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The physical and social processes in urban systems are inherently spatial and
hence data describing them contain spatial autocorrelation (a proximity-based
interdependency on a variable) that need to be accounted for. Standard k-fold
cross-validation (KCV) techniques that attempt to measure generalisation per-
formance of machine learning and statistical algorithms are inappropriate in
this setting due to their inherent i.i.d assumption, which is violated by spatial
dependency. As such, more appropriate validation methods have been consid-
ered, notably blocking (Roberts et al. 2017) and spatial k-fold cross-validation
(SKCV) (Pohjankukka et al. 2017). However, the physical barriers and complex
network structures which make up a city’s landscape means that these methods
are also inappropriate, largely because the travel patterns (and hence Spatial
Autocorrelation (SAC)) in most urban spaces are rarely Euclidean in nature.
To overcome this problem, we propose a new road distance and travel time
k-fold cross-validation method, RT-KCV. We show how this outperforms the
prior art in providing better estimates of the true generalisation performance
to unseen data.

Keywords: road distance, travel time, cross-validation, urban science, GIS.

1. Introduction

Cities currently accommodate 55% of the worlds population. By 2050 the urban
population is estimated to grow by 2.5 billion people, resulting in a 13% increase on
today’s figure (Prudhomme 2018). Consequently, policy makers are looking to utilise
the vastly increasing amounts of urban data to build smarter models for sustainable and
high quality urban life. Given this, an increasing number of spatial models are being
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built in the domain of urban sciences, e.g. (Zou et al. 2012) and (Crosby et al. 2016).
In order to correctly estimate how well these models generalise to unseen locations,
cross-validation is commonly used, which itself must account for inherent dependency
structures in spatiotemporal datasets.

Proximity-based urban interactions result in data which are not independent and
identically distributed (i.i.d). Various techniques such as semi-variograms (Cressie
2015), Moran’s I (Moran 1950) or Getis’s G (Getis and Ord 1992) have been proposed
to statistically measure the extent of these dependencies. Additionally, spatial k-fold
cross-validation (SKCV) (Pohjankukka et al. 2017), blocking (Roberts et al. 2017) and
stratified sampling (Crosby et al. 2016) consider the effect of these spatial dependencies
by accounting for the Spatial Autocorrelation (SAC) between test and training points,
which traditional cross-validation (CV) methods do not. Specifically, SKCV attempts to
remove SAC by implementing a Euclidean ‘dead-zone’ area around all test points, such
that all training points that lay in these areas are removed. However, we argue that
Euclidean distances may not be appropriate for urban systems.

In this paper, we introduce a new spatial k-fold validation method, termed RT-
KCV, which constructs and utilises road network and travel time dead-zones. The key
contributions and benefits of RT-KCV are: (1) State-of-the-art estimates of the gener-
alisation performance of any spatial urban model across the interpolation-extrapolation
range of application scenarios; (2) Significant improvements in efficiency of dead-zone
training point removal when compared with the current state-of-the-art (SKCV (Poh-
jankukka et al. 2017)) and (3) improved performance in capturing and removing urban
SAC. We demonstrate these contributions across two large-scale urban datasets and
three different scenarios of interpolation-extrapolation. We also provide an extensive
experimental comparison across multiple CV techniques and offer a systematic way to
choose the dead-zone distance. We argue that RT-KCV should be the spatial-validation
method of choice for urban modelling problems.

1.1. Paper Overview

Section 2 provides a full description of why and under what settings SAC removal is
required. Section 3 reviews related approaches for SAC detection and generalisation
performance (i.e., a model’s ability to generalise to an unseen location). Thereafter,
Section 4 redefines spatial cross-validation for urban spaces, utilising a unique set of
restricted road, travel-time and combined distance dead-zones. Section 5 introduces two
urban datasets over three modelling settings with the purpose of comparing the estimated
generalisation performance of several validation methods KCV, SKCV, R-KCV, T-KCV,
RT-KCV and blocking KCV. Finally, Section 6 concludes our findings and puts forward
possible avenues for future research.

2. Problem Definition

Cross-validation splits a dataset into two subsets; a training set with which a model is
established and a validation test set against which the resulting model is evaluated
(Stone 1974). The main purpose of cross-validation is to estimate how well a model
will generalise to unseen data, sometimes referred to as a ground truth test set.



As such, cross-validation is also used to detect overfitted models. Specifically, k-fold
cross-validation (KCV) repeats the process k times, validating on all the disjoint
subsets of the dataset. Since urban problems are inherently spatial in nature, a chosen
cross-validation method should be able to accommodate and mimic different spatial
scenarios such as interpolation, extrapolation or some combination of the two. For
example, if the aspiration is to interpolate (estimate an unknown value from within
a known domain), then traditional cross-validation is satisfactory. The reason for
this is that all unknown values in the ground truth test set will contain similar SAC
with the training set as the points that have been held-out by cross-validation in the
validation test set. If this is the case, the cross-validation estimate of how well the
model will perform (model generalisation) will be accurate. However, if the purpose
is extrapolation (to estimate an unknown value outside of a known domain), then the
cross-validation method must produce a validation test set which contains less or no
SAC with the training set, in order to simulate the unknown out-of-range value. In all
settings, traditional i.i.d is typically assumed in cross-validation, which is over-optimistic
(i.e., overestimates the generalisation performance of the model), unless the model is
attempting pure interpolation. In this manuscript, SACtrain and SACtest refer to the
SAC within the training and validation test sets respectively. SACtraintest defines the
SAC between the training and validation test sets (Getis 1995).

Removing SACtraintest to improve the estimate of a model’s generalisation perfor-
mance requires an understanding of how dependencies are structured and unfold in
geographic space. Typically it is assumed that spatial dependence is Euclidean in
nature, but in most urban settings natural or man-made restrictions (e.g., one-way
road systems) violate this assumption (Cressie 2015, Crosby et al. 2018). As such, we
hypothesise that road distance, travel time and a combination of both are better able
to infer urban SAC.

2.0.1. Motivating our Hypothesis.

Figures 1(a)-(b) utilise Euclidean, road distance (RD), travel time (TT) and RDTT
(a combination of road distance and travel time, as defined in Section 4) to provide
semivariograms for two urban case studies (real estate valuation and traffic flow). It
can be seen that the semivariance of each pairwise Euclidean distance is larger than
the semivariance of our proposed distance functions. Hence, the correlation contained at
each Euclidean distance lag is smaller, i.e., SAC drops faster when proximity in Euclidean
space gets larger in comparison with our proposed non-Euclidean distances. Notably, road
distance and travel time are more efficient at discovering and capturing SAC at all lags
for both case studies.

2.0.2. Why Travel Time?

The intuition behind utilising travel time in addition to road distance is due to the fact
that although road distance and travel time are correlated, some legal, customary and
social restrictions are exclusive to travel time only; traffic flow, pedestrian crossings, road
quality and so forth. These restrictions make travel time more accountable for human
mobility patterns than road distance. In addition, practitioners can select travel time
more dynamically (i.e., at different times of day) to better inform their own models.
Furthermore, different cities experience different road accessibility. For example, it may
take 30 minutes to travel 1 mile in London, but only 2 minutes to travel 1 mile in
Coventry; travel time takes this into account. Finally, a combined road distance and
travel time matrix (RDTT) is calculated as it affords the opportunity to take into account
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(a) House Prices (b) Traffic Flow

Figure 1.: Range normalised semivariograms for two case studies (house prices and traffic
flows) with four distance measures (Euclidean, road distance, travel time and combined).

the exclusive behaviors of both matrices, this is why, we believe, our RT-KCV method
is shown to outperform all studied approaches in our case studies found in Section 5.

3. Related Literature

3.1. Spatial Autocorrelation (SAC)

SAC describes correlation between all observed variables to each other in a spatial
dataset. This correlation can be explained solely by geographical proximity (Hubert and
Golledge 1981). SAC was first influenced by the central place theory (Christaller 1933),
which in itself was inspired by theories of proximity and nearness (Thunen 1826). Later,
SAC and Moran’s I were developed (Cliff and Ord 1968, Moran 1950), and gave rise
to a series of measures, such as Getis and Ord’s Gi statistic (Getis and Ord 1996) and
Matheron’s 1/γ (inverse of the semivariogram) (Matheron 1963).

Commonly, SAC is measured to (i) test model mis-specifications (Cliff and Ord 1972),
(ii) measure the strength of spatial effects on a variable, (iii) test for spatial stationarity,
heterogeneity or clustering, (iv) detect distance decay (v) identify outliers and (vi) design
spatial samples (Getis 2008, Anselin 1995, Fotheringham and Rogerson 2013). In this
work, we remove SAC between training and validation test sets in order to better estimate
the generalisation of our models in different settings. With the exception of research by
Zas (2006) and Ibrahim and Bennett (2014) whose experiments both utilise blocking
(see section 3.2.1 for more details on this method), little research has considered the
different sources of SAC (SACtrain, SACtest and SACtraintest). No research has utilised
non-Euclidean SAC to improve the validation process and hence our estimates of model
generalisation.



3.2. Model Generalisation

The primary methods utilised to estimate the generalisation performance of a model to
unseen data are holdout cross-validation and k-fold cross-validation.

3.2.1. Hold out

Holdout cross-validation simply partitions input data into two (mutually exclusive)
subsets; training and test/holdout. Typically, holdout cross-validation assumes the input
data to be i.i.d, which is inappropriate in applications of data containing spatial, tempo-
ral, grouping and hierarchical autocorrelation (Roberts et al. 2017). As such, ‘blocking’
holds out autocorrelated strata’s, one such example is checkerboard holdout, which splits
the input dataset based on a user-defined spatial chess-board (Crosby et al. 2016) to re-
duce SAC. Blocking holdout cross-validation (1) only trains on a proportion of the avail-
able data, (2) is agnostic to the specific task at hand (interpolation versus extrapolation)
and (3) contains SAC at each strata border.

3.2.2. K-fold Cross-Validation

K-fold cross-validation partitions data into k subsets, performs analysis on k-1
(training) subsets, and validates the analysis on the remainder. The process is repeated
k times, where the test set is different each time. The validation results between each
fold is averaged to reduce outlier bias (Kohavi et al. 1995). The most typical cases of
k-fold cross-validation are k=10 and k=n (Leave-One-Out), where n is the total number
of points and hence the latter model trains on the largest set of data possible, but is
time consuming on large datasets (Elisseeff et al. 2003). Traditional KCV withholds
the central independence assumption (i.i.d) which, as discussed, can provide optimistic
estimates of generalisation performance (Larimore and Mehra 1985, Roberts et al. 2017).

As such, Geostatisticians are critical of cross-validation for confirmatory data analysis
with dependent data (Cressie 1990). Spatially aware cross-validation methods have hence
been proposed to break the dependence between the training and testing set. The most
notable of these methods is spatial k-fold cross-validation (SKCV), which estimates
a predictor’s performance by first implementing traditional k-fold cross-validation
and secondly, removing all training points within an empirically designed Euclidean
dead-zone from all test points (Pohjankukka et al. 2017). Additionally, (Le Rest et al.
2014) proposes a special case of SKCV termed spatial leave-one-out (SLOO), which
computes a threshold distance equal to the range of residual SAC in order to promote
spatial independence between all points. As a method for estimating how well a model
will generalise to unseen data, key drawbacks of this approach are (1) the removal of
valuable training points in each dead-zone; (2) the lack of an established (or even an
ad-hoc) approach to choosing an optimal dead-zone radii (instead, SKCV establishes
how well the method captures the model’s actual prediction capability for a specific
user-defined dead-zone); (3) the lack of specificity toward the nature of the task in hand
(interpolation to extrapolation) and; (4) the assumption that a Euclidean distance is the
most appropriate function for dead-zones, although SKCV is not limited to Euclidean,
the author only shows examples containing it. As we will show, our RT-KCV method
addresses all of these drawbacks.

Finally, blocking k-fold cross-validation is an alternative, non-random sampling
technique for validation, where the held out data lays inside some spatially defined
strata (Moore and Lee 1994). The benefits of this approach, over k-fold cross-validation
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techniques, are its ability to simulate unseen values in unseen areas. A strong under-
standing of the spatial processes in a dataset are required. For example, some datasets
contain a mixture of dense and sparse areas which can result in overfitting to one
geographic area. Approaches to overcome this problem include equal frequency spatial
strata’s (Crosby et al. 2018) or irregularly arranged regular or irregular blocks (Roberts
et al. 2017). Further challenges with this method include: (1) The time consuming
and ad-hoc nature of setting up cross-validation for new datasets; (2) The poor fit
to problems involving interpolation and extrapolation; (3) The high amount of SAC
present at block borders and (4) ad-hoc choices for the shape, size, placement and
regularity of the blocks. As we demonstrate, our proposed RT-KCV method overcomes
all of these issues.

4. Road and Travel Time Validation

RT-KCV is a spatial dead-zone technique which, in a similar way to SKCV, constructs
an area around each test point from which all training points are removed. Unlike
the current examples utilising SKCV, RT-KCV produces contiguous, non-convex
dead-zones from a combination of restricted road distance and travel time matrices.
The purpose of this method is to better capture SAC in access-restricted areas such
as cities. Figure 2 visualises these differences where road (in green) and Euclidean (in
red) dead-zones are compared. The main idea behind RT-KCV is that road distance
and travel time dead-zones contain more SAC than Euclidean ones. Hence RT-KCV
dead-zones are more efficient by design - that is, more SAC can be removed while
removing fewer training points. See Section 5.2.2 for an in-depth description of how
the convex hull of the isochrone is computed. Figure 2(b) illustrates this with a real
example where the road distance (yellow) dead-zone is larger than the Euclidean (red)
dead-zone, but removes fewer (and different) points. The points that have been removed
by road distance are physically more accessible to the test point being considered,
which for many urban applications implies higher SAC removal. We show that this
is the case in two real world urban datasets and conjecture that this generalises to
a plethora of urban applications driven by human behavior, such as evaluating the
impact of green space, designing algorithms for car sharing, predicting house prices and
designing methods to improve traffic flow. The definition below describes the entire
process of the combined road distance and travel time RT-KCV method, which is
compared against (1) the existing state-of-the-art (SKCV, blocking, KCV); (2) R-KCV
that only considers road distance and; (3) T-KCV that only considers travel time.
Figure 3 provides a flow diagram of the entire experimental validation process for all
spatial k-fold methods: SKCV, R-KCV, T-KCV and RT-KCV. For our case studies we
assume the resulting model to be Kriging-based and the validation metric to be NRMSE.

Definition. Assume a data point di = (xi, yi, ci) where xi ∈ RD is a feature vec-
tor, yi ∈ R is the response/target and ci ∈ R2 is the geographical coordinate vector
of the ith data point in dataset D={d1, d2, . . . , dn}. Additionally, consider a set of
distance matrices M = {Road Distance (RD), Travel Time (TT)}, where the ijth
position within each matrix refers to the shortest road distance or average time taken to
travel by car (including legal and social constraints) between points i and j respectively.
We define ρ ∈ R+ to be the dead-zone radius and ν = {ν1, . . . , νk} to be the set
of KCV folds. Vector ŷ ∈ Rn is the predicted response values from model F (intro-



(a) A subset of test points with Euclidean (in red) and road
distance (in green) dead-zones.

(b) A single test point with a road distance (in yellow) and
Euclidean (in red) dead-zone, showing that road distance
points are based on accessibility.

Figure 2.: Road distance versus Euclidean dead-zone example.

duced in Section 5). Additionally, α1 and α2 are user defined weightings to calculate
to what extent road distance and travel time form the basis of our RDTT matrix.
Finally, a validation metric (in our case ‘NRMSE’) is selected to measure model accuracy.

Determining the Optimal Dead-Zone. RT-KCV and variants have a free parame-
ter which is the dead-zone distance. To the best of our knowledge, no work has been
undertaken to determine what this distance should be on a case-by-case basis. The
dead-zone distance directly defines the amount of SAC that will be removed and hence
implicitly defines the setting (interpolation-extrapolation) that a model is expected
to be in and therefore how accurate the estimated generalisation performance will
be. In this research we propose a dead-zone heuristic in order to provide a single
dead-zone distance for any KCV method which will approach the ground truth value.
The heuristic calculates the average pairwise distances between all points in the training
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and ground-truth test sets (termed the similarity matrix ). The second step of the
heuristic finds the ‘maximum separation distance’ (dmax) taken from the training set’s
semivariogram to provide an upper bound of distances. All training/test points which
have a distance greater than dmax are removed from the train/test distance matrix to
produce a new ‘SAC only’ distance matrix (µtt). This provides a set of train and test
points which are assumed to be correlated. Thereafter, we select the dead-zone distance
based on the heuristic presented in formula 1, which was found to perform well across
all settings and datasets.

Distance =


0, if µ′

tt

µ′
tr
≤ 1.

µtt, if µ′
tt

µ′
tr
> 1 and µ′tt < dmax

dmax, otherwise.

(1)

where µ′tt, µ
′
tr, µ

′
te are the average distances between each point in the (1) training

and test set, (2) within training set and (3) the validation test set respectively. Once
the distance is selected, we find how many points are removed and then use this value
to determine the dead-zone area for any method (R-KCV, T-KCV, RT-KCV, SKCV).
We term the output of a model using this heuristic as the mean operating point. The
purpose of this is to work out the setting that the model is training on (interpolation,
extrapolation or a combination of the two).

5. Urban Case Studies

Given that (non-Euclidean) distance is shown to be the single most influential variable
in urban house price predictions (Crosby et al. 2016, 2018), our first case study builds
a valuation model with no covariates on a set of 3,413 residential sold house prices in
Coventry, UK for 2016. Our second case study utilises historic traffic flow information
on 711 sensor locations in Birmingham, UK.

5.1. Related Applications

House price predictors, previously defined as automated valuation models (AVMs),
attempt to exploit data to reliably understand the value of real estate over a large area
where market behaviour may differ significantly (Crosby et al. 2018). Most contemporary
machine learning based AVMs are hedonic (McClusky and Borst 2007). For example
some models utilise topography, natural geography (Kok et al. 2011), building footprints
(Pace et al. 1998) and crime data (Thaler 1978). Space (Crosby et al. 2016) and time
(Huang et al. 2010) also contribute to hedonic models, inferring up to 71% of the price
of a residential property. As such, our paper considers spatial modelling only.

Typical spatial models attempt to obtain a description of spatial continuity within a
dataset by calculating the variance of pairwise distances (Cressie 2015, Matheron 1963).
One such example is a semivariogram which supports Kriging. Given our interest in
road networks, Crosby et al. (2018) utilises OpenStreetMap to find which Minkowski
P value is most related to road distance, travel time and a linear combination of the
two; a linear combination of the two produces a significantly improved AVM. This infers
that road networks may contain more SAC than Euclidean distance and can be used to
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support our hypothesis.

Traffic flow prediction has a wide range of applications, including assessing poten-
tial designs for new road layouts, reducing accident hotspots and short-term prediction
of traffic congestion (Yin et al. 2002, Sun et al. 2006). Temporal traffic predictions have
been generated utilising ARIMA (Williams and Hoel 2003), Markov chains (Yu et al.
2003), Bayesian Belief Networks (BBN) (Sun et al. 2006) and Artificial Neural Networks
(ANN) (Duan et al. 2015), with mean absolute percentage errors of 8.6% (Wang et al.
2011). Most notably, Zou et al. (2012) supports our research in that they (1) identify
spatial modelling as being the most appropriate for urban traffic flow prediction, (2)
note that Kriging performs best for their case study and (3) show that an approximate
road distance metric better infers SAC than Euclidean for their model.

5.2. The base Kriging predictor

5.2.1. Ordinary Kriging

For both case studies, we consider Ordinary Kriging a spatial predictor which accounts
for spatial covariance based on observed pairwise distances. We use Ordinary Kriging as a
simple and widely utilised spatial statistical model in order to demonstrate the benefits of
RT-KCV. The method begins by calculating an empirical semivariogram based on a user
defined lag, produced by the pairwise distances of all points in a dataset. Formally, let S
be a set of spatial locations defined in Section 4 such that si : i = 1, . . . , n where sεS ⊂ Rd

are known and Z(s) : s ⊂ Rd is a real valued stochastic process over random fields. To
predict some value Z(s0) at location s0 from observed values Z(si) : i = 1, . . . , n, the
data must represent a complete sampling of a single realisation (second order stationary):

E[Z(s)] = µ for all sεS (2)

and

cov[Z(s1), Z(s2)] = C(s1 − s2) for all s1, s2εS (3)

Suppose a function γ(h) is the semivariogram and that the data has a stationary
covariance (C), then the semivariance is related to the covariance function with a
nugget, sill and range (Cressie 1988). This stands such that h is the distance between
points si, sj . Given this, the covariance function is estimated by fitting a parametric
model to the calculated semivariance, typically using least squares.

As such, Ordinary Kriging estimates value Z(s0) at point s0 with the known var-
iogram implicitly evaluating the mean of a moving neighbourhood (Wackernagel 1995).
Generally, the local mean of a Kriging estimate is calculated, then a simple estimator is
taken from a Kriged mean. To estimate Z(s0) at location s0, the data values Z(si) from
n neighbouring sample points are multiplied by linear weights λi, such that

Ẑ(s0) =
n∑
i=1

λiZ(si) (4)

Notably,
∑
λi = 1 so that, in the case where all of the Z(si) values are a single constant,



the estimated value Z(s0) must be equal to the same constant, this guarantees uniform
unbias (Equation 2). We assume the data to be part of a realisation of an intrinsic random
function with γ(h). Given that the expectation of each increment is 0, an unbias with
unit sum weights must be calculated

E[Ẑ(s0)− Z(s0)] = E[
n∑
i=1

λiZ(si)− Z(s0) ∗
n∑
i=1

λi]

=

n∑
i=1

λiE[z(si)− z(s0)] = 0

(5)

An optimal Kriging predictor is one which minimises the mean-squared prediction error
(Cressie 2015)

σ2(s0) = E[(Ẑ(s0)− Z(s0))2] (6)

over the class of linear predictors
∑n

i=1 λi = 1

2γ(h) = var(Z(s+ h)− z(s)), h ∈ Rd (7)

Hence, given Equation 6, one must minimise (differentiate and equate to 0) equation 8

E
(
Z(s0)−

n∑
i=1

λiZ(si)
)2 − 2m

( n∑
i=1

λi − 1
)

(8)

with respect to λ1, . . . , λn, and the Lagrange multiplier m (ensuring
∑n

i=1 λi = 1), which
shows that optimal λ1, . . . , λn can be obtained from

λ0 = Γ−1
0 γ0 (9)

This produces an Ordinary Kriging system of:
0 γ(h12) γ(h13) . . . γ(h1n) 1

γ(h12) 0 γ(h12) . . . γ(h2n) 1
γ(h32) γ(h32) 0 . . . γ(h3n) 1
. . . . . . . . . . . . . . . 1

γ(hn3) γ(hn2) γ(hn3) . . . 0 1
1 1 1 . . . 1 0




λ1

λ2

λ3

. . .
λn
m

 =


γ(h01)
γ(h02)
γ(h03)
. . .

γ(h0n)
1


The weights λi are assigned to the Z(si) to show the disparity between all data points
Z(si, sj):1, . . . , n (LHS) and each data point Z(si) compared with Z(s0) (RHS) where
n is the total number of points. Given that Z(si) is second order stationary and the
distance matrix is positive definite, then

V ar(Ẑ) =
∑
i

∑
j

λiλjC(h) ≥ 0. (10)

Commonly applied covariance (C) functions have been built based on Euclidean distances
to ensure this holds.



12

Table 1.: A subset of restrictions to road network and travel time in OSRM calculations.

Restriction Type Description
Barrier (Rising) bollard, cattle grid, toll booth . . .

Restriction Motor vehicle, vehicle, permissive,
private, forestry, emergency . . .

Speed Profile Motorway, trunk, primary, secondary,
residential, unclassified . . .

Tracktype Speeds Grade 1-5, intermediate . . .
Maxspeed Urban, rural, trunk, motorway . . .

U-Turns & Signals Time in seconds
Oneway Boolean, y/n

5.2.2. Defining Non-Euclidean Dead-Zones

The Open Street Routing Machine (OSRM) provides the distance and time it takes to
travel from one location to another by car through a simple to use API. Their link-based
algorithm utilises a set of restrictions defined in OSM (see Table 1). From their API, we
are able to calculate an nxn distance matrix M for all points. Our combination (RT-
KCV) approach is calculated such that travel time and road distance are both normalised
between 0 and 1 and then summed with a weighting (0.5 for both case studies). This
weighting is empirically selected given that both road distance and travel time perform
better at different stages of the variogram. In Section 6, we speculate that a future avenue
of research is to build a heuristic/metric which can optimise these weightings.

5.3. Validation

We evaluate our proposed KCV methods against the current state-of-the-art. The pri-
mary purpose of any (cross-)validation procedure is to estimate a model’s generalisation
performance to unseen data. As such we propose three settings (interpolation, extrapo-
lation and that between) over two case studies (house price and traffic flow prediction),
each with a number of KCV methods (KCV, SKCV, R-KCV, T-KCV, RT-KCV and
blocking KCV). In order to evaluate the validation techniques, we compare each method
against a ‘ground truth’ test set, which are visualised in Figure 5(a)-(f), showing a set
of six simulated real-world scenarios. Each of these ground truths show the results that
we would get if we ran the experiment in each interpolation to extrapolation setting and
hence validates how well cross-validation would estimate the generalisation performance
of our model to unseen. As such, the cross-validation method which performs closest
to our ground truth is the best performing. For robustness, we keep the same ground
truth test in all experiments within a case study and the same validation test sets for
all cross-validation approaches.

We also compare our method against the most popular competitor approach; blocking
cross-validation (Roberts et al. 2017). Our blocking approach uses 10 folds and is set
up such that, for each fold, 10 random points within the training area are selected and
a square block grows out so that all blocks have the same number of points in them
(± 1 if the total number of points is odd). All of the blocks in a fold then sum up to
the same validation test set size. This provides a fair comparison for all cross-validation
methods (256 and 72 for house prices and traffic flow respectively). See Figure 4 for a
visualisation of blocking on a subset of 3 folds. Each coloured block represents a different



fold and the point colours refer to the different house prices in the data set where dark
red is represents the highest house prices and white shows the lowest house prices. The
blocks are different sizes, so that each block considers an equal number of points.

In order to account for any variability due to the choice of the ground truth test set,
we resample multiple ground truth test sets for our non-interpolation settings (settings
B and C; defined in Sections 5.4 and 5.5 for each case study). This does not require
re-running any of the validation procedures as it only provides us with the stability of
the ground truth test performance. Below we present three approaches to validate our
KCV methods against the ground truth.

Model Validation: Our Kriging model is validated against the normalised root
mean squared error (NRMSE) which takes the square root of the mean squared error
and is then normalised by the difference of the y values

NRMSE =

√
1
n

∑n
i=1 (yi − ŷi)2

ymax − ymin
(11)

where ŷi is the predicted value of yi and ymax, ymin are the maximum and minimum
values of y in the dataset.

Convergence to the Ground Truth: This method tests how many points must be
removed from a training set to achieve 50%, 80% and 100% of the ground truth’s
NRMSE from cross-validation. The purpose of this is to find out which method can
obtain a ‘true’ NRMSE (the NRSME of the ground truth case) with the fewest training
points removed by dead-zones. We state that the method with the largest training set
at the ground truth threshold is the most effective.

Distance from Ground Truth to Estimated Dead-Zone: Section 4 describes a method to
determine the dead-zone area. This validation measure simply calculates the difference
between the NRMSE at the optimal dead-zone (‘mean operating point’) with the ground
truth. The KCV method which has the smallest distance is deemed the most effective.

5.4. Case Study 1 - House Price Prediction

Our house price data is openly sourced from Her Majesty’s Land Registry (HMLR) which
provides all sold residential properties in England and Wales since 1995. In addition,
Ordnance Survey (OS) provides the location of each address. We select all freehold houses
between 01− 01− 2016 and 01− 06− 2017 in the city of Coventry, accounting for 3,669
properties in total. The precise dataset used in this study matches that from Crosby et al.
(2018), which shows a strong Moran’s I result of Iobserved = 0.1559136 >> Iexpected =
−0.00267094 with a P-value ∼ 0. This complements our findings shown in Figure 1 and
confirms that our experiment can be spatially modelled (contain global SAC) according
to a standard Moran’s I test (Moran 1950). These results allow us to reject the null
hypothesis that there is no SAC for house prices at alpha = 0.05.

To determine our ground truth test sets, we consider 3 settings; pure extrapolation,
mixed interpolation/extrapolation and pure interpolation to test our newly defined
methods across a range of experiments (see Figures 5 (a)-(c)).

Setting A - Pure Extrapolation: We train on all data that sit within the Office of
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Figure 4.: Blocking Cross Fold validation with equal test sets.

National Statistics (ONS) classified Built Up Area (BUA), accounting for 3,413 houses.
The remainder are removed for testing in our ground truth test sets which account for
256 points. To simulate extrapolation fully, we confirm that our train and hold out sets
are not correlated (i.e. SACtraintest ∼ 0). Again, a standard Moran’s I test is conducted
between both datasets showing a weak spatial relationship such that Iobserved = 0.020206
and Iexpected = 0.019014. As such, we confirm that our method can be tested against
the split data for extrapolation generalisability. All KCV approaches utilise the same
test spaces which are also the same size as the ground truth and blocking KCV method.

Setting B - A Mixture of Interpolation and Extrapolation: We train on data that
sit within the Coventry BUA only. For our ground truth scenario, half the test set sits
within the BUA and half sits outside, thus the training set consists of 3,291 houses.

Setting C - Interpolation: We train on data that sit within the Coventry BUA.
For our ground truth scenario, all the test points lay within the BUA, accounting for a
training set of 3,163 houses.

5.4.1. Results

All methods in all settings have a test set of 256 points for comparison. In addition,
each CV method contain the same test points for each setting. Figures 6(a)-(c) show
the NRMSE value for each cross-validation method (KCV, SKCV, R-KCV, T-KCV and
RT-KCV). In addition, each graph shows an equal training set random removal KCV
approach, blocking KCV and a ground truth NRMSE. Each KCV method is run over 10
folds and repeated 10 times, showing that RT-KCV consistently outperforms all other
approaches in all settings (that is it approaches the ground truth with fewer points re-
moved). Each vertical bar represents the spread of results across all experiments. Notably,
RT-KCV requires only 8 points to be removed to ensure the same SAC removal as 201
points for SKCV in our interpolation setting. In addition, Table 2 shows that RT-KCV
consistently generalises 50%, 80% and 100% of the ground truth with fewer points re-
moved than any other method. Finally, our dead-zone radius heuristic estimates that
3,170, 2,003 and 0 points need to be removed to obtain an estimate of generalisation
performance for extrapolation, mixed and interpolation respectively. Once implemented,
we determine the difference in the estimated NRMSE values (0.11162 ,0.128 and 0.104)
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and the ground truth values (0.1125, 0.1225974 and 0.1135) are relatively small compared
to SKCV and blocking. A t-test, with a t-value of 0.01, shows that for all settings, the
number of points that are removed from the training set are significantly less with our
new RT-KCV approach compared with the previous state-of-the-art. Table 2 shows in
bold the best performing cross-validation approaches for each scenario.

5.5. Case Study 2 - Traffic Flow Prediction

Our predictor considers the total average daily traffic flow between 01 − 01 − 2016
and 01 − 06 − 2017 for Birmingham, UK accounting for 711 sensors as supplied by
the ‘Highways Agency England’. The hold out test set (i.e., ground truth) considers
Coventry, UK with 63 sensors in the same time period.

To confirm SAC we conduct a standard Moran’s I test where Iobserved = 0.1604474 >>
Iexpected = 0.0002727025 with a P-value of 0. These results also allow us to reject the null
hypothesis that there is no SAC present at alpha = 0.05. To determine our ground truth
test sets, we consider 3 settings; pure extrapolation, mixed interpolation/extrapolation
and pure interpolation to test our newly defined methods across a range of experiments
(see Figures 5 (d)-(f)).

Setting A - Extrapolation: We train all data that sits within Birmingham’s BUA,
accounting for 711 sensors. The remainder are removed for ground truth testing. To
fully simulate extrapolation, we confirm that our training and hold out sets are not
correlated (i.e. SACtraintest ∼ 0). A standard Moran’s I test is conducted between
both datasets showing a weak spatial relation such that Iobserved = −0.008960041 and
Iexpected = 0.000201. As such, we confirm that our method can be tested against the
split data for extrapolation generalisability, see Figure 5(d) for a visual representation.

Setting B - Interpolation: We train on some of the data that sits within Birming-
ham’s BUA, accounting for 675 sensors.

Setting C - A Mixture of Interpolation and Extrapolation: We train on some of
the data that sit within Birmingham’s BUA, accounting for 639 sensors.

A Competitor Case for Comparison - Blocking : Our blocking approach uses 10
folds and is set up such that, for each fold, 10 random points within the training area
are selected and a square block grows out so that all blocks have equal frequency (±
1 if the total number of points is odd) and also sums to the same sized test set as all
other experiments (72 points). We only apply this in settings B and C because setting
A contains no test points within the training set.

5.5.1. Results

All methods in all settings have a test set of 72 points for comparison. In addition,
each KCV method contains the same test points for each setting. Figures 6(d)-(f) show
the NRMSE value for each cross-validation method (KCV, SKCV, R-KCV, T-KCV and
RT-KCV). Additionally, the graphs show equal training set random removal, blocking
and each settings ground truth NRMSE. Each KCV method is run 10 times and over 10
folds, showing that RT-KCV consistently outperforms all other approaches in all settings
- this does not refer to it’s ability to present the optimal result, but instead the most



realistic, compared to our earlier defined ground truth. Notably, the benefits of RT-KCV
to this case study compared with the house price case study is less significant. This can be
explained by the weaker spatial correlation as seen by our semivariogram in Figure 1 and
by our Moran’s I value. Finally, our dead-zone radius heuristic estimates that 577, 458
and 87 points need to be removed for extrapolation, mixed and interpolation respectively.
Once implemented, we determine that the difference in the estimated NRMSE values
(0.184, 0.172, and 0.1635) compared with the ground truth values (0.193265, 0.170, 0.158)
are relatively small compared to SKCV and blocking (with the exception of interpolation
which is negligible). A t-test, with a t-value of 0.01, shows that for two out of three
experiments (extrapolation and mixed), the number of points that are removed from
the training set are significantly less with our new RT-KCV approach compared with
the previous state-of-the-art. In addition, Figure 5 empirically demonstrates a significant
estimation of generalisation improvement, because we see that the ‘mean operating point’
(our newly defined measure of generalisation performance) is the same or closer to the
ground truth in all scenario’s of extrapolation to interpolation, as compared with SKCV
and blocking (the current state-of-the-art) for both case studies.

6. Conclusions

The purpose of cross-validation is to estimate how well a model will generalise to unseen
data and unlabelled locations in spatial settings. However, standard KCV assumes all
data to be i.i.d and hence does not take into account the dependencies between the
training and test set, which causes bias and optimistic estimates of generalisation.
SAC is always present with spatial data and as such needs to be accounted for.
Traditional validation approaches such as KCV omit the effect of SAC in performance
estimations to unseen locations with urban datasets. To account for SAC in urban
data we demonstrate that our new approach, termed RT-KCV, can be used to better
estimate the generalisation ability and predictive performance of spatial models than
existing state-of-the-art in KCV approaches (SKCV). We also show that road distance
and travel time can decrease the required ‘dead-zone’ data removal for capturing SAC
in urban spaces, leading to a more efficient use of labelled datasets. Finally, we also
show that RT-KCV is a superior approach for cross-validation and estimating model
generalisation than blocking cross-validation, the current state-of-the-art.

We recommend that RT-KCV be considered wherever dependence structures exist
in a dataset with restricted space (such as cities), even if no structure is visible in the
fitted model residuals, or if the fitted models accounts for such correlations (for example
in Kriging). However, in some cases, Euclidean (or other) distances may be more
appropriate, such as the migration of birds or direction of air pollution. We note that
standard KCV is only appropriate for pure interpolation where the internal dependence
structure would otherwise be present in the locations with unknown values. Notably, we
show that, for urban data, a combination of road distance and travel time capture SAC
better than Euclidean distances.

Further avenues for research include: (i) Developing techniques to better map
SAC in other dependent datasets, such as ‘stream’ distances (along a river or canal) or
coastal distances. These methods may be more suited to ecological problems, for example
the migration patterns of animals; (ii) Optimising the operating point on the RT-KCV
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curve to better match the ground truth performance. This would allow researchers to
more accurately determine the effect of space on any cross-validation technique; (iii)
Learning the convex combination parameters for the combined RDTT distance so that
we are better able to measure a person’s perception of distance in a cityscape and; (iv)
Considering the effect of alternative mode’s of transport in certain cities, for example
trains, buses, walking and bicycles, especially those cities with traffic-free zones and a
heavy reliance on bikes and public transport.
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