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Corrigendum to: Around ¢-independence

Bruno Chiarellotto and Christopher Lazda

ABSTRACT

We correct the proof of the main ¢-independence result of [CL18] by showing that
for any smooth and proper variety over an equicharacteristic local field, there exists a
globally defined such variety with the same (p-adic and ¢-adic) cohomology.

1. Introduction

It was pointed out to us by W. Zheng that the proof of |[CL18, Theorem 6.1] is invalid. The
problem is in the final step of the proof on p.237, where we showed that there was an exact
sequence

0— H™(X) — H™(Xo) — HT"(X1) — ...
and claimed to deduce /(-independence of H}(X) from /-independence of all the other terms

H f"(Xn). Of course, this deduction doesn’t work, since there might be infinitely many such
other terms.

In their preprint [LZ18] Q. Lu and W. Zheng provide (amongst other things) an alternative
proof of this /-independence result, at least for ¢ # p, see Theorem 1.4(2). In this corrigendum
we will explain how to fix the proof of [CL18, Theorem 6.1] by instead proving a stronger version
of [CL18, Corollary 5.5] where the semistable hypothesis is removed. In particular, this includes
the case £ = p.

Notations and conventions

We will use notations from [CL18] freely.

2. Log structures

We begin with a general result on semistable reduction and log schemes. Let R be a complete
DVR with perfect residue field k, 7 a uniformiser for R, and and let X — Spec (R) be a strictly
semistable scheme. That is, X' is Zariski locally étale over R[z1,...,x,]/(x1 - 2z, — 7) for some
n,r. There is a natural log structure My on & given by functions invertible outside the special
fibre X, and we let M x denote the pull-back of this log structure to X. We will also write X;
for the reduction of X modulo 7**!, and k> for k equipped with the log structure pulled back
from the canonical log structure R* on R.
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PRrROPOSITION 2.1 Illusie, Nakayama [Nak98] Appendix A.4. If X, X’ are strictly semistable
schemes over R, and g : X1 — X| Is an isomorphism between their mod m2-reductions, then g
induces a canonical isomorphism g : (X, Mx) = (X', Mx/) of log schemes over k*.

Sketch of proof. Use g to identify X; and X{, and thus X and X'. Let Mx and My be the log

structures on X coming from X and X’ respectively.

Near a closed point of X let XM ... X be the irreducible components of X, and pick
z1,...,2, € Oy such that X = V(x;). Similarly pick 2f,...,2. € Ogxs such that X0 =
V(z)). Let v € OF and v' € O%, be such that z;...2, = vm and 2} ...z, = v/7. Then in a
neighbourhood of p the morphisms (X, Mx) — Spec (R*) and (X', My/) — Spec (R*) can be
described by the following diagrams:

a a.
(u,al,...,ar)i—)uacll LxeT

My = 0% &N Ox

(A,a)}—)()\va,a,...,a)T T
" (A a)—=AT®
R*e N R.

laq /a
(u,a1,...,ar)—uxy * Ty

My %O},@NT O
(A,a)»—)()\v/_“,a,...,a)T T
R* &N (Aa)—= AT R

Pulling back to k, we see that the morphisms (X, Mx) — Spec (k*) and (X, M’y) — Spec (k*)
can be described by the diagrams

(w,a1,....ar)uzit . zf"
Mx =20y N Ox
(/\va)'—>(/\v“7a7---,aﬁ T
A,a)—A0%
k* ® N o)z k.
and
Lo s - (u,al,...,ar)»—>u:rlla1...z;«a"
v =20%®N Ox
(A,a)»—)()\v’_“,a,...,a)T T
b o N (A,a)—A0° i
respectively, again in a neighbourhood of p. Since V(x;) = V(z}) inside X;, we must have
x; = u;x; for some u; € (’)j(l, and so we can define an isomorphism
Mx = My
of log structures by mapping
(u,a1,...,a;) = (wui* ... ugm a1, .., a.).

This is checked to be a morphism of log structures over £* by using the above local descriptions.
Note that any other choice w, must satisfy (u; — u)z, = 0 in Ox,, and hence we must have
u; — u; € (m). In particular, the above isomorphism doesn’t depend on the choice of u;. By a
similar argument, neither does it depend on the choice of x; and 27, and so it glues to give a
global isomorphism (X, Mx) = (X, M'y) of log schemes over k*. O
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We will need to extend this result to cover morphisms between strictly semistable schemes
over different bases. So suppose that R — S is a finite morphism of complete DVR’s, with
induced residue field extension k — kg. Let mg be a uniformiser for S, and let e = v, (7). We
do not assume that the induced extension Q(R) — Q(S) of fraction fields is separable.

Suppose that we have strictly semistable schemes X, X’ over R and Y,)’ over S, and a pair
of commutative diagrams

f I

y— X y— X
N T
Spec (S) —— Spec (R) Spec (S) —— Spec (R) .

As before, let us write Y} for the reduction of ) modulo 77?1. Suppose that we have isomorphisms
gy :Ye Y], gx : X1 5 X]
of S- and R-schemes respectively such that the diagram

Y. 1 x

QY\L lgx
f/

y Ly
J |
Spec (S) —— Spec (R)
commutes. Then by Proposition [2.1] we obtain isomorphisms
gy : (Y, My) = (Y, My)
of log schemes over kg, as well as
gx 1 (X, Mx) 5 (X', Mx/)

of log schemes over £*. The above commutative diagrams of strictly semistable schemes induce
commutative diagrams

(,My)—o (X Mx) (Y My T (X, M)
Spec (k&) — Spec (k) Spec (k&) — Spec (k)

of log schemes. Note that the morphism of punctured points along the bottom of each square is
given by

K oN - kioN
(A, a) = (Au®, ea)

where u € S* is such that 7 = ur§.
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ProproOSITION 2.2. The diagram

(Y, My) —L— (X, Mx)

%gy %gx
(V! My) —L (X7, Mxr)

of log schemes commutes.

Proof. Let us use g to identify Y, =Y/ and Y =Y’, and let My and M/, be the log structures
on Y coming from ) and )’ respectively. Similarly identify X; = X] and X = X'/, and let Mx
and M’y be the log structures on X coming from X and X’ respectively.

Locally on X and Y, choose functions y1,...,ys € Oy, yi,...,ys € Oy cutting out the
irreducible components of Y, and functions x1,...,2, € Oy and 2},...,2). € Oy cutting out
the irreducible components of X. Write

d; ; d i
Fr(i) = gyt L oydie f7 () = adyl Ty,

since both d;; and dgj are given by the multiplicity of the jth irreducible component of Y in
the scheme theoretic preimage of the ith irreducible component of X inside Y., we must have
dij = dj;. Moreover, since V(f*(x;)) C V(7§) = V(yf ...ys) we must have d;; < e for all i, j.

Now choose u; € O%, such that z; = wiz;, and vj € Oy, such that y; = vjy;. Then the
isomorphisms of log structures induced by gy and gx are given by

My =05 & N° - My = Oy & N°
(U, b1, ..., bs) = (V0B 0 by, .. by)
and
Mx =05%dN - My =05 &N’
(w,ai,...,a;) — (wui*...uf" a1,...,a,)

respectively, and the morphisms Mx — My and M’y — M}, are defined by
(w,ai,...,ar) = (f*(w)af*...ad", Zdilai, . ,Zdisai)
i i

and

(uya1,. .. a.) = (F*(w)a)™ .. .ol Zdzlaz, . .,Zdisai)

respectively. Hence in the diagram

MX 4)./\/1/

fJ lf
./\/ly 4%/\/1/

the composite f o gx is given by
(uyay,...,ar) = (f*(u) () f (ur)™ ... (ahf*(u.)), Zdilai, ce Zdisai)

and the composite gy o f is given by

Uy A1y v .y Qp U1 .. Vg ozrvl . 31Qgy - - -y isQq ).
( )= (@)™ ooy o), 3 d i)
%
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We thus need to show that o f*(u;) = aivf“ ...v%is in OF for all i. But now we write

. . d; d;s
Oziyf“ ...yg” = f*(xz) = f*(uzx;) = f*(uz)oz;yll Lo y;
in (’)ye and so deduce that

di1 dis, 1 di1 1dis _ px 1 rdin 1dis
a vyt vy oy = ) ogy Y

We deduce that the difference 8; = o f*(u;) — a;v®" ... vds annihilates y,%" ...y %* inside Oy,
and since each d;; < e we deduce that in fact ; annihilates 7%, and therefore must lie in (7g).
Hence 8; = 0 in Oy and the proof is complete. O

3. Functoriality of comparison isomorphisms

We will also need to know that the comparison isomorphisms [CL18, Propositions 5.3, 5.4] are
compatible with morphisms of semistable schemes over different bases. So let us suppose that we
are again in the above set-up, where we have a commutative diagram

y————X

| ]

Spec (S) —— Spec (R)

of strictly semistable schemes ) and X over S and R respectively, with S the integral closure
of R in some finite extension of its fraction field. Let us assume that R, and hence S, is of
equicharacteristic p > 0, with fraction fields I’ and Fjg respectively, whose absolute Galois groups
we will denote by G and Gpy. Fix an embedding F5P — F of separable closures, note that
this sends F'*™¢ into Fgame and induces an injective homomorphism Gr; — GF with finite
cokernel.

Let X* and Y* denote these semistable schemes endowed with their canonical log structures,
and X and Y the corresponding log special fibres. We therefore have a commutative diagram

y*—m M X~

| |

Spec (k%) — Spec (k™)

of log schemes. For every finite subextension F' C L C F*™¢ let X denote the corresponding
base change of X*, and X *-'™¢ the inverse limit of the étale topoi of all such X ; we have Y *-tame
defined entirely similarly. Via the embedding F**™¢ — F&™ this induces a G pg-equivariant
morphism of topoi

Y X ,tame = X X ,tame

and hence a G rg-equivariant morphism
Hét (Xx,tame, Qﬁ) N Hét (Yx,tame’ QZ)
in cohomology, for any £ # p. On the other hand we have a natural G'rg-equivariant map

Hy (X xg F*P,Qp) — HL (Y x5 FgP, Qy),
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and by [Nak98| Proposition 4.2] equivariant isomorphisms
Hiy (X700, Q) = HE (X x g F*P, Q)
Hi (Y000, Q) = Hey (Y x5 Fg¥, Qo).
ProrosiTION 3.1. The diagram

Hét(XX’tame,@é) HHét(X XRFSEI)a@Z)

| |

H (Y>otame Q) —— HEL (Y x5 Fg™, Q)
commutes.

Proof. Consider the commutative diagram

iy Jy
Yx,tame yx,tame ngep

f l f J{ J(f
Xotame X, gxtame Iy
of topoi as in [Nak98, §3], where )>:%me¢ and X >:tame are defined by ‘base change’ along Fg —
Fime and F — F'¥™€ respectively. Then the isomorphism
Hi, (Y>orme Q) = He (Y xs Fg ™, Qo)
is given as the composite
Hi (Y2080, Q) & He (VO Q) — Hy (¥ x5 Fg, Qo)

using the proper base change theorem in log-étale cohomology [Nak97, Theorem 5.1], and there
is a similar statement for X'. The claim then follows simply from commutativity of the above
diagram of log schemes. O

We will also need a version of this result for p-adic cohomology. Write W = W(k), Wg =
W(ks), let K = W[1/p], Kg = Ws[1/p], and let R D €} C €k, and Ry D k. C &k
denote copies of the Robba ring, the bounded Robba ring and the Amice ring over K and Kg
respectively. Lift the extension F' — Fg to a finite flat morphism 5;( — E;QS which extends to
finite flat morphisms R — Rk and Ex — Ex4. Then as above, the morphism of log schemes
Y* — X induces a morphism

Hliog—cris(XX/KX) - Hliog—cris(YX/Kg‘()
in log crystalline cohomology, and the morphism Vg, — XF induces a morphism
Hﬁlg(XF/RK) - Hfig(yFS/RKS)

in Robba-ring valued rigid cohomology. Then following [CL18, Proposition 5.4] we can construct
isomorphisms

Hliog—cris(XX/KX) ®k Rk = Hrllg(XF/,R’K)

Hliog-cris(YX/ng) ®Kg RKS = Hzig(yFs/RKs)

as follows. Let ¢t denote a co-ordinate on 5;( and tg a co-ordinate on E;r(s such that ¢t € Wg(ts].
Write Sx = K ® W[t] and Sk, = Kg ® Wg[ts]. Equip W[t] (resp. Ws[ts]) with the log
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structure defined by the ideal (t) C Wt] (resp. (ts) C W]ts]) and define the log-crystalline
cohomology groups

Hliog—cris(XX/SK) = Hliog—cris(XX/W[[t]]) ®z Q

leog-cris(yX/SKS) = leog-cris(yX/WS[[tS]]) ®z Q,

these are naturally endowed with the extra structure of log-(¢, V)-modules over Sk and Sk
respectively. Moreover, we have isomorphisms of ¢-modules

Hliog-cris(XX/SK) Q) Sk ,t—0 K= Hliog-cris(YX/Kg)
Hfog—cris(yX/SKS) ®SKS7tS’—>U KS :> Hllog—cris(YX/Kg)7
by smooth and proper base change in log-crystalline cohomology, as well as isomorphisms of
(¢, V)-modules
Hliog—cris(XX/SK) ®Sk Ri = lelg(XF/lR’K)
Hfog-cris(yX/SKs) ®SKS RKS = Hﬁig(yFs/RKs)v
by [LP16l Proposition 5.45]. It therefore follows from the logarithmic form of Dwork’s trick
[Ked10, Corollary 17.2.4] that the (yp, V)-modules HY, (Xr/Rk) and H:, (Vrs/Ri) are unipo-

rig rg
tent, that there are isomorphisms

(Hzlg(XF/RK) [log t])vzo = ‘Flliog-cris()(>< /KX)

T

. V=0 ~ .
(Hzlg(yFS/RKS)[logtS]) = Hllog—cris(YX/Kg)
and moreover the connection V on the rigid cohomology groups appearing on the LHS can be

completely recovered from the monodromy operator N on the RHS. This allows us to construct
isomorphisms of (¢, V)-modules

Hliog-cris(XX/KX) ®Kr RKx = Hﬁlg(XF/RK)
Hliog—cris(YX/Kg) QK RKS = Hﬁig(yFs/RKs)

where the LHS is endowed a natural connection coming from N, for more details see for example
[Mar08|, §3.2].

ProprosITION 3.2. The diagram

7
Hlog -cris T

| |

YX/K;'() ®Krs RKg — Hriig(yFs/RKs)

(X*/K*) @K Rk — Hli,(Xr/Ri)

)
H, log

-cris (
commutes.

Proof. Given the construction of the horizontal isomorphisms outlined above, it suffices to show
that the diagram

Hi

log -cris

(X SK) — Hipy oo (X /K)

Hliog-cris(yX/SKS) — Hliog-cris(YX/Kg)

of log-crystalline cohomology groups commutes, which as in Proposition [3.1|simply follows from
functoriality of log-crystalline cohomology. O
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4. Cohomology and global approximations
Now suppose that k is a finite field, F' = k((t)), and X/F is a smooth and proper variety.

DEFINITION 4.1. We say that X is globally defined if there exist a smooth curve C'/k, a k-valued

—

point ¢ € C(k), a smooth and proper morphism X — (C'\ {c}) and an isomorphism F' = k(C'),
such that Xp & X.

We will prove the following strengthened version of [CL18, Corollary 5.5].

THEOREM 4.2. For any smooth and proper variety X/F there exists a globally defined smooth
and proper variety Z/F such that

Hj(X) = Hy(Z)
for all ¢ (including ¢ = p).

Once we have shown this, the proof of [CLI8, Theorem 6.1] can them be completed using
[CL18, Proposition 5.8], exactly as in the proof of |[CL18, Theorem 5.1].

To prove Theorem [4.2] first of all choose a proper and flat model X for X over the ring of
integers Op. By [dJ96, Theorem 6.5] we may choose an alteration Xy — X and a finite extension
Fy/F such that X is strictly semistable over Op,.

Next, we take the fibre product Xy xx Ap, and let A] denote the disjoint union of the
reduced, irreducible components of Xy x x Ay which are flat over OF,, or equivalently which map
surjectively to Spec (Op,). Once more applying [dJ96, Theorem 6.5] to each of the connected
components of X] in turn enables us to produce

— a 2-truncated augmented simplicial scheme
X =2 — X

which is a proper hypercover after base changing to F’;

— a collection F71,...,F, of finite field extensions of Fp;

such that &7 is a disjoint union of schemes &7 ;, for 1 < j < s, proper and strictly semistable
over Spec (OFL]')'

Let ko denote the residue field of Fp, k1 ; the residue field of F ;, and consider the intermediate
extensions

FCR"CF,Cl CHjCF,;CFy;

where Fj"/F and F"}/F, are separable and unramified, F§/Fj" and FY; /Fl‘l;1 are separable

7]
and totally ramified, and Fy/F§ and F} /Ff’j are totally inseparable, of degree p® and pt.J

respectively. Let ¢ denote a uniformiser for F', ¢y one for F{j, and let P be the minimal polynomial

d
of ty over Fj™. Then t}, := t(l]/ P is a uniformiser for O F,- Similarly, let ¢ ; be a uniformiser for

d .
F};, and P ; the minimal polynomial of ¢; ; over F}'}. Then #} ; := tyjp Y

is a uniformiser for
Fy -

Now choose a finitely generated sub-k-algebra R C Op, containing ¢, such that there exists

a proper, flat scheme ) — Spec (R) whose base change to O is exactly X. By [Spi99, Theorem

10.1], we may at any point increase R to ensure that it is in fact smooth over k. Next, enlarge R so

that R{" := R®y ko C O Fyn contains all the coefficients of the minimal (Eisenstien) polynomial

Py of tg, and let R denote the corresponding finite flat extension R{*[z]/(Py) of Ry". We can
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thus consider Rj C OF; as a subring containing to, we set Ry = Rj[to]. Hence we have Ry C OF,
such that
Ry®rOp 5 O Fy-

Note also that Ry is finite and flat over R, after localising R within Or we may in fact assume
that Ry is finite free over R.

Next we enlarge R so that there exists a proper and flat morphism )y — Spec (Rp) whose
base change to O, is Ap. Again, by further enlarging R we may in addition assume that the
map Xy — X arises from a proper surjective map

Yo=Y
of R-schemes, and moreover that there exists an open cover of )y by schemes which are étale
over Rylx1,...,xp|/(z1 ... 2 —t{) for some n,r. In other words, )y is “strictly ¢{-semistable”.

We now repeat this process to produce further finite free extensions Ry — Ry — Rf ; = Ry ;
for all j, and an injection Ry ; C Op, ; containing the image of tll,j such that

Ry ®r OF 5 OFLJ"

We can also find proper, strictly t’Lj—semistable schemes Yy ; — Spec (R j) whose base change
to Op, ; is X1, so that setting V; 1= Hj V1,; (and again, possibly increasing R), we obtain a
2-truncated augmented simplicial scheme

=WV

which becomes a proper hypercover over a dense open subscheme of Spec (R), and whose base
change to Op is exactly our original 2-truncated augmented simplicial scheme

Xli?X0—>X.

Let ¢« : R — Op denote the canonical inclusion, and ¢* : Spec (Or) — Spec (R) the induced
morphism of schemes. Note that since * maps the generic point of Spec (Op) to that of Spec (R),
the map ) — Spec (R) is generically smooth. We may thus choose an open subset U C Spec (R)
such that Yy — U is smooth, and such that the base change of [V} = Yy — Y] to U is a proper
hypercover.

LEMMA 4.3. For any n > 0 there exists a smooth curve C/k, a rational point ¢ € C(k), a
uniformiser t. at ¢, and a locally closed immersion C' — Spec (R) such that C'\ {c} C U, and the
induced map

Spec (Oc¢ c/m) — Spec (R)
agrees with the modulo t"-reduction of .* via the isomorphism
Oc,e 3 O
sending t. to t.
Proof. Since R is smooth, we may choose étale co-ordinates around the image +*(s) of the closed
point of Spec (Op) under ¢*. This induces an étale map Spec (R) — A} for some n, and it is

a simple exercise to prove the corresponding claim for A7. We then just take the pull-back to
Spec (R). O

The canonical inclusion ¢ induces similar inclusions

L#:R#%Rf@ROFZOFf
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for # € {un, s, 0}, as well as

Lﬁj : Rﬁj — Rﬁj ®Qr Op = OFl#j

for all j, and again for # € {un,s,(}}. We will need the following form of Krasner’s lemma
[Stacks|, Section 0BUY).

LEMMA 4.4. Let K be a local field, with ring of integers Ok, and let P(x) be an Eisenstein
polynomial over Ok . Let L be the corresponding finite totally ramified extension, and let o be a
root of P in L. Then for any m > 1 there exists an n > 2 such that any Q(z) € Og|x] congruent
to P modulo m%, is Fisenstein, and L contains a root 8 of () such that L = K(f) and o = f
modulo m7'.

We will use this as follows: given ny > max;{[F1; : F]} Lemma shows that there exists
some ng > max {2, [Fy : F]} such that any polynomial Q) ; with coefficients in OF1L13, which agrees
with the minimal polynomial P ; of ¢; ; modulo (¢,)™ is Eisenstein, and has a root in O Fr, which
agrees with ¢1 ; modulo t?lj Applying the lemma again shows the existence of some n > 2 such
that any polynomial Qo with coefficients in Opwn which agrees with Fy modulo t" is Eisenstein,
and has a root in Ops which agrees with ¢y modulo ty°. Now choose a k-algebra homomorphism
A: R — Op as provided by Lemma[4.3} that is, factoring through the local ring of some smooth
point on a curve inside Spec (R) and agreeing with + modulo ¢".

Since A is a k-algebra homomorphism, we have a canonical isomorphism R§"®g O 50 Fum,
which therefore induces a homomorphism

ASh: RE® — Opn

extending A and which agrees with (j" modulo t”. Now let Qo = A" (Fp) denote the image under

o of the minimal polynomial Py of tg, this is therefore a monic polynomial with coefficients
in Opgpn, which agrees with Py modulo ¢". Thus it is also Eisenstein, and by the choice of n we
know that Opg contains a root of A\j"(P) which is congruent to ¢y modulo ¢;° and generates

OF; as an Opgn-algebra. This then allows us to extend A" to a homomorphism
)\8 : R(s] -0 Fg
which agrees with ¢§ modulo ¢;°, and since \j(tp) generates Ops as an Opgn-algebra, we deduce

that the diagram

AS
RS _— OF(f

]

R—2,0p

is coCartesian. We can then extend this to a homomorphism
)\0 : Ry — OFO

agreeing with top modulo (¢()", and forming a similar coCartesian diagram to . We now play

exactly the same game for all of the R j, to produce A1; : Ry — Op ; extending all other

#

Ao and all previous A, which agree with ¢1; modulo (] ;)", and which form coCartesian

10
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diagrams

A1j
Rij —=0p

[, ]

R—2 5 0p.

Now let Z be the base change of J to O via A, note that the generic fibre Zr is globally
defined by construction. Similarly define Zy to be the base change of )y to O, via Ao, Z1; the
base change of Vi ; to OFI’]. via A1 j, and Z; = Hj Z1,j, so we have a 2-truncated augmented
simplicial scheme

Z1 320 = 2

over Op, which gives a proper hypercover after base changing to F. For any m > 2 we can
therefore take ny > mmax;{[F ; : F]} to ensure that:

— Zp is a proper and strictly semistable scheme over Op,, and each Z; ; is a proper and strictly
semistable scheme over OF, ,

— there is an isomorphism
(X1 = X)) ®0, Op/t™ = (21 = 2] ®0, Op/t™

of 2-truncated simplicial schemes, such that

Xo® Op/t™ 5 24 ® Op /t™
is in fact an isomorphism of Og, /(t™)-schemes, and

X1 @ Op/t™ 5 21 @ Op/t
is obtained as a disjoint union of isomorphisms

X j®Op/t" = 21, Op /t™
of O, ,/(t™)-schemes
Thus if we let Ay, and Zg, denote the log schemes over kg given by the special fibres of Xy and

2y, and A7, and 2, the log schemes over [[7_; Spec (k’lx j) given by the special fibres of X}
and Zi, then by Proposition there is an isomorphism

[ZES = ZOX,S] = [les = XOTS]

of 2-truncated simplicial log schemes over k*. Now by [CLI18, Propositions 5.3, 5.4] there are
isomorphisms

HE(X(),FO) = HE(ZQFO)
Hy(X1 ) = Hi(Z15,8 )

between the cohomology of the generic fibres of Xy, Xy ; and Zy, 21 j, as Weil-Deligne represen-
tations over Fy and Fi ; respectively. If we define the category

Repg, (WDp, ) := [ [ Repg, (WDF, ;)
j=1

of Weil-Deligne representations over Fj := H]’ Fy; to be the product of the categories of Weil

11
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Deligne representations over each I j, then by Propositions and the diagram

Héi(XO,Fo) E— HZ(XLFl)

:J lﬁ

H}(Z0,r,) — Hj(Z1,F,)

(with horizontal arrows given by the differences of the two pullback maps) commutes via the
restriction functor from Weil-Deligne representations over Fy to Weil-Deligne representations
over Fi.

Let Indﬂ_ denote a right adjoint to the restriction functor from Weil-Deligne representations
over F' to those over Fj: on the separable part this is the normal induction of representations,
on the inseparable part it is a quasi-inverse to Frobenius pull-back, and Indllj:l =6 ; Ind?lyj. We
therefore have a commutative diagram

Indf; Hi(Xo p,) — Indfy Hi (X1 5

:J J:

Indfy Hi(Z0,5,) — Indf Hi(Z1,5,),

in particular, the kernels of both horizontal maps are isomorphic as Weil-Deligne representations
over F. The proof of Theorem [4.2] now boils down to the following claim.

PRroPOSITION 4.5. Let X1 = X9 — X be a 2-truncated semisimplicial proper hypercover of a
smooth and proper F-variety X, such that there exist finite field extensions Fy/F and F} ;/Fy
for 1 < j < s, with Xg smooth over Fy, and X = Hj X1,; with X, j smooth over F1 ;. If we set
F, = Hj‘:l FLj’ then

H{(X) = ker (Indf; Hj(Xo) — Indf, Hj(X1))

for all primes £.

Proof. By taking ﬁl/ F' a sufficiently large finite extension such that all of the Fj ; embed into
ﬁl and applying [dJ96, Theorem 4.1], we can extend X; = Xy — X to a full proper hypercover
Xo — X such that for n > 2 there exists a finite extension F,/ ﬁl with X, smooth over F;,. Now
applying [CL18, Lemma 6.4] we can see that the terms in ith column of the resulting spectral
sequence have to be ‘quasi-pure’ of weight i. Therefore the spectral sequence degenerates exactly
as in the proof of [CL18, Theorem 6.1], and the proposition follows. O

We now deduce from the proposition that Hj(X) = Hj(Zr) as Weil-Deligne representations
for all 7, ¢, and by construction Z is globally defined. This completes the proof of Theorem [4.2]

Remark 4.6. Note the use of the finite field hypothesis (via a weight argument) in the proof
of Proposition It might be possible to relax the assumption to k perfect using a more
sophisticated argument.
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