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D-AFFINITY AND RATIONAL VARIETIES

DMITRIY RUMYNIN

Abstract. We investigate geometry of D-affine varieties. Our
main result is that a D-affine rational projective surface over an
algebraically closed field is a generalised flag variety of a reductive
group.

Let us consider a connected smooth projective algebraic variety X
over an algebraically closed field K of characteristic zero. By G/P we
denote the generalised flag variety of a reductive algebraic group G.
Beilinson-Bernstein Localisation Theorem ([2] forG/B, [9, Th.

3.7] for G/P ): If X ∼= G/P , then X is D-affine.
It is a long-standing problem whether the converse statement holds

or there are other smooth projective D-affine varieties (weighted pro-
jective spaces are D-affine but singular [21]). The converse statement is
known for toric varieties [20] and homogeneous varieties [6]. Our main
result is the converse statement for the rational surfaces:
Main Theorem:1 (Corollary 2.3.) If X is a D-affine rational sur-

face, then X ∼= G/P .
In fact, we aim to cover the most general D-affine varieties with

various intermediate statements. In particular, many results work in
the positive characteristic as well. The reader should be aware that it
is not known which of the partial flag varieties are D-affine in positive
characteristic. Some of them are known to be D-affine: projective
spaces [5], G/B in types A2 [5] and B2 [1, 18], odd-dimensional quadrics
[15]. On the other hand, the grassmannian Gr(2, 5) is not D-affine [14].
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There are further notions of D-affinity and derived D-affinity in posi-
tive characteristic when instead of Grothendieck differential operators,
either small differential operators [8, 11, 12, 19] or crystalline differ-
ential operators [3, 4, 16] are studied. These are not covered by the
present paper, although some of our methods may prove useful for these
unusual differential operators.
Let us explain the context of the paper section-by-section. In Sec-

tion 1 we define D-affine varieties and make general observations about
them and quasicoherent sheaves on varieties.
In Section 2 we study divisors on D-affine varieties. The main results

are Theorems 2.1 and 2.2. Both are positivity statements about divisors
on a D-affine variety. We use them to study D-affine surfaces in this
section, proving Corollary 2.3, the main result of the paper.
In Section 3 we formulate two questions that could pave a way for

further research for solving the converse Beilinson-Bernstein problem
in general.

1. Preliminaries

Pushing for greater generality of some of our results, we will work
over two algebraically closed field: a field K of characteristic zero and
a field F of arbitrary characteristic.
Let X be an algebraic variety over F, OX–Qcoh its category of

quasicoherent sheaves. Following Kashiwara, we consider a sheaf AX

of F-algebras on X together with a morphism of sheaves of algebras
j : OX → AX such that AX is a quasicoherent OX -module under
left multiplication. Notice that the image of j is not necessarily cen-
tral, so the left and the right module structures on AX disagree. The
main example of AX are the structure sheaf OX itself and the sheaf of
Grothendieck differential operators DX .
We consider the category ofO-quasicoherent leftAX-modulesAX–Qcoh

(i.e., sheaves of left AX-modules, quasicoherent as OX -modules). No-
tice that the cohomology of an O-quasicoherent left AX-module F are
independent of the category are independent of the category. Indeed,

HomOX
(OX ,F) ∼= Γ(X,F) ∼= HomAX

(AX ,F).

Furthermore, an O-quasicoherent left AX-module admits a resolution
F → I0 → I1 . . . by injective AX-modules that are flabby as sheaves
[10, Prop 1.4.14] (notice that the reference states this for DX but the
proof works for AX). Hence,

Hk
AX

(X,F) ∼= Hk(Γ(X, I•)) ∼= Hk(X,F) ∼= Hk
OX

(X,F)
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for all k. In particular, the acyclicity of F for the functor Γ(X,−)
(i.e., vanishing of Hk(X,F) for k > 0) is independent of the category.
On the other hand, the generation by global sections depends on the
category. The space of global sections A = Γ(X,AX) is an algebra.
We say that F is A-generated by global sections if the following natural
map is surjective:

AX ⊠A Γ(X,F) → F .

For instance, AX is always A-generated by global sections but may or
may not be O-generated by global sections. The following lemma is
immediate:

Lemma 1.1. (1) If F is O-generated by global sections, then it is
A-generated by global sections.

(2) The following two statements are equivalent:
(a) AX is O-generated by global sections,
(b) Any O-quasicoherent left AX-module F , A-generated by

global sections, is O-generated by global sections

The variety X is called A-affine if

• Γ : AX–Qcoh → A–Mod is exact,
• if F ∈ AX–Qcoh and Γ(F) ∼= 0, then F ∼= 0.

Lemma 1.2. [10, 13] The following statements (where statement (5)
requires X to be projective with an ample line bundle L) about an al-
gebraic variety X over F are equivalent:

(1) X is A-affine.
(2) Γ : AX–Qcoh → A–Mod is an equivalence.
(3) AX ⊠A − : A–Mod → AX–Qcoh is an equivalence.
(4) Each sheaf F ∈ AX–Qcoh is acyclic for the functor Γ(X,−)

and A-generated by global sections.
(5) There exists N > 0 such that the following two statements hold

for all n > N :
(a) AX(−n) = AX⊗OX

L−n⊗ is A-generated by global sections,
(b) the map Γ(AX(−n))⊗K Γ(Ln⊗) → Γ(AX) is surjective.

In the light of the condition (3) of Lemma 1.2 it is useful (as also
introduced by Langer [15]) to call a variety X A-quasiaffine if each O-
quasicoherent left AX-module is A-generated by global sections. Let
us call a variety X A-O-quasiaffine if each O-quasicoherent left AX-
module is O-generated by global sections.
While an A-affine variety is A-quasiaffine, a punctured affine space

X = K
n \ {0}, n ≥ 2 gives an example of not-D-affine D-quasiaffine

variety: the DX-module OX has a non-vanishing higher cohomology.
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It would be nice to have examples illustrating D-O-quasiaffinity (cf.
Lemma 1.1).

Question 1.3. Find an example of a variety X with a sheaf of algebras
AX such that X is A-affine but not A-O-quasiaffine variety.

Question 1.4. Is it true that a D-affine variety is necessarily D-O-
quasiaffine?

The following lemma is straightforward, so we skip a proof:

Lemma 1.5. Let F ,F ′ ∈ AX–Qcoh be A-generated by global sections.

(1) If G ∈ AX–Qcoh is a quotient of F , then G is A-generated by
global sections.

(2) If Y ⊆ X is a closed subscheme and F is O-generated by global
sections, then F|Y is OY -generated by global sections.

(3) If 0 → F ′ → G → F → 0 is an exact sequence in AX–Qcoh,
then G is A-generated by global sections.

The third lemma is easy but contains not so well-known terminology,
hence, we give a proof.

Lemma 1.6. Let F ∈ AX–Qcoh be normal in the sense of Barth as
an OX-module. If for each p ∈ X there exists an open neighbourhood
p ∈ U ⊆ X such that X \ U is of codimension at least two and F|U
is A|U-generated by global sections, then F is A-generated by global
sections.

Proof. Let F = FX(X). Consider an open U ⊆ X with X \ U is of
codimension at least two. Normality means that the restriction map
F = F(X) → F(U) is an isomorphism [7, p. 126].
Let Y be the support of the cokernel of the natural map γ : AX⊠F →

F . Generation of F|U by global sections means that U ∩ Y = ∅. Our
condition means that no point p belongs to Y . Hence, Y = ∅ and γ is
surjective. �

The following well-known observation is sufficient for our ends. We
believe that it is true for singular varieties as well: it should follow
from the description of DX as the dual OX |F-algebra of the algebroid
of functions on the formal neighbourhood of the diagonal X → X ×X
[17, 2.4].

Lemma 1.7. (1) If X and Y are schemes over F, (AX , jX : OX →
AX) and (AY , jY : OY → AY ) are sheaves of algebras with
morphisms of sheaves of algebras such that AX and AY are
quasicoherent OX-module and OY -module under corresponding
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left multiplications, then AX ⊠ AY is a sheaf of F-algebras on
X × Y and

jX×Y : OX×Y

∼=
−→ OX ⊠OY

jX⊠jY−−−−→ AX ⊠AY

is a morphism of sheaves of algebras such that AX ⊠ AY is a
quasicoherent OX×Y -module.

(2) If X and Y are smooth varieties over F, then the natural map
ϕX,Y : DX ⊠ DY → DX×Y is an isomorphism of sheaves of
F-algebras on X × Y .

Proof. Notice that

AX ⊠AY = p∗X(AX)⊗OX×Y
p∗Y (AY )

where pX : X × Y → X , pY : X × Y → Y are the projections. It
suffices to compute the sections of AX ⊠AY on an open affine subset
U × V ⊆ X × Y . Let R := OX(U), A := AX(U), S := OY (V ),
B := AY (V ). Then

p∗X(AX)(U × V ) = A⊗F S, p∗Y (AY )(U × V ) = R⊗F B

so that we have a natural isomorphism f of R ⊗F S-modules

AX ⊠AY (U × V ) = (A⊗F S)⊗R⊗FS (R⊗F B)
f
−→ A⊗F B

given, together with its inverse, by

f
(
(a⊗ s)⊗ (r⊗ b)

)
= jX(r)a⊗ jY (s)b, f−1(a⊗ b) = (a⊗ 1)⊗ (1⊗ b).

Thus, AX ⊠AY is a sheaf of algebras. The map jX×Y is given locally
by

jX×Y (r ⊗ s) = jX(r)⊗ jY (s)(also equal to (1⊗ s)⊗ (r ⊗ 1) ).

The second statement also becomes clear on an open affine subset
U × V ⊆ X × Y . In this case DX(U) and DY (V ) are subalgebras of
DX×Y (U × V ) so that the natural map

ϕX,Y : DX ⊠DY (U × V ) ∼= DX(U)⊗F DY (V ) → DX×Y (U × V )

is given by multiplication ϕX,Y (a ⊗ b) = ab. It is a homomorphism of
algebras because DX(U) and DY (V ) commute inside DX×Y (U × V ).
If X and Y are smooth, the tangent sheaves TX and TY are locally

free with local frames ∂/∂xn and ∂/∂ym. Then DX and DY have local
bases ∂|α|/∂xα and ∂|β|/∂yβ, given by multi-indices α and β. An easy
calculation in this basis shows that ϕX,Y is an isomorphism. �

Lemma 1.8. If X and Y are D-affine D-O-quasiaffine varieties over
F such the map ϕX,Y from Lemma 1.7 is an isomorphism, then any
open subset j : U →֒ X × Y is a D-O-quasiaffine variety.
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Proof. Decompose the global sections as a composition of functors

Γ : DX×Y –Qcoh
(X×Y→X)∗
−−−−−−−→ (D(X)⊠DY )–Qcoh

Γ
−→ D(X × Y )–Mod.

The assumed tensor product decomposition together with D-affinity of
X and Y imply that both functors are equivalences. Hence, X × Y
is a D-affine variety. It is also D-O-quasiaffine by a combination of
Lemma 1.1 and Lemma 1.7
If F ∈ DU–Qcoh, its direct images j∗F in the categories of D-

modules, quasicoherent shaves and topological sheaves coincide. By
D-affinity of X × Y , j∗F is O-generated by global sections. Hence, F
is O-generated by global sections. �

2. Divisors

We go straight to the main result of this section.

Theorem 2.1. Let X be an irreducible D-O-quasiaffine algebraic va-
riety over F, Y ⊂ X an effective Cartier divisor. Then there exists n
such that for all m, divisible by n the tensor power of the normal sheaf
N⊗m

Y is OY -generated by global sections.

Proof. Let U := X \ Y be the open complement and j : U →֒ X its
embedding. Observe that j∗(OU) = OX(∗Y ) is a DX-submodule of
the sheaf MX of rational functions and a union of invertible sheaves
OX(nY ). On an open subset V ⊆ X (from some cover ofX) the divisor
Y is defined by a single function h so that

OX(nY )(V ) = {
f

hn
} , OX(∗Y )(V ) = {

f

hk
} , f ∈ OX(V ), k ∈ Z .

Since OX(∗Y ) is a D-module, it is O-generated by global sections
s1, s2 . . . Each sk is a global section of a line bundle OX(nkY ). Out
of the cover X = ∪k{sk 6= 0} choose a finite subcover. Let n be the
least common multiple of all nk from the finite subcover. At every
point of X one of the sections from the finite subcover does not van-
ish. It follows that for all m with n|m the invertible sheaf OX(mY ) is

O-generated by global sections because one of s
m/nk

k does not vanish
at every point.
Observe that we have the standard sequence of OX -modules

0 → OX → OX(Y )
f
−→ NY |X → 0

without any further restrictions on X or Y , where NY |X is the normal
sheaf of the embedding Y →֒ X , considered as a sheaf on X . This
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yields another exact sequence

0 → ker f⊗m → OX(mY )
f⊗m

−−→ N⊗m
Y |X → 0

for all m. By Lemma 1.5, if n|m, then N⊗m
Y |X is O-generated by global

sections. Hence, so is its restriction N⊗m
Y = (N⊗m

Y |X)|Y . �

We can derive some geometric consequences of D-affinity as soon
as we can exhibit some interesting DX -modules. For example, OX is a
DX-module, thus, ifX is complete, we know some of its Hodge numbers

h0,0(X) = 1, h0,m(X) = 0 for m > 0.

For a smooth projective surface X this means that pa = pg = 0. If X
is also D-O-affine, Theorem 2.1 implies that the surface is minimal in
a strong sense: Y 2 ≥ 0 for any curve Y ⊆ X . Moreover,

c2(X) = 2 + h2,2(X), c21(X) = 10− h2,2(X), 1 ≤ h2,2(X) ≤ 10.

In the light of the next theorem, it would be interesting to classify
minimal models with such numerical invariants that do not have any
negative curves.

Theorem 2.2. A projective D-affine variety X over F of dimension at
least 2 cannot have any contractible divisors.

Proof. Let C ⊆ X be a contractible divisor. Let X̃ be the blow-down

of X at C. The centre of the blow-up X → X̃ is a subscheme Y ⊆ X̃

supported at a finite number of points. We can pick a divisor D ⊆ X̃
such that Y 6⊂ D and X̃ \D is affine. Let U = f−1(X̃ \ (D∪Y )). Then
U is quasiaffine but not affine, while the complement X \U is a divisor.
This contradicts Thomsen’s Theorem that states if the complement of a
divisor on a D-affine variety is quasiaffine, then it is affine [20, Lemma
1]. Notice that while Thomsen also assumes smoothness, it is never
used in the proof. �

We are ready to prove the main theorem:

Corollary 2.3. A rational smooth connected projective D-affine sur-
face X over F is isomorphic to either P 2 or P 1 × P 1.

Proof. By Theorem 2.2, X is minimal. A minimal smooth rational
surface is either P 2 or the Hirzebruch surface Hn, n ≥ 0. Since Hn

contains an irreducible curve C with C2 = −n, we conclude that n = 0.
Finally, H0

∼= P 1 × P 1. �
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Given an arbitrary closed subvariety Z ⊆ X , we can produce some
DX-modules supported on Z, for instance, functions on the formal
neighbourhood of Z or local cohomology sheaves Hn

Z(F) where F is
an DX -module, e.g., F = OX or F = DX ⊗OX

L for a line bundle L.
It would be interesting to analyse how affinity of these sheaves affects
geometry of X .
It is also interesting to resolve D-affinity of some particular varieties:

Question 2.4. Can a fake projective space be D-affine?

Question 2.5. Can a cubic hypersurface in P n, n > 3 be D-affine?

3. Two further questions

We would like to state two further questions that could be quite use-
ful for further research, including future attempts to settle the inverse
Beilinson-Bernstein problem.

Question 3.1. Let X be an irreducible D-affine algebraic variety over
F, Y ⊂ X an effective Cartier divisor. Is NY necessarily OY -generated
by global sections?

Question 3.2. Characterize the class of varieties X such that for each
point p ∈ X there exists an open set U ⊆ X such that

• p ∈ U ,
• the complement X \ U has a codimension at least 2,
• δ : U → U2 is a scheme-theoretic complete intersection.
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[4] R. Bezrukavnikov, I. Mirković, D. Rumynin, Singular localization and inter-

twining functors for reductive Lie algebras in prime characteristic, Nagoya
Math. J., 184 (2006), 1–55.
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