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Abstract

When a tokamak plasma is heated beyond a certain threshold, a pedestal, a region of
large pressure gradient, is formed, which is limited by instabilities including kinetic
ballooning modes (KBMs). In order to predict the pedestal height and width more
accurately, KBMs must be further understood.

Simulations of the pedestal region require both global and kinetic effects be present.
The code used during this thesis, the global gyrokinetic Particle-In-Cell code ORB5,
can accomplish this, whereas magnetohydrodynamic (MHD) simulations do not in-
clude kinetic effects and local gyrokinetic simulations are only correct in the limit
of large system size.

In order to study the physics of KBMs, such as drive strength and mode structure,
a simplified circular outer-boundary equilibrium was created and ORB5 simulations
compared to MHD and local gyrokinetic simulations in the appropriate limits. These
simulations show the error that arises from the neglect of the magnetic field strength
fluctuations in ORB5 (A‖ formulation). With the corrected drive, ORB5 simulations
are shown to agree with other codes in the appropriate limits and analytical theory.
The growth rates, in gyrokinetic simulations, of high toroidal number modes are
then shown to be equal to MHD growth rates with diamagnetic drift stabilisation.
The other kinetic effects are not important.

Simulations of KBMs in the pedestal region were then undertaken, in a JET equi-
librium. Firstly, a method is provided for extrapolating equilibria beyond the last
closed flux surface, avoiding unphysical suppression due to the simulation boundary.
Then, the critical-β is found to be the same in ORB5 as in local gyrokinetic sim-
ulations without the bootstrap current. Therefore, local simulations, without the
bootstrap current, can be used to provide the KBM constraint in the EPED model,
used for predicting pedestal parameters.

vii



Chapter 1

Introduction

1.1 Nuclear Fusion as an energy source

Energy production is one of the main challenges facing humanity in the future.

Currently, most energy production relies on non renewable sources, such as coal,

gas and oil. However, most current forms of renewable energy are not sufficient to

provide the demand for energy [2]. As such, nuclear fusion is currently a promising

candidate for the production of the earth’s energy in the future.

Fusion does occur in nature in the sun and other stars. In the sun, and in lab-

oratory fusion devices, fusion occurs within a plasma, the fourth state of matter. A

plasma consists of a heated ionized gas, with a temperature high enough to allow

nuclei to overcome the Coulomb repulsion between them and fuse. There are sev-

eral possible reactions that could be used in a fusion device, but the most promising

reaction, thanks to a combination of cross sectional area, element availability and

energy production, is the fusion between Deuterium and Tritium, both isotopes of

Hydrogen [3]. This reaction is written as:

2
1D +3

1 T =4
2 He(3.5MeV) +1

0 n(14.1MeV). (1.1)

It is relatively simple to extract Deuterium from water and Tritium can be pro-

duced by bombarding Lithium with neutrons.

The mass of the reaction products are lower than the mass of the Deuterium and

Tritium nuclei. This lost mass is converted into energy, as given by E = mc2, re-
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sulting in 17.6MeV released per nucleus of Deuterium that fuses with a nucleus of

Tritium.

By looking at the energy balance of a fusion device, a condition for ignition (where

the fusion reactions heat the plasma enough to overcome losses without any external

power source) results in the Lawson criteria [4], where the product of the density,

ne, temperature, T , and the confinement time τE has to exceed a constant value:

neTτE ≥ 1021keV s/m3. (1.2)

In the sun, confinement is due to the gravitational force. However, this is not

possible on the surface of Earth and so other methods of confinement must be

considered. Two main contenders for confinement in a fusion device have arisen,

inertial confinement and magnetic confinement. For inertial confinement fusion, the

achieved density is 1030m3 and the confinement time is typically 10−9s. However,

in this work the second method is considered, in which plasma, composed of ionised

particles, is confined using magnetic fields. For both methods, the temperature is

of the order of 10 keV. For magnetic confinement fusion, the density is lower at

around 1021m3 for a longer duration of around 1s. Note that both these scenarios

fulfil Eqn.(1.2).

1.2 Tokamak

Figure 1.1: The poloidal and toroidal fields in the tokamak [5].

As shown later in Section 2.2.1, charged particles can be confined by magnetic fields.

The tokamak is a toroidal device (see Figs. 1.1 and 1.2) whose purpose is to confine

a plasma using a magnetic field. The magnetic field ~B consists of both a toroidal

magnetic field ~Btor and a poloidal magnetic field ~Bpol, as shown in Fig 1.1. The
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Figure 1.2: The tokamak device [6].

toroidal magnetic field is produced by the central magnetic field coil (see Fig. 1.2)

and the poloidal magnetic field is produced by a mixture of the plasma current and

coils outside the plasma that shape the plasma. The plasma current is produced by

both injecting radio-frequency waves and/or a stream of neutral particles.

1.3 H-mode and Pedestal

The plasma within a tokamak can be conceptually split into several regions. The

core plasma is the plasma furthest from the vacuum region. The main mechanism

for the heat transport (the movement of energy around the plasma) is turbulence,

within the core region. Another region in the tokamak is the scrape-off layer (SOL)

where the majority of plasma losses occurs, as the plasma travels down the magnetic

fields line until it hits the divertor.

When a plasma is heated beyond a certain threshold, the confinement time sud-

denly increases [7]. In this H-mode (high confinement mode) configuration, the core

temperature and density is much higher than the surrounding SOL. The area sep-

arating these two regions is known as the pedestal region and is characterised by

large temperature and density (pressure) gradients as seen in Fig. 1.3. The main

mechanism in the creation and sustenance of the pedestal region is thought to be the

suppression of turbulence between the core and the scrape-off layer in a tokamak [7].

The pedestal region is generally not many ion gyroradii wide, for instance the MAST
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Figure 1.3: The pedestal region in the plasma is the area at the transport barrier,
whose width is shown by the two black lines and pressure height is pe. As can be
seen, the pressure gradient is greatest in the pedestal region.

pedestal ≈ 5ρi wide during normal operation.

Another feature that occurs with the transition from L-mode to H-mode is the

occurence of Edge-Localized Modes (ELMs) [8] which occur when the high density

and temperature gradients in the pedestal lead to a quasi-periodic relaxation of the

pressure gradient, during which a large amount of plasma is violently ejected into

the surrounding scrape-off layer, potentially leading to damage to the vessel [9] [10].

1.4 Instabilities and transport

A system is in equilibrium when all forces are in balance. In a plasma, this results in

a plasma where the particles move, but macroscopic properties, such as the density

and velocity of the plasma are time invariant.

When a perturbation moves a plasma away from an equilibrium state, there are

two outcomes that can occur. Firstly, the plasma can return to the equilibrium, in

which the case the plasma is stable. Secondly, the plasma can move further from

the equilibrium, in which case the plasma is unstable. This second case, results in

4



an instability in the plasma which grows over time.

The transport of particles and energy in a plasma, which occurs via turbulence

and the growth of instabilities, is an area of important research in fusion, since this

has a large effect on the power lost from the tokamak and hence the confinement

time. The pedestal region results in a suppression of the turbulence and so trans-

port, in this region, occurs via instabilities, such as kinetic ballooning modes that

limit the pressure gradient in the pedestal region. In order to minimise the power

that is lost from the plasma, these instabilities must be further understood and

eliminated or minimised.

1.5 Contributions of this thesis

In this thesis, global gyrokinetic simulations of kinetic ballooning modes in the

pedestal region in a tokamak equilibrium are performed.

The EPED model [11] [12] [13] is a predictive model for the pedestal height and

width in a tokamak. In this model, there are two instabilities that constrain the

pedestal height and width: the peeling-ballooning constraint (which is widely un-

derstood [14]) and the kinetic ballooning constraint. In order to further understand

the kinetic ballooning constraint, simulations have been undertaken in GS2, a local

gyrokinetic code. However, the pedestal region is not many gyroradii wide and so

local gyrokinetic simulations may not show the correct behaviour for these modes,

especially for low toroidal mode number, where modes may be wider than the region

of large pressure gradient. Therefore, global effects have to be taken into account.

However, global codes have historically been too intensive to use or suffered from

numerical issues such as the cancellation problem, further described in Chapter 4.

Global codes also suffer from the fact that periodic boundary conditions cannot be

used in the radial direction and so a plasma boundary must be included. These

boundary conditions are more complicated and can result in the suppression of

modes near this boundary.

ORB5 is a global gyrokinetic code that uses a Particle-In-Cell (PIC) method, de-

scribed in Chapter 4, for the implementation of the distribution function and fields.

Recent work prior to this project was the implementation of a solution to the can-

cellation problem in ORB5, allowing its use for the simulations of kinetic ballooning

modes. Therefore during this project, such modes are simulated in a simplified
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equilibrium first, to allow an understanding of the basic physics, such as the drives.

To correctly simulate finite-β instabilities in ORB5, without directly solving for the

parallel magnetic field perturbation, a correction to the ∇B drive was introduced.

Secondly, to allow ORB5 to correctly simulate the region near the boundary, it

was necessary to create a tool to allow the extension of an equilibrium beyond the

last closed flux surface, as shown in Chapter 10. This allows the avoidance of the

suppression of modes that occur due to the presence of the boundary so close to the

pedestal region.

Several simulations were then undertaken for this equilibrium, which combined the

physics understood from the simplified equilibrium with the method for extending

the equilibrium. These simulations showed that the important features of KBMs

agree with the simulations using GS2 when the bootstrap current, a current that

arises spontaneously due to the collision of trapped and passing particles (mentioned

in Chapter 2), is removed. Unlike the local results, the presence of the bootstrap

current does not result in the plasma achieving second stability and KBMs being

suppressed. However, the critical-β (the pressure gradient at which KBMs start

to grow) is consistent with the values measured in GS2. This, alongside the large

increase in growth rate as the β increases beyond this critical-β, provides more evi-

dence that KBMs limit the pedestal gradient between edge localized modes (ELMs).

These simulations will result in a more precise form of the EPED model and therefore

a better predictive model of the pedestal height and width, since global simulations

include global effects such as the profile shapes (change in the pressure gradient

with radius), whereas local simulations assume an infinitely wide space in the radial

direction with constant gradients. This will allow for simulations of devices in the fu-

ture to have more accurate profiles, even before the devices are built. The extension

method provided can also be used to create equilibria that allow for the simulations

of realistic plasmas, even in codes that only allow the simulation of regions within

the last closed flux surface. Finally, the work performed on the simplified equilib-

rium provides evidence for the functionality of ORB5 and also provides a method

for which A‖ codes can correct for the effects of δB‖, for the simulation of KBMs.
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1.6 Outline

In Chapter 2, some coordinate systems, including those used in ORB5, are described.

Then some information is provided about the motion of particles in a magnetic field,

including Larmor motion and drifts that arise in the presence of external forces. This

is followed by some information about drift modes and KBMs in particular.

In Chapter 3, the A‖ formalism theory used in ORB5 is provided, including its

derivation. The implementation of the equations derived are then discussed in Chap-

ter 4, alongside some issues that arise during this procedure, such as the cancellation

problem.

In Chapter 5, the derivation of the gyrokinetic KBM equation is shown and a com-

parison with the ideal-MHD ballooning equation is provided.

Chapter 6 then shows the MHD equations and derives the Energy Principle, an

equation that is used in MISHKA, a code that will be used to validate the ORB5

simulations in the appropriate limits.

Chapter 7 then provides an analysis of the plasma drive that causes the growth

of (kinetic) ballooning modes in a simple geometry, a Z-pinch.

Chapter 8 then describes the Grad-Shafranov equation, which is the basis for the

creation of equilibria that can then be simulated in codes such as ORB5. The deriva-

tion is provided initially. Then, the implementation is provided for HELENA and

CHEASE, the two codes which are used during this thesis to create equilibria for

simulations.

In Chapter 9, a simplified circular outermost flux surface equilibrium is created,

with the pedestal-like region far from the simulation boundary. This equilibrium

is then simulated in GS2 (a local gyrokinetic code), MISHKA (an MHD Energy

Principle code) and ORB5 in order to understand the drives of ballooning modes

and to confirm that ORB5 provides the growth rates expected.

In Chapter 10, a JET-like equilibrium is considered. Due to the presence of the

boundary’s nearness to the pedestal region, a method is used to extend the region

of nested flux surfaces and then the magnetic properties of this extended equilib-

7



rium are compared to the properties of the original, to confirm, that on the outboard

midplane (where KBMs grow), the extension of the equilibrium does not affect the

growth rates of KBMs. Then in Chapter 11, this extended equilibrium is analysed

and compared to simulations in GS2 and MISHKA.
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Chapter 2

Basic Concepts

When a gas is heated sufficiently, it transforms into the fourth state of matter as

the bonds within the atoms break so electrons separate from ions and both species

act as separate particles. When sufficient atoms are ionized within a material, such

that a sufficiently high number of charged particles are present to screen individ-

ual charges (i.e. within a Debye sphere), the gas becomes a plasma. Plasmas act

similarly to gases, except that the plasma consists of charged particles, which are

strongly affected by the presence of magnetic and electric fields.

In this chapter, some basic information about the tokamak device will be provided.

Then, the basic motion of particles in the plasma in the presence of magnetic fields

will be discussed, followed by a simplified explanation of kinetic ballooning modes,

the focus of study for this thesis.

2.1 Coordinate systems

To begin describing coordinate systems, a cylindrical coordinate system is chosen,

(R,φ, Z). Using the φ coordinate as the third spatial coordinate is useful since the

tokamak is axisymmetric and so ∂/∂φ = 0. A common coordinate system used for

describing plasma in a tokamak, when the plasma has a circular cross-section, is

(r, φ, θ), and is defined relative to the cylindrical coordinate system by the following

relations, as shown in Fig. 2.1,:

R = R0 + r cos(θ), (2.1a)

Z = r sin(θ), (2.1b)

φ = φ. (2.1c)

9



where R0 is the position of the magnetic axis and r ∈ [0, a] where a is the minor

radius.

Figure 2.1: (r, θ, φ) coordinate for the plasma inside a tokamak.

For the next coordinate system, the poloidal magnetic flux is introduced, ψ =∫
S
~B.d~σ/2π. The surface S is defined by taking a surface whose edge is the cir-

cle defined by R,Z = constant going through the central axis at the same value of

Z as shown in blue in Fig. 2.2. Then the magnetic flux surface are surfaces where

ψ =constant. These surfaces are perpendicular to the magnetic field. The method

of the creation of flux surfaces for the simulation equilibrium is given in chapter 8.

Figure 2.2: Flux surfaces within a tokamak, showing the surface over which the
magnetic flux is integrated in blue.

The safety factor of a tokamak equilibrium is the number of times that magnetic

field lines loop in the toroidal direction for each loop in the poloidal direction, also
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known as the twist of the magnetic field line and is defined as:

q(ψ) =
1

2π

∮
along B

dφ

dθ
=

1

2π

∫ 2π

0

~B · ∇φ
~B · ∇θ

dθ. (2.2)

The safety factor is constant on each flux surface. Using the safety factor, a modified

poloidal coordinate can be defined, such that the pitch of the magnetic field line

dφ/dχ|alongB is constant on a given magnetic flux surface.

χ(θ) =
1

q(ψ)

∫ θ

0

~B · ∇φ
~B · ∇θ′

dθ
′
. (2.3)

This coordinate system (ψ, χ, φ) is known as the straight field line magnetic coordi-

nate system and is used in all the ORB5 simulations detailed in this thesis. In this

coordinate system, the spatial gradient operator and volume element are given by .

∇ = ∇ψ ∂

∂ψ
+∇χ ∂

∂χ
+∇φ ∂

∂φ
(2.4)

and

dV = Jdψdχdφ, (2.5)

where ∇ψ, ∇χ and ∇φ are unit vectors and J is the Jacobian, given by

J ≡ (∇ψ · ∇φ×∇χ)−1. (2.6)

The most general form for the equilibrium magnetic field is

B̄ = ∇ψ ×∇φ+ I(ψ, χ)∇φ (2.7)

with I being a prescribed function. The safety factor then becomes

q =
rBφ
R0Bχ

=
1

2π

∮
dχ
IJ

R2
, (2.8)

where r is the minor radius.

The straight field line magnetic coordinate system can also be written as (s, χ, φ).

χ and φ are as previously mentioned, but instead of ψ, s =
√
ψ/ψedge is used as

this is more similar to the radial coordinate.

11



2.2 Motion in a magnetic field

2.2.1 Larmor motion

Consider a charged particle, with a mass m and charge q, moving in the presence

of a homogeneous magnetic field ~B = B~h, where ~h =
~B
B and B = | ~B|. The velocity

of the particle, ~v, can be decomposed into two components: ~v = v‖~h + ~v⊥, where

v‖ = ~v · ~h and ~v⊥ = ~v − v‖~h. Then, in the presence of no other forces, Newton’s

second law gives
d~v

dt
=
d~v⊥
dt

=
q

m

(
~v⊥ × ~B

)
= ~v⊥ × ~Ω, (2.9)

where ~Ω = Ω~h and Ω = qB
m is the cyclotron frequency. This means that the rate of

change of the perpendicular velocity is perpendicular to both the magnetic field and

the perpendicular velocity. This results in a circular motion in the plane perpendic-

ular to the magnetic field. The frequency of the motion is given by the cyclotron

frequency and the radius of the motion is given by the Larmor radius, also known

as the gyroradius, ρ = v⊥
Ω . The vectorial form of the gyroradius is given by ~ρ = ~v× ~B

ΩB .

Figure 2.3: The trajectory of a charged particle in the presence of a magnetic field.
The red line represents the magnetic field, the black line is the particle trajectory
and the blue line is ~ρ.

When combined with the parallel velocity of the particle, the gyromotion describes

the trajectory of charged particles in a constant straight magnetic field as shown in

Fig. 2.3.
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2.2.2 Particle drifts

If a constant external force, ~F is applied then the motion is found to be

v‖(t) = v‖(t0) +
F‖

m
(t− t0), (2.10a)

~v⊥ = ~vD + ~v⊥,gc, (2.10b)

~vD =
1

qB2
~F⊥ × ~B. (2.10c)

where ~v⊥,gc is the gyromotion described in 2.2.1. The perpendicular motion of a

charged particle in the presence of a magnetic field and external force, Eqn. 2.10,

consists of both the gyromotion and a drift velocity, ~vD.

Take as an example a constant electric field that is perpendicular to the magnetic

field ~E⊥. This results in an overall plasma motion, referred to as the ~E × ~B drift:

~v ~E× ~B =
~E × ~B

B2
. (2.11)

During one half of the gyromotion, the electric field is speeding up the particle,

and so the effective gyroradius is increased. However, during the other half of the

gyromotion, the electric field reduces the speed of the particle and so the effective

gyroradius is reduced. This causes the particle to have an overall motion perpendic-

ular to both the electric field and the magnetic field, resulting in the ~E× ~B drift. For

most drifts the electrons and ions move in opposite directions since the gyromotions

are in opposite directions (from the sign of the charge in Eqn. 2.9). However for

the ~E × ~B drift, both species move in the same direction at the same speed, since

the external force is also charge dependent and in opposite directions for the two

species, and so there is no net current.

Drifts also arise if the magnetic field is not homogeneous. Firstly, consider a mag-

netic field with a perpendicular gradient. Suppose that the magnetic field is in the

ẑ-direction and that ~B = Bz(y)êz. Again the change in the magnetic field changes

the effective size of the gyroradius on opposite halves of the gyromotion. The general

case is too complicated to be calculated analytically. However, if the gyroradius is

much smaller that the magnetic scale length, then the magnetic field can be Taylor

expanded around the gyrocentre (set to y = 0)

Bz(y) = Bz(0) + y
dBz
dy
|y=0 +O(y2), (2.12)

13



and so the overall force acting on the particle perpendicular to both the gradient of

the magnetic field and the magnetic field is

Fx = qv⊥ cos(Ωt)

{
Bz(0)− dBz

dy
|y=0

mv⊥
qB

cos(Ωt)

}
(2.13)

where vy = v⊥ cos(Ωt) and y = mv⊥
qB cos(Ωt), valid assumptions as this force arises

due to unperturbed motion. Then averaging over the gyroangle gives

Fx = −
mv2
⊥

B

dBz
dy
|y=0. (2.14)

Using Eqn. 2.10, the drift can then be calculated as

v∇B =
mv2
⊥

qB2

~B

B
×∇B. (2.15)

Drifts also occur if a particle is travelling in a curved magnetic field. The effec-

tive centrifugal force is given by

~Fcurv =
mv2
‖

Rc

~Rc
Rc
, (2.16)

where Rc is the radius of curvature of the magnetic field and ~Rc is the vector pointed

towards the centre of the circle defined by the radius of curvature. The resulting

drift is then

vcurv =
m

qB
v2
‖

(
~Rc × ~B

R2
c

)
. (2.17)

Unlike the ~E × ~B drift, where ions and electrons move in the same directions,

v∇B and vcurv depend on the charge and so electrons and ions move in opposite

directions, resulting in a current.

2.2.3 Diamagnetic Drift

Unlike the drifts mentioned above, the diamagnetic drift is not found by considering

the motion of an individual particle. The diamagnetic drift arises when there is a

gradient in the pressure.
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Figure 2.4: Cause of the diamagnetic drift in the presence of a density gradient.
The higher density region has more particles present and so in the region between
two different densities there is a net current perpendicular to the magnetic field and
the density gradient.

Consider a plasma with a density gradient. As can be seen in Fig. 2.4, the density

gradient means that there are a greater number of particles gyrating in the region

of greater density. At the regions between the rows of guiding centres, there is an

overall current due to the imbalance in the number of particles gyrating above and

below this connection. As can be seen from the figure, the Larmor rings themselves

do not move, but there is an overall fluid velocity present in the plasma.

If the pressure gradient is due to both a density and temperature gradient, then

both these mechanisms function together to produce the diamagnetic drift.

The diamagnetic drift is given by

~B ×∇p
nqB2

. (2.18)

where ∇p is the pressure gradient, ~B is the magnetic field, n is the density and q is

the species charge.

15



2.3 Trapped and Passing Particles

The parallel velocity of a particle can be written as a function of the kinetic energy,

E and the magnetic moment, µ =
mv2⊥
2B , both conserved quantities during a particle’s

trajectory (see Chapter 3):

v‖ =

√
2

m
(E − µB). (2.19)

As can be seen, if the magnetic moment of the particle is large enough, then the

parallel velocity reaches zero before the particle reaches the region of largest mag-

netic field. In this case, the particle is called a trapped particle. This is the case if

µBmax ≥ E and so

v‖

v⊥
<

√
Bmax
B(s, θ)

− 1 ≈
√
ε (1 + cos(θ)). (2.20)

where s, θ are two coordinates from the straight field line magnetic coordinates and

ε is the aspect ratio. Trapped particles tend to have low parallel velocities, which

tend to zero and eventually become negative as the particle heads to the inboard

side of the tokamak. This, along with the drifts present at the top and bottom of the

tokamak, leads to the motion known as banana orbits, shown in Fig. 2.5. Particles

with a high enough parallel velocity to avoid this motion are called passing particles

and have trajectories that go all the way around the poloidal plane of the tokamak

and always have a non-zero parallel velocity that does not change sign.

The fraction of trapped particles is different on each flux surface. There are more

trapped particles on the outer flux surfaces as the aspect ratio is smaller further away

from the magnetic axis. The point at which trapped particles reach zero velocity is

known as the reflection point.

2.4 Electron Drift Modes

Electron drift modes are modes that can grow in even the most simple of configu-

rations of magnetic field and plasma (a non-uniform plasma confined by a straight

strong magnetic field) and are also known as ‘universal waves’ [15]. These instabil-

ities draw upon the thermal energy of the plasma as they propagate perpendicular

to the magnetic field. This modes are also characterised by the fact that the wave-

length along the magnetic field is finite.
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Figure 2.5: Different trajectories for a guiding centre starting at position p. The
green and black trajectories represent passing particles with v‖ > 0 and < 0 respec-
tively. The blue and red trajectories represent trapped particles with v‖ > 0 and
< 0 respectively, travelling along banana orbits.

Take a plasma slab with a variation in the density and pressure in the x-direction,

n0(x) and p0(x), and a constant strong magnetic field in the z-direction, Bz,0.

The dispersion for such waves, from the coupling of drift waves and ion acoustic

modes [16], is given by Eqn. 21.40 from Ref. [15]:(
ω −

k2
zv

2
A

ω

)(
1− kyvde

ω − k2
zC

2
s/ω

)
= − iη

µ0
k2
⊥, (2.21)

where vA = B

(µ0ρ)
1
2

is the Alfvén velocity, vde = − Te,0
ne,0Bz,0

dne,0
dx is very similar to

the electron diamagnetic drift, Eqn. 2.18 (different only if there is a temperature

gradient along the magnetic field), Cs =
√

γTe
mi

is the speed of sound in the plasma (γ

is the adiabatic index), η is the resistivity and k⊥ is the wavenumber perpendicular

to the magentic field. In a non-resistive plasma, η = 0 and there are two branches

of waves. The first branch is

ω = vAkz, (2.22)
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which corresponds to a shear Alfvén wave. The second branch is

ω − kyvde −
k2
zC

2
s

ω
= 0, (2.23)

which represents drift waves.

The ratio between the sound speed and the Alfvén velocity is

Cs
vA

=
(µ0nTe)

1/2

B
≈
(
β

2

) 1
2

, (2.24)

where β = 2µ0p
B2 is known as the plasma-β and is the ratio of the plasma pressure to

the magnetic pressure.

2.5 (Kinetic) Ballooning Modes

In MHD theory, ballooning modes are similar to Rayleigh-Taylor instabilities [17].

Unlike Rayleigh-Taylor instabilities, where the destabilizing force is gravity, in bal-

looning modes the destabilizing forces arise due to the interplay between the force

due to pressure gradients, magnetic field line curvature and restoring forces from

the magnetic field line bending [18].

On the outboard midplane of the plasma, the magnetic curvature forces are pointed

outwards from the centre of the plasma, hence it is known as the region of desta-

bilizing curvature. In addition, the force due to the pressure gradient is pointed

in the same direction and is therefore destabilizing also. The force resulting from

the stress in bent field lines is the restoring force. When these forces are compared,

if the outward forces are greater than the restoring forces, then there is an overall

force in the outward direction, that acts as the Rayleigh-Taylor instability at the

plasma/vacuum boundary.

In kinetic theory, the mechanics of the kinetic ballooning mode is different. The

kinetic ballooning force arises due to the drifts that occur in the plasma. The mag-

netic curvature and ∇B drifts mentioned earlier are charge dependent and are in the

north south direction as shown in Fig. 2.6. This then creates a charge imbalance,

that leads to an electric field. In the presence of an electric field, a ~E × ~B drift

arises, and in this case is directed to the outer edge of the tokamak, in the outboard

region. The ~E × ~B drift is charge independent and so both electrons and ions move

18



in the same direction and the plasma has a movement outwards. This is one of the

reasons that a poloidal field is present in a tokamak, in order to limit the growth

of such modes by allowing particles to travel parallel to the magnetic field from the

outboard side to the inboard side of the tokamak. A more detailed description of

kinetic ballooning modes (in a Z-pinch) is provided in Chapter 7.
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Figure 2.6: The mechanism for KBMs growing in a curved tube of plasma. 1)
The ∇B and curvature forces are directed inwards. 2) This creates a drift that is
dependent on the charge of the particles and therefore separates ions and electrons.
3) This creates an electric field. 4) An ~E × ~B drift, which is charge independent is
set up that is directed outwards.
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Chapter 3

Gyrokinetics

Kinetic theories deal with the statistical behaviour of a large number of particles in

the presence of a magnetic field and describe the particles as functions of position,

~x, velocity, ~v and time, t. Thanks to the particle trajectories, Larmor motion and

drifts shown in Chapter 2, it is possible to describe the perpendicular velocity of

particles as the sum of the gyromotion and drifts. The gyrokinetic equations are

then made independent of the gyroangle as it is an ignorable coordinate. This re-

sults in the phase space being reduced from six coordinates to only five.

This transformation of coordinates is possible because the characteristic frequency

of drift mode instabilities in the plasma is generally much smaller than the cyclotron

frequency and as such drift mode instabilities grow over many gyromotions and the

particles can be viewed as rings of charge.

Simply integrating over the gyroangle, the kinetic Vlasov equation [19] does not

produce conservative equations of motion [20]. Therefore, methods involving deriva-

tions from the Hamiltonian were developed, [21], and implemented in numerical

schemes [22].

The goal of the derivation provided in this chapter is to write the Lagrangian in

a form that is invariant to the gyroangle, θ, and derive equations of motion from

this Lagrangian, that then results in energy conservation. This derivation is shown

in more detail in Refs. [20], [23], [24] and [25].
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3.1 Distribution function and Ordering

In kinetic theory, each particle species is described by a distribution function,

fα(~x,~v, t) which gives the probability of finding a particle in a small volume of

space around position ~x with velocity in a small volume of velocity space around

velocity ~v at time t.

The Vlasov equation for species α is

dfα
dt

=
∂fα
∂t

+
d~x

dt
· ∇fα +

d~v

dt
· ∇~vfα = 0, (3.1)

where d/dt = ∂/∂t + d~x/dt · ∇ + d~v/dt · ∇~v is the full time derivative and d~x
dt and

d~v
dt describe a particle’s trajectory through phase space.

The Vlasov equation must then be computed self-consistently with Maxwell’s equa-

tions [26]:

∇ · ~E =
ρ

ε0
, (3.2a)

∇ · ~B = 0, (3.2b)

∇× ~E = −∂
~B

∂t
, (3.2c)

∇× ~B = µ0
~j + µ0ε0

∂ ~E

∂t
, (3.2d)

where ε0 and µ0 are the permittivity and permeability of free space and the charge

density and current density for each particle species are

ρα(~x, t) = qα

∫
d~vfα(~x,~v, t), (3.3a)

~jα(~x, t) = qα

∫
d~vfα(~x,~v, t)~v. (3.3b)

Full kinetic theory includes processes at fast timescales which are thought to be

irrelevant for tokamak transport [27], where typical frequencies are much smaller

than the cyclotron frequency Ωi = qB/mi and are therefore too computer intensive

for simulations, especially for global simulations. The most common approaches

are fluid theory (MHD) and gyrokinetic theory, where the 6D phase space (~x,~v) is

reduced to a 5D phase space (~x, v‖, µ), where µ = mv2
⊥/2B is the magnetic moment
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and the gyroangle, θ, is an ignorable coordinate. Since the velocity of particles can

be written in terms of the Larmor motion and drifts, as shown in Chapter 2, the

trajectories of the rings of charge are calculated, instead of the trajectories of the

particles (whereby the circular Larmor motion would also have to be calculated).

Since µ is a conserved quantity and dθ
dt does not need to be solved, then instead of

having to calculate and solve six equations of motion for the system, only four equa-

tions of motion require solving for gyrokinetics: d~R
dt and

dv‖
dt , where ~R is the position

of the gyrocentre in this new coordinate system. The derivation of the equations of

motion in these new coordinates are provided in this chapter.

The transformation of coordinates from generic phase space coordinates to gyro-

centre coordinates is achieved in two steps: Firstly, they are transformed to guiding

centre coordinates, where the θ dependence of the equilibrium Lagrangian is re-

moved. This guiding centre coordinate tracks the movement of the gyrocentre of

the Larmour motion with the E × B drift. Secondly a transformation, consisting

of several small transformations, is undertaken to transform from guiding centre

coordinates to gyrocentre coordinates. This is called a Lie transformation, and the

generators and gauge are chosen such that the θ dependence of the perturbed La-

grangian is removed. This coordinate then includes the effects on the gyrocentre

trajectory from the other drifts, which are much smaller than the E ×B drift. The

different coordinates are shown in Fig. 3.1.

Two small parameters are specified in order to allow for simplification of the result-

ing equations of motion. The standard gyrokinetic ordering is ω/Ωci ≈ k‖/k⊥ ≈
eφ/Te ≈ ρi/Ln = O(ε), where ε is a small parameter that represents the smallness

of ρi, the ion gyroradius, relative to the characteristic scale lengths of which Ln is

one, and k⊥ρi = O(1). ω is the characteristic fluctuation frequency, Ωci is the ion

cyclotron frequency, k‖ and k⊥ are the components of the wavevector parallel and

perpendicular to the equilibrium magnetic field vector respectively, ρi is the ion gy-

roradius, Ln = n/∇n is the density length scale and φ is the fluctuating electrostatic

potential. The second small parameter is εB = ρi/LB, where LB is the scale length

of the magnetic field.

3.2 Lagrangian with general coordinates

In this section, the method for the transformation of the Lagrangian from one generic

set of coordinates ~z to another generic set of coordinates ~Z. This method is used for
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Figure 3.1: Particle, guiding centre and gyrocentre coordinates. The guiding centre
trajectory represents the motion of the gyrocentre with the E×B drift, whereas the
gyrocentre coordinates includes the effects from the other drifts, which are much
smaller than the E ×B drift.

the first transformation of coordinates, in order to decouple the θ-dependence of the

equilibrium part of the Lagrangian, in the derivation shown throughout this chapter.

To begin with the action-variational principle is considered. A single-particle La-

grangian is written as

L = ~p · ~̇q − hc(~q, ~p, t), (3.4)

where hc is the canonical Hamiltonian of a single particle and (~q, ~p) are the canonical

variables, for example (~q, ~p) = (~x,m~v). The Lagrangian can be written in terms of

an arbitrary coordinate system ~z = ~z(~q, ~p, t) (with ~q = ~q(~z, t) and ~p = ~p(~z, t) by the

chain rule:

L = γiż
i − h (3.5)

where γi = ~p · (∂~q/∂zi) at constant t and h = hc − ~p · (∂~q/∂t)|~z=const are both

functions of ~z and t and i = 1, ..., 6 represents the three spatial and three velocity

coordinates. Note that summation is used. It is shown that the equations of motion

can be derived from the variation of
∫
Ldt, in the coordinate system ~z.

It is useful to use the Poincaré-Cartan fundamental one-form, a different way of

writing the Lagrangian where the transformation of coordinates are more easily
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seen:

γ = γσdz
σ = γidz

i − hdt, (3.6)

where z0 = t and γ0 = −h for the σ summation. Then, under coordinate transform,

γ = γσdz
σ = ΓσdZ

σ, with Γσ = γν(∂zν/∂Zσ) and γ will always have the same form

for some Γµ in any phase space coordinate system.

The Euler-Lagrange equation, from Eqn. 3.5, is given by

Lij
dzj

dt
=
∂h

∂zi
+
∂γi
∂t
, (3.7)

where Lij =
δγj
∂zi
− δγi

δzj
are the components of the Euler-Lagrangian tensor. The

Euler-Lagrange equation is independent of choice of coordinate since all terms in

Eqn. 3.7 transform by multiplying by dzi

dZα (the dzj

dZβ
that multiplies Lij cancels with

dZβ

dzj
that multiplies dzj

dt ), which is non-zero and can be cancelled.

3.3 Electromagnetic Gyrokinetic Derivation

The canonical Hamiltonian for a single particle in the presence of an electrostatic

field and a magnetic field is given by

hc,SP =
mv2

2
+ qφ(~x, t). (3.8)

The Poincaré-Cartan form of this system can then be written as

γSP =
[
q ~A(~x, t) +m~v

]
· d~x−

[
mv2

2
+ qφ(~x, t)

]
dt

=
[
q ~A0(~x) + qδ ~A(~x, t) +m~v

]
· d~x−

[
mv2

2
+ qφ(~x, t)

]
dt (3.9)

Note that ~A0 is the background magnetic potential and that δ ~A and φ are the

perturbed magnetic vector and electrostatic potentials of only order ε. The next

step is to decouple the fast gyromotion implied by Eqn. 3.9. It is simpler to per-

form this action through a series of steps. Firstly, a set of coordinates is chosen,

such that the fast gyromotion is captured at lowest order, based on the unperturbed
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fields. Finally, the perturbed part is also considered resulting in a Lie transforma-

tion, explained in more detail later.

The equilibrium part of γ is

γ0 =
[
q ~A0(~x) +m~v

]
· d~x− mv2

2
dt. (3.10)

The guiding centre coordinates are defined as

~x = ~R+

[
v⊥

Ω(~R)

]
~a(~R, θ), (3.11a)

µ =
mv2
⊥

2B(~R)
, (3.11b)

U = ~v · ~h, (3.11c)

θ = tan−1

(
~v · ~e1

~v · ~e2

)
, (3.11d)

where ~e1 and ~e2 are arbitrary orthogonal vectors in the plane perpendicular to ~h,

~a = ~e1 cos(θ) − ~e2 sin(θ), ~R is the location of the gyrocentre and Ω = qB0(~R)/m.

These new coordinates, Eqn. 3.11, are substituted into Eqn. 3.9 and a Taylor series

expansion of ~A is taken, resulting in:

γSP =
[
q ~A0(~R) + qδA‖(~x, t)~h+mU(~R)~h

]
·d~R+µdθ−

[
mU2(~R)

2
+ µB(~R) + qφ(~x, t)

]
dt,

(3.12)

with the application of a suitable gauge, since the Euler-Lagrange equations (and

hence the One-form) are invariant under a gauge transformation in phase space, and

ignoring terms of higher orders in εB.

This one form can then be written in terms of the canonical parallel momentum:

p‖ = mU + qδA‖:

γSP =
[
q ~A+ p‖~h

]
· d~R+ µdθ −

[(
p‖ − qδA‖

)2
2m

+ µB + qφ

]
dt

=
[
q ~A+ p‖~h

]
· d~R+ µdθ −

[
p2
‖

2m
+
q2δA2

‖

2m
+ µB + q

(
φ−

qδA‖p‖

m

)]
dt. (3.13)
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The
q2δA2

‖
2m term produced by this transformation, results in a drift of second order

in the equations of motion and is therefore neglected for the rest of this derivation.

The effective potential is defined as Φ = φ− qδA‖p‖
m . This means that the derivation

of the electromagnetic equations of motion follows that of the electrostatic equations

of motion, but with the effective potential replacing the electrostatic potential.

In Eqn. 3.13, the terms at O(1) are

γ0 =
[
q ~A0(~R) + p‖~h(~R)

]
· d~R+ µdθ −

[
p2
‖

2m
+ µB(~R)

]
dt (3.14)

and the terms of first order:

γ1 = eΦ(~R+ ~ρ)dt. (3.15)

3.3.1 Lie Transformation

The Lie transformation is used to perform the coordinate transform that removes the

θ dependence from the perturbed part of the Lagrangian. Since the perturbed fields

are smaller in magnitude than the unperturbed quantities, more care is necessary in

order to keep terms of the same order, while neglecting terms of higher order. The

Lie transformation consists of a sequence of transformations at different orders [28]:

T =
∑
n

Tn, (3.16)

where n refers to the order of that transformation.

At first order, only a single Lie transformation is required for the coordinate trans-

form. An individual Lie transform [29] [30] [31] [32] [33] is a near-identity coordinate

transformation:

Tn = exp(εnLn) (3.17)

Under T , a scalar transforms as S = T−1s and the operator Ln acts on a scalar as

Lnf = gσn(∂f/∂zσ), (3.18)
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where gσn = ∂Zσ/∂εn are the generators of the Lie transformation Tn. The generators

determine how each coordinate is modified by the transformation. The Poincaré-

Cartan form transforms as

Γ = T−1γ + dS (3.19)

where Γ = ΓσdZ
σ and S is a gauge transformation in phase space. Then the

transformed oneform is given by Γ0 + Γ1 + ..., where

Γ0 = γ0 + dS0, (3.20a)

Γ1 = γ1 − L1γ0 + dS1. (3.20b)

The latter calculations then consist of choosing forms for the generators and gauge

such that, at each order, Γ has no dependence on θ.

3.3.2 Gyrophase averaged Euler-Lagrange Equations

Now the Lie perturbation is used in order to transform from guiding centre co-

ordinate to gyrocentre coordinates and remove the θ dependence from the new

Poincaré-Cartan form. Eqn. 3.20 are applied to the γ0 given in Eqn. 3.10. For

simplicity, dS0 = 0 is chosen, meaning that Γ0 = γ0. Note for the further equations

that gtn = 0 since time is not transformed. Also note from Eqn. 3.9 that

γ1 = −eΦ(~R+ ~av⊥/Ω)dt. (3.21)

The nonzero terms of the Lagrangian tensor, defined in Eqn. 3.7, are used alongside

Eqn. 3.20b to give

Γ1 = −eΦdt+
(
q~g

~R
1 × ~B∗ · d~R+ ~g

~R
1 · ~hdp‖ + µ~g

~R
1 · ∇Ωdt

)
+

gµ1 (−dθ + Ωdt) + g
p‖
1 (−m~h · d~R+ p‖dt) + gθ1dµ+

∂S1

∂ ~R
· d~R+

∂S1

∂p‖
dp‖ +

∂S1

∂µ
dµ+

∂S1

∂θ
dθ,

(3.22)
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where ~g
~R
n ≡ (gR1

n , gR2
n , gR3

n ) and ~B∗ = ∇ × ~A0 + (1/q)p‖∇ × ~h. dS1 and gσ1 can be

chosen such that all the Γ1σ vanish except for Γ1t:

∂S1

∂ ~R
= −q~g ~R1 × ~B∗ +m~hg

p‖
1 , (3.23a)

∂S1

∂p‖
= −~g ~R1 · ~h, (3.23b)

∂S1

∂µ
= −gθ1, (3.23c)

∂S1

∂θ
= gµ1 . (3.23d)

As it is required that Γ1t have no θ-dependence, then the following conditions are

imposed: g
p‖
1 = 0 and µ~g

~R
1 · ∇Ω = eΦ− e〈Φ〉, resulting in

Γ1t = −e〈Φ〉. (3.24)

The second order terms will not be considered here. The fundamental one form

is obtained by adding Γ0 and Γ1 (Eqn. 3.24). This results in the following equation:

Γ =
[
q ~A0( ~̄R) + p̄‖~h( ~̄R)

]
· d ~̄R+ µ̄dθ̄ −

[
p̄‖

2

2m
+ µ̄B( ~̄R) + e〈Φ〉

]
dt, (3.25)

where 〈...〉 is the average over the gyroangle and the gyromotion of particles is sim-

ply a change in the θ coordinate with time. The bars refer to the coordinates where

both the original coordinate transform, for the unperturbed Lagrangian, and this

Lie transformation has been applied. All further equations are in terms of these

coordinates and the bars will be dropped.

The simplification of the gyromotion is only possible thanks to the assumption that

the characteristic frequency was much lower than the cyclotron frequency, otherwise

if φ can change rapidly enough, then µ is no longer a conserved quantity. As an

example, assume that φ changes during the gyromotion such that ∇φ always points

in the direction of v⊥. Then v⊥ increases and µ is not conserved.

There are terms of higher order in both ε and εB, including mixed order terms,

that are neglected even in the standard, more complete to second order deriva-

tion [34]. This is due to the two step procedure in removing the θ-dependence,
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firstly the εB ordered terms are dealt with using a Lie transformation and then a

second Lie transformation is introduced in order to remove θ-dependence on the

turbulent fluctuations ε. The terms of mixed order are not calculated. However, it

is reasonable to expect these terms to not have a large effect since the Lagrangian for

drift-kinetics given by Eqn. 2.11 from Ref. [35] has a very similar form to the resul-

tant Lagrangian in the large wavelength limit, despite the fact that the drift-kinetic

derivation does not have the same ordering issue for the electrostatic perturbations

as the derivation here has.

The Euler-Lagrange equations, Eqn. 3.7, yield

dµ

dt
= 0, (3.26a)

dθ

dt
= Ω, (3.26b)

~h · d
~R

dt
=
p‖

m
, (3.26c)

−
[
q ~B + p‖∇× ~h

]
× d~R

dt
− ~h

dp‖

dt
= µ∇Ω + q∇Φ. (3.26d)

d~R/dt and dp‖/dt can be written in nicer forms. Taking the cross product of Eqn.

3.26d with ~h and adding Eqn. 3.26c gives an equation for d~R/dt:

d~R

dt
=

1

B∗‖

[
p‖

m
~B∗ + ~h× 1

q
µ∇Ω + ~h×∇Φ

]
, (3.27)

where ~B∗ = ∇× ~A+
p‖
q ∇×~h. Using the definition of ~B∗, Eqn. 3.27 can be written

in a more familiar form

d~R

dt
=
p‖

m
~h+

1

B∗‖

([
1

q
µ∇Ω +

p2
‖

qm

]
~h×∇~h+ ~h×∇Φ

)
. (3.28)

The term with µ is the ∇B drift as µ is proportional to v2
⊥ as given by Eqn. 2.15,

the term with p2
‖ is proportional to v2

‖ and is therefore the curvature drift as seen in

Eqn. 2.17 and the final term with ∇Φ is the ~E × ~B drift as ∇Φ is the electric field.

Taking the dot product of Eqn. 3.26d and ~B∗ provides the parallel acceleration

equation:

dp‖

dt
= − 1

B∗
~B∗ · (µ∇Ω + e∇Φ) = −

(
~h+

p‖

qB∗
~h× ~h · ∇~h

)
· (µ∇Ω + e∇Φ) . (3.29)
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3.4 Gyrokinetic Vlasov-Poisson equations

In this section, the Poisson and Ampere equations are derived by transforming the

coordinates in the original equations.

For the Poisson equations, the gyroaveraged density is required. The density is

given by

ni(~x) =

∫
f(~z)δ(~R+ ~ρ− ~x)d6z. (3.30)

Under a Lie transformation (at O(ε) the distribution function, f( ~̄R), becomes

f(~Z) = T−1f(~z) = 1 + L1f(~z) +O(ε2), (3.31)

According to Eqn. 3.18

L1f(~z) = gσ1
∂f

∂zσ
= gµ1

∂f

∂µ
+ ~g

~R
1 ·

∂f

∂ ~R
+ g

p‖
1

∂f

∂p‖
. (3.32)

Therefore the density is given by

ni(~x) =

∫ [
f(~Z) + gµ1

∂f

∂µ
+ ~g

~R
1 ·

∂f

∂ ~R
+ g

p‖
1

∂f

∂p‖

]
δ(~R+ ~ρ− ~x)Jd6Z (3.33)

where J = ∂ ~Z
∂~z is the Jacobian.

Hence, the Vlasov-Poisson equations are as follows:

∂f

∂t
+
dp‖

dt

∂f

∂p‖
+
d~R

dt
· ∂f
∂ ~R

= 0, (3.34)

ε0∇2(φ) = −
∑
α

q

{∫
Jd6Z

[
f(~Z) + gµ1

∂f

∂µ
+ ~g

~R
1 ·

∂f

∂ ~R
+ g

p‖
1

∂f

∂p‖

]
δ(~R+ ~ρ− ~x)

}
,

(3.35)

and Ampere’s Law is given by

∇2( ~A+ δA‖~h) = −µ0q

[∫
Jd6Z̄

(p‖
m
~h
)(

gµ1
∂fi
∂µ

+ ~g
~R
1 ·

∂fi

∂ ~R
+ g

p‖
1

∂fi
∂p‖

)

× δ(~R+ ~ρ− ~x)−
∫
d~v~vfe(~x,~v, t)

]
, (3.36)
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where gσn are the generators for Lie transformation as defined earlier. Note that

the quasi-neutrality equation described later is used instead of the Poisson equation

due to the difference in magnitude between the polarization density and the vacuum

polarization terms. The quasi-neutrality equation is derived by taking the left hand

side of Eqn. 3.35 to be zero.

The Poisson equation can be derived by using the φ variation of the Lagrangian.

This method is described in Ref. [36] and produces self-consistent equations for the

evolution of the electromagnetic potentials alongside the Vlasov equation. However,

the equations for the evolution of φ and ~A+ δA‖~h derived using the Lagrangian are

the same as the equations derived here, where the Poisson and Ampere equations

are transformed from generic phase space coordinates to gyrocentre coordinates.

3.5 Gyrokinetic Equilibrium

The control-variate method involves splitting the distribution function into an an-

alytical time independent function f0 and a time dependent part δf [37], resolved

using the Particle-in-Cell method describe in Chapter 4:

f(~R, p‖, µ, t) = f0(~R, p‖, µ) + δf(~R, p‖, µ, t). (3.37)

In this thesis, linear simulations are performed in ORB5 and so f0 is important, as

it is the state around which the linearisation is performed. Another, less important,

reason for this split is the numerical noise, which is proportional to (δf/f0)2 [38] and

so for good numerical performance δf � f0. The Vlasov equation is fully non-linear.

It is Eqns. 3.35 and 3.36 that are linearised as explicit forms for the electrostatic

potential and magnetic potential.

f0 is the background distribution function, it is simplest to use a function of the

constants of motion, as this is a solution to the Vlasov equation in an unperturbed

equilibrium:

f0 = f0(c1, c2, c3, ...),

dci
dt

= 0.
(3.38)
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The constants of motion in gyrokinetics are the canonical toroidal momentum ψcan,

the magnetic moment µ and the energy e [39] [40] [41]:

ψcan = ψ +
v‖Ωi
B2

f(ψ), (3.39a)

µ =
v2
⊥

2B
, (3.39b)

e =
mi

2
(v2
‖ + v2

⊥). (3.39c)

Recall that ψ is the poloidal flux, defined in Chapter 2, with regards to coordi-

nate systems. To lowest order, global gyrokinetic equilibria can be approximated

by a local equilibria and so an approximate solution to the steady state gyrokinetic

equations can be approximated by the local gyrokinetic solution [42]. It is there-

fore common in gyrokinetic codes to use a local Maxwellian for the background

distribution function:

fi,0(e, µ, ψ) =
ni,0(ψ)

(2π)
3
2 v3
th,i,0(ψ)

exp

(
− e

Ti(ψ)

)
(3.40)

where vth,i,0 =
√
Ti/mi is the thermal velocity of an ion.

The Vlasov equation, alongside the δf ansatz, is written as [43]

dδf

dt
(~R, v‖, µ, t) = −df0

dt
(ψ, v‖, µ) = τ(∇Φ), (3.41)

where

τ(∇Φ) = −f0(ψ, v‖, µ)

(
κ(ψ)

dψ

dt
− qi
T (ψ)

〈∇Φ〉 · d
~R

dt

)
(3.42)

Choosing a local Maxwellian for the background distribution is the simplest choice

and produces the correct density when integrated over the velocity space, but pro-

duces spurious zonal flow oscillations since it is not a true equilibrium distribution

function as df0/dt 6= 0 [44] [38]. However, since only linear simulations are performed

in this thesis, these spurious flows do not arise, since the modes that produce these

spurious flows are linearly stable [45].
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3.6 Quasi-Neutrality

In the Poisson equation, Eqn. 3.35, for wavelengths larger than the Debye length,

the vacuum term on the right hand side of the equation is much smaller than the

polarization response of the plasma [46]. This means that the vacuum term on the

right hand side can be neglected and the quasi-neutrality condition is used instead

of the Poisson equation.

The quasi-neutrality constraint is

ne = Zini. (3.43)

The ion density is then written as ni = 〈ni〉+ ni,pol. Then, the polarization density

for ions can be calculated from Eqn. 3.35 by setting the left hand side to 0, using

the above relationship:

ni,pol =

∫ {
qi
miB

(φ− 〈φ〉)∂f
∂µ

+
qi

miΩ2
i

∇
[∫

dα(φ− 〈φ〉)
]
×
~B

B
· ∇f

}

δ(~R+ ~ρi − ~x)B∗‖d
~Rdv‖dµdα. (3.44)

The second term on the right hand side (with the integral over α) of Eqn. 3.44

is neglected, despite being of the same order as the first term (both O(ε2) for a

general f). This is because in ORB5, when f is replaced by f0, when the equation is

linearised, the order of the first term is further increased toO(εB) whereas the second

term remains at the same order. Therefore the second term is neglected. After

taking the long wavelength approximation k⊥ρi � 1 (only valid for low toroidal

mode number simulations), the polarization density, Eqn. 3.44, is

∇pol ·
(
ni,0
BΩi
∇⊥φ(~R, t)

)
. (3.45)

with the derivation using a Taylor series expansion of φ and ∇pol = ∇R,Z is the

gradient in the poloidal plane.

The quasi-neutrality condition is then

ne,0(Υ) + δne = Zi〈ni,0〉(~R) + Zi∇⊥ ·
(
ni,0
BΩi
∇⊥φ(~R, t)

)
+ Ziδni, (3.46)

where 〈...〉 is the average over the gyroangle, φ̄ is the flux-surface averaged potential
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and

δns =

∫
B∗‖d

~Rdv‖dµdαδfs(~R, v‖, µ, t)δ(~R+ ~ρi − ~x). (3.47)

Note that the assumption is made that ∇pol ≈ ∇⊥, which is true for a tokamak

with a high safety factor, q. Then it is assumed that 〈ni,0〉 = ni,0 and ni,0 = ne,0/Zi

holds for any equilibrium distribution function (although this is only approximately

valid), so ni,0 = ne,0/Zi = n0. Then the quasi-neutrality equation becomes

−∇⊥ ·
(
Zin0

BΩi
∇⊥φ(~R, t)

)
= Ziδni − δne. (3.48)

On the right hand side of Eqn. 3.48 is the difference in density between ions and

electrons and hence the difference in charge density between the two species. There-

fore Eqn. 3.48 states that any imbalance in charge that arises in the plasma results

in a polarization drift that acts to reduce the charge imbalance.
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Chapter 4

ORB5 numerical

implementation

The global gyrokinetic code, ORB5, is the main tool used in this thesis for stability

analysis, so its numerical formulation will be discussed in detail.

In this chapter, the methods, used in ORB5, of performing the discretization of

the global gyrokinetic equations derived in Chapter 3 are provided. This electro-

magnetic formalism suffers from a numerical issue known as the cancellation prob-

lem [47], and the solution used in ORB5 is explained.

The version of ORB5 used for the simulations detailed later is version 776 on Al-

berto’s branch from the NEMORB svn repositories

https://spcsvn.epfl.ch/repos/NEMORB/branches/alberto/trunk/ . There are newer

versions of the code not used during this thesis, where some assumptions made in

this derivation are relaxed.

4.1 Particle-in-Cell Method

In the Particle-in-Cell method, the markers, representing part of the particle dis-

tribution function, are tracked in a continuous phase space, but the densities and

currents that are used to calculate the fields are stored on a grid so some interpo-

lation is required, or (for ORB5) finite elements. The Particle-in-Cell method is a

commonly used approach in gyrokinetic codes [22] [44] [48] [49] [50]. This method

has been shown to be an effective method of performing gyrokinetic simulations, es-

pecially for parallelisation over many cores [51]. However, the sampling of markers
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results in statistical noise. This noise can be mitigated by increasing the number of

markers, but the time for the simulations to complete increases as the number of

markers increase.

4.2 Discretization of δf

In ORB5, each volume element, Ωp is represent by a marker p. Markers are used

instead of particles in order to minimise the number of objects being followed: 107−
109 markers are used for 1020 particles. Then for a single species, the perturbed

distribution function is discretised using N markers:

δf =
Nph

N

N∑
p=1

1

2πB∗‖
wp(t)δ(~R− ~Rp(t))δ(v‖ − v‖p(t))δ(µ− µp(t)), (4.1)

where Nph is the physical number of particles (i.e. the distribution function in-

tegrated over velocity and position space) and N is the total number of markers.

Each marker is then characterised by its weight wp(t) and its position in the 5D

phase space (~Rp(t), v‖p(t), µp(t)). For the collisionless case, due to Eqn. 3.26a,

µ(t) = µ(t0).

To find wp in terms of δf , Eqn. 4.1 is integrated over the volume of a marker,

Ωp:

∫
Ωp

d3Rd3vδf =

∫
Ωp

d3Rd3v
Nph

N

N∑
p=1

1

2πB∗‖
wp(t)δ(~R−~Rp(t))δ(v‖−v‖p(t))δ(µ−µp(t0)).

(4.2)

As Ωp → 0, δf ≈ δfp where δfp is the average value over the volume Ωp and hence∫
Ωp

d3Rd3vδf = δfp

∫
Ωp

d3Rd3v = δfpΩp. (4.3)

Since Ωp only includes one marker, marker p,

δfpΩp =

∫
Ωp

d3Rd3v
Nph

N

1

2πB∗‖
wp(t)δ(~R− ~Rp(t))δ(v‖ − v‖p(t))δ(µ− µp(t0))

=
Nph

N
wp(t).

(4.4)

since delta functions, δ(x) have a value of 0 at all locations except at x = 0.
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Therefore, since Ωp, Nph and N are time independent (Ωp is time independent

due to Liouville’s Theorem [52]), the temporal evolution of the marker weights is

given by inserting Eqn. 4.1 into Eqn. 3.41

dwp
dt

=
N

Nph
τ( ~E)pΩp, (4.5)

where Ωp =
B∗‖d

~Rdv‖dµdθ

dN is the volume of a marker in phase space centred around the

position of the marker and dN is the number of markers in an infinitesimal volume

of phase space.

4.3 Equations of motion

The markers are pushed using magnetic coordinates (s, χ, φ). For the time integra-

tion of Eqns. 3.28, 3.29 and 4.5, a Runge-Kutta integrator of fourth order is used

in ORB5 [53]. This results in a local error of O(h5) (i.e. for each step), where h is

the time step which is set in the input, resulting in a total error of O(h4).

When a marker leaves the plasma (when s > 1), it is reflected (χ → −χ) in order

to maintain even sampling of phase space. If the equilibrium is up-down symmet-

ric, then the constants of motion are conserved from this action. However, if the

equilibrium is not up-down symmetric, this leads to violations of the conservation

of conserved quantities. All equilibria used in this thesis are up-down symmetric to

avoid this issue. Newer versions of the code, however, allow up-down non-symmetric

equilibria to be used without this problem.

4.4 Quasi-Neutrality Equation

In the input file, a number of grid intervals is given Ns, Nχ and Nφ. Therefore the

number of grid points, on which the fields are stored is given by (Ns + 1)(Nχ +

1)(Nφ + 1), where due to periodic nature of χ and φ, the value at the grid points

(s, 0, φ) = (s,Nχ, φ) and similarly for φ.

The quasi-neutrality equation, Eqn. 3.48 is solved with linear, quadratic or cubic

B-splines finite elements [54] whose basis functions are shown in Fig. 4.1. The
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Figure 4.1: Basis functions, in a single coordinate, for B-splines of different degrees.
ORB5 uses up to cubic splines (degree 3).

perturbed potential is discretised as a sum of tensor products of 1D B-splines:

φ(~x, t) =
∑
µ

φµ(t)Λµ(~x), (4.6)

where µ stands for j, k, l, φµ are coefficients and Λ(~x) is the tensor products of 1D

B-splines [43]. The Galerkin method [55], which involves using a test B-spline and

integrating the equation over the entire space, gives a linear system for φ(t). Then,

inserting Eqn. 4.6 for the fields and Eqn. 4.1 for the distribution function into the

quasi-neutrality equation, Eqn. 3.48, gives∑
µ

Aµνφµ(t) = bν(t), (4.7)

where

Aµν =

∫
d~x

n0(Υ)

ZiTe(Υ)
Λµ(~x)Λν(~x) +

n0(Υ)

BΩi
∇⊥Λµ(~x) · ∇⊥Λν(~x), (4.8a)

bν(t) =
Nph

N

N∑
p=1

wp(t)

2π

∫ 2π

0
dαΛν

(
~Rp + ~ρi,p(α)

)
. (4.8b)

The Eqn. 4.7 is then further approximated by using ∇⊥ ≈ ∇pol = ∇s ∂∂s +∇χ ∂
∂χ ,

valid when Bpol � Btor. This is the case when q > 1, and as such is the case for all
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equilibria used in this thesis. A discrete Fourier transform on φµ and bν is used for

numerical performance reasons. The resulting equation is

∑
µ

Âµν φ̂
(n)
µ (t) =

b̂
(n)
ν (t)

M (n),p
, (4.9)

where b̂(n) are the Fourier coefficients of b and M (n),p are computed analytically.

4.5 Gyroaveraging and Fourier Filter

The electric field and the perturbed distribution functions need to be integrated

over the gyroangle for Eqn. 4.8b and the equations of motion. This is computed

via a discrete sum with a variable number of points Ngc = min(32,max(4, 4ρi,p/ρi))

where ρi,p = v⊥,p/Ωi,p is the marker gyroradius and Ωi,p is the cyclotron frequency

of the marker. While only a 4-point discretization is necessary to describe pertur-

bations up to k⊥ρi ≈ 1 [50], the noise is reduced if more points are chosen [49]. The

position of the points on the Larmor ring are approximated as a circle around the

gyrocentre in the poloidal plane:

The gyroaveraged electric field is given by

〈 ~E〉 = − 1

2π
∇
∑
µ

φµ(t)

∫
dα∇Λµ

(
~R+ ~ρi(α)

)
. (4.10)

ORB5 uses a Fourier filter on the perturbed distribution function in order to keep

only field-aligned modes consistent with gyrokinetic ordering [56]. N and M are the

toroidal and poloidal mode numbers of the growing instability respectively. Modes

tend to grow most rapidly for poloidal mode numbers that are given by M/N ≈ q

as the mode is aligned with the magnetic field line and hence stabilisation of the

mode is minimised. Therefore physically non-relevant modes can be removed from

the simulation and specific modes can be looked for, even though they may not

be the fastest growing modes in the tokamak. The filter used in the simulations

detailed later is the diagonal filter. The diagonal filter takes as inputs: Nmin, Nmax,

Mmin, Mmax and ∆M and for each N in the range [Nmin : Nmax] allows the poloidal

modes [Nq±∆M ]∩ [Mmin : Mmax]. This centres the region where modes grow most

rapidly.
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4.6 Cancellation Scheme

4.6.1 Cancellation Problem

Gyrokinetic codes can use either v‖ or p‖ = mv‖ − qA‖, as ORB5 does, as a phase-

space variable. In general, global gyrokinetic codes use the p‖ formalism to allow

an explicit time solver [57]. However there is a price to pay, the cancellation prob-

lem [58], which can give rise to large numerical errors.

In the v‖ formalism, the equations of motion [47] are:

d~R

dt
= v‖

~B∗

B∗‖
+

1

eB∗‖

~h×
{
µ∇B + e

(
∇〈φ〉+

∂〈A‖〉
∂t

~h

)}
, (4.11a)

dv‖

dt
= −

~B∗

miB∗‖
· µ∇B − e

mi

(
~B∗

B∗‖
· ∇〈φ〉+

∂〈A‖〉
∂t

)
, (4.11b)

and the parallel Ampere’s Law is

−∇2
⊥A‖ = µ0

∑
α

j‖ (4.12)

where j‖ is the parallel gyrocentre current. The ∂〈A‖〉/∂t terms on the right hand

side of Eqn. 4.11 for the parallel acceleration prevents the use of an explicit time

solver. This is because the fields (φ,A‖) depend on the sources, calculated from

the distribution function (using these equations of motion), and hence the equation

cannot be solved directly.

In the p‖ formalism, the equations of motion are as given in Eqns. 3.28 and 3.29:

d~R

dt
=

(
v‖ −

e

mi
〈A‖〉

) ~B∗

B∗‖
+

1

eB∗‖

~h×
[
µ∇B + e

(
∇〈φ〉 − v‖∇〈A‖〉

)]
, (4.13a)

dv‖

dt
− mi

~B∗

B∗‖
·
[
µ∇B + e

(
∇〈φ〉 − v‖∇〈A‖〉

)]
, (4.13b)

and the parallel Ampere’s Law is:

∑
α

βs
ρ2
s

〈A‖〉 − ∇2
⊥A‖ = µ0

∑
α

p‖

m
, (4.14)

where βs = µ0n0,sT0,s/B
2. Note that Eqns. 4.13 no longer have the ∂〈A‖〉/∂t terms

and so explicit time solvers can be used. However, there is now an extra term on
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the left hand side of the parallel Ampere’s Law, Eqn. 4.14. These terms are can-

celled by the modification to the right hand side, which now contains p‖ instead of v‖.

This term is cancelled by splitting the current into adiabatic and nonadiabatic parts.

Consider a Boltzmann-like adiabatic perturbation of the distribution function, as-

sociated with the perturbed p‖ Hamiltonian:

H1,ad = e〈φ− v‖A‖〉,

Fad,s = F0,se
−H1,ad,Ts − F0,s ≈ −

eF0,s

Ts
〈φ− v‖A‖〉,

(4.15)

for small v‖A‖. This distribution function implies a parallel adiabatic current due

to the second term in the perturbed Hamiltonian. This term is present in the p‖

formalism but not the v‖ formalism. Thus the parallel adiabatic currents are also

unphysical and must be cancelled. This adiabatic current has the same magnitude

as the skin terms:

µ0j‖,ad = µ0e

∫
v‖Fad,sd

3v =
µ0n0,se

2

ms
A‖ =

βs
ρ2
s

A‖. (4.16)

This term then cancels with the leftmost terms in Eqn. 4.14.

The different methods of discretization means that the cancellation between the

first term of the left hand side of Eqn. 4.14 and the adiabatic current term is inex-

act. Since the approximately cancelling terms are much larger than remaining terms

in Eqn. 4.14, this leads to a numerical inaccuracy, referred to as the ‘cancellation

problem’. The cancellation problem occurs most strongly under certain circum-

stances. When there are a lower number of particles/markers, the discretization of

the distribution function is less exact and so the error is larger. When the toroidal

mode number, N , is low the instability is less localized to a single flux surface and

so again there is a greater amount of interpolation between distribution and field

discretization. The ratio of the two terms on the left hand side of Eqn. 4.14 is given

by βs
k2⊥ρ

2
s

and so therefore for higher β simulations the errors caused by the cancella-

tion problem are greater. Finally, when the system size is large k⊥ρ is smaller for

constant N . These conditions are seen during the global gyrokinetic simulations of

low-N modes, especially at the higher β required for kinetic ballooning modes to

grow as performed in Chapters 9 and 11.
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4.6.2 Solutions to the Cancellation Problem

There are several different possible ways to mitigate the cancellation problem.

The method implemented in the version of ORB5 used in this thesis involves us-

ing a control variates method discretised using a Galerkin method and is further

described in Ref. [59] along with results showing its efficiency in the GYGLES

code. This method involves solving Eqn. 4.14 to get an approximate value for

A‖, A‖,approx. Then the equation is solved again, but with the second term split as

A‖ = A‖,approx +A‖,correction. This is performed until A‖ converges which results in

the required cancellation.

Another method of solving the cancellation involves splitting A‖ into both a sym-

pletic part and a Hamiltonian part and is further described in Ref. [47] (i.e. only

putting part of A‖ in Eqn. 4.13). This method was implemented in ORB5 after

work had already started for the project and so was not used during this PhD. How-

ever, simulations could be run in the future using this method to allow the further

reduction of the number of markers and the enlarging of the system size for low-N

modes.
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Chapter 5

Ballooning Mode Theory

A kinetic ballooning mode is a mode that arises from coupling between the pressure

gradient and bad magnetic curvature present in a tokamak. The drifts and currents

that result in the growth of kinetic ballooning modes are described in Chapter 2.

Kinetic ballooning modes only appear beyond a critical-β. (The β value can be used

as a substitute for the pedestal pressure gradient, since, for a fixed pedestal width,

a given β or pedestal height gives a specific pedestal pressure gradient.) Since the

growth rate of kinetic ballooning modes increases greatly as β increases (near the

critical-β), they are thought to provide a limit on the maximum pressure gradient

that a pedestal can achieve. This is useful for predicting the properties of the pres-

sure profile in the pedestal region.

In this chapter, local gyrokinetic assumptions are used and so ~k‖ is small com-

pared to the ~k⊥, meaning that the mode is localized perpendicular to the magnetic

field, but is not parallel to the magnetic field. The kinetic ballooning mode equation,

derived in this section, therefore shows the dispersion relation for this mode along

the field line.

This equation is then compared to the ideal-MHD ballooning equation to see what

differences are expected in later simulations, Chapters 9 and 11, for the change in

growth rates.

5.1 Ballooning Description

In order to apply the gyrokinetic equation to a tokamak, first the equation must be

calculated in toroidal geometry using straight field line magnetic coordinates. Since
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χ is the straight field line angle-like coordinate, all quantities must be periodic in

χ, as they are in φ, such that f(χ) = f(χ + 2π). The issue arises when trying to

reconcile the periodicity in both χ and φ with using a plane wave description in

the radial and toroidal coordinates. Several attempts to reconcile these properties

have been made [60] [61], but these were partially successful as they lead to the

introduction of an arbitrary function in the eikonal representation, but without

defining the function. The way to proceed is to use the ballooning representation

(usable for both MHD and kinetic ballooning modes, which both struggle with the

above problem) [62], where for all perturbed quantities:

Φ(ψ, χ, φ, t) =

∞∑
p=−∞

Φ̄(ψ, χ− 2πp, φ, t). (5.1)

Note that although Φ̄ extends from −∞ to ∞ in χ and is not necessarily periodic,

the infinite sum is. To ensure that the sum converges, Φ̄ must vanish sufficiently

fast as χ→ ±∞.

Note that the superposition principle states that if L is a linear operator, then

LΦ = L
(∑∞

p=−∞ Φ̄(ψ, χ− 2πp, φ, t)
)

=
∑∞

p=−∞ LΦ̄(ψ, χ− 2πp, φ, t). Therefore, if

LΦ̄ = 0 for all Φ̄, then LΦ = 0. Therefore, the problem changes from solving the

perturbed quantities with periodicity to solving the perturbed quantities over an

infinite range in χ with no periodicity constraint.

The perturbations of interest are characterized by short perpendicular, k⊥ρi ∼ 1,

and long parallel, k‖ρi ∼ ε wavelengths. Hence, it is possible to adopt an eikonal rep-

resentation, which involves making an educated guess for the solution of a differential

equation of the form ε d
2y
dx2

= Q(x)y as y = A(x)e±iS(x)/ε with S(x) = ±
∫ x
x0

√
Q(x′)

and A(x) = C/
√
Q(x). In this case the parameters can be written using the eikonal

representation: δf̄Φ̄
~̄A

 =


δf̂

Φ̂
~̂
A

 exp(iS(χ, φ)/ε) exp(−iωt) (5.2)

where S is the eikonal accounting for the rapid cross-field variations. In this case

the specific form of S is determined by the requirement k‖ρi ∼ ε. Therefore

~h · ∇S = 0, (5.3)
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with ~h ≡ ~B
B . Using the gradient operator and Eqn. 2.8 and the fact that all

perturbations can be Fourier-decomposed in the ignorable coordinate φ, Eqn. 5.3

gives
1

BJ

(
∂

∂χ
+ iN

IJ

R2

)
S = 0, (5.4)

with N being the toroidal mode number. The most general form of S is then

S =

[
φ−

∫ χ

0
dχ
′ IJ

R2
+

∫ ψ

k(ψ)dψ

]
, (5.5)

with k(ψ) being determined separately [63].

5.2 Linearised gyrokinetic equation

The linearised local gyrokinetic equation is derived from the gyrokinetic Vlasov

equation. This results in Eqn. 50 of Ref. [19], where the distribution function is

given as a perturbed and unperturbed equilibrium part, δf and F . In this section

the equation for electrons will be considered.

This equation is then written in terms of straight field line coordinates [19] [64],

by using Eqns. 2.6 and 2.7 and the ballooning representation. The terms of similar

order are subsequently collected.

The lowest order terms give:

δf̂ = ĝ exp(−iL) +
Zef0

T
Φ (5.6)

where L ≡ kv⊥
Ω and the adiabatic part of the perturbed distribution function is

separated (the second term on the right hand side). The next order equation, then

provides the electron linearised gyrokinetic equation (equation 2.17 in Ref. [28]) [64]

[19]:
v‖

JB

∂

∂χ
ĝ − iĝ

(
ω − ~k⊥ · ~vD

)
= −−ie

T
f0

(
ω − ωT∗

)
×
[
J0(α)

(
Φ̂− v‖Â‖

)
+ J1(α)

v⊥
k⊥
δB‖

]
, (5.7)

where ~vD = 1
Ω
~h ×

(
µ∇B + v2

‖
~h · ∇h

)
, ωT∗ = ω∗p

[
1 + η

(
mE
T −

3
2

)]
with η = d lnT

d lnn0

and the diamagnetic frequency ω∗p = nT
e

d
dψ lnn0, J are Bessel functions and α =

k⊥
v⊥

Ω. Note that, in future equations, all Bessel functions are functions of α. The

46



boundary for Eqn. 5.7 is

ĝ → 0 as χ→ ±∞

for circulating particles and the forward and backward stream of particles match at

the turning points for trapped particles.

The usual procedure for solving Eqn. 5.7 is to use an integrating factor of the

form

Iab =

∫ b

a
dχ′ (ω − ωD)

JB

|v‖|
(5.8)

with ωD ≡ ~k⊥ · ~vD. The general solution is then given by

ĝ±(χ) = ∓ ie
T
f0

(
ω − ωT∗

) ∫ χ

∓∞
dχ′
(
JB

|v‖|

)
exp

(
∓iIχ′χ

)

×
[
J0(α)

(
Φ̂∓ |v‖|Â‖

)
+ J1(α)

v⊥
k⊥
δB̂‖

]
. (5.9)

5.3 Kinetic ballooning mode theory

The solution to the linearised gyrokinetic equation provided in Eqn. 5.9 can then

be inserted into three different equations to derive an overall equation for KBMs.

The first of these equations is the quasi-neutrality equation. This results in

0 =
∑
α

n0q
2
α

Tα
Φ̂ +

∑
α

q

ε0

∫
dEdµ

B

|v‖|
(ĝ+ + ĝ−) J0(α) (5.10)

where the summation is over particle species.

The second equation is the parallel current equation, the component of Ampere’s

Law parallel to the magnetic field:

k2
⊥Â‖ =

1

µ0
ĵ‖, (5.11)

where ĵ‖ is a function of ĝ±.

The final equation is the radial current equation, one of the two perpendicular
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components of Ampere’s Law:

δB̂‖ = − 1

k⊥µ0

∑
α

q

ε0

∫
dEdµ

B

|v‖|
v⊥ (ĝ+ − ĝ−) J1(α). (5.12)

In order to simplify and combine these equations to derive an equation describing

kinetic ballooning modes, a low-frequency mode limit, where the mode frequencies

are taken to be much lower than the transit and bounce frequencies of both electrons

and ions, is taken. In Ref. [28], a different regime is also shown, where the frequency

is between the electron and ion transit frequencies. However, this regime, although

more applicable to modes studied in Chapters 9 and 11, is more complicated and

has similar comparisons with the equivalent MHD ballooning equation.

In the low-frequency limit, ω � ωb, ωt ≈ vT /Lc where vT is the thermal velocity

and Lc is the connection length, and so ωLc/vT can be used as a small parameter.

In lowest order, the solution of the linearised gyrokinetic equation, Eqn. 5.7, for

circulating particles reduces as

1

2
(ĝ+ + ĝ−) =

q

T
f0

(
1− ωT∗

ω

)
ψ̂‖ (5.13)

where ψ̂‖ = iω
2

[∫ χ
−∞ dχ

′JBÂ‖ −
∫∞
χ dχ′JBÂ‖

]
.

Then the derived kinetic ballooning mode equation, ignoring trapped particles, is

L2
c

JB2

∂

∂χ

(
b

J

∂

∂χ
ψ̂‖

)
+

(
ω

ωA

)2{ω∗p (ωK + ωB)

ω2
ψ̂‖ +

ω∗p
ω
δB̃‖ +

[
1− ω∗i(1 + ηi)

ω

]
bφ̂

}
= 0

(5.14)

where b = k2
⊥ρ

2
i /2, ωK = (~h×(~h·∇~h)~k⊥)(T/mΩ)i and ωB = (~h×∇B ·~k⊥)(T/mΩB)i

are frequencies associated with the curvature and grad-B drifts respectively, B̃‖ =
Ti

miΩi
δB̂‖ and ω2

A = v2
A/L

2
c is the Alfven frequency, where vA = B2/µ0n0mi is the

Alfven velocity.

The radial current equation can then be simplified by taking β as an expansion

parameter [65]. Then the perturbed parallel magnetic field component, ignoring

trapped particles, is given by

δB̃‖ =
ωK − ωB

ω
ψ̂‖. (5.15)
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This means, when δB‖ effects are included, the kinetic ballooning mode equation

(ignoring trapped particles) is given by

L2
c

JB2

∂

∂χ

(
b

J

∂

∂χ
ψ̂‖

)
+

(
ω

ωA

)2{
2
ω∗pωK
ω2

ψ̂‖ +

[
1− ω∗i(1 + ηi)

ω

]
bφ̂

}
= 0. (5.16)

This same equation can be derived, by taking a high-β expansion of the linearised

gyrokinetic equation, Eqn. 5.7, instead of solely the equation for δB̃‖.

5.4 Comparison with MHD

Eqn. 5.16 is the ideal-MHD ballooning equation [66] [67], except with a diamag-

netic drift. The first term is due to field line bending, the second term is due to

curvature and the final term, which is zero in the MHD limit, is the diamagnetic

drift correction.

The MHD equation can therefore be recovered, by taking ω2
MHD = ω(ω − ω∗).

Therefore the local gyrokinetic growth rate can be estimated by taking the MHD

N → ∞ growth rate [68] and applying the above formula. This will be shown by

the simulations in Chapter 9. Other kinetic effects do not appear to have a large

effect on the observed growth rates.
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Chapter 6

MHD Equations and the Energy

Principle

MHD is one of the simplest models for describing the interactions between a con-

ducting fluid and a magnetic field. Ideal MHD is the simplest form of MHD and is

applicable under the following circumstances:

• The plasma is strongly collisional and so the particle distributions are close to

a Maxwellian.

• Resistivity is small.

• Length scales are much longer than the ion skin depth and the Larmor radius.

• Time scales longer than the ion cyclotron period.

• The plasma must move at speeds much lower than the speed of light (non-

relativistic).

MHD was first mentioned in 1942 [69], and is the most understood theory describing

plasmas. Therefore, in this thesis, ORB5 simulations, see Chapter 4, are compared

to MHD simulations in the appropriate limits. In this chapter, the ideal MHD

equations will be shown and the Energy Principle, used in the MHD code MISHKA,

will be derived.

6.1 Moments of the Vlasov Equation

The MHD equations can be derived from the Vlasov equation by taking velocity

moments [70] for each species and then summing the equations together to describe
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the whole system as a single fluid. The different moments produce the different

equations of MHD. Take the Vlasov equation for generic coordinates:

∂f

∂t
+ ~v · ∇f +

[ q
m

(
~E + ~v × ~B

)]
· ∇vf = 0. (6.1)

Since the coordinates are taken to be independent of each other then the Vlasov

equation can be rewritten in the following way:

∂f

∂t
+∇ · (~vf) +∇v ·

([ q
m

(
~E + ~v × ~B

)]
f
)

= 0. (6.2)

Take the first moment of the distribution function, Eqn. 6.2,∫
d3v

[
∂f

∂t
+∇ · (~vf) +∇v ·

([ q
m

(
~E + ~v × ~B

)]
f
)]

=

∂n

∂t
+∇ · (n~V ) = 0, (6.3)

where n =
∫
d3vf , n~V =

∫
d3v~vf and

∫
d3v∇v ·

([
q
m

(
~E + ~v × ~B

)]
f
)

= 0 since

the integral is over the total volume of the plasma. This is the continuity equation

and states that the density is constant if the plasma is non-compressional.

The second moment of the Vlasov equation, multiplied by the mass, produces New-

ton’s 2nd Law:∫
d3vm~v

[
∂f

∂t
+∇ · (~vf) +∇v ·

([
qα
mα

(
~E + ~v × ~B

)]
f

)]
=

∫
d3v~v

[
m
∂~vf

∂t
+m∇ · (~v~vf) +m~v∇v ·

([ q
m

(
~E + ~v × ~B

)]
f
)]

=

m
∂n~V

∂t
+m∇ ·

(
n~V ~V +

~P

mn

)
− qn

(
~E + ~V × ~B

)
= 0, (6.4)

where ~P =
∫
d3v

[
~v − ~V

] [
~v − ~V

]
f is the pressure tensor, given as P ~I for an

isotropic pressure.

The third moment can be calculated in the same way, but each moment introduces

a new variable into the set of equations and so this method cannot solely produce a

closed set of equations. Normally a different equation is used for the evolution of the

51



pressure and Maxwell’s equations are used for the evolution of the electromagnetic

fields.

6.2 Ideal MHD equations

The ideal MHD equations are as follows [71]

ρ
d~v

dt
= −∇p+ ~J × ~B, (6.5)

~J =
1

µ
∇× ~B, (6.6)

∂

∂t
~B = −∇× ~E, (6.7)

~E = −~v × ~B, (6.8)

∂

∂t
p = −~v · ∇p− Γp∇ · ~v, (6.9)

∂

∂t
ρ = −~v · ∇ρ− ρ∇ · ~v, (6.10)

where ~v is the macroscopic fluid velocity, ~B is the magnetic field, p is the pressure

and ρ is the mass density. These four variables describe the state of the system and

the MHD equations describe how these variables evolve with time. Γ = 5/3 is the

ratio of specific heats for an ideal gas with three degrees of freedom.

Eqn. 6.5 represents the acceleration of the fluid due to local forces and is Newton’s

second law ma = F and is derived from the 2nd moment of the Vlasov equation,

Eqn. 6.4. The first term on the right hand side is the force resulting from a differ-

ence in pressure on opposite sides of the fluid element. The second term on the right

hand side is the Lorentz force, summed over all the particles in the fluid element.

Eqn. 6.6 is Ampere’s Law, with the displacement current neglected. This mag-

netostatic assumption is valid if the Alfven velocity vA = B/(µ0ρ)1/2 is much lower

than the speed of light [72].

Eqn. 6.7 is Faraday’s Law for the evolution of the magnetic field. Eqn. 6.8 is

the ideal MHD Ohm’s Law and is derived from the Galilean invariance of Faraday’s

Law and the assumption that the electric field moving with the plasma is zero.
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The motion of the plasma changes the magnetic field from Faraday’s Law, Eqn.

6.7, and Ohm’s Law, Eqn. 6.8. Meanwhile, the magnetic field then acts on the

motion of the plasma through Eqn. 6.6 and Eqn. 6.5.

The evolution of the pressure and density are given by the thermodynamic equations

6.9 and 6.10. The first term on the right hand side of each of these equations shows

the effect of convection. If only these terms were present, then the pressure and

density of the fluid element would not change over time. The second term on the

right hand side of each of these equations represents the compression and expansion

of the pressure and density of the fluid element. The density evolution is derived

from Eqn. 6.3, the first moment of the Vlasov equation.

There are a couple of boundary conditions necessary for conservation of some im-

portant quantities. For instance, conservation of mass means that there must be no

fluid velocity across the boundary of the simulation:

~v⊥ = 0. (6.11)

In order to conserve energy the Poynting flux [73] (directional energy flux) must be

zero at the boundary so:

( ~E × ~B)⊥ = 0. (6.12)

To conserve magnetic flux, then the parallel electric field at the boundary must be

zero:

E‖ = 0. (6.13)

6.3 Linearised MHD equations

To create the linearised MHD equations, all the parameters are written in terms of

equilibrium quantities, which have no time dependence, (denoted by a subscript 0)

and perturbed quantities (denoted by a subscript 1) multiplied by a small parameter

εMHD � 1:

~v = ~v0 + εMHD~v1 = εMHD~v1, (6.14a)

~B = ~B0 + εMHD
~B1, (6.14b)

p = p0 + εMHDp1, (6.14c)

ρ = ρ0 + εMHDρ1, (6.14d)
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where ~v0 = 0 since (∂/∂t)0 = 0 and ~v = ∂~x/∂t. The time independence of the

equilibrium quantities and Eqn. 6.5 also leads to the force balance equation:

∇p0 = ~J0 × ~B0. (6.15)

Keeping the terms at first order give the linearised MHD equations:

ρ0
∂~v1

∂t
= −∇p1 + ~J0 × ~B1 + ~J1 × ~B0, (6.16)

from Eqn. 6.5 and Eqn. 6.6 where ~J0 = 1
µ∇× ~B0 and ~J1 = 1

µ∇× ~B1,

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
(6.17)

∂p1

∂t
= −~v1 · ∇p0 − Γp0∇ · ~v1. (6.18)

Note that the equations governing the evolution of the perturbed density is not

necessary, as the perturbed density does not appear in any of the other equations,

since ~v0 = 0.

Then all perturbed quantities are written as exponentials in time: v1 = v1(x) exp(−ωt),
which removes time derivatives and allows for the calculation of growth rates.

6.4 Displacement Vector ~ξ

It is useful to write the linearised MHD equations in terms of the displacement

vector

~ξ(~x, t) =

∫ t

o
~v1(~x, t

′
)dt
′
. (6.19)

Eqns. 6.17 and 6.18 can be integrated to give

~B1(~x, t) = ∇× (~ξ × ~B0) (6.20)

p1(~x, t) = −~ξ · ∇p0 − Γp0∇ · ~ξ (6.21)

The constants of integration can be eliminated by the choice of initial conditions.
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Eqn. 6.16 can then be combined with Eqns. 6.20 and 6.21 to give

ρ0
∂2~ξ

∂t2
= ~F (~ξ) = ∇(~ξ · ∇p0 + Γp0∇ · ~ξ)+

1

µ
(∇× ~B0)× [∇× (~ξ × ~B0)] +

1

µ
(∇× [∇× (~ξ × ~B0)])× ~B0. (6.22)

The boundary condition can then either be ~ξ⊥ = 0 on the last magnetic flux surface

around the plasma, or a vacuum region with a perfectly conducting outer wall.

6.5 The Energy Principle

The Energy Principle is a useful tool for determining the stability of an MHD plasma.

The first step of the derivation is to multiply Eqn. 6.22 by the time derivative of ~ξ

and integrate over the volume of the plasma:

∫
d3xρ0

∂~ξ

∂t
· ∂

2~ξ

∂t2
=

∂

∂t

∫
d3x

1

2
ρ0

(
∂~ξ

∂t

)2

=

∫
d3x

∂~ξ

∂t
· ~F (~ξ). (6.23)

Ref. [74] gives the steps from Eqn. 6.23 to

∂

∂t

∫ d3x
1

2
ρ0

(
∂~ξ

∂t

)2

− 1

2

∫
d3x~ξ · ~F (~ξ)

 = 0. (6.24)

The first term within the bracket of the left hand side of Eqn. 6.24 is the total per-

turbed kinetic energy and the second term is the total perturbed potential energy

δW = 1
2

∫
d3x~ξ · ~F (~ξ) and so Eqn. 6.24 states that the total perturbed energy is

constant in time. Since ξ(~x, t) = ξ(~x) exp(−ωt), the time derivatives can be simpli-

fied and only ξ(~x) needs to be solved for.

It can be seen from the conservation of total perturbed energy, that if an insta-

bility is to grow the kinetic energy must increase and hence the potential energy

must decrease. This is the energy principle, where the potential energy of the system

with a given perturbation will decrease and hence whether the system is unstable.

If all possible perturbations lead to an increase in the potential energy, then the

system is stable.
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The energy principle can be written in more useful forms. In Ref. [72], it is shown

that δW = δWF +δWV +δWS where δWV is the potential energy in the vacuum re-

gion surrounding the plasma, δWS is the integral over the surface of the plasma and

δWF is the potential within the plasma. Then δWF can be written in the following

form:

δWF = +
1

2

∫
plasma

d3x

{
1

µ0
|B1
⊥|2 + µ0

∣∣∣∣ 1

µ0
B1
‖ −B

0ξ · ∇p0/|B0|2
∣∣∣∣2

+Γp0|∇ · ξ|2 +
J0 ·B0

|B0|2
B0 × ξ ·B1 − 2ξ · ∇p0ξ · κ

}
, (6.25)

The first three terms within the integral represent the potential energy in several

different stabilising effects, including field line bending and plasma compression.

These are effects that instabilities have to overcome in order to start growing. The

fourth term can drive kink instabilities, or current driven instabilities, when it is

negative. The final term in the integral is the most important for this thesis and

can drive interchange or ballooning instabilities, instabilities driven by the pressure

gradient and/or curvature.
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Chapter 7

The MHD and Drift Models.: A

comparison in Z-pinch

cylindrical geometry

In order to visually understand ballooning mode mechanics and understand the

forces that drive this instability, the ballooning instability is first considered in a

simple geometry, a Z-pinch.

7.1 Force Comparison

Consider a Z-pinch (where the equilibrium current runs along the Z-direction)

which is axisymmetric about the Z-axis. The background field is then given by

B0 = B(R)φ̂, where φ̂ is the angle coordinate, and the pressure is given by p = p0(R).

In an MHD equilibrium, force balance is given by 0 = J0 × B0 − ∇p0, which in a

Z-pinch is then given by R̂(−J0B0 − ∂Rp0) = 0. Since µ0J0 = ∇ × B0, then

J0 = Ẑ(µR)−1∂R(RB0).

Assume that a region of increased pressure is introduced into the plasma as shown

in Fig. 7.1. In order to retain axisymmetry, this region of increased pressure will be

assumed to be a solid of rotation, which leads to the magnetic field still being solely

in the φ̂-direction. However, there is now a variation in the Z-direction. This leads

to an imbalance in the forces and as such, in MHD theory, the region of increased

pressure is expected to expand so the pressure inside and outside the region balance.

This expansion leads to a modification of the magnetic field and the potential to

further motion due to the resulting magnetic forces.
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Figure 7.1: Z-pinch, with the region of increased pressure shown in blue. The
red line is the axis of the cylinder and the grey lines represent the magnetic field
B0 = B(R)φ̂.

This motion may be complicated. However, the assumption will be made that the

high pressure region is elongated in the R-direction, as seen in a finger of Rayleigh-

Taylor instability or a ballooning perturbation, which leads to the pressure being

balanced more rapidly in the Z-direction than in the R-direction. In this geome-

try, the curvature forces only act in the R-direction, so force balance requires that

B2
0 = B2

1 + 2µ0p1, with p1 being the pressure in the higher pressure region (now

expanded slightly) an B1 is the magnetic field in the higher pressure region.

This results in force balance in the Z-direction, but not in the R-direction. The

radial component of the force can be calculated from the elements of the force bal-

ance equation, F .R̂ = −∂R(p0+p1)−B1(µ0R)−1∂R(RB1) = −∂Rp1−(µ0)−1(B2
1/R+

∂RB
2
1/2) = 2p1/R. This is a classic curvature-driven Buoyancy force, similar to a

Rayleigh-Bernard convection, but with pressure replacing gravity. Note that this

force does not depend on the background magnetic or plasma pressure. Proof that

interchange instabilities are driven by only the currents that result from curvature is

given for more general geometries in textbooks on MHD theory [75] from the energy

principle.

Now consider the same situation, but using the gyrokinetic drift model. Currently

in ORB5, electromagnetic fluctuations are only allowed via A‖. This means that

58



there are only B⊥ fluctuations and hence δB‖ = 0. Therefore, the perturbed J ×B
force is given by δ(J × B) = δJ × B + J × δB⊥. Therefore, since the system is

axisymmetric (the magnetic field is solely in the poloidal direction) and that the

perturbation is in the R-direction, no field line bending is expected so δB⊥ = 0 and

the dynamics are purely electrostatic and depend solely on δJ⊥. This is unexpected

as MHD requires perturbed magnetic fields in order for a perturbed J × B force

to arise, but the electromagnetic forces still arise in drift models without perturbed

magnetic fields due to the rise of currents from the drift motions. The drift motion

and polarisation equation can be seen as a consequence of force balance: a gyroki-

netic plasma is automatically in perpendicular force balance on gyration time scales,

but can have acceleration arise on longer time scales as the electric fields build up.

By quasi-neutrality, ∇·J = 0 and so ∂Jz/∂z = 0. Since Jz = 0 outside the region of

increased pressure, then Jz = 0 within the region of increased pressure. Therefore,

the perturbed drift currents J = e(n0 + n1)(v∇B + vB×∇B), summed over electrons

and ions, must be balanced by the current due to the polarisation drift vp = ∂tE/BΩi

and so the resulting electric field is given by n0e∂tE = −ΩiB(n0+n1)(v∇B+vB×∇B).

This polarization drift, separates positive and negative charges perpendicular to the

magnetic field and hence creates an electric field. The resulting E×B drift is given

by ∂tvE = −ΩiJ̃/en0. Since the E × B drift is in the radial direction, by inserting

the definition of the curvature and grad-B drifts into the current term, an effective

radial force can be found:

F .R̂ =< nv2
⊥ >

∇B
2qB2

+ < nv2
‖ >

B.∇B
qB2

(7.1)

and assuming an isotropic background plasma

F · R̂ = p1

(
∇B
qB2

+
B.∇B
qB2

)
. (7.2)

This mechanism is shown in Fig. 7.2. This force is charge independent and hence

all charged species are expelled from the core of the plasma.

Note that for a β = 0 plasma , v∇B can be rewritten. This is due to Ampere’s

Law and that Ĵ × B̂ = 0, ∇ × B = 0. In cylindrical coordinates, with φ being

the angle coordinate, this means that ∇ × B = 1
R

∂
∂RBφẑ. Since RBφ is constant,

that means that ∇B = B ~rC
r2C

. Hence the ∇B and curvature drifts can be written

in an equivalent form and therefore ~F .R̂ = 2p1/R, which is equivalent in the MHD
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model. However, if this is not the case, then the MHD and gyrokinetic models differ,

as is the case for gyrokinetic codes such as ORB5, where a A‖ formalism is used.

Note that if the ∇B drift is replaced with the curvature drift, then this difference

disappears and the MHD and gyrokinetic results match again in a β 6= 0 plasma.

This difference is unexpected, as we expect to recover MHD in the fluid limit.

The most obvious point of disagreement is in the variation of the magnetic field

amplitude that arises in the MHD model, whereas in the gyrokinetic A‖ formulation

this is neglected. Therefore, any forces arising from the J0 × B1 are neglected in

the A‖ model. The perturbed parallel field in the expression for drifts is needed

to correctly predict the force acting on a blob of plasma, and this directly leads to

incorrect growth rates.

7.2 MHD Energy Principle

If there is a perturbation allowing the sum of the terms in Eqn. 6.25 to be negative,

then there must be an instability. However, the solution minimising the energy may

not be a solution of the linearised local MHD eigenfrequency equation. Neverthe-

less, it is common to use the estimate −ω2 = 2δWF /
∫
d3xρζ2, with ζ given by the

perturbation that minimises the energy equation.

For ballooning type perturbations, the destabilising term is the final term on the

right hand side of Eqn. 6.25. Assuming that all the stabilising terms can be ignored,

the growth rate estimate is then given by

ω2 =
2
∫
ζ.∇p0ζ.κ∫
ρζ2

(7.3)

which for uniform density, curvature and pressure gradient, results in γ = (2∇p0.κ/ρ)1/2

for an optimally aligned mode. This can be viewed as the curvature drive strength

in the absence of stabilising effects. This is in agreement with the analysis provided

earlier for the Z-pinch, with κ = 1/R, which is approximately correct for a toka-

mak. Note that because of the helical field lines in a tokamak, the stabilising terms

become more important, due to the field line bending. Hence the minimisation of

the energy equation becomes a race between the curvature drive (destabilising) and

field line bending (stabilising).
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7.3 δB‖ effects

In the drift theory, perturbed currents in the plasma arise due to drifts, flow along

the field lines and as a magnetisation current, due to gyration. The quasi-neutrality

equation, equation 2.31 from Ref. [28], arises from the fact that the divergence of the

currents in the plasma is zero. When δB‖ is neglected in gyrokinetics, the magneti-

sation currents do not play an explicit role as they do not lead to parallel currents

and therefore they do not modify the quasi-neutrality equation as their divergence

is equal to zero. However, the magnetisation current is still crucial for calculating

the perturbed current distribution, as it modifies δB, leading to a J × δB force,

and hence the J × B force when β 6= 0. This is the reason that electromagnetic

forces arise even where the polarisation current cancels the perpendicular current

as happens when δB‖ is neglected.

However, when δB‖ is present, then electromagnetic forces arise from the inter-

action with the parallel perturbed magnetic field and perpendicular currents.
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a)

b)

Figure 7.2: Mechanism of the kinetic ballooning mode in a Z-pinch using drift kinetic
theory. The oval region represents the region of increased pressure as shown in Fig.
7.1, in the R-Z plane. Firstly, the ∇B, curvature and magnetisation drift create
a current due to the opposite movement of electrons and ions. This creates an
electric field that then results in an E ×B drift which is charge independent and is
orientated in the R direction as shown. The acceleration, and hence the force, can
be calculated, as a polarization drift must arise to balance the other drifts due to
quasi-neutrality.
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Chapter 8

Grad-Shafranov Equation:

Derivation and Implementation

The first task in running a simulation of an axisymmetric toroid is to create the

equilibrium that the simulation will be run over. In order to accomplish this ψ,

the poloidal flux within a magnetic flux surface, must be calculated as a function

of R and Z (from cylindrical coordinates). This can be accomplished by using the

Grad-Shafranov Equation [76] [77], the derivation and implementation of which, in

CHEASE and HELENA, will be provided in this chapter.

8.1 Grad-Shafranov Equation

For the derivation of the Grad-Shafranov Equation, a cylindrical coordinate system,

(R,Z,φ) whose axis coincides with the centre line of the toroid is used. Since φ is

an ignorable coordinate (∂/∂φ = 0), the poloidal magnetic field can be written in

terms of the toroidal component of the vector potential alone:

~B = ∇× (Aφφ̂) +Bφφ̂. (8.1)

It is customary to use a stream function ψ, that is proportional to the poloidal flux

ψ = ψpol/2π, which gives

~B = ∇× (ψ∇φ) +RBφ∇φ

= ∇ψ ×∇φ+Bφφ̂

=
1

R

∂ψ

∂Z
R̂− 1

R

∂ψ

∂R
Ẑ +Bφφ̂.

(8.2)
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The current density is then given by

µ0
~J = ∇×B =

1

R
4∗ ψ +∇(RBφ)×∇φ, (8.3)

where 4∗ is defined by

4∗ψ ≡ R ∂

∂R

1

R

∂ψ

∂R
+
∂2ψ

∂Z2
. (8.4)

For the plasma to be in equilibrium, the forces acting on it must balance., 0 =

−∇p + J × B. The parallel component of force balance, ~B · ∇p = ~B · ~J × ~B = 0,

means that pressure is a flux surface quantity and so

p = p(ψ). (8.5)

Inserting Eqns. 8.2, 8.3 and 8.5 into the force balance equation, results in

µ0p
′(ψ)∇ψ = − 1

R2
4∗ ψ∇ψ −RBφ

1

R2
∇(RBφ), (8.6)

which means that∇(RBφ) is in the direction of∇ψ and so RBφ is a surface quantity:

RBφ = F (ψ). (8.7)

This variable F is actually proportional to the total poloidal current

F (ψ) =
µ0

2π

∫
Spol

d~S.Jpol = µ0
Ipol(ψ)

2π
, (8.8)

where Spol is a cut surface spanning the centre of the toroid.

The Grad-Shafranov equation then follows from Eqn. 8.6:

−4∗ ψ = R2µ0p
′(ψ) + FF ′(ψ). (8.9)

This is essentially another way of writing the force balance equation, with the term

on the left hand side of Eqn. 8.9 representing that part of the confinement that

comes from the toroidal current crossed with the poloidal magnetic field and the

FF ′ term representing the confinement from the poloidal current crossed with the

toroidal magnetic field.
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8.2 Implementation

The normal procedure for computing an axisymmetric tokamak equilibrium is,

firstly, to provide p′ = p′(ψ), F = F (ψ) and either a boundary condition of ψ

or an externally imposed condition on ψ. Then the operator 4∗ is inverted and

ψ = ψ(R,Z) is calculated. For nonlinear profiles and/or boundary conditions, the

procedure is iterated until ψ converges to a consistent solution. Note that in general

it is not possible to specify ψ(R,Z) first and then calculate p(ψ) and F (ψ) [78].

The documentation for CHEASE is provided in Ref. [79] and the documentation

for HELENA is provided in Ref. [80].

There are several ways that p(ψ) and F (ψ) can be provided. Early forms of solv-

ing the Grad-Shafranov equation were made by individually specifying p′(ψ) and

FF ′(ψ) [81]. This, however, makes it difficult to control other equilibrium quanti-

ties such as the safety factor, q(ψ) = F (ψ)
2π

∫
ψ=const

dl
R|∇ψ| where dl is the line element

along a constant poloidal flux surface, or the current density profile. This problem

was solved by specifying some form of averaged current density [82] [83] in place of

FF ′(ψ).

8.3 Implementation in CHEASE

CHEASE solves the Grad-Shafranov Equation, Eqn. 8.9, for toroidal MHD equi-

libria as mentioned previously, by specifying the profiles p′(ψ) and F (ψ) and the

outermost flux surface.

In CHEASE, ψ ≡ 0 is chosen for the boundary, and ψ < 0 everywhere inside

the plasma. CHEASE then assumes that there is solely one magnetic axis, a region

where ∇ψ = 0 and that the total plasma current, I =
∫

Ω jφdS is positive.

8.3.1 Free function specification

The first profile required is the pressure gradient, given as a function of s = ψ−ψedge
ψ0−ψedge ,

where ψedge and ψ0 are the flux at the plasma boundary and magnetic axis respec-

tively.

The second profile is the current that can be given in three forms.

Firstly, it can be provided as FF ′(s).
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Secondly it can be provided as the surface averaged current density

I∗(s) =

∫
s=const jφ(J/R)dχ∫
s=const(J/R)dχ

= −C1

C0
p′(s)− C2

c0
FF ′(s). (8.10)

Thirdly, it can be provided as the parallel current density

I‖(s) =

∫
s=const

~J. ~BJdχ∫
s=const

~B.∇φJdχ
= −C1

C2
p′(s)− FF ′(s)

(
1 +

1

F 2(s)

C3

C2

)
(8.11)

where

{C0(s), C1(s), C2(s), C3(s)} =

∮
s=const

{
1

R
, 1,

1

R2
,
|∇ψ|2

R2

}
Jdχ. (8.12)

The last closed flux surface can then be provided as either a set of parameters, for

solving several formulae, or can be provided as a set of co-ordinates in (R,Z).

8.4 Implementation in HELENA

Instead of calculating ψ, HELENA calculates ψ̂ =
ψ−ψmagaxis

ψedge−ψmagaxis such that ψ̂edge ≡ 1

and ψ̂magaxis ≡ 0. As with CHEASE, HELENA only allows one magnetic axis.

However, unlike with CHEASE, the current can be in both directions.

8.4.1 Free function specification

HELENA can accept two different profiles from the p′(ψ) and FF ′(ψ) mentioned

earlier. These are

1

2
ABΠ(ψ̂) = −p′(ψ̂)

AΓ(ψ̂) = −1

ε

(
p′(ψ̂) + FF ′(ψ̂)

) (8.13)

with Π(0) = Γ(0) = 1. ε is an inverse aspect ratio, ε = a
R0

, between the geometric

major and minor radii. A and B are then parameters that define the amplitudes of

the input profiles. However, only B is specified in the input; A is determined by the

fact that ψ̂ = 1 on the boundary. Using these profiles and normalized co-ordinates,
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y = Z
a and x = R−R0

a , the Grad-Shafranov equation, Eqn. 8.9, is written

4∗ψ̂ =
∂2ψ̂

∂x2
+
∂2ψ̂

∂y2
− ε

1 + εx

∂ψ̂

∂x
= A

(
Γ(ψ̂) +Bx

[
1 +

εx

2

]
Π(ψ̂)

)
. (8.14)

The two functions Π and Γ are also specified in the input.

Alternatively, HELENA can accept I∗(ψ) as CHEASE can or calculate this value

such that the parallel current profile is consistent with 〈j ·B〉BS +E‖η(χ) (the par-

allel component of the bootstrap current and the inductively driven current).

Unlike in CHEASE, the outer boundary (for ψ̂ = 1) cannot be given as a series

of grid points. There are several methods of providing this outermost flux surface.

In this thesis, the method used to provide the outermost flux surface is a trun-

cated Fourier series

r =

M2∑
m=0

fm cos(mθ), (8.15)

where both the Fourier coefficients fm and the total number of Fourier terms M2

have to be specified.

8.5 Limitations

CHEASE and HELENA can both only generate flux surfaces that are nested within

the specified outer boundary. This means that the region that can be simulated is

limited to within the last closed flux surface. This can cause problems when run-

ning realistic tokamak equilibria, where the large pressure gradient region tends to

be very close to the last closed flux surface. Attempts to combine scrape-off layer

profiles with a created equilibrium have been made [84].

Also, CHEASE and HELENA require that the outer boundary be sufficiently smooth.

This is evident in HELENA where the outer boundary must be provided as param-

eters of an equation, or as Fourier coefficients. This means that the X-point must

be smoothed out for an equilibrium.

There are free boundary codes that can overcome these limits, allowing simula-

tion of open field line regions, such as EFIT [85]. However, ORB5 takes equilibria

data in a specific format, a format provided by CHEASE. Hence, for simplicity,
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CHEASE (or HELENA equilibria files run through CHEASE to provide the correct

format) was used to provide the equilibrium files for the ORB5 simulations.

8.6 ORB5 normalisation

In order to perform simulations in ORB5, the profiles and physical parameters must

be converted from the units given by CHEASE, SI units, into ORB5 units.

The basic time scale in ORB5 is Ωci = qiB0/mi where B0 is the magnetic field

at the axis, qi is the ion charge and mi is the mass of the ion, all in SI units. The

basic length unit in ORB5 is ρi = cs/Ωci, the ion sound gyroradius, calculated from

the electron temperature since the speed of sound is given by cs =
√
Te/mi. The

parameter ρ∗ = ρi
a , where a is the geometric minor radius (half of the diameter of

the device), is used to set the size of the device.

ORB5 uses a normalised temperature and density profile. They are normalised

to the value at a specified location. For the circular outer boundary equilibrium,

analysed in Chapter 9, the location of greatest pressure gradient s = 0.5 is the

location that is normalised to, with Te(s = 0.5) = 836eV as can be seen in Fig.

9.2. This means that the value of pressure in ORB5 is actually determined by a

parameter β. The definition used in ORB5 is β = µ0neTe/B
2
1 in SI units, with ne

and Te being the normalising density and temperature as mentioned previously (at

s = 0.5, for the equilibrium in Chapter 9), µ0 is the permeability of free space and

B1 is the normalising magnetic field on the axis. This results in β = 0.0135 for the

base circular equilibrium. This differs from the βCHEASE parameter provided by

CHEASE in the equilibrium output file. The definition of βCHEASE is calculated

using pressure values and magnetic values from other locations in the equilibrium,

with βCHEASE = 〈p〉/〈B2/2µ0〉, where 〈...〉 refers to average values. The definition

of β in ORB5 also has a factor of 2 missing from the definition used in CHEASE,

since β used only the electron temperature and density, whereas βCHEASE used the

overall plasma pressure, since it creates MHD equilibria where the plasma is treated

as a fluid. Hence forth all reference to β will be the value used in ORB5.
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Chapter 9

Modelling Kinetic Ballooning

Modes in a Simplified

Equilibrium

Instabilities that occur in tokamaks are usually divided conceptually into two dif-

ferent groups, macroscopic instabilities and micro-instabilities [86]. Macroscopic

instabilities are those which have perpendicular wavelengths comparable in size to

perpendicular characteristic length scales of the device and are treated using fluid

theory, since the mode structures are large enough that FLR and other kinetic effects

can usually be ignored for the instabilities of interest. Microscopic instabilities are

those which act on the basic plasma scales, such as ρi, and are treated using either

gyrokinetics or drift kinetics. A local gyrokinetic code can be used if the mode struc-

ture is small enough to avoid interacting with characteristic system length scales, if

not, a global version is required.

For MHD, the only length scales are macroscopic: for example the temperature

scale length LTi . Therefore MHD agrees with global gyrokinetics for wavelengths

much larger than ρi [87]. This is the case, in ORB5, for small toroidal mode number

N , where the wavelengths are closer to the scale lengths of the profiles and hence

are too wide to be analysed using a local gyrokinetic approach, and for small ρ∗,

where the FLR effects are small since they are not present in MHD.

However, for local ion scale gyrokinetics, the characteristic length scale is the ion

gyroradius ρi, such that k‖ρi ≈ O(ε)� 1 and k⊥ρi ≈ O(1), where k‖ is the parallel

wavenumber and k⊥ is the perpendicular wavenumber. The perpendicular system
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scale lengths are not present in local gyrokinetics, due to the limit of an infinite

space with constant gradients in the perpendicular direction. For agreement with

local gyrokinetics, the ORB5 simulations must be run with small ρ∗ = ρi/a, such

that the Larmor radius is small compared to the system scale lengths. For our case,

this means that more gyroradii fit within the pressure gradient region, so locally, the

plasma resembles the infinitely wide homogeneous pressure gradient region of local

gyrokinetics. For similar reasons, global gyrokinetics agree with local gyrokinetics

at the short wavelength, high k⊥, where the mode width is small enough to fit within

the pressure gradient region and does not reach the region of low pressure gradient

and weak drive for the instabilities.

This means that global gyrokinetics agree with these two theories in different limits.

To determine whether ORB5 simulations agreed with a local gyrokinetic code GS2

and an MHD code MISHKA, global gyrokinetic simulations of a simplified MHD

equilibrium were run and checked for agreement in the appropriate limits. This was

undertaken to confirm the value of the drive terms present and show that the drive

terms depend on the curvature, as is shown theoretically for a Z-pinch in Chapter

7.

These simulations show how well the underlying global gyrokinetic formulations and

numerics present in ORB5 can match with the theory explained in Ref. [28] and how

well it converges with MHD and local gyrokinetics. This yields understanding of the

physics of global MHD-type modes in the global gyrokinetic framework and shows

what global gyrokinetics can achieve and in what limits it is applicable.

9.1 Drive Strengths between MHD and Gyrokinetics

The main issue in comparing drive strength between MISHKA and ORB5, as shown

in Chapter 7, is that the δB‖ effects are missing in the gyrokinetic formalism used in

ORB5, which results in the effective curvature drive being reduced for the instability

at finite β. The existing code does not include δB‖ fluctuations and there was not

enough time during this project to include them. There are recent papers that em-

phasise the importance of compressibility and that finite-β compression effects are as

important as finite-β equilibrium effects (of the same order of magnitude) [88] [89].

In GTC (Gyrokinetic Toroidal Code) the extra δB‖ is calculated from the electron

adiabatic response in an extra step at the end of each iterative step and is then used

in a modified continuity equation [90].
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In the drift regime, the currents in the plasma can be decomposed into magnetisation

currents, drift currents, polarisation currents and parallel currents. Since only δB⊥

is kept, then the parallel currents are the only currents necessary for Ampére’s law.

The perpendicular currents are still important for setting up these parallel currents

and for determining the evolution of the charge density. The divergence of the cur-

rents gives the rate of change of the local charge density (charge conservation). This

is then related to the electric field evolution through the Poisson equation, Eqn. 3.35.

In the gyrokinetic equations, the particle motion is a direct consequence of Newton’s

laws. The moments of the gyrokinetic equations leads to the fluid relations (at high

wavelength and ignoring certain higher order effects) such as mndv/dt = J×B−∇p,
where J is the sum of all currents excluding magnetisation currents (Note that this

means that J 6= ∇ × B using this J). For the ORB5 A‖ formalism, the magneti-

sation current doesn’t lead to a change in the parallel magnetic field as there is no

B‖ perturbation allowed. For low β, δB‖ doesn’t lead to any forces, since J⊥ = 0

for force-free plasmas. This is violated for a finite-β tokamak, but we will at least

have pressure balance in the wavevector direction which gives equal currents and

thus forces for the MHD and the drift regime.

However for higher β, the gyrokinetic A‖ formalism tends to underestimate the

drive compared to MHD as the ∇B drift reduces to zero on the outboard midplane

as a result of the Shafranov shift compression of the field lines as seen in Fig. 9.1.

Curvature, however, is not strongly modified by the finite-β equilibrium effects and

is dominated by the toroidicity so the radius of curvature is close to 1/R. This

results in the perpendicular current arising from pressure perturbations being lower

than the corresponding MHD value. What should compensate for this is the finite-β

perpendicular currents interacting with the B‖ perturbation, leading to a force that

enhances this drive: this is missing in ORB5.

An adhoc method of “fixing” this is to impose that the total curvature and ∇B
drifts are compensated so that the current driven by these drifts is just proportional

to curvature and matches the MHD drive. The difference that occurs when δB‖ is

included in the derivation, is the replacing of the effective drive term 2ωk by ωk+ωB

as seen in Eqn. 5.16. Since vk = vB + K∇p (Eqn. 3.15 from Ref. [28]), where K

is a constant, in order for 2ωk to be equivalent to ωk + ωB, the pressure gradient

must be doubled, so that vk + vB = 2vk. Note that the pressure gradient should
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Figure 9.1: a) Magnetic field and b) ∇B along the outboard midplane.

only be doubled for this use (Other uses of the pressure gradient still require the

correct value). In ORB5, this can be achieved by doubling the pressure gradient in

the input equilibrium file, increasing the curvature drift to balance the decrease in

the ∇B drift. Note that a separate input file, with the information about profiles,

has the correct pressure gradient profile that is used for all other uses of the pressure

gradient. The drifts can be seen in the equation of motion used in ORB5, Eqn. 3.28.

9.2 Gyrokinetic Ballooning Theory in General Geome-

try

In Ref. [28], a general derivation of gyrokinetic ballooning theory for large toroidal

mode number, N , modes is provided in certain limits. This paper is self-contained

except for the derivation of the linear gyrokinetic equation, which is given in Ref.

[63]. For the pedestal region, the steep pressure gradients imply that the diamag-
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netic drift, vdia = ∇p0×B/qnB2, is much greater than the curvature and ∇B drifts,

as vdia
vcurv

≈ ∇p/p
∇B/B , and, since ideal-MHD theory indicates that near marginal stability

ω → 0, the mode frequency is much larger than the ion transit frequency, but much

smaller than the electron transit frequency. This means that the kinetic effects can

be written in a simpler form: adiabatic response for the electrons and gyrofluid

response for the ions. Therefore good agreement is expected between ORB5 and

the analytic theory in the large ρ∗ limit for high N modes. For low N modes, the

global profile effects cannot be ignored.

For low frequency modes, with frequencies lower than the electron and ion tran-

sit frequencies, equation 3.24 from Ref. [28] (ignoring trapped particles) is derived

by placing solutions to the linearised gyrokinetic equation (in an extra step at the

end of each iterative step in equation 2.18 from Ref. [28]) in the quasi-neutrality

equation (equation 2.31 from Ref. [28]):

L2
c

JB2

∂

∂χ

(
b

J

∂

∂χ
Φ

)
+

(
ω

ωA

)2 [2ω∗pωk
ω2

Φ + (k2
⊥ρ

2/2)
(

1− ω∗p
ω

)
Φ

]
= 0, (9.1)

where ω∗p = NT0
e

d
dΨ ln(n0T0), Lc is the connection length, ω2

A = v2
A/L

2
c is the Alfvén

frequency (vA is the Alfvén velocity) and k⊥ is the perpendicular wave number.

The MHD limit corresponds to setting the final term to zero, with the first term

corresponding to field line bending stabilisation, and the curvature is the first term

in the straight brackets. (Since we are in SI units, factors of c are absent). The

only difference between this formula and the MHD result is the replacement of ω2

by ω(ω − ω∗p), when FLR and kinetic effects are ignored. Therefore it should be

possible to reproduce the local and large-N global results, where global effects are

negligible, using this analytical formula.

The equivalent equation for the A‖ in ORB5 can be derived by setting δB = 0

in Eqn. 5.14. This then results in Eqn. 9.1, but modified by replacing the effective

drive term 2ωk by ωk + ωB (such that the first term in the square brackets in Eqn.

9.1 can be written [ω∗p(ωk + ωB)/ω2]Φ , where ωk is the frequency of the curvature

drift and ωB is the frequency of the ∇B drift, as can be seen from Eqn. 5.16.

One of the conditions for this equation, ω << vTe/R, is always valid since typi-

cal growth rates are smaller than cs/R. However, except near marginal stability,

growth rates are found such that γ >> vT /R, where vT is the thermal velocity,

(due to large pressure gradients) and so we can ignore ion kinetic effects due to
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parallel streaming along field lines and we are at the intermediate regime rather

than the low frequency regime mentioned above, except in low N where frequencies

are small and growth rates tend to zero. However, the same issue with the drive

strengths (where the δB‖ contributions are ignored) also applies in the intermediate

regime [28]. The low frequency regime has been used to show the difference between

MHD and gyrokinetic theory as this regime is explored in further depth in Ref. [28].

It is also simpler, since the electrons and ions are in the same regime and different

approaches are not required for each species.

9.3 Equilibrium

The base case is a relatively simple equilibrium designed to exhibit similar pressure-

driven instabilities to a plasma pedestal with a moderate aspect ratio, R/a = 10/3,

for a deuterium plasma. To simplify the numerics and interpretation, an equilibrium

with a circular outermost flux surface was chosen. In order that pressure gradient

driven instabilities grow, a pressure profile was chosen such that the pressure gradi-

ent is significant enough to be MHD unstable and the pressure profile is almost flat

except for a sharp step at mid-radius to simulate a pedestal-like region. Unlike in a

physical pedestal case, where the pedestal is very close to the outer last closed flux

surface, this provides a substantial buffer region between the large pressure gradient

region and the boundary.

However, for the gyrokinetic simulations, the temperature and density profiles had to

be specified. It was specified that Te = Ti and that the density was constant, which

means that the pressure profile was solely determined by the temperature profile.

When simulations with this calculated temperature profile were run, non-physical

modes were noticed growing in the region of zero pressure beyond the pedestal-like

region. This is due to the fact that Te = 0 is problematic for the global gyrokinetic

code and so, in order to avoid this issue, 387eV was added to the temperature pro-

file (approximately half the pedestal height). This does not affect the shape of the

equilibrium, since the pressure gradient is not affected and the magnitude of the

pressure does not affect the Grad-Shafranov equation, Eqn. 8.9. The equilibrium

parameters appear in Table 9.1.

CHEASE is the code used to prepare the equilibrium, where the flux surfaces are

calculated by solving the Grad-Shafranov equation, Eqn. 8.9. It takes the pressure

gradient and current profiles as the input profiles. Along with the shape of the last
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Parameter CHEASE value ORB5 value

q at axis 1.05 1.05
Minor radius 0.3m 70
Major radius 1.0m 233
B at axis 0.956T 1
Te at axis 1144eV 1.368

Te pedestal height 757eV 0.947
ne 7.37× 1019m−3 1
qi +e 1
mi 2mp 1

Table 9.1: Profile parameters for the benchmark base case described in this chapter.
mp is the mass of a proton and e is the absolute value of the electron charge. The
temperature pedestal height is defined as the difference between the core tempera-
ture and the edge temperature. As can be seen in Fig. 9.2, the electron temperature
is flat except in the pedestal for this equilibrium.

closed flux surface, this is enough to solve the Grad-Shafranov equation and to pro-

vide the equilibrium. The original equilibrium has a uniform toroidal current and

the pressure gradient associated with the temperature profile in Fig. 9.2. CHEASE

then provides the pressure and shape in SI units in the output equilibrium file, i.e.

pressure in Pascals (Pa), dimensions in metres (m) and magnetic field in Tesla (T)

and must then be converted into ORB5 units.

The simplest choice to drive the growth of kinetic ballooning modes is to spec-

ify zero global magnetic shear, s = r
q
dq
dr which can be expected to be the most

unstable given the cylindrical stability criteria [72], but MHD equilibria of this form

are stable due to the strong Shafranov shift that leads to a large local shear at the

outboard mid-plane, where the drive is strongest.

Therefore an equilibria with small local magnetic shear, slocal = 2π~n.∇ ×~b where

~n = ∇ψ
|∇ψ| ×

~B
| ~B|

, was created, in order to ensure robust instability growth, since the

field lines are aligned and do not inhibit the motion of other field lines. The phase

of a field-aligned mode may be written as P = N(ζ − qχ) + K, where ψ, χ, ζ are

straight field line magnetic co-ordinates, such that ψ is the poloidal flux within a

magnetic flux surface, χ is the poloidal angle-like coordinate and ζ is the toroidal

angle, and K = 0 is for a mode with zero radial wavenumber at the outboard mid-

plane. Note that s =
√

ψ
ψend

can be used instead of ψ and more closely reflects the

radial coordinate r in a tokamak and as such is used instead of ψ for some future
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Figure 9.2: The temperature profile for β = 0.0135.

figures. In these equilibria, lines of constant phase, in the poloidal plane, of field-

aligned modes at some fixed toroidal mode number N are nearly perpendicular to

the flux surfaces for a range of χ near the outboard midplane.

The current profile in the equilibrium is modified such that ∇[q(R,Z)χ(R,Z)].∇s =

0 in the outboard quarter (χ = −π/4 to χ = π/4), which results in straightening

of lines of constant qχ on the outboard side as can be seen in Fig. 9.4, which

requires iteration of the CHEASE equilibrium code with the correction based on

the approximate relation between the q and toroidal current I profiles. In order

to achieve this change in q, the current must be changed as the Grad-Shafranov

Equation only depends on the pressure gradient, last closed flux surface and current

profile and the pressure profile and last closed flux surface are chosen to remain

constant. The toroidal current is changed in order to reduce the local magnetic

shear at the outboard midplane for the original equilibrium. Then CHEASE is run

with the corrected current in order to recalculate the equilibrium profiles to match

the new current. This procedure results in a lower local magnetic shear on the low

field side. Note that this iteration was performed once, as a second reduction of the

local shear, resulted in CHEASE not being able to find an equilibrium.
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Figure 9.3: The χ and s grids for the benchmark equilibrium. The grid lines are
plotted with constant intervals in χ and s (The actual numerical grid is much finer).

Note that this means that lines of constant χ are strongly bent as seen in Fig.9.3. It

is the combination of q and the shape of χ(R,Z) that allows MHD modes which are

elongated along the field line but have little bending energy, which is a stabilising

effect.

As mentioned in the introduction to this chapter, the global gyrokinetic formalism

is expected to agree with MHD and local gyrokinetics for small ρ∗ in the appro-

priate opposite limits (low-N for MHD and high-N for local gyrokinetics). This

means that ρ∗ is reduced from the equilibrium value of ρ∗ ≈ 1
70 to values of 1

800 .

To simplify the comparison between the MHD and gyrokinetic growth rates, when

a series of equilibria with varying values of ρ∗ = ρi/a were created, the MHD in-

stability growth had to be kept constant in SI units (seconds). Similarity requires

that the other dimensionless parameter, β, remains constant also. The MHD growth
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Figure 9.4: Lines of constant qχ for (a) the original and (b) the modified (with
∇[qχ].∇s = 0 equilibrium with black lines at s = 0.5 and 1.

rates scale with the Alfven time, so vA/R = (T/m)1/2 /Rβ1/2 is kept fixed. If T

and R are kept constant, but B is scaled proportional to 1/ρ∗ and density is scaled

proportional to 1/ρ∗2, both β and vA/R are kept fixed.

9.4 Numerical Parameters

Simulations were undertaken with times step of Ωci, to avoid numerical instability.

KBM simulations were undertaken with lower time steps to assure that the time

step of Ωci had converged. The grid sizes, chosen for the three spatial coordinates,

were Nψ = 256, Nχ = 256 and Nφ = 256, for N = 20. As toroidal mode numbers

were increased, the number of grid points in the χ and φ directions also had to be

increased, such that the value was more than 4 times the toroidal/poloidal mode
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Figure 9.5: Safety factor before and after the procedure to minimise the local shear.

number (Since more than four points per wavelength are required to describe a

wave [91]). For each simulation, the toroidal mode filter was selected, such that a

particular mode number was kept. However, the poloidal mode filter was chosen

such that the mode numbers allowed were three times larger than the toroidal mode

number. This was chosen as the safety factor increases to around two and we wanted

to avoid suppressing growth rates. For a N = 30 simulation, the poloidal filter was

Mmin = −90 and Mmax = 90.

9.5 Modified Drive Term

To verify that the basic interchange method has the right strength in the gyroki-

netic formulation, electron-ion simulations were run with the standard drift terms

active and with a ‘corrected’ drift term for which the ∇B drift was replaced by

the curvature drift to make sure that the MHD drive strength was recovered. This

increased drive strength would be provided by δB‖ in a self-consistent simulation.

This was accomplished, as previously mentioned, by doubling the pressure gradient

in the ORB5 equilibrium input file. The simulation results were then compared to a

similar simulation performed in MISHKA, a linear MHD stability code to compare

the results.
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ORB5 simulations run without the modified drive term showed no mode present,

even though a strong MHD instability was verified using MISHKA. With the mod-

ified drive terms, however, a mode can be seen growing as indicated in Fig. 9.6.

Figure 9.6: Energy vs time for two simulations, with N = 30 and ρ∗ = 1
800 with

original drive and with additional drive term to correct for δB‖ effects.

9.6 Mode Structure

In Fig. 9.7, a poloidal slice of the electrostatic potential, φ, is plotted for N = 30

and ρ∗ = 1
800 . As can be seen from the plot, the ORB5 simulations were undertaken

on a smaller section of the annulus, in order that the simulations be more efficient

as the ORB5 simulations are costly to perform, as all global gyrokinetic simulations

are. In addition, the mode is centred on the outboard midplane at the region of

greatest pressure gradient as expected for kinetic ballooning modes and is similar

to the mode structure observed in MISHKA, with the mode being situated on the

outfield side and centred on the same flux surfaces. As can be seen from the grey

lines, which represent the same flux surfaces in both simulations, both modes grow

in the same region (the pedestal-like region). The magnitude of the electrostatic

potential is not useful for these plots as they are both linear runs and as such the

amplitude has no physical significance and as such a qualitative comparision is all

that can be accomplished from these plots and simulations in terms of comparing

the electrostatic potential.
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Figure 9.7: 2D density plot of the electrostatic potential versus R and Z for (a)
ORB5 and (b)MISHKA where N = 30 and ρ∗ = 1

800 . The grey lines represent
equivalent flux surfaces between the two plots.

As can be seen in Fig. 9.8, regions of strong electrostatic potential are concentrated

in the pedestal-like region of the plasma, centred at the point of greatest pressure

gradient. Also as we decrease N , the mode widens until it extends beyond the region

of pressure gradient as seen in N = 10. This due to the increase in perpendicular

wavenumber and hence decrease in perpendicular wavelength.

In order to further confirm that the correct mode was growing, E‖ was calculated and

compared in magnitude to
dA‖
dt . Since MHD instabilities have E‖ = −~h ·∇φ+

∂A‖
∂t ≈

0, due to the freedom of movement that electrons have parallel to the magnetic field.
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a)

b)

Figure 9.8: Maximum φ for each flux surface for three different values of N in a)
MISHKA and b) ORB5 with ρ∗ = 1/800. (The peak value is normalised to one)

Therefore E‖ �
dA‖
dt as the two terms on the right hand side cancel each other. As

can be seen from 9.9, this is the case for these modes as E‖/
dA‖
dt � 1. This is

consistent with an MHD instability as expected.

9.7 N Scan

Shown in Fig. 9.10 are the growth rates of kinetic ballooning modes for the bench-

mark case in both MISHKA and ORB5. In the ORB5 graph are the plots for three

ρ∗ that scans were performed over. In order to negate the finite Larmor radius

effects, and therefore match with MHD results, a sufficiently small value of ρ∗ was

needed. ORB5 cannot run with zero ρ∗, so scans for ρ∗ = 1
800 , 1

400 and 1
200 where

performed to make sure that the runs had converged with respect to ρ∗. As can
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s

Figure 9.9: Plots of E‖ and
dA‖
dt , for N = 30, ρ∗ = 1

800 and t = 2900Ωci, in
comparable ORB5 units.

be seen from Fig. 9.10, the three ORB5 curves appear to match closely for low N

and so it can be concluded that convergence had been achieved and that the re-

sults should not differ from the MISHKA curve due to finite Larmor radius effects.

As can be seen from the plot the ORB5 growth rates have a similar magnitudes

and qualitative behaviour to the MHD growth rates for low N , with the maximum

growth rate increasing towards the MHD growth rate as ρ∗ decreases. This shows

the importance of correcting the drive term and gives us the confidence in the reli-

ability of the ORB5 simulations as the expected result is that as ρ∗ decreases, the

plot approaches the MHD limit, where the N , for which the maximumal growth

rate lies, increasing. Possible reasons for the differences between the MHD growth

rates and ORB5 growth rates at low-N are given in the conclusions of this chapter.

A curved line with a maximum in the centre is expected for kinetic ballooning

mode growth rates. The low-N drop off in growth rate is due to global effects due

to the finite width of the pedestal, absent in local gyrokinetic simulations. This

effect can also be expected from the mode structure shown in Fig. 9.7, since the

mode structure is comparable in size to the region of large pressure gradient. For

higher-N , the growth rate decreases due to the diamagnetic drift as explained in

Ref. [28], an effect which also appears in the local gyrokinetic results. This is due

to the replacement of ω2
MHD by ω(ω−ω∗p) in the equivalent equations (Eqn. 9.1 is

the gyrokinetic version of this equation).

As can be seen from the shape of the curve, the ORB5 growth rates go to zero for

low-N , as they do for MISHKA growth rates, but also tend to zero for high-N as

83



Figure 9.10: Growth rate vs N for ρ∗ = 1
800 , 1

400 , 1
200 and the MISHKA scan for the

same equilibrium.

expected due to kinetic effects, such as the diamagnetic drift. The low-N modes

are too large to fit into the region with a pressure gradient and even reach into the

region with zero drive (small pressure gradient).

9.8 β Scan

The β scan can be seen in Fig. 9.11. This β scan was achieved, by changing the

maximum pressure gradient that the region of large pressure gradient could achieve.

Given the same value beyond the pedestal region, this resulted in a lower pressure

in the core region and hence a change in the value of β. In this scan, the expected

behaviour for both kinetic ballooning modes and ideal ballooning modes from MHD

is observed. There is a critical-β, below which ballooning modes do not grow. This

critical-β is vitally important as it dictates what is the maximum pressure gradient

that can be achieved for a given equilibrium shape. The critical-β is the same for

the ORB5 simulations and the MISHKA simulations. As β increases the growth

rate increases, but at a decreasing rate. The drift kinetic theory scan however, has

a higher critical-β. This agreement is only verified for simulations with low ρ∗ and

could be broken for larger values of ρ∗.

9.9 Local Comparison

One effect that is missing from MHD formalism compared to gyrokinetic formalisms

is diamagnetic drift stabilisation. This is not a drift that occurs due to a force acting
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Figure 9.11: Growth rate vs β for N = 30, ρ∗ = 1
800 in MISHKA and in ORB5,

using both the gyrokinetic model and the drift kinetic model.

on individual particle gyrations such as the ∇B and curvature drifts, but occurs due

to an imbalance of pressure in regions in the plasma resulting from the pressure gra-

dient and acts counter to the ∇B and curvature drifts. There is a parallel current

associated with the pressure perturbation due to thermal conduction. This then

gives rise to an electric field that would tend to displace the pressure perturbation

toroidally and therefore competes with the electromagnetic effects. The frequency

associated with the diamagnetic frequency (the velocity divided by the wavenumber)

is proportional to N , which results in an effect that causes the growth rate to reduce

as N increases (the diamagnetic drift is opposite to the ∇B and curvature drifts

that drive the instability, as shown in Fig. 2.6). In this section, it will be shown

that the diamagnetic drift can explain the differences in growth rates between MHD

and local gyrokinetic simulations for larger N as well as account for a large amount

of the high N behaviour of the ORB5 growth rates.

A formulation of the diamagnetic drift frequency is given in Eqn. 2.18, as

ω∗p =
NT0

e

d

dψ
ln(n0T0). (9.2)
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The diamagnetic drift can therefore be calculated just from the equilibrium quanti-

ties and is given by −N × 1.0895× 105s−1 for the base equilibrium, at the point of

largest temperature gradient. Note that the values are negative, as the diamagnetic

drift acts opposite to the driving drifts. As can be expected from the definition of

the diamagnetic drift frequency, Eqn. 9.2, the diamagnetic frequency increases as

the pressure gradient increases and as N increases.
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Figure 9.12: Growth rate vs Effective N (Neffective = N (ρ∗/ρ∗0)) for several different
values of ρ∗ in ORB5, the theory described in Ref. [28] and the GS2 simulations.

Using the relationship ω2
MHD = ω(ω + ω∗p), from Eqn. 5.16, gives the expected

local gyrokinetic results (the Tang curve in Fig. 9.12). As can be seen from Fig.

9.12, the growth rates, provided by both ORB5 and GS2, match closely the theory

(For ORB5 this is the case for the higher values of Neff . Note that the global re-

sults are expected to match the local results for the same value of kθρi and as such

Fig. 9.12 plots growth rate vs an effective N , which is proportional to k⊥ρi, since

this is the relevant parameter in the small ρ∗ limit. Note also that as ρ∗ decreases,

the maximum growth rate increases, meaning that the Tang theory can be viewed

as the limit as ρ∗ → 0 for the ORB5 simulations, as stated at the start of this
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chapter. This means that gyrokinetic growth rates of KBMs at short wavelength

can be estimated by using this simple formula and MHD simulations. For large N ,

short wavelength, and small ρ∗ the ORB5 results closely match the GS2 results as

expected. The decrease in growth rates for low-Neff for the ORB5 simulations is

due to the global effects (the size of the mode relative to the size of the pedestal

region, for example).

9.10 Conclusions

Firstly, the correction of the drive strength in ORB5, by doubling the pressure gra-

dient, does provide growth rates that are comparable in magnitude to growth rates

observed in MISHKA and GS2 in the appropriate limits. This approach allows

KBMs to be simulated in A‖ formalism codes. This can also be seen in other simu-

lations undertaken in other codes [88] [89] [90].

Secondly, all the evidence provided indicates that the mode growing in these simu-

lations are consistent with kinetic ballooning modes. The MHD equilibrium defined

is sufficiently pedestal-like to serve as a good proxy for a true pedestal while getting

around the problems with using a real pedestal equilibrium, such as the boundary

effect.

In the local gyrokinetic limit (short wavelength and small ρ∗), the ORB5 results

match the GS2 growth rates and therefore the results are as expected. As can be

seen from Fig. 9.12, the growth rate at high toroidal mode number is well ap-

proximated by using the theory provided in Ref. [28], which involves applying a

diamagnetic drift correction to the MHD growth rate. On this basis, other kinetic

effects appear to be not important. This conclusion must be checked in other gy-

rokinetic codes to see whether the other kinetic effects play no major part in those

simulations either.

For the MHD limit (long wavelength), there is a larger difference between MISHKA

and ORB5 growth rates. There are several reasons why this might be so:

• These ORB5 simulations use an unshifted local Maxwellian as the equilibrium

distribution function. This means that the background parallel current in the

plasma is not consistently included and hence forces and drifts arising from

J0‖ × δB⊥ are not accurately calculated.
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• The long wavelength limit of the gyrokinetic equation could be fundamentally

not appropriate.

• The B‖ effects could have been included in a way that is only valid for sort

wavelengths.

• Trapped particles, may play an important role under these conditions, or the

approximations used to show that MHD and gyrokinetics should agree under

these conditions are only valid at short wavelength.

• MISHKA uses an approximation for the plasma inertia (although this does

not effect the critical-β).

• A seemingly innocuous approximation used in ORB5, such as approximation of

the perpendicular wavenumber as the poloidal wavenumber, which is actually

important.
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Chapter 10

Extended Equilibria

In Chapter 11, a JET equilibrium will be analysed. However, as previously stated

in Chapter 8, the equilibria created by HELENA may only have one magnetic axis

and nested flux surfaces. This was not a problem for the circular outer flux surface

equilibrium, analysed in Chapter 9, as the region of steep pressure gradient was

chosen to be far from the simulation boundary. However, for a JET equilibrium

with realistic profiles and flux surfaces, the steep pressure gradient region is near

the simulation boundary.

The goal of this chapter is to create an equilibrium which has the same pressure

gradient and current as in the experiment and retains the equilibrium parameters

(especially around the outboard midplane in the pedestal region), but create a buffer

region between the simulation boundary and the large pressure gradient region.

The first step to creating such an equilibrium, is to artificially extrapolate the closed

flux surfaces beyond the last smoothed closed flux surface, such that the newly cre-

ated outermost flux surface is still usable for HELENA and ORB5. Then the profiles

need to be shifted such that the pedestal region of the profiles sits in the new loca-

tion of the pedestal region (in terms of the new definition of ψnorm).

A range of equilibria were created and compared to the original equilibrium in

the pedestal region (focusing on the outboard midplane where KBMs grow).
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10.1 The X-point

One important feature of the JET H-mode equilibrium is the X-point, where the

poloidal field is zero. The flux surface which the X-point is part of is the last closed

flux surface (LCFS) as seen in Fig. 10.1.

Figure 10.1: Flux surfaces of JET along with the JET wall, depicted from the dashed
green line. The flux surface containing the X-point is shown in red. The X-point is
located at the bottom of the device, shown by the red cross. This figure is taken
from Ref. [92]

The temperature and density profile of the JET discharge # 79503 just before an

ELM is given by Fig. 10.2. As can be seen, the region of steep pressure gradient is

near the LCFS (The profile does not flatten again in the region shown in Fig. 10.2).

ORB5 has a Dirichlet boundary condition at both boundaries of the simulation

region. This then leads to suppression of modes that extend to the outer boundary,

such as modes growing in the pedestal region. This issue arises from any artifical

boundary condition applied to the external boundary, since all boundary conditions

rely on setting the value of the electrostatic potential and other parameters to fixed

values (or their derivatives). This is especially apparent for low toroidal mode

number modes, as the mode extends beyond the area of large pressure gradient and

is therefore suppressed by the boundary, since ψ will be normalised to the new flux

surfaces. This was accomplished by pnew(ψ) = pold(ψ + 0.1). Then a low constant

value is assumed in the region beyond the pedestal region.

Since the outer boundary in HELENA or CHEASE must be smooth, the equilibrium

near the X-point must be smoothed or a flux surface closer to the magnetic axis

chosen. This does not directly affect any growing kinetic ballooning modes, as they

90



0 0.2 0.4 0.6 0.8 1

s

0

500

1000

1500

2000

2500

3000

3500

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

0 0.2 0.4 0.6 0.8 1

s

4

5

6

7

8

E
le

c
tr

o
n
 D

e
n
s
it
y

10 19

Figure 10.2: JET Temperature (in eV) and density (in m−3) profiles for shot #
79503, just before an ELM. The plasma is a deuterium plasma, where Te = Ti.
s2 = ψ as described in Chapter 2.

are centred around the outboard mid-plane and the smoothing of the X-point has

little effect on the equilibrium surfaces near the outboard midplane [93] for MHD

simulations. The impact of this change for ORB5 simulations will be examined

later.

10.2 Extrapolation

For the global gyrokinetic analysis, JET shot # 79503 was chosen as the local gyroki-

netic analysis for this shot was already undertaken in Ref. [93]. Some modifications

were made to this equilibrium. The equilibrium was made up-down symmetric, with

the top half of the equilibrium being mirrored by the Z = 0 line. This process then

removes the X-point that exists in the bottom half of the equilibrium, and has been

used in the past to achieve this goal [94]. The temperature and density profiles used

are from JET shot # 79503, provided in Fig. 10.2. As can be seen the large pressure

gradient region is very near the LCFS.

The extrapolated equilibrium had to retain several features of the base equilib-

rium. Firstly, the new equilibrium has to have a smooth outer boundary. Secondly,

the surfaces within the original boundary must remain largely unchanged, especially

in the large pressure gradient region on the outboard midplane, when run through

a Grad-Shafranov solver, so that the plasma behaviour is unchanged in this region.

The original equilibrium provides two functions for the spatial positions of the flux

surfaces: Rorig(ψ, χ) and Zorig(ψ, χ) for ψ ∈ [0, 1] and χ ∈ [0, 2π]. For each value of

χ, Rorig and Zorig can be written as solely a function of ψ.
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Figure 10.3: Plot of the ψ grid values for the unextrapolated equilibrium.

In Fig. 10.3, the ψnorm grid, which is the value extrapolated over, is shown. As

can be seen, the majority of grid points are concentrated in the region of large

pressure gradient. There are 301 grid points in total, where ψnorm = 0.8 occurs at

grid point 69. The increased density of grid points means that more complicated

extrapolation procedures are less accurate, as a larger number of grid points have

to extrapolated over in order to create a large enough zone beyond the pedestal to

ensure the boundary has no effect on modes growing in the pedestal region.

Several methods were considered for the extrapolation. Firstly, cubic spline extrap-

olation with the not-a-knot condition. Splines are piecewise polynomial approxima-

tions connected to each other with various continuity equations. This is where the

not-a-knot condition comes in, as this just means that at the connection between

different cubic polynomials, the third derivatives must also match. For extrapola-

tions, a cubic polynomial is created for the final few grid points and is then continued

to the next grid point, with this system continuing until the required grid is covered.

The second method considered was shape-preserving piecewise cubic interpolation.

This method calculates a polynomial between the grid points that has the following

properties: it has specified derivatives at both ends (the derivatives are fixed at the

original grid points) and the slopes are chosen such that the shape of the data is

preserved (if the data is monotonic, so is the curve, and if there is a local extremum,

so does the curve). This method is similar to the spline method mentioned above,

but is not continuous in the second and third derivatives. The extrapolation occurs

in the same way as for the cubic spline extrapolation.

The final method considered was a simple linear extrapolation, which involves draw-
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ing a line between the last two points and extrapolating beyond the last point, using

this gradient. This method is normally not particularly accurate, but is robust.

Using one of these three methods, the two functions Rorig(ψ, χ) and Zorig(ψ, χ)

are extrapolated, from ψ ∈ [0, 1] to ψnew ∈ [0, 1 + ε], separately for each value of

χ to give the extrapolated functions: Rextended(ψnew, χ) and Zextended(ψnew, χ) for

ψnew ∈ [0, 1 + ε] and χ ∈ [0, 2π]. Then the outermost flux surface, corresponding to

ψ = 1 + ε is used as the new outermost boundary in HELENA to calculate the new

extended equilibrium.

10.3 Extrapolation Results
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Figure 10.4: Outermost flux surfaces for the three different methods (where lin-

ear signifies a linear extrapolation, spline signifies the cubic spline interpolation

and pchip refers to the piecewise cubic interpolation) for an extrapolation of 10%

(ψnorm = 1.1).

Fig. 10.4 shows the outer boundaries provided by the three different extrapola-

tion methods mentioned above for an extrapolation of 10%. As can be seen, the

only method of the three methods that extrapolates to a suitable outer boundary is

the linear extrapolation. The other methods provide outer boundaries that are not

smooth and as such are not suitable for HELENA.

For the two cubic extrapolation methods, the final few points are written as a

cubic polynomial, a1(x − x0) + a2(x − x0)2 + a3(x − x0)3. Therefore, for x near
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x0, the extrapolation is approximately linear. However, the expected shape beyond

the last closed flux surface, along a line of constant χ, is not expected to be cubic.

Therefore, one would expect that when x is sufficiently far from the last closed flux

surface, x0, then the extrapolation would produce a surface that is not suitable for

HELENA. This happens when a3(x−x0)3

a1(x−x0) � 1. The question then becomes whether

the required extrapolation is within this range for the cubic extrapolations. Notice

that this problem does not occur for the linear extrapolation and therefore the linear

extrapolation method is more robust for larger extrapolations, with the limitations

on the new outer boundary.
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Figure 10.5: Outer flux surfaces for a) linear extrapolation, b) cubic spline extrap-

olation and c)piecewise cubic interpolation for various values of the extrapolation

parameter ε, shown here as percentages (10% is equivalent to an extrapolation to

ψnorm = 1.1).

Fig. 10.5 show the outer surfaces created by all three extrapolation methods, when

extrapolated to different values of ψnorm. As can be seen, all three methods provide

outer flux surfaces that could be used in HELENA, when the extrapolation is carried

out over a very small region (for about 5% extrapolation). However, as the region
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over which extrapolation occurs increases, the outer flux surfaces produced become

less reasonable and unusable by Grad-Shafranov solvers (HELENA for this case), as

stated previously. As expected, this effect is minimised by the linear extrapolation

method for an equivalent increase in ψnorm compared to the other two extrapolation

methods.

Fig. 10.6 shows plots of ψnorm vs R for χ = 1.84, 4.91 and 5.52, values at or

near the X-points. The green dashed line is at ψnorm = 0.96 and shows the region

for which there is a shape change in the gradient. This means that especially in this

region, the extrapolation for both the second and third methods can only be reliable

up to a 4% extrapolation. As can be seen in Fig. 10.5, problems start arising for

these extrapolations at 5% extrapolation. However, linear extrapolation does not

have the same limitation and can be used for further extrapolations than the other

two methods. For this reason the linear extrapolations are more stable than the

other two methods.
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Figure 10.6: ψ vs R for χ = 1.84, 4.91 and 5.52 (around the X-points) for the

original equilibrium. The green dashed line is at ψnorm = 0.96, where there is a

sharp change in the position of R as a function of ψnorm.

This warping of the outermost flux surface is most severe at the X-point regions.

This can be seen clearly in Fig. 10.5a since the outer flux surface for a 15% increase

in ψnorm shows a warping of the flux surfaces at only the X-points. This can be

seen more clearly in the greatest linear extrapolation flux surface in Fig. 10.5 a),

which is a 20% increase. This warping of the outermost flux surface is due to the
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fact that the original JET equilibrium, despite the smoothing of the X-points, is still

strongly shaped in this region as shown by Fig. 10.7. These figures show ∇ψ for

the original equilibrium and as such show that the equilibrium is strongly shaped

in the aforementioned region.

Figure 10.7: |∇ψ| for the original equilibrium. The colour scale is in arbitrary units.

Linear extrapolation was chosen as the method for determining the new outermost

flux surface, as an extrapolation of more than 5% was required in order to not

suppress low-N modes, given the location of the region of large pressure gradient.

Linear extrapolation of 10% results in a smooth outer flux surface. Hence the 10%

linear extrapolation was chosen as the new outer most flux surface for HELENA,

since it was further out than 5%, and did not affect modes in the pedestal region,

and the new outer boundary was useable by HELENA.

The second step involves shifting the profiles, such that they are the same within

the region inside the last closed flux surface, but extend beyond this region without

going negative. The existing temperature and density profiles are shifted, setting

tnew(ψ) = told(ψ−0.1) with a small constant value in the region beyond the pedestal,

so that they only cover the existing region. Then the region beyond the original

boundary are covered with a constant small non-zero value.

The current profile can be calculated in HELENA, based on resistive steady state

and the known inductive electric field. In order for this to occur, a first estimate

must be provided. This is just an extrapolated version of the original equilibrium’s
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self-consistent current, with the number of iterations low to ensure that there is not

a large difference between the original and extended current profiles.

10.4 Linear Extrapolation
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Figure 10.8: Plot of the new extended outermost surface for a selection of different

extrapolation amounts.

As can be seen in Fig. 10.8, the flux surfaces created by linearly extrapolating ψ

all have smooth outer flux surfaces except for 15% extension in ψ. This meant that

HELENA ran well with the created outer flux surfaces, except for 15% extension,.

In Fig. 10.9, the same flux surface (ψnorm = 1) is plotted for each of the ex-

tended equilibria, as well as the original. As can be seen, the flux surface is very

similar for all these equilibria. This statement is further supported by Fig. 10.10

a, which is a plot of the difference between the original outermost flux surface and

the nearest flux surface for each equilibrium on the outboard midplane (θ = 0).

As expected, the difference increases as the extrapolated region is increased. This

is due to several reasons. Firstly, as the region is further extrapolated, the equi-

librium becomes less accurate, since the original outermost flux surface is the last

closed flux surface in the original JET boundary. Secondly, the plot shows only the

nearest flux surface on the ψ grid, which varies somewhat with ε. However, the

97



change in the position of the outermost flux surface at the outboard midplane for

the original and extended equilibria is an error of less than 1/30 of the minor radius.

The magnetic axis of the different equilibria are plotted in Fig. 10.10 b. The

difference is again very small relative to the actual position (≈ 2cm on a position of

≈ 2.9m).

Due to the minimal change in the position of the original last closed flux surface

and the magnetic axis in the extended equilibrium, the shape of the magnetic flux

surfaces in the extended equilibria is very similar to the original and so the change

in the MHD stability should be small.
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Figure 10.9: Plot of the original outerflux surface (ψnorm = 1) for several different

extrapolation amounts.
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Figure 10.10: Plots for a) the maximum difference between the original outermost

flux surface and the nearest equivalent flux surface on the new ψ grid for each

extrapolation, between χ = −π/4 and χ = π/4 (the outboard quarter) and b) the

position of the magnetic axis in metres for a variety of extrapolations.

The important quantities for determining the motion of particles in the plasma are

the drifts, specifically the curvature and ∇B drifts. The curvature drift is propor-

tional to the inverse of the radius of curvature, Rc. The ∇B drift is proportional to
dB
dψ on the outboard midplane, provided in Fig. 10.11, which has the same proper-

ties as the original: dB/dψ tends to zero until the region of large pressure gradient,

where it peaks at the same flux surface for all these extrapolated equilibria, repre-

senting the region where the drive is maximised, before heading back to zero beyond

the plasma edge. The peak is larger for the extrapolated surfaces and therefore the

drive from the ∇B drift is expected to be larger for the extrapolated cases. This

could lead to a larger growth rate than expected for KBMs. Since both the codes

(GS2 and ORB5) were simulated with the expanded code, then the same effect is

expected for both codes and so the comparison between both codes performed in

Chapter 11 is not affected. Also present in Fig. 10.11, for the largest extrapolation,

15%, is an extra feature in the region before the pedestal region and so might have

modes driven by the ∇B drift in this region.
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Figure 10.11: dB/dψ, from the magnetic axis to the outboard midplane, for different

extrapolations.

10.5 Extended Equilibrium
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Figure 10.12: Plot of the new extended outermost surface and the equivalent surface
with the original equilibrium.

As can be seen from Fig. 10.12, in the region of the outboard midplane, the ex-

tended equilibrium has left the original outer flux surface shape unchanged. The

profiles are also similar and so the physics of the kinetic ballooning mode should be

unaffected by this change. However, now there is a buffer region between the simu-

lation boundary and the region of large pressure gradient and modes growing within

the pedestal region on the edge of the plasma are not suppressed by the boundary

condition. Note that all the extended equilibria are up-down symmetric since the

original equilibrium was up-down symmetric and the extrapolation method does not

affect this characteristic.
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Figure 10.13: Comparisons of the (a) q profile and (b) temperature profile for the
original and extended equilibria.

In Fig. 10.13, the q and electron temperature profiles are shown for both the orig-

inal and extended equilibria. In the pedestal region the temperatures match very

closely, but deeper within the core the differences are greater. This is due to the

method of extrapolation. The temperature and current profiles should have been

kept constant in the original region, either by using a simple extrapolation of the

original profiles or by setting the temperature and current profiles to zero (or near

zero) beyond the LCFS. Here, the new profiles were created by shifting the position

of the pedestal, while keeping the pressure gradient (in terms of ψnorm) constant.

However, since KBMs grow in the pedestal region, the core region is less important.

The q profiles differ more significantly in the pedestal, emphasised in the extended

version, due to the large peak in the bootstrap current in this region. Even for

minor values of ε (the extrapolation parameter) this profile can change significantly.

The effect of this region of negative q gradient is expected to have an effect on the

growth rates of KBMs, but this effect will be reduced for global simulations, as the

modes extend beyond this region, into the region where the q gradient is positive as

for the original profile (such as seen for balllooning modes in Ref. [95]). However,

further work should be performed to improve the extrapolation method and avoid

such inconsistencies.
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Chapter 11

JET Equilibrium

Most of this chapter is simply a summary of the results in Ref. [1] with some extra

information on the equilibrium and the setting up of the simulations.

In Chapter 9, kinetic simulations (both local and global) were compared in a sim-

plified circular equilibrium. This task was undertaken to compare the results and

see whether the results from ORB5 agreed with the theory given in Ref. [28] and

with simulations from both GS2 and MISHKA in the appropriate limits.

In Chapter 10, the procedure for creating a JET-like equilibrium that would func-

tion correctly for ORB5, while overcoming several of the issues that arise, such as

the position of the boundary and the requirement that the simulation only be un-

dertaken over the area that contains closed flux surfaces, was shown.

In this chapter, firstly, the motivation for the current study of kinetic ballooning

modes will be shown with the methodology behind the EPED model, that gives

predictions for the pedestal height and width.

Secondly, the results from the simulations undertaken in ORB5 with the extended

equilibrium will be presented. Then, they will be compared with simulations under-

taken in GS2, which has been used in the past to develop the EPED model, further

described in Section 11.1. At the top of the pedestal, the local ρi/a for JET is 1/600.

Under this condition, the local gyrokinetic theory would be assumed to be sufficient.

However, ρi/∆ is a more useful measure, where ∆ is the pedestal width, since the

pressure gradient is larger in this region. In JET ρi/∆ = 1/15 and therefore, global

effects can be expected to have an effect. Therefore global effects are expected to
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modify the local results.

11.1 EPED Model

The EPED model [11] is a predictive model for the pedestal height and width in

a tokamak device. The EPED model uses two constraints that together determine

the two desired variables.

The first constraint is the peeling-ballooning constraint, based on the peeling-ballooning

model and is well understood and tested [14], [96]. In general, in a tokamak, the

pedestal height and width evolve together until an ELM is triggered. One prevailing

theory as to the mechanism of ELMs is that they are triggered by the large pres-

sure gradient and the resulting bootstrap current in the edge region of the plasma.

Therefore, this constraint produces a limit on the possible pedestal height for a given

width.

However, in order to predict both the pedestal height and width, a second con-

straint between the two is required. The second constraint arises from an argument

regarding the onset of KBMs near a critical value of β. Hence, this constraint leads

to the dependence of the pedestal height on the poloidal β (the β using the poloidal

magnetic field component solely) at the top of the pedestal. Let the pressure gradi-

ent be near the limit for KBM onset ∇p ≈ ∇pKBM , then the average value of ∇p
is proportional to the pedestal height over the pedestal width:

〈∇p〉 = 〈∇pKBM 〉 ≈
βpol,ped

∆
, (11.1)

where 〈∇p〉 is the average pressure gradient across the pedestal, βpol,ped is the

poloidal beta at the top of the pedestal, and is a measure of the pedestal height,

and ∆ is the width of the pedestal. The average pressure gradient can be written

in terms of the local magnetic shear [12]: ∇pKBM ≈ 1/s1/2. Since the current is

majority bootstrap current then 1/〈j〉 ≈ 1/βpol,ped. Therefore ∆ = c1β
0.5
pol,ped [13].

This constraint was the original version of the KBM constraint used in the EPED

model. In later versions, the EPED model uses stability calculations [97] for the

KBM constraint. This, along with the peeling ballooning mode constraint, provide

the prediction for the pedestal height and width.

Previous versions of the EPED model have been created using local gyrokinetic
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simulations from GS2 to provide the critical beta for kinetic ballooning modes. In

this thesis, these simulations are compared with ORB5 simulations to give the global

gyrokinetic simulation critical beta.

11.2 Original Local Analysis

In Ref. [93], local gyrokinetic simulations of the JET and MAST pedestal were

undertaken. These simulations showed that the local gyrokinetic simulations were

unstable in the same region as predicted by comparing the pressure gradient to the

N =∞ ballooning limit criterion (As MHD ballooning modes become more unstable

as N increases, an equilibrium can be tested to see whether it is stable to ballooning

modes by testing as N tends to ∞).

Figure 11.1: s−α diagram for kinetic ballooning modes. The different lines represent
differently shaped plasmas.

These simulations also showed that, for low collisionality plasmas, kinetic balloon-

ing modes had access to second stability [98] [99], a second region where KBMs

were stable as shown in Fig. 11.1, if the current was high enough to flatten the q

profile [93]. Therefore, the plasma was unstable for kinetic ballooning modes if the

bootstrap current was artificially removed, but if the bootstrap current was present,

kinetic ballooning modes were stable.
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Second stability only occurs if the current is high enough to reduce the shear, which

then allows the plasma to travel from the stable region in the top left of Fig. 11.1

to the second stability region (the bottom right of Fig. 11.1) without having to pass

through the unstable region, which would cause the mode to grow. As can be seen

from Fig. 11.1, this could not occur for circular outer boundary plasmas, but can

occur for a JET-like plasma.

11.3 Equilibrium

In order to compare the global gyrokinetic simulations with previously established

local gyrokinetic and MHD results, the same equilibrium as used in Ref. [93] was

used in this analysis.

The equilibrium was created from JET shot # 79503, just before an ELM, in order

to simulate the kinetic ballooning mode that would limit the pedestal gradient be-

fore the ELM.

Parameter Value

Poloidal Current 2.5MA
Magnetic field at axis 2.7T

q at axis 1.053
Minor radius 0.91m
Major radius 2.94m

Electron temperature at axis 3344eV
Electron Density at axis 7.9× 1019m−3

Table 11.1: Profile parameters for the JET simulations used in the ORB5 and GS2
simulations.

For the purpose of these simulations, the equilibrium is the equilibrium originally

shown in Chapter 10 for the 10% extrapolation using the linear extrapolation method.

The upper half is copied to the lower half in order to ensure that the outer boundary

is up-down symmetric. This procedure does not have a large effect on the proper-

ties of the equilibrium at the outboard midplane, where kinetic ballooning modes

grow [93]. Then the equilibrium underwent the extrapolation which ensures that

the pedestal region is further from the simulation boundary, which is more similar

to the physical case as a region of vacuum exists between the edge of the plasma and

the tokamak walls. This does not have a large effect on the equilibrium properties
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Figure 11.2: q profile for the extended JET simulation with and without the boot-
strap current.

as shown in Chapter 10.

In order to study the effect of the bootstrap current on the stability of the equi-

librium, two equilibria were created. One involved increasing the bootstrap current

by an extra 100% in order to maximise the effect of flattened shear on the stabil-

ity. The bootstrap current was calculated in HELENA, using the Sauter bootstrap

model [100]. The second equilibrium had the bootstrap current set to zero. The

current is then assumed to be a combination of the inductively induced current and

the bootstrap current. As can be seen in Fig. 11.2, the bootstrap current flattens

the q profile in the pedestal region.

The profiles used are those provided by the high resolution Thompson scattering

diagnostic, HRTS, system on JET, described in Ref. [101] and then fitted to a tanh

function as described in Ref. [102]. The temperature is then increased in order to

increase the temperature in the vacuum region. Having such a small temperature

in the vacuum region resulted in modes that grew in the vacuum region beyond the

pedestal, which had much higher growthrates than any physical modes growing in

other regions of the plasma. This is assumed to have been because any small per-

turbations in this region are a larger percentage of the equilibrium value, and hence

the noise is much larger (since the noise is proportional to
(
δf
f0

)2
). These modes

were not observed when the constant value was added to the region beyond the

pedestal region. The ion temperature is then assumed to be equal to the electron

temperature. The resulting pressure profile is given in Fig. 11.3.
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Figure 11.3: Pressure profile for the extended JET simulation.

In order to perform the β scan required to calculate the pressure gradient below

which KBMs do not grow, the equilibrium was recreated for each separate value of

β. This was accomplished by increasing the temperature value in the core, meaning

that the pedestal height was increased, as the vacuum temperature was kept con-

stant. This increased the pressure gradient in the pedestal as the pedestal width

was kept constant and the gradient is given by the ratio of the height to the width

of the pedestal.

The modifications to the equilibrium in the region of interest are small as shown

in Chapter 10. However, local gyrokinetic simulations were undertaken with this

modified equilibrium, ensuring that the comparisons given here are valid. These

simulations can then also be used to see the effectiveness of using local gyrokinetic

simulation results to set the kinetic ballooning mode constraint for the EPED model.

11.4 GS2 results

GS2 simulations of the extrapolated equilibrium were undertaken by Dr. Samuli

Saarelma, as stipulated in the Declarations. This allowed for both comparison with

the ORB5 results with the same equilibrium, but also comparison of the simulation

results between the original equilibrium and the extrapolated equilibrium. GS2

was run in the linear mode without collisions and only growing instabilities with

long perpendicular wavelength were considered. Only the equilibrium without the

bootstrap current has KBMs growing, in accordance with Ref. [93] and the KBMs
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Figure 11.4: Local gyrokinetic growth rates for β = 0.21% for KBMs in the pedestal
region with and without the bootstrap current. With the bootstrap current present,
the plasma reaches second stability and hence no KBMs grow. These simulations
include δB‖ and were performed in the shifted equilibrium.

grew in the region where the MHD n = ∞ ballooning mode constraint on the

pressure gradient is fulfilled. The GS2 results for the equilibrium pressure, β = 0.21,

are shown in Fig. 11.4.

11.5 Numerical Parameters

Simulations were undertaken with time steps of 0.5Ωci, shorter than the time steps

used in Chapter 9. Again, simulations were undertaken with a variety of time steps

and convergence was observed for this time step. The grid sizes were Nψ = 300,

Nχ = 1024 and Nφ = 256. The poloidal grid is greater, compared to the equilibrium

in Chapter 9, increased to ensure the more complex shape of the equilibrium is

sufficiently covered. Again, as toroidal mode numbers were increased, the number

of grid points in the χ and φ direction were increased to provide at least four points

per wavelength in the toroidal and poloidal directions [91]. As the safety factor is

much higher for this equilibrium, than for the equilibrium used in Chapter 9, the

poloidal filter was much larger compared to the toroidal filter also.

11.6 N Scan

Fig 11.5 shows the N scan for both ORB5 and GS2 without the bootstrap current.

With the bootstrap current, GS2 showed no KBMs growing as mentioned earlier.

For the GS2 simulations, the peak of the curve is at N ≈ 20. However, for ORB5
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the peak of the N scan is higher and is actually at N ≈ 40. There could be several

reasons why the local simulations in the JET equilibrium have a peak, even thought

the simulations for the circular outer boundary (shown in Fig. 9.12) do not. Firstly,

this could be because this N scan was undertaken at a lower β (nearer the critical-

β), whereas the circular equilibrium was simulated at a much larger β in order to

encourage KBMs to grow. Secondly, this could be due to kinetic resonances, since

the circular equilibrium used in Chapter 9 was chosen to be be closer to an MHD

case.

More unexpectedly, however, is the result that the simulations with the bootstrap

current and without the bootstrap current simulations, both have the same results.

In GS2, the bootstrap current suppresses the KBM. This means that in global gy-

rokinetics, KBMs do not access second stability [104], due to the presence of the

bootstrap current. Note that the bootstrap current was doubled in magnitude, in

order to exaggerate its effect on the growth rates. This could be due to the fact

that, while the parts of the pedestal region where shear is very low allow access to

second stability, the mode extending over larger regions of the pedestal may not

be able to access second stability [1]. This effect has also been observed for MHD

ballooning modes [103].

The ORB5 growth rates are an order of magnitude larger than the growth rates for

GS2. This lead to the work performed with the simulations shown in Chapter 9,

with the work where the drive terms were tested and KBMs were considered in a

simplified geometry. However, the reason for this difference was not discovered. It

could have been due to the normalisation between the different codes, which is why

this has been included in Chapter 8.9. However, this has not been confirmed. The

reason for this difference was not discovered during the course of this PhD.

11.7 β Scan

The β scan undertaken in ORB5 is shown in Fig. 11.6a). Also shown in Fig. 11.6b)

are N scans performed in GS2, for various different values of β. The bootstrap

current has little effect on the critical-β for the global gyrokinetic simulations, as it

remains near βcrit ≈ 0.1%. This means that the critical-β is similar when compared

to the local value without the bootstrap current, but, due to KBMs accessing second

stability as can be seen in Fig. 11.4, the critical-β is much lower than the value

calculated for local gyrokinetic simulations with the bootstrap current.
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Figure 11.5: Toroidal mode number scans, with the equilibrium β, for a) GS2 with-
out the bootstrap current, where the maximum growth rate over the surfaces in the
pedestal was chosen, and b) ORB5 both with the bootstrap current and without.

11.8 Conclusions

In global simulations, second stability is no longer accessed for KBMs growing in

the pedestal of JET and MAST [1], despite being present in local simulations for

the same equilibrium when the bootstrap current was present [104]. The critical-β

for the global simulations is found to be close to the value discovered through the

local simulations. Furthermore, the peak of the N scan is shifted to higher N for

the global simulations compared to the local simulations. This is due to the size

of the modes compared to the size of the pedestal, which is not a factor in local

gyrokinetics.

The main effect of this work is establishing that second stability access is not present

for global gyrokinetics. This could be due to the path that the plasma takes through

110



a)
0.05 0.1 0.15 0.2 0.25

 [%]

0

5

10

15

20

25

 [
v

T
i/a

]

bootstrap

nobootstrap

b)
0 20 40 60

0

0.5

1

1.5

n

γ
 [
v

T
i/a

]

β=0.21%

β=0.19%

β=0.16%

β=0.12%

β= 0.1%

Figure 11.6: a) β scan for ORB5 simulations, both with the bootstrap current
and without, and b)toroidal mode number scans, with a selection of βs, for GS2
simulations without the bootstrap current, where the maximum growth rate over
the surfaces in the pedestal was chosen.

the s − α diagram, no longer traveling through the stable region due to the high-

shear. The global nature of these simulations could mean that the mode extends

into regions which cannot access this second stability, meaning that KBMs grow,

even though at the position of peak pressure gradient the conditions are met for sec-

ond stability. As such the EPED model should not use equilibria with the bootstrap

current if local simulations are used to establish the KBM constraint for the EPED

model. Instead, equilibria should be used that have the bootstrap current artificially

suppressed, as this gives a similar critical-β to the global gyrokinetic simulations.
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Chapter 12

Conclusions and Further Work

12.1 Conclusions

The pedestal region of the tokamak strongly influences the confinement time of the

plasma and hence, whether Lawson’s criterion, Eqn. 1.2, can be fulfilled for viable

fusion energy production. The purpose of this work was to study pedestal stability,

specifically instabilities that have a major effect on pedestal performance. This was

accomplished by studying how global effects, observed in MHD simulations, com-

bined with FLR/kinetic effects, observed in local gyrokinetic simulations, for KBMs.

This combination was achieved by using ORB5, a global gyrokinetic code.

A simplified circular outer boundary equilibrium was created in order to study

KBMs in ORB5, in a simplified geometry, where the magnetic shear was chosen to

be small by adjusting the current profile and the pedestal-like region was placed far

from the boundary to avoid stabilisation from the boundary wall. This simplified

equilibrium is a useful test case that can also be employed by other global codes, in

order to test the physics that drives KBMs. Simulations of KBMs were undertaken

in this equilibrium, to measure the drive terms relative to local gyrokinetic simu-

lations, magnetohydrodynamic simulations and local gyrokinetic ballooning mode

theory [28], to confirm that the drive was being calculated correctly in ORB5. What

was discovered, was that the A‖ formalism used in ORB5 resulted in the drive being

reduced in ORB5. A method for correcting the drive was explained and used in

several simulations, resulting in the expected growth rates compared to the local

gyrokinetic and MHD simulations in the appropriate limits. It was also discovered

that, for pedestal-like parameters, the main ’kinetic’ effect beyond MHD is sim-

ple diamagnetic drift stabilisation. Therefore, it may be enough to use a simple
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diamagnetic drift stabilisation formula to calculate stability boundaries. A good

understanding of the physics of KBMs in the pedestal was achieved, through the

use of these simulations. Finally, this testcase shows that ORB5 can be used in

further cases, with more confidence that the physics is correct.

Then a method for creating a JET equilibrium for use in ORB5 was explained,

in order to prevent the simulation boundary suppressing modes within the pedestal

region. The equilibrium also needed to be comprised of closed flux surfaces, which

do not appear in reality beyond the LCFS. A simple linear extrapolation scheme

was found to be the most effective extrapolation method, while allowing sufficient

extrapolation to avoid unphysical stabilisation from the simulation boundary. The

properties of the outboard midplane, where KBMs grow, are compared between the

extrapolated equilibrium and the original. The magnetic differences are found to

be very small on the outboard midplane and as such KBMs are not expected to be

strongly unphysically affected by the changes to equilibrium geometry in this region.

Then simulations are shown with the extended equilibrium and comparisons are

performed with local gyrokinetic simulations, performed in GS2. Firstly, GS2 sim-

ulations show no changes between the original equilibrium [93] and the extended

equilibrium simulations shown in this thesis. In ORB5, simulations were under-

taken with the bootstrap current and without the bootstrap current. This was to

compare with GS2 simulations, which had shown that the presence of the bootstrap

current suppressed KBMs. However, the ORB5 simulations show that in global

gyrokinetic simulations, the bootstrap current has no effect on the critical-β, and

that the critical-β is similar in value to the value measured in the GS2 simulations

without the bootstrap current. This is further validated by simulations for a MAST

equilibrium in [1].

The results for the critical-β, provided in Chapter 11, mean that for the EPED

model, a model for predicting the pedestal height and width, the KBM constraint

could actually be calculated by using GS2 simulations, which are less intensive

than ORB5 simulations, but in an equilibrium without the bootstrap current. This

model can then be compared to experimentally measured pedestals and finally used

to predict the pedestal height and width in future experiments, such as ITER or

ARC [105], to compare the profiles presented in papers such as Ref. [106].
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12.2 Further Work

Some areas of this study that could use further work include:

• Although minor changes in the profiles, for the extended JET equilibrium,

did not have an effect on GS2 simulations, further work on the extrapolation

method could be useful, in order to avoid any changes that occur in the pro-

files, especially in the core region, to see if that had any effect on the global

simulations undertaken in MISHKA and ORB5.

• The simulations that were undertaken with the JET equilibrium should be

repeated with the physics that were observed for the circular outer boundary

case included, such as the corrected drive terms. Unfortunately, there was not

time to repeat the simulations during this PhD.

• These simulation results could then be compared to experimental pressure

profiles from JET, just before an ELM and further simulations could then be

run of other devices to fully test the results observed here.

• Predictions could be provided for the pedestal height and width for future

plasmas to confirm the predictive power of the EPED model.

• ORB5 could be used to model other instabilities that occur within a plasma

with more confidence that the theory in ORB5 is robust.

• The method of correcting the drive strength provided in this thesis, could be

tested in other codes, that use an A‖ formalism.
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