direct product (C+t) x C = {(y .y ’):Y € C+t, y ‘ £ C),

S S s 2
Log concavity of the binomial coefficients shows that N̂  N^+2 <  (Ni + ̂) . □

S Sprove the result for k = 1, namely NrNrr r+s+t <  N



-98-

with the partial ordering: < (6  ̂»62) if y^ < 6  ̂ in C + t

and y2 < 62 in C. Thus 8 = 8^  B2 :P - (C+t) x C where, for p £ P,

B.j (p) = t + U 1(P) and B2(p) = oo2(p) - In particular we have 

B(x) = (r+t, r+s+t).

Now define the operation flip (j,k) = (k.j). We will say p 

forces q for p,q € P if

either p < q and flip(B(p)) { B(q), i.e., B2 (p) >  B^q) or B^p) >  B2(q)

or P > q and flip(B(p)) } B(q).

Also define Dg = {p:p £ P, x (forces)*p}, where "(forces)*" is the

reflexive and transitive closure of "forces". That is, x £ Dg and the 

forcing procedure propagates from x to form the subset Dg of P. Since 

P is finite the propagation must halt (possibly with Dg = P), and 

then we let 6(B):P -*■ Z+ x Z+ be defined by

( flip(B(p)) if p £ DB 
6(B)(p) = \

*• B(p) if p i Dg.

Lemma 4.1:

6(B) is strict order-preserving.

Proof:

Let p,q £ P with p < q and so B(p) < B(q).

Case:

p,q t Dg. Then 6(B)(p) = B(p) < B(q) = 6(B)(q) as required.
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Case:

p,q £ Dg. Then 6(B)(p) = flip(B(p)) = (B2(p), B^p)) <

(B2(q), B1(q)) = flip (B(q)) = 6(B)(q) as required.

Case:

p E Dg, q l Dg. Then p does not force q and so 6(B)(p) = 

flip(B(p)) < B(q) = 6(B)(q).

Case:

p £ Dg, q £ Dg. Then q does not force p and so 6(B)(p) = B(p) < 

flip(B(q)) = <$(B)(q). □

Lemma 4.2:

B^d) < B2(d) for d £ Dg.

Proof:

We have B^(x) < B2(x) since s > 0. So it is sufficient to show 

that if B^d) < B2(d) for some d £ Dg, then this relation holds for 

any p in Dg forced by d. Suppose first that d < p, and so

Bj(p) <  Bg(d) < B2(p) or B2(p) < B^d) < B2(d) < B2(p).

The latter is impossible and the former establishes the claim. The 

proof if d > p is similar. d

Lemma 4.3:

6(B)(p) e (C+t) X C for p € P.

Proof:

If p t Dg then it is clearly true. Now for p £ Dg we have

1 <  1 + t <  Bj(p) < B2(p) <  c <  c ♦ t. Hence f 1 ip(B(d)) £ (C+t) x C. o
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Lemma 4.4:

6(6(B)) = B.

Proof:

It is sufficient to show that D^g^ = Dg. Suppose d e Dg, then 

flip (6 (B)(d)) = B(d) by the definition of D^g). Therefore d forces 

p with respect to 6(B) if 

either d < p and B(d) { 6(B)(p),

or d > p and B(d) 6(B)(p).

If p t Dg then 6 (B)(p) = B(p) and so, since B is strict order­

preserving, d does not force p.

If p € Dg then 6(B)(p) = flip (B(p)) and in this case d forces 

p with respect to 6(B) iff d forces p with respect to B. 

lienee D6(B) = Dg. □

Corollary 4.1:

6 ie injective. a

Now W3 and are given by 6(B) = (t + wg.u^) concluding the case 

k = 1.

Finally, we show how the result extends to a subset {xlt...,xk) <= P 

where k > 1. For x, with 2 <  i <  k, we have <  wjix,) + t and

B^x.) = t + co,(x^) >  u^x,) = B2(xi). From Lemma 4.2 we deduce that x, l Dg 

giving 6(B)(x,) = B(x,) as required, which completes the proof. □

In [DDP], it was required that each jh » ih, in the context of

Theorem 4.3.
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C1early the subset D generated by the injection in Theorem 4.3 

consists of a connected set of elements in the Hasse diagram, the 

set of covering pairs of P. However D is in general neither an up-set, 

a down-set nor a convex set. To see this let be a long chain in P

and set D = {1}. Also let 1 < p < h but p £ Ch. It is easy to see 

that the elements of can each be consecutively adjoined to D, 

whereas p may not be.

Notice that D is independent of the order in which elements are 

adjoined to it. That is if d1,d2 e D, then having commenced with 

either d̂  or d2 would yield the set D when the propagation halts.

In other words D is uniquely defined.
C  C

It might be expected that if i2 < j2 we 9et N (>̂ »i2)N (r+s+t,j2) < 

NS(r+s,i2)NS(r+t,j2). However that this is not true is shown by:

Example 4.1:

P

With r « s « 1, t ■ 3, i2 ■ 4, j2 ■ 8 where in view of Theorem 4.3

8 = j 2 ^ i 2 + t = 7» then

22 = NS(1,4)NS(5,8) *  NS(2,4)NS(4,8 ) = (1)(3).

This example can be readily adapted to hold for order-preserving

maps and linear extensions.
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The particular case t = 0 of Theorem 4.3 is given by

As expected we do not necessarily get equality here, verified by: 

Example 4.2:

P

With r = s = j2 = 1 and i? = 2 then

(c-2) 2 = NS(1,2)NS(2,1) < NS(2,2)NS(1,1) = (c-2)(c-1).

We see from Example 4.2 that the above inequality with t = 0 does 

not hold for linear extensions, while the next example shows that it is 

not always false.

Example 4.3:

P

If r = s - 1, i2 = 5 and j2 = 4 then
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(3)(1) = NL(1.5)NL(2,4) < NL(2,5)NL(1,4) = 22.

By employing a corresponding injection to 6 we can show log 

concavity for order-preserving maps.

Theorem 4.5:

The analogue of Theorem 4.3 holds for N^(i^ .,i^).

Proof:

The proof follows a parallel course to that of Theorem 4.3, but 

(C+t) x c now takes the usual product ordering, and p forces q if 

p < q and B2(p) > B^q) or B^p) > B2(q) and similarly when p > q. a

From Stanley's result we can immediately deduce:

Theorem 4.6:

Let be a fixed subset in P. If r,S,t £ Z and

ih t [r,r+s+t] for 2 <  h <  k, then

NI(r,i2 ,...,ik)NI(r+s+t,i2,...,ik)

<  N^r+s.ig.... ijc)NI(r+t,i2.... ik).

Proof:

Without loss of generality assume c = |C|>|P| = n. Define the 

poset Q by P U Cc r|. Then N1 with respect to P equals NL with respect 

to Q. The result follows by leg concavity of the function NL. □
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4.3 LOG CONCAVE AND MONOTONE SEQUENCES

Clearly, if x is an isolated element in the poset P, the log 

concave sequence Mi also satisfies 0 ^ Hj = = ... = Hc = |M(Psx),C|.

We will show that for a minimal element in the poset, achieves its 

maximum value at the minimal element in the chain.

Theorem 4.7:

Let x be a minimal element of P. Then .... is log concave

and decreasing.

Log concavity of the sequence follows from Theorem 4.2. It is 

enough to show that

and monotonicity will follow from

So suppose that there exists a X £ A such that xx = 2.

Since 2 > |below {x}| = 1 we can let jj E A be the push down of X 

over x.

By showing that this construction is injective we have proved the

Proof:

'2 3 n

inequality. So let x"11 = p and since x is minimal we have x|p and 

thus pp = 2. This therefore means that

X = push up of (push down of X over x) over x. 0
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Modifying the proof for A yields similar results for fi and n°.

Theorem 4.8:
S SLet x be a minimal element of P. Then 9 • • • 9 is log

concave and decreasing.

Proof:

Suppose a) € fl satisfies wx = 2. Now 2 > ht(x) = 1 and so let 

TT e il be the rake down of u> over x. That it is injective follows from 

the minimality of x and

Using duality it follows that if x is maximal in P then the 

sequence is log concave and increasing. Examples show that if

a) = rake up of it over x. □

Theorem 4.9:

Let x be a minimal element of P. Then 

concave and decreasing.

9 • • • »N^ is log

Proof:

If e il° with w°x = 2 then define

if p = x

otherwi se

The construction of is clearly unique, and since x is minimal then
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x £ P with ht(x) = 2 or |below {x}| = 2  then the log concave sequences 

M2,M3,...,Mc are not decreasing.

Example 4.4:

For A(P u C2), <1^»N2,N3 ,N^,Ng> = <0,3,4,3,0>,

and for

f2(P,C5), <N^,n|,N^,nJ,N^> = <0,3,4,3,0>,

while for

il°(P,C5), <N°,N°,N°,N°,N°> = <5,8,9,8,5>.

The FKG inequality introduced in Chapter 3.1 has several applications 

in combinatorial theory (see [SW]). For instance it has led to new 

properties of log convex sequences, log supermodular functions and 

Bernstein polynomials. It is possible to deduce a result of Kleitman [Kl ] 

about families of sets (which is also a special case of the AD inequality) 

from the FKG. Also various new properties of theTutte polynomial of a 

geometric lattice, or matroid have been established. This polynomial 

introduced by Crapo is intimately related to the well-known colouring 

problems of graph theory, and the more general critical problem of 

combinatorial geometry. Further, the roles of statistical mechanics
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and combinatorics can be reversed so that the supply demand theorem 

of transport networks leads to a new proof of a theorem of Holley [Hoi] 

(again a special case of AD), which includes as a special case the 

original FKG inequality.

A lattice is modular when it satisfies the identity 

If x <  z, then x v  (y a  z) = (x v  y) a  z.

Thus every distributive lattice is modular, but not vice versa.

Due to the power of the FKG inequality it would be nice to have 

a similar result for a wider class of lattices. The FKG itself is 

known to fail in the lattice of flats of a projective geometry. The 

determination of conditions which make (3.5) true for modular lattices 

would therefore seem to be the most important unsolved problem in this 

field.

The FKG inequality led to the following result involving log convex 

sequences, which is a considerable extension of the well-known inequality 

of Chebyshev, although both are clearly a special case of Theorem 3.1.

Theorem 4.10: (Seymour and Welsh [SW]).

If y(1),...,y(m) is log convex and non-negative, and

f(1) ,... ,f(m), g(1).... g(m) are both increasing or both decreasing

real sequences, then

(4.3) ( I y(i)f(i))(z u(i)g(i)) <  (£ v(i))(Z y(i)f(i)g(i)).
i i 1 i

Note that by taking y(i) = 1 for all i we get the well-known result.

Also with the sequence (f(i):1 < 1 <  m) Increasing and the sequence 

(g(i):1 <  i < m) decreasing we reverse the inequality (4.3).
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The theorem of Seymour and Welsh can be applied to our sequences 

for elements of partial orders.

Theorem 4.11:

Let p,q,r € P where p is arbitrary and q,r are minimal. Then

(4.4) Z
^1<i<c

Nf(q)

N-(P)■) (
N*(r)

1<i<c (p)) < ( 1<i<c N?(p))( Z
1<i<c

Nj(q )N? ( r )

Nf(p)

Proof:

From the definitions we have that a sequence (W^:k > 0) is log 

convex if the sequence (W^1:k >  0) is log concave. By Theorem 4.3 

N^(p) is log concave, while by Theorem 4.8 N^(q), N^(r) are both 

decreasing sequences. Now apply Theorem 4.10. □

When p is arbitrary, q is minimal and r is maximal in P, the 

inequality (4.4) is reversed. Analogous inequalities to (4.4) hold 

for both linear extensions and order-preserving maps.

)•
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4.4 LOG CONCAVITY FOR TOTAL NUMBERS OF MAPS

Consider sequences for numbers of monotonic maps of the entire 

poset. Since P is fixed while |C| will be variable here, results 

do not arise for linear extensions.

Theorem 4.12: 
c

Let \>r be the total number of strict order-preserving maps 
S Su>:P -*• Cr- Then Vj, Vo»*«* is log concave.

Proof:

Given P and a new element q, define the poset Q by P < q.

Then note that equals N^+1 for x = q in Q and 1 <  i. The result
S Sfollows by log concavity of the sequence Ni+j, Ni+2 ,... . n 

Theorem 4.13:

Let v°r be the total number of order-preserving maps u> :̂P Cr. 
0 0 . ,Then ,V£•••• t-s log concave.

Proof:

The proof follows that of Theorem 4.12, with v!? equal to N? 

for x = q in Q and 1 < i. o

Theorem 4.14:

Let vj. be the total number of order-preserving injections 

A*:P Cr< Then v{>v2**** is log concave.

Proof:

Without loss of generality assume r >  n. Let k be the total 

number of linear extensions of P. Then for r = n + j with j >  0
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we have v1 = k(r). The result follows by log concavity of the sequence 
r n

of binomial coefficients (|j),

Clearly v^,v° and v* are all strict increasing sequences.



4.5 PROBABILITY RESULTS

If x,y are elements in the poset P, and i,j are elements in the 

chain C, when is it true that

prob(mx = i)prob(my = j) < prob(mx = i and my = j),

where m e M? Obviously when x } y and i < j, we require |{x,y}|< j-i+1 for 

M = A, and similarly ct(x,y) <  j-i+1 is necessary when M = n.

Theorem 4.15:

Let Q,R be posets and x,y be singletons. Suppose P is defined 

by Q < x < y < R. If j ■ i + 1 then for w €il(P,Cc),

prob(wx = i)prob(coy = j) < prob(ojx = i and coy = j).

Proof:

Suppose that the L.H.S. of the inequality is not equal to zero. 

Then let tt € fi satisfy u>x = i and try = j. Define the maps w', n* 

by

OOP i f

YCL3 i

irp i f =1 ■O Y j .

irp i f up < j

OOP i f ACL3 1 .

Notice that w' satisfies u>'x = i and u'y = j. Also since w:(Q < x) •+ 

and it:(y < R) - tj.....c] are each strict order-preserving, then so 1s 

o)':P -*■ Cc. Similarly i t ' e il.
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Given i o ' , it' we can immediately reconstruct w ,  tt. In other 

words we have an injection, establishing the inequality. □

We will demonstrate that certain constraints are necessary in 

Theorem 4.15.

Example 4.5:

Defining k = |fi(P,Cc)| = (£) we find that h, i and j can be chosen so that

when any of the following hold:

(i) h = 2 and j > i+1,

(ii) 2 < h = j - i + 1 ,

(ill) 2 < h < j - 1 + 1.

Therefore we require both that y covers x in P and j covers i in 

Cc in the above theorem. Setting P' = P u Cc_^ we get similar 

conclusions for A(P‘,Cn ).

h

P

= prob(u)X=i)prob(wy=j) prob(u>x=i and u>y=j) = — ^
/J-i-1 
1 h-2
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Theorem 4.16:

Let Q,R be posets, S a chain and X,y be eingletons. Suppose P 

is defined by (Q < x < y < R) U S. If j = i + 1 then for X £ A(P,Cn),

prob(xx=i)prob(xy=j) < prob(xx=i and Xy=j).

Proof:.

The proof follows that of Theorem 4.15. Given X, p £ A we define 

the injection

xp if XP < 1

UP if AQ.
P- j,

pp if PP < j

xp if xp > i.

Suppose a is the subset of S such that Xa c  C .. Since S is totally 

ordered and j covers i in C, then piS^) <= [j,...,n]. It follows that 

X',p* £ A. o

The proof techniques of Theorems 4.15 and 4.16 easily extend 

to yield the following results, which concludes this chapter.

Theorem 4.17:

Let Q,R,X,Y be posets, and P be defined by Q < X < Y < R.

Let the intervale [a,6], [y »6] c  ^c ‘ If Y = & +  ̂ then for 

w £ fi(P,Cc),

prob(a <  wX <  B)prob(Y <  u>Y <  6) <

prob(a <  u)X <  B and y <  <*>Y <  6).
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Theorem 4.18:

Let Q,R,X,Y be posets, S a chain and P be defined by 

(Q < X < K < R) U S. Let the intervals [y,6] c  Cn>

If y = e + 1 then for X € A(P,Cn),

prob(a < XX < B)prob(y <  XY <  <5) <

prob(a <  XX <  6 and y <  XY <  6).
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CHAPTER.5 : INEQUALITIES_FgR_THE_NUMBER_OF_MONOTONIC_FUNCTIQN§

5.1 INTRODUCTION

The results in this chapter were motivated by the log concave 

sequences established in the previous chapter, and appear in [JD].

We are concerned here not with a single element x € P but with a pair 

of elements x, y € P. We later consider larger subsets of the poset.

The injection technique developed in Theorem 4.3 is extended to this 

more general situation, to obtain many results of a new kind.

We commence with Theorem 5.1. If r,s,t,u,v,w e Z+ then 

NS(r,u + v + w)NS(r + s + t,u) < NS(r + s, u + w)NS(r + t, u + v).

The special case v = 0 yields Theorem 4.3 of D.E. Daykin, J.W. Daykin 

and M.S. Paterson which is an analogue of Stanley's Theorem 4.2 for 

linear extensions.

An inequality is derived for the numbers of strict order-preserving 

maps taking each of the poset elements x and y to various intervals in 

the chain.

The proofs given here for strict order-preserving maps are by means 

of injective construction, and as we may begin to expect by now, they 

can be modified to give the corresponding results for order-preserving 

maps.

We give related results for linear extensions which establish the 

existence of linear extensions satisfying certain properties.

The inequality in Theorem 5.1 is illustrated in Figure 5.1.
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r\

r (

C
a = N (r,u + v + w)

K

c

) v 

^ (

J a'= NS(r + s + t,u)

J 6 '= NS(r + t, u + w)

K y Theorem 5.1 says:

aa' < min {yy‘,66'}.
r r+s r+t r+s+t

Figure 5.1

To see our motivation for this inequality, suppose for the moment 

that NS was a smooth real function NS(x,y) of the real variables x.y. 

Then NS defines a smooth surface above the x-y plane. Obviously the 

inequality implies that the section of this surface above any straight 

line drawn on the x-y plane will be a log concave curve.

An application of some of the theorems given here arises in the 

next chapter where we derive a lower bound for the computational 

complexity of comparison problems.

The notation used throughout this section was defined in Chapter

4.1. Also we will write x for x ^  y for x2> i for ij, j for i? and
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Theorem 5.1 says:

eta' <  min {yy' ,66' }.
r r+s r+t r+s+t

Figure 5.1

To see our motivation for this inequality, suppose for the moment 

that NS was a smooth real function NS(x,y) of the real variables x.y. 

Then NS defines a smooth surface above the x-y plane. Obviously the 

inequality implies that the section of this surface above any straight 

line drawn on the x-y plane will be a log concave curve.

An application of some of the theorems given here arises in the 

next chapter where we derive a lower bound for the computational 

complexity of comparison problems.

The notation used throughout this section was defined in Chapter

4.1. Also we will write x for x ^  y for x2, i for 1^, j for i2 and
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5.2 STRICT ORDER-PRESERVING MAPS

We will make use of the following process which produces certain 

mappings and sets from existing mappings and sets.

Given the poset P and a chain C, let £ fi(P,C) ^ 0 and

x,y € P. Suppose a,b € Z +, u^(x) < ^(xj-a and ugCy) < w^(y)-b.

We will construct a unique pair of strict order-preserving maps 

w3 ,a>4:P C from Now a>3 ,u>4 are defined in terms of disjoint

subsets D, E of P which will be defined below. For fixed x,y,a,bwe define 

y: (wj ,w2 .x,y,a,b) -* (u>3,w4 ,D,E) and T:(u^ .o^) -*• (u>3 ,a>4) by

w3(p)

i»)4 (p)

if p € D 

if p £ E

if p € P^(D U E),

and

w4(p) =

u^p) + a 

oj1 (p) - b 

(^(p)

if p e d

if p 6 E

if p € P^(D U E).

The subsets D and E are defined iteratively by:

D = ix).
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If p t D and for some d € D either 

p < d and (^(p) >  u^(d) + a

or p > d and iô (p) <  (^(d) - a then D = D U {p}.

E = {y}.

If p t E and for some e € E either

p < e and u)̂ (p) >  u>2 (e) + b

or p > e and w2(p) <  aî (e) - b then E = E U {p}.

The motivation for these definitions is that we want x € D and 

y e E and need to extend both sets as above to ensure w3 and ^  are 

strict order-preserving. Since P is finite the iterative construction 

of D and E must halt (possibly with D u E = P). To establish that 

w3 and w4 are well defined and satisfy the required properties we 

will prove:

Lemma 5.1:

(5.1) For d € D, (^(d) < o>2(d) - a.

(5.2) For e € E, u>2(e) < w^e) - b.

An immediate consequence of Lemma 5.1 is:
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Corollary 5.1:

D n E =0

which implies that <03 and (o4 are well defined. Also Lemma 5.1 implies 

that for d e D, 103(d),(04(d) E C since

1 <  ( ^ (d )  < u2 (d) -  a = 103(d) and 

io4 (d) = w^(d) + a < ^ ( d )  <  c.

Similarly for e £ E, 103(e) .(04(e) £ C and so (03 and 0)4 map P to C.

Next we prove:

Lemma 5.2:

(O3 and (04 are strict order-preserving 

and finally:

Lemma 5.3:

T is injective.

Proof of Lemma 5.1:

Since x satisfies (5.1) and y satisfies (5.2) we will proceed 

by induction. So suppose d £ D satisfies (5.1) and d > p l D where 

(o2 (p) >  (ô (d) + a. Then D = D u (p) and

(Oj(p) + a < uj(d) + a < io2 (p).
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While if p > d and ^(p) <  (^(d) - a then D = D u {p} and 

u^ip) <  ^(d) - a < ^(p) - a ,

which establishes invariant (5.1). Similarly each new element added 

to E by the construction process must satisfy (5.2). □

Proof of Lemma 5.2t

We prove that u>3 is strict order-preservingthe proof for ^  

is analogous. Let p, q e P with p < q. We show that u^iP) < w3 (q) 

by considering nine cases, depending on which of the subsets D, E 

and P^(D u E) each of p and q belong. Clearly if p and q belong to 

the same subset, then since and w2 are strictly order-preserving 

co3(p) < w3(q). We proceed with the other six cases.

Case 1 p e P^(D U E) and q € D.

oi3(p) = o^ip) < (^(q) < u>2(q) - a = u)3(q), using (5.1).

Case 2 p € P^(D U E) and q 6 E.

u3(p) = (D^p) <w2(c1) + b = u>3 (q), using the definition of E. 

Case 3 p € D and q € E.

w3(p) = ia2(p) - a < io2(q) + b = o>3 (q).
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Case 4 p £ D and q £ P^(DUE).

tu3(p) = u^ip) - a < w^q) = w3(q), using the definition of D.

Case 5 p £ E and q £ P^(D U E).

w3(p) = wgip) + b < ^(p) < o^iq) = ^(q), using (5.2).

Case 6 p C E and q £ D.

ojjip) = (^(p) + b < wj(p) < o)̂ (q) < ^(q) - a = o^Cq), 

using (5.1), (5.2).

Proof of Lemma 5.3:

Suppose a>̂ ,^2 ,a)2 ^ ^ are such that (uî tû ) t (ŵ ,u)2),

u'(x) = u)̂ (x) < o>2(x) - a = - a and ^(y) = to^y) < Wj(y) - b

= wj(y) - b.

Case 1 y(w1 .^.x.y.a.b) = (a^.w^.D.E) = y(u^ .ai^.x.y.a.b).

This is clearly contradictory from the definitions.

Case 2 y (wj ,u>2 »x,y,a,b) = (wj.w^.D.E) t (w^.w^.D1 ,E') =

y(uj .uig.x.y.a.b), while (w 3 ,uĵ ) = (u>3 ,a>̂ ). Assume D t D'. Without

loss of generality p and d can be chosen so that p £ D^D1 and d £ D n D ‘.

Case p < d.

Assume ^(p) >  u^td) + a. Using Lemma 5.1 and Corollary 5.1 

we know that we adjoined p only to D and hence
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Wgtp) = (^(p) - a = O)̂ (p).

We may now deduce

(d) = cô (d) < 102(P) -  ̂ " t*ĵ (p) < o>̂ (d), 

giving a contradiction.

Case p > d follows similarly.

If we now assume E / E' then this case follows by symmetry. We 

conclude that r is injective. □

Now suppose Ml(x) < (^(x) - a, then can be constructed

from ,<¿2 by setting E = 0 in the definition of the function y.

This case is denoted for fixed x,a by

6< (iiij .(¿2 *x»a) •+ »D) *

Similarly if (^(y) < w^y) - b then let D = 0 in y, resulting in 

e:(w^ ta>2 >y>b) -*■ (a)3 ,to4 ,E),

where y,b are fixed. It easily follows that w3 ,io4 are well and uniquely 
defined for these simpler cases.

One of the main results in this section is the following generalization 

of Theorem 4.3.

Theorem 5.1:

Let x^,...>X|( be a fixed subset in P. If r,S,t,U,V,w € Z* and 

ih - W <  <  ih + t for 3 <  h <  k, then
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N(r,u+v+w,i3.... ik)N(r+s+t,u,j3,...,jk)<N(r+s,u+w,i3,...,ik)N(r+t,u+v,j3.....jfc)

Each map to counted by the function N has to(x̂ ) fixed for 3 <  h <  k in the 

respective factors. From now on we will simplify such expressions to 

omit any i^, jh. Hence the statement of this theorem abbreviates to:

Theorem 5.1:

If r,S,t,u,v,w £ Z+ and ih~w < <  ih+t for 3 <  h <  k, then

N(r,u+v+w)N(r+s+t,u) <  N(r+s,u+w)N(r+t,u+v).

Proof:

Suppose that the L.H.S. of the inequality is not zero. This 

implies r,u > 0. Given any pair of strict order-preserving maps 

a^.u^P -*■ C with to^x.y) = (r,u+v+w) and a^ix.y) = (r+s+t,u), we 

will construct a unique pair of strict order-preserving maps <o3 ,io4 :P -*■ C 

with u3(x,y) = (r+s,u+w) and (o4 (x,y) = (r+t.u+v). Initially ignore 

the elements x3 ,...,xk.

Case 1 s,v > 0. We have ^(x) < w2(x) - t and a>2(y) < ^(y) - w, 

and so w3 >a>4 are constructed using

*0^2 >x §yftfW) = (w3*<i>4»D,E).

Then u)3(x,y) = (u>2(x) - t, (^(y) + w) = (r+s,u+w) and w4(x,y) =

(co, (x) + t, o>1 (y) - w) = (r+t.u+v), as required.
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Case 2 Not s,v >0. When s = v = 0 the result is trivial.

If s = 0 and v > 0 then ^(x.y) = (r,u+v+w) and (^(x.y) = (r+t,u).

So let

e(w^ .W2»y«w ) = (t* > 2 •

Since ugix) { w^x) - w then x £ E by (5.2). Therefore u^x.y) = (^(x), 

o)2(y) + w) = (r,u+w) and w4(x,y) = ( u ^ M  »¡^(y) - w) = (r+t,u+v).

Otherwise s > 0 and v = 0, and similarly we use

6(o>̂  .t^ ,x,t) ~ (^3 >̂ 4 >̂ )

and (5 .1) to establish w3 ,w4 with u>3(x,y) = (r+s,u+w) and u>4(x,y) * (r+t,u). 

Finally consider elements x^ where 3 <  h < k. We have

W  = %  >  jh " 1 = w2(xh) ” tj 

w2(xh) = i h >  ^  " w = ‘W  " W *

From Lemma 5.1 we deduce that ( D and x^ t E in both Cases 1 and 2.

Hence u3(xh) = ih and w4(xh ) = jh as required, which completes the 

proof. □

To see that the condition i^-w <  <  i^+t is necessary in

Theorem 5.1 consider the following extension of Example 4.1.

Example 5.1:
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If r = s = 1, t=3, u=2, v=w = 0, ig = 4 and j3 = 8 where 

i3 - w <  j3 i3 + t, then

(2)(10) = N(1,2,4)N(5,2,8) * N(2,2,4)N(4,2,8) = (1)(15);

whilst if r = 2 , s = t = 0 , u = v = 1, w = 3, i3 = 8 and j3 = 4 where 

i3 - w^: j3 <  ij + t, then

(10)(2) = N(2,5,8)N(2,1,4) {  N(2,4,8)N(2,2,4) = (15)(1).

From now on the strict order-preserving maps be defined

in terms of the L.H.S. of the inequality, analogous to the proof of 

Theorem 5.1, and so we will also assume the L.H.S. to be non-zero.

We next extend each of the elements x,y € P in Theorem 5.1 to 

subsets of P, by iterating the process of producing the sets D and E.

Theorem 5.2:

Let k ‘, k", k e Z + with k1 <  k" < k. If r^,...,r^i,s^,...,sk,,

t.Ufc'+l••••»uk"*vk'+1 

k" < h <  k, then

.... vk„, w € Z+ and. ih-w <  Jh <  ih+t for

N(r1+sl + t,...,rk, + sk, + t,uk,+1 t • • •

Ntr^t....V ^ V + I  + V +1 * • • •• V  + vkJ
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Proof:

Consider first the elements Let u)3,to4 £ U be given

by

6(a)1,io2 ,x1,t) = (oj3 ,o)4 ,D).

Thus ^(x^) = r1 + s1 and u^txj) = r^t. Suppose that y = x? l D, 

for otherwise ^(y) = r2+s2 an<* “4^  = r2+^ as reclu’reĉ ' Then let 

(oc,w, £ fi be given by
t> D

<S(w3,u>4 ,y,t) = (Wj.Ug.D').

We must show that x = x  ̂ (.O'.

If d € D then u)4(d) < “3(d) + t follows from Lemma 5.1.

Then if d £ D', oi3(d) + t < w4(d) by Lemma 5.1.

The contradiction shows that x i D' and also D n D' = 0. This

process is iterated for elements x3>...,X|( ,.

Next consider the elements x ^ , ^ » • • • From (5*D we know

that each x. does not belong to any set D. As with the previous subset n
we repeatedly apply the injective function

e:(wi*r“jU2,xh ,w) - (uW ' W E)*

Let V = (D.D*,...,D"> be the set of disjoint subsets of P generated

by 6 , and similarly E = iE,E'.... EM} for e. By Corollary 5.1,

D n E = 0, and so we deduce that V u E is a set of pairwise disjoint 

sets.

Using Lemma 5.1 we see that x^ £ D, x^ t E for k" < h <  k, and any

0 £ V. E € E. Hence “2u i (xh) “ W  “ ’1h and w2 U 2 (xh) " ‘°2(xh) “ jh 

as required, o
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We consider again the singletons x,y € P.

Theorem 5.3:

Suppose r,S,t,u,v,w € Z+ satisfy s <  v and t <  w. If 

t <  v and 'ih “ v + t < ^ h < ’h + t

or

t > V and ih <  j'h <  ih + s 

for 3 <  h <  k, then

N(r,u)N(r+s+t,u+v+w) <  N(r+s,u+v)N(r+t,u+w).

Proof:

If v = 0 then s = 0 and the result is trivial. When v > 0 

and s = 0 we let

£((a>̂ tU>2 ,y »w) = ( a ) ^ *11) •

Since Uy(x) = r { r+t-w = u^ixj-w it follows from (5.1) that x £ D. 

Therefore w3(x,y) = (r+s,u+v) and a>4(x,y) = (r+t,u+w).

From now on assume s,v > 0.

Case 1 t <  v. From 6(0̂  .o^.x.t) we get u>3 (x) = r+s and o>4(x) * r+t 

as required, and a set D c P ,

Case 1.1 y e D. This Implies w3(y) * u+v+w-t and w4 (y) « u+t.

Now if t * w we have the necessary maps u3 ,w4 . So suppose t < w, and
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due to i»4(y) < o^iyMv-t), we can let 

e( ,y,v-t) = ((ijg iiijg *E).

Also w4 (x) •{: - (v-t) and hence by (5.2), x t E. This yields

ugix.y) = (r+s,u+v) and u)g(x,y) = (r+t,u+w).

Case 1.2 y t D. This implies ujiy) = u and w4(y) = u+v+w. Let

6(u>3 >to4 ,y,w) = (ojgtLô fD ).

Now ^(x) { w4 (x) - w and so using (5.1), x t D'. Thus u>5(x,y) = (r+s,u+v) 

and ug(x,y) = (r+t,u+w).

Case 2 t > v. From 6(0̂  .W2 »x*s) we get u>3(x) = r+t and w4(x) = r+s, 

and a set D c  P.

Case 2.1 y € D. This implies u>3(y) = u+v+w-s and a)4 (y) = u+s.

When s = v then w3(y) = u+w and w4 (y) = u+v. So consider the case 

s < v, and note also that w - s > 0 here. We have u>4 (y) < ui3(y) - (w-s) 

and so we may let

e(o>3 ,oj4»y ,w-S) = (ujg,a)g»E).

Now co4(x) { u3(x) - (w-s) and so by (5.2), x ( E. It follows that 

u>5(x,y) = (r+t,u+w) and o)g(x.y) = (r+s,u+v).

So far we have shown that for 3 <  h <  k,

Nir.u.i^jNir+s+t,u+v+w,j^) <  Ntr+t.u+w.i^Nir+s.u+v.j^).
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When either s = v or s < v we have 

r+t > r+s and u+w > u+v.

Moreover, all ih <  j^, and so we can use Theorem 5.2 to obtain 

N(r+t,u+w,ih)N(r+s,u+v,jh ) <  N(r+s,u+v,i^)N(r+t,u+w,jh).

Case 2.2 y ft D. This implies 003(y) = u and u>4 (y) = u+v+w. Let 

6(0)3,u>4 »y »v) = (i»)g»a)g,D )•

Now u»3(x) { w4(x) - v and so using (5.1), x ff D ’. Thus 

w5(x,y) = (r+t,u+w) and u>6 (x,y) = (r+s,u+v). As in Case 2.1 we 

use Theorem 5.2 to get

N(r+t,u+w,ih)N(r+s,u+v,jh) <  N(r+s,u+v,ih)N(r+t,u+w,jh), 

completing this case.

For x^ with 3 <  h <  k we have o>̂ (x̂ ) = i^ and ^(x^) = If 

t <  v then

ih - (v-t)<jh < i h + t < i h + w; 

whilst if t > v then

ih - (w-s) < 1h <  Jh <  1h + s < 1h + v < 1h + W -
Hence by Lemma 5.1, for any of the applications of 6 or e, the mappings 

of xh remain fixed as is necessary. o
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We will establish that the conditions s <  v and t <  w are 

both necessary in Theorem 5.3.

Example 5.2:

With r = u = 1 , s = 5 , t = 2 , v = 4 , w = 3  where 

s > v and t < w,

then

(c-1)(c-8 ) = N(1,1)N(8 ,8 ) 4; N(6,5)N(3,4) = (c-6)(c-4).

Further by Theorem 5.1, N(6,5)N(3,4) >  N(3,5)N(6,4). Thus for 

r = u  = 1, s = 2 , t = 5, v = 4, w = 3 where

s <  v and t > w.

then

N(1,1)N(8 ,8) {  N(3,5)N(6,4).

Special cases of Theorem 4.3 along with Theorems 5.1 and 5.3 

can be stated as:

Theorem 5.4:

Suppose r,s,t,u,v,w e Z* satisfy s <  t,v <  w. If 1h <  Jh <  *h + 8 

for 3 <  h <  k, then
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N(r,u)N(r+s+t,u+v+w) <  N(r+s,u+v)N(r+t,u+w)

W W

N(r,u+v+w)N(r+s+t,u) <  N(r+s,u+w)N(r+t,u+v).

An application of Theorem 5.2 to the poset elements 

is snown by:

Theorem 5.5:

Let k‘, k € Z+ with k' <  k. Suppose r^,... ,rki. S1.... ski € Z +

satisfy both

(5.3) 0 <  s1 <  s2 <  ... <  sk,,

(5.4) ih - B <  J'h <  ih + a for k' < h <  k,

where a - min {S^-S^j * l ^ t ^ k ' ,  l odd},

B = min ( s ^ - s ^  : 2 <  i. <  k', i. even}.

Then

N(rl,...,rkl)N(r1+2sl,...,rk.-fc2sk,)

<  N(r^ +s11. •. »rki+sk( t• • •  ̂•

Proof:

We will make k* applications of Theorem 5.2 to the fixed subset

Xl.... xk, in P. Without loss of generality assume s, > 0. Putting

t = s1 in Theorem 5.2 we get

N(r1,r2,...,rk,)N(r1+2s1,r2+2s2 ,...,rk,+2sk ,)

< N t r ^ . r ^ S g - s , ....rk.+2sk,-s1)N(r1+s1 .fg+s, rk*+s1}
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to which we associate the map

^1 ,lii2

Now 0̂ ,102.103.0)4 are respectively associated with the four factors 

in the inequality; the set D1 represents those elements whose image 

points have varied, namely x,j,... .x^,.

Subsequently if k‘ > 2 ,  set t = s2-Sj, S3"s2 »***»s|c,“s|c,-1, 

and we associate the sequence of mappings and sets

o>̂ ,0)2 -*■ 0)3 ,0)4 ,0  ̂ ... ■+ «‘̂ k'+Z.^k’

with these applications.

By (5.3), for 1 <  h, i, <  k' if i. is odd then

(5.5) “21+i(xh ) > r h + sh > “2l+2txh)’ 

and if i, is even then

(5.6) <*»2 4 +1(xh) <  rh + sh <  U2t+2(xh).

Equality in (5.5) or (5.6) implies from Theorem 5.2 that xh t when 

1 < h < l < k'.

For elements xh with k* < h <  k and 1 <  i, <  k*, using (5.4), if 1 

is odd then

jh = u>2(xh ) <  w,(xh) ♦ a - ih ♦ a <  1h ♦ s 4 - V i *

and if i. is even then
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jh = «-2(xh) >  < V xh> - B = ih - 6 ^  ih - (SA - V i * *

Hence by Theorem 5.2,in either case t D^. a 

We now give a higher order inequality.

Theorem 5.6:

Let h,r^,... .r^.u^,...,uh be integers, where h >  1. Suppose

(5.7) E(1 < l <  h)r^ = 0 and e (1 ■< i. <  hju^ = 0.

Then

(5.8) N(i+r1,j+u^) ... N(i+rh,j+uh) <  N(i,j)h ,

with <w(x3).... u(xk)> = <i3,—  •* i|c> in every factor.

Proof:

Assume that some r^ in (5.8) is negative. Then (5.7) implies 

that there exists a distinct pair Nd+r^.j+u^, Nd+r^, ,j+ut ,) with

1 <  i, Jt'.t.t' <  h in (5.8), such that r^, is positive. In view of

(5.1), ri < ri , - 1.

Case 1:

u >  ut,-1. Applying Theorem 5.1 to this pair shows

(5.9) N(i+rJt,j+ut)N(1+r4,,j+ut,) ■< Nd+r^.-a.j+U^Nd+r^+a.j+u^),
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where a  = min {|rj, r^,}. Hence + a  = 0 or r , - a = 0, and 

+ a <  r^, - a .  We make the substitution of (5.9) in the L.H.S. 

of (5.8) and note that (5.7) still holds.

Case 2:

ut < ut,-1. Applying Theorem 5.2 to the distinct pair yields

(5.10) N(i+rJ,,j+ut)N(i+rJll ,j+ut ,) <N(i+rjt,-a,j+ut<-a)N(i+rji+a ,j+ut+a),

where a  = min ilrj, r^,, ut , - ut - 1}. If a  is |rj or r^, then 

r + a  = 0 or r^, - a  = 0, and by substituting (5.10) in the L.H.S. 

of (5.8), it follows that (5.7) is still satisfied. Otherwise with 

a  = ut, * ut - 1 we have u^, - a < ut + a, while r^ + a is negative 

and r^, - a  is positive, in which case we can apply Case 1.

After Case 1 or 2 we proceed to find a new distinct pair if one

exists. This iteration results in all of the x components of (5.8)

being equal to i. If at this stage some y components of (5.8) are not 

equal to j, then we can analogously apply Case 1, where now the mapping 

of the x component will remain fixed.

Moreover, Theorems 5.1 and 5.2 show that the mappings of x^ remai 

equal to i^, for 3 <  l < k, throughout the iterations. o

Using the ideas developed here we obtain a result for elements 

x.y.z e p .

Theorem 5.7:

Suppose r, r*, S, s’, t', U, V € Z+ satisfy S < V and v-s < s'.t'

If  1^ - v ♦ s <  <  1^ + min {s, s - v + s') for 4 < H <  k, then



Nir.u.r'+s'+t')N(r+2s ,u+2v,r')<N(r+s,u+v,r'+t‘)N(r+s,u+v,r'+s1).

Proof:

If any of r, u or r' equals zero then the result is trivial 

because the L.H.S. is zero. If s = 0 the theorem reduces to Theorem

5.1. If v = 0 the theorem reduces to Theorem 4.3. Assume s < v for 

otherwise this follows by Theorem 5.2.

Given a pair of maps representing the L.H.S. of the

inequality, by a series of applications of 6, e, we will construct 

a pair of maps i»)y,ug representing the R.H.S.

Case r,r‘,s,u,v > 0:

We have w^x) < a>2(x)-s and so w3 ,a)4 € are constructed from 

£((Oj ,u>2 »x >s) = (<*>3»w4 »D).

Then a)3(x) = oj4 (x ) = r+s. Now for any element p C P and a e Z+ , if

U2&+i(p) = ( ^ ^ ( p )  then Lenma 5-1 imPlies that UJ2«.+3(p) = “2 U 4 (p^  

So from now on, for any application of the injections, the image of x

will remain fixed. Further from Lemma 5.1, z t D.

Case 1:

y € D. Therefore a>3(y) = u + 2v-s and w4(y) = u+s.

Since w4(y) < u>3(y) - (v-s) and v-s > 0 we can let

e(u>3 .w4 .y.v-s) = (wg.uig.E).

This results in u»5(y) = wg(y) * u+v.
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Case 1.1:

z € E. This means that u)g(z) = r ‘ + v-s and wg(z) = 

r' + s' + t' -v+s. By the hypothesis cog(z) < oog(z) - (s-v+s'), 

also s-v + s' > 0 and so we may define

6 ( l0 g  >0)g »Z , S - V + S  1 ) = ((OytOlgiD ) •

Hence uytx.y.z) = (r+s, u+v, r'+t’) and oigU.y.z) = (r+s,u+v,r'+s') 

as required.

Case 1.2:

z t E. Then (^(z) = r'+s'+t1 and ugU) = r' and since we 

can assume that s', t‘ > 0, we may let

e(<i>5»cog»z,t1) = (coy.iog.E ) •

This results in the necessary wytiog since x,y t E‘.

Case 2;

y £ D. This implies ^(x.y.z) = (r+s.u.r’+s'+t') and u>4 (x,y,z) 

= (r+s,u+2v,r'). Clearly we can set

6(0)3 »u>4 »y»v) = (o>5 «o)g»D )•

Using Lemma 5.1, z t D‘. and since s' is assumed positive we let

e(u)5 »o)g»z,t') = (u>7 »io0 »E ).

This produces the required ô .ojg since x,y t E'.
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Final 1 y for with 4 <  h <  k we have u^(x^) = ’h ’ ^ ^ h ^  = ^h*

Let a  = min {s.s-v+s1}. Now

ih-f < ih-(v-s) < Jh < 1h ♦ a < ih + s < ih + v.

It follows from Lemma 5.1 that the mappings of xh remain fixed for 

any of the above applications of the injections 6, e. Hence

“Sji+I^h^ = nh and “2*,+2 x̂h) = jh* D

We next combine two concepts, firstly log concavity for monotonic 

functions of singletons, secondly the order between two elements, that 

is their relative rankings.

So if x,y € P and i e C, then define N?(x <  y) to be the number 

of u)° € n° such that u°x = 1 and u°x <  o>°y. Similarly define 

N^(x < y), N*(x < y) and NL(x < y) for the other classes n, A1 and a 

respectively.

Intuitively we would expect these functions to be decreasing.
C T

However putting x < y and noting that N = N in Example 4.4 demonstrates 

that these are not monotone sequences.

Claim 5.1:

Let x,y C P. Then N^(x < y) is a log concave sequence.

Proof:

As we will only count maps with wx < oiy we can assume x < y 

1n P. Then

Nj(x < y) = N(i ,i+1) + ... ♦ N(1,c) = Nr  

Thus the result follows by log concavity of the sequence . o

✓
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We make an extension of this claim, based on the fact that 

here we have let y map to the interval [i+1,c]. In the following 

inequality we let each of the elements x,y € P map to intervals in C. 

Hence define N([i1,i2]. Cj1»d23) t0 be the number of strict order­

preserving maps u>:P -*■ C such that wx £ [i^.ig] and oiy e [jj.jg]'» 

and likewise define N°([i1,i2], [jj.jg]) for order-preserving maps.

Theorem 5.8:

I f  r,r' ,S , t , t '  ,u,v,w,w' £ Z + and w' < V, then

(5.11) N([r‘,r], [u,v:)N([r+s+t,t'], [u+t+w,w'JI)

<  N([r+s,t'-t], [u+w,v])N([r'+t,r+t], [u+t,w‘]).

Proof:

Suppose that the L.H.S. of the inequality is not zero. Thus 

we assume that the intervals on the L.H.S. are non-empty, i.e., 

r' <  r, u <  v, r+s+t <  t' and u+t+w < w'. Clearly on the R.H.S. 

we then have r+s <  t'-t, r'+t <  r+t, u+t ■< w' and also 

u+w <  u+t+w <  w' <  v.

Suppose r '< h <  r and r + s + t < K t ' ,  then we must show that

(5.12) (N(h,u) + ... + N(h,v))(N(t,u+t+w) + ... + N(t,w'))

<  (NU-t,u+w) + ... + N(t,-t,v))(N(h+t,u+t) + ... + N(h+t,w')). 

First we will establish that
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(5.13) N(h,j 1 )N( A,j") <  N( i,-t,j"-t)N(h+t,j ’+t)

when u < j ’ < u+w and u+t+w <  j" <  w'.

The inequality (5.13) follows from applying Theorem 5.2. Let 

the maps and 0)3,104 represent the left and right side of (5.13)

respectively. Concerning the element x, when u>̂ (x) = h < j i - t ^ M - t  

then we can show that x is mapped into the required intervals with 

respect to the R.H.S. of (5.11):

r+s <  0̂ (x) = fc-t <  t'-t, 

r'+t <  (04U )  = h+t <  r+t.

Otherwise h >  £-t, which implies that tojix) = r, u^ix) = r+s+t and 

s = 0. Hence we get o^ix) = u>̂ (x) and o>4(x) = o^ix), so x will clearly 

belong to the correct ranges. Concerning the element y, we always 

have Wl(y) - J' < J" - t - «^(y) - t. and again we map into the

correct intervals:

u+w <  o^iy) = j"-t <  w'-t <  v,

u+t <  io4(y) = j'+t < u+t+w <  w'.

We will prove that

(5.14) N(h,[u+w,v])N(A,[u+t+w,w, ])<N(A-t,[u+w,v])N(h+t,[u+t+w,w']).

Sunning (5.13) over j', j" and adding (5.14) gives (5.12). Then 

sunning (5.12) over h,«. gives (5.11) as required.
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We prove (5.14) as follows. Given any ordered pair (taj,^) 

of maps counted by the L.H.S. we construct a unique pair (o)3 ,o)4) 

counted by the R.H.S. So we have

(x) = h, •IIXS'

(x) = t-t, to4(x) = h+t

u+w < w. (y),w3(y) <  v, 

u+t+w <  a>2(y),w4(y) < w'.

If Wl(x) = r, a>2(x) = r+s+t and s = 0 then let w3 = u>1 and 

o>4 = io2. Hence (co3 ,u)̂ ) will be unique.

Otherwise with h < l - t, we may let

6(o  ̂,u>2>x,t) * (003»0)4»D),

and so u>3(x) = t-t, u^(x) = h+t.

Consider now the element y with respect to the set D.

Case 1;

y (_ o. By definition we have u>3(y) c «^(y) and w4(y) = o>2(y) 

which is enough to show that y is mapped to the required intervals 

in (5.14).
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Case 2:

y € D. From the invariant (5.1) we know that ^(y) < (^(yj-t.

This relation is used to establish that the images of y will belong 

to the specified intervals, namely

u+w <  w2(y)-t = ujiy) <  w'-t < v-t <  v,

u+t+w < (^(yj+t = u4(y) < (^(y) < W .

Suppose in Case 1 that 6(û  .u^.x.t) = (w^.w^.D) with y (. D 

and in Case 2 that iUj .uij.x.t) = (i^.^.D') with y G D'. The 

injective property of 6 ensures that (u^.o^) t .o^) and

w3(x,y) = wjix.y), io4(x,y) = u)4(x,y) implies that (w3 ,u)4) / (u3 ,u>4 ).

Me remark that similarly to the previous theorems we may extend 

this result to a fixed subset x . , . . . ^  in P. For 3 <  h < k let 

oh ,Bh,Yh ,6h € C. Then in (5.11) we put u(xh) 6 [o^,^] in the first 

and third factors, and w(xh ) € [yh ,6h] in the second and fourth 

factors. With <  “h + t this fo11ows by Theorem 5 *2 and D

The following shows the necessity for the condition w ‘ <  v in 

Theorem 5.8.

Example 5.3:

Let P be defined as in Example 5.2. Setting r=r' = s=t=u=w=1, 

t' • 3, v « 2 and w' = 4 where w ‘ > v, then

( 2 c - 3 ) ( 2 c - 7 )  = N ( 1 , [ 1 , 2 ] ) N ( 3 , [ 3 , 4 ] H N ( 2 , 2 ) N ( 2 , [ 2 , 4 ] )  «= ( c - 2 ) ( 3 c - 9 ) .
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5.3 ORDER-PRESERVING MAPS

We will employ corresponding injections to y, 6 and e in order 

to show that the preceeding inequalities also hold for order­

preserving maps. The constructions follow a parallel course to 

those for strict order-preserving maps, whilst substituting for 

u> where w® e rP. For example, the subset D is now defined 

iteratively by:

D = {x}.

If p t D and for some d C D  either 

p < d and u^ip) > w^(d) + a

o r  p > d and w?(p) < - a then D = D u ip).

Similarly Cases 1 and 3 in the proof of Lemma 5.2 are modified as 

follows, to establish that w^Cp) <  u^iq).

Case 1 p £ P^(D u E) and q £ D.

w^ip) = „J(p> <ui^(q) < - a = (^(q)»

using (5.1) with w replaced by w°.
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Case 3 p € D and q £ E.

cjjCp) = " a <  <*̂ (q) + b = q).

Hence by using analogous proofs we obtain:

Theorem 5.9:

Theorems 5.1 - 5.8 hold with N = replaced by N^.

Notice that Examples 5.1 - 5.3 serve the same purpose in this 

section as for strict order-preserving maps, because the result in 

each example is the same although seme numerical values are different.

In a similar way to Claim 5.1 we get:

Claim 5.2:

Let x,y € P. Then n9(x <  y) is a log concave sequence.
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5.4 LINEAR EXTENSIONS

For x,y £ P bijectivity implies that NL(i,j) = 0 when i = j. 

If we plot NL(i,j) on the plane then by Stanley's Theorem 4.2 

every row and every column is log concave.

We would not expect an immediate analogue of Theorem 5.1 for 

linear extensions and the following example establishes this view.

Example 5.4:

With r = 2 and s = t = u = v = w = 1  then

(1)(2) = NL(2,3)NL(4,1) {  NL(3,2)2 = 12.

Existence theorems for certain types of linear extensions are 

next established. Recall that n = |P|.

Theorem 5.10:

If X ^ y in P ond i < j then N*"(i,j) > 0 iff all of
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labove {x,y}| < n-i+1 ,

|below {x,y}| < j,

|above {y}| < n-j+1,

|below {x}| <  i,

and  |above {x} n below {y}| <  j-i+1.

Some easy corollaries now follow. As an analogy to Theorem

5.1 consider:

Corollary 5.2:

Let x,y 6 P and  h, l € Z +. Suppose N*"(i,j+Jl) > 0 and 

NL(i+i.,j) >0. If  0 < h < i. and  i + £ < j  + 1 o r j + J l < i + 1  

then N*"(i + h, j + i - h) >0.

As an analogy to Theorem 5.2 we give:

Corollary 5.3:

Let x,y € P and  h,£ £ Z + . Suppose N*"(i,j) > 0 and 

NL(i+£, j+t) >0. If  0 <  h <  l then NL(i+h,j+h) > 0.

These two corollaries can also be proved using the push up 

and down functions.
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Example 5.1 is easily modified to illustrate the same conclusions 

for linear extensions. This is achieved by including in the 

definition of P, and incrementing i3 »J3 so that

With respect to the conditions s < v and t < w in Theorem 5.3, 

we can similarly adapt Example 5.2 for linear extensions by adding 

C -J to the definition of P. Setting r = 1,s = 5, t = u = 2 ,  v = 4 

and w = 3 where s > v and t <  w, then

Interchanging the values of s and t and of v and w, so that s < v 

and t > w, produces the same results.

The following example shows that Theorem 5.8 is not true for 

linear extensions.

Example 5.5:

(2)(12) = NL(1,2,5)NL(5,2 ,9) 4  NL(2,2,5)NL(4,2,9) = 0, 

(12)(2) = NL(2,5,9)NL(2,1,5) 4  NL(2,4,9)NL(2,2,5) = 0.

(8 )( 1 ) = NL(1,2)NL(8 ,9) {  NL(6,6)NL(3,5) = 0.

P

We have

(4)(2) = NL( 1 ,[2,5])NL(6,[4,5]) * NL(5,[3.5])NL(2.[3.5]) * (2)(3).
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where

Claim

r = r' = t = w = 1, s = 4, f  = 6 , u = 2 and v = w 1 =5. 

We complete this section with:

5.3:

Let X,y € P. Then N*(x < y) is a log concave sequence.
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CHAPIER.6 : A_LOWER_BOUND_TECHNIQUE_FOR_COMPARISON_PROBLEMS

6.1 INTRODUCTION

We describe here a new lower bound technique in Complexity Theory 

for some comparison problems such as selection or sorting, (see [DP]).

Each of these problems can be defined as producing a particular partitioned 

poset from the given set of elements.

For the lower bound we construct a set of partitions of the poset, 

to be represented by a distributive lattice r. Equivalently we can use 

the structure provided by taking order-preserving maps from the poset 

to a chain of length two.

The procedure requires Lemma 6.4. J/A.B, A v B ,  A a B are disjoint 

subsets in r, then min {|A|,|B|} <  |r|/4. To prove this we use the 

lattice inequality |A|j B | < |A v  B | | A a  B| detailed in Chapter 3.1. 

Corresponding results for strict order-preserving and order-preserving 

maps are established with the aid of inequalities for monotonic functions 

from Chapters 5.2, 5.3 or 4.2.

We apply the technique to find a lower bound for the equi-partition 

problem. It is shown that to form the partition of n elements into two 

equal sized parts, which respects their linear order, requires at least 

1.2n comparisons.
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6.2 COMPARISON PROBLEMS

Many of the well-known selection and sorting problems can be 

understood as the production of certain partial orders using binary 

comparisons. For example, the posets in Figure 6.1 correspond to the 

problems: select the first 3 elements in order, without order and 

select the 3rd element, respectively, out of a chain on n elements.

Let 4>(n) be the set of all (non-isomorphic) posets on n elements.

We order <J>(n) by P <  Q in 4> iff there exists a monotone injection from 

P to Q. With this order relation 4>(n) itself becomes a poset with the 

antichain An on n elements as unique minimal element and the chain Cn 

as unique maximal element.

On the ground-set, or reservoir of n elements, we are given a fixed 

total order, unknown to us. Let P € 4>(n). Our goal is to determine P 

with certainty by a sequence of comparisons between pairs of elements.

By branching on the outcome of each comparison, any such algorithm T 

corresponds to a rooted binary tree with An as the root and with the nodes

n-3

Figure 6.1



of the tree corresponding to the posets that have been determined up 

to then. The condition that T should determine P with certainty shall 

mean that P can be embedded monotonically into all the posets associated 

with the end-nodes of the tree. Hence we give the following definition, 

suggested by Schflnhage [S].

Definition 6.1:

Let P e <t>(n). An algorithm T produces P iff for all end-posets 

Q.j of T we have P < . The length i,(T) of T is the height of the

corresponding tree.

Definition 6.2:

Let P £ 4>(n). The (serial) cost C(P) of P is

C(P) = min «.(T)
T

where the minimum is extended over all algorithms T which produce P.

Since i.(T) is the maximal path length of the tree, C(P) is the 

number of comparisons required to produce P in the worst case, by any 

optimal algorithm.

An important class of posets called partitions, considered by 

Aigner [A1] and Yap [Yal], includes all selection problems treated in 

the literature so far.

Definition 6.3:

Let n = k1 + ... + kd be an ordered partition of n into d positive 

integers k^. To this partition there corresponds a unique poset in $(n) 

consisting of d groups G^,...,Gd with |G..| * k^, i = 1,...,d, such that
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G. > G i iff i < j. This poset is called the partition of type

fn;k1....»kd) and we denote its complexity by C(n;k^.... k^).

Three types have received special attention in the theory of 

sorting:

(6.1) The partition ( n ; 1 ..,1,n-t) - sorting the first t elements
t

in order.

(6.2) The partition (n;t-1,1,n-t) - selecting the t-th element.

(6.3) The partition (n;t,n-t) - selecting the first t elements 

without regard to order.

The cost functions for these types are commonly denoted by 

Wt(n) = c(n;1,...,1,n-t),

Vt(n) = C(n;t-1,1,n-t),

Ut(n) = C(n;t,n-t).

Clearly we have U < V <  W.

In [A2] Aigner has suggested that the sequence (Ut(n):t = 1.... n)

is unimodal. That is, the problem of determining the t top elements as 

an unordered set becomes steadily harder right up to t = However it

is not thought so likely that the sequence (Vt(n): t = 1,...,n) is 

unimodal, since there is no reason to believe that to select the 5th 

element is more difficult than to select the 4th element, for example.
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The median problem, namely (2m + 1;m,1,m), is the hardest selection 

problem, in the sense that if the median has complexity Vm+1(n) > n, with 

n = 2m + 1, then selecting the t-th largest element also has complexity 

0(Vm+1(n)). It is known [Ya2,SPP] that ^-n £ Vm+1(n) <  3n, although 

the lower bound is as yet unpublished. Very recently John [J] has 

established a lower bound asymptotic to 2n for the median, by means 

of a relatively straightforward counting argument.

Efficient median algorithms find applications in many computational 

situations including sorting, minimum spanning tree and geometry problems.

To determine the partition (2m;m,m) is known as the equi-partition 

or bipartition problem. Kirkpatrick [K] observed the importance of this 

problem for obtaining lower bounds to the median problem. That is all 

known proofs are unable to exploit any property which is peculiar to 

the median but which is not already available to the bipartition. Hence 

median lower bounds, which usually employ the notion of an oracle or 

adversary, along with case analysis of posets, also work for the 

bipartition problem. So we have Um(2m) >  4m. With the oracle technique 

a procedure is defined to determine the outcome of each comparison in 

such a way as to force the algorithm to make many comparisons.

Kirkpatrick has shown [K] that the lower bound for the median 

follows from a lower bound for the bipartition as follows

C(2m+1;m,1,m) >  C(2m+2;m+1 ,m+1) + 1.

Further by using Induction on the bipartition case, it is possible to get 

a lower bound for any poset 1n the class of partitions (see [Ya2]). How­

ever the bound produced in this way will always be less than 2n, but using 

information theoretic arguments has shown C(n;n/4,n/4,n/4,n/4) >  2n.
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Sorting of n elements can be understood as the task of producing 

the total order, Cn> starting from n singletons, . Accordingly in 

this case, production of Cn means the transition from n(C^) to Cn. The 

following information theoretical argument yields the lower bound for 

S(n) = C(Cn).

There are exactly n! external nodes in a comparison tree which 

sorts n elements with no redundant comparisons. If the tree has k+1 

ranks or levels, it follows that there can be at most 2 external nodes 

in the tree. Hence, letting k = S(n), we have n! <  2 ^ n  ̂and so 

S(n) >  riog2 nil. Using Stirling's approximation we deduce that about 

n logg n comparisons are needed for this problem.
3

The best known upper bound of S(n) < I Hog- (xk)l comes
1<k<n

from the Ford and Johnson algorithm [FJ]. Thus there is still a gap 

of order n between the two bounds.

No general method for obtaining upper bounds applicable to any 

given partition (n;k^,... ,kd) is in sight as yet, but we can make a 

few observations about some precise bounds of special interest.

Using duality we get

C(nik1t...,kd) - C(n;kd ,...,k1), 

and it is obvious that

Uj(n) = V^n) = Wj(n) » n-1,

Wn(n) » Wn_j(n) » S(n).
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Further (see [A1]),

U2(n) = n-2 + riog2(n-1)l,

V2(n) = W2(n) = n-2 + H o g ^ l ,  

and C(n;1,n-2,1) = nl - 2.

Merging of m elements with n elements means the transition from

C + C to C . I n  some cases the corresponding cost function M(m,n) 
m n m+n
is known explicitly:

M(m,n) = m + n - 1 for |m-n| <  1,

M(1,n) = riog2(n+1)l,

M(2,n) = riog2(-^ (n+1))l + Hog^-jy (n+1))l.

The latter formula gives some idea how intricate the answer to fairly 

simple problems of this type can be. Here the merging problem serves as 

an example, where the algorithms start from some prescribed partial 

order, for which the underlying total order is still unknown.

Further details and references for minimum-comparison sorting, 

selection and merging are given in [Kn], sections 5.3.1,2,3.



6,3 A SET OF PARTITIONS OF A POSET

For any poset P let {S u T} be a partition of P satisfying s € S, 

t £ T implies s f t in P. Then let F denote the set of all such partitions 

of P.

The lower bound technique commences by representing P, whose 

elements are , by this set F. Now we have two equivalent ways

of regarding F.

Let £ be the distributive lattice of subsets of N = {1,2,...,n} 

ordered by inclusion. Then F c  £. If v € £ we think of v as the set T 

and N^v as the set S. It follows that the elements of £ of cardinality a, 

0< a <  n, are all the partitions of of the form (n;a,n-a).

For example when P is an antichain, \F\ = |£| = 2n.

For each element v in £ we can associate a unique map e as follows. 

For 1 <  i <  n define

f2 if i € v 
9v(qi} = {v 1 l 1 if i t V.

Any function io°:P ■» C2 defines a partition {S U T} by S = oj° (1) and 

T = 1(2). Clearly is an order-preserving map if v ={i:q^ = w° (2)}

and fKv ={i:q^ = w° \l)} for some u>°. Now notice that F is also given 

by the set of order-preserving maps from P to C2.

We will show that F is an equivalent representation of P, that is, 

given F we can construct P.

So let P be the set of all labelled posets with n elements. We 

can assume that the labels belong to the set N. If v is a subset of N, 

with j  € v and 1 e fKv, then for some P £ P either qj > q^ or q j | i n  P.
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Let S be the set of all sets of subsets of N; hence |S| = 2 .

Define f:P -*• 9 as follows. If P £ P, then f(P) = {v:v <= N,

for all i,j € N, if q^ > qi in P then i £ v implies j € v} = F. Since

f(P) is a set of subsets of N we know f is well-defined.

Note that f is not surjective. For example, neither XN0 nor INN 

belongs to f(P). Also if P = {q} then f(P) = {0,{1}).

Lemma 6.1:

f ¿8 injective.

Proof:

Let P,Q € P with P / Q. This means that P,Q differ on some

elements x = qi and y = qj. Without loss of generality assume x < y

in P and x { y in Q. Let v = {k:qk £ Q, qfc £ above {x}> € f(Q). Then

i t v . j i v  and hence v it f(P). Therefore f(P) t f(Q). o

F is defined to be contained in £. Further we have:

Claim 6.1 : * i

F ie a eublattice of £.

2

Proof:

In £ we have v = u and a  = n. So it suffices to show that F is 

closed under union and intersection.

Let y , 6 € F with v = y U 5- Now suppose v f. F, then there exist 

i £ v , j t v while qi < q^ in P. Without loss of generality assume

i £ Y then we have j t y. This implies y t F giving a contradiction,

and thus v £ F.
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The proof for intersection is similar. □

It is easy to see that a sublattice of a distributive lattice 

is itself distributive. Thus F is also distributive.

Lemma 6.2:

Let F be a sublattice of Z containing a maximal chain C of Z.

Suppose 0 <  k <  n and that F contains exactly one element v of cardinality
n~k kk. Then F <= above {v} U below {v}, and hence |F| < 2 + 2 .

Proof:

Without loss of generality assume C is (lc {1} c  {1,2} <=•••<= N. 

Then v = C.. Suppose there exists a 6 e F with 6|v, then we will use 

the fact that F is closed under union and intersection to get a 

contradiction.

If 16 1 > k let t be the kth smal lest member of 6. We have € C

and |Ct 0 6 | = k. Since v |6 it follows that Ct il 6 / v giving a 

contradiction.

When |<51 < k let t be the (n-k+1 )th largest member of N^6. Then 

Ct € C and |Ct u 6 |= k, where Ct u J / v.

Finally |above (v}| = 2n_k and |below {v}| = 2k and v is a common

member of both sets, o

To show that we need the maximal chain C in F above, consider the 

example where n * 3 and F = {0,{1>« {2,3}, {1,2,3}}.

We associate a linear extension with each maximal chain CR 

belonging to f(P) as follows. Let 6 cover y in Cn , thus for some i,

{ > y u 1. Define xi ■ n - |y| for each such i, and then X € A(P).



Lemma 6.3:

The number of linear extensions of P is equal to the number of 

maximal chains in 7.

Proof:

Clearly f(Cn) is a unique maximal chain in £. Suppose X,p are 

distinct linear extensions of P. Then set X = C, p = D for chains 

C,D € P. By Lemma 6.1, f(C) ^ f(D).

Now suppose C and D are distinct maximal chains in 7. For some 

0 < k < n there are different elements y € C, 6 £ D with |y I > |6 | =k. 

Let y = a U i and 6 = 6 U j for elements a,B, and so i j. Then for 

linear extensions X,p we have Xi = pj = n-k+1 and hence X j* p. o

Note that not every collection of maximal chains in £ constitutes 

f(P) for some P e p. Let n = 3 and P be an antichain. Then 7 is given 

by the 23 elements of £, whereas the chains 0 c  {1} c  {1,2} c  {1,2,3},

0 c  {3} c  { 2 , 3 }  c  { 1 , 2 ,3 }  suffice to determine P. That is the order 

dimension of P is 2.
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6.4 A LATTICE INEQUALITY 

Lemma 6.4:

If A,B are subsets of the elements of a distributive lattice T 

and A|B then

min { |A|,|B|} < |r|/4.

Proof:

Suppose |r|/4 < |A|, |B|. Then notice that A|B is equivalent 

to the condition that A,B, A v B, A a  B are disjoint in r. By 

disjointness |A| + |B| + |A v B| + |A a  B| < |r| and so
2

|A v B| + |A a  B|< |T|/2. According to Theorem 3.3,(|r|/4) <
p

|A| |B| <  |A v B| |A a  B|. Eliminating |A a  B| we have (|r|/4) < 

|A v B|(|r|/2 - |A v B|) which is (|T|/4 - |A v B | ) 2 < 0 and the

lemma is proved. □

It is well known that the down-sets of a finite poset P ordered 

by inclusion form a distributive lattice r. The join and meet in 

this lattice are given by union and intersection respectively of 

the down-sets in P. Further every distributive lattice may be formed 

in this way.
0Notice that for each order-preserving map w :P C2> u> (1) is 

a down-set of P. Hence we can construct r from n^P.Cg). Thus we 

derive the following specialization of Lemma 6.4.

Lemma 6.5:

If X,Y are disjoint fixed subsets in P and iP is the set of 

order-preserving maps P •* C2» then
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min {|a |, |b|> < |fi°/4,

where a = {oj0 € n°:u°X = 1, w°Y = 2}, 

b = {o)° € n0:w0X = 2, u°Y = 1}.

Proof:

Put

C ={w° £ n°:w°X = 1. u,°Y = 1}, 

and d ={u>° e i2°:u>°X = 2, u>°Y = 2}.

Now |n°| is given by the number of down-sets in P. Let

A = {u)° 1(1):w° e a} <= r . so |A| = |a|.

Similarly define B,C,D for b,c,d. Clearly A,B,C,D are disjoint and 

A v B > C and A a  B = D. □

We now give the corresponding results for both strict order­

preserving and order-preserving maps using a proof based on our 

Inequalities for monotone functions. So let M = n® or n and m e M.

Lemma 6 .6:

If X = X j ,...,Xj , Y = y1.... yk are disjoint fixed subsets in P

and M = M(P,C2 ), then

min {|m:mX < mY|, |m:mX > mY|} < |M|/4.

Proof:

From Theorem 5.2 we have for nfP'Cg)»
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ab = NSQ .... 1 „ 2 .....2)NS( 2 ^ . ^ ,  I ^ . J )  <  NS(y.... 1.)NS(g.... 2) = cd.
j k j k j+k j+k

Further, by Theorem 5.9 we get for n ( P ^ ) .

aB = N°( 1.... 1,2.....2)N°(2.... 2,1.... 1) <  N°(1.... 1 )N°(2.... 2) = Y6.

2
Now 4 min {a,6) = (2 min (vS.v’f}))

<  ( Ja  + v*B) ^

<  a + B + 2/y6 (using 06 <  y6)

<  a + B + Y + 6 (using geometric mean <

arithmetic mean) <

Likewise 4 min {a,b} <  |fi| .

Note that when j = k = 1 we can alternatively apply Theorems

4.3, 4.5 here. a

We will require the following corollary of Lemma 6.5 for the 

lower bound. Using the map e we get:

Corollary 6.1:

If X,Y are disjoint fixed subsets in P and F = f(P), then 

min (a.B) <  |F|/4,

where a * |{v £ F:q. € X implies i t v, Qj€ Y implies j € v) |,

B * |{v € F:q.j € X implies 1 £ v, qj £ Y implies j (£v}|.

We mention that since F forms a distributive lattice we are able to 

prove this directly with the lattice inequality Theorem 3.3.
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A motivation for this corollary concerns the partition 

{| u j  u M  u of F, according to the elements q^, q^, where

4- = {v € F:i t v, j € vjand so on. Theorem 3.3 shows that

1+1 i+i« i11'
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6.5 THE LOWER BOUND TECHNIQUE

We will illustrate the lower bound technique by applying it to 

demonstrate a bound for U^tnj(n).

Let P be the antichain q1,...,qn where these elements determine 

an unknown fixed linear order L. Let C be the set of all algorithms 

for computing the t-partition (n;LtnJ, n-ltnj) of P, where 0 <  t <  ̂ .

Theorem 6.1:

If T E t then in the worst case T requires at least 2.4 LtnJ 

binary comparisons q^ ? qj where q^,qj £ P.

Proof:

Let an algorithm T € Z be chosen. Then T proceeds to perform 

successive pair-wise comparisons between the elements of P, each 

result being of the form q. < q.. Suppose T makes k comparisons.
* J

Then the results yield a subposet Pk of L.

Let F k = f(Pk). The information qi < qj shows that, if v £ £ 

with i £ v and j t v then is not order-preserving, and in 

particular v is not the required unique element corresponding to the 

t-partition.

After any comparison we are interested only in those v € £ which 

respect the resulting subposet. So each of the k comparisons in 

effect deletes from £ precisely those elements for which is not 

order-preserving. The remaining elements define the subset Fk of £.

From Lemma 6.1 and the definition of 6v we deduce that Fk 1s 

exactly the set n°(Pk,C2). Further by Claim 6.1 we have that Fk 

is a sublattice of £.
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Now L is qir(1) < Qtt(2) < ••• < ^(n) for some Permutat1on 

ltd). tt( 2),... ,ir(n) of N. This means that for 1 <  i < n+1 the map 

e, is order-preserving, and hence the maximal

chain 0 <= {n(n)} <=...<= {n(1),... ,ir(n)} is not deleted from £.

Thus there exists at least one maximal chain of £ in F^.

Suppose that after k comparisons we have determined the t-partition. 

Since it is unique we have deleted all but one element, v say, of 

cardinality LtnJ from £. Setting a = LtnJ it now follows by Lemma

6.2 that |Fk | < 2n-ot + 2“. In the worst case e‘1(1) corresponds 

to an antichain in P, and hence |above {v>| = 2n “ , and likewise for

» > > •
Claim 6.2:

For any such comparison algorithm there is a sequence of worst 

case outcomes such that when the algorithm halts we have

|Fkl > (J)k2n-

Assume for the moment that Claim 6.2 is true. Then 

(J)k2 ° <  |Fk| < 2n_ot ♦ 2 a  < 2n_ot+1, 

and (q—1 ) 1 ^

Hence LtnJ2.4 < k.

It remains to prove Claim 6.2. The case k = 0 is trivial so 

we proceed with induction on k. Making a new (k+1)th comparison 

between q.. and q^ say, will delete from Fk either
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A = {v € Fk: i £. v, j £ \>} 

or

B = {v € Fk: i € v, j t v}, 

where clearly A|B.

Without loss of generality assume |A| < |B|. From Corollary
O

6.1 we have that |A| <  |Fk |/4 and therefore in the worst case -̂|Fk | <  |Fk+j|.

The claim follows and the proof is complete. □

Suppose the posets P,Q satisfy P <  Q. Then to use this lower 

bound technique to derive the cost of producing Q from P, it is 

required to solve

(J)k |n°(P,c2)| < |n°(Q.c2)|.

From the quantity n o g 2( ^ nj)li information theory and the 

entropy function yield a lower bound of at most n, where the case 

n corresponds to the equi-partition problem.

For the equi-partition problem it would seem natural to modify 

our counting technique so as to consider only the equator elements 

of £, namely the set {v € £:|v| = n/2). The advantage in the 

representation of E = {v e F:|v| = n/2), is that we commence with 

(n"2) elements, which using Stirling's approximation is about 

2n, and always halt with only one equator element existing. However, 

with F we proceed to reduce the number of given elements, 2n, until 

completion when there may be roughly as many as 2n elements remaining.

With the help of an analogue of Lemma 6.4 for the equator, the number 

of comparisons required via E must therefore yield a better lower 

bound.
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Suppose that the first comparison of an equi-partition algorithm

increases this proportion for the first comparison tends to Simple

examples show that as the algorithm approaches finding the equi-partition, 

or similarly the median, a last (k+1)th comparison will delete 

¿IEjJ .  where Ek = {v £ Fk: |v| = £}.

Clearly, the probability of an element in T being deleted 

increases the closer the element is to the equator. We may therefore 

expect that until the algorithm gets fairly close to halting, at 

each stage in the worst case we have l E ^ 1  l^l* However, we 

give the following counterexample due to A.C. Yao [Y],

Suppose that a comparison algorithm at some initial stage has 

produced the poset in:

Example 6.1:

o  ••• o

p
We can define a partition of E(P) according to these two chains

C3 , as described below.



q4q5q6

q5q6
q4

q/,q
q6

4H5

q4q5q6
: 
aJ

T

r.-
--
--

( 2 m ) ( 2m ) lm-2;
____________ |

( 2 m ) 'm-3'
i---- A----

( 2 m ) lm+1;

1

‘m - V ( 2m ) lm-2;

( 2 m ) 'm+2'
k

e .> <2;>
N

lm-r 
A____

( 2m ) lm+3' ( 2 m ) 'm+2J ( 2m ) <2;>

q1q2q3 q1q2

q9q2M3 q1q2q3

Figure 6.2

, j
In Figure 6.2 the binomial coefficient at ( q ^ —  • q̂ "

qcq5M6
).

for example, determines |{v £ E: {3,5,6} c  v, {1,2,4} £ v}|. 

Also Nj = 2(̂ JJI) + 2 ( ^ J ,  and similarly for N2, M.

Now suppose the next comparison by the algorithm is q2 ? q5*

The result q2 > q& causes the set of partitions associated with N1 

in Figure 6.2 to be deleted from E; the result q2 < q5 causes those 

with N2 to be deleted. Clearly in either case M does not get reduced.

We claim to show that this comparison has deleted more than 

^|E|. Now |E| * 2M + 2N‘, where N’ = N1 = N2. Using the unimodality 

of the binomial coefficients, as indicated in Figure 6.2, we deduce 

that N' > M. Hence it follows that N* > ^ |E| - ¡J ♦ .



Notice that as the algorithm proceeds, if the two chains C3 

in Example 6.1 increase, then so do the numbers of rows and columns 

in Figure 6.2. When comparing the middle elements of the longer 

chains, the counterexample still holds by the monotonicity in the 

sequence of the binomial coefficients. This ends Chapter 6.
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