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Efficient Pairwise Penetrating-Rank Similarity Retrieval

WEIREN YU, 1Nanjing University of Science and Technology, China 2University of Warwick, UK
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Many web applications demand a measure of similarity between two entities, such as collaborative filtering,

web document ranking, linkage prediction, and anomaly detection. P-Rank (Penetrating-Rank) has been ac-

cepted as a promising graph-based similarity measure as it provides a comprehensive way of encoding both

incoming and outgoing links into assessment. However, the existing method to compute P-Rank is iterative

in nature and rather cost-inhibitive. Moreover, the accuracy estimate and stability issues for P-Rank computa-

tion have not been addressed. In this paper, we consider the optimization techniques for P-Rank search that

encompasses its accuracy, stability and computational efficiency. (1) The accuracy estimation is provided

for P-Rank iterations, with the aim to find out the number of iterations, k , required to guarantee a desired

accuracy. (2) A rigorous bound on the condition number of P-Rank is obtained for stability analysis. Based on

this bound, it can be shown that P-Rank is stable and well-conditioned when the damping factors are chosen

to be suitably small. (3) Two matrix-based algorithms, applicable to digraphs and undirected graphs, are re-

spectively devised for efficient P-Rank computation, which improves the computational time fromO(kn3) to
O(υn2+υ6) for digraphs, and toO(υn2) for undirected graphs, where n is the number of vertices in the graph,

and υ (≪ n) is the target rank of the graph. Moreover, our proposed algorithms can significantly reduce the

memory space of P-Rank computations from O(n2) to O(υn + υ4) for digraphs, and to O(υn) for undirected
graphs, respectively. Finally, extensive experiments on real-world and synthetic datasets demonstrate the

usefulness and efficiency of the proposed techniques for P-Rank similarity assessment on various networks.

CCS Concepts: • Information systems → Web searching and information discovery; Retrieval models and

ranking.

Additional Key Words and Phrases: Similarity Search, Hyperlink Analysis, Web Document Ranking, Opti-

mization
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1 INTRODUCTION

The problem of quantifying similarity between entities based on network structure has witnessed
growing interests over the last decades. There are various circumstances in which it would be use-
ful to answer the questions such as “How similar are every two entities (vertices)?”, and “Which
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other entities (vertices) are most similar to a specific query (a given query vertex)?”. Unlike textual
similarity (e.g., Jaccard similarity, Gram-based similarity) that may tokenize entities as the bag-
of-words, structural similarity utilizes inherent hyperlink relationships to convey useful semantic
information among entities. In recent years, there have emerged many appealing similarity mea-
sures that hinges purely on the structure topology of networks. Some renowned examples include
Penetrating-Rank (P-Rank) [54], SimRank [14], Personalized PageRank (PPR) [32], Random Walk
with Restart (RWR) [38], RoleSim [17], SimFusion [40], CoSimRank [52], and SimRank* [48]. These
similarity models show great success in proliferative applications, e.g., biological networks, recom-
mendation systems, automatic image captioning, synonyms extraction, and outlier detection.
P-Rank is a promising similarity measure of this kind, which was proposed by Zhao et al. [54].

It encodes both incoming and outgoing links of entities into similarity assessment. The P-Rank
similarities flowing from in-link neighbors of entities are penetrated through their out-link neigh-
bors in a recursive fashion. In contrast to other similarity measures, P-Rank has stood out as an
attractive one, due to the following advantages:

• Semantic Completeness. P-Rank provides a comprehensive way of jointly considering
both in- and out-link relationships in a network with semantic completeness. In contrast,
other similarity measures (e.g., SimRank, and PPR) have the “limited information problem”
[14], that is, only in-links are partially exploited, whereas out-links are totally ignored.
• Adaptivity. Similar to other link-based similarity measures, P-Rank can be combined with
other domain-specific similarity measures (e.g., [18]) to produce an overall measure, which
is adaptive to any domains with entity-to-entity relationships.
• Generality. P-Rank formula has a general form that makes itself transcend other existing
similarity measures [54]. As will be seen in Section 2, the P-Rank similarity s(k)(u,v) be-
tween two distinct nodes u and v at iteration k is defined iteratively in terms of the average
similarity of (u,v)’s in- and out-neighbouring pairs at iteration (k − 1) as follows:

s(k)(u,v) = λ ·Cin · {average similarity of (u,v)’s in-neighbour pairs at iteration (k − 1)}
+(1 − λ) ·Cout · {average similarity of (u,v)’s out-neighbour pairs at iteration (k − 1)}

(1)

where λ is the weight factor balancing the importance of in- and out-links; and Cin and
Cout are in- and out-link damping factors, respectively. The P-Rank model covers many well-
known similarity measures (e.g., SimRank [14] and Amsler [1]) as its special cases, when the
parameters (Cin,Cout), λ, and k are chosen as follows:

In-link Out-link Both

1-hop
neighborhood

CoCitation
k = 1,Cin = 1,λ = 1

Coupling
k = 1,Cout = 1,λ = 0

Amsler
k = 1,Cin = Cout = 1, λ = 1/2

multi-hop
neighborhood

SimRank
k = ∞, λ = 1

rvs-SimRank
k = ∞, λ = 0

P-Rank
k = ∞

For example, as illustrated in the table, when setting k = ∞ and λ = 0 in Eq.(1), the P-Rank
model reduces to Jeh and Widom’s SimRank model [14] as follows:

s(u,v) = Cin · {average similarity of (u,v)’s in-neighbour pairs}

where only in-neighbour pairs of (u,v) recursively contribute to SimRank similarity s(u,v).
Therefore, P-Rank has been recognized as an important and common similarity measure, which

has a wide spectrum of real applications in fertile communities where other similarity measures
(e.g., Co-citation, SimRank, Amsler) are applicable, such as collaborative filtering, graph clustering,
link prediction, and web document ranking (see [2, 15, 29, 50, 51, 55] and references therein).
Nevertheless, previous work on P-Rank leaves several challenging issues unaddressed.
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Firstly, it is not straightforward to obtain a tight bound to better estimate the accuracy for P-
Rank iterations. Although the convergence of P-Rank iterations has been proved in [54], it is still
difficult to determine the total number of iterations needed for guaranteeing a given accuracy. To
the best of our knowledge, there is only one work [29] that estimates the accuracy for SimRank
iterations. That work provides an upper bound Ck+1 for the difference between the k-th iterative
SimRank and the exact one. However, if the SimRank upper boundCk+1 in [29] is directly applied
to P-Rank accuracy estimation by simply taking the linear combination of the upper bounds for
in- and out-link terms, the resulting bound (λ · Cin

k+1
+ (1 − λ) · Cout

k+1) is less tight for P-Rank
iterations, as will be explained in Section 3. Thus, it is imperative to derive a new upper bound,
which is tight, to better estimate the accuracy of P-Rank iterations.

Secondly, no prior work has studied the stability of P-Rank. Indeed, P-Rank stability plays an
important role in real applications as it 1) can gauge the sensitivity of similarity results to slight
perturbations in the graph structure (e.g., by adding or removing edges) and 2) implies whether
large amounts of accumulated roundoff errors in the P-Rank computation may run the risk of pro-
ducing nonsensical similarity results. To analyse the P-Rank stability, we provide a tight upper
bound for P-Rank condition number κ∞(G) based on the closed-form of P-Rank. As will be ex-
plained in Section 4.2, we define the P-Rank condition number κ∞ := ‖M‖∞ · ‖M−1‖∞ in terms of
a large matrixM of size n2 ×n2 that contains the information of the entire graph structure, where
n is the number of nodes in the graph G. A complicated problem is how to efficiently compute
‖M−1‖∞ in the closed-form of P-Rank since the traditional approach entails O(n6) time to inverse
the large n2 ×n2 matrixM andO(n4) time to compute the∞-norm of the large n2 ×n2 matrixM−1,
which is prohibitively expensive. To address this issue, we propose a novel O(1)-time method to
obtain a neat tight bound for the P-Rank condition number for P-Rank stability analysis.
Thirdly, it is a grand challenge to improve the computational complexity of P-Rank. The naive

method computing P-Rank via the fixed-point iteration requiresO(kn4) time fork iterations, which
is inapplicable to large networks. For approximating P-Rank, Zhao et al. [54] have proposed the
radius- or category- based pruning techniques to improve the estimation of P-Rank to O(kd2n2)
worst-case time, whered is the graph average degree. However, this method is inherently heuristic,
and even worse, no theoretical guarantee is provided for the approximation error of the pruning
results. More importantly, our analysis in Section 4 showed that large settings of (Cin,Cout ) lead
to good stability of P-Rank scores, but will make the iteration-based P-Rank solution much slower.
The reason is that, for the iteration-based P-Rank, our accuracy estimate results in Section 3 proved
that large settings of (Cin,Cout ) will increase the number of iterations to attain a given accuracy.
Thus, to achieve both accuracy and good stability, we aim to devise a novel non-iterative method to
compute P-Rank that will not produce iterative errors relying on (Cin,Cout ) settings. Fortunately,
we have an observation that a large body of vertices in a real network usually share some similar
neighborhood structures (e.g., similar user preference in a recommender system). Thus, we have
an opportunity to “merge” these similar vertices, and devise fast non-iterative algorithms to speed
up P-Rank computation.

Contributions. The big picture of our work centers on the three aspects of P-Rank: (P1) accuracy
estimate for P-Rank iterative model; (P2) stability analysis based on the closed-form of P-Rank; and
(P3) accelerative techniques for efficient P-Rank computation based on our non-iterative model.
Specifically, our main results are summarized below.

P1) We provide an accuracy estimation for P-Rank iteration-based model. (Section 3). We show
that k = ⌈ln ϵ/ln (λ ·Cin + (1 − λ) ·Cout)⌉ iterations suffice to guarantee a desired accuracy ϵ ,
which implies that, for P-Rank iteration-based model, large settings of (Cin,Cout )will reduce
the number of iterations to attain a given accuracy. However, as will be seen in Section 4,
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such settings of (Cin,Cout ) will prevent P-Rank from achieving good stability. Thus, the
results in this section motivate us to study another non-iterative model (shown in Section 5)
that does not produce iterative errors relying on (Cin,Cout ) for P-Rank computation.

P2) We introduce the notion of P-Rank condition number κ∞ to analyze the stability of P-Rank
(Section 4).We develop a new eigenvector-based approach to obtain a tight bound forκ∞, and
provide the conditions under which P-Rank is stable, that is, slight perturbations in the link
structure will not cause large changes in the P-Rank similarity. We provide a real application
to show how to use P-Rank condition number to set appropriate hyper-parameters for P-
Rank which can improve the robustness and accuracy of the decentralized computing of
P-Rank.

P3) We propose two novel matrix-based algorithms (DE P-Rank and UN P-Rank)1 that can sub-
stantially speed up the computation of P-Rank fromO(kn3) toO(υn2 +υ6) for digraphs, and
to O(υn2) for undirected graphs (Section 5) with guaranteed accuracy, where υ (≪ n) is the
target rank of the graph. Besides, our proposed algorithms can significantly reduce the mem-
ory space of P-Rank computations from O(n2) to O(υn + υ4) for digraphs, and to O(υn) for
undirected graphs, respectively. Our non-iterative algorithms in this section, unlike the iter-
ative version in Section 3, does not produce iterative errors that hinge on (Cin,Cout ) settings.
Thus, for our non-iterative model, by setting small values of (Cin,Cout ), we can achieve both
high computational efficiency and good stability at the same time.

We empirically verify the efficiency of our methods on real and synthetic data (Section 6). The
experimental results show that (1) P-Rank converges exponentially w.r.t. the iteration number; (2)
the stability of P-Rank is sensitive to different choices of the damping factors and the weighted
factor; (3) the proposed DE P-Rank and UN P-Rank outperform its competitors by up to one order
of magnitude, and scale well over large networks.

Relations among (P1-P3).The relations among the three P-Rank problems (P1–P3) are as follows:
In (P1), our accuracy estimate is based on the traditional iteration-based P-Rank equation, aiming
at showing the limitation of this iteration-based approach, i.e., it produces an iterative error that
relies on (Cin,Cout ) settings. Our quantitative results for (P1) indicate that, for achieving a given
accuracy, large settings of (Cin,Cout ) will reduce the number of iterations, and thus will speed
up the computation of the P-Rank iteration-based approach. Unfortunately, our study for (P2)
shows that, from the stability perspective, large settings of (Cin,Cout ), which may increase the
P-Rank conditional number, would make P-Rank results unstable. Thus, based on (P1) and (P2),
we are aware that, for the iteration-based approach, it is difficult to find a good (Cin,Cout ) for
achieving both computational efficiency and stability at the same time. To resolve this issue, we
next study (P3) and propose a non-iterative solution for P-Rank computation, which will never
produce iterative errors that hinge on (Cin,Cout ) settings. Based on (P2) and (P3), we notice that,
for the non-iterative approach, high computational efficiency and good stability can be achieved
at the same time for small settings of (Cin,Cout ).
Our preliminary conference versions of P-Rank optimization methods were given in [24, 43]. In

the current paper, we substantially extend our previous work [24, 43] by providing (i) the complete
and rigorous mathematical proofs of all the lemmas and theorems in [24, 43]; (ii) theoretical proofs
and examples to show that, for P-Rank iterative accuracy estimate, our error bound derived in
Theorem 1 is always tighter than the straightforward extension of the SimRank bound in [22] to P-
Rank; (iii) a detailed description of the closed-form P-Rank (Section 4.1); (iv) theoretical discussions
to show how P-Rank conditional number is related to the robustness of P-Rank similarity (Section
4.2), along with some motivating examples to illustrate how hyper-parameters affects robustness

1DE P-Rank (resp. UN P-Rank) is named after its functionality of P-Rank search on DirEcted (resp. UNdirected) graphs.
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Symbols Definition Symbols Definition

G network r rank of graph adjacency matrix (r ≪ n)
I (a) in-neighbors of vertex a υ low rank of P-Rank approximation (υ ≤ r )
O (a) out-neighbors of vertex a s(a,b) P-Rank score between vertices a and b
n number of vertices in G Cin/Cout in-link/out-link damping factor
m number of edges in G A adjacency matrix of G
K number of iterations S P-Rank similarity matrix of G
λ weighting factor I identity matrix

Table 1. Glossary of Symbols

of P-Rank on the real end-to-end application (e.g., finding top-K most similar authors on DBLP);
(v) more insights on how P-Rank stability analysis improves the effectiveness for decentralised P-
Rank computing, and a detailed analysis on the trade-off between P-Rank iterative Accuracy and
stability; (vi) two new observations to speed up P-Rank computations further over digraphs in
Section 5.1; (vii) an improved version of theO(rn2)-time UN P-Rank algorithm for P-Rank compu-
tation on undirected networks, which is a nontrivial extension of theO(n3)-time ASAP algorithm
in [24]; (viii) several additional experiments and some best-known competitors (e.g., SemSim in
EDBT 2019) in Sections 6.2.3 and 6.2.6, evaluating the DE P-Rank algorithm that focuses on com-
putational time and accuracy; and (ix) a complete performance comparison of DE P-Rank and
UN P-Rank with other baseline algorithms in Section 6.2.2; (x) more state-of-art references (since
2015) and a variety of approaches on graph neural networks (e.g., DeepWalk, Node2vec, GraRep,
and Graph Convolutional Networks) and update the related work (Section 7).

2 PRELIMINARIES

In accordance with [54], we assume that graphs studied in this paper have no multiple edges
(corresponding to a 0-1 adjacency matrix). Table 1 lists the notations used throughout the paper.

The basic essence behind the P-Rank model [54] involves the following three facets:
1) Two entities are similar if they are referenced by similar entities. (In-link Recursion)
2) Two entities are similar if they reference similar entities. (Out-link Recursion)
3) Every entity is maximally similar to itself. (Base Case)

P-Rank Similarity. We revisit the formulation of P-Rank [54]. Given a network G = (V, E)with
a set of vertices, V, and a set of edges, E, the P-Rank model can be formulated as follows:
For every two distinct vertices u and v inV , the similarity s(u,v) ∈ [0, 1] defined as

s(u,u) = 1; (2)

s (u,v) =

in-link part︷                                                 ︸︸                                                 ︷
λ ·Cin

|I (u)| |I (v)|

|I(u) |∑
i=1

|I(v) |∑
j=1

s
(
Ii (u) ,Ij (v)

)

+

(1 − λ) ·Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v) |∑
j=1

s
(
Oi (u) ,Oj (v)

)
︸                                                   ︷︷                                                   ︸

out-link part

, (3)

is called the P-Rank similarity between u andv , where (i) λ ∈ [0, 1] is a weight factor, balancing the
importance between in-links and out-links; (ii)Cin andCout ∈ (0, 1) are the damping factors for in-
and out-link directions, respectively; (iii) I (u) and O (u) are the in- and out-neighbor set of vertex
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u, respectively, with Ii (u) and Oi (u) being the i-th elements of I (u) and O (u), respectively; and
(iv) |I (u)| and |O (u)| are the cardinalities of I (u) and O (u), respectively.

To avoid s(u,v) = ∞ in Eq.(3), we assume that
1) in-link part of Eq.(3)= 0 if I (u) = ∅ or I (v) = ∅;
2) out-link part of Eq.(3)= 0 if O (u) = ∅ or O (v) = ∅.

P-Rank Iterative Paradigm. The conventional method iteratively computes s(u,v) as follows:

s(0)(u,v) =
{
0, if u , v ;
1, if u = v .

(4)

For each iteration k = 1, 2, · · · , the k-th iterative P-Rank similarity s(k)(u,v) is iteratively computed
as

s(k) (u,u) = 1;

s(k) (u,v) = λ ·Cin

|I (u)| |I (v)|

|I(u) |∑
i=1

|I(v)|∑
j=1

s(k−1)
(
Ii (u) ,Ij (v)

)

+

(1 − λ) ·Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v) |∑
j=1

s(k−1)
(
Oi (u) ,Oj (v)

)
; (5)

s(k) (u,v) = Eq.(5)’s in-link part, if O (u) = ∅ or O (v) = ∅;

s(k) (u,v) = Eq.(5)’s out-link part, if I (u) = ∅ or I (v) = ∅.

It was proved in [54] that the sequence {s(k) (u,v)} non-decreasingly converges to the exact
similarity s (u,v), i.e.,

lim
k→∞

s(k) (u,v) = s (u,v) (∀u,v ∈ V). (6)

3 P-RANK ACCURACY ESTIMATE

Despite the convergence of the sequence {s(k) (u,v)}∞
k=0

, the gap between the k-th iterative sim-

ilarity s(k) (u,v) and the exact one s (u,v) still remains unknown. This motivates us to study the
P-Rank accuracy estimate problem:
Given a network G, for each iteration number k = 1, 2, · · · , it is to find a tight bound ϵk for the

difference between the k-th iterative similarity s(k) (u,v) and the exact one s (u,v) for ∀u,v ∈ G.
The main result of this section is the following.

Theorem 1. The P-Rank accuracy estimate problem has a tight upper bound

ϵk = (λCin + (1 − λ)Cout)k+1

such that ∀k = 0, 1, · · · , ∀u,v ∈ V ,

|s (u,v) − s(k) (u,v) | ≤ ϵk . (7)

Proof. See Appendix A.1. �

Theorem 1 provides an a-priori estimate for the gap between the iterative and exact P-Rank.
For each iteration, this gap merely hinges on λ,Cin and Cout. To be precise, for guaranteeing high
accuracy at each iteration, it follows from

ϵk = (λ(Cin −Cout) +Cout)k+1

that smaller choices of Cin and Cout (i) with a smaller λ if Cin > Cout, or (ii) with a larger λ if
Cin < Cout, will result in a smaller ϵk , and are thus more preferable.
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a

b

...u v ......

G0

Fig. 1. “=” in Eq.(7) is a�ainable

a

b

d

f

e

c

Fig. 2. Iterative Error of Computing s(d, e)

Example 1. Setting Cin = 0.6,Cout = 0.4,λ = 0.3,k = 5 produces the following high accuracy for
iterative P-Rank similarities computation:

ϵk = (0.3 × 0.6 + (1 − 0.3) × 0.4)5+1 = 0.0095. �

It is worth noticing that the upper boundwe obtained in Eq.(7) is tight for P-Rank iterations since
the equality of this upper bound is attainable. Consider the network G0 in Figure 1. It is apparent
that s(0)(u,v) = 0. For k = 1, 2, · · · , it can be easily obtained that s(k)(u,v) = λCin + (1 − λ)Cout,
which implies that s(u,v) = λCin + (1 − λ)Cout. Hence, in the case of k = 0,

|s(u,v) − s(k)(u,v)| = (λCin + (1 − λ)Cout)0+1,

which gives the precise upper bound in Eq.(7).
As a special case when λ = 1, Eq.(7) reduces to the SimRank accuracy estimate problem [29].

From this perspective, the P-Rank accuracy estimate problem is an extension of Proposition 1 in
[29] by jointly considering both in- and out-links for similarity assessment.
However, it is important to note that, if the SimRank upper boundCk+1 in [29] is directly applied

to P-Rank accuracy estimation by simply taking the linear combination of the upper bounds for in-

and out-link terms, the resulting bound (λ ·Cin
k+1
+ (1 − λ) ·Cout

k+1) is always less tight than our

upper bound (λ ·Cin + (1 − λ) ·Cout)k+1 for P-Rank iterations. The reason is as follows: For each
iteration k = 0, 1, 2, · · · , let f (x) = xk (x ∈ (0, 1)). Since f (x) is a convex function, we have

λ · f (Cin) + (1 − λ) · f (Cout) ≥ f (λ ·Cin + (1 − λ) ·Cout)

which implies that the following inequality holds:

λ ·Cin
k+1
+ (1 − λ) ·Cout

k+1 ≥ (λ ·Cin + (1 − λ) ·Cout)k+1

Thus, our upper bound is tighter than the straightforward extension of the SimRank bound in [29].

Example 2. Consider a graph G in Figure 2. GivenCin = 0.8,Cout = 0.6,λ = 0.4, the exact P-Rank
similarity score between node d and e is s(d, e) = 0.2023. The following table compares, at each k
step, the iterative error of P-Rank and the tightness of two upper bounds (Bound1 and Bound2) for

P-Rank iterative accuracy estimate, where Bound1 = λ ·Cin
k+1
+(1−λ) ·Cout

k+1 is the straightforward

extension of the SimRank bound in [29], and Bound2 = (λ ·Cin + (1 − λ) ·Cout)k+1 is the tighter one
we derived in Theorem 1.
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#-Iter
k

Iterative Error
|s(d, e) − sk (d, e)|

Bound1

λCin
k+1
+ (1 − λ)Cout

k+1

Bound2

(λCin + (1 − λ)Cout)k+1
Bound Gap

|Bound1 − Bound2|
0 0.2023 0.6800 0.6800 0
1 0.1802 0.4720 0.4624 0.0096
2 0.0372 0.3344 0.3144 0.0200
3 0.0084 0.2416 0.2138 0.0278
4 0.0020 0.1777 0.1454 0.0323
5 0.0005 0.1329 0.0989 0.0340
6 0.0001 0.1007 0.0672 0.0335
7 0.0001 0.0772 0.0457 0.0315
8 0.0000 0.0597 0.0311 0.0286
9 0.0000 0.0466 0.0211 0.0254
10 · · · · · · · · · · · ·

From the results, we notice that, for each iteration k ≥ 2, our Bound2 is always tighter than Bound1,
and the tightness of Bound2 is more pronounced when k is increasing. �

The exponential P-Rank convergence rate in Theorem 1 implies that the total iteration number
K of iterations needed for attaining a desired accuracy ϵ is

K = ⌈ln ϵ/ln (λ ·Cin + (1 − λ) ·Cout)⌉ .

4 STABILITY ANALYSIS OF P-RANKMODEL

In this section, the stability issue of P-Rank measure will be investigated for analyzing the sensitiv-
ity of P-Rank similarities in response to the perturbation of the graph structure. In Subsection 4.1,
we will provide a matrix form of the P-Rank solution to Eq.(3). This form, referred to as “the closed-
form of P-Rank”, can express the P-Rank similarity s(u,v) of Eq.(3) in terms of a finite number of
matrix operations that hinge only on the graph structure information, in contrast to the original
P-Rank definition in Eq.(3) (a.k.a. “the recursive form of P-Rank”) that represents s(u,v) in terms of
the P-Rank similarity itself. In Subsection 4.2, based on this closed-form of the P-Rank solution, we
introduce the concept of “P-Rank condition number”. This concept will play a key role in P-Rank
stability analysis as it can be used to measure how much the P-Rank similarities can change for a
small change in the graph structure. We will provide an example of “decentralised P-Rank similar-
ity search” to demonstrate the practicality of the “P-Rank condition number” for stability analysis
in real applications.

4.1 A Closed-form of P-Rank Solution

Let us recall the original definition of P-Rank in Eq.(3). For two distinct nodes u and v in a graph,
the P-Rank similarity s(u,v) is defined in terms of s(∗, ∗) itself as follows:

s (u,v) = λ ·Cin

|I (u)| |I (v)|

|I(u)|∑
i=1

|I(v) |∑
j=1

s
(
Ii (u) ,Ij (v)

)

+

(1 − λ) ·Cout

|O (u)| |O (v)|

|O(u) |∑
i=1

|O(v) |∑
j=1

s
(
Oi (u) ,Oj (v)

)
In the above equation, since the P-Rank similarity s(∗, ∗) appears on both sides, we call it “the
recursive form of P-Rank”. One limitation of this form, from the computational perspective, is
that, to get the exact value of a single-pair similarity s(u,v), one need prepare all its in- and out-
neighboring similarity pairs {s(x,y)}(x ,y)∈I(u)×I(v) and {s(x,y)}(x ,y)∈O(u)×O(v), recursively. Conse-
quently, a single-pair similarity s(u,v) in the worst case may hinge on retrieving almost all pairs
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Fig. 4. Unrolling Recurrence of P-Rank Similarity s(1, 2) via Eq.(3)

of similarities {s(∗, ∗)} in a graph. Thus, this recursive form does not explicitly reflect how P-Rank
similarities purely rely on the graph structure information.

Example 3. Consider the graph G in Figure 3. To evaluate the P-Rank similarity s(1, 2) in G, if
we unroll the recurrence of Eq.(3) for three steps by repeatedly substituting s(∗, ∗) of the LHS into
its RHS, it can be seen from Figure 4 that the single-pair similarity s(1, 2) relies on evaluating the
similarities of almost all pairs of nodes in G except two singleton pairs (1, 1) and (4, 4). The tree
structure in Figure 4 depicts the dependency (i.e., evaluation order) of node-pairs for P-Rank simi-
larity assessment, where each pair in red (resp. blue) color denotes it is the in- (resp. out-) neighbor-
ing pair of the node-pair in its parent. For example, the parent (1, 2) in the tree has four children
(4, 1), (4, 3), (2, 3), (3, 3), meaning that, to evaluate P-Rank similarity s(1, 2) via Eq.(3), we need first
evaluate similarities s(4, 1), s(4, 3), s(2, 3), s(3, 3). Thus, the recursive form of Eq.(3) does not explicitly
reflect how s(1, 2) is determined purely by the graph structure of G. �

Motivated by this, we next provide a new form of the P-Rank solution (i.e., the closed-form)
which characterises P-Rank similarity in terms of a finite number of matrix operations that hinge
only on the graph structure. Unlike the recursive form whose s(∗, ∗) appear on both sides of Eq.(3),
our closed-form can explicitly reflect how P-Rank scores purely depend on the graph structure,
and guarantees that s(∗, ∗) will not appear on the right-hand side of the P-Rank expression. This
closed-formwill lay a foundation for our subsequent analysis of the stability of P-Rank similarities
in response to the perturbation of the graph structure.

Notations. Before the closed-form of P-Rank is provided, we introduce some notations. For a
network G with n = |V| vertices, we denote by
(i) A = (ai ,j ) ∈ Rn×n the adjacency matrix of G whose entry ai ,j is 1 if there exists an edge from

vertex i to j , and 0 otherwise;
(ii) S = (si ,j ) ∈ Rn×n the P-Rank similarity matrix whose entry si ,j equals the P-Rank score s(i, j)

between vertices i and j;
(iii) Q = (qi ,j ) ∈ Rn×n and P = (pi ,j ) ∈ Rn×n the one-step backward and forward transition

probability matrix of G, respectively, whose entries are defined as follows:

qi ,j ,

{
aj,i/

∑n
j=1 aj,i , if I(i) , ∅;

0, if I(i) = ∅.
pi ,j ,

{
ai ,j/

∑n
j=1 ai ,j , if O(i) , ∅;

0, if O(i) = ∅.
(8)

Example 4. Recall the graph G in Figure 3. Its adjacency matrix A, backward transition matrix Q,
and forward transition matrix P are as follows:

A =



0 1 1 0
0 0 1 0
0 1 0 1
1 0 0 0


Q = row-norm(AT ) =



0 0 0 1
1
2 0 1

2 0
1
2

1
2 0 0

0 0 1 0


P = row-norm(A) =



0 1
2

1
2 0

0 0 1 0
0 1

2 0 1
2

1 0 0 0


�
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We also introduce two matrix operators [7, p.180]:

(i) vec(X) ∈ Rn2×1 is defined to be the vectorization of the matrix X ∈ Rn×n formed by stacking
the columns of X into a single column vector.

(ii) X ⊗ Y is the Kronecker product of the matrices X and Y.

Example 5. Given two matrices X =
[
1 2
3 4

]
and Y =

[
5 6
7 8

]
, it follows that

vec(X) =



1
3

2
4


∈ R4×1, X ⊗ Y =


1 ×

[
5 6
7 8

]
2 ×

[
5 6
7 8

]

3 ×
[
5 6
7 8

]
4 ×

[
5 6
7 8

]

=



5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32


∈ R4×4 �

With the above notations, the P-Rank formulae (2) and (3) can be rewritten as 2

S = λCin · Q · S · QT
+ (1 − λ)Cout · P · S · PT + (1 − λCin − (1 − λ)Cout) · In . (9)

Theorem 2. Let S be the solution to Eq.(9), and S′ the solution to the equation:

S′ = λCin · Q · S′ · QT
+ (1 − λ)Cout · P · S′ · PT + In . (10)

Then, the relative similarity ranking by S is exactly the same as that by S′. More precisely,

S ≡ ξ · S′ where ξ = 1 − λCin − (1 − λ)Cout.

Proof. See Appendix A.2. �

Theorem 2 implies that we can simply employ Eq.(10) to evaluate P-Rank similarities. This is
because, comparing Eq.(9) with Eq.(10), we see that the coefficient (1 − λCin − (1 − λ)Cout) of In
in Eq.(9) merely contributes an overall multiplicative factor to P-Rank similarity. Hence, replacing
this coefficient in Eq.(9) with 1 still preserves the relative rankings of the P-Rank similarities though
the diagonal entries of S in this scenario may not equal 1s.3

Example 6. Consider the graph G in Figure 3. Given the damping factorsCin = 0.6 andCout = 0.6,
and the weight factor λ = 0.4, the P-Rank similarity rankings of all the distinct node-pairs in G
obtained by S in Eq.(9) and S′ in Eq.(10) are, respectively, as follows:

Rank Node-Pairs S Rank Node-Pairs S′

1 (1, 2) and (2, 1) 0.154 1 (1, 2) and (2, 1) 0.385
2 (2, 4) and (4, 2) 0.137 2 (2, 4) and (4, 2) 0.344
3 (1, 3) and (3, 1) 0.118 3 (1, 3) and (3, 1) 0.295
4 (2, 3) and (3, 2) 0.096 4 (2, 3) and (3, 2) 0.239
5 (3, 4) and (4, 3) 0.065 5 (3, 4) and (4, 3) 0.162
6 (1, 4) and (4, 1) 0.064 6 (1, 4) and (4, 1) 0.161

It can be noticed that the relative orders of S and S′ are exactly the same. Moreover, for each pair of
nodes, the similarity value of S is the value of S′multiplied by a constant factor (1−λCin−(1−λ)Cout) =
1 − 0.4 × 0.6 − (1 − 0.4) × 0.6 = 0.4, i.e., S ≡ 0.4 × S′. �

Closed-Formof P-Rank. To represent the closed-form of P-Rank similarity S, we first introduce
the following lemma, which can guarantee the existence of our closed-form.

Lemma 1. The matrices Q ⊗ Q and P ⊗ P are both row sub-stochastic matrices. 4

2Although in this case the diagonal entries of S may not equal 1, S still remains diagonally dominant, which ensures that

“every vertex is maximally similar to itself”.
3In what follows, we shall base our techniques on the P-Rank matrix form of Eq.(10).
4A row sub-stochastic matrix is a non-negative matrix with each row sum being no greater than 1.
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Proof. See Appendix A.3. �

Based on Lemma 1, we are now ready to obtain the closed-form solution of P-Rank.

Theorem 3. Let M be an n2 × n2 matrix defined by

M := In2 − λCin(Q ⊗ Q) − (1 − λ)Cout(P ⊗ P). (11)

Then, the closed-form of P-Rank similarity S can be represented as

vec(S) = (1 − λCin − (1 − λ)Cout) ·M−1 · vec(In). (12)

Proof. See Appendix A.4 �

Theorem 3 provides the closed-form of P-Rank similarity, in which S does not appear in the RHS
of Eq.(12) that relies only on the graph structure information in the matrix M, as opposed to the
recursive-form whose P-Rank similarity S appears on both sides of Eq.(9). The existence ofM−1 is
due to the fact thatM is a diagonally dominant matrix, which is guaranteed by Lemma 1.

Example 7. Consider the graph G in Figure 5. Given Cin = 0.6, Cout = 0.6, and λ = 0.4, the exact
SimRank similarities can be obtained by Theorem 3 as follows:

Since Q =
[
1 0
1 0

]
and P =

[
1
2

1
2

0 0

]
, the matrixM can be computed by Eq.(11) as

M = I4 − 0.4 × 0.6 ×
([

1 0
1 0

]
⊗

[
1 0
1 0

] )
− (1 − 0.4) × 0.6 ×

([
1
2

1
2

0 0

]
⊗

[
1
2

1
2

0 0

] )
Thus,

M =



0.67 −0.09 −0.09 −0.09
−0.24 1 0 0
−0.24 0 1 0
−0.24 0 0 1


⇒ M−1 =



1.652 0.149 0.149 0.149
0.397 1.036 0.036 0.036
0.397 0.036 1.036 0.036
0.397 0.036 0.036 1.036


Then, the P-Rank similarity can be derived from Eq.(12) as follows:

vec(S) = (1 − 0.4 × 0.6 − (1 − 0.4) × 0.6) ·M−1 · vec(I2) = [0.720, 0.173, 0.173, 0.573]T ,

which implies that S =
[
0.720 0.173

0.173 0.573

]
. �

It is worth noticing that directly computing S from Eq.(12) involves the inverse of a large matrix
M of size n2 × n2, which is prohibitively expensive. However, the closed-form of P-Rank provides
an accurate non-iterative method to represent the exact P-Rank similarity. It lays a solid founda-
tion for us to (i) analyse the stability of P-Rank similarity S w.r.t. the perturbations of the graph
structure information in matrixM (in Section 4.2), and (ii) devise efficient non-iterative algorithms
to significantly speed up the computation of P-Rank (in Section 5).
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4.2 Condition Number of P-Rank

Based on the closed-form of the P-Rank solution in Eq.(12), in this section we analyze the stability
of P-Rank. We start with an intuitive example.

Example 8. Consider the graphG in Figure 6, a fraction of the social network crawled from Twitter,
where each node is a Twitter user, and each edge denotes that one user follows another. Given a query
(user b), we want to rank all the users in G that are relevant to user b, by assessing P-Rank similarities
{s(∗,b)} between each node and b.
To evaluate the stability of P-Rank, we also construct a perturbed graph G(1) := G − {c → d}

(resp. G(2) := G − {e → f }) by randomly deleting an edge c → d (resp. e → f ) from G. A deleted
edge can be regarded as a missing “follow” relation via a web crawl, due to a mishap (e.g., IP address
blocked, or URL connection error) when the crawl is running on Twitter. If P-Rank is stable, we would
expect that the similarity ranks of {s(∗,b)} on the original G would have almost the same order as

those on the perturbed G(1) and G(2).
We fix weight factor λ = 0.4 and vary damping factors (Cin,Cout ). The results for three different

settings of (Cin,Cout ) are shown in the following tables, respectively.

(Cin,Cout ) = (0.6, 0.5) (Cin,Cout ) = (0.8, 0.9) (Cin,Cout ) = (0.95, 0.95)
Rank
in G

Node
(User)

Rank

in G(1)
Rank

in G(2)
Rank
in G

Node
(User)

Rank

in G(1)
Rank

in G(2)
Rank
in G

Node
(User)

Rank

in G(1)
Rank

in G(2)
1 a 1 1 1 d 2 2 1 d 2 2

2 d 2 2 2 a 1 1 2 a 1 1

3 c 4 3 3 c 6 3 3 c 6 3

4 e 3 4 4 e 3 4 4 e 3 4
5 f 5 5 5 f 5 5 5 д 4 6

6 д 6 6 6 д 4 6 6 f 5 5

7 i 7 8 7 i 7 8 7 i 7 8

8 h 8 7 8 h 8 7 8 h 8 7

9 j 9 9 9 j 9 9 9 j 9 9
10 k 10 10 10 k 10 10 10 k 10 10
# of “flips” 2 2 # of “flips” 5 4 # of “flips” 6 6

Given (Cin,Cout ), we can see the following: For each table, the first two columns report the rank
of P-Rank similarities {s(x,b)}x ∈G on the original G (sorted in descending order) and the associated

user x , whereas the last two columns report the similarity ranks on the perturbed graphs G(1) and
G(2), respectively. The last row counts the number of “flips” for the ranks on each perturbed graph
w.r.t. the ranks on the original G. For example, in the first table, the number of “flips” for the ranks on

the perturbed G(1) is 2 since two nodes c and e , which are ranked 3rd and 4th on the original G, are
ranked 4th and 3rd on the perturbed G(1) (highlighted in bold).
We observe that, for small choice of (Cin,Cout ), P-Rank’s rankings exhibit a tiny flipping behavior,

which makes P-Rank stable. When (Cin,Cout ) become larger (e.g., (0.95,0.95)), the number of “flips”
is increased (e.g., 6), which makes P-Rank less stable. Thus, different settings of damping factors will
have an impact on the robustness of P-Rank. �

Example 8 indicates that (Cin,Cout ) influences the stability of P-Rank. To investigate (i) how
(Cin,Cout ) influences the robustness of P-Rank and (ii) whether there are other factors that may
affect the P-Rank stability, let us introduce the notion of P-Rank condition number.

Definition 1 (P-Rank condition number). Given a graph G, letM be an n2×n2 matrix defined
by Eq.(11), i.e.,

M := In2 − λCin(Q ⊗ Q) − (1 − λ)Cout(P ⊗ P).
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Then, the quantity

κ∞(G) , ‖M−1‖∞ · ‖M‖∞ (13)

is called the P-Rank condition number of G. Here, ‖⋆‖∞ denotes the ∞-norm that returns the maxi-
mum absolute row sum of the matrix.

To explain how the P-Rank condition number is related to the stability of P-Rank, let us revisit
the closed-form of P-Rank solution in Eq.(12), which can be rewritten as

M · vec(S) = ξ · vec(In) with ξ = 1 − λCin − (1 − λ)Cout, (14)

where the matrix M contains the graph structure information, and vec(S) contains all-pairs simi-
larity values. Suppose there is a perturbation in the original graph, which leads to the changes∆M
to oldM, and the similarity changes∆S to old S. Then, in the new graph, it follows from Theorem 3
that

(M + ∆M) · vec(S + ∆S) = ξ · vec(In). (15)

Combining Eqs.(14) and (15) together produces

vec(∆S) = −M−1 · ∆M · vec(S + ∆S)
We take∞-norm on both sides, which yields

‖vec(∆S)‖∞ ≤ ‖M−1‖∞ · ‖∆M‖∞ · ‖vec(S + ∆S)‖∞
Rearrange the above terms and use the fact that ‖vec(∗)‖∞ = ‖ ∗ ‖max

5, which produces

‖∆S‖max

‖S + ∆S‖max
≤

(
‖M−1‖∞ · ‖M‖∞

)
︸                 ︷︷                 ︸

P-Rank condition number κ∞

· ‖∆M‖∞‖M‖∞
(16)

Note that the quantity ‖∆M‖∞‖M ‖∞ is the relative change in the oldM (which is induced by the perturbed

graph structure), and the quantity ‖∆S‖max

‖S+∆S‖max
is the resulting relative change in the new P-Rank

similarity matrix (S+∆S). The advantage of using relative changes is that they are dimensionless
and will not be affected by overall scale factors.
It is important to notice that Eq.(16) indicates that the condition number κ∞(G) is a relative

error magnification factor. Changes in the RHS of Eq.(16) (related to perturbations in the graph
structure) can cause changes κ∞(G) times as large in the LHS of Eq.(16), i.e., the P-Rank similarity
values. Thus, the condition number κ∞(G) defined by Eq.(14) can be utilized for analyzing P-Rank
stability, i.e., the sensitivity of P-Rank similarity in response to changes in the graph structure.
Intuitively, the P-Rank condition number can effectively measure how much the values of P-

Rank similarities can change in response to a small perturbation in the graph structure. It can be
noticed from Eq.(16) that

• When κ∞ (G) is small, a small change∆M in the link structure will not cause a large change
∆S in the resulting P-Rank scores. In this case, P-Rank similarity rankings are stable.
• When κ∞ (G) is large, a small change ∆M in the link structure may result in a large magni-
fied error ∆S in the resulting P-Rank scores, which makes P-Rank similarity rankings very
sensitive to the perturbations of a graph and unstable.

Bounding P-Rank Condition Number. Despite the importance of κ∞(G) in P-Rank stability
analysis, the computation of κ∞(G), if carried out naively by its definition Eq.(13), is rather expen-
sive, as it involves the inverse of a very large matrixM of size n2 ×n2 first, and then computing its
∞-norm ‖M−1‖∞, which is dominated byO(n6) time.

5 ‖X‖max = max1≤i ,j≤n {xi ,j } is a maximum element-wise matrix norm.
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Motivated by this, we next propose an efficient lightweight method that can find the tight bound
of κ∞(G) in only O(1) time, without the need to inverse the large matrix M. Obviously, the lower
bound of κ∞(G) is always 1, which is due to the fact that

κ∞(G) = ‖M−1‖∞ · ‖M‖∞ ≥ ‖M−1 ·M‖∞ = ‖In2 ‖∞ = 1.

To find the upper bound ofκ∞(G), we now propose Lemmas 2 and 3 that can tightly bound ‖M−1‖∞
and ‖M‖∞, respectively.

Lemma 2.


M−1

∞ has the following upper bound:



M−1

∞ ≤ 1

1 − λ ·Cin − (1 − λ) ·Cout
. (17)

Proof. See Appendix A.5. �

Lemma 3. ‖M‖∞ has the following upper bound:

‖M‖∞ ≤ 1 + λ ·Cin + (1 − λ) ·Cout. (18)

Proof. See Appendix A.6. �

Combining Lemmas 2 and 3, the following result is immediate.

Theorem 4. The P-Rank condition number has the following tight bound:

κ∞ (G) ≤
1 + λ ·Cin + (1 − λ) ·Cout

1 − λ ·Cin − (1 − λ) ·Cout
. (19)

Theorem 4 gives a tight upper bound of κ∞(G), which has several important applications:

(1) It can evaluate the robustness of P-Rank similarity in response to the perturbations in the
graph structure (such as (noisy) uncertain graphs, or evolving graphs that involve frequent
minor node/edge updates).

(2) It can measure the accuracy of P-Rank similarity rankings invoked by the roundoff errors in
P-Rank iterative computations.

(3) It can help us set appropriate parameters (e.g., damping factors (Cin,Cout ) to improve the
effectiveness of decentralised P-Rank computing on large scale graphs by removing a few
number of inter-edges across different partitions, as will be demonstrated shortly.

Intuitively, to show how the upper bound of κ∞(G) is associated with the P-Rank stability, let
us apply Theorem 4 to Eq.(16):

‖∆S‖max

‖S + ∆S‖max

≤ 1 + λ ·Cin + (1 − λ) ·Cout

1 − λ ·Cin − (1 − λ) ·Cout
· ‖∆M‖∞‖M‖∞

, (20)

To guarantee stable P-Rank ranking results, we expect the RHS of Eq.(20) to be small so that
relative similarity changes in S in the LHS of Eq.(20) can be bounded by small values.

Effects of Cin and Cout. It can be noticed that the quantity(
1 + λ ·Cin + (1 − λ) ·Cout

1 − λ ·Cin − (1 − λ) ·Cout

)
=

2

1 − λ ·Cin − (1 − λ) ·Cout
− 1

decreases when (Cin,Cout) increases. Thus, small settings of Cin and Cout will make P-Rank stable.
Conversely, increasing the values ofCin andCout makes the RHS of Eq.(20) larger, which may cause
P-Rank unstable. These results are well consistent with Example 8.
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a b
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Fig. 7. The equality of Eq.(19) is a�ainable for G1

Effects of λ. The P-Rank condition number κ∞ (G) can also vary with the weight factor λ. To see
this, let us compute the partial derivatives w.r.t. λ in Eq.(19):

∂

∂λ

(
1 + λ ·Cin + (1 − λ) ·Cout

1 − λ ·Cin − (1 − λ) ·Cout

)
=

2 (Cin −Cout)
(1 − λ ·Cin − (1 − λ) ·Cout)2

. (21)

This implies that when Cin > Cout (resp. Cin < Cout), for the increased λ, a small change in G may
result in a large (resp. small) change in P-Rank, which makes P-Rank an ill-conditioned (resp. a
well-conditioned) problem; whenCin = Cout, the value of κ∞ (G) is independent of λ.
It is worth noting that the upper bound ofκ∞(G) in Eq.(19) is attainable if and only if each vertex

in network G has at least one in-degree and one out-degree because in this case each row sum
and each column sum of A are strictly greater than 0, which ensures that Q and P are exactly row
stochastic matrices6 rather than sub-stochastic ones, and hence ‖Q ⊗ Q‖∞ = ‖P ⊗ P‖∞ = 1.

Example 9. Consider a directed cycle network of length 4, depicted as G1 in Figure 7, in which each
vertex has one in-link and one out-link. Setting λ = 0.5,Cin = 0.8, and Cout = 0.6, one can verify that
the equality of Eq.(19) is attained for G1 as follows.
On one hand, sinceA = Q = P for G1,M andM−1 can be solved naively from Eq.(11), which follows

that

κ∞(G) = ‖M‖∞ · ‖M−1‖∞ = 1.7 × 1

0.3
=

17

3
;

on the other, computing the right-hand side of (19) produces

1 + λ ·Cin + (1 − λ) ·Cout

1 − λ ·Cin − (1 − λ) ·Cout
=

1 + 0.5 × 0.8 + (1 − 0.5) × 0.6
1 − 0.5 × 0.8 − (1 − 0.5) × 0.6 =

17

3
.

Both results are exactly the same, and hence the equality of Eq.(19) holds.

Application. (Decentralised Computing on Large Scale Graphs) An important application
of P-Rank stability analysis is to improve the effectiveness for decentralised computing on large
scale graphs. Many real graphs have a block-wise/community structure. Given a large graph G, to
efficiently evaluate P-Rank similarities on G, the basic idea is to
(1) decomposeG into several small components {Gi }Ni=1 via a graph partitioningmethod (e.g.,METIS7)

such that the edges across different components are minimized;
(2) on each small component Gi , evaluate the block P-Rank similarity matrix Si ;

(3) merge all the block P-Rank similarities Si on each Gi into one block diagonal matrix Ŝ =

diaд(S1, · · · , SN ), which gives an approximation of the true similarity S on G.
The main advantage of this approach is that Step (2) can be processed in parallel on each proces-

sor independently. However, how well the approximation Ŝ fits the true similarity S depends on

the P-Rank conditional number κ∞(G) on G. When κ∞(G) is small, Ŝ is a good approximation of S.

6A matrix having row sums equal to 1 is called a row stochastic matrix.
7http://glaros.dtc.umn.edu/gkhome/metis/
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Fig. 8. Decentralised P-Rank Computing on G

When κ∞(G) is large, Ŝ cannot approximate S well. The reason is that, based on our stability anal-

ysis, we can regard the union of all components Ĝ :=
⋃N

i=1 Gi as the original graph G perturbed
by ∆ that are all the inter-edges across different components:

Ĝ :=
⋃N

i=1 Gi = G − ∆

One can readily verify that Ŝ is the exact P-Rank similarity on Ĝ. If P-Rank is stable, then Ĝ ≈ G
implies that Ŝ ≈ S. Otherwise, Ŝ, produced by the parallel algorithm, is not a good approximation
of the true similarity S. Thus, small settings of Cin and Cout, which will lead to small κ∞(G), will
make the parallel P-Rank algorithm produce accurate results. �

Example 10. Given a graph G in Figure 6. We evaluate the P-Rank similarities on G in a decen-
tralised way, as illustrated in Figure 8. We first utilize METIS to decompose G into two components
G1 and G2, plus an inter-edge {e → f } across them. Then, the block P-Rank similarity matrix S1 on
G1 and S2 on G2 can be evaluated in parallel independently.

To make the result Ŝ :=
[
S1 0
0 S2

]
a good approximation of the true P-Rank similarity S on G, we need

set the damping factors (Cin,Cout) small when evaluating S1 and S2. The following table illustrates

how (Cin,Cout) affects the approximate error ‖Ŝ − S‖2 on G.
Damping Factors (Cin,Cout) (0.3,0.2) (0.4, 0.3) (0.5, 0.4) (0.6, 0.5) (0.7, 0.8)

Average Approximate Error 1
n2 ‖Ŝ − S‖2 0.0010 0.0015 0.0019 0.0022 0.0027

P-Rank Conditional Number κ∞(G) 1.625 2.006 2.500 3.159 5.743

Upper Bound of κ∞(G) 1+λ ·Cin+(1−λ)·Cout

1−λ ·Cin−(1−λ)·Cout
1.632 2.030 2.571 3.348 7.333

We discern that, when (Cin,Cout) is small, ‖Ŝ−S‖2 onG is also small. This is because small (Cin,Cout)
leads to small P-Rank conditional number κ∞(G) (i.e., P-Rank is stable), thus resulting in small ap-

proximate error ‖Ŝ − S‖2 when G is perturbed to Ĝ. �

A Tradeoff between Iterative Accuracy and Stability. Based on the P-Rank stability analysis
in Eq.(20), we notice that small choices of (Cin,Cout) make P-Rank stable. However, as shown in
Theorem 1 (see Eq.(7) in Section 3), our error analysis on the P-Rank iterative method reveals that

|s (u,v) − s(k) (u,v) | ≤ (λCin + (1 − λ)Cout)k+1.

Since the right-hand side (λCin + (1 − λ)Cout)k+1 is a decreasing function w.r.t. (Cin,Cout), it implies
that, to guarantee the same accuracy, small choices of (Cin,Cout) requires more P-Rank iterations,
thus leading to more computational time. Hence, if we use iterative methods for P-Rank similarity
computation, there is a tradeoff between the P-Rank iterative accuracy and stability.
To resolve this problem, we continue to select small values of (Cin,Cout) to achieve good P-

Rank stability, but devise a different (non-iterative) method for P-Rank computation that does not
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Fig. 9. Low-rank update of matrix inversion

produce any iterative errors relying on (Cin,Cout). In the next section, we propose efficient matrix-
based algorithms to speed up P-Rank computations without yielding iterative errors. For these
new matrix-based algorithms, small choices of (Cin,Cout) will not sacrifice speedup while making
P-Rank stable.

5 P-RANK OPTIMIZATION TECHNIQUES

In this section, optimization techniques for accelerating the P-Rank computation are provided. (i)
For directed networks, we propose novel techniques that can significantly reduce the computa-
tional time of P-Rank from O(Kn4) to O(nr 2 + r 4) and the memory fromO(n2) to O(nr + r 4) with
guaranteed accuracy, where r (≤ n) is the target rank of low-rank approximation, in general r ≪ n

(Subsection 5.1). As a by-product, we show that our P-Rank optimization approach, as a special
case, can also substantially improve the prior SimRank computational time of Li et al. [23] from
O(r 4n2 +nr 2) toO(nr 2 + r 4), and the memory space fromO(n2r 2) toO(nr + r 4). (ii) For undirected
networks, we also design a novel eigen-decomposition method that can improve the computation
of P-Rank further toO(nr 2) time and O(nr )memory space (Subsection 5.2).

5.1 Optimizing P-Rank on Directed Networks

5.1.1 Exact P-Rank Similarity Optimization. In this subsection, our accelerative approach focuses
on optimizing the exact P-Rank computation.

Warm-Up. Before detailing our techniques, we first introduce the following matrix inversion
identity, which will be useful to our subsequent P-Rank optimization.

Lemma 4. Let In be an n ×n identity matrix, Ui and Vi be n × r matrices, and Ci be r × r matrices
(i = 1, 2). Then the following matrix inversion identity holds.(

In − U1Σ1V
T
1 − U2Σ2V

T
2

)−1
= In +

(
U1 U2

)
Σ−1

(
VT1
VT2

)
(22)

with Σ =

(
Σ1
−1 − VT1 U1 −VT1 U2

−VT2 U1 Σ2
−1 − VT2 U2

)

Proof. See Appendix A.7. �

The advantage of Lemma 4 is that it can efficiently convert the inversion of an n ×n matrix into
the inversion of a small r × r matrix (r ≪ n), thus greatly improving the computational efficiency.
Figure 9 pictorially visualizes the main idea of Lemma 4, which indicates that, when one wishes

to inverse the n × n matrix (In − U1Σ1V
T
1 − U2Σ2V

T
2 )
−1
, it is only necessary to inverse the small

r × r matrix Σ and compute In +
(
U1 U2

)
Σ−1(V1 V2)T , which requires onlyO(n2r + r 2n + r 3) time

in total, as opposed to theO
(
n3

)
time of the conventional matrix inversion.

Basic Idea for Characterising S. In light of Lemma 4, we next propose our techniques for op-
timizing P-Rank computation. Recall the closed form of the P-Rank equation that we derived in

ACM Trans. Web, Vol. 37, No. 4, Article 111. Publication date: August 2019.



111:18 Yu et al.

Section 4.1:

vec (S) = (In2 − λCin (Q ⊗ Q) − (1 − λ)Cout (P ⊗ P))−1 · vec (In) (23)

As long as the matrices λCin (Q ⊗ Q) and (1 − λ)Cout (P ⊗ P) can be decomposed as U1Σ1V
T
1 and

U2Σ2V
T
2 , respectively, Lemma 4 can be used to speed up the computation of S. Fortunately, we

notice that, when Q and P are respectively decomposed as

Q = UQΣQV
T
Q and P = UPΣPV

T
P ,

Q ⊗ Q and P ⊗ P in Eq.(23) takes the following form:

Q ⊗ Q = ŨQΣ̃QṼ
T
Q and P ⊗ P = ŨPΣ̃PṼ

T
P , where

ŨQ = UQ ⊗ UQ, Σ̃Q = ΣQ ⊗ ΣQ, ṼQ = VQ ⊗ VQ,

ŨP = UP ⊗ UP, Σ̃P = ΣP ⊗ ΣP, ṼP = VP ⊗ VP.

Substituting these into Eq.(23) and applying Lemma 4 produce

vec (S) = (In2 − λCinŨQΣ̃QṼ
T
Q − (1 − λ)CoutŨPΣ̃PṼ

T
P )
−1

︸                                                      ︷︷                                                      ︸
={using Lemma 4}

·vec (In)

= vec (In) +
(
ŨQ ŨP

)
Λ
(
ṼQ ṼP

)T
vec (In) , (24)

where

Λ =

(
1

λCin
Σ̃−1
Q
− ṼT

Q
ŨQ −ṼT

Q
ŨP

−ṼTP ŨQ
1

(1−λ)Cout
Σ̃−1P − ṼTP ŨP

)−1
. (25)

Directly using Eqs.(24) and (25) to compute S requires O(r 4n2) time and O(r 2n2) memory. This

complexity is dominated by computing ṼTQŨQ, Ṽ
T
QŨP, Ṽ

T
P ŨQ, Ṽ

T
P ŨP in Eq.(25). For example, when

we compute ṼTQŨQ := (VQ ⊗ VQ)T (UQ ⊗ UQ), the sizes of VQ and UQ are both n × r , which implies

that the sizes of (VQ ⊗ VQ) and (UQ ⊗ UQ) are both n2 × r 2. Consequently, multiplying (VQ ⊗ VQ)T
and (UQ ⊗ UQ) requiresO(r 4n2) time and O(r 2n2) memory.

Speeding Up P-Rank Computation. There are great opportunities to significantly reduce the
computational cost. Our optimization techniques are based on the following two observations:

Observation 1. (V ⊗ V)T (U ⊗ U) can be efficiently computed as follows:

(V ⊗ V)T (U ⊗ U) = Θ ⊗ Θ with Θ = VTU. (26)

This can substantially reduce the computational time from O(r 4n2) to O(r 2n + r 4), and the memory
usage from O(r 2n2) to O(rn + r 4), where r ≪ n.

Proof. See Appendix A.8. �

It is important to note that, in Eq.(26), computing Θ = VTU just requiresO(r 2n) time andO(rn)
memory space, and the size of the resulting Θ is r × r . Thus, Θ ⊗ Θ entails O(r 2 × r 2) time and
O(r 4) memory space. In addition, the matrix Θ in Eq.(26) needs computing only once, and can be
subsequently reused to compute Θ ⊗ Θ. Hence, the total cost of computing Eq.(26) just requires
O(r 2n+r 4) time andO(rn+r 4)memory space, which is a significant improvement over the existing

method via Eq.(25) which requires O(r 4n2) time andO(r 2n2) memory space to compute ṼTQŨQ.
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Fig. 10. Comparison of Li et al.’s method (in LHS) and our method (in RHS) to compute Eq.(27)

Example 11. Let V = [1, 2, 3]T and U = [2, 1, 0]T . (V⊗V)T (U⊗U), if carried out directly, involves
taking two Kroneckor products and storing the intermediate results with two large 9 × 1 matrices:

(V ⊗ V)T = [1, 2, 3, 2, 4, 6, 3, 6, 9], U ⊗ U = [4, 2, 0, 2, 1, 0, 0, 0, 0]T ⇒ (V ⊗ V)T (U ⊗ U) = 16

In contrast, our method only needs to compute VTU, whose result Θ is a small 1 × 1 scalar. Due to
small size of Θ, the cost of computing Θ ⊗ Θ is significantly reduced, i.e.,

Θ := VTU = [1, 2, 3] · [2, 1, 0]T = [4] ⇒ Θ ⊗ Θ = [4] ⊗ [4] = 16 �

Another observation to speed up the computation of Eq.(24) is that there is no need to compute

the tensor product in ( ṼQ ṼP )T :=
(
VQ ⊗ VQ VP ⊗ VP

)T
. The reason is as follows.

Observation 2. Let X = UΣVT be a rank-r SVD decomposition of an n × n matrix X, where U
and V are n × r matrices, and Σ is an r × r matrix. For any r 2 × r 2 matrix Λ, the following identity
holds:

(U ⊗ U)Λ(V ⊗ V)T vec(In) = vec(U · Reshape(Λvec(Ir )) · UT ) (27)

where Reshape(x) returns a r × r matrix whose entries are taken from the r 2 × 1 vector x.

Proof. See Appendix A.9. �

By virtue of Observation 2, the computational time of Eq.(27) can be substantially improved from
O(2r 2n2+r 4) toO(rn2+r 4), and the memory space fromO(r 2n2) toO(rn+r 4). Figure 10 pictorially
visualizes themain idea underpinning our approach. It can be discerned that the traditional method
to compute Eq.(27) (in the LHS) requiresO(2r 2n2+ r 4) time andO(r 2n2)memory space, consisting
of three phases:

(i) O(r 2n2) time and O(r 2n2) memory to compute x← (V ⊗ V)vec(In),
(ii) O(r 4) time and O(r 4) memory to compute y← Λx, where y is of size r 2 × 1, and
(iii) O(r 2n2) time and O(r 2n2) memory to compute (U ⊗ U)y.
In contrast, our method to compute Eq.(27) (in the RHS) includes:

(i) O(r 4) time and O(r 4) memory to compute x← Λvec(Ir ), where x is of size r 2 × 1;
(ii) O(rn2) time and O(rn)memory to compute Y← U · Reshape(x) · UT .

Note that, although the resulting matrix Y is of size n × n, we do not need O(n2) memory.
Instead, we can compute Y column by column online, which requires onlyO(rn)memory to
store U and Reshape(x).

Thus, the total computational cost of our method entailsO(rn2 + r 4) time andO(rn + r 4) memory,
much superior to the traditional one.
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Example 12. Given X =
[
1 1 0
0 0 1
1 1 0

]
and Λ =

[
0 1 2 3
3 4 5 6
1 0 2 0
0 3 0 4

]
. LetX = UΣVT be a rank-2 SVD decomposition

of X, where U =

[
1√
2

0
1√
2

0 1 0

]T
,Σ =

[
2 0
0 1

]
,V =

[
1√
2

1√
2

0

0 0 1

]T
.

The naive method to compute (U ⊗ U)Λ(V ⊗ V)T vec(I3) is rather expensive as it involves the com-
putation of two large Kroneckor products as follows:

(U ⊗ U)Λ(V ⊗ V)T vec(I3) =



1
2 0 1

2 0 0 0 1
2 0 1

2
0 1√

2
0 0 0 0 0 1√

2
0

0 0 0 1√
2
0 1√

2
0 0 0

0 0 0 0 1 0 0 0 0



T

︸                            ︷︷                            ︸
U⊗U



0 1 2 3
3 4 5 6
1 0 2 0
0 3 0 4

︸   ︷︷   ︸
Λ



1
2

1
2 0 1

2
1
2 0 0 0 0

0 0 1√
2
0 0 1√

2
0 0 0

0 0 0 0 0 0 1√
2

1√
2
0

0 0 0 0 0 0 0 0 1

︸                          ︷︷                          ︸
(V⊗V)T

vec(I3)

=[ 32 ,
9√
2
, 32 ,

1√
2
, 4, 1√

2
, 32 ,

9√
2
, 32 ]

T
.

In contrast, our method first evaluates Θ := Reshape(Λvec(I2)) = Reshape([3, 9, 1, 4]T ) =
[
3 1
9 4

]
,

and then computes

vec(U · Θ · UT ) = vec
([

1√
2

0
1√
2

0 1 0

]T [
3 1
9 4

] [
1√
2

0
1√
2

0 1 0

])
= [ 32 ,

9√
2
, 32 ,

1√
2
, 4, 1√

2
, 32 ,

9√
2
, 32 ]

T

which is much faster and more memory-efficient than the naive approach. �

By virtue of the above two observations, we can significantly speed up the computation of P-
Rank similarity S in Eqs.(24) and (25), based on the following theorem.

Theorem 5. The P-Rank matrix S in Eq.(24) can be efficiently computed as

S = In + UQ · Reshape
(
(Λ1,1 + Λ1,2)vec(Ir )

)
· UQ

T

+ UP · Reshape
(
(Λ2,1 + Λ2,2)vec(Ir )

)
· UP

T ,

where

Λ =

(
Λ1,1 Λ1,2

Λ2,1 Λ2,2

)

=

(
1

λCin
(Σ−1Q ⊗ Σ−1Q ) − ΘQ,Q ⊗ ΘQ,Q −ΘQ,P ⊗ ΘQ,P

−ΘP,Q ⊗ ΘP,Q
1

(1−λ)Cout
(Σ−1

P
⊗ Σ−1

P
) − ΘP,P ⊗ ΘP,P

)−1

and ΘQ,Q = VTQUQ, ΘQ,P = VTQUP, ΘP,Q = VTPUQ, ΘP,P = VTPUP.

Proof. See Appendix A.10. �

Theorem5 provides an efficient method of computing P-Rank similarities, as pictorially depicted
in Figure 11. Two illustrative examples will be provided shortly in Figure 13 after our algorithm is
introduced.

Complexity. Regarding computational complexity, we have the following theorem.

Theorem 6. The exact P-Rank similarity matrix S in Eq.(24) is solvable in only O(rn2 + r 6) time
and O(rn + r 4) memory space, without any loss of accuracy.

Proof. See Appendix A.11. �
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Fig. 11. Efficiently Computing P-Rank matrix S via Theorem 5
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5.1.2 Low Rank-υ (υ ≤ r ) Approximation of P-Rank with Guaranteed Accuracy. In the previous
subsection, we have considered the efficient exact P-Rank computing method by using the rank-
r decomposition, where r is the rank of the adjacency matrix, i.e., rank(Q or P). However, for
many practical applications, users are more interested in approximate P-Rank scores if a little
compromise in accuracy can substantially speed up the computation of P-Rank further.
Inspired by this, we next study the low rank-υ approximation of P-Rank (where υ ≤ r ) with

guaranteed accuracy. Specifically, we show the following main result in this subsection.

Theorem 7. Let r be the rank of the graph adjacency matrix. Given a target rank υ (≤ r ) for the
SVD approximation of Q (or P), the P-Rank similarities can be estimated in O

(
υn2 + υ6

)
time and

O
(
υn + υ4

)
memory space with the guaranteed error

ϵυ ≤
λCinσ1συ+1 + (1 − λ)Coutσ̄1σ̄υ+1

1 − λCin − (1 − λ)Cout

√
n,

where σi and σ̄i (i = 1,υ + 1) are the i-th largest singular values of Q and P respectively.

(The detailed proof will be provided after some discussions.)

The a-posteriori error ϵυ in Theorem 7 is often acceptable in practice due to the small values
taken by the (υ + 1)-th largest singular values συ+1 and σ̄υ+1. Figure 12 depicts the low-rank υ (≤
r ) decomposition procedure that truncates the smallest r − υ almost zero singular values of the
adjacency matrix. Indeed, the truncated dimensions (1) contain less important graph information
for computing P-Rank similarities, but (2) require considerable amounts of computational costs.
Thus, truncating such dimensions will enable a huge speedup of P-Rank computation, yet sacrifice
only a little accuracy, as will be demonstrated by our experiments in Section 6.
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Example 13. On a Wiki graph with 1.2M vertices, by setting Cin = Cout = 0.8 and λ = 0.5 (as
suggested in [54]), we obtain a high accuracy of

ϵυ ≤
0.5 × 0.8 × 1.12 × 10−7 + 0.5 × 0.8 × 1.08 × 10−7

1 − 0.5 × 0.8 − 0.5 × 0.8 ×
√
1.2M = 0.000482,

where σ1 = 1.12 and σ̄1 = 1.08, with max(συ+1, σ̄υ+1) ≤ 10−7 being truncated.

The choice of the low rank υ (≤ r ) has a user-controlled effect over the approximation error,
which is a speed-accuracy trade-off. As a special case when υ = r (≪ n), we notice that σr+1 =
σ̄r+1 = 0, and thereby ϵr = 0. From this perspective, the approximate P-Rank in Theorem 7 is an
extension of our exact approach in Theorem 6.
We next prove Theorem 7 by providing an algorithm for the low rank-υ P-Rank approximation.

Algorithm. The algorithm, referred to as DE P-Rank, is depicted in Algorithm 1. It accepts as
inputs a directed graph G, a weighted factor λ, two damping factorsCin andCout, and a target rank
υ (an optional parameter). Ifυ is omitted, the default value ofυ is the rank r of adjacencymatrix.DE
P-Rank returns the approximate P-Rank similarity matrix Swith an accuracy ϵυ if υ ≤ r ; otherwise
it returns the exact similarity S with ϵυ = 0.
Before describing the algorithm, we first introduce the following notations.

(i) RowNorm (A) returns a row-stochastic matrix by normalizing each nonzero row of A;
(ii) Rank (A) returns the rank of A;
(iii) RSVD (Q,υ) returns the low rank-υ SVD decomposition of Q, i.e., Qυ = UQΣQV

T
Q that mini-

mizes ‖Qυ − Q‖2 = συ+1, where UQ and VQ are n × υ column-orthogonal matrices, and ΣQ is
a υ × υ diagonal matrix.

AlgorithmDE P-Rankworks as follows. First, it initializes Q and P by normalizing each nonzero
row of A and AT , respectively (lines 1–2). When the optional argument υ is not supplied, DE
P-Rank also assigns a default rank Rank (A) to υ (line 3). Then, DE P-Rank employs RSVD () to
decompose the large Q (resp. P) into small matrices, i.e., UQΣQV

T
Q
(resp. UPΣPV

T
P
). This results in

a compact representation of a graph (line 4). In the case when υ < Rank (A), RSVD () provides the
best rank-υ SVD approximation of Q (resp. P) in the least square error sense; otherwise, it yields
the exact factorizations forQ and P. Leveraging UQ,ΣQ,V

T
Q,UP,ΣP,V

T
P , DE P-Rank then computes

P-Rank similarity matrix S (lines 5-8) via Theorem 5, and accuracy ϵυ (lines 9-10) via Theorem 7.

Example 14 (Heterogenous Graph). Figure 13(a) depicts how DE P-Rank calculates similarity
scores in a bipartite shopping graph G2. G2 is a heterogenous graph, whose vertices consist of two
types of objects: (a) persons {(A), (B)}, and (b) an item set {sugar, egg, flour} they purchased. We use
the following parameters: Cin = 0.4, Cout = 0.6, λ = 0.5.
DE P-Rank first computes Q and P from the adjacency matrix A of G2. It then decomposes Q and P

into UQΣQV
T
Q and UPΣPV

T
P , respectively. Using these factorized small matrices, DE P-Rank calculates

the block matrix
(
Σ11 Σ12
Σ21 Σ22

)
, and returns S as the final P-Rank similarity matrix with no approximation

errors, due to the default target rank υ = Rank(A) = 1 it adopts.

Example 15 (Homogeneous Graph). DE P-Rank can also be applied to homogeneous domains,
e.g., the web graph G3 in Figure 13(b). Each vertex in G3 corresponds to a web page, and each edge to
a hyperlink from one page to another. Similarly, by setting Cin = 0.4, Cout = 0.6, λ = 0.5, a detailed
process is given in Figure 13(b) which illustrates how DE P-Rank works on G3. Note that there are no
approximation errors since we choose the default target rank υ = Rank(A) = 2.

To complete the proof of Theorem 7, we show that (1) DE P-Rank is bounded by O
(
υn2 + υ6

)
time and O

(
υn + υ4

)
memory; and (2) it guarantees the accuracy bound stated in Theorem 7.
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ALGORITHM 1: DE P-Rank (G, λ,Cin,Cout,υ)

Input :G : a directed graph,

λ : weight factor,

Cin,Cout: in-/out-link damping factors,

υ: target rank of P-Rank approximation.

Output :S: P-Rank similarity matrix,

ϵυ : approximation error.

1 initialize the adjacency matrix A of G.
2 compute the transition matrices Q and P in G :

Q← RowNorm

(
AT

)
, P← RowNorm (A).

3 if υ is empty then υ ← Rank (A)
4 do low rank SVD approximation for Q and P :[

UQ,ΣQ,VQ;σ1,συ+1
]
← RSVD (Q,υ),

[UP,ΣP,VP; σ̄1, σ̄υ+1] ← RSVD (P,υ).

5 compute the auxiliary matrices :

ΘQ,Q ← VT
Q
UQ, ΘQ,P ← VT

Q
UP,

ΘP,Q ← VT
P
UQ, ΘP,P ← VT

P
UP.

6 compute the matrix Σ :

Σ11 ← 1
λCin

Σ−1
Q
⊗ Σ−1

Q
− ΘQ,Q ⊗ ΘQ,Q,

Σ12 ← ΘQ,P ⊗ ΘQ,P,

Σ22 ← 1
(1−λ)Cout

Σ−1
P
⊗ Σ−1

P
− ΘP,P ⊗ ΘP,P,

Σ21 ← −ΘP,Q ⊗ ΘP,Q.

7 compute the matrix Λ :

Λ =
(
Λ11 Λ12
Λ21 Λ22

)
←

(
Σ11 Σ12
Σ21 Σ22

)−1
8 compute the P-Rank similarity matrix S :

ΓQ ← Reshape
(
(Λ1,1 + Λ1,2)vec(Ir )

)
,

ΓP ← Reshape
(
(Λ2,1 + Λ2,2)vec(Ir )

)
,

β ← (1 − λCin − (1 − λ)Cout),
XQ ← UQΓQ, XP ← UPΓP,

[S]∗,i ← β([In]∗,i + XQ[UQ]Ti ,∗ + XP[UP]Ti ,∗). ∀i
9 if υ < Rank (A) then

estimate accuracy

ϵυ ← λCinσ1συ+1+(1−λ)Coutσ̄1σ̄υ+1
1−λCin−(1−λ)Cout

√
n.

else
ϵυ ← 0.

10 return S and ϵυ .
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Fig. 13. How DE P-Rank computes similarity

Correctness & Complexity. The correctness of DE P-Rank can be verified by Theorem 5. The
computational cost DE P-Rank is bounded by O

(
υn2 + υ6

)
time and O

(
υn + υ4

)
memory, which

consists of three phases:

(i) For pre-processing (lines 1-4), (a) it takesO
(
n2

)
time andO(m)memory to compute Q and P

by normalizing A (lines 1 and 2); (b) calculating Rank (*) takes O
(
n2

)
time (line 3); (c) RSVD

(*) is computed in O
(
υn2 + υ2n

)
time and O(υn) memory (line 4). In particular, the diago-

nal matrices ΣQ and ΣP can be stored in two υ-dimensional vectors with the entries σi and
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σ̄i (i = 1, · · · ,υ) sorted in descending order, respectively. Thus, the total cost of this phase is
bounded byO

(
υn2 + υ2n

)
time and O (υn)memory.

(ii) For the similarity computation phase (lines 5-8), we analyze the time complexity as follows: (a)
Computing the 4 auxiliary matrices ΘQ,Q,ΘP,Q,ΘQ,P,ΘP,P requires O

(
υ2n

)
time and O (υn)

memory (line 5); (b) Computing all submatrices Σi ,j (i, j = 1, 2) of the matrix Σ entails O(υ4)
time and O

(
υ4

)
memory (line 6); (c) The matrix Λ can be computed in O(υ6) time and O

(
υ4

)
memory (line 7); (d) ΓQ and ΓP can be obtained in O(υ4) time and O(υ4) memory, and S can

be computed from ΓQ and ΓQ in O(υn2) time and O(υn)memory column by column (line 8).

(iii) The last phase, error estimation, is in O (1) time and O (1) memory (line 9).

Taking (i)–(iii) together, DE P-Rank is bounded by O
(
υn2 + υ6

)
time and O

(
υn + υ4

)
memory in

total.

Error Bound. We show that, when υ < Rank (A), DE P-Rank gives the approximation error:

ϵυ ≤
λCinσ1συ+1 + (1 − λ)Coutσ̄1σ̄υ+1

1 − λCin − (1 − λ)Cout

√
n. (28)

To prove this error bound, let us first define

Mυ := In2 − λCin (Qυ ⊗ Qυ) − (1 − λ)Cout (Pυ ⊗ Pυ) , (29)

where Qυ and Pυ are the rank-υ SVD approximation of Q and P, respectively (see Figure 12). We
first show the following lemma.

Lemma 5. LetM andMυ be the matrices defined by Eqs.(11) and (29). Then the following inequality
holds:

‖Mυ −M‖∞ ≤
√
n‖Mυ −M‖2.

where σi and σ̄i (i = 1,υ + 1) are the i-th largest singular values of Q and P, respectively.

Proof. See Appendix A.12. �

To find the bound of ‖Mυ −M‖2, the following lemma is needed.

Lemma 6. The following inequality holds:

‖Mυ −M‖2 ≤ λCinσ1συ+1 + (1 − λ)Coutσ̄1σ̄υ+1, (30)

where σi and σ̄i (i = 1,υ + 1) are the i-th largest singular values of Q and P, respectively.

Proof. See Appendix A.13. �

Capitalizing on Lemmas 5 and 6, we can obtain Eq.(28).

5.1.3 Tailoring DE P-Rank to SimRank Optimization. In this subsection, we show that our P-Rank
optimization approach proposed in the above two subsections, as a special case, can also substan-
tially improve the SimRank computation of Li et al.’s SVD-based method [23].
In matrix notations, Li et al.’s SimRank model [23] is formulated as follows:

S = Cin · Q · S · QT
+ (1 −Cin) · In . (31)

The existing Li et al.’s SVD-based method [23] requires O(r 4n2) time and O(r 2n2) memory space
to compute SimRank, which is dominated by the expensive Kroneckor product of the SVD decom-
posed matrices. We observe that, when λ = 1, the P-Rank model of Eq.(9) reduces to Li et al.’s
SimRank model. Thus, our P-Rank optimization approach proposed in the above two subsections
also applies to SimRank.
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Fig. 14. Turning an Undirected Graph into a Directed Graph

Specifically, when tailoring DE P-Rank to SimRank by choosing λ = 1, we can get the following
efficient SimRank algorithm, referred to as DE SR, which can significantly speed up Li et al.’s
SimRank computation, as illustrated in Algorithm 2.

Correctness & Complexity. The correctness of DE SR is guaranteed by that of DE P-Rank. It
can be shown that DE SR yields exactly the same result of Li et al.’s method, but is much faster.
Regarding computational cost, we have the following theorem:

Theorem 8. The total computational cost ofDE SR can be bounded byO(n2r +r 6) time andO(rn+
r 4) memory space.

Proof. See Appendix A.14. �

ALGORITHM 2: DE SR (G,Cin,υ)

Input :G: a directed graph, Cin: damping factor, υ: target rank of SVD.

Output :S: SimRank similarity matrix.

1 initialize the adjacency matrix A of G.
2 compute the transition matrix Q← RowNorm

(
AT

)
.

3 if υ is empty then
υ ← Rank (A)

4 decompose the matrix Q via rank-υ SVD:

[U,Σ,V] ← RSVD (Q,υ).

5 memoize the intermediate matrices:

invΣ← Σ−1, Θ← VTU, Λ← (invΣ ⊗ invΣ −Cin(Θ ⊗ Θ))−1
6 reshape the resulting υ2 × 1 vector (Λvec(Iυ)) into the υ × υ matrix Γ:

Γ← Reshape(Λvec(Iυ ))
7 compute the SimRank similarity matrix S :

memoize the intermediate matrix: X← U · Γ
return [S]∗,i ← (1 −Cin) · ([In]∗,i +Cin · X · [U]Ti ,∗) ∀i = 1, 2, · · · ,n

In contrast to theO(r 4n2 + r 6) time andO(r 2n2)memory of Li et al.’s method, our algorithm DE
SR can efficiently reduce the computational cost toO(rn2 + r 6) time andO(rn + r 4)memory space
while guaranteeing the same accuracy of Li et al.’s algorithm.

5.2 Computing P-Rank on Undirected Graphs

Our P-Rank optimization techniques in Subsection 5.1 are designed for directed graphs. It is worth
mentioning that P-Rank, designed to model in-links and out-links, is also suitable for undirected
graphs. This is because we can always turn an undirected graph into a directed graph by replacing
each undirected edge with two directed edges pointing in the opposite directions, as illustrated in
Figure 14. Thus, all our P-Rank optimizations for directed graphs in Subsection 5.1 can be applied
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to undirected graphs as well. However, for undirected graphs, there are more efficient techniques
for computing P-Rank, as will be shown in this subsection.
It is worth mentioning that all our methods in this subsection for computing undirected P-Rank

can also be applied to computing undirected SimRank with only a slight modification. This is be-
cause, for undirected P-Rank, I(x) = O(x) = N(x) for every node x ∈ V , whereN(x) denotes the
neighbor set of node x in an undirected graph. Thus, on undirected graphs, the P-Rank definition
in Eq.(3) becomes

s(u,v) =
(
λ ·Cin + (1 − λ) ·Cout

)
·
∑
(i ,j)∈N(u)×N(v) s(i, j)
|N(u)| |N(v)|

In contrast, the SimRank definition on undirected graphs is

s(u,v) = Cin ·
∑
(i ,j)∈N(u)×N(v) s(i, j)
|N(u)| |N(v)|

Hence, for undirected graphs, the difference between P-Rank and SimRank scores is up to a con-
stant multiplicative factor.
The key idea underpinning our optimization is to diagonalize the adjacency matrix A into Λ

and utilize Λ to compute the P-Rank similarity matrix S from its power series representation: S =∑
+∞
k=0 f (Λk ). Due to undirected graphs, A is symmetric, and thereby diagonalizable to Λ. Since the

power of diagonal matrix Λ is much easier to compute than that of A, the efficiency of P-Rank
computation on undirected graphs can be substantially improved further.
The challenging problem of our method is the characterization of P-Rank similarity S in terms

of the eigenvectors of an undirected graph. To address this issue, we show the following theorem.

Theorem 9. Given an undirected graph, let A = (ai ,j ) ∈ Rn×n be its adjacency matrix, and D be
a diagonal matrix defined by 8

D := diag
(
(∑n

j=1 a1,j )−1, · · · , (
∑n

j=1 an,j )−1
)
∈ Rn×n . (32)

The P-Rank similarity matrix S can be represented as 9

S = (1 − λ ·Cin − (1 − λ) ·Cout) · D1/2U · Ψ · UTD1/2, (33)

where Ψ =
(
Ψi ,j

)
r×r whose (i, j)-entry is expressible as

Ψi ,j =
[UTD−1U]i ,j

1 − (λ ·Cin + (1 − λ) ·Cout)Λi ,iΛj,j
. (34)

Here, U and Λ are the eigen-decomposition of T := D1/2AD1/2, where U ∈ Rn×r is an orthogonal
matrix with its columns being all eigenvectors of T, and Λ = (Λi ,j ) ∈ Rr×r is an diagonal matrix with
its diagonal entries being all eigenvalues of T.

Proof. See Appendix A.15. �

Figure 15 visualizes the efficient computation of P-Rank on undirected graphs by Theorem 9. In
light of this, we next present an algorithm to compute P-Rank on undirected graphs.

Algorithm. The algorithm, referred to as UN P-Rank, is shown in Algorithm 3. It takes as input
an undirected graph G, a weighting factor λ, and in- and out-link damping factors Cin and Cout,
and outputs the exact P-Rank similarity matrix S in G.
8We define 1

0 , 0, thereby avoiding division by zero when the column/row sum of A equals 0.
9D1/2 is a diagonal matrix whose diagonal entries are the principal square root of those of D.
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Fig. 15. Efficiently Computing P-Rank Similarity S on Undirected Graphs by Theorem 9

ALGORITHM 3: UN P-Rank (G,Cin,Cout, λ)
Input :G: an undirected graph, Cin/Cout: in- and out-link damping factors, λ: weight factor.

Output :S: P-Rank similarity matrix.

1 initialize the adjacency matrix A of G .

2 compute the diagonal matrix D = diaд(d1,1, · · · ,dn,n ):
for i ← 1, 2, · · · ,n do

initialize deд(i) ← ∑n
j=1 ai ,j

if deд(i) , 0 then
di ,i ← 1/deд(i)

else
di ,i ← 0

3 compute the auxiliary matrix T← D1/2 · A · D1/2 .
4 decompose T := U · Λ · UT , where Λ = diaд(Λ1,1, · · · ,Λr ,r ) is diagonal and U is orthogonal.

5 compute two auxiliary matrices and one scalar

Γ = (Γi ,j )r×r ← UT · D−1 · U, V← D1/2 · U, C ← λCin + (1 − λ)Cout .

6 compute the matrix Ψ = (ψi ,j )r×r whose entry ψi ,j ← Γi ,j/(1 −C · Λi ,i · Λj,j ) .
7 return [S]∗,i ← (1 −C) · V · Ψ · [V]Ti ,∗ ∀i = 1, 2, · · · ,n .

Algorithm UN P-Rank works as follows. It first initializes the adjacency matrix A (line 1). Uti-
lizing A, it then computes the auxiliary diagonal matrix D whose (i, i)-entry is the reciprocal of
the i-th column sum of A if this reciprocal exists, and 0 otherwise (line 2). UN P-Rank then uses
eigenvalue decomposition (EVD) [7] to factorize T := D1/2AD1/2 as UΛUT , where all columns of U
are the eigenvectors of T, and all diagonal entries of Λ are the eigenvalues of T (lines 3-4). Using
U and Λ, it computes Ψ (lines 5-6) to obtain the similarity matrix S (line 7), as justified by Eqs.(33)
and (34).

Example 16. Consider an undirected friendship graph G4. Each vertex corresponds to a person, and
there is an edge between two people whenever they are friends. The detailed process of computing S

is depicted in Figure 16 step by step. UN P-Rank returns S as the final similarities, which is the exact
solution to Eq.(9).

Complexity. The computational complexity of UN P-Rank is shown in the following theorem.

Theorem 10. For an undirected graph, its P-Rank similarity matrix S is solvable in O(rn2) time
and O(rn)memory, without any loss of exactness.
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Fig. 16. How UN P-Rank works on the undirected graph G4

Proof. See Appendix A.16. �

Compared with the O(rn2 + r 6) time and O(rn + r 4) memory on directed graphs, Theorem 10
significantly reduces the computation of P-Rank on undirected graphs. Moreover, Theorem 10 also
contains the optimization of SimRank on undirected graphs as a special case. Indeed, when λ = 1
andCin = Cout, Theorem 10 reduces to SimRank optimization, which suggests that SimRank scores
on undirected graphs can be accurately computed in O(rn2) time and O(rn) memory. This result,
as opposed to theO(n3 +kn2) time of the existing work [44], substantially improves the efficiency
of SimRank on undirected graphs.

6 EXPERIMENTAL EVALUATION

In this section, a comprehensive empirical study of our P-Rank methods is presented. By using
real and synthetic data, four sets of experiments are conducted to evaluate the accuracy, stability,
computational efficiency in terms of running time and memory space of our proposed approaches.

6.1 Experimental Se�ing

(1) Real-life Data. We used various real-world datasets with different sizes:

Datasets m n Description

small DBLP

98-99 5,929 1,525
DBLP 10-year (from 1998 to 2007) author-

paper information, and the selected papers

are published on 6 major conferences (ICDE,

VLDB, SIGMOD, WWW, SIGIR and KDD)

98-01 13,441 3,208

98-03 24,762 5,307

98-05 39,399 7,984

98-07 54,844 10,682

medium
p2p-Gnutella 147,892 62,586 Gnutella peer to peer network

email-EuAll 420,045 265,214 Email network from a EU research institution

large
web-Stanford 2,312,497 281,903 Web graph of Stanford.edu

Amazon 3,200,440 400,727 Amazon product co-purchasing network
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• DBLP. The DBLP datasets were taken from the DBLP computer science bibliography.10 We
extracted the 10-year (from 1998 to 2007) author-paper information and picked up papers
published by 6major conferences in database and informationmanagement (“ICDE”, “VLDB”,
“SIGMOD”, “WWW”, “SIGIR” and “KDD”). Every two years made a time step. For each time
step, we built a co-authorship network incrementally from the one of previous time step. For
every DBLP network, a node represents an author. We chose the relationship that there is
an edge between authors if one author wrote a paper with another.

• p2p-Gnutella. The p2p-Gnutella network is a snapshot of the Gnutella peer-to-peer file shar-

ing network collected by SNAP.11 Every node denotes a host in the Gnutella network topol-
ogy, and each edge represents a connection between two Gnutella hosts.

• email-EuAll. The email-EuAll network is an email graph generated from a large European
research institution. Given a set of email messages, each node denotes an email address. We
created an edge from node i to j , if i sent at least one message to j .

• web-Stanford. The web-Stanford network is a Stanford web graph taken from Stanford Uni-
versity (stanford.edu). In this network, nodes represent web pages from Stanford University,
and directed edges represent hyperlinks from one web page to another. The dataset was
collected by SNAP in 2002.

• Amazon. The Amazon network is a product co-purchasing graph collected by crawling the
Amazon website. It is based on Customers Who Bought This Item Also Bought feature of the
Amazonwebsite. In this network, nodes denote Amazon products. If a product i is frequently
co-purchased with product j , the graph contains a directed edge from i to j .

(2) Synthetic Data. We used a C++ boost generator to produce graphs, which was controlled
by two parameters: the number of vertices (n), and the number of edges (m). We generated 5
synthetic networks (RAND) by varying n from 100,000 to 1,000,000 with edges randomly chosen.
All the synthetic networks follow the densification power law and linkage generation models.

(3) Compared Algorithms. We have implemented the following algorithms in Visual C++ 10:
(a) DE P-Rank and UN P-Rank, our proposed P-Rank algorithms over directed and undirected
graphs, respectively; (b) Iter, the linearized iterative SimRank algorithm [20] modified to P-Rank
computation plus the radius-based pruning methods of [54]; (c) Memo, the memoization-based
algorithm [29] applied to P-Rank computation; (d) AUG, SimRank optimized algorithm [44] over
undirected graphs.

(4) Parameter Settings. For fairness of comparison, the following parameters were used as default
values (unless otherwise specified).

Notations Description Default Values

λ weighting factor 0.5
Cin in-link damping factor 0.8
Cout out-link damping factor 0.6
υ low approximation rank 25% × Rank(G)
ϵ desired accuracy 0.001

All the experiments were run on a machine with an Intel Core i7-4700MQ CPU @ 2.40GHz
(8CPUs) and 32GB RAM, using Windows 7 Professional 64-bit. Each experiment was repeated 5
times and the average is reported.

10www.informatik.uni-trier.de/˜ley/db/
11https://snap.stanford.edu/data/index.html
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Fig. 17. P-Rank Accuracy

6.2 Experimental Results

6.2.1 Accuracy. In the first set of experiments, we evaluate the impacts of the weighting factor
λ and damping factors Cin and Cout on the accuracy of P-Rank iterations on all the real datasets.
Due to similar trends, we pick up one representative dataset to report the result. The accuracy is
measured by the absolute difference between the iterative and exact P-Rank similarity scores.12

Varying λ and k. We first evaluate the effect of the number of iterations (k) on the accuracy of
P-Rank iterations. Given the damping factorsCin and Cout, we vary the weighting factor λ from 0
to 1. For each pair of vertices and each fixed λ, we vary the number of iterations k from 2 to 20.
The results are reported in Figure 17(a). Note that the logarithmic scale is chosen across the y-axis,
to provide an illustrative look for the asymptotic rate of P-Rank convergence.
Due to the similar tendencies among different datasets, Figure 17(a) only depicts the results on

one representative dataset (p2p-Gnutella). It can be noticed that, for each fixed λ, the downward
lines for P-Rank iterations reveal an exponential accuracy as k increases, which is well consistent
with Theorem 1. We also observe that, when λ increases from 0 to 1, the slope of the lines in Figure
17(a) will increase accordingly. This validates our theoretical results in Theorem 1 that increasing
the weighting factor will decrease the convergence rate of P-Rank iteration, as expected.

Effect of damping factors on k, given ϵ . For guaranteeing the fixed accuracy ϵ , Figure 17(b)
shows the impacts of damping factors w.r.t. the required number of P-Rank iterations (k). Due to
the similar trends among various datasets, we only report the results on one representative dataset
(email-EuAll). Fixing ϵ = 0.001 and Cout = 0.6, we vary Cin from 0.1 to 0.9. (For space constraints,
a similar result of varying Cout is omitted.) It can be noticed that when λ = 0, the curve in Figure
17(b) approaches a horizontal line. This is because P-Rank in this case boils down to the reversed
SimRank model with no consideration of in-links, which makesCin insensitive to the final P-Rank
score. In the case of 0 < λ ≤ 1, the iteration number k shows a general increasing tendency as
Cin grows. This tells that small choices of damping factors may reduce the number of iterations
required for attaining a fixed accuracy, and hence, improves the efficiency of P-Rank.

Varying damping factorsw.r.t. ϵ . Figure 17(c) evaluates the impact of bothCin andCout w.r.t. the
accuracy of P-Rank. Due to similar results on different datasets, we illustrate only the results on
DBLP (1998-2007) dataset. We fix k = 10 and λ = 0.5, and vary Cin and Cout in x-axis and y-axis,
respectively. It can be discerned that there is a 3D shaded surface from the average of P-Rank

12To select the P-Rank “exact” solution s(·, ·), we used the Cauchy’s criterion for convergence and regarded the 100-th

iterative s (100)(·, ·) score as the “exact” one s.t. |s (100)(·, ·) − s (101)(·, ·) | ≪ 1 × 10−10.
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Fig. 18. Effects of Hyper-Parameters on P-Rank Stability

#
Most Similar Authors
w.r.t. Dr. Dengfeng Gao

(Cin,Cout)
(0.5, 0.4) (0.7, 0.6) (0.9, 0.8)

1 Thomas Phan 1 1 1
2 Rafae Bhatti 2 3 2
3 Masahiro Ohkawa 3 2 3
4 Masayuki Numao 4 4 4
5 Christine Robson 5 5 5
6 Yuji Watanabe 6 6 6
7 Hirofumi Matsuzawa 7 7 7
8 Merrie Brucks 8 8 8
9 L. Edwin McKenzie 9 9 9
10 Giedrius Slivinskas 10 10 10
11 Stardas Pakalnis 11 11 11
12 Shohei Hido 12 12 12
13 Harunobu Kubo 13 13 13
14 Yasuhiko Morimoto 34 14 14
15 Takeshi Tokuyama 14 15 15
16 Vishal S. Batra 15 40 16
17 Mahadevan Subramanian 16 16 17
18 Hisashi Kashima 19 17 18
19 Takeshi Fukuda 17 18 19
20 Khaled K. Al-Taha 18 19 60

21 Tsuyoshi Id 20 20 20
22 Simonas Saltenis 21 22 28

23 Rimantas Benetis 22 23 29
24 Gytis Karciauskas 23 24 30

25 Inderpal Narang 24 21 21
26 Laurynas Biveinis 25 25 31
27 Wen-Syan Li 30 26 22
28 Shinichi Morishita 26 27 23
29 Kyoji Hirata 27 33 24
30 Yoshinori Hara 28 34 25

(a) Varying (Cin,Cout)

#
Most Similar Authors
w.r.t. Prof. Xiaofei He

λ

0.5 0.7 0.9

1 Wanli Min 1 1 1
2 Kun Zhou 2 2 2
3 Shaozhi Ye 3 3 3
4 Lawrence J. Henschen 4 4 4
5 Daniel C. Fain 5 5 5
6 Wei Vivian Zhang 6 6 6
7 Fei Wu 7 7 8
8 Yuanzhi Zhang 8 8 9

9 Deng Cai 9 9 7
10 Cheong Youn 10 10 10
11 Wiley Greiner 15 12 11
12 Shengnan Cong 11 11 21

13 David A. Padua 12 13 12
14 Andrew Y. Wu 13 14 13
15 Michael Garland 14 15 14
16 Benjamin Rey 16 16 15
17 Yuguo Chen 17 22 16
18 Yunxiao Ma 20 17 23
19 Qing Yu 24 24 18
20 Xianghong Jasmine Zhou 18 19 19
21 Haifeng Liu 19 20 20
22 Behzad Shahraray 21 21 17

23 Avideh Zakhor 22 23 50
24 Noboru Babaguchi 23 18 24

25 Ji-Rong Wen 54 53 22
26 Nebojsa Stefanovic 25 31 29
27 Yifan Li 26 25 32

28 Yiwen Yin 27 26 26
29 Zaiqing Nie 32 27 27
30 Jean Hou 28 28 41

(b) Varying λ

Fig. 19. �alitative Case Studies for P-Rank Stability

similarity accuracy for all vertex-pairs on z-axis. The P-Rank similarity residuals become huge
only whenCin andCout are both increasing to 1; and the iterative P-Rank results become accurate
when Cin and Cout < 0.6. This validates that small choices of damping factors are suggested in
P-Rank iterations in order to improve the accuracy of P-Rank similarities.
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6.2.2 Stability. The second set of experiment is the evaluation of P-Rank stability. We show how
the hyper-parameters (e.g., weight factor λ and damping factors (Cin,Cout) affects the P-Rank sta-
bility, i.e., how the similarity ranking accuracy on finding similarity objects changes in response
to graph perturbations.
For each real graph G, we randomly choose 100 nodes as a set of queries Q and randomly

remove 10% edges to construct a perturbed graph G̃. For each query q ∈ Q, we assess the P-Rank
similarities {s(⋆,q)} between all nodes and queryq on the originalG and perturbed G̃, respectively,
and then evaluate the correlations of the similarity ranks before and after graph perturbations, by
using the following three metrics (Kendall’s τ , Spearman’s ρ, Pearson’s γ ):

• Kendall’s τ is defined as

τ =
2

N (N − 1)
∑
{i ,j }∈P

K̄i ,j (τ1, τ2),

with K̄i ,j (τ1, τ2) = 1 if i and j are in the same order in τ1 and τ2, and otherwise 0. Here, τ1
and τ2 are the rankings of elements in two lists, P is the set of unordered pairs in τ1 and τ2,
and N is the number of elements in a ranking list.
• Pearson’s γ is defined by

γ =

∑N
i=1 (xi − x̄)(yi − ȳ)√∑N

i=1 (xi − x̄)2
√∑N

i=1 (yi − ȳ)2

where {xi }Ni=1 and {yi }Ni=1 are two similarity ranks, and x̄ = 1
N

∑N
i=1 xi and ȳ =

1
N

∑N
i=1yi .

• Spearman’s ρ is given by

ρ = 1 − 6

N (N 2 − 1)

N∑
i=1

d2i ,

where di is the ranking difference between the i-th elements in two lists.

For each measure, we take the average value for the rank correlations over all the queries in Q.
Effects of Damping Factors Cin and Cout on Ranking Stability.We first fix the weight factor
λ = 0.4, and vary the damping factors Cin and Cout to evaluate the stability of P-Rank on each
dataset. Due to similar trends on different datasets, we only show the results on one dataset (DBLP).
Figure 18(a) depicts how the ranking accuracy on finding similar authors changes in response to
graph perturbations when we varyCin andCout from 0.3 to 0.9. From the results, we notice that, for
the same perturbations on DBLP , when Cin and Cout are smaller, the ranking accuracy measured
by Kendall’s τ , Spearman’s ρ, Pearson’s γ are all higher, meaning that small choices of damping
factors will make P-Rank similarity more stable to the graph perturbations. When (Cin,Cout) is
increased from (0.4, 0.3) to (0.9, 0.8), there is a sharp decrease in the ranking accuracy, which
decreases from 0.86 to 0.69 by Kendall’s τ , from 0.95 to 0.80 by Spearman’s ρ, and from 0.94 to 0.71
by Pearson’s γ . This is because larger (Cin,Cout) induces a large P-Rank condition number which
can make P-Rank less stable in response to graph perturbations. This result is well consistent with
our theoretical analysis in Theorem 7.

Effects of Weight Factor λ on Ranking Stability.We next fix the damping factors (Cin,Cout) =
(0.8, 0.6), and vary the weight factor λ from 0.3 to 0.9 to see how this affects the stability of P-Rank.
The results are reported in Figure 18(b). We can see that, when λ grows from 0.3 to 0.9, the ranking
accuracy in response to the same graph perturbations decreases from 0.81 to 0.73 by Kendall’s τ ,
from 0.92 to 0.85 by Spearman’s ρ, and from 0.87 to 0.78 by Pearson’s γ . This implies that, for the
same graph perturbations, small choices of λ will make P-Rank similarity rankings less stable. The
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Fig. 20. P-Rank Computational Time Efficiency

reason is that small λ will make the upper bound of the P-Rank condition number small, which
guarantees that perturbations in graph structure will not be largely magnified to perturbations in
similarity ranking results. This agrees well with our stability analysis of P-Rank in Subsection 4.2.

Two Qualitative Case Studies on Ranking Stability. We provide two qualitative case studies
to illustrate the impact of hyper-parameters on the ranking stability of P-Rank for finding top-30
most similar authors w.r.t. a given query author. We issue our query on the original DBLP and the
perturbedDBLPwith 10% edges randomly removed, respectively, and compare their perturbations
in ranking results. In the first case study, we issue the query “Dr. Dengfeng Gao”, and analyse the
stability for finding its top-30most similar authors.We fixweight factor λ = 0.4 and vary (Cin,Cout)
from (0.5, 0.4) to (0.9, 0.8). The results are shown in Figure 19(a), where the first two columns are
the ranks and the corresponding similar authors w.r.t. “Dr. Dengfeng Gao” on the original DBLP,
and the last three columns are the ranks under different settings of damping factors (Cin,Cout). We
see that when (Cin,Cout) is small, the number of “flips” in ranks (underlined bold font) is small.
When (Cin,Cout) increases to (0.9, 0.8), there are a mass of “flips” in ranks. This implies that the
large settings of damping factors (Cin,Cout) will make the ranking results less stable, as expected.
Similarly, for the second case study, we issue the query “Prof. Xiaofei He”. Fixing the damping

factors (Cin,Cout) = (0.8, 0.6), we vary the weight factor λ from 0.5 to 0.9. Figure 19(b) depicts the
ranking perturbations w.r.t. the perturbations of DBLP graph structure for finding similar authors
under different settings of the weight factor λ. We notice that, when λ grows from 0.5 to 0.9, the
number of ranking “flips” increases from 5 to 10, which indicates that P-Rank is unstable for large
λ. This result is consistent with our stability analysis in Subsection 4.2.

ACM Trans. Web, Vol. 37, No. 4, Article 111. Publication date: August 2019.



111:34 Yu et al.

6.2.3 Computational Time. The third set of experiment is the evaluation of the computational time
of DE P-Rank and UN P-Rank and their scalability over various real-life and synthetic datasets,
including both directed and undirected networks.

Time and Scalability on Real Datasets. Figure 20(a) compares the computational time of DE
P-Rank and UN P-Rank with those of Memo and Iter on a variety of real directed graphs (p2p-
Gnutella, email-EuAll, web-Stanford, Amazon) and five undirected DBLP networks. The logarith-
mic scale is used on y-axis. The number of iterations for Iter and Memo is set to 10. Note that
different time unit is chosen across the vertical axis in the two subplots of Figure 20(a) to provide
a clear look for each bar shape.
From the results, we can discern the following: (1) On all real-life datasets, DE P-Rank is consis-

tently much faster than other competitors. Fox example, on email-EuAll, the computational time
of DE P-Rank (2,025s) is 7.96x faster than Iter (16,110s), whereas Memo crashes due to memory
explosion. This is because DE P-Rank takes advantage of the low-rank structure of real networks,
and eliminates significant amounts of unnecessary computations in its tensor products. Thus, by
using DE P-Rank algorithm, the final P-Rank similarity matrix can be represented in a low-rank
decomposition form, as opposed to the Memo that need to memorize all pairs iterative similarity
scores of the previous iteration to compute those in the current iteration. (2) When the size of
datasets grows larger, DE P-Rank and Iter, unlikeMemo, can scale well at large scale, but Iter runs
5-10x slower thanDE P-Rank. The reason is that Iter is based on the SimRank-like linearized model
to optimize the memory efficiency, which will increase the number of iterations to avoid memo-
rizing intermediate results. In contrast, DE P-Rank is non-iterative by nature, and its scalability is
guaranteed by exploiting the low-rank structure of the P-Rank similarity matrix. (3) The compu-
tational time of all the algorithms on DBLP increases with the increasing number of nodes. On all
the DBLP datasets, UN P-Rank performed the fastest, and DE P-Rank the second. This is because
UN P-Rank can fully utilize the undirected graph structure of DBLP (that is, the symmetry of
its adjacency matrix) to speed up the computation of P-Rank similarities further, which is consis-
tent with our theoretical time complexity bounds derived from Theorems 7 and 10. (4) On all the
datasets, the computational time of the state-of-the-art SemSim is 1.7x–2.3x faster than Iter . This
is because SemSim leverages a pruning technique based on the Monte-Carlo framework, in which
only a fraction of important paths have been sampled as opposed to Iter that iteratively exploits
the entire graph structure. However, DE P-Rank and UN P-Rank consistently outperform SemSim
by 3–7.6 times on all the datasets. The reason is that the low-rank method sof DE P-Rank and
UN P-Rank can efficiently aggregate the retrieval of nodes having similar neighboring structures,
thus eliminating repeated path traversal for similarity computation. In contrast, SemSim at each
time samples pairs of paths for assessing just a single-pair node similarity. A number of duplicate
similarity computations among different pairs of nodes cannot be merged and eliminated.

% of Time in Each Phase. On every real-world dataset, we next evaluate the percentage of the
computational time for DE P-Rank in each phase (that is, the pre-processing phase, and the simi-
larity computation phase). The results are reported in Figure 20(b). It can be noticed that, on each
dataset, the percentage of time in the pre-processing phase is around 16.4%–20.8%,whereas the per-
centage of the time in the similarity computation phase is around 79.9%–87.3%. These indicate that
the similarity computation phase is consistently far more time-consuming than the pre-processing
phase, which is consistent with our complexity analysis in Subsection 5.1.

Time and Scalability on Synthetic Datasets. By varying the number of vertices from 200K
to 1M, we next compare the computational time of DE P-Rank and UN P-Rank with those of
Memo and Iter on synthetic datasets, both directed and undirected, respectively. The results are
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Fig. 21. P-Rank Memory Space Usage

depicted in 20(c), in which y-axis is in the logarithmic scale. It can be seen that (1) in all cases
when Memo does not fail, the computational time of DE P-Rank and UN P-Rank consistently
outperforms those of Memo and Iter by 5–8 times, highlighting the effectiveness of our proposed
non-iterative model for P-Rank similarity assessment. (2) On undirected synthetic datasets, UN
P-Rank is always more than one order of magnitude faster than Iter and about 5 times faster than
DE P-Rank, respectively. Similar to the results on real-world datasets, with the increasing size of
the synthetic networks,Memo fails due to memory crash, butDE P-Rank andUN P-Rank can scale
well on large networks. The reason is that, for Iter andMemo, there are a large number of repeated
iterations to reach a fixed-point of P-Rank similarity scores, which impedes their scalability for
similarity computation over large networks.

Time of UN P-Rank and AUG on Synthetic Data. To compare the computational time of UN
P-Rank and AUG, we next compute SimRank similarities over undirected synthetic datasets. For
fairness of comparison, we set λ = 1 for UN P-Rank. Thus, UN P-Rank reduces to SimRank, a
special case of P-Rank with no consideration of out-links. By varying the number of vertices from
200K to 1M over synthetic datasets, we report the results in Figure 22(a). It can be seen that the
computational time of UNP-Rank is approximately 3 times faster than that of AUG. This is because,
after eigen-decomposition, AUG requires extra iterations to be performed in its eigen-subspace,
and thus takes a significant amount of time to perform a number of iterations. In contrast, UN P-
Rank can compute similarities in terms of eigenvectors with no need for any additional iterations.

6.2.4 Memory Space. The fourth set of experiment is the evaluation of the memory space of DE
P-Rank and UN P-Rank on a variety of real-life and synthetic datasets.
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Memory Usage on Real Datasets. Figure 21(a) evaluates the memory consumption of DE P-
Rank and UN P-Rank on directed real datasets (p2p-Gnutella, email-EuAll, web-Stanford, and
Amazon) and undirected DBLP datasets. It can be observed that (1) when the size of these real
datasets grows, the memory space of each algorithm increases. This is well consistent with our
space complexity analysis in Section 5. (2) In all cases whenMemo does not crash, the memory of
DE P-Rank is consistently smaller than that of Memo. For example, on p2p-Gnutelladataset, the
memory of DE is almost 4.5 orders of magnitude smaller than Memo. This is because Memo re-
quires quadratic storage to maintain all pairs of similarity scores. In contrast, DE P-Rank repre-
sents the similarity matrix into the low-rank form, which is the product of three small matrices,
without the need to store the entire dense similarity matrix into memory. In addition, for DE P-
Rank and UN P-Rank, the computation of the similarity matrix can be performed column-wisely,
unlikeMemo that requires to prepare all pairs of similarities of the previous iteration. (3) On each
dataset, Iter requires less memory space than DE P-Rank, but the computational time of Iter is
much more expensive than that of DE P-Rank. This is because Iter is based on a linearized itera-
tive matrix equation for similarity computation, which does not need more memory to perform
SVD decomposition and tensor products. However, since Iter is not based on low-rank matrix de-
composition, it cannot take advantage of the low-rank structure of the real networks, and thereby
entails high computational time. (4) On each DBLP dataset, the memory of UN P-Rank is smaller
than that of DE P-Rank, and have comparable space with Iter. This space improvement is due to its
non-iterative model that does not store the intermediate results of several tensor products. (5) The
memory consumption of SemSim consistently retains the same order of magnitude as that of DE
P-Rank on all the datasets. On large datasets, the memory of SemSim is almost slightly larger than
DE P-Rank, whereas on small DBLP datasets, the extra space of SemSim relative to DE P-Rank is
more pronounced, which is due to the storage of the random walk index built by SemSim.

% of Memory in Each Phase on Real Datasets. Figure 21(b) illustrates the percentage of mem-
ory usage in each phase of DE P-Rank over four real datasets, respectively. From the results, we
can see that the percentage of memory consumption in the pre-processing phase is stable around
20.7%–27.3%, whereas its percentage in the similarity computation phase consistently increases
to 72.2%–79.3%. This tells us that the similarity computation phase requires much more storage,
which is mainly due to the memorization of the tensor products for computing the auxiliary matrix
Λ. This result agrees well with our space analysis in Subsection 5.1.

Memory Usage on Synthetic Datasets.We compare the memory usage of DE P-Rank and UN
P-Rank with that of Memo and Iter on both directed and undirected synthetic datasets. For each
type of datasets, we vary the number of nodes from 200K to 1M. Figure 21(c) shows the results on
their memory usage. We can discern the following. (1) With the increasing number of nodes, the
memory usage of DE P-Rank and UN P-Rank increases. This is because the growing size of the
synthetic networks will lead to the increasing size of the decomposed matrices for P-Rank similar-
ity computation, which conforms with our theoretical space complexity analysis in Section 5. (2)
When the number of nodes is small,Memo does not fail but its memory consumption is one order
of magnitude larger than DE P-Rank. This considerable increase is due to the memorization of all
pairs of iterative similarities. In comparison,DE P-Rank andUN P-Rank adopt novel non-iterative
models that compute all pairs of similarities column by column. (3) The memory space required
by Iter is less than that of DE P-Rank and UN P-Rank. This is because Iter utilizes a linearized
model to iteratively compute similarities, which does not need to store the intermediate results
of tensor products for the low-rank factorization. (4) On undirected networks, UN P-Rank consis-
tently yields less memory usage thanDE P-Rank. The reason is that, unlikeDE P-Rank on directed
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graphs,UNP-Rank takes advantage of the symmetry of the adjacencymatrix for undirected graphs
without the need to store the auxiliary matrices Σ and Λ.

Memory of UN P-Rank and AUG on Synthetic Datasets. As one special case when λ = 1,
we now compare the memory space of UN P-Rank and AUG over undirected synthetic datasets
for SimRank similarities computation. We vary the number of nodes from 200K to 1M and test
their memory efficiency. The results are depicted in Figure 21(d). We can notice that, when the
size of graphs grows, the memory consumptions for both UN P-Rank and AUG increase. However,
the increment of AUG is faster than that of UN P-Rank. In addition, in all cases, the memory
space of AUG is consistently smaller than that of UN P-Rank. The reason is that AUG requires
additional memory to store iterative low-rank similarity scores in the compact space after eigen-
decomposition, whereas UN P-Rank can directly obtain the resulting similarities with no need to
iteratively compute similarity low-rank scores, thus saving additional memory space.

6.2.5 Accuracy. We next compare the accuracy of DE P-Rank and UN P-Rank with those of
Memo and Iter on real-world datasets. Due to the similar tendencies, we only report the results
on DBLP.
To measure the accuracy of P-Rank similarity scores, the following three metrics are adopted:

Kendall’s τ , Spearman’s ρ, and NDCG. The definitions of first two measures (Kendall’s τ and Spear-
man’s ρ) are given in Subsection 6.2.2. NDCG at position p w.r.t. query q is given by

NDCGp (q) =
1

IDCGp (q)

p∑
i=1

2s(i ,q) − 1
log2 (1 + i)

,

where s(i,q) is the similarity score between nodes i and q, and IDCGp (q) is a normalized factor
ensuring the “true” NDCG ordering to be 1.
To produce the ground truth on real DBLP dataset, more than 20 researchers are hired from

database and data mining areas to validate the “true” relevance of each retrieved co-authorship.
They can refer to the “coauthor paths” in Microsoft Academic Search13 to visualize the “degrees of
separation” between two collaborators. The results are rendered by a majority vote of feedbacks.

QuantitativeResults onRealDatasets.We randomly sample 100 queries from theDBLP dataset.
These queries cover a board range of authors in DBLP, from newcomers to distinguished scholars.
For each query q, we use the above three measures to evaluate the accuracy of four algorithms,
respectively, by assessing their P-Rank similarities s(q,v) for all nodes v ∈ V. For algorithms
DE P-Rank and UN P-Rank, we also vary the target approximation rank υ from 0.5r to 0.8r . The
results are depicted in Figure 22(a). It can be discerned that (1) for every measure, the accuracies
of all the algorithms are above 0.8. In particular,Memo and Iter have the same accuracy, and they
are only slightly higher than DE P-Rank and UN P-Rank. For example, for Kendall’s τ measure,
the accuracies of Memo and Iter (0.95) are slightly higher than those of DE P-Rank and UN P-
Rank (0.93 when υ = 0.8r ). This indicates that our low rank υ = 0.8r approximation will not
sacrifice much accuracy while enabling a significant speedup in the similarity computation. (2)
When the low rankυ decreases from 0.8r to 0.5r , the accuracies of DE P-Rank andUNP-Rank drop
just a little, but are still acceptable (> 0.8) in practice. Thus, for some real applications (e.g., top K
search) when small errors are tolerated, we can choose a moderate low rank υ to achieve a high
computational speedup. This result is consistent with our theoretical bound in Subsection 5.1. (3)
For each accuracymeasure, given the low rank υ, the accuracies of DE P-Rank and UN P-Rank are
exactly the same. This is because DBLP is an undirected graph, and thus the resulting similarity
scores of DE P-Rank are the same as those of UN P-Rank.

13http://academic.research.microsoft.com/VisualExplorer
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(a) Average Accuracy over 100 queries on DBLP

DE / UN (υ/r = 0.5) DE / UN (υ/r = 0.8) Memo / Iter

1 Shivnath Babu Shivnath Babu Shivnath Babu
2 Yingwei Cui Yingwei Cui Yingwei Cui
3 Jun Yang Chris Olston Chris Olston
4 Chris Olston Jun Yang Jun Yang
5 David J. DeWitt Arvind Arasu Rajeev Motwani
6 Arvind Arasu Rajeev Motwani Arvind Arasu
7 Rajeev Motwani Anish Das Sarma Utkarsh Srivastava
8 Utkarsh Srivastava Alon Y. Halevy David J. DeWitt
9 Glen Jeh Omar Benjelloun Omar Benjelloun
10 Alon Y. Halevy David J. DeWitt Alon Y. Halevy

(b) Top-10 Similar Authors of “Jennifer Widom” on DBLP

Fig. 22. P-Rank Accuracy

A Qualitative Case Study. To demonstrate the effectiveness of our proposed methods, we next
provide a real case study onDBLP (98–07) that retrieves the top K most similar authors for a given
query q. For algorithmsDE P-Rank and UN P-Rank, we vary the target approximation rank υ from
0.5r to 0.8r . We randomly sample 100 queries. Due to the space constraints, Figure 22(b) depicts
the top-10 similarity ranking results w.r.t. the query “Jennifer Widom” according to the P-Rank
similarity scores returned by DE P-Rank, UN P-Rank, Memo and Iter, respectively. These people
were frequent co-authors of the 6 major conference papers with “Jennifer Widom” from 1998 to
2007. It can be noticed that the ranking results for different algorithms on DBLP (98-07) follow
our common sense pretty well. When υ increases from 0.5r to 0.8r , the similarity ranking results
returned by DE P-Rank and UN P-Rank almost preserve the relative order of those byMemo and
Iter. Hence, DE P-Rank and UN P-Rank can be effectively used for P-Rank top-K nearest neighbor
search on real-world networks.

6.2.6 Effect of Target Low Rank υ. To evaluate the efficiency of DE P-Rank algorithm further,
we next investigate the impact of the target low rank υ on its similarity computational time and
accuracy by using synthetic datasets.

Speed-Accuracy Trade-off. We generate four networks with the number of nodes n ranging
from 60,000 to 120,000. For each network, we vary the target low rank υ from 20% × r to 100%× r ,
with r being the rank of its adjacency matrix. The results are depicted in Figures 23(a) and 23(b), in

ACM Trans. Web, Vol. 37, No. 4, Article 111. Publication date: August 2019.



Efficient Pairwise Penetrating-Rank Similarity Retrieval 111:39

20 30 40 50 60 70 80 90 100
0

1K

2K

3K

Approx. Ratio υ
r × 100%

C
P
U

T
im

e
(s
ec
)

|V| = 60 000

|V| = 80 000

|V| = 100 000

|V| = 120 000

(a) Target Rank υ w.r.t. Time

10 20 30 40 50 60 70 80
0.2

0.4

0.6

0.8

1

Approx. Ratio υ
r × 100%

A
v
e.

N
D
C
G

1
0
0

|V| = 60 000

|V| = 80 000

|V| = 100 000

|V| = 120 000

(b) Target Rank υ w.r.t. NDCG

16 32 64 128 256 512 1024 ×102

64

128

256

512

1024

×102

.12 .08 .05 .02 .005 .002

.09 .07 .03

.03

.03

.06

.007

.006

.005

.007

.003

.002

.002

.002 Mean Absolute Error

Targe Rank υ

A
ct

u
al

R
an

k
r

(c) Target Rank υ w.r.t.MAE

Fig. 23. Effect of Target Rank υ for DE P-Rank

which the target low rank υ is a speed-accuracy trade-off. We can discern the following. When υ
get increasingly close to r (i.e., the approximation ratio υ

r approaches 1), high accuracy (NDCG30)
can be expected (Figure 23(b)), but more computational time needs to be consumed (Figure 23(a)).
This tells that adding the target low rank υ can produce smaller errors for similarity computation,
but will sacrifice its computational time. As an extreme case of υ = r , DE P-Rank will produce
exact P-Rank similarity scores.

Target Rank υ w.r.t. Accuracy. We next vary the target rank υ on five synthetic datasets, and
evaluate the impact of υ on the accuracy of DE P-Rank. To measure the accuracy, we adopt the
Mean Absolute Error (MAE) defined as follows:

MAE =
1

n2

∑
u ,v ∈V

|s (u,v) − ŝ (u,v)|,

where s (u,v) is the exact similarity from DE P-Rank (υ = r ), and ŝ (u,v) its rank-υ approximate
similarity (υ < r ). Fixing the number of nodes (n) and the number of edges (m), we generate five
networks with the rank r growing geometrically from 6,400 to 100,000. Figure 23(c) illustrates the
accuracy (MAE) of DE P-Rank when we vary υ from 1,600 to r for each network, in which x-axis
represents the target approximation rank we use, and y-axis denotes the rank r of the adjacency
matrix for a given network. The number enclosed in a circle ◦ corresponds to the mean absolute
error obtained by the rank υ approximation of DE P-Rank, and the size of the circles is proportional
to the mean absolute error. It can be observed that (1) in all cases, the size of circle shrinks when
υ approaches r . This implies that the large choice of υ will reduce the error of the rank υ approx-
imation for DE P-Rank, and thereby can achieve high accuracy. (2) The size of the circles in the
diagonal direction (ր) remains almost the same. This tells us that, for the rank υ approximation,
the accuracy of DE P-Rank mainly hinges on the approximation ratio υ

r
.

7 RELATED WORK

There has been a surge of studies on link-based analysis (e.g., [3, 14, 19, 26, 32, 35, 40, 43, 45, 55])
over the last decade. Google PageRank is a link analysis model that has become popular since the
well-known result of Larry Page [32] for ranking web pages. Unlike P-Rank that provides a node-
pair similarity measure, PageRank is a node ranking algorithm that is independent of user queries.
Since then, a large body of work has been proposed for measuring node-to-node similarities that
are based on the topology of a network. Some of these attractive similarity models include P-
Rank [54] and its variations (e.g., SimRank [14], SimRank++ [2], RoleSim [17], MatchSim [27]),
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Personalized PageRank (PPR) [10], RandomWalkwith Restart (RWR) [38], C-Rank [41], SimFusion
[40], and CoSimRank [52], to name a few.
The P-Rank model was first proposed by Zhao et al. [54] who noticed the limited information

problem of Jeh and Widom’s SimRank model [14], that is, SimRank similarity scores consider
only in-link relationships of entities whereas out-link relationships are totally neglected. However,
the P-Rank model refines SimRank by jointly considering both in- and out-links of entity pairs.
The conventional algorithm for P-Rank similarity computation is based on a fixed-point iteration,
which requires O(kn4) time and O(n2) memory for k iterations. To optimize the computational
efficiency, Zhao et al. [54] have proposed a radius- or category-based pruning technique that can
reduce the computation of P-Rank to O(kd2n2) time. However, the memory requirement is still
bounded byO(n2) space. In addition, this approach is heuristic in nature, and thereby the accuracy
of the pruning result is not guaranteed.
Recent years have witnessed an upsurge of interest in the optimization of SimRank similarity

computation that can be modified to P-Rank as well. The existing interesting algorithms include
iterative amortization-based methods [20, 29], low rank matrix-based methods [6, 23, 44], parallel
computing methods [11, 25], local partial-pairs computing methods [5, 12, 30, 36, 49], uncertain
schemes [56], and dynamical incremental methods [23, 34, 46]. Among these methods, two pieces
of work [6, 20] are worth mentioning as they are the state of the art for iterative and non-iterative
SimRank models, respectively.
Kusumoto et al. [20] have proposed a linearized recursive formula for SimRank search problem.

This algorithm is a very scalable on large networks with billions of edges. Its main idea can be
directly extended to P-Rank search problem, which requires only O(m) memory, but its compu-
tational cost is expensive, yielding O(k2nm) time for evaluating the similarities of all (n2) pairs
of nodes. In comparison, our algorithm is non-iterative, which can return exact similarity scores.
Regarding the computational efficiency, our method can be 5-10x faster while sacrificing a little
memory. However, the additional memory requirement does not affect the scalability of our algo-
rithm over large networks.
Fujiwara et al. [6] proposed the following non-iterative model for SimRank computation

1

C
(WT )−1S − SW = 1 −C

C
(WT )−1

whereW is the transpose of the column-normalized adjacency matrix, S is the SimRank similarity
matrix, andC is the damping factor. This model can be readily generalized to P-Rank computation.
However, according to the above matrix equation, the inverse of the normalized adjacency matrix
(WT )must exist. This indicates that this non-iterative model is well applicable to real-life networks
whose rank of the adjacency matrix is full (that is, rank(WT ) = n).

In the case of rank(WT ) < n, Li et al. [23] proposed a non-iterative matrix-based scheme for
SimRank computation, which requiresO(υ4n2) time andO(υ2n2)memory yet with no theoretically
guaranteed error bound for directed graphs. These techniques, if directly generalized to P-Rank
computation, will produce the same computational complexity, which is rather expensive. In con-
trast, our methods first provide optimization techniques that can significantly speed up the compu-
tation of Li et al.’s SimRank algorithm toO(υn2+υ6) time andO(υn+υ4)memory, with guaranteed
accuracy. Moreover, we extend our proposed optimization techniques to P-Rank computation fur-
ther, and also derive a more efficient algorithm over undirected graphs that entails O(υn2) time
and O(υn)memory. We are also the first to analyze the stability of P-Rank measure.
Lizorkin et al. [29] leveraged a novel function for partial sums memorization, which can signif-

icantly speed up the computation of SimRank to O(kn3) time for k iterations. Later, one piece of
work [46] made a further attempt towards this direction, by proposing fine-grained memorization
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algorithms. All these approaches can be extended to P-Rank computation, but they require O(n2)
memory to store all pairs of similarities at the previous iteration. Most recently, to avoid O(n2)
memory, some efficient iterative methods [20, 49] have been proposed. However, they differ from
this work in that those algorithms are iterative in nature, whereas our method is non-iterative and
can compute similarity matrix column by column accurately.
An accuracy estimation for SimRank iterations was addressed in [29]. However, directly apply-

ing the SimRank bound [29] to P-Rank iterations is less tight. This is because, as shown in Section 3,
the upper bound we derived in Theorem 1 is always smaller (tighter) than the simple linear com-
bination of the SimRank bound [29] for P-Rank accuracy estimation. We have also provided an
illustrative example to show the difference (tightness) between these two bounds in Example 2.
For undirected networks, a time-efficient algorithm AUG [44] was proposed for SimRank com-

putation, which requires O(n3 + kn2) time and O(n2) memory. In contrast, this work significantly
reduces the computational bound of [44] to O(rn2) time and O(rn) memory without any loss of
exactness.
In recent years, there has also been a host of work on efficient pairwise similarity search. Tian

and Xiao [37] propose an excellent index structure, called SLING, to efficiently retrieve SimRank
single-source similarities, which guarantees the worst-case error in each SimRank score returned.
Most recently, Milo et al. [42] present SemSim, a variant of SimRank, that exploits semantic-aware
random walk while preserving its scalable computation based on the probabilistic framework of
SLING. To the best of our knowledge, this is the state-of-the-art algorithm for efficiently retrieving
a single pair SimRank score, which utilises importance sampling techniques along with effective
pruning rules and maintains a small error rate. However, when SemSim is extended to evaluate
more pairs of nodes, unlike ourmethods that efficiently aggregate the retrieval of nodes that have a
similar neighbouring structure, there may exist repeated traversal of paths for SemSim to evaluate
all pairs of similarities.
Hamedani and Kim [9] pointed out a SimRank-like pairwise normalization problem (PNP) also

exists in P-Rank, where the P-Rank score of a pair of nodes referenced commonly by a large num-
ber of nodes tends to be lower than that of another pair of nodes commonly referenced by a small
number of nodes. They modified the normalization factors of P-Rank to resolve this problem. Yu
and Julie [49] proposed an efficient scheme of partial-pairs SimRank search for similarity join on
sizable graphs. Zhang et al. [53] provided extensive experimental studies on many existing Sim-
Rank algorithms in a unified environment. Their results demonstrate that, despite recent research
efforts, there are still much space of improvement for the computational cost and accuracy of
existing similarity search algorithms.
Regarding dynamical similarity search, Shao et al. [34] and Jiang et al. [16] proposed TSF and

READS indexing techniques, respectively, to efficiently handle top-k SimRank search over dynamic
graphs. Liu et al. [28] proposed ProbeSim, an index-free approach for dynamic single-source and
top-k SimRank queries with accuracy guarantees. Yu et al. [47] proposed a dynamical algorithm
for incrementally assessing all-pairs SimRank scores on time-varying networks. Wang et al. [39]
designed an efficient incremental single-source SimRank search over dynamic graphs. However,
it seems difficult to directly extend these incremental SimRank techniques to dynamic P-Rank
computation since the changes to the P-Rank similarity score in response to the graph perturbation
cannot be simply captured by resampling the incoming paths, given the fact that outgoing edges
interleaved with incoming edges will have a recursive impact on the changes to the resulting P-
Rank similarity score.
More recently, there are a variety of approaches on graph neural networks that seek to learn rep-

resentations that encode structural information about the graph, such as DeepWalk [33], node2vec
[8], GraRep [4], and Graph Convolutional Networks (GCN) [21]. Perozzi et al. [33] proposed a
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pioneering approach, DeepWalk, for learning latent representations of nodes in a network. It is
the pioneering algorithm proposing node embedding learned in an unsupervised manner, which
highly resembles word embedding in terms of the training process. DeepWalk performs random
walks on nodes in a graph to generate node sequences, based on which, it then runs Skip-gram to
learn the embedding of each node. However, DeepWalk is not suitable for dynamic graphs since,
when a new node comes in, it has to re-train the model.

Node2vec, proposed by Grover and Leskovec [8], is an excellent extension of DeepWalk with
the difference in random walks. As opposed to DeepWalk using first-order uniform random walks
which gives us no control over the explored neighbourhoods, Node2vec defines an unnormalized
transition probability tensor with hyperparameters p and q, and then normalizes it to be the tran-
sition probability of a second-order random walk.
Cao et al. [4] proposed GraRep, a novel factorization-based model, for learning vertex represen-

tations of weighted graphs, which suggests using SVD on a log-transformed DeepWalk transition
probability matrix of different orders. GraRep generalizes LINE to incorporate information from
network neighbourhoods beyond 2-hops.
Graph convolutional networks (GCNs) [21] present an end-to-end approach to structured learn-

ing, in contrast to Node2vec and DeepWalk producing summaries that are later analyzed with a
machine learning technique. GCN methods seek to generalize traditional convolutional networks
to the variable, unordered structures.
In comparison, our work differs from the aforementioned neural methods in that our goal is

to analyse the stability and optimize the computational efficiency of a specific P-Rank similarity
model by employing advanced linear algebra tools (which provides deterministic provable guar-
anteed accuracy) rather than using graph neural networks to learn graph representations (which
may induce a new different similarity model). In our future work, we will incorporate these graph
embedding methods to pairwise similarity measures, aiming at enhancing the semantics and effi-
ciency of the graph-based similarity models further.

8 CONCLUSIONS

In this study, we have studied the problems of P-Rank computation on large graphs. We have pro-
posed an accuracy estimate for the P-Rank iteration, by finding out the exact number of iterations
needed to attain a given accuracy. We have obtained a tight bound for the P-Rank condition num-
ber to analyze the stability of P-Rank. We have also devised efficient algorithms to evaluate all
P-Rank similarities in O(υn2 + υ6) time and O(υn + υ4) space for digraphs, and O(υn2) time and
O(υn) space for undirected graphs. Empirical results on both real and synthetic datasets demon-
strate the high efficiency of our methods for P-Rank computation in terms of computational time,
memory usage, and search quality.
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A PROOFS OF THEOREMS & LEMMAS

A.1 Proof of Theorem 1

Proof. (i) For u = v , Eq.(7) obviously holds since

s(u,u) − s(k)(u,u) = 1 − 1 = 0. (∀k ≥ 0, ∀u ∈ V)

(ii) For u , v , we use induction on k to prove Eq.(7) as follows:
Inductive Basis. We show that Eq.(7) holds for k = 0. Using Eq.(3) and s(0)(u,v) = 0, we have

s(u,v) − s(0)(u,v) = s(u,v)

=

λ ·Cin

|I (u)| |I (v)|

|I(u) |∑
i=1

|I(v) |∑
j=1

s
(
Ii (u) ,Ij (v)

)
︸             ︷︷             ︸

≤1

+

(1 − λ) ·Cout

|O (u)| |O (v)|

|O(u) |∑
i=1

|O(v) |∑
j=1

s
(
Oi (u) ,Oj (v)

)
︸               ︷︷               ︸

≤1

≤ λ ·Cin

|I (u)| |I (v)|

|I(u) |∑
i=1

|I(v) |∑
j=1

1 +
(1 − λ) ·Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v)|∑
j=1

1

= λ ·Cin + (1 − λ) ·Cout.

Inductive Step. Assume that Eq.(7) holds for a fixed k as the inductive hypothesis. We need to
prove that Eq.(7) holds for k + 1 as well. Combining Eqs.(3) and (5) yields

s(u,v) − s(k+1)(u,v)
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=

λCin

|I (u)| |I (v)|

|I(u) |∑
i=1

|I(v) |∑
j=1

using inductive hypothesis ≤(λCin+(1−λ)Cout)k+1︷                                             ︸︸                                             ︷(
s
(
Ii (u) ,Ij (v)

)
− s(k)

(
Ii (u) ,Ij (v)

) )

+

(1 − λ)Cout

|O (u)| |O (v)|

|O(u) |∑
i=1

|O(v) |∑
j=1

(
s
(
Oi (u) ,Oj (v)

)
− s(k)

(
Oi (u) ,Oj (v)

) )
︸                                                 ︷︷                                                 ︸
using inductive hypothesis ≤(λCin+(1−λ)Cout)k+1

≤ λCin

|I (u)| |I (v)|

|I(u) |∑
i=1

|I(v) |∑
j=1

(λCin + (1 − λ)Cout)k+1

+

(1 − λ)Cout

|O (u)| |O (v)|

|O(u) |∑
i=1

|O(v)|∑
j=1

(λCin + (1 − λ)Cout)k+1

= λCin(λCin + (1 − λ)Cout)k+1 + (1 − λ)Cout(λCin + (1 − λ)Cout)k+1

= (λCin + (1 − λ)Cout)k+2.

This completes the induction. �

A.2 Proof of Theorem 2

Proof. Dividing both sides of Eq.(9) by (1 − λCin − (1 − λ)Cout) results in

S′ = λCin · Q · S′ · QT
+ (1 − λ)Cout · P · S′ · PT + In,

where

S = (1 − λCin − (1 − λ)Cout) · S′.
�

A.3 Proof of Lemma 1

Proof. It follows from Eq.(8) that for each row i = 1, · · · ,n, the sum of each row in Q and P is
no greater than 1. Then, for each row i ′ of Q ⊗ Q, we have

n∑
k=1

(qi ′,k
n∑
j=1

qi ,j ) ≤
n∑

k=1

(qi ′,k × 1) ≤ 1,

which indicates that Q ⊗ Q is a row sub-stochastic matrix.
A similar proof holds for P ⊗ P. �

A.4 Proof of Theorem 3

Proof. Let us take vec(∗) on both sides of Eq.(10), and then apply the Kronecker property
vec(AXB) = (BT ⊗ A) · vec(X) [7, p.180], which produces

vec(S′) = (1 − λ)Cout(P ⊗ P) · vec(S′) + λCin(Q ⊗ Q) · vec(S′) + vec(In).

Rearranging the terms in the above equation yields

M · vec(S′) = vec(In) with M = In2 − λCin(Q ⊗ Q) − (1 − λ)Cout(P ⊗ P),

which is a linear matrix equation.
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By Lemma 1, Q⊗Q and P⊗ P are sub-stochastic matrices. Thus, it can be readily proved thatM
is a diagonally dominant matrix, which implies that M is invertible. Hence, pre-multiplying M−1

on both sides ofM · vec(S′) = vec(In) and, by Theorem 2, we have

vec(S) = (1 − λCin − (1 − λ)Cout) ·M−1 · vec(In).
�

A.5 Proof of Lemma 2

Proof. Let 1n2 be a vector of length n2 with entries of all 1s, and ei a unit vector of length n
2

with a 1 in the i-th entry and 0s in all others.
Since Q ⊗ Q and P ⊗ P are row sub-stochastic matrices, it follows from Eq.(11) that ∀i =

1, 2, · · · ,n2,
‖In2 −M + [1 − λ ·Cin − (1 − λ) ·Cout] · 1n2 · eTi ‖∞
= ‖λCin(Q ⊗ Q) + (1 − λ)Cout(P ⊗ P)+ [1 − λ ·Cin − (1 − λ) ·Cout] · 1n2 · eTi ‖∞ ≤ 1.

Hence, In2 −M + [1 − λ ·Cin − (1 − λ) ·Cout] · 1n2 · eTi is a row sub-stochastic matrix. Due to the

spectral radius14 property ρ(⋆) ≤ ‖ ⋆ ‖∞, it follows that

ρ(In2 −M + [1 − λ ·Cin − (1 − λ) ·Cout] · 1n2 · eTi ) ≤ 1.

Notice that In2−M+[1 − λ ·Cin − (1 − λ) ·Cout]·1n2 ·eTi is nonnegative. According to the eigen-pair

property for the nonnegative matrix 15, there exists some row-vector xTi with ‖xTi ‖∞ = 1 such that

∀i = 1, 2, · · · ,n2,
xTi · (In2 −M + [1 − λ ·Cin − (1 − λ) ·Cout] · 1n2 · eTi ) ≤ xTi .

Rearranging the terms in the above inequality produces

xTi ·M ≥ [1 − λ ·Cin − (1 − λ) ·Cout] · xTi · 1n2 · eTi . (35)

Note that ‖xTi ‖∞ = 1, which implies that xTi · 1n2 = 1. Post-multiplying by M−1 on both sides of

Eq.(35) produces ∀i = 1, 2 · · · ,n2,

eTi ·M−1 ≤ 1/(1 − λ ·Cin − (1 − λ) ·Cout) · xTi .
Also, notice that ‖M−1‖∞ = max1≤i≤n2 ‖eTi ·M−1‖∞ and ‖xTi ‖∞ = 1. Taking∞-norm on both sides
of the above inequality yields Eq.(17). �

A.6 Proof of Lemma 3

Proof. By definition, the diagonal (i, i)-entry of Q ⊗ Q equals qi ′,i ′ × qi ′′,i ′′ , where
i ′ = ⌈i/n⌉ and i ′′ = [(i − 1) mod n] + 1.

Then, taking∞-norm on both sides of Eq.(11) yields

‖M‖∞ =

=1︷ ︸︸ ︷
‖In2 ‖∞ +λ ·Cin ·

≤1︷      ︸︸      ︷
‖Q ⊗ Q‖∞ + (1 − λ) ·Cout ·

≤1︷     ︸︸     ︷
‖P ⊗ P‖∞

≤ 1 + λ ·Cin + (1 − λ) ·Cout. (36)

�

14The spectral radius of X, denoted by ρ(X), is the maximum of the absolute values of the eigenvalues of X.
15According to [31, p.670], for a nonnegative matrix A ∈ Rn×n , there exists a vector x ∈ {z |z ≥ 0 with z ,

0} such that Ax = ρ(A)x.
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A.7 Proof of Lemma 4

Proof. Let U = (U1 U2), V = (V1 V2) and Σ =
(
Σ1 0
0 Σ2

)
. Substituting on both sides of the Wood-

bury formula
(
In − UCVT

)−1
= In + U

(
Σ−1 − VTU

)−1
VT [7] gives

LHS=

(
In −

(
U1 U2

) (
Σ1 0

0 Σ2

) (
VT1
VT2

))−1
=

(
In − U1Σ1V

T
1 − U2Σ2V

T
2

)−1
,

RHS= In +
(
U1 U2

) ((
Σ1 0

0 Σ2

)−1
−

(
VT1
VT2

) (
U1 U2

) )−1 (
VT1
VT2

)

= In +
(
U1 U2

) (
Σ1
−1 − VT1 U1 −VT1U2

−VT2U1 Σ2
−1 − VT2 U2

)−1 (
VT1
VT2

)
.

Since LHS = RHS, this yields the desired results. �

A.8 Proof of Observation 1

Proof. The correctness of Eq.(26) is based on the two properties of Kroneckor product:

(i) Transpositions are distributive over the Kronecker product, i.e.,

(V ⊗ V)T = VT ⊗ VT

(ii) Mixed product property, i.e., ifA,B,C,D arematrices of such size that one can form thematrix
products AC and BD, then

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) with A = B = VT and C = D = U.

Combining the above two Kroneckor properties, Eq.(26) follows immediately. �

A.9 Proof of Observation 2

Proof. Since X = UΣVT is the SVD decomposition, it follows that Ir = VTV. By taking vec(∗)
on both sides and applying the Kroneckor property, we have

vec(Ir ) = vec(VTV) = (VT ⊗ VT )vec(In) = (V ⊗ V)T vec(In)
Hence,

(U ⊗ U)Λ(V ⊗ V)T vec(In) = (U ⊗ U)
(
Λvec(Ir )

)
Also, by applying the Kronecker property that

vec(AXB) = (BT ⊗ A)vec(X) with vec(X) := Λvec(Ir ), B := UT , A := U,

we can obtain the final result. �

A.10 Proof of Theorem 5

Proof. The P-Rank matrix representation in Eq.(24) implies that

vec(S − In) =
(
UQ ⊗ UQ UP ⊗ UP

) (
Λ11 Λ12

Λ21 Λ22

) (
(VQ ⊗ VQ)T
(VP ⊗ VP)T

)
vec(In). (37)

Since (
(VQ ⊗ VQ)T
(VP ⊗ VP)T

)
vec(In) =

(
(VQ

T ⊗ VQ
T )vec(Ir )

(VP
T ⊗ VP

T )vec(Ir )

)
=

(
vec(In)
vec(In)

)
,

it follows from Eq.(37) that

vec(S − In) =
(
UQ ⊗ UQ UP ⊗ UP

) (
Λ11 Λ12

Λ21 Λ22

) (
vec(Ir )
vec(Ir )

)
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= (UQ ⊗ UQ) ((Λ11+Λ12)vec(Ir )) + (UP ⊗ UP) ((Λ21+Λ22)vec(Ir ))

= vec
(
UQ · Reshape ((Λ11+Λ12)vec(Ir )) · UQ

T
)

+ vec
(
UP · Reshape ((Λ21+Λ22)vec(Ir )) · UP

T
)
.

Finally, removing vec(∗) on both sides produces the final results.
In addition, the expression of Λ follows immediately by applying Observation 1 to Eq.(24). �

A.11 Proof of Theorem 6

Proof. The total computational time of P-Rank mainly consists of the following three phases:

(i) O(r 2n) time and O(rn)memory to compute four r × r matrices: ΘQ,Q,ΘQ,P,ΘP,Q,ΘP,P,
(ii) O(r 6) time andO(r 4)memory to compute four r 2 × r 2 blocks (Λ1,1,Λ1,2,Λ2,1,Λ2,2) ofΛ, where

the entire matrix Λ is of size 2r 2 × 2r 2, and
(iii) O(rn2) time and O(rn) memory to compute UQ · Reshape

(
(Λ1,1 + Λ1,2)vec(Ir )

)
· UQ

T and

UP · Reshape
(
(Λ2,1 + Λ2,2)vec(Ir )

)
· UP

T column by column online.

Hence, the total computational cost of computing S is bounded byO(rn2 + r 6) time andO(rn + r 4)
memory space. �

A.12 Proof of Lemma 5

Proof. Recall that the exact P-Rank similarity Eq.(12) can be rewritten as

M · vec (S) = (1 − λCin − (1 − λ)Cout) · vec (In) .

In contrast, the rank-υ approximation of P-Rank equation satisfies

Mυ · vec(Ŝυ ) = (1 − λCin − (1 − λ)Cout) · vec(In).

To estimate the error ϵυ , we combine the above two equations to yield

M · (vec(S) − vec(Ŝυ )) = (Mυ −M) · vec(Ŝυ).

Let

ϵυ :=
‖S − Ŝυ ‖max

‖Ŝυ ‖max

=

‖vec(S − Ŝυ )‖∞
‖vec(Ŝυ )‖∞

.

SinceM is invertible (as proved in Subsection 4.1), pre-multiplying byM−1 and taking∞-norm on
both sides of the above equation produces

ϵυ ≤ ‖M−1‖∞ · ‖Mυ −M‖∞.

According to Lemma 2, we have

‖M−1‖∞ ≤ 1/(1 − λCin − (1 − λ)Cout). (38)

By the equivalence of norms, it follows that

‖Mυ −M‖∞ ≤
√
n‖Mυ −M‖2.

�
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A.13 Proof of Lemma 6

Proof. Subtracting Eq.(29) from Eq.(11) and taking 2-norms of both sides yield

‖Mυ −M‖2 ≤ λ ·Cin‖Q ⊗ Q − Qυ ⊗ Qυ ‖2 + (1 − λ) ·Cout‖P ⊗ P − Pυ ⊗ Pυ ‖2.

To find an upper bound for ‖Q ⊗ Q − Qυ ⊗ Qυ ‖2, let Q = UQΣQV
T
Q be a truncated SVD with

ΣQ = diaд (σ1,σ2, · · · ,σr ) ,

and Qυ = UQΣQυV
T
Q be a truncated SVD with

ΣQυ = diaд(σ1, · · · ,συ , 0, · · · , 0︸   ︷︷   ︸
r−υ

).

Then it follows that

ΣQ ⊗ ΣQ − ΣQυ ⊗ ΣQυ

= diaд (

υ︷   ︸︸   ︷
0, · · · , 0,σ1συ+1, · · · ,σ1σr ,
· · · ,
0, · · · , 0︸   ︷︷   ︸

υ

,συσυ+1, · · · ,συσr ,

συ+1σ1,συ+1σ2, · · · ,συ+1σr ,
· · · ,
σrσ1,σrσ2, · · · ,σrσr ).

Since σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of Q, arranged in non-increasing order,
we know by SVD property that

ΣQ ⊗ ΣQ − ΣQυ ⊗ ΣQυ




2
= σ1συ+1. (39)

From the truncated SVDs of Q and Qυ , it follows that

Q ⊗ Q − Qυ ⊗ Qυ =
(
UQ ⊗ UQ

) (
ΣQ ⊗ ΣQ − ΣQυ ⊗ ΣQυ

) (
VQ ⊗ VQ

)T
.

Due to the property that the Kronecker product of two orthogonal matrices is orthogonal [13], it
follows that UQ ⊗ UQ and VQ ⊗ VQ are orthogonal. Hence, by SVD and Eq.(39) we have

‖Q ⊗ Q − Qυ ⊗ Qυ ‖2 =


ΣQ ⊗ ΣQ − ΣQυ ⊗ ΣQυ




2
= σ1συ+1. (40)

Similarly, we can obtain

‖P ⊗ P − Pυ ⊗ Pυ ‖2 = σ̄1σ̄υ+1 (41)

with σ̄i (i = 1,υ + 1) being the i-th largest singular values of P. Substituting Eqs.(40) and (41) into
Eq.(30) yields

‖Mυ −M‖2 ≤ λ ·Cin ·

=σ1συ+1︷                     ︸︸                     ︷
‖Q ⊗ Q − Qυ ⊗ Qυ ‖2 + (1 − λ) ·Cout ·

=σ̄1σ̄υ+1︷                   ︸︸                   ︷
‖P ⊗ P − Pυ ⊗ Pυ ‖2

= λCinσ1συ+1 + (1 − λ)Coutσ̄1σ̄υ+1,

which completes the proof. �
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A.14 Proof of Theorem 8

Proof. The total complexity of DE SR is dominated by the following two steps:

(i) O(r 6) time and O(r 4) memory to compute Λ (in Line 5);
(ii) O(n2r ) time and O(rn)memory to compute (U · Γ · UT ) column by column (in Line 7).

�

A.15 Proof of Theorem 9

Proof. (i) We first present the power series form of S. Due to the undirectedness of a graph, its
adjacency matrix is symmetric. Therefore, it follows that

Q = P = D · A with D defined by Eq.(32). (42)

Let C , λ ·Cin + (1 − λ) ·Cout. Substituting Eq.(42) into P-Rank definition Eq.(10) yields

S = (1 −C)
(
C(DA)S(DA)T + In

)
. (43)

The recursion of S in Eq.(43) leads itself to have the following power series form:

S = (1 −C)
+∞∑
k=0

Ck (DA)k ((DA)k )T . (44)

(ii) We next compute (DA)k in Eq.(44). Observing thatD ·A = D1/2 · (D1/2AD1/2) ·D−1/2, we can
obtain

(D · A)k =D1/2(D1/2AD1/2)

=I︷        ︸︸        ︷
D−1/2 · D1/2(D1/2AD1/2)

D−1/2 · D1/2︸        ︷︷        ︸
=I

(D1/2AD1/2)D−1/2 · · · ·

=D1/2 · (D1/2AD1/2)k · D−1/2. (45)

Due to the symmetry of D1/2AD1/2, it can be decomposed into U ·Λ ·UT via eigen-decomposition.
Therefore, it follows from UT · U = I that

(D1/2AD1/2)k = (UΛUT )k = UΛkUT . (46)

Substituting Eq.(46) back into Eq.(45) produces

(D · A)k = D1/2 · UΛkUT · D−1/2. (47)

(iii) We now express P-Rank similarity matrix S in terms of Λ. Let Γ = (Γi ,j )r×r , UTD−1U. By
applying Eq.(47) to Eq.(44), we have

1
1−C S =

+∞∑
k=0

Ck ·D
1
2U · Λk · UTD−

1
2 ·

(
D

1
2U · Λk · UTD−

1
2

)T

= D
1
2U ·

(
+∞∑
k=0

Ck · Λk · Γ · Λk
)
· UTD

1
2

= D1/2U · Ψ · UTD1/2,

where
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Ψ =

+∞∑
k=0

Ck ·
©­­­
«

(
Λ1,1Λ1,1

)k
Γ1,1 · · ·

(
Λ1,1Λr ,r

)k
Γ1,r

...
. . .

...(
Λr ,rΛ1,1

)k
Γr ,1 · · ·

(
Λr ,rΛr ,r

)k
Γr ,r

ª®®®¬
=

©­­­
«

Γ1,1

1−CΛ1,1Λ1,1
· · · Γ1,r

1−CΛ1,1Λr ,r

...
. . .

...
Γr ,1

1−CΛr ,rΛ1,1
· · · Γr ,r

1−CΛr ,rΛr ,r

ª®®®¬
.

�

A.16 Proof of Theorem 10

For Algorithm 3, the total computational cost of UN P-Rank consists of three phases:

(i) In lines 2-3, computing the diagonal D and T = D1/2AD1/2 needs O(m),O(n2) time, and
O(m),O(m) memory, respectively.

(ii) In line 4, the EVD of T into the orthogonal U and the diagonal Λ requires O(rn2) time and
O(rn)memory.

(iii) In lines 5-7, computing the auxiliary Γ,V,Ψ and similarity S yieldsO(r 3),O(rn),O(r 2),O(r 2n+
rn2) time, and O(rn),O(rn),O(r 2),O(nr ) memory space, respectively. They can be bounded
further byO(rn2) time andO(rn) memory.

Combining (i), (ii) and (iii), the total time of UN P-Rank is in O(rn2) time andO(rn)memory.
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