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Abstract 

Early detection of Alzheimer’s disease (AD) will help researchers to better 

understand the disease and develop improved treatments. Recent 

developments have thus focused on identifying biomarkers for mild cognitive 

impairment due to AD (MCI) and AD during the preclinical phase. The aim of 

this pilot study is to determine whether exhaled volatile organic compounds 

(VOCs) can be used as a non-invasive method to distinguish controls from 

MCI, controls from AD and to determine whether there are differences 

between MCI and AD. The study used gas chromatography – ion mobility 

spectrometry (GC-IMS) techniques. Confounding factors, such as age, 

smoking habits, gender and alcohol consumption are investigated to 

demonstrate the efficacy of results. One hundred subjects were recruited 

including 50 controls, 25 AD and 25 MCI patients. The subject cohort was 

age- and gender-matched to minimise bias. Breath samples were analysed 

using a commercial GC-IMS instrument (G.A.S. BreathSpec, Dortmund, 

Germany). Data analysis indicates that the GC-IMS signal was consistently 

able to separate between diagnostic groups [AUC±95%, sensitivity, 

specificity], controls vs MCI: [0.77 (0.64 – 0.90), 0.68, 0.80], controls vs AD: 

[0.83 (0.72 – 0.94), 0.60, 0.96], and MCI vs AD: [0.70 (0.55 – 0.85), 0.60, 

0.84]. VOC analysis indicates that six compounds play a crucial role in 

distinguishing between diagnostic groups. Analysis of possible confounding 

factors indicate that gender, age, smoking habits and alcohol consumption 

have insignificant influence on breath content. This pilot study confirms the 

utility of exhaled breath analysis to distinguish between AD, MCI and control 
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subjects. Thus, GC-IMS offers great potential as a non-invasive, 

high-throughput, diagnostic technique for diagnosing and potentially 

monitoring AD in a clinical setting.  

 

Keywords: Alzheimer’s disease; mild cognitive impairment due to 

Alzheimer’s disease (MCI); breath analysis; GC-IMS; volatile organic 

compounds (VOCs).  
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1 Introduction 

The increasing lifespan of the human population is inevitably leading to a 

growing prevalence of neurodegenerative diseases (NDDs). Alzheimer’s 

disease (AD) is a degenerative brain disorder and is the most common cause 

of dementia [1]. Dementia is characterised by a decline in memory, language, 

problem-solving, planning, reasoning, and other basic cognitive abilities, 

which has a direct impact on performing everyday activities [2]. The decline 

occurs because nerve cells (neurons), in parts of the brain involved in 

cognitive functions, have been damaged or destroyed [2]. While there is 

currently no cure or way to stop or slow disease progression, medication, 

support and care can help manage symptoms and improve quality of life. In 

2017, the worldwide dementia prevalence was estimated at 50 million people 

[3], with a global societal cost of $1 trillion [4] resulting from direct (medical and 

social care) and indirect (unpaid caregiving by families and friends) costs. The 

economic impact and costs have been estimated to be greater than that of 

common chronic diseases, such as heart disease and cancer [5].  

Progression of AD can be categorised into three phases: preclinical, mild 

cognitive impairment (MCI) and clinical phases [6]. The preclinical phase does 

not include noticeable clinical signs; however, there are gradual physiological 

changes at the cellular level associated with disease pathogenesis [7]. MCI is 

used in this research to describe Mild Cognitive Impairment due to Alzheimer’s 

disease. This is a transitory phase in the progression of AD from a preclinical 

illness to symptomatic AD, which then progresses to a dementia where there 

is impairment in more than one domain of cognitive function and activities of 

daily living, such as getting dressed and doing household activities. In this 
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study, we use the term Alzheimer’s disease (AD) to describe this progression 

from MCI to more than one domain of cognitive function and then to dementia 

where activities of daily living are becoming impaired. The assessment of MCI 

remains clinical, taking a history, checking dementia screening bloods, a brain 

scan (either CT or MRI scan) and using neuropsychology testing (e.g. using 

MoCA, ACE-III and M-ACE sub-score) to come to a clinical diagnosis. In 

research centres, biomarkers such as cerebrospinal fluid (CSF) testing and 

amyloid PET scans are used to confirm a biomarker diagnosis for MCI due to 

AD using NIA-AA criteria [8,9]. 

It is widely accepted that early detection of AD (ideally, in the preclinical 

phase) will be key to preventing, slowing and stopping the disease [2]. This is 

when disease modifying treatments will be most effective. Some research has 

suggested that the first AD-related brain changes may begin more than 20 

years before clinical symptoms emerge [10]. Identifying biomarkers that can 

reliably identify AD-related developments at an early stage would have a high 

clinical value, as it could enable early preventative treatments. Blood-based 

biomarkers, such as amyloid-β markers [11], could provide minimally-invasive 

methods. However exhaled breath has shown potential as a non-invasive 

diagnostic tool. This involves the analysis of exhaled volatile organic 

compounds (VOCs). There are an estimate of over 3,000 VOCs in human 

breath, which are a combination of by-products of normal metabolic activity 

and, in some cases, specific biomarkers associated with a disease [12–15].  

Exhaled breath analysis has the potential to have a significant impact on 

enhancing the diagnosis and monitoring of AD, since the approach is 

non-invasive, relatively cost-effective and potentially straight-forward to 

Page 5 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-101047.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal of Breath Research                                                         Page | 6  

implement [7]. A recent review paper by Subramaniam et al. [7] explored the 

emergence of breath testing as a non-invasive diagnostic modality for NDDs. 

Early work by Stüwe et al. [16,17] used breath tests to investigate hepatic 

mitochondrial dysfunction for Friedreich ataxia and Huntington’s disease. 

These studies utilised isotope-selective nondispersive infrared spectrometry 

(IRIS) for evaluation of methyl 13C-methionine. In addition to this, there have 

been at least four breath-based studies investigating the efficacy of diagnosing 

AD. These studies used gas chromatography–mass spectrometry (GC-MS) 

[18,19], Cyranose 320 electronic nose (eNose) [20], ion mobility spectroscopy 

(IMS) [20] and custom-built sensor systems [18,19,21]. Three out of four of 

these studies investigated AD, as well as Parkinson's disease (PD), against 

control subjects. To the best of our knowledge, this breath study is the first to 

investigate MCI, AD and controls using a GC-IMS (gas chromatography–ion 

mobility spectrometer) technique.  

The aim of this pilot study is to determine whether exhaled VOCs can be 

used to distinguish controls from MCI, controls from AD, and MCI from AD in 

breath. Confounding factors, such as age, smoking habits, gender and alcohol 

consumption are investigated to demonstrate the efficacy of results.  
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2 Materials and methods  

2.1 Subjects 

A total of 100 subjects were recruited for this case-control study. Ethical 

approval was obtained from local research ethics committee (Ref No. 

17/18-829, University of Plymouth, UK). MCI and AD patients were recruited 

by Re:Cognition Health (Plymouth, UK), along with their respective partners 

as control subjects. The control subjects were clinically defined as non-MCI 

and AD sufferers. The volunteers and patients received information sheets 

and were consented following a face-to-face interview by a medical doctor. 

The study cohort includes 50 patients (25 MCI, 25 AD) and 50 controls. MCI 

patients were recruited based on the investigator’s assessment (Author S.P.), 

who reviewed their clinical history and confirmed that the subject 

demonstrated amnestic symptoms highly suggestive of AD. AD subjects were 

recruited based on M-ACE scores [22] below 23, a clinical assessment of the 

presence of amnestic problems, and another domain of cognitive problems, 

including patients with dementia who had functional impairment. Controls 

included subjects that had no-known history of neurological disorders 

(self-reported). The mean age of the MCI and AD group was 74.9 (standard 

deviation: 7.6), including 29 males and 21 females. An overview of the 

demographic data of MCI, AD and control subjects is shown in Table 1.  
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Table 1. Demographic data of controls subjects and MCI and AD patients. 

Parameter MCI (n=25) AD (n=25)  Controls (n=50) 

Mean age (SD) 72.2 (7.3) 77.5 (7.2) 71.2 (7.3) 

Gender ratio M:F 15:10 14:11 17:33 

Smoking habits 
16 ex-smokers 

9 never smokers 

10 never smokers 

12 ex-smokers 

3 current smokers 

22 never smokers 

25 ex-smokers  

3 current smokers 

Alcohol – mean 

units/week (SD) 
10.8 (11.6) 3.5 (6.4) 11.3 (13.4) 

Medication 

(No. of Subjects) 

Omeprazole (8) 

Atorvastatin (6) 

Bisoprolol (5) 

Paracetamol (4) 

Simvastatin (4) 

Amlodipine (3) 

Warfarin (3) 

Aspirin (3) 

Citalopram (3) 

64 others (≤ 2) 

Donepezil (10) 

Atorvastatin (6) 

Omeprazole (4) 

Aspirin (4) 

Amlodipine (4) 

Folic Acid (4) 

Clopidogrel (3) 

Citalopram (3) 

47 others (≤ 2) 

Not available (N/A) 

Co-diseases /  

conditions 

(No. of Subjects) 

Hypertension (11) 

Depression (6) 

High Cholesterol (6) 

Atrial Fibrillation (4) 

Hiatus Hernia (3) 

Migraines (3) 

Diabetes Mellitus (3) 

58 others (≤ 2) 

Hypertension (7) 

High Cholesterol (5) 

Gastric Reflux (4) 

54 others (≤ 2) 

Not available (N/A) 

 

2.2 Breath analysis platform 

This study utilised GC-IMS technology as an analytical platform. In recent 

years, there has been a growing presence of portable GC-IMS analysers, 

which have demonstrated capabilities in medical diagnostics [23,24]. The 

BreathSpec (G.A.S., Dortmund, Germany) used in this study, is a commercial 

instrument, consisting of a gas chromatograph (GC) and an ion mobility 
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spectrometer (IMS). Importantly, the unit analyses at point of care, only takes 

a few minutes to undertake an analysis and is patient friendly, with breath 

samples collected without putting strain on the subject. The BreathSpec is 

equipped with a MXT-200 mid-polarity column (Thames Restek, Saunderton, 

UK) for gas chromatographic separation, based on chemical interactions with 

the column. This stage is followed by a drift tube IMS detector, whereby 

analytes are ionised and injected into a drift tube, using a shutter grid. The ions 

drift against a buffer gas under influence of a uniform electric field (400 V/cm), 

where the various ions achieve different velocities, inversely related to their 

size, mass and charge [25]. The ions are then collected on a Faraday plate, to 

produce a time-dependent signal that corresponds with ion mobility. This 

technique can measure substances in the low parts-per-billion (ppb) range 

and delivers measurement results in 10 minutes. This unit is fitted with a 

circulator gas flow unit (CGFU), which recirculates and filters ambient air. This 

allows the unit to operate without the need of an external gas supply (e.g. 

nitrogen generator). The buffer gas flow rate was 150 ml/min and carrier flow 

rate through the instrument was 15 ml/min, while the sample was being 

introduced. The carrier flow rate was then ramped to 50ml/min over the 

10-minute measurement time. The temperatures of the GC column, IMS and 

sample loop were set to 45°C. 

2.3 Breath sampling  

The sampling procedure requires only four seconds of exhaled breath 

[26]. Subjects were provided with a disposable plastic mouthpiece, which 

pushes into the mouthpiece holder/sample inlet and connects directly to the 
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front-panel of the instrument. The mouthpieces are open-ended, which allows 

air inside the mouthpiece to be displaced as exhalation proceeds. As a result, 

the sampling system can separate out the last portion of exhaled breath – 

known as end-tidal breath. This refers to the last portion (350 mL) of exhaled 

breath, expelled from within the lungs and the lower-airways, which have 

undergone gaseous exchange with the blood in the alveoli [27]. Users do not 

need to exhale until their lungs are as empty as possible and instead are 

simply asked to breathe normally. This improves reproducibility and makes the 

device suitable for vulnerable subjects, such as the elderly.  

A typical GC-IMS output response to a breath sample (control subject 

from this study), is shown in Figure 1. The obtained sample is represented in a 

3D topographic map, whereby each point is characterised by the retention 

time in the chromatographic column (in seconds), the drift time (in 

milliseconds) and the intensity of ion current signal (in volts). The signal 

intensity is indicated by colour, where each high-intensity area represents a 

single or combination of chemicals (with the same properties). The long line 

red line is the reactant ion peak (RIP), which is a background signal present all 

the time. Laboratory Analytical Viewer (LAV) software (v2.2.1, G.A.S., 

Dortmund, Germany) was used for GC-IMS signal viewing.  
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Figure 1. GC-IMS output example. 

2.4 Data analysis 

Our data analysis approach focuses on distinguishing between the three 

diagnostic groups: AD, MCI and controls. However, since there are more 

controls than MCI or AD subjects, the effect of imbalanced datasets needs to 

be considered [28]. For this reason, a random selection of 25 controls were 

used for this analysis. The first step of data analysis involves a pre-processing 

stage. The aim of this is to reduce the dimensionality, thus leaving data that is 

non-background. A typical GC-IMS dataset contains 11 million data points, 

which has high dimensionality, but low information content. The area of 

interest is defined as a region on the GC-IMS output associated with the VOC 

‘fingerprint’ of a subject, i.e. the VOC peak signals. These signals are located 

near each other in the output file and thus we are able to crop this section of 

the data. The size of the cropped area is selected by visualisation of the data 

and ensuring that it can be applied across all samples, without losing any 

Page 11 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-101047.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal of Breath Research                                                         Page | 12  

chemical information. The next step involves thresholding. Since we are only 

interested in the VOC peaks, the spaces between the peaks (i.e. background) 

is removed using a static threshold. These steps reduce the number of data 

points by a factor of 100. Following this, a supervised feature selection 

procedure is undertaken, with class prediction performed using a k-fold 

cross-validation method (where k=10 in our case). This method involves 

partitioning the original data set into 10 equally sized subsets. Of the 10 

subsets, a single subset is retained as the validation data for testing the model 

and remaining nine subsets are used as training data. Training features are 

identified using Wilcoxon rank-sum test between the two groups and those 

feature points with the lowest p-value selected and used to construct models 

based on five different classifiers. These features are identified purely on a 

statistical basis and not on any biological function at this stage. This analysis 

was run using R (version 3.6.0) with standard machine learning 

sub-packages: support vector machine (SVM) – kernlab; sparse logistic 

regression (SLR) – glmnet; Gaussian process – gbm, neural network – 

neuralnet, and random forest (RF) – randomForest. This process is repeated 

10 times (number of folds), with each subset used once as validation data. The 

10 results are then combined to produce a single estimation and from this, 

statistical parameters calculated. 

In addition to the classification analysis, it is possible to identify unknown 

VOCs that relate significantly to the efficacy of the generated results. Using 

GC-IMS Library Search software (v1.0.1, G.A.S., Dortmund, Germany), we 

can potentially identify compounds based on gas chromatographic retention 

times and ion mobility drift times, by referencing a NIST database with around 
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83,000 compound entries [29]. Here, we can plot the identified features back 

onto the original GC-IMS output and then tentatively identify those chemicals. 

The instrument was normalised to match the GC-IMS Library Search software 

with the equipped column using a standard ketone mix (2-butanone, 

2-pentanone, 2-hexanone, 2-heptanone, and 2-octanone).  

2.5 Confounding factors 

Applications of exhaled breath analysis for diagnostic and/or monitoring 

purposes should consider possible confounding factors [30]. These are factors 

which are known to have some impact on breath content and can thus 

introduce bias or generate spurious associations. For example, age is a critical 

confounder in this study, because increased age is the biggest risk factor for 

AD. In addition to age, smoking habits, gender and alcohol consumption were 

considered. The impact of these factors can be evaluated by re-running the 

classification analysis applied to the diagnostic groups, after re-organising the 

patients and volunteers based on confounding factors. To simplify the analysis 

and create more evenly-balanced groups, the confounding groups were 

defined as: Age [>75 vs <=74 years], smoking habits [never smokers vs 

ex/current smokers], gender [male vs female] and alcohol consumption [>=11 

vs <11 units/week]. While the UK guidelines for regular alcohol consumption 

state that people should consume no more than 14 units of per week [31], men 

and women over 65 are generally advised to have no more than 11 units per 

week [32]. Thus, the latter threshold has been used for our confounding factor 

analysis. The confounding factor groups are summarised in Table 2.  

 

Page 13 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-101047.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal of Breath Research                                                         Page | 14  

Table 2. Summary of confounding factor groups. 

Factor Groups MCI AD Control Total 

Age 
<= 74 years 15 8 34 57 

> 75 years 10 17 16 43 

Smoking 
Ex/current smokers  16 15 28 59 

Never smokers 9 10 22 41 

Gender 
Male 15 14 17 46 

Female 10 11 33 54 

Alcohol 
< 11 units per week 22 14 31 67 

>= 11 units per week 3 11 19 33 

 

3 Results 

Analysis results are presented in Figure 2 as overlapping receiver 

operating characteristic (ROC) curves. The corresponding area under curve 

(AUC) is a measure of how well parameters can distinguish between 

diagnostic groups, i.e. MCI, AD and controls. We have also calculated NPV 

(negative predictive value) and PPV (positive predictive value) for the different 

comparisons. Analysis results for diagnostic groups were achieved using SLR 

and are shown in Table 3.  
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Figure 2. Diagnostic group analysis results: Controls vs MCI (blue); Controls vs AD 

(black); MCI vs AD (red).  

  

Page 15 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-101047.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal of Breath Research                                                         Page | 16  

Table 3. GC-IMS diagnostic group results. 

Test AUC ± 95% Sensitivity Specificity PPV   NPV P-value 

Controls vs MCI 0.77 (0.64 – 0.90) 0.68 (0.46 – 0.85) 0.80 (0.59 – 0.93) 0.77 0.71 0.0004 

Controls vs AD 0.83 (0.72 – 0.94) 0.60 (0.39 – 0.79) 0.96 (0.80 – 1.00)  0.94 0.71 0.0001 

MCI vs AD 0.70 (0.55 – 0.85) 0.60 (0.39 – 0.79) 0.84 (0.64 – 0.95) 0.79 0.68 0.0076 
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3.1. Chemical identification 

VOC analysis indicates that three compounds, tentatively identified as 

acetone, 2-propanol and 2-butanone play a crucial role in distinguishing 

between controls and AD subjects. In the test for AD vs MCI, changes in 

2-propanol, hexanal and 1-butanol were significant. The separation of controls 

and MCI relied on changes observed in 2-propanol, hexanal and heptanal.  

3.2. Confounding factor  

The analysis previously conducted on the AD, MCI and control groups 

was repeated, using the same analytical techniques and algorithms, on the 

confounding factor groups of age, smoking habits, gender and alcohol 

consumption. The analysis results are summarized in Table 4.  
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Table 4. GC-IMS confounding factors results. 

Factor AUC ± 95% Sensitivity Specificity PPV   NPV P-value 

Age  

[>75 vs <=74 years] 
0.55 (0.43 – 0.67) 0.70 (0.54 – 0.83) 0.47 (0.34 – 0.61) 0.50 0.68 0.8070 

Alcohol 

[>=11 vs <11 units/week] 
0.60 (0.48 – 0.72) 0.58 (0.46 – 0.70) 0.70 (0.51 – 0.84)  0.80 0.45 0.0492 

Gender 

[Male vs Female] 
0.54 (0.42 – 0.65) 0.70 (0.54 – 0.82) 0.46 (0.33 – 0.60) 0.52 0.64 0.2668 

Smoking 

[Ex/current vs Never] 
0.56 (0.44 – 0.68) 0.81 (0.69 – 0.90) 0.39 (0.24 – 0.55) 0.66 0.59 0.1515 
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Table 4 demonstrates that the possible confounding factors of gender, 

smoking and age have insignificant influence on breath content. Alcohol 

consumption seems to have the most influence on breath, with an AUC of 

0.60.  

 

  

Page 19 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-101047.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal of Breath Research                                                         Page | 20  

4 Discussion 

While the exact mechanisms related to AD pathogenesis are not fully 

understood, there is some evidence to suggest that defects in mitochondrial 

metabolism (i.e. changes in mitochondrial function and potential dysfunction) 

play a key role in neurodegeneration [33–35]. Furthermore, that mitochondrial 

dysfunctions in NDDs are associated with increased production of reactive 

oxygen species (ROS), which cause cell damage and intercellular oxidative 

stress [36]. Endogenous VOCs (produced in the body) follow metabolic 

pathways and are transported via the bloodstream to the lungs, where they 

are exhaled in breath [37]. Oxidative stress has been detected in blood [38] 

and thus presents an opportunity for the application of breath analysis to 

facilitate the discovery and evaluation of biomarkers associated with cellular 

energy metabolism, mitochondrial dysfunction and oxidative stress [7].  

In recent years, there have been four original research articles published, 

investigating the efficacy of breath-based methods for the diagnosis AD [7]. 

Tisch et al. [18] were the first to test the efficacy of breath testing for the 

detection of AD and PD. This study included 57 subjects (15 AD, 30 PD, 12 

controls) and utilised gas chromatography–mass spectrometry (GC-MS) and 

nanomaterial-based sensors as analytical platforms. The GC-MS comparison 

between AD patients and controls yielded 24 substances that occurred in 

significantly different concentrations and the nanomaterial-based sensor 

analysis was able to distinguish between AD and controls with a classification 

accuracy of 85% (sensitivity 93%, specificity 75%).  
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Bach et al. [20] used the Cyranose 320 eNose and ion mobility 

spectrometry (IMS) to detect exhaled breath patterns of AD, PD and controls 

(18 AD, 16 PD and 19 controls). Results from the eNose were able to 

somewhat discriminate between groups (sensitivity 76.2%, specificity 45.8%, 

p-value 0.025). The associated linear discriminant analysis (LDA) model was 

fitted to a dataset from another site; however, it was not able to detect AD 

patients (sensitivity 56.6%, specificity 49.1, p-value 0.658). The analysis using 

IMS detected significant differences in five VOCs and utilised a decision tree 

of four variables, including 1-butanol and 2-methylfuran, to show an accuracy 

of 94% when differentiating patients with AD from controls, i.e. 3 out of 52 AD 

patients being misclassified. The key disadvantage of using the decision tree 

approach is that the individual analytes are not suitable to differentiate patients 

with AD and PD from HC; instead, it is a combination and sequence of 

analytes that make prediction possible.  

Lau et al. [19] used a custom-built exhaled breath sensors system and 

GC-MS to evaluate the breath of 60 subjects (20 AD, 20 PD and 20 controls). 

GC-MS results showed that four VOCs were consistently present in all patient 

and control groups. Cluster analysis of the eNose results were able to 

distinguish between AD, PD and controls.  

Mazzatenta et al. [21] used an iAQ-2000 sensor system to investigate the 

breath of 15 AD and 44 controls. The breath frequency of AD patients was 

increased, compared to the control cohort, but associated with a reduced 

amplitude. Moreover, the average amount of VOCs in AD patients was less, 

compared with controls. VOC fingerprint analysis was conducted using 

clustered VOCs, generated using their relative abundances. These were 
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observed to differ significantly between exhaled AD breath samples and 

controls; however, the results were not quantified using AUC, sensitivity, 

specificity, etc.   

Exhaled breath study demographics from previous AD studies (and this 

study) are summarised in Table 5.  

Table 5. Summary of AD-related exhaled breath study demographics. 

Authors Groups 
Average age ± SD 

(age range) 
Male:Female ratio N = 

Mazzatenta et al. 

[21] 

AD n/a ± n/a (55-95) n/a 15 

Controls n/a ± n/a (19-105) n/a 44 

Lau et al. [19] 
AD 74.9 ± 7.5 (n/a) 6:14 20 

Controls 67.6 ± 7.0 (n/a) 5:15 20 

Bach et al. [20] 
AD 71.5 ± 8.7 (n/a) 17:22 39 

Controls 63.2 ± 11.0 (n/a) 16:19 35 

Tisch et al. [18] 
AD 68 ± 10 (51-81) 7:8 15 

Controls 61 ± 7 (51-73) 5:7 12 

Tiele et al. 

MCI 72.2 ± 7.3 (59-86) 15:10 25 

AD 77.5 ± 7.2 (62-90) 14:11 25 

Controls 71.2 ± 7.3 (60-87) 17:33 50 

 

The key advantage of our study is that the ages and genders of the subject 

cohort are approximately balanced. Furthermore, by recruiting MCI and AD 

patients with their respective partners as controls, it is possible to design a 

more robust experiment and minimise the possible effects of lifestyle and 

environmental factors, which can potentially introduce significant interpersonal 

differences [30]. Moreover, age-matching is a critical factor to consider, since 

more women than men have AD and other forms of dementia [2]. For 

example, almost two-thirds of Americans with Alzheimer’s are women [39]. It 
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has been suggested that this discrepancy is due to women generally living 

longer than men, which increases the risk factor of developing AD [40]. 

However, there are other factors, such as sex-specific genetic and hormonal 

factors, which can contribute to variance in clinical efficacy [41]. Moreover, 

lifestyle choices such as smoking, excessive alcohol consumption, poor diet 

and resulting health conditions (obesity, type-2 diabetes, and cardiovascular 

disease) can have varied impacts on dementia risk, depending on sex [42]. 

For this analysis, age was subdivided into ‘young elderly’ (aged 65-74) and 

‘older elderly’ (aged 75 years or older) [43]. This division accounts for the 

sharp rise in dementia cases over the age of 75 [5] – 15% of those with 

Alzheimer’s are aged 65–75, while 44% are aged 75–85 [2]. 

VOC analysis indicates that acetone, 2-propanol and 2-butanone 

contributed significantly to the efficacy of our analysis for AD vs controls. 

These compounds are generally associated with normal breath [44]. Similarly, 

changes in other common breath markers, such as 2-propanol, hexanal, 

heptanal and 1-butanol, contributed to separation in AD vs MCI and MCI vs 

control tests. This suggests that AD-related changes in breath have a subtle 

impact on overall breath content. Changes in acetone are of particular interest. 

Early stages of AD are associated with region-specific declines in brain 

glucose metabolism [45]. This can be supplemented by ketone bodies, 

including acetoacetate, β-hydroxybutyrate and acetone. These are usually 

produced from fat stores when glucose is unavailable, e.g. during prolonged 

fasting or when subscribing to a ketogenic diet, which could lead to increased 

levels of acetone in the exhaled breath in AD patients. AD patients often suffer 

loss of appetite, with nearly half of mild-AD subjects reporting appetite 
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changes [46]. The changes observed in exhaled acetone in this study could be 

related to this phenomenon. To the best of our knowledge, there is currently 

no known link between 1-butanol and metabolic pathways relating to AD or 

other NDDs. However, concurrence in the identification of this VOC in this 

study and Bach et al. [20] suggests that there may be a connection, which is 

worthy of further investigating.  

Analysis of possible confounding factors indicate that gender, smoking, 

age and alcohol consumption have insignificant influence on breath content, in 

this study. Of these factors, alcohol seems to have the most influence, with an 

AUC of around 0.60. However, this factor is not significant enough to create 

two distinct groups or undermine the AD-related analysis.  

A limitation of this study is that the possible effects of medications and 

co-diseases/conditions were not considered in the confounding factor 

analysis. However, it should be noted that medication is inherently difficult to 

adequately assess, since it is not necessarily possible to discern between 

pharmacokinetic effects and underlying disease. Moreover, in this case, there 

are a large number of factors to consider; 65 co-diseases and 73 medications 

for MCI subjects and 57 co-diseases and 55 medications reported in the AD 

cohort – many of which are age-related instead of disease-related. The 

possible effects caused by the most frequently listed co-diseases/conditions 

and medications are therefore likely to be reduced, as they are similarly 

represented in both MCI and AD groups. Another drawback is that the 

medication and co-diseases/conditions of controls are not available; however, 

this group is likely to be associated with similar age-related medication and 

co-diseases/conditions as the MCI and AD groups.  
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While there is a general consensus on clinical diagnostic criteria for 

patients with AD and MCI due to AD, correct clinical diagnosis of AD is 

reported to be around 77% [47] – especially since other forms of dementia 

may be misdiagnosed as AD, and vice versa [48]. Misdiagnosis hinders 

research efforts and clinical trials since incorrect patient groups can obfuscate 

important findings. However, the results from this study suggest that the 

patient assessments by Author S.P. were fairly accurate with regard to clinical 

diagnosis of recruited subjects. Further work from this study should involve 

recruiting a larger sample size to validate results, reduce the potential effects 

of incorrect patient groups, and enhance the performance of the applied 

method (e.g. to increase sensitivity and specificity). In future, we also hope to 

go beyond distinguishing between diagnostic groups by developing an 

approach which could be used for personalised disease detection.   
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5 Conclusions 

Results from this pilot study confirm the potential utility of analysing breath 

VOCs to distinguish between MCI, AD and controls. Though this was a simple 

study, with relatively clean/well defined groups, our approach was consistently 

able to separate between diagnostic groups [AUC±95%, sensitivity, 

specificity], controls vs MCI: [0.77 (0.64 – 0.9), 0.68, 0.8], controls vs AD: [0.83 

(0.72 – 0.94), 0.6, 0.96], and MCI vs AD: [0.70 (0.55 – 0.85), 0.6, 0.84]. 

Analysis of possible confounding factors suggest that gender, age, smoking 

habits and alcohol consumption had insignificant influence on breath content. 

VOC analysis indicates that six compounds, tentatively identified as acetone, 

2-propanol, 2-butanone, hexanal, heptanal and 1-butanol play a crucial role in 

distinguishing between diagnostic groups. The GC-IMS analysis technique 

was shown to be suitable for non-invasive sampling of elderly subjects and 

demonstrates potential as a fast, high-throughput, real-time diagnostic tool for 

AD in a point-of-care clinical setting.   
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