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Abstract

Carbon-based nano hetero-structures are receiving increasing attention due their ability in

multi-synchronous modulation of a range of mechanical and other critically desirable proper-

ties. In this paper, the vibration characteristics of two different graphene based heterostruc-

tures, graphene-hexagonal boron nitride (hBN) and graphene-molybdenum disulfide (MoS2),

are explored based on atomistic finite element approach. Such vibrational characteristics

of nanostructures are of utmost importance in order to access their suitability as structural

members for adoption in various nano-scale devices and systems. In the current analysis, the

developed atomistic finite element model for nano-heterostructures is extensively validated

first with the results available in literature considering elastic responses and natural frequen-

cies. Thereafter a range of insightful new results are presented for the dynamic behaviour of

various configurations of graphene-hBN and graphene-MoS2 heterostructures including their

size, chirality and boundary dependence. The investigation of tunable vibrational proper-

ties along with simultaneous modulation of other mechanical, electronic, optical, thermal

and chemical attributes of such nano-heterostructures would accelerate their application as

prospective candidates for manufacturing nanosensors, electromechanical resonators, and a

wide range of other devices and systems across the length-scales.
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1. Introduction

Since the discovery of superlative monolayers and thin films of graphite [1, 2], research

interest in the engineering and scientific applications of carbon nanostructures has been grow-

ing exponentially due to their prospective unprecedented multi-functional applications in a

range of nanoelectromechanical systems and devices. The superlatives identified in graphene

has also lead to an increased interest in other possible two-dimensional (2D) materials that

could offer exceptional electronic, optical, thermal, chemical and mechanical characteristics

[3, 4, 5, 6]. Since the last decade curiosity in quasi-two-dimensional family of nano materials

has grown from hexagonal boron nitride (hBN), boron-carbon-nitride (B-C-N), graphene ox-

ides, chalcogenides such as molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) to

stanene, silicene, sermanene, phosphorene, borophene etc [7, 8, 9, 10]. It is essential to inves-

tigate these materials at nanoscale since the superlative properties appear in atomic scale and

in single or few layer forms [11]. 2D nano materials investigated in the literature are of various

geometrical patterns and among these, hexagonally shaped (interesting to note that hexag-

onal shapes exist in various natural structures across different length scales [12, 13, 14, 15])

nano-structures are found in abundance [4, 10]. Such single layer nano materials have been

extensively investigated using ab initio calculations [16, 17, 18], molecular dynamics (MD)

[19, 20, 21] and molecular mechanics (MM) [22, 23, 24, 25, 26, 27] based approaches.

Though single layers of different 2D materials have shown exceptionally promising prop-

erties covering the electronic, optical, thermal, chemical and mechanical characteristics, they

can not show multiple desirable properties in a single nanostructure. For example, MoS2 is rich

in electronic and piezoelectric properties, but this is mechanically so weak that it can not be

used in the nanoelectromechanical devices. On the other hand graphene is mechanically very

strong. Thus it is possible to combine these two nanostructures to form a single heterostruc-

ture, where the electronic and piezoelectric properties as well as mechanical strength can be

achieved. Considering the emergence of so many single layer 2D nanostructures with their

diverse properties and possibility of combining them in different stacking sequences open up a

whole new domain of research for developing nanostructures with tunable multi-synchronous

properties (analogous to metamaterials [28, 29] at nanoscale). Besides the electronic, optical,

thermal and chemical properties of heterostructures, recent studies can be found in literature
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Figure 1: Isometric views of nanostructures and heterostructures. (a) Graphene (monoplanar nanostructure)
(b) hBN (monoplanar nanostructure) (c) MoS2 (multiplanar nanostructure, refer to figure 2(a) for further
structural details) (d) Graphene-hBN heterostructure (hBN layer sandwiched between two graphene layers)
(e) Graphene-MoS2 heterostructure (MoS2 layer sandwiched between two graphene layers). Black dots:carbon
atoms, pink dots: boron atoms, blue dots: nitrogen atoms, aqua dots: molybdenum atoms and yellow dots:
sulphur atoms.

focusing on their effective mechanical properties [30, 31, 32, 33, 7, 34, 35, 36].

Vibrational characteristics of nanostructures are of utmost importance in order to access

their performance as structural members for adoption in nano-scale devices and systems. How-

ever, barring a single investigation [37], the dynamics and vibration of nano-heterostructures

have not received any attention yet. Thus here we aim to investigate the size-dependent dy-

namic behavior of nano hetero-structures in terms of natural frequencies and mode shapes by

developing a generic atomistic finite element (FE) model. In this context, it can be noted that

2D material monolayers could have either all the atoms situated in a single plane (such as

graphene, hBN), or the atoms may be situated in different planes (such as MoS2), referred as

monoplanar and multiplanar nanostructures respectively [10]. In this article, we would focus

on two different forms of graphene based heterostructures by stacking graphene with both

monoplanar (graphene-hBN) and multiplanar (graphene-MoS2) structures (refer to figure 1).

Hereafter this paper is organised as follows. In the second section, the derivation for

mechanical equivalence of atomic bonds is shown. This is followed by an overview of the

3
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atomistic simulation methodology utilized to model nano hetero-structures (third section).

Here we describe the finite element based atomistic modelling of individual sheets of graphene,

hBN, MoS2 and the weak van der Waals interactions between them. The results and discussion

are presented in the fourth section. The atomistic finite element model of the heterostructure

is first validated against available results from literature considering two different mechanical

properties, Young’s modulus and natural frequency. After gaining adequate confidence on the

atomistic finite element model through extensive validation, we have presented new results for

detailed dynamic analysis of graphene-hBN and graphene-MoS2 nano hetero-structures. The

results investigate the influence size parameters (length, aspect ratio), boundary conditions

and chirality on the natural frequencies and mode shapes of nano hetero-stuctures. In the

final section, concluding remarks are given along with a perspective of the current analysis.

2. Mechanical equivalence of atomic bonds

In case of the atomic scale behaviour of materials, total inter-atomic potential energy can

be expressed as a summation of various individual energy components relevant to bonding

and non-bonding atomic interactions [22, 10]. Total strain energy (EE) can be represented

as summation of the energy components from bond bending (Eb), stretching of bonds (Es),

bond torsion (Et) and energies contributed by non-bonded terms (Enb) like van der Waals

attraction, core repulsions and coulombic energy.

EE = Es + Eb + Et + Enb (1)

The influence of stretching and bending is significant in case of small deformations as com-

pared to all other energy components [24, 38]. For the case of hexagonal multiplanar structures

(like MoS2), the strain energy due to bending is contributed by two different components, in-

plane (EbI) and out-of-plane (EbO) [10]. The deformation mechanisms for the multiplanar

nanostructure (like MoS2) are shown in figure 2 – 3. The out-of-plane angular component

reduces to zero for monoplanar structures (like graphene and hBN). The total inter-atomic

potential energy (EE) can be expressed as

EE = Es + EbI + EbO

=
1

2
kr(∆l)

2 +

(
1

2
kθ(∆θ)

2 +
1

2
kθ(∆α)2

) (2)
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Figure 2: (a) Top and side views of a multiplanar hexagonal nanostructure such as MoS2 (b) Bond stretching
induced strain energy (c) In-plane angle variation induced strain energy (d) Out-of-plane angle variation
induced strain energy.

where ∆l, ∆θ and ∆α are the variation in bond length, variation in in-plane angle and

variation in out-of-plane angle respectively (refer to figure 2). The parameters kr and kθ are

the force constants associated with bond stretching and bending respectively. The first term in

Equation 2 represents strain energy relevant to stretching (Es), while the other terms represent

the strain energies contributed by in-plane (EbI) and out-of-plane (EbO) angle deformation,

respectively.

The force constants of atomic bonds (kr and kθ), as described above, can be expressed

in the form of structural mechanics equivalence [39]. As per classical structural mechanics

theory (refer to figure 3), strain energy of a uniform circular beam with length l, cross-sectional

area A, second moment of area I and Young’s modulus E under pure axial force N (refer to

figure 3(b)) can be expressed as

Ua =
1

2

∫ L

0

N2

EA
dl =

1

2

N2l

EA
=

1

2

EA

l
(∆l)2 (3)

The strain energies due to pure bending moment M (refer to figure 3(c)) can be written as

Ub =
1

2

∫ L

0

M2

EI
dl =

1

2

EI

l
(2∆φ)2 (4)

Comparing Equation 3 with Equation 2 for the expression of strain energy due to stretching

5
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Figure 3: (a) A hexagonal unit cell involving of 6 idealized beam elements (refer to figure 2(a)) (b) A beam
element under the influence of pure tension (c) A beam element under the influence pure bending.

(Es), it can be concluded that Kr =
EA

l
. As per figure 3(c), it is reasonable to assume for

bending that 2∆φ is equivalent to ∆θ and ∆α for in-plane and out-of-plane angle deformations

respectively. Thus comparing Equation 4 with the expressions for the strain energies due to

in-plane (EbI) and out-of-plane (EbO) angle deformations (refer Equation 2), the following

equivalence can be obtained: kθ =
EI

l
. Such mechanical equivalence between molecular

mechanics parameters (kr and kθ) and structural mechanics parameters (EA and EI) can

be used to derive beam (covalent bond) properties used in the atomistic simulations. In the

current work, the effective elastic moduli and natural frequencies of nano hetero-structures

are computed by using these beams representing covalent bonds.

3. Atomistic finite element model of nano heterostructures

The concept of idealizing atomic bonds as equivalent beam elements, as presented in the

preceding section, is utilized to model the nano-heterostructures in a finite elemet based frame-

work [40, 41, 42, 43]. It is the first ever attempt to develop any such atomistic finite element

model for heterostructures, which could be a generic computationally efficient framework for

characterizing the vibrational properties. In this research work, the finite element analysis tool

OPTISTRUCT [44] has been used to model the dynamic behaviour of nano hetero-structures.

The covalent bonds are represented by 3D Timoshenko finite element beams and the atoms are

represented by finite element nodes. Within the finite element analysis tool OPTISTRUCT,

the element type CBEAM has been used to represent beams. The cross sectional diameter

and the Young’s modulus (E) of the beam elements are computed by using the equations of

force-field constants Kr(stretching) and Kθ(bending), as described in section 2.

6
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Table 1: Bond angles and sheet thickness for nano materials[10]. Refer figure 2 for angle representations.

Nanomaterial α (in o) θ (in o) Sheet thickness (nm)
Graphene 0 120 0.34

hBN 0 120 0.098
MoS2 48.15 120 0.603

Table 2: Bond properties for each individual nano material[10].

Nanomaterial Kr in N nm−1 Kθ in N-nm-rad−2 L in nm d in nm E in GPa
Graphene 6.52e− 7 8.76e− 10 0.142 0.146 1370.91

hBN 4.86e− 7 6.95e− 10 0.145 0.151 1047.1
MoS2 1.64e− 7 1.67e− 9 0.242 0.403 882.1

The numerical values of force constants Kr and Kθ along with the necessary geometric

attributes (bond lengths and bond angles) are shown in the Table 1 - 2 [10]. By substitut-

ing these values in the equations Kr =
EA

l
and kθ =

EI

l
, essential parameters to model

covalent bonds such as beam diameter d and beam Young’s modulus E can be calculated.

The calculated values of beam diameter and beam Young’s modulus are shown in Table 2,

wherein it is evident that MoS2 has the highest interatomic bond length, while graphene

has the lowest bond length among the three materials considered in this work. The C-C

bond length within graphene sheets is very close to that of B-N bond length in hBN sheets.

Atomic masses of carbon, boron, nitrogen, molybdenum and sulphur have been considered by

modeling mass elements on the nodes. The atomic masses considered here are 1.9943X10−26

kg, 1.7952086X10−26 kg, 2.3258671X10−26 kg, 1.593121X10−25 kg and 1.593121X10−23 kg

for carbon, boron, nitrogen, molybdenum and sulphur, respectively. Within the finite ele-

ment analysis tool OPTISTRUCT [44], the element type CONM2 has been used to represent

masses.

Interlayer interaction between two adjacent layers of a heterostructure can be modelled

using Lennard-Jones (L-J) potential. The equivalent axial force for an L-J potential between

pair of atoms (i, j) belonging to different nano layers is defined as [45]

Fij =
∂Vij
∂r

(5)

where r denotes the atomic displacement along ij (layer-layer length). The force between two

7
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Table 3: Constants of L-J potentials.

Nanomaterial ε in meV σ in Å Source
C-Mo 3.325 2.82 [32]
C-S 7.355 3.22 [32]

Mo-Mo 2.43 2.72 [33]
S-S 1.19 3.59 [33]

Mo-S 2.49 3.16 [33]
C-B 3.6 2.2132 [46]
C-N 9 3.2222 [46]
B-B 4.16 3.453 [47]
N-N 6.281 3.365 [47]

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
r [nm]

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

F
or

ce
 [n

N
]

C-Mo
C-S
S-S
Mo-S
Mo-Mo
C-B
C-N
B-B
N-N

Figure 4: Curves of L-J potential forces obtained by Equation 6.

atoms (ij) can also be expressed as [48]

Fij = −12 ε

[(
rmin
y

)13

−
(
rmin
y

)7
]

(6)

where, y = rmin + δr, and δr represents the atomic displacement along the length of ij. The

quantity rmin (in Å) is given by 2
1
6 σ, where σ = (A/B)1/6. The parameters B and A denote

attractive and repulsive constants, respectively. In the current research work, three different

nano sheets are considered namely graphene, hBN and MoS2. Thereafter heterostructures

8
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of graphene-hBN and graphene-MoS2 are studied under dynamic conditions. These hetero-

structures lead to C-B, C-N, B-B, N-N, C-Mo, C-S, Mo-Mo, Mo-S and S-S atomic interactions,

where C, B, N, Mo and S are carbon, boron, nitrogen, molybdenum and sulphide atoms,

respectively. The values of σ and ε for each individual van der Waals atomic interactions are

given in Table 3. These values have been obtained from various references [32, 33, 46, 47].

In the atomistic FE simulations, we have modelled spring elements to obtain a nonlinear

connection between two adjacent layers of a heterostructure representing the L-J interactions.

The force-deflection curve for such L-J springs are calculated by using Equation 6, as shown

in figure 4. Within the finite element analysis tool OPTISTRUCT [44], the L-J springs

of interlayer interactions are modeled by element type CBUSH incorporating the curves of

figure 4 as input properties.

In the atomistic FE approach, coupled nano sheets of heterogenous nature are modeled like

space-frame structures. Overall stiffness and mass matrices of the atomistic FE models are

obtained by assembling the equivalent matrices of the beams representing C-C, C-S, Mo-Mo,

S-S, Mo-S, C-B, C-N, B-B and N-N bonds and the concentrated masses situated at each node.

Here the lumped mass matrix in case of a single beam element can be expressed as:

[M]e = diag
[

ma

n
ma

n
ma

n
0 0 0

]
(7)

where ma (in kg) is the mass of atoms and n is the number of bonds attached to an atom in

the nanosheet. To obtain the natural frequencies and mode shapes of nano-heterostructures,

the general equation of motion of an undamped system ([K]x + [M]ẍ = 0) leading to the

standard eigenvalue problem (([K]− ω2 [M]) {x} = {0}) can be solved using Block Lanczos

algorithm [49] within the atomistic finite element analysis code [44].

4. Results and discussion

Here we start by validating the developed atomistic finite element model of heterostructures

using two different mechanical properties, Young’s modulus and natural frequency. After

gaining adequate confidence on the proposed model, insightful new results are presented for the

dynamic behaviour of graphene based heterostructures including the effect of size, boundary

condition and chirality.

9
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4.1. Validation of Young’s modulus (E) of graphene, hBN and MoS2

In this subsection, the Young’s modulus of graphene, hBN and MoS2 has been obtained

using the atomistic finite element method and compared with the corresponding values avail-

able in literature. For each nano material, the elastic analysis has been performed in zigzag

and armchair directions. With respect to armchair and zigzag directions, one end of the nano

sheet has been constrained and an unit load has been applied to the other end. The unit

load has been introduced through a rigid element (multi point constraint) connected to the

group of nodes at the end of nanosheet. The resulting strain due to the applied unit load

has been numerically calculated using the atomistic FE simulations. Based on this strain and

applied stresses due to the unit load, the Young’s modulus of the 2D materials has then been

obtained. Here the Young’s modulus with respect to armchair direction is referred as E1 and

that with respect to zigzag direction is referred as E2. The Young’s moduli E1 and E2 have

been converted to tensile rigidities E1T and E2T by multiplying the corresponding modulus

with the sheet thickness shown in the Table 1.

For the case of graphene and hBN sheets, four separate finite element models have been

constructed with sheet sizes 1.775 nm × 3.074 nm, 1.775 nm × 3.813 nm, 1.775 nm × 4.55 nm

and 1.775 nm × 5.534 nm. The largest among these four finite element models has resulted

in upto 654 beam elements and 513 nodes. The aspect ratio of these four finite element

models are 1.73, 2.14 , 2.56 and 3.11. Also, for the case of MoS2 sheets, 4 separate finite

element models have been constructed with sheet sizes 1.483 nm × 2.625 nm, 1.483 nm ×

2.94 nm, 1.483 nm × 3.359 nm and 1.483 nm × 4.199 nm. The largest among these four

finite element models has resulted in upto 958 beam elements and 587 nodes. The aspect

ratio of these four finite element models are 1.77, 1.98, 2.26 and 2.83. The variation of E1T

and E2T against aspect ratio (AR) for all three nano materials are shown in figure 5. Within

these plots, are also presented the E1T and E2T obtained from literature [10]. The authors

[10] considered an analytical closed-form formula to determine unique values of E1T and E2T

of graphene, hBN and MoS2 by considering a single hexagonal unit cell of each nano material.

Due to this fact, the curves from the literature [10] remain flat in the plots of figure 5. As

per these plots, the numerically predicted values are quite close to that of the analytical

prediction of literature. However, the current values are found be slightly lower as compared
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Figure 5: Variation of tensile rigidity against aspect ratio (AR). The results obtained using the current
atomistic FE simulations are validated against literature [10].

to the analytical predictions of literature. This can be attributed to the fact that the analytical

predictions are based on a single unit cell, where the shear deformations were neglected. In the

current numerical analysis shear based deformation is allowed in the lattice system considering

Timoshenko finite element beams, leading to more flexibility in the nanosheets. Moreover,

within the atomistic finite element simulations multiple number of unit cells in each sheet are

considered, resulting in a high number of beam elements. As the number of beam elements

increases, more flexibility is added to the model. The cumulative effect of such flexibility

can underpredict the elastic modulus of the nano structures. The variation of tensile rigidities

with respect to aspect ratio is found to be negligible in figure 5. At larger aspect ratios (> 10),

the values of tensile rigidities increase slightly (< 1%). Furthermore, the numerically obtained

single layer tensile rigidities have also been compared against the results from various other

publications covering ab initio calculations, molecular dynamic simulations and experimental

investigations (refer to Table 4). From the results presented in this subsection, it can be

concluded that the tensile rigidities calculated using the atomistic FE model are in good

agreement with the numerical values available in literature, corroborating the validity of the

developed computational model. In the Table 4, for the case of graphene, the current approach

predicted tensile rigidity (E1T=0.296 TPa nm) close to that of experimental work [51] (0.306

TPa nm). For the case of hBN and MoS2, the current predicted tensile rigidity values are
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Table 4: Results for Young’s moduli in the form of tensile rigidity(ET ) compared against the values from
literature. E1T and E2T are tensile rigidities in two directions taken from the current work. Similar to the
present results, Mukhopadhyay et al. [10] reported different values of Young’s modulus in the longitudinal
and transverse directions of MoS2.

Material
Present
Results

(TPa nm)

Reference results from literature (ET in TPa nm)

Graphene
E1T = 0.296
E2T = 0.282

Experimental: 0.34 [50], 0.306 [51]

Ab initio: 0.350 [52], 0.357 [18], 0.377 [53], 0.364 [54]

Molecular Dynamics: 0.357 [55], 0.343 [56]

Molecular Mechanics: 0.354 [24], 0.3604 [22], 0.354 [10]

hBN
E1T = 0.252
E2T = 0.240

Experimental: 0.251 [57]

Ab initio: 0.271 [52], 0.272 [58]

Molecular Dynamics: 0.236 [59], 0.278 [60]

Molecular Mechanics: 0.269 [61], 0.322 [62], 0.265 [10]

MoS2

E1T = 0.080
E2T = 0.180

Experimental: 0.211 [63], 0.163 [64]

Ab initio: 0.141 [65], 0.262 [66]

Molecular Dynamics: 0.150 [67]

Molecular Mechanics: 0.107 (E1T ) and 0.214 (E2T ) [10]

also found to be close to that of experimental works [57, 64]. Such a close correlation indicate

that the present numerical results agree very well with experimental works obtained under

more realistic conditions. The discrepancies between the current numerical results, and the

MM/MD based results can be due to various reasons such as omission of non bonded energy

terms in Equation 1 and presence of degrees of freedom including shearing effect within the

Timoshenko finite elements representing covalent bonds.
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4.2. Validation of natural frequencies of nano-heterostructures

After validating the developed atomistic finite element model with respect to the Young’s

moduli of 2D materials, here we present a further verification/ validation for the dynamic be-

haviour of nano-heterostructures considering a combination of graphene and hBN. This section

involves dynamic analysis of graphene-hBN triple layer nano hetero-structure, wherein alter-

nating graphene and hBN sheets have been overlapped into three layers. This configuration

has been chosen to validate the present numerical model against the molecular dynamics (MD)

model of similar configuration available in literature [37]. In order to validate the atomistic

FE dynamic models, the modal analysis has been performed by constraining two edges of the

multi-layer nano-heterostructures. Four separate finite element models have been constructed

with sheet sizes 5.534 nm × 12.121 nm, 5.534 nm × 13.789 nm, 5.534 nm × 18.101 nm and

5.534nm × 20.112nm. For these four finite element models, the width has been kept constant

at 5.534 nm and the length has been varied from 12.121 nm to 20.112 nm. These dimensions,

boundary conditions and layer combinations have been chosen in order to replicate the MD

simulations available in literature [37].

Figure 6: Comparison of natural frequency of current work against the values available in literature [37]. A
schematic representation of the considered heterostructure is shown in the inset, wherein the two outer layers
are graphene and the middle layer is hBN.
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The variation of the natural frequency with respect to the sheet lengths is shown in figure 6.

This plot presents two curves, a curve from the current atomistic FE simulations and a curve

extracted from the MD results [37]. The trend of variation in the current work is comparable

with that of the MD simulation [37]. Both atomistic FE and MD simulations predict a drop

in natural frequency as the length of multilayer nano hetero-structure sheet is increased.

However, the natural frequencies predicted by the atomistic FE simulations are found to be

lower than those predicted by MD simulations. This is due to the fact that the number

of numerical approximations happening within the finite element analysis including round

off approximations and beam element six degrees of freedom (leading to sheet flexibility).

Other reasons such as omission of non bonded energy terms in Equation 1 and shearing effect

within the Timoshenko beam finite elements can also contribute to such discrepancies. At

higher lengths, the results of atomistic FE simulations tend to converge towards those of MD

simulations. Also, the curve of natural frequency between the lengths 18.101 nm and 20.112 nm

appears to be relatively flat as compared to the rest of the curve. This further proves that, as

the atomistic space frame lattice of nano-structures becomes larger in dimension, it simulates

a continuous plate similar to earlier reports for bilayer and single layer graphene sheets [43].

It can be noted that the results presented in subsection 4.1 and 4.2 comprehensively establish

the validity and confidence in the developed atomistic FE model. Hereafter new results on the

dynamic behaviour of graphene based heterostructures are presented following the developed

computational model.

4.3. Higher order modal behaviour of nano hetero-structures

In this subsection we have studied three higher order modes of nano-heterostructures except

the first mode of vibration. To understand the nature of dynamic features, mode shapes are

required to be studied for a complex system. In order to demonstrate the mode shapes

associated with natural frequencies, the 1st four mode shapes are presented in this section.

Prior to enforcing boundary conditions, an initial free-free modal simulation has been carried

out to verify the dynamic behaviour of the double-layer structures without the influence of

external clamps and/or supports. A free-free run involves extracting and verifying rigid body

mode shapes without any constraints, in order to ensure the integrity of the structure. The

boundary condition used to perform modal analysis is cantilevered condition (Ref figure 7).

14

Page 14 of 30AUTHOR SUBMITTED MANUSCRIPT - NANO-122787.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



(a) Bridged and Cantilevered in armchair direction

(b) Bridged and Cantilevered in zizag direction

Figure 7: Depiction of bridged and cantilever boundary conditions (the marked edges are fully constrained in
all six degrees of freedom).

Cantilever condition involves clamping at one edge and setting free other three edges of the

nanostructures. Modal analysis has been performed on graphene-hBN and graphene-MoS2

nano hetero-structures. Chosen size of both heterostructures is 10.5 nm × 3.5 nm. Such

a dimension will lead to a nano ribbon type rectangular sheet with an aspect ratio 3. The
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(a) Mode I (b) Mode II

(c) Mode III (d) Mode IV

Figure 8: First four mode shapes of graphene-hBN nano hetero-structure.

(a) Mode I (b) Mode II

(c) Mode III (d) Mode IV

Figure 9: First four mode shapes of graphene-MoS2 nano hetero-structure.

first four mode shapes for graphene-hBN and graphene-MoS2 heterostructures are shown in

figure 8 and figure 9. The first four natural frequencies for graphene-hBN heterostructure are

122 GHz, 144 GHz, 187 GHz and 202 GHz, while the corresponding values for graphene-MoS2

heterostructure are 102 GHz, 131 GHz, 154 GHz and 190 GHz.

For the case of graphene-hBN, first mode shape is an out of plane bending with a cantilever

tip motion, second mode shape is an out of plane bending with single waviness, third mode
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shape is a torsional twisting mode and the fourth mode shape is an out of plane bending with

double waviness. These mode shapes are comparable to that of bilayer graphene [43]. For

the case of graphene-MoS2, first mode shape is an out of plane bending with a cantilever tip

motion, second mode shape is a non-homogenous out of plane bending, third mode shape is a

non-homogenous twist and fourth mode shape is an out of plane opening mode. Importantly,

inter layer penetrative waviness has been observed in the second mode shapes of graphene–

MoS2. Such a waviness and the presence of sheet separation modes (mode II, mode III and

mode IV) in graphene-MoS2, indicates that the layer-layer interaction stiffness (weak van der

Waals/L-J potentials) is lower in graphene–MoS2 as compared to graphene-hBN. Thus under

a dynamic condition, the graphene-MoS2 heterostructure shows more susceptibility to a failure

following this mechanism. Interestingly, the interlayer interaction plays an important role in

case of dynamic analysis of heterostructures unlike the case of static elastic analyses, where

the weak van der Waals effects have negligible contribution [30]. It is important to note that

the presence of out of plane bond angle (Ref figure 2 and Table 1) in MoS2 reduces the degree

of interaction with any adjacent nanosheet. The first mode shapes for graphene-hBN and

graphene-MoS2 are similar. The other three higher order mode shapes for the two types of

nano hetero-structures considered here differ from each other significantly. Such a difference

indicate that the graphene-MoS2 hetero-sheets are useful in nano oscillatory applications where

sheet separation modes are needed.

4.4. Size-dependence in natural frequency of nano-heterostructures

In this section, we investigate the effect of size of nanosheets on the first natural frequencies

of heterostructures considering different boundary conditions with varying length. The results

of fundamental natural frequency of armchair and zigzag graphene-hBN heterostructure is

presented in figure 10, for bridged and cantilevered boundary conditions. It can be seen that

for armchair graphene-hBN heterostructures (width = 4.08 nm) with the increasing length

from ∼ 11Å to ∼ 160Å have fundamental frequencies in the range between 380 - 7 GHz

for cantilever condition and 880 - 82 GHz for bridged condition. The zigzag graphene-hBN

heterostructures (width = 4.1 nm) have their natural frequencies distributed between 330

- 5 GHz and 770 - 79 GHz for cantilevered and bridged boundary conditions respectively,

with increasing lengths between 12Å to 168Å. The trend observed here (refer to figure 10)
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Figure 10: The dependence of natural frequency on sheet length: (a) Cantilevered boundary condition -
fundamental natural frequency of armchair and zigzag graphene-hBN heterostructure as a function of sheet
length. (b) Bridged boundary condition - fundamental natural frequency of armchair and zigzag graphene-hBN
heterostructure as a function of sheet length.

is similar to the one identified for single layer graphene [68] and bi layer graphene [43]. The

results of the fundamental frequencies of armchair and zigzag graphene-MoS2 are presented in

figure 11, for bridged and cantilevered boundary conditions. It can be seen that for armchair

graphene-MoS2 heterostructures (width = 4.08 nm) with the increasing length from ∼ 11Å

to ∼ 160Å have fundamental frequencies in the range between 296 - 5 GHz for cantilever

condition and 680 - 63 GHz for bridged condition; while the zigzag graphene-MoS2 (width =

4.1 nm) have instead their natural frequencies distributed between 255 - 4 GHz and 598 - 58

GHz for cantilevered and bridged boundary conditions respectively, with increasing lengths

between 12Å to 168Å. The trend observed (refer to figure 10) is again similar to the one

identified for single layer graphene [68] and double layer graphene [43]. In general it can be

concluded that an increase in sheet length leads to a reduction in natural frequency.

In figure 12 and figure 13, the variations of natural frequencies for graphene-hBN and

graphene-MoS2 heterostructures with respect to length at a given aspect ratio are presented.

The pattern of variation here is qualitatively similar to that of single [68] and double layer [43]

graphene. This is due to the fact that all nano sheets considered are 2D in nature and they

have hexagonal cells. It can be observed from the figures that sheet length has a significantly

more predominant effect on the natural frequency compared to aspect ratio. As per figure 12
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Figure 11: The dependence of natural frequency on sheet length: (a) Cantilevered boundary condition -
fundamental natural frequency of armchair and zigzag graphene-MoS2 heterostructure as a function of length.
(b) Bridged boundary condition - fundamental natural frequency of armchair and zigzag graphene-MoS2

heterostructure as a function of length.
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Figure 12: The variation of natural frequencies with sheet length at a given aspect ratio for graphene-hBN
nano-heterostructure (a) Cantilevered graphene-hBN in armchair direction (b) Cantilevered graphene-hBN in
zigzag direction

and figure 13, increase in sheet aspect ratio by keeping the sheet length constant will not lead

to a significant change in natural frequency. In general, it is observed that graphene-hBN nano

hetero-structure offers higher natural frequency as compared to graphene-MoS2 for a given

length and aspect ratio. This behaviour is in agreement with the stiffness (tensile rigidities)

of nanosheets presented in figure 5.
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Figure 13: The variation of natural frequencies with sheet length at a given aspect ratio for graphene-MoS2

nano-heterostructure (a) Cantilevered graphene-Mos2 in armchair direction (b) Cantilevered graphene-MoS2

in zigzag direction

4.5. Dependence on the boundary condition

From the point of view of structural mechanics, a bridged structure is found to offer higher

natural frequency [69] compared to the cantilever one due to more stiffness in the system. As

per figure 10 and figure 11, the change of the boundary condition from one-edge-fixed to

both-edge-fixed can enhance the natural frequency by upto 3 times. Such a boundary condi-

tion dependence was observed for the higher natural frequencies of both graphene-hBN and

graphene-MoS2. Clamping the nano- heterostructure sheet at all edges will further enhance

the stiffness, and subsequently increase the natural frequencies. Further, our study reveals

that, as the aspect ratio is increased, the natural frequency of a cantilever model drops at

higher rate as compared to a bridged model. From these observations, we can also conclude

that the bridged topologies (refer to figure 7) are suitable for nanoelectromechanical system

applications, where resonant frequencies are required to be very high, while the cantilever

topologies (refer to figure 7) are suitable for low resonant frequency applications.

4.6. Effect of chirality on the natural frequencies of heterostructures

From the results presented in the preceding subsections, it can be observed that chirality is

an influential factor for the natural frequencies of vibration (refer to figure 10 and figure 11).

For a given width and length, the fundamental frequencies of armchair nano-heterostructure
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sheets are higher than those of zigzag ones. This difference can be attributed to the higher

tensile rigidity in the armchair direction for graphene, as shown in figure 5. The maximum

relative difference calculated as (ωarmchair − ωzigzag)/ωarmchair is found to be in the order of

0.14 and 0.12 for cantilevered and bridged boundary conditions, respectively. A similar trend

can also be noticed from figure 12 - 13 for the zigzag and armchair directions. However,

increasing the sheet length diminishes the difference caused by chirality. In other words, there

is a size effect on the effect of chirality and it is more prominent for nano-sheets with smaller

dimension.

5. Summary and perspective

The area of two-dimensional (2D) materials, which started with the synthesis of graphene,

has received a wide range of attention from the engineering and science community. After

several years of intensive investigation, research concerning graphene has logically reached to a

rather matured stage. Thus, investigation of other two dimensional and quasi-two-dimensional

materials have started receiving the due attention recently. However, the possibility of com-

bining single layers of different two dimensional materials (heterostructures) has expanded

this field of research dramatically; well beyond the scope of considering a simple single layer

graphene or other 2D material. The interest in such heterostructures is growing very rapidly

with the advancement of synthesizing such materials in laboratory, as the interest in graphene

did few years ago. The attentiveness is expected to expand further in coming years with the

possibility to consider different tunable nanoelectromechanical properties of the prospective

combination (single and multi-layer structures with different stacking sequences) of so many

two dimensional materials.

The current article presents an efficient atomistic finite element-based modelling framework

for the dynamic analysis of such nano-heterostructures. Here the contribution is two-fold: I.

Insightful new results unravelling the dynamic behaviour of graphene based heterostructures

including the effects of dependence on size, chirality and boundary conditions II. Development

of the generic atomistic finite element framework for efficient dynamic analysis of heterostruc-

tures. The physics-based atomistic finite element framework is applicable to multiple 2D

materials with any stacking sequence and number of layers. Adoption of the atomistic finite

element approach instead of conventional simulation methods such as molecular dynamics
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simulation brings significantly more computational efficiency in the analysis and the proposed

approach is a panacea in situations where interatomic potentials required for carrying out

molecular dynamics simulations are unavailable in case of many complex heterostructures.

The unique capability of these heterostructures to achieve a range of simultaneously tun-

able multifunctional properties is expected to have a wide appeal across different disciplines

of research concerning nanotechnology. Vibrational characteristics of nanostructures are of

utmost importance in order to access their performance as structural members for adop-

tion in nano-scale devices and systems. However, the dynamics and vibration of nano-

heterostructures have not received the required attention yet. Thus, here we have focused

on investigating the size-dependent dynamic behavior of nano hetero-structures by developing

a generic atomistic finite element model.

6. Conclusions

The vibrational characteristics of graphene based nano-heterostructures are investigated

in this article considering the dependence on size, chirality and boundary conditions. A

generic atomistic finite element based approach has been developed for the static and dy-

namic analysis of nano-heterostructures by considering the mechanical equivalence of atomic

bonds, interlayer interactions and atomic masses. Within the atomistic finite element model,

the inter atomic bonds are represented by equivalent structural beams with stretching and

bending mechanisms, while the interlayer interaction between two adjacent layers are mod-

elled using equivalent non-linear spring elements based on L-J potentials. The atomic masses

are modelled as lumped mass system in the dynamic analysis framework. The developed

atomistic finite element model is validated extensively with available literature for effective

elastic properties and vibrational frequencies. After gaining adequate confidence on the pro-

posed computational model, insightful new results on dynamic properties are presented for

graphene-hBN and graphene-MoS2 heterostructures. Natural frequencies and mode shapes are

investigated up to the fourth mode explaining their fundamental characteristics. The study

reveals that the weak van der Waals interactions between the layers assume an important role

in the dynamics of heterostructures unlike the case of static elastic analysis. Depending on the

modulus of elasticity, graphene-hBN shows a higher bending stiffness compared to graphene-

MoS2 heterostructure, leading to higher natural frequencies. Similar to the behaviour of single
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and bilayer graphene sheets, the fundamental natural frequency of hetero-structures reduces

with increasing length and aspect ratio. The nano hetero-structures with bridged bound-

ary conditions are found to have higher natural frequencies compared to their cantilevered

counterpart, making them more appropriate for high-resonance applications. A size effect is

unravelled concerning the influence of chirality on the natural frequencies and it is found to

be more prominent for nano-sheets with smaller dimension.

In summary, we have investigated the dynamic behaviour of graphene based heterostruc-

tures considering two different configurations with monoplanar and multi-planar 2D nano

materials. Such graphene based heterostructures are ideal candidates for multi-synchronous

modulation of a wide range properties for the application-specific requirements of various na-

noelectromechanical devices and systems. In-depth characterization of the vibrational char-

acteristics of these nano-heterostructures would assume a cardinal role in accessing their suit-

ability as structural members for adoption in such nano-scale objects. Moreover, the generic

atomistic finite element approach developed in this study would be useful to efficiently explore

the dynamic properties of various other nano-heterostructures with multiple number of 2D

materials and their stacking sequences in the future investigations.
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