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SUMMARY

With growing interest in battery electric vehicles, the 

use of the disc armature motor, with its inherent high efficiency 

and power density, is investigated for such applications. With 

the need to establish an optimum design for a given specification 

a computer-aided design procedure is developed with due regard to 

the motor operating principles and the performance of existing 

prototypes. This procedure presents a large number of alternative 

designs to meet a specification in terms of the voltagetpower and 

speed requirement. The magnet material to be used is the only 

other necessary input to the program, although various restrictions 

may be applied if desired. With the use of a duplex wave winding 

sometimes called for, and in certain cases alternative methods of 

connection available, a study is made of a particular winding in 

terms of the e.m.f.s generated in the primary armature paths and 

those short-circuited by the brushes. It is shown that an optimum 

arrangement exists and if this is not specif led,significant 

deterioration in motor performance results as verified experimentally. 

The thermal performance of the motor is discussed and appropriate 

rating conditions are proposed as an aid to future design. Finally 

the use of the motor in a practical application is studied with the 

aid of a simulation model of an electric vehicle and practical 

road testing. It is shown that improvements in overall vehicle 

performance result when a disc armature motor is specified in 

place of a comparable series wound machine.
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Is INTRODUCTION

Events of the past decade have led to much uncertainty over

the availability and security of the oil supplies upon which this

and other industrialised nations depend. Together with the

tenfold increase in the price of crude oil in the period from

January 1970 to July 1979, this has led to an increasing awareness

of the finite nature of the world's natural energy resources, and

many studies have been initiated''" ^ to try and determine how long

these resources are likely to last. It is in the transport sector,

and in particular road transportation where 79% of petroleum is 
4used , that shortages and price increases are quickly felt. This 

has led to a resurgence of interest in battery electric vehicles 

which many think will form a large proportion of future trans­

portation. Much recent research and development effort, a great
8 —deal funded by various governments, has been expended in this area

to try and achieve an economic vehicle with acceptable performance. 
18A recent study predicted that if care is taken over vehicle 

component selection, aerodynamics and the like, dramatic

increases in range would be possible. One of the major contributing

factors to this improvement in vehicle performance Is the

specification of a permanent magnet d.c. disc armature motor in

place of the more conventional series wound machine. This motor
19has found varied applications but its use in battery electric 

traction is not widespread. The motor has a high working 

efficiency and Fig. 1.1 shows efficiency curves for a disc arma­

ture motor and a comparable series wound motor. The improvement in 

efficiency is most apparent at the lower values of input current.
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The reasons for this improved machine performance are the use of 

an ironless armature which eliminates hysteresis and eddy-current 

loss, and the use of a permanent magnet field system.

Since the invention of the wire-wound version of the machine 
20in 1967 , much research effort has been expended on the motor

with the result that a growing interest in its production has been 

shown by several manufacturers. Although the motor was originally 

intended for traction use, it is not in this field that it has 

found most application and only limited experience in traction has 

been gained. To rectify this, several projects have been 

initiated at Warwick University involving the design, construction 

and performance assessment of disc armature motors for use in

battery electric and hybrid vehicles. The principles of the
21 22machine have been studied at great length ’ and comparable 

attention needs to be paid to the design procedures involved and 

their relation to the performance of the machine especially when 

applied to electric traction. There have been no quick and 

reliable methods of determining the optimum design parameters for 

a given application and much design has been done on a trial and 

error basis. Thus, it was felt necessary to reappraise the design 

methods available and highlight aspects of design and performance 

peculiar to this type of machine. Although the research was 

primarily directed towards traction machines, much of the work 

relates to disc armature motors generally and results can easily 

be applied to motors for any application.

3



2: PRINCIPLES OF MACHINE OPERATION

The concept of an axial-field machine is not a new one. 

Michael Faraday used exactly this principle to demonstrate the 

first rotating electromagnetic machine (Fig. 2.1). To produce 

maximum useful torque from a machine of this type the 'armature' 

current must flow in a radial direction across the magnetic field. 

It is also apparent that as it stands the machine would need to 

be operated at a low voltage while supplying high currents. Thus, 

to be of more general use, a multipolar arrangement would be 

necessary with the ability to incorporate an armature winding . 

more closely related to those used today. Developments in d.c. 

motor design have resulted in the now familiar construction 

employing longitudinal conductors embedded in a laminated iron 

core and interacting with a radial magnetic field. Manufacturing 

techniques have been established to support large-scale production 

of such motors and thus any radical departure from conventional 

designs, such as an axial field arrangement, would rarely be able 

to compete economically unless similar techniques were made 

available. For these reasons, relatively little research and 

development has been carried out on axial field machines, although 

several different types have been proposed over the years, 

including the superconducting homopolar motor and the printed 

circuit motor. Of these, only the latter has found commercial 

application with a range of machines available. The essential 

differences between a conventional d.c. machine and an axial field 

d.c. machine are shown in Fig. 2.2. The conventional layout is

1»



Brash

Fig. 2.1 ; Schematic of Faraday's Disc

Fig. 2.2(a): Schematic of conventional motor

Permanent
magnets

Axis of rotation

Fig. 2.2(b) : Schematic of disc armature motor
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shown schematically in Fig. 2.2(a), a section across the machine, 

and the flux produced by the stationary poles is seen cutting the 

armature conductors situated in the rotor slots - for clarity, 

only two conductors are shown. For good magnet utilisation, the 

rotor must be constructed of a magnetic material, and since it 

rotates in the magnetic field, it must be laminated to reduce 

hysteresis and eddy-current loss. A typical axial field 

schematic is given in Fig. 2.2(b) which is a section along the 

machine showing a pair of poles and again two conductors. The 

armature conductors are located in or on a thin disc which rotates 

in the gap between opposite poles. It is not essential to have 

iron in the armature and in most cases an iron-free construction 

is used. The airgap will therefore be relatively long and this 

must be considered when specifying the field system - permanent 

magnets being the only feasible choice. The magnetic circuit is 

completed by mild steel rings onto which the magnets are bonded 

and which provides a path to adjacent magnets which will be of 

opposite polarity. These flux-return rings can often form part of 

the motor case as can be seen in Fig. 2.3 which is an exploded 

view of a typical wound-armature axial-field motor. To include 

rotating iron in the armature, thus reducing the effective magnetic 

airgap and therefore the amount of magnet material needed, is not 

a straightforward process. A laminated structure would be very 

thin, and as radial teeth would need to be impressed to accommodate

the conductors, it would also be very fragile. The use of iron
23powder in the disc has been investigated either as a rotating 

flux return path, Fig. 2.4(b), or filling the disc completely,

Fig. 2.4(c). The latter method may still necessitate the use of a

6







Coil end-windings

Conductors 
in disc

Flux-return - 
path

“ 3

Permanent magnets

Fig. 2;4(a) » Schematic of iron-free encapsulation

Fig. 2.4(b) : Schematic of rotating flux-return ring

Iron powder 
in disc

Fig. 2.4(o) : Schematic of iron-loaded encapsulation
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second stationary magnet (or steel ring) depending on the detailed 

construction. As indicated earlier, the layout illustrated in 

Fig. 2.4(a) is generally used in axial field or 'disc-armature' d.c. 

machines which has the advantage of eliminating all iron losses.

In the above discussion, it has been assumed that it is 

possible to construct an armature winding equivalent to that 

used in.conventional d.c. machines. There are, at present, two 

methods of achieving such an arrangement, namely that used in the 

printed circuit motor mentioned earlier, and the wound armature 

version for which a patent was applied in 1967 (granted in 1971) and

which is the subject of this research. The armature of a printed
motor

circuity^consists of a thin insulating disc onto both sides of 

which are bonded copper conductors. At the periphery of the disc, 

conductors from either side are joined. Power to the armature is 

supplied by brushes bearing directly onto the inner ends of the 

conductors. Fig. 2.5 shows an exploded view of a printed circuit 

motor with all the component parts clearly visible. It will be 

noted that the magnetic poles are circular, for ease of manufacture, 

and that in this case windings are employed for magnetisation 

after assembly. Such windings are also apparent in Fig. 2.3 and 

their need is discussed later. This type of machine has established 

itself in applications where good efficiency, short axial length or 

low armature inertia are advantageous. In spite of these advantages, 

a more robust and reliable motor has been developed that is more 

suited to applications involving conditions of overload, for example, 

electric traction. This is the wound armature axial field d.c. 

motor and it is more conventional in that copper wire is used to

9







form multi-turn coils. The coils themselves are individually 

wound (for prototypes) and then nested together to form generally 

a two-layer winding (although four layers and even a single layer 

version have been used). After connecting the coil ends to a 

conventional commutator, in any of the usual lap or wave configura­

tions, the complete assembly is then encapsulated in an epoxy 

resin for mechanical strength and rigidity. A typical motor has 

been shown in Fig. 2.3 and it will be noted that the magnetic 

poles are shaped as segments (c.f. circular magnets in Fig. 2.5) 

as it is possible to get a more uniform flux distribution in the 

airgap using this shape. Advantages of this construction over the 

printed circuit motor include the protection of the winding and 

associated connections from the elements, the ability to use 

conventional brushgear on the commutator and the potential of the 

machine for use in applications such as traction. Printed circuit 

motors have been investigated for traction use (see section 3.6.1) 

but the overload current has been limited with special control/ 

transmission arrangements. The inventors of the wound armature 

version of the motor (henceforth designated the d.c. disc-armature 

motor) originally intended that it should be used to drive electric 

vehicles, and this aspect will be covered in Chapter 3. Although 

any rotating electrical machine is dependent on common physical 

laws, there are certain operating principles of the d.c. disc- 

armature motor that warrant separate attention and these will be 

detailed in the following sections.
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2.1 Considerations for the magnetic circuit

In the disc armature motor the magnetic alrgap is relatively 

large, comprising the total disc thickness and a suitable running 

clearance between it and the pole faces. With reference to 

Fig. 2.6, the magnetising force in the alrgap, Hg, can be related 

to the magnet and airgap lengths and the magnetising force of the 

magnet, Hm, by:-

Hg.lg “ Hm.lm/LF (2.1)

where LF (the loss factor) allows for the non-infinite permeability 

in the remainder of the magnetic circuit, and here is greater than 

one. Thus it can be seen that to accommodate a large airgap while 

maintaining a given field strength in it requires either a long 

magnet or one with a high coercive force. In order that the machine 

weight does not become excessive the latter course is usually chosen 

with suitable materials being the common and inexpensive ferrites, 

or in exceptional cases, exotic and highly expensive rare-earth 

magnets. However, the ferrite material does have a significant
3

disadvantage in its low specific energy content (j/m ), and the 

relatively low values of flux density available.

Fig. 2.7 shows the normal and intrinsic demagnetisation

curves for a magnetic material - for the purpose of machine design/

operation it is only necessary to consider the normal curve.

Marked on the curve is the point where the product of the remanance

and coercivity is a maximum. This BH point corresponds to themax
maximum energy available from the material and thus to optimum

12



Fig. 2.6 i Schematic of a typical magnetic circuit 
for the disc armature motor
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e

Fig. 2.7 * Typical intrinsic and normal demagnetisation curves



usage. A load line is also illustrated, and neglecting the loss 

factor in equation (2.1) and any leakage effects this line may be 

defined as having a slope:—

1  , " Att x 10 7 x lm
H 1 Ki-i)

g

Thus,knowing the characteristics of the magnet material 

under consideration, it is possible to specify magnet dimensions that 

will ensure optimum usage of the material - the load line inter­

secting the demagnetisation curve at BH . It can be seen thatmax
reducing the airgap will increase the slope of the load line thus

increasing the flux density in the airgap. Often it is required

that this should be the case, for example, a magnet is specified

to be longer than would correspond to BH either to increase themax
flux density or provide a greater resistance to demagnetisation

forces. On the other hand, magnets for simple devices that work

on 'open-circuit' (no steel return path) would have a load line

that Intersects the demagnetisation curve well below the BHmax
point. As described earlier, the magnets used in disc armature 

motors are shaped as segments and these may be situated on one or 

both sides of the armature disc. The choice between the two cases 

is made from manufacturing considerations and also the desire to 

reduce the leakage between adjacent segments. For many materials, 

however, there is a minimum magnet length that can be economically 

produced. Although Fig. 2.7 is useful in outlining the principles 

involved when considering the magnetic circuit, a wide range of 

materials with totally unrelated characteristics are available 

today. A selection is shown in Fig. 2.8 which shows the normal

15



Fig. 2.8 t Demagnetisation curves of different materials
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point. Theydemagnetisation curve of each along with the BHmax
range in order of increasing remanance from the ferrite mentioned 

earlier, through the rare-earths to the high remanance Alnico 

materials. A point worth noting is that grades b and c are 

easily machined whereas all of the others are extremely brittle.

A comparison of physical and magnetic properties of these materials 

is given in Tables 2.1 and 2.2 while further consideration of their 

use in disc armature motor design will be found in reference 24.

Since the characteristics of the materials are so different.it is 

important to consider aspects of motor operation that depend on the 

choice of material.

2.1.1 Magnetic circuit parameters

One of the most important parameters of any magnetic material 

is the working flux density available. Assuming that operation at 

BHmax alway® possible then it is clear from Fig. 2.8 that any Alnico 

material will have a higher working flux density than a ferrite.

Thus, for a given motor power output from a given size of motor, 

the low value of flux available when specifying a ferrite would have 

to be compensated for by an increased copper content in the 

armature. However, to produce a given magnetising force in an 

airgap will require a shorter length of ferrite than Alnico simply 

because of the higher coercivity available. The choice between 

materials is, therefore, not a straightforward one and it is 

further complicated by the non-linear characteristic of many of 

the materials. This can be most apparent when considering initial 

magnetisation, assembly or reassembly after dismantling as will now

17



M ate ria l D e n s ity ,  kg/m3 M a c h in e a b il ity

Barium F e rr ite 4700 Hard, B r i t t le - G r in d in g  Only

Polymer SmCOg 5200 E a s i ly  Machined and D r il le d

M n-A l-C 5100 E a s i ly  Machined and D r il le d

SmCOg 8200 B r i t t l e  -  G r in d in g  Only

A ln ico  A 7300 Hard, B r i t t l e  -  G rin d ing  Only

A ln ic o  B 7300 Hard, B r i t t l e  -  G rind ing  Only

Table 2.1 t Physical properties of different magnet materials

M a te r ia l T e s la
He,

kA/M
BH max, 

kJ/m3

Max. temp, 

°C

R e v e rs ib le  c o e ff.  
o f  temperature

Barium  F e rr ite 0.37 240 26 200 0.20%

Polymer SmCOg 0.55 400 55 100 0.03%

M n-A l-C 0.57 185 44 300 0.12%

SmCog 0.87 660 152 250 0.04%

A ln ic o  A 1.15 n o 89 200 0.02%

A ln ico  B 1.35 59 60 200 0.02%

Table 2.2 s Magnetic properties of different magnet materials

18



be shown. Fig. 2.9 illustrates a further normal demagnetisation 

curve with a load line OP corresponding to some initial condition - 

a fully magnetised material working into an airgap, for example. 

Now, suppose these conditions are changed - the airgap is 

increased - so that some new load line OQ now represents the system 

with the operating point moving down the curve to Q. Evidently, 

the flux density will take a new lower value represented by B^. If 

the initial conditions are now restored the operating point will 

not, in general, return to P, but will move to a point R on the 

original load line OP. The line QR will be approximately parallel 

to the tangent of the demagnetisation curve at Br. Thus, only a 

reduced flux density, BR, is available. These are known as 

conditions of recoil and close attention should be paid to 

magnetic circuits where such conditions are likely to exist - the 

demagnetising effect of a wound armature, for example. In the 

disc armature motor such problems will only usually be apparent 

when assembling a machine. If the magnets are magnetised before 

assembly, there is always the possibility that on removal from 

the magnetisation jig and installation in the machine they will be 

operating under recoil. Fortunately, the problem is not equally 

apparent in all materials. The straight line characteristic of 

ferrite and rare-earth magnets ensures that recoil occurs along 

the original BH curve and therefore it is quite permissible to 

magnetise them before assembly. It is the Alnico types that are 

most susceptible and when these are specified it is not unusual to 

include magnetising windings within the machine itself (Figs. 2.3 

and 2.5) so that the magnets may be energised initially after 

assembly, and also re-energised if ever the motor is dismantled.
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It has been found that with Alnico magnets used without such 

magnetising windings, the working flux density is reduced. To 

assess whether recoil is likely, it is necessafy to consider 

both the normal demagnetisation characteristic and the expected 

conditions of operation. For example, with some Alnicos 

operating some way above the BHmax point, there may exist a 

small range of operating conditions where recoil operation coincides 

with the BH curve. Material e in Fig. 2.8 is an example of this.

Once a permanent magnet electrical machine has been assembled, 
the only demagnetisation effects likely to be experienced are those

due to armature reaction and temperatnre. With conventional 

machines the former effect can be significant and serious with 

several techniques available to reduce or compensate for it. In the 

disc armature motor, the air-cored coils in a large alrgap produce 

an extremely small demagnetising force, and this is spread over a 

relatively large number of poles. Armature reaction demagnetisation 

is thus negligible in machines of this type and such effects have 

never been experienced in any of the prototypes. The effect again 

depends on the magnet material specified and in traction applica­

tions where high-coercivity ferrite is almost exclusively used it 

would be even less pronounced than with Alnico. Although reduction 

of flux density with temperature is apparent in all materials to 

varying degrees (Table 2.2), most motor operating conditions lie 

in the reversible temperature range and thus no permanent demag­

netisation occurs. Obviously, if continuous operation at an 

elevated temperature is to be catered for,the modified value of flux 

density must be used in design calculations. Magnet manufacturers
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supply BH curves taken at different temperatures and these can 

prove extremely useful.

2.1.2 Magnetic field In the airRap

Having considered general aspects of magnet materials for these

machines, attention must now be paid to the magnetic flux

distribution in the airgap. This is an area where much analysis

has been carried out in order to predict the distribution

associated with such an array of magnet segments. With reference
25to Fig. 2.10, it is possible to show that the magnet potential 

[¡i at a distance x from some permanent magnet material can be 

expressed as:-

where M is the intrinsic magnetisation, M g the pole strength on 

the magnet face, q the distance from the point of interest to the 

area element dA, and dV is an element of magnet volume. For the 

majority of disc armature motor applications, the magnet materials 

used are homogeneous and anisotropic - the material is given a 

preferred direction of magnetisation in the manufacturing process.

In the case of materials with a linear demagnetisation characteristic, 
22it is postulated that uniform magnetisation is apparent, i.e.

M is constant in magnitude and direction and thus the R.H.S. of 

equation (2.3) reduces to the second term. By taking the gradient 

of this modified equation and considering the axial direction only, 

it has been found that if radial and angular positions are denoted

4x.iji = f■div M. dV
q

(2.3)





where y is the angle between the normal at dA and a line drawn

from dA to the point of interest. This has been evaluated for the
22pole shape under consideration and the results compared with

those obtained by practical measurement of the flux produced by

a set of segmented ferrite magnets with close agreement shown.

It has been further postulated that it may not be reasonable to

assume that the intrinsic demagnetisation in Alnico materials is

uniform. This would not allow the assumption that div M = 0 to be

made when simplifying equation (2.3). If this is the case, it is 
2 6predicted that a considerable field reduction would occur near 

the edges of the magnet face. However, comprehensive flux measure­

ments in the Alnico field system of the 7.5 kW motor described 

in Chapter 5 show that a very uniform and extended field pattern is 

apparent. This is maintained with only slight reduction at the 

magnet edges. The grade of material used in this motor (Hycomax III) 

has a normal demagnetisation characteristic as illustrated in 

Fig. 2.11. The Hycomax material has a much greater coercivity and 

the non-linearity of the BH curve is not as pronounced as in many 

other grades of Alnico material. Specific design considerations 

dictate that magnet operation significantly above BHmax should 

occur, and as this dictates that the slope of the tangent at the 

operating point must move closer to that of the tangent at Br, it 

is proposed that relatively unifonn magnetisation would be apparent. 

That this is a reasonable assumption to make is borne out by actual
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Flux density, 
Tesla

Fig. 2.11 » Normal demagnetisation curve for Hycomax III _

25



flux measurements as described above and Illustrated for convenience 

In Fig. 2.12. Thus, for this field system, the term M In equation 

(2.3) may be taken as constant and equation (2.4) applies.

If the flux density of the permanent magnet system can 

therefore be expressed by equation (2.4), the e.m.f. Induced In a 

conductor at angular position j may be evaluated from:- 

r2
ej - a) / B dr (2.5)

rl

where r^ and r^ are the outer and Inner radii of the magnet ring, 

to the angular velocity and dr an element of radius. This may be 

applied to all disc-armature motors.

For practical design purposes, it is inconvenient to 

continually evaluate equation (2.5) and then sum the results 

through the machine to determine the total e.m.f. produced - 

especially as the evaluation of is not itself straightforward.

It has been found sufficient to define an average airgap flux 

density, Bg, which is related to the magnet flux density, Bm> by:-

B - B /LC (2.6)g m

where LC is greater than 1 and represents the leakage paths in the 

magnetic circuit. It is chosen with reference to both calculated 

and measured values of airgap flux density and for the magnet 

configuration used in these motors, with a high degree of similarity 

from machine to machine a value of LC between 1.25 and 1.3 is 

considered most suitable. It is also closely related to the ratio 

of pole arc to pole pitch, a , as a large value of this ratio will

2 6



Fig. 2.12 s Average airgap flux density- In Hycoaax III eyetern
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Increase the leakage and also reduce the neutral region In which

commutation takes place. Investigation of the dependent parameters 
has shown that a good compromise Is achieved with a In the range

0.75 to 0.8 although a motor with a high value of a is discussed

in appendix III.

2.2 General machine considerations

Although the magnetic circuit has, for convenience, been 

treated in isolation in the preceeding discussion, more general 

aspects of machine operation will now be covered. The airgap 

flux distribution will be assumed to be constant although a 

treatment of actual flux density in the airgap and its effect 

on different winding arrangements will be considered in Chapter A. 

Fig. 2.13 shows a schematic of a pair of magnets with a single- 

turn coil. The active portion of the conductors (AB or CD) corres­

ponds to the difference in radii r^ and r_* It will be assumed 

that no conductors laying outside of rj or within r^ play any 

part in torque generation in the machine and thus ^  and r^ may be 

considered the outer and inner active radii, respectively. The 

length of conductor BC forms an outer end winding and as most 

coils are multi-turn there will be inner end windings situated 

approximately along AD. In practice, one of the coil sides will 

be longer than the other to allow additional coils to be nested 

inside it, although this will not change either the outer or inner 

active radius. It will be noted that the end windings form a 

large part of the total coil length and this is especially true 

when a small number of poles is specified. In order to prevent 

excessive copper loss in the end windings, the number of poles in
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a disc armature motor tends to be quite high when compared with 

conventional machines - 10 or 12 pole arrangements are not uncommon.

Although a conventional commutator is used in the machine, 

the term 'slot' has no meaning and coil sides are aligned with 

respect to the appropriate commutator segment when the winding is 

being constructed - it is assumed that after encapsulation the 

coil sides do not move with respect to the commutator. The 

armature may, of course, be connected in any of the usual wave, 

lap or duplex arrangements. It is also feasible to connect two 

separate armatures in parallel,or even to connect coils of one 

winding one by one in series with those of another thus doubling 

the effective tums/coil. In both cases, this will result in a 

four-layer winding with double the power output over the two-layer 

version. Examples of four layer armatures are given in Chapter 3, 

and appendix II.

It is well known that the number of parallel paths through 

the armature of a d.c. machine is equal to 2 for a wave winding and 

the number of poles for a lap winding. Because of the relatively 

large number of poles employed in the disc armature motor, the 

situation has often arisen where a wave winding has too few 

parallel paths and a lap winding would have too many. To overcome 

this, a duplex wave winding has been specified on a number of 

occasions. This has four parallel paths and presents a suitable 

compromise although care must be taken is specifying the winding 

arrangement especially when multiple brush sets are used to carry 

high traction currents.
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Having considered the basic magnetic and electrical circuits 

attention must now be paid to the torque and e.m.f. generation 

within the machine together with the relationsip between r^ and 

for optimum machine performance. The total armature e.m.f.,

E can be expressed as:-

E ■ B.l.v.z (2.7)s

where B is the machine's average working flux density, 1 the

active length of a conductor, v the average conductor velocity,

and z the number of conductors in series between the brushes, s
However, 1, v, and zg may be written:-

(r2 - rx) (2.8)

m(r2 + rl) 
2 (2.9)

z/a ( 2 . 10)

where a is the number of parallel paths through the armature and 

z the total number of armature conductors. Thus:-

B.(r2~rl) ‘ oi'^2 * r l),; — -------- ----  - ..... —2a

2 2- B.u.z. (rj ~ ri ) 
2a ( 2 . 11)

Equation (2.11) is often the most useful for determining the e.m.f 

generated in a disc armature machine. However, the flux per pole, 

0, may be written as:-

_ B.ir.(r2 - rx )
( 2 . 12)
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where p is the number of poles, and also:-

U) * 2ir.n
60 (2.13)

where n is the rotational speed in rev/min. Therefore, the e.m.f. 

may be further expressed as:-

E = (2.14)
60.a

which is the more familiar equation for any d.c. machine. If T 

is the gross torque developed in Nm and I the armature current in 

amps, then the gross electromechanical power in watts is given by:-

EI 2ir.n.T
60 (2.15)

and from (2.14):-

= 0.p.z.I 
27T.3 (2.16)

Combining equations (2.11) and (2.12) gives:-

E =
2tr.a (2.17)

illustrating that the torque and e.m.f. constants are identical 

when S.X. units are used. No assumptibns have yet been made 

concerning the relationship between r^ and r^ (except > r^) and 

the condition for maximum power will now be derived. As the 

conductors are more tightly grouped towards the inner active 

radius and as end windings exist at a radius less than r^, a space 

■factor, SF, is defined to ensure that it will be possible to 

accommodate the end windings. SF is kept approximately constant 

and less than 1 for all disc armature motors and it is defined as:-
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SF z.G
2 L.Tt.Tĵ (2.18)

where G Is the gauge of wire used and L the number of layers in 

the armature winding. Multiplying equation (2.11) by I gives the 

total mechanical power, P:-

EX - P - B -M-*-(r22 ~ rl2)-T (2.19)
2a

and substituting from (2.18):-

2 2p _ B. a). SF. L. tt. r^(r2 — r^ )•! 2̂ 20)
a. G

= k . r1*
2

ri )

where x is a constant. Let r^ be some fraction of r2 so that 

r^ = 8r2 where 8 ^ 1 .  Then:-

P = K.r23.(B-B3) (2.21)

Equation (2.21) is now differentiated w.r.t.B to find a maximum.

■|| = x.r23.(l-3B2) (2.22)

and this is zero when B “ + 1/ *̂3". To check that a maximum exists, 

equation (2.22) is differentiated:-

d2P
dB2

-6B.K.r, (2.23)

which is negative for B • 1/ »3. Therefore, for maximum power from 

a disc armature motor

r2 - r^ (2.24)
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Substituting (2.24) into (2.20) gives:-

_ B.u.SF.L.n.r2//3.(r22 - r22/3).I 
& • G

32B.o).SF.L.7r.I.r2 (2.25)

3 /3 a.G

Thus for a disc armature motor with a given number of layers, the 

gross power output is proportional to the cube of the outer active 

radius (or diameter). This may be compared with the familiar 

product of square of diameter and length for a conventional 

machine.

Having established the operating principles of the machine, 

it is now appropriate to review briefly the previous traction 

applications that have been considered as results from this work 

are of considerable importance to the comprehensive design procedure 

developed in Chapter 4, and performance evaluation (Chapter 5).
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3; USE OF THE MOTOR IN TRACTION APPLICATIONS

In the 1971 patent granted for the d.c. disc armature motor,

mention was made of the use of the machine in 'wheel motor' units

to drive an electric car. The potential advantages for battery

electric traction were thus appreciated at an early stage of the

development program, although the motor has now found numerous
19applications elsewhere . The advantage of a high operating 

efficiency is immediately apparent, but further benefits result from 

the methods of construction used. As the magnetic field is provided 

by permanent magnets and no rotating iron is used in the armature 

the power density (ratio of power to weight) is significantly 

improved over comparable series wound machines - an important 

consideration in battery electric traction. The lightweight 

construction of the armature lends itself to low inertia drives 

where this feature is desirable and the short axial length of the 

machine is often advantageous when space is limited, for example.

The extremely low inductance of the armature winding allows higher 

operating speeds to be considered as the upper limit defined by the 

onset of under-commutation is effectively raised. A diagram of how 

these specific advantages affect the overall machine performance 

is presented in Fig. 3.1.

It is to the construction of the armature that the patent is 

most applicable and although this is complex when compared to a 

conventional d.c. machine, the large number of wound armature 

disc motors marketed today show that volume production on a 

commercial basis is possible.

35





Strength is added to the thin disc of copper conductors by 

locating the coils’ circumferential end windings 90° out of the plane 

of the disc, and by the encapsulation process. The quality of the 

encapsulating material obviously has considerable bearing on the 

resulting product - it must be sufficiently strong, but also be 

able to accommodate expansion of the copper it contains. As a 

conventional commutator is used in the motor, conventional winding 

patterns and brushgear may also be specified and further considera­

tion of armature windings is given in Chapter 4.

The concept of wheel motor units resulted from the postulated 

high speed capability of the machine. Any motor located in the 

wheel of a vehicle becomes part of the unsprung weight, and from 

vehicle handling considerations should be as light as possible.

Thus, in order to obtain sufficient output power from an electric 

motor, it must operate at a high speed with suitable reduction 

gearing between it and the driven road wheel. As this is a 

specialised application (see Section 3.4) it was decided to 

construct the initial prototypes to a more conservative speed 

specification in order to gain a general assessment of motor 

performance without the need to consider problems arising from 

high speed operation. The sections below will briefly describe 

the various traction prototypes as results obtained are used to 

define Important design and performance criteria in Chapters 4 and 5.

In addition to the construction and evaluation of prototypes, 

consideration was given at an early stage to the design facilities 

available. As experience of the motors developed, it was found
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possible to develop a digital computer program incorporating routines

which, when given the design parameters of a motor, would calculate 
27the performance . This allowed designs to meet a given specifica­

tion to be produced much more quickly as tedious and repetitive 

calculations are removed from the designer. The program itself 

is described in Chapter 4 as developments from it have led to the 

comprehensive facilities available today.

3.1 The 930W traction motor

This was the first prototype permanent-magnet d.c. disc 

armature motor built and tested at the University of Warwick. The 

work was sponsored by a lawnmower manufacturer who intended to 

build a ride-on type lawnmower for use in conditions where low 

noise-levels are Important — hospital grounds, for example. The 

mower would need to have a good working range - hence the interest 

in the disc armature motor with its inherently high efficiency.

A suitable specification was drawn up after consultation with the 

manufacturer and work on the motor commenced in November 1968.

It was based around a power requirement of 930W, an operating 

speed of 2500 rev/min and a working voltage of 12V, power to be 

derived from four lead-acid heavy duty starter batteries. The 

design parameters of the machine are given in Table 3.1 which is 

in the form of a computer printout and should be read in conjunction 

with the symbols list. A schematic diagram of the motor is given 

in Fig. 3.2 which illustrates the general mechanical layout. The 

motor is 300 mm iri diameter and 105 mm in length (excluding the 

shaft extension). The magnetic field ifi provided by a 12 pole
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I

D I S c -ARmATuPE Mo t °R DESIGN 

DESIGN NOI 12

DESIGN SPECIFICATION

OUTPUTI 93n,0 WATTS 
VOLTSl 12V 
SPEED I 2500 R,P„M,

design data

D2
D1

NO or POLES 
terminal voltage

230 MM 
140 MM 

12
12 v o l t s

magnetic circuit data

I
LEAKAGE

PM s .286 TESLA 
HM = 50500,0 A/M£8IiriiifoNJi 1:1?

USEFUL FLUX/POLEs , n00368WEBERS 
POl E P I T E  Ape 

magnet  LENGTH 
MAGNET WEIGHT 

THICKNESS of  frr
frk Weight  

air gap
magnet DENSITY

maximum f l u x  d e n s i t y  of m i l d  s t e e u
DOUELE OR SINGLE MAGNETS

.75 
16,9 MM 
1.56 KGMS 
3.46 MM 
1,41 KGMS 
5.00 MM 
4.70 GMS/CC 
1.50 TESl A

WEIGHT OF MON ACTIVE PARTS i
total weight '

MECHANICAL LOSS* 
SPEED 1
POWER i 

TOr Q u E« 
POWER/WE1GHT « 

EFFICIENCY i

! 9.00 KGMS 
' 12.60 KGMS 
132 WATTS 

2376.6 R.P.M, 
897,4 KATTS 

3 . AINSI 
71.25 WATTS/KQM 
.763

Table 3.1 > Design parameters, for 930W motor
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ELECTRIC CIRCUIT d a t a

NO OF p a r a l l e l  p a t h s  
NO OF COILS

NO OF TURNS/COIL 
NO OF CONDUCTORS 

WIRE DIAMETER *
Wlpt WEIGHT 

CURRENT DENSITY 
ARMATURE CURRENT 

I *2R LOSSES
sp a ce  f a c t o r
NO OK LAYERS 

TEMPERATURE 
armature  r e s i s t a n c e

INDUCED EMF

■  12 
■ 60

’  720
1,02  KM 
* .625 KGMS 
r 10 ,0 AMPS/MM*2
■ 98,06 AMPS
« 147,3 WATTS

: -i4
p 7 5 C DEGREES C, 
p .015 OHMS
■ 10.50 VOLTS

.¡2

3A

3̂0

- i .

Table 3*1 (continued) Design parameters fòr 930W motor





system of ferrite magnets and the armature has 60 coils, is lap 

wound (12 parallel paths), and has 5 equaliser rings with every other 

commutator segment connected to an equaliser. The performance 

characteristics of the motor are given in Fig. 3.3. These are 

substantially as expected and the motor has been successfully 

tested in a 24 inch ride-on lawnmower (Fig. 3.4).

Temperature rise tests were also carried out on the motor to 

gain some assessment of the thermal characteristics under running 

conditions. These are considered alongside similar tests on 

other machines in Chapter 5, where thermal rating of the motors is 

discussed.

Although the results from this project were very encouraging, 

the limited demand for lawnmowers of this type made volume production 

uneconomic. Valuable experience was gained, however, and further 

details of the design, construction and performance of the machine 

may be found in references 28 find 29.

3.2 The 1,1 kW traction motor

The construction of this prototype resulted from an interest 

shown by the South of Scotland Electricity Board (SSEB) in battery 

electric traction. It was intended to evaluate the performance 

of a disc armature motor in an electric car and the motor 

specifications were chosen to be 72V (six 12V traction batteries), 

2100 rev/min and 1.1 kW, which would enable the vehicle to travel 

at speeds between 25 and 30 m.p.h. The project was commended in 

February 1970, and it was found possible to design a machine with
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rig. 3.5 PERFORMANCE CURVES OF PROTOTYPE DISC 
ARMATURE MOTOR .-SUPPLY VOLTAGE e 12 V
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Fig. 3.4 : Application of 950W motor
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Fig. 5.4 : Application of 930W motor



mechanical specification very similar to that of the 930 W motor 

described above. The stator assembly is exactly the same, but 

the armature is now a 61 coil wave winding as dictated by the 

higher operating voltage. Table 3.2 details the design 

parameters and the mechanical layout is shown schematically in 

Fig. 3.5. Performance curves for the machine are shown in Fig. 3.6. 

Although the motor was successfully and extensively tested, the 

SSEB found that they could no longer support any further development 

work on either electric vehicles or disc armature motors. This 

decision was taken before delivery of the prototype and thus the 

motor has never been used in its Intended application. Further 

details of the machine may be found in reference 30.

3.3 The 2.5 kW traction motor

The development of this machine followed from the University 

of Warwick Engineering Society expressing an interest in an electric 

vehicle motor after the cancellation of the SSEB project. The 

armature represented a departure from previous practice in that a 

four-layer arrangement was used for the first time. This was 

achieved by connecting a pair of two-layer windings in parallel so 

that each commutator segment has four connections to it rather 

than the usual two. The disc thickness is now doubled along with 

the output power capability although this 'back to back' arrangement 

required a new encapsulation mould to be constructed. The 

specification of the motor was to be 2.5 kW, 84 V and 3000 rev/min, 

and again it was found possible to design a machine with similar 

dimensions to the existing prototypes. Each half of the armature
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DISC-ARMATURE MOTOR DESIGN 

DESIGN NOI 31

DESIGN SPECIFICATION

o u t p u t i  u n o  w a t t s  
VOLTSI 72V 
SPEED! 2700 R.P.M,

d e s i g n  Data

D2 • 230 MM
D1 ■ 140 MM

NO OF POLES a 12 
TERMINAL VOLTAGE a 72 VOLTS

MAGNETIC CIRCUIT DATA

BM = .286 TESl A
HM * f>0500 • 0 A/M t

LEAKAGE COEFFICIENT = 1,27
LOSS FACTOR = 1.27 W

USEFUL FLUX/POLE» , (I00368WEBERS '* '
pole  f j t c h / p o l e  ar c  = . 7 5  ' PS

MAGNET LENGTH » 16,9 MM 
MAGNET WEIGHT a 1.56 KOMS 

THICKNESS OF FRR a 3.94 MM
FRR WEIGHT « 1.61 KG(|S • 7

AIR Gap = 5.00 mm
Ma GnEt  nENSITr s 4.70 GMs/CC 7-

MaXi MUM FLUX TENSITY GF MILO STEEL * i , 32 TFSLA 
DOUELg OR SINGLE maGN'ETS a 1

WEIGHT OF NON ACTIVE PARTS ■ 9.00 KGmS 
TOTAL WEIGHT ■ 12,93 KGMS 

MECHANICAL L?SSb 100 WATTS
SPEED a 2 ^ 1 5 , 9 R.P.H, 
POWER a 1201 WATTS 

TOROUEa 3 .Q3 NM
POWER/WEIGHT .  92,93 WATTS/KGH 

EFFICIENCY a , R39

Table 3.2 : Design parameters for l.lkW motor
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ELECTRIC CIRCUIT DATA ?e

-'-'2b
NO OF PARALLEL PATHS ■ 2

NO OF cOI l S » 6 1  30 '
NO OF TURNS/COIL » 5  ,
NO OF CONDUCTORS * 610 ¿2

HIRE DIAMETER « 1 , 2 2  MM
Hi PE HEIGHT b .762 KGMs ' 3-1

CURRENT DENSITY 8 8,50 AMPS/MM»2 
Ar ma tu re  CURRENT • 19,67 AMPS ’ 6

I»2R LOSSES ■ 129,7 WATTS -
SPAcE FACTOR * ,84 . 38
NO OF LAYERS » 3

TEMPERATURE » 75 .0 DEGREES C i > “"40 ■
ARMATURE RESISTANCE »  ,326 OHMS

INDUCED EMF * 65;47 VOLTS -12

Table 5.2 (continued) : Design parameters for l'.lkW motor
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ELECTRIC CIRCUIT DATA 2e

- : 2b
NO OF PARALLEL PATHS ■ 2

NO OF COIl S » 6 1  30
NO OF TURNS/COIL ■ 5
NO OF CONDUCTORS * 610 32

HIRE DIAMETER « 1,22 MM
Hi PE WEjGHT * .762 KGMS '34

CURRENT DENSITY a 8,50 AMPS/MM»2
ArmATu rE CURRENT «  19.87 AMPS 6̂

I«2R LOSSES ■ 129,7 WATTS
SPACE FACTOR a ,84 -38
NO OF LAYERS « 3

TEMPERATURE w 75,0 DEGREES C, " ^ o
ARMATURE RESISTANCE »  ,328 OHMS

INDUCED EMF w 65;47 VOLTS .-.2

Table 5.2 (continued) : Design parameters for l.lkW motor
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is in fact identical to that used in the 1.1 kW motor (61 coils, 

wave wound) and the stator consists of a double-sided magnet 

assembly with each half again identical to those previously used.

A schematic is shown in Fig. 3.7 and a 30% increase in length over 

the 1.1 kW motor is required.

After the armature had been encapsulated, it was found that 

a fault: existed in the winding making it impossible to use, and 

the motor was not completed. Although disappointing, the results 

did show that great care must be taken with the winding and 

encapsulating processes. Mistakes obviously cannot be rectified 

after encapsulation and it may not always be possible to test the 

winding beforehand. This is often the case when a suitable 'off- 

the-shelf' commutator is not available and a purpose-built component 

has to be constructed. An example of this is the 7.5 kW motor 

described in Chapter 5. Full details of the design parameters of 

the 2.5 kW machine are given in reference 31.

3.4 The 1.9 kW traction motor

With the experience gained from prototype disc armature 

motors, it was decided to return to the concept of an electric 

wheel motor. It was stated above that this would have to be 

operated at a relatively high speed to enable sufficient power 

to be derived from the machine, and therefore some form of reduc­

tion gearing would need to be incorporated in the mechanical 

design. Because of the severe limitation on diameter,’particular 

attention would need to be paid to the selection of the magnet
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material so that a good working flux is obtained.

To propel a small vehicle at AO m.p.h., it was considered 

that around 3.6 kW would be required. This is most easily achieved 

by the use of two identical units, one incorporated in each driven 

wheel of the vehicle. With this arrangement, the motors could be 

connected either in series or parallel. The former has a 

particular advantage in that differential action, necessary for 

correct cornering ability, would be accomplished automatically 

and electrically. With a system voltage of 72 V each motor was 

designed to operate at 36 V, and for the cruising speed of 

40 m.p.h., the use of a 2-stage 16:1 epicyclic gearbox corresponds 

to a motor speed of 10500 rev/min.

Instead of the ferrite material used in all previous 

prototypes, Alnico magnets of the grade Hycomax III were specified 

in order to give a good working flux in the limited space 

available. The computer listing of the design parameters is given 

in Table 3.3 and it will be noted that a four-layer, parallel- 

connected armature winding is again employed. The machine has 10 

poles, 40 coils and is lap wound. The overall diameter is 180 mm 

and a schematic of the assembly, including gearing and road wheel 

is shown in Fig. 3.8. Two prototypes were constructed (Fig. 3.9) 

but excessive heating and high currents were encountered on light 

load with both machines failing after a very short time. Investiga­

tions into this failure were not conclusive and no further work on 

high-speed wheel motor units has been carried out. Further details 

of the machine may be found in references 21 and 32.
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DESIGN n u : 91

DESIGN SPECIFICATION

OUTPUT: 1860. WATTS
VOLTS: 36. V
SPEED: 10300. RPM

DESIGN DATA

I)2t 142. MM 
Di: 82. MM 
POLES: 10.

MAGNETIC CIRCUIT DATA

BM 0.500 TESLA 
HM 80000. A/M 
LCOEFF 1.24 
LFACT 1.27 
PHI .000332 WEBERS 
ALPHA .78 
LMAG 22.9 MM 
WGTMAG 1.38 K6 
THICK 3.81 MM 
WGTFRR 0.63 KG 
GAP 4.50 MM 
MAGDSY 7300. KG/M**3 
BMS 1.80 TESLA

WGTNAP 2.00-KG 
TOTWGT 4.25 KG 
MECHLO 200. WAT1S 
SPEED 10843.8 RPM 
POWER 1811.0 
TORQUE 1.59 
FURWGT 425.81 
EFF .841

WATTS
NM
WATTS/KG

ELECTRIC CIRCUIT DATA

PATHS 20 
COILS 80.
TURNS 7.
2 1120.
GAUGE 0.63 MM 
WGTWIR 0.25 KG 
CRT USY 9.6 A/MM#*2 
AKMCRT 59.35 AMPS 
LOSS 143.59 WATTS 
LAY 4
TEMP 75. DEGREES.
SF .80
RARM 0.015 OHMS 
ER 33.60 VOLTS

OUTPUT DATA

Table 5.3 s Design parameters for 1.9EW motor
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Fig« 5.9 : Prototype wheel motor unit

Fig. ?,10 : Reliant Robin vehicle
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3.5 Consideration for a further prototype

The above sections conclude a review of the work at Warwick

University on disc armature traction machines to 1975. Despite the

setbacks mentioned,the initial results were encouraging with further

design and construction envisaged. However, the next two motors

were built for totally different applications - a low inertia

drive and a car radiator cooling-fan motor. Although the results

are extremely valuable in connection with a general design and

performance assessment of disc armature motors, they are not
33 34considered in detail here ’ . it need only be said that several

new features were incorporated in these machines and the results 

from the successful testing and evaluation programme were most 

encouraging.

3.5.1 Considerations for the vehicle specification

With a growing interest in battery electric traction, it was 

decided that the advantages o f the disc armature motor could 

best be demonstrated by its use in an electric vehicle, and in 

particular by a direct comparison with a series wound machine that 

would usually be specified for this application. It is possible 

to undertake such a project at the University engineering department 

using a small car as a suitable testbed. Road testing may be 

carried out along with static tests on a rolling road or similar 

facility with experimental results complimented by a theoretical 

analysis. An immediate choice was between the construction of a 

purpose-built prototype or the conversion of an existing car to 

electric drive. In view of the time and facilities needed to pursue



the former option, the latter was chosen for this initial work. The

vehicle selected was a Reliant Robin three-wheeled car (Fig. 3.10).

Its strong but lightweight construction makes it ideal for the

application - vehicles of this type have been a popular choice for
35 36many similar conversion projects ’ . The car was supplied from

the manufacturer without the internal combustion engine and 

associated components (petrol tank, radiator, heater, etc.) 

although the four-speed manual gearbox and final drive were 

retained. A discussion on other components, Including the series 

d.c. motor, and the conversion of the vehicle is given in Chapters 

6 and 7.

3.5.2 Considerations for the motor specification

Initial calculations suggested that to propel the vehicle

at speeds of 45-50 m.p.h. a motor output power of approximately

7.5 kW is required. The system voltage was determined by a

survey of the capacities and dimensions of a wide range of batteries.

The Lucas 66 Ah C P U  heavy-duty 12 V starter battery was eventually

chosen as information from Lucas indicated that the energy density

of this type of battery would be equivalent to that available

from their future lightweight traction battery. Considerable

experience of the charge/discharge performance of this particular
37model had been gained in previous work in the department . It 

was feasible to consider using eight such batteries mounted over the 

rear axle of the vehicle and thus a nominal system voltage of 96 V 

was established. With the experience of the wheel motor units, a 

more conventional drive arrangement was proposed and as the vehicle's
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existing final drive was already in place, direct coupling to the 

mechanical differential was a possibility - for a vehicle speed 

of 50 m.p.h. the motor would need to operate at 3400 rev/min. 

However, to adopt this approach would have entailed considerable 

mechanical modification to the vehicle, especially to allow for 

the use of both series wound and disc armature motors. Further, 

more general results on the drive system itself would be available 

if the'conventional gearbox, with four different gear ratios, was 

retained. It was also easier to consider locating the motor in 

the space originally occupied by the i.c. engine. As the top gear 

on most conventional gearboxes is a 1:1 ratio, the motor speed of 

3400 rev/min remained. Having determined the basic requirements 

(7.5 kW, 96 V, 3400 rev/min) any physical limitations on size 

should next be considered. In terms of overall diameter, the 

space available immediately forward of the gearbox dictated that 

this should be no greater than 350 mm. With a suitable allowance 

for motor case, end windings and running clearances, this 

corresponded to a value of 280 mm for d^> the outer'active diameter. 

Because of this diameter restriction, and also to demonstrate the 

extremely high efficiency of the motor, Hycomax III magnets were 

chosen to give a high working flux density. This enabled an 

armature winding to be specified which has a relatively low 

copper loss associated with it. The design parameters are given 

in the usual computer printout format in Table 3.4 with the 

predicted performance curves in Fig. 3.11. It will be noted that 

the armature is a two-layer duplex wave winding employing 42 colls. 

The magnetic circuit consists of 8 poles of length 30 mm situated 

on either side of the armature disc with the steel flux-return
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DES1 ON SPEC i F 1C A T I Qf.

O'JT’UT
YilLTS:. - PE:r0 :

75 00 
96. V 
34 CO .

. WATTS _

HP«

DEE IGr» DATA

0 2: 280 . PK -
01: 171. PH
POLES: 8 .

M A G 'Ir T ! C C! f CU.T DATA

BH 0.686 TESLA 
HH 62**75 . A/H 
LCOEFF 1.30 
Lr ACT 1.20 
P H I . 001^ 35 *£9EfiS 
A.PHA .73 
LHAG 6C. 0 MM 
WGTMfG 1 2 . KG 
THICK 12.8 2 KM 
WITFF R 7.72 KG

----  GAP 7.50 MM
^  — — -HA GD5Y 7300. KG/M«*3 
— — 81S 1.80 T ESLA-- - --=_-r-

ELEl TRI C Cl RCCIT DATA

PATH* A. ---------------- -
COILS 42.

- TUP HE 5.
7 A2C.
GAUGE 1 .9 0 KK 

- -  M3TWI 9 1 . 66 KG
- - - -  CHTDE.Y 9 . 0  A/mK**2

- - - —  A^MC^T 3 1.43 AMPS
--------- .— feu---- 5 5 . 372. 52 WATTS- ~  ~

-  LA T 2
----------- K ------------Si.-----  -TEHP 75.  CE GriEE S —  -

_  .. ...................... S’  .35 ............
- - -—  - •—  -------------- — -»ARM 0.03 8 OHMS
_ ................ EH 91.A3 VCLTS

Table 3.4 > Design parameters for 7.5WW motor
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$=•£•¿0 3 SJI..T SPM 
P5WE» ? U 7 . t  W A T 7 £ 
T 3 F 0 J E  2 5 . 2  3 JIM'
P*9WG7 ¿ 9 9 . 7 2  HA77S/KG 
EPF . 91A

FFP.F1* »1 A’.CE s p e c i f i c a t i o n s

CJ .“fcu *«T A M A T A  PE
MSI TY CUifìL'AT 5 PE ED - FuKEH T0F CUE IFFIC!LNCY

2- AM* 5 P PH F _r = - iiATTs MM

i . 11.16- - JA7 A.O - A 9 . A ¿.78 .665
2 . 2) ì 3 fc 3A5 9.B ^  1 6 C 1 .2 A. A-* .819
3. 35.5A 3AA5.6 —  2  5 A 5 . 1 7.C5 .866
A . A5.72 3 A3 1 . A 3A 81.3 ■9. 69 .891
-5 • 55.65 3 Al 7.2 AAC9.S 12.39 .903
b . .-61.07 “3AO 2.1 5330.1 . 1A.S6 .909
7. 7. .25 3 38 8.9 62 A 2.8 17.59 .913
J . 81 . A3 3 37 A.7 71 A 7.6 “*0.23 .91A
9. 9. .6. 3 36 0.5 80 A A .6 22. e6 .91»

7 0. “101.75 3 3A 6.3 "b9 3 3 • 8 ?5. A9 • 91A
li. 11. .97 3 33 2.1 3615.2 - 28.13 .913
« 2 . 12?.15 3317.9 ^ 0 6 8 8 . 7 “ 30.76 .91?
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Table 3.4 (continued) s Design parameters for 7.5kW motor
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Supply voltage - 96V

Fig. 3.11 i Predicted performance of 7 « 5 W  »otor
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rings integral with the motor casing. In order to carry the 

armature current, a full set of 8 brushes is used, bearing on a 

face-type commutator. The mechanical layout of the motor coupled 

to the gearbox is shown in Fig. 3.12 and construction and 

performance details of this machine are covered in Chapter 5.

Important considerations relating to the duplex winding chosen are 

discussed in Chapter A.

3.6 Other axial-field traction machines

Although the wound-armature d.c. disc motor originated at 

Warwick University, the use of axial-field traction motors is also 

being investigated elsewhere. These machines may either be 

developments of the original (patented) design or the printed 

circuit motor. In both cases, the attraction of high operating 

efficiencies and power densities is apparent, although in terms of 

reliability in this application, the wound rotor machine with its 

conventional commutator is considered to have the advantage.

Principal areas of research are described below.

3.6.1 Flinders University electric vehicle project

In 1972, the electric vehicle group at Flinders University 

in Southern Australia commended a project aimed at producing an 

improved electric vehicle. Their main philosophy is that the 

high currents required for starting and accelerating a vehicle 

could be reduced if the electric motor is run at a constant speed 

with a torque converter in the mechanical drive. Reduced currents 

lead to better battery utilisation and improve the range of a vehicle.
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Case/flux-return ririfis

Fig. 3.12 t Mechanical layout of 7«5kW motor

65



The technique is denoted as 'impedance matching' of the load to 

the motor and the control system is the subject of a patent. The 

motors used in the experimental vehicle are printed circuit 

machines rated at 5 kW. If a higher power output is required, more 

of these 5 kW 'modules' may be added. As the motor is running at 

a constant speed, it is less susceptible to overload conditions 

and tests carried out by the group have indicated that good 

performance may be obtained using these techniques. Their 

prototype based on a Fiat 127 has a top speed of 45 m.p.h. and a 

range of between 38 and 50 miles in urban traffic. Work is progres­

sing in the area of light commercial vehicles where the group 

consider that EV's will make their first impact. Full details of 

the technology involved in this research can be found in references 

38 and 39.

3.6.2 Cambridge University electric bicycle

This is a development of the Warwick research with the objective 

of building a motor into the wheel of a bicycle thus employing 

direct drive^'^. The very low motor speed (750 rev/min) leads to 

a heavy and relatively inefficient machine to produce 400 W output 

from a 12 V supply. Although the peak motor efficiency is only 

57% there is no additional transmission loss to be considered.

As the design of this motor involves significant departures from 

established practice, further discussion is reserved for appendix 

III.

.
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3.6.3 TRRL electric moped

An investigation into the feasibility of using wheel motor 

units in an electric moped comparable to such vehicles of today 

was instigated by the Transport and Road Research Laboratory (TRRL). 

Direct drive was again highly favoured and this method was 

employed in a development project using designs based on the 

Cambridge wheel motor. A specification of 750 W, 600 rev/min and 

24 V was established and one motor was to be mounted in each wheel 

of the moped. Although results have not been published, it is 

understood that relatively low efficiencies are apparent 

accompanied by sparking at the brushes, a phenomenon also observed 

in the motor of Section 3.6.2. At present, new designs are 

being prepared at Warwick University based on a higher speed 

motor with reduction gearing. It is intended to evaluate 

prototypes built to this new design.
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A: MACHINE DESIGN AND PERFORMANCE PREDICTION

The design of the early prototype disc armature motors was

achieved by selecting the various design parameters by intuition/

experience based on the fundamental operating principles discussed

in Chapter 2. Restrictions on available time did not allow any

extensive investigation of the effects of parameter change on

either predicted or actual performance of the machine. Predicted

performance itself could only be based upon trial calculations

incorporating expected losses, etc. as no operating experience of

machines of this type was available. Because the concept of the

machine was a relatively new one, it was felt that the facility

to enable rapid assessment and comparison of parameter changes would

be extremely useful, and would help to produce an optimum design

(in terms of efficiency or power density, say) for any given

application. With the availability of a powerful digital computer

the design processes were incorporated into a computer program

which had the advantage of eliminating repetitive calculation and

enabled results to be obtained much more quickly. The first 
27program was written in 1970 using the language Algol 60 and it 

enabled the designer to specify the majority of the motor design 

parameters as input data with the program calculating other design 

parameters and the predicted performance. The input data sheet 

is illustrated in Table A.l and when values are assigned to the 

listed parameters, the program performs the calculations and 

outputs the results as shown in Tables 3.1 to 3.A. Unique results 

are calculated from each set of input data although there is no
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U N I V E R S I T Y  O P  W A R W I C K  

Department of Engineering 

DISC-ARMATURE MOTOR DESIGN - DATA SHEET.

Design

specification

Machine design No*
Output power, watts
Voltage, volts
Speed, rev/min

Design Internal diameter, d^ run
External diameter, dg mm
No. of poles.

Magnetic
oirouit
data

Bn,, Tesla

«m aA
Double or single magnets
Leakage coefficient
Loss factor
Pole-aro/polo—pitch
Airgap, mm
Magnet density
Max flux density in MS, T

Eleotrio
oirouit
data

No. of parallel paths
No. of ooils
No. of tums/ooil
Diameter of wire (bare) mm
Current density, A/mm2
Space faotor
Armature temperature, °C.
Wt. of non—active parts, kg.
Meohanioal less, watts
Performance graphs (T or F)
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guarantee that the predicted performance will match the original 

specification, or that an optimum design has been produced.

Several attempts are usually needed to achieve the desired result.

As well as the results presented in tabular form, there is also the 

option of graphical representation on a plotting device. Examples 

of this form of output are shown in Fig. 4.1 which illustrates the 

performance curves of a motor. Although this program was of 

great value, it had the obvious limitation that as it was only a 

calculating routine , the majority of design parameters had to be 

specified at the start and thus it was still a time-consuming process 

to investigate a wide range of parameter variation}. No detailed 

description of this program is given here as an extended and 

modified version now forms the second stage of the two-stage design 

routine which is described later and which is able to encompass 

parameter variation. However, it is first necessary to consider 

the effect of the choice of magnet material as this has a great 

influence on motor performance, size and cost.

4.1 Considerations for magnet material choice

In spite of the advantages of improved efficiency and power

density that the use of permanent magnets can bring, it is only

within the past two decades that permanent magnets generally have
42achieved great economic importance in d.c. electric motors and 

in particular, machines for electric traction. The basic choice 

for motors is between ferrite, Alnico and rare-earth magnets, 

although there are many different grades of these materials 

available today and a wider consideration is necessary for detailed
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design work. The three types have been considered for use in 

disc armature motors and several design studies have been

carried out which illustrate the differences between selected
24 43magnet materials on a size, cost and performance basis. *

4.1.1 Manufacture of different materials

As well as the basic material cost, the method of production 

of permanent magnets can have a significant effect on both the 

final cost and performance of the material. Most magnetic 

materials can be made with or without a preferred direction of 

magnetisation (anisotropy) and although specifying an anisotropic 

material enhances the magnetic performance (in the direction of 

interest), it adds complexity to the manufacturing process as 

a strong magnetic field has to be applied at some stage.

Ferrite materials are ceramics consisting of mixed oxides 

including barium or strontium. The resulting compound is 

powdered, pressed in a magnetic field (aligns the magnetic domains 

and leads to an anisotropic material) and then fired. The 

resulting material is very brittle and some shrinkage usually occurs 

whcih has to be allowed for in the initial specification. As 

indicated earlier, this is the cheapest available material and 

although there is scope for Improvement of magnetic characteristics 

most effort is being expended to reduce the relatively high manu­

facturing costs.

Alnico materials are metallic alloys with constituents in 

typical ratios of 8% aluminium, 14% nickel, 25% cobalt with the 

balance made up or iron. The alloy may be cast, after heating to
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1400°C, or pressed and sintered, after reduction to a powdered 

form. In both cases, the anisotropic material is produced by the 

application of a magnetic field while the material is cooling. Many 

different grades of Alnico material are available today and Fig. 4.2 

shows the BH curves for a range of these. They result from variation 

in the proportions of the constituent metals - for example, increasing 

the cobalt content from 25Z to 35% yields a material with a higher 

coercivity and reduced remnance, the 'Hycomax' grade.

A development over the last 10 years has been the Increased 

use of magnets made with combinations of the rare-earths - the 

most favoured to date being an alloy of samarium and cobalt SmCo^.

These materials have an extremely high coercivity and energy product 

although the remanance is not as high as Alnico types. They are 

produced by pressing the powdered alloy in a magnetic field, sintering, 

and finally a heat treatment process is used. The SmCo^ alloy typically 

contains 35% samarium although a greater percentage is used initially 

to allow for oxidisation in the manufacturing process. An extremely 

hi$imagnetising field is needed either to magnetise or demagnetise 

SmCoj magnets and they are usually supplied to a customer in a 

magnetised condition in contrast to ferrites and Alnicos which 

are normally unmagnetised.

The grades of material just described are also available in 

'bonded form'. This is where the base material in powdered form is 

mixed with a bond material (rubber, polymer, plastic, etc.) to 

from a magnet which is no longer brittle and which can easily be 

machined. It can also be made flexible if required - magnetic 

gaskets for refrigerators are an obvious example. Such magnets do
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however have a limited temperature range, the upper limit determined

by the characteristics of the bond material. In addition,

permanent degrading of the magnetic properties of polymer-bonded

SmCoj results when working at temperatures much above 60°C.

While the mechanism behind this is not fully understood, it is 
believed that at elevated temperatures a reaction occurs between the

samarium and the bond material. A further general disadvantage of

bonded magnets is that the energy product is reduced, sometimes by

as much as 50%. In spite of these limitations, such materials have

found wide application - particularly for prototype work where a

new or complex shape can be made relatively cheaply and easily

as expensive tooling is not required.

As indicated earlier, there are many variants of the basic

grades of material, and research also continues into new materials -

an example being the alloy of chromium, iron and cobalt (Chrofeco).

However, with the increasing worldprice of cobalt, materials that

do not depend on this element have a great attraction. A recent
44 45development is the alloy of manganese, aluminium and carbon ’ and 

although this material is not yet commercially available elsewhere, 

its use in Japanese loudspeakers has been reported. Fig. 2.8 

illustrates the BH curves for representative samples of the materials 

considered in this section. Two grades of Alnico are included as the 

range of these materials is so large. Information on mechanical 

and physical properties is given in Tables 2.1 and 2.2.
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4.1.2 Effect of magnet choice on motor design

Having assessed the range of magnetic materials available

the machine designer Is faced with the often difficult problem of

choosing between them. Sometimes a restriction Imposed by the motor

specification or a specialised application will lead easily to a

particular material, but generally the selection of magnet material

and in particular the associated flux density is fundamental to the

design process. As well as the cost and performance of the machine,

the specification of the armature winding depends heavily on this

choice, and thus in the computer-aided design procedures that are

described in Section 4.3 the magnet material is the first parameter

to be decided, and this by the designer - not by any program subroutine.

A particularly relevant example is the development of a low inertia 
34disc armature motor . This is to satisfy the requirement for an 

extremely rapid-response drive-acceleration from rest to 6000 rev/min 

in 300 ms being necessary. As the acceleration of a d.c. motor's 

armature is proportional to the product of armature current and 

flux density, the use of a high-remanance magnetic material is most 

appropriate. However for a given motor output an increase in working 

flux density will generally require a smaller amount of armature 

copper and in this particular case it was possible to construct 

a light, thin armature disc - precisely the requirement for a low 

inertia system. If, on the other hand, a ferrite material had been 

chosen, the low flux density would have led to a comparatively heavy 

armature, exactly the opposite condition.

Another factor that must be carefully considered is the
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relatively long magnetic airgap. This condition makes the use of a 

high-coercivity material most appropriate, and the penalty to be 

paid for specifying an Alnico grade with its low coercivity is the 

much larger quantity of material that will be needed. The motor 

application is of prime importance here and the acceleration 

characteristics required of the low inertia motor can only be met 

by using the highest remanance material available.

In battery electric traction applications, the efficiency of the 

motor is a very important factor and any way of reducing the motor 

losses will be of great benefit. Although in the disc armature 

motor the iron losses are eliminated, the copper loss still remains 

and this may be reduced by specifying a high flux-density magnet 

material which in turn will require less armature copper. 

Unfortunately, the use of such magnets in disc armature traction 

motors has become prohibitively expensive because of the price of 

cobalt. It is possible, however, to obtain some degree of compromise 

by working a ferrite material well above the BHmax point on the 

demagnetisation curve. Although this represents an inefficient use 

of the magnet, generally requiring a far greater length than for opti­

mum conditions, the resulting higher flux density allows an

Increase in the motor efficiency with only a small increase in
43overall motor costs. A recent design study has compared such a 

machine with those using Alnico or rare-earth magnets and has found 

that only a small reduction in efficiency occurs with considerable 

cost saving. A disc armature motor using ferrite material under 

conditions of relatively high flux density is detailed in Appendix II.
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The magnetisation of the selected material needs to be 

considered at an early stage along with the possibility of recoil 

operation. As discussed earlier with ferrite and rare-earth magnets, 

it is possible to magnetise the segments before assembling the 

motor as the linear demagnetisation characteristic will ensure 

operation at the desired operating point. If Alnico magnets are 

specified magnetising windings are usually specified to allow 

energisation of the field system after assembly.

A.2 Initial requirements for the design procedure

The basis of the new disc armature motor design program is 

that the predicted performance of a machine should be accurately 

calculated to allow meaningful comparison of the various design 

options. In addition all design options presented should meet the 

original specification to within a given tolerance. It was also 

felt desirable to Introduce a number of other enhancements to the 

program. As Indicated above, the need to change parameter values in 

the search for an optimum design was considered along with the 

ability to place restrictions on selected parameters if necessary. 

Instead of having to specify all the design data, as in the 1970 

program, the only input required is the power, speed and voltage 

specification along with the choice of magnet material. Perhaps 

the greatest benefit resulting from the new program is the inclusion 

of the ’interactive' computing facility. The operation of the 

earlier program required the Algol Instructions to be supplied on 

punched cards with the actual run supervised by a member of the 

computer unit staff. The output from the program generated on the
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lineprinter and/or plotter would be returned after a short time.

With the Interactive facility a remote terminal (Fig. 4.3) Is 

used with the design program stored in the computer disc memory.

Inputs to the program (power requirements, design limitations, 

etc.) are entered via the terminal and the resulting output is 

displayed at the terminal and printed on the lineprinter if desired.

The advantage of this method is that the results can be seen very 

quickly-and this is particularly useful when design parameters are 

restricted or modified In some way. Many of the design parameters 

can only be varied in discrete steps (number of poles, coils or 

turns per coil, etc.) and this must also be allowed for. On the 

other hand, the magnet dimensions and operating point may be varied 

continuously and it has been found useful to allow the program access 

to a data file on which a suitable portion of the BH curve is stored.

More generally, the program must be capable of modification as 

experience allows greater sophistication, and all of the hard 

copy must have sufficient Information on it to allow easy reference 

at a later stage. With the inexperienced computer user In mind, the 

operation of the program should be as straightforward as possible 

with prompts in plain English displayed at the terminal where appropriate. 

This 'user friendliness' is considered to be a major requirement of 

computer operating systems today, especially with the increasing usage 

of desk-top microcomputers.

4.3 Development of the software

The ability of the digital computer to perform extremely fast 

mathematical computation lends it admirably to programs based on an 

iterative procedure where the same set of calculations is performed
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many times over. Design and optimisation programs may be based 

on such a technique with combined variation of the design para­

meters until a satisfactory result is obtained. The design 

parameters of a motor, for example, could be given some Initial 

values; from these the expected performance is calculated and compared 

with the required performance, and finally the design parameters 

modified to try and improve the agreement between required and 

predicted performance. The whole procedure is then repeated until 

the agreement is close enough for all practical purposes. In the 

design program for the disc armature motor, the iteration is 

performed until the power and speed lie within given limits of the 

required values with other performance characteristics then 

calculated. This is the first and most powerful stage of a two-stage 

process and it produces alternative designs to a given power, speed 

and voltage specification. The second stage allows modification 

of the major design parameters if required and is described later.

4.3.1 Initial considerations for design stage one

With just the specification of the power, voltage and speed of 

a motor, it is clear that a large number of design alternatives are 

possible encompassing wide variation of the physical and electrical 

design parameters. Of all the factors influencing the final 

specification, it is the choice of magnet material that has the 

most'dramatic effect. The selection of a ferrite, for example, will 

tend to lead to a motor of a larger diameter to try to achieve a high 

working flux. The high flux-density Alnicos will generally give a 

machine of a higher efficiency as the copper content of the armature
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(and therefore the copper loss) will be reduced. As the selection of 

magnet material Is thus so fundamental to machine design, the 

designer Is allowed to choose a material from a wide range whose 

characteristics are stored as data. This choice is based on experience 

although it would, of course, be possible to run the program again 

with the specification of an alternative material.

Having specified the power, speed, voltage and magnet choice, 

a suitable starting point for the design process is a consideration 

of the diameter of the machine. It was shown in Chapter 2 that the 

power output from a disc armature motor is proportional to the cube 

of the diameter and the equation expressing this relationship is 

used in the consideration of the most appropriate diameter. It 

will, however, be found more convenient to express the flux density 

in terms of the flux density in the magnet rather than that in the 

airgap. This may be achieved by incorporating the leakage coefficient, 

LC, and the ratio of pole arc to pole pitch, a. Accordingly equation 

(2.25) is now written:-

where d„ is the outer active diameter and B the magnet flux density.2 m
All other symbols remain as previously defined. As the speed of a 

motor is usually given in rev/min, w may be replaced by 2x .n/60 where 

n is the rotational speed in rev/min. The equation is also rearranged 

to bring to the left-hand side. Thus:-

B . ot. ui. SF.L. it . I.d m 2
3 ( 4. 1)

12 /3 a.G.LC

d (4.2)
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which is the fundamental equation for design stage one. The power and

speed are known and as discussed in Chapter 2, the values of LC, a

and SF remain approximately constant from machine to machine. Suitable

values are assigned, and L is initially taken as 2 to simplify the

construction of the machine - this may be Increased if necessary,

for example, if dj is too large. This leaves only the number of

parallel paths, gauge of wire, magnet flux density and

armature current to be determined for the evaluation of d^. Optimum

magnet utilisation is initially specified with the flux density

chosen corresponding to BH for the material in question. Themax
current may be determined from the relationship

P = E.I (A.3)

ignoring for the moment mechanical losses. E may be represented as 

some fraction of V, the applied voltage, and the initial value of I 

found. The number of parallel paths, gauge of wire, armature 

current and current density (current per unit area of armature 

conductor) are related by the equation:-

I a.C.ir.G2

4
(4.4)

2where C is the current density in A/mm as G is specified in mm.

C is given a preset value depending on rating conditions (see 

Chapter 5) and this leaves the wire gauge and number of parallel 

paths to be determined. The program Initially assigns a the lowest 

possible value (2 for a two-layer wave winding), the corresponding 

ideal value of G is calculated, and the standard wire gauge above 

this value is selected. The value of d2 may now be calculated and 

a small subroutine compares this with the value of G selected to 

check that the wire gauge is not unreasonably large. If it is the 

value of a is Increased which will tend to require a smaller gauge
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of wire, chosen from a wide range of wire gauges stored as data in 

the program. The program is biased towards two-layer windings 

(unless overridden by the designer) and a will first be increased to 

4 - a duplex wave winding, then made equal to the number of poles 

(simple lap) and finally twice the number of poles - duplex lap.

In practice, this final option has never arisen.

Having established d^, equation (2.24) may be used to find 

d^ and thus the two principal dimensions of the machine are known. 

Occasionally a limit on the overall diameter is specified and this 

is datered for by allowing a restriction to be placed on d^. The 

program chooses the lesser of the calculated value and the restricted 

value with suitable modifications to a and G. As the program runs, 

many of these Initial values can be, and often are, changed. The 

generation of alternative designs and the choice of an optimum in 

terms of efficiency and power density will now be described.

4.3.2 Operation of design stage one

The easiest way of describing the operation of a computer program 

is by the use of a flowchart and the following description applies 

to the diagram presented in Fig. 4.4. The procedure will be 

outlined as if it were being run from a computer terminal. Initially 

a message is output to the screen asking for the power, speed and 

voltage to be typed in. A list of magnet materials is then presented 

and one of these is selected - the relevant magnet characteristics 

are read in from a separate disc file. Possible restrictions are 

then considered. As well as the limitation on possible to

select the number of poles, minimum number of coils per pole, the
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Fig. 4.4 (continued) ; Flowchart of design stage 1
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current density or initial number of layers. If selected, these 

override the values set in the program. In the same way, the 

leakage coefficient,■loss factor, mechanical loss and the weight 

of the'non-active'parts' (resin, casing, bearings, etc.) may also 

be specified. If they are not, then values are again set or 

calculated within the program.

The final decision to be made by the designer is whether or

not a hard copy of the results should be produced. Once these

options have been dealt with, the Information input so far is 
displayed on the screen as a check and then the calculation routines

commence. It will be appreciated that all remaining calculations/

decisions covered in this sub-section are performed within the program

and do not require any further external action.

The armature current, number of parallel paths, wire gauge, d  ̂

and d ̂ are found as described in the preceeding section. if 

unspecified at the start, the current density assumes a value 

corresponding to continuous running of the motor (see Chapter 5).

The next step is to set an Initial number of poles. This is 

allowed to increase with the diameter of the machine, but the actual 

value is not critical as a wide variation in the number of poles is 

allowed at a later stage. Experience has shown that eight or ten 

poles represents a suitable starting point with a minimum of six for 

most applications. The minimum number of coils is then found by 

taking the minimum number of coils per pole. This is primarily 

for commutation reasons (see section 4.4 and Appendix II) and is 

set to 5 unless already specified. The type of winding under 

consideration (wave, lap or duplex) is also taken into account when



selecting the number of colls. An Ideal number of conductors for 

the machine may be calculated from:-

E.a.60 (4.5)

where 0 is calculated from B , d„, d, , a and p. This ideal value.m 2 1 ’

with d2 expressed in mm. This will generally be a non-integral 

value and it is used, along with the number of coils, to find the 

number of turns per coil which will yield the number of armature 

conductors closest to Z^. The actual relation used is:-

where the function INT means 'take the integer portion of'.

The armature resistance is the next parameter to be considered. 

First, the resistance of a coil is calculated from P» turns/

coil and G. The procedure used makes an allowance for the unequal 

length of the coil sides and end windings, and also Includes a 

suitable length of conductor for connection to the commutator.

The total armature resistance is found from:-

R = Coils. Rc (4.8)

where Rc is the previously found coil resistance and Ra the total

Z^ may be expressed:-

360a. E.LC.10'
_ j 2

n  • (X • Jd  • 7T • Q nm 2.

-6
(4.6)

Tums/coil = (4.7)

a
2

resistance. Ra is calculated at a temperature of 75°C as this is a
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specified temperature for performance characteristics according to 

B.S. 1727. A new value for the generated e.m.f. is calculated from:-

E - V- IRa - Vb (4.9)

where is the voltage drop due to the brushes and is given a 

suitable value from manufacturers' data. At this point during the 

first iteration, the new value for E is substituted in place of the 

Initial-estimate in equation (4.3) and the entire set of calcula­

tions is repeated. On the second and subsequent iterations, the 

airgap is determined from the gauge of wire, number of layers and 

suitable allowances for the encapsulation material and running 

clearances. The magnet length is found using a modified version of 

equation (2.2) and the rated motor speed found directly from equation 

(4.5). Before the rated power output can be calculated the mechanical

losses in the machine have to be determined. Until recently, an 
estimate of these losses based on experience was made by the designer.

The new program contains an empirical formula for mechanical losses

which has been found quite accurate and will be described in more

detail in the next section. The rated power output of the motor, Pr,

may now be calculated from:-

P - E.l - W r m

where W is the mechanical loss in watts. P is then compared with m r
the specified power which is given a modified value depending on 

whether P^ is greater than or less than that required. The

modified value is used in the next iteration although Pr is compared 

with the original specified power each time. Iteration continues 

until P^ lies between the specified power and 15% above the specified
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power. When this occurs, the number of layers in the machine is 

rechecked and then the speed is compared with the required value and 

modified until it lies within + 5% of that specified. Each time the 

program changes the speed specification, the power iteration is 

reworked. When studying the operation of the program it has been 

found that while the power assumes an acceptable value after 4 or 5 

iterations, the speed will either do likewise or will possibly alter­

nate between two values, one above and one below the allowable speed 

range. If this occurs during a run, the program will allow modifica­

tion of the magnet flux density, moving further up the demagneti­

sation curve until a predetermined value is reached. While this 

represents a departure from the ®Hmax ideal, it allows designs to 

be considered that might otherwise have been lost. Once the power and 

speed are acceptable, the remaining design calculations may be 

performed. These include the thickness and weight of the flux 

return ring (the steel must not saturate), the weight of copper and 

magnets and the weight of the 'non-active parts'. As with the 

mechanical loss this was originally specified by the designer but in 

the new program, it is related with good accuracy to a function of 

the ratio of motor power to motor speed. The total weight is now 

calculated along with the electrical losses (copper and brushloss) and 

the power density. Finally, the torque and efficiency are found from:-

and n

60P ___r
2 .  ir .n  -

W + I .R + V. .1 1 _m_______a____b
V.I

(4.10)

(4.11)

where T is the rated torque in N and n the efficiency of the motor, r m
The Information relating to this design is stored and the number of
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coils per pole increased by one. The entire procedure is repeated 

with this new number of coils and the results are again stored.

When the number of coils per pole reaches a preselected maximum, 

usually ten, the number of poles is changed to two above the value 

originally selected and the number of coils to the preselected 

minimum. The procedure is repeated with Increments applied to the 

number of coils per pole as before. The total variation in pole 

number Is from A above to A below the value initially selected in 

the program. With all the results stored as output data, the design 

which has the highest efficiency and that with the highest power 

density are selected and output in a similar fashion to Table 3.A.

The remaining designs are output in abbreviated form on the lineprinter 

for assessment by the designer at a later stage.

This represents the end of a single run of the program 

although it may easily be re-run with the same motor specification 

but using an alternative magnet material or Incorporating restrictions 

on the design process.

A.3.3 Performance prediction by design stage one

The accurate prediction of the performance of a motor Is 

necessary, both as a check against the original specification and to 

be able to assess the motor's behaviour under a range of operating 

conditions. Thus as well as the rated power, speed, torque and 

efficiency these parameters are also provided over the range from no

load to around twice the rated output (depending on rating conditions). 
In order to carry out such a performance prediction, the losses

within the machine must be taken into account and routines within
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the design program are provided to calculate to a suitable accuracy 

the magnitudes of the various losses. With an iron free encapsulation 

material eddy current and hysteresis losses are eliminated. Armature 

reaction effects can be considered negligible in machines of this 

type which leaves only the copper loss, brush voltage drop loss and

mechanical loss to be estimated. The copper loss is taken as the
2I R heating loss within the armature and may easily be evaluated; 

similarly a constant voltage drop per brush pair may be assumed and 

this is multiplied by the armature current to give the power loss 

here. The assessment of mechanical loss is more complex, however, as 

it consists of brush friction, bearing friction and windage, and 

therefore its direct evaluation is not a straightforward process.

This was recognised in the 1970 program and was overcome by allowing 

the designer, to specify a suitable value of mechanical loss from 

experience. For the new and more general design program, an 

alternative approach is required which enables a reasonable assess­

ment of mechanical losses to be made within the program itself. It 

is necessary, however, that any routine developed to achieve this 

does not require a detailed specification of the mechanical layout. 

Fortunately, experience gained in the operation of earlier machines 

may be used to advantage in this situation and it has been found 

possible to develop an empirical equation which will predict mechanical 

losses.

I-n order to establish the correlation between the mechanical 

losses of a machine and the size, power,rotational speed, etc., it 

is first necessary to investigate the magnitudes of such losses 

under various operating conditions in prototypes that have already 

been built and tested. This can best be achieved by a collation of
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the 'light-run' or 'no-load' test resul-ts. These relate to conditions 

of varying speed and applied voltage where the motor does not drive 

any additional load. Thus, all the power supplied to the motor is 

used to overcome copper, brush and mechanical losses; further since 

the values of armature current under these conditions are relatively 

small, the majority of the input power is dissipated as mechanical 

loss. In light-run tests, the voltage, current and speed are 

recorded for a range of values between zero and maximum speed. The

input power is calculated from the product of current and voltage.
2From this is subtracted the I R loss and the brush voltage drop loss 

with„the remaining power taken as the mechanical loss for the 

particular machine at this operating speed. The light run test 

results from the previously described prototypes are used in this 

analysis along with those from other disc armature motors not 

specifically built for traction purposes. Fig. 4.5 illustrates 

typical curves of mechanical loss, as deduced above, plotted against 

rotational speed and -for reasons that will become apparent later, a 

logarithmic plot is used. Results are presented for the 930 W 

motor, the 1.1 kW motor with various numbers of brushes, and the 

motor designed for a low-inertia drive. It is now assumed that brush 

friction, windage and bearing friction are the only mechanical 

losses to be considered. For the thin rotating disc used in a 

disc armature motor the windage losses under normal atmospheric 

conditions are related to the rotational speed and the diameter of 

the disc. Similarly, the bearing loss depends on the motor speed and 

the size of the bearing (itself generally dependent on motor size). 

The brush friction losses may be related to the brush area, diameter
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of the commutator, brush pressure and again rotational speed. For

the majority of brush grades used in these motors very similar, 

brush pressures are used and it will be assumed that no significant 

variation occurs from motor to motor. In addition, the diameter 

of the commutator will be assumed to depend on the machine diameter. 

The mechanical loss in a disc armature motor may therefore be 

expressed without loss of generality as:-

apparent from the straight line logarithmic plot and is remarkably 

consistent from motor to motor. The average slope is calculated 

as 1.304 and thus:-

W ■= k.n1-304 (4.13;m

where k contains the dependence on d2 and A. By consideration of 
machines which have the same value of d2 but differing numbers of

brushes the proportion of k made up of brush loss may be assessed.

At the same time, it is desirable to simplify the procedure by

replacing brush area with the rated armature current. The latter's

value has already been calculated within the program and the brush

area specified is usually proportional to the rated armature current

of the machine. The remaining term in k contains the dependence of

on d2 and this is evaluated to yield the final expression for 
mechanical loss In a disc armature motor.

V = f(d ,A,n) m z (4.12)

where W is the mechanical loss, A the brush contact area and d_ and m i

n as already specified. From Fig. 4.5_, the dependence of on n is

(4.14)
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where d£ is in mm, I the rated current in amps and n the rotational 

speed in rev/min. will then be expressed In watts. Although certain

simplifications have been made in deriving this formula, any dependence 

of mechanical loss on machine diameter, rotational speed or armature 

current (thus brush area) has been allowed for. The formula may 

easily be incoprorated Into the iterative design procedure in order 

to accurately predict the performance of any disc armature motor.

To illustrate the accuracy, Table A.2 gives predicted and measured 

values of mechanical loss for various disc armature motors operated 

at their rated speeds. The 'fan motor' is that described in 

references 21 and 33 while the 7.5 kW motor is fully described in 

Chapter 5. None of the last five motors in Table A.2 were used in 

determining equation (A.1A) and good agreement in the results is 

apparent.

Having determined the expected losses in a motor,the 

efficiency may be found from equation (A.11) and is presented with 

the other performance parameters on the computer printout. In design 

stage one only the rated conditions are considered and thus a single 

efficiency figure is given. Design stage two, described below, 

covers a wide range of operating conditions and equation (A.1A) is 

used repeatedly as the motor speed varies.(Obviously the values of 

rated current and dj will remain constant once a design is specified 

and thus mechanical loss will only be dependent on n. The copper and 

brush loss will, however, depend on the actual armature current.)

Design stage two which is directed towards a single design specifi­

cation will now be described.
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Motor
Predicted 

mechanical loss
Actual

mechanical loss

930W motor 162 Watts 220 Watts

l.lkW motor 104 Watts 100 Watts

Low inertia 52 Watts 48 Watts

Fan motor 26 Watts 26 Watts

7.5kW motor 284 Watts 340 Watts
*

130W motor 25 Watts 27 Watts
*130W motor 47 Watts 44 Watts
*20kW motor 484 Watts 516 Watts

see appendix II

Table 4«2 : Predicted and measured values of mechanical loss



4.3.4 Operation of design stage two

This is based on the earlier CAD program in which every design 

parameter was specified and the computer then used to predict the 

mtoor performance. The limitations of this procedure were discussed 

earlier but it may now be used to modify any parameter of a working 

design produced by the stage one program, i.e. as a 'fine tune' on 

a given design. As previously indicated, it will provide the neces­

sary data for the motor performance curves to be drawn up. However, 

to be of greatest use certain modifications to the 1970 program are 

necessary, the most important of which are the inclusion of the 

interactive facility and t*he rewriting of the graphics routine. 

Instead of punching the design parameters on cards, they are 

entered via a computer terminal with the results output to the 

terminal and also to the lineprinter if desired. The design 

parameters to be input are shown in Table 4.3 which is similar in 

format to Table 4.1. It will be noted, however, that several of the 

design parameters are listed as optional. If these are not 

specified then suitable values are selected by the program as in 

design stage one. Another important facility included in this 

particular program is the ability to repeat the entire procedure with 

a change in one or more of the design parameters. This is a quick 

and easy method of assessing the effect of such a change and allows 

a final design specification to be produced in a relatively short 

time.

4..3.4.1 Generation of numerical results

The operation of the program is described with reference to the

300



DISC-ARMATURE MOTOR- COMPUTER AIDED DESIGN

Project:-

U N I V E R S I T Y  O r  W A R W I C K
Department o£ E n g i n e e r i n g

Design Paramters

! 1 Machine Design Number . f

j" 2 Output Power, Watts i
3 Voltage, volts : *

1----; 4 Speed, r.p.m.
r i
; . 1

; s External Diameter D?, mm i ;

: 6 Internal Diamete.r Dl, mm i
| 7 Number of Poles !

' 8 Bm, Tesla i

_____________ ;
9 Hm, A/m »•
10 Airgap, mm 1) i

i 11 Magnet Density, Kg/m3 t
1 ! :

12 Number of Parallel Paths i .j
13 Number of coils ! !

; U Number of Turns/Coil
.

1
__________ !__________i___________

15 Gauge of Wire, mm i' ----- i
16 JCurrent Density» A/mm !; :

Optional Design Paramters •
i

i

17 Leakage Coefficient "  i
-1

18 Loss Factor
¡19 Pole-Arc/Pole-Pitch • i
j 20 Space Factor »

1 -
! 21 Armature Temp. °C
j 22 Weight of Non-Active Farts, Kg
1 23 Mechanical Loss, Watts ,

Actual Power
Actual Speed •

Table 4«? : New C.A.D. Input data sheet



DISC-ARMATURE MOTOR- COMPUTER AIDED DESIGN

Project:-

U N  I V E K S X T V  O F  W A R W I C K

D e p a r t m e n t  o£ E n g i n e e r i n g

Design Paramters
— 1 2  3

| 1 Machine Design Number . t

2 Output Power, Watts i

3 Voltage, volts i ! ■
4 Speed, r.p.m. i ; 1

; 5 External Diameter D2, am ! »

: 6 Internal Diamete.r Dl, mm
— ------------- 1

♦

I 7 Number of Poles • !

: 8 Bm, Tesla j

9 Hm, A/m i Ì |
10 Airgap, ran ! 1i

Ì Magnet Density, Kg/m3 ;
1

12 Number of Parallel Paths i i 
-1

13 Number of coils i

i 14l Number of Tums/Coil
------------ 1

____________ !___________ 1_____________
15 Gauge of Wire, ran i____________ '____________ —;

lie 2Current Density, A/ran i
i

Optional Design Paramters
7

•
»

!
i

17 Leakage Coefficient i
------ — -4

18 Loss Factor
¡19 Pole-Arc/Pole-Pitch * j
1 20 Space Factor ____________

21 Armature Temp. °C j
I 22 Weight of Non-Active Parts, Kg 1.
! 23 Mechanical Loss, Watts ;

Actual Power
Actual Speed

Table 4.3 i New C.A.D. Input data sheet



flowchart In Fig. A. 6. The machine design parameters in Table A.3 

are Input with any optional parameters set as necessary. The 

number of conductors is then calculated from the number of coils and 

the turns per coil. The flux per pole, magnet length, dimensions of 

flux-return ring and armature resistance are determined in the same 

way as previously described. The rated armature current is found from 

the specified current density, number of parallel paths and wire 

guage by use of equation (A.A.) and this allows the copper loss and 

generated e.m.f. to be calculated. The rated speed, power output, 

torque and efficiency are found as before including use of the 

equation for mechanical loss.

Having determined the performance at one particular operating 

point, it is necessary to calculate the data for a full set of 

performance curves (torque, speed, power and efficiency plotted 

against armature current). This is done at rated voltage and is 

achieved here by increasing the current density in stages from a low 

value to that corresponding to approximately twice rated current. 

Corresponding values of the dependent variables are output as shown in 

Table 3.4.

Once a completed design, along with predicted performance has 

been achieved, the complete process may be repeated with a change in 

any of the parameters listed in Table A.3. Similar results will be 

presented, although it is possible to save time at the terminal by 

supressing much of the data output. For example, in many cases the 

effect on speed or output power of a parameter ch ange may be all 

that is required and it is thus possible to select a 'shortform' 

version of the output at the terminal which will immediately provide
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Fig. 4,6 (continued) : Flowchart of design stage 2
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the most relevant results (power, torque, speed, etc.). Any hard copy 

specified will still consist of a full set of results. This 

facility can save a great deal of designer and computer time.

A.3.A.2. Generation of graphical results

As the Installation of a new computer at the University neces­

sitated- the translation of the original 1970 program from Algol to 

the more common Fortran IV, the graphical routines were also updated 

to make extensive use of the 'Culham Ghost' graphical subroutines.

These allow single statements to plot and annotate suitable axes 

and draw curves within their boundaries. Previously, every move of 

the plotter pen was controlled by a separate statement. Four 

separate graphs are produced in turn and the tabulated values of the 

performance curves must initially be scanned to allow suitable 

axes to be drawn and marked off according to the magnitudes of the 

variables. A curve fitting routine is then applied to the independent 

variable (current density) and each dependent variable in turn with 

each curve drawn out on its own axes. Typical examples of this output 

are given in Fig. A.l. Although the use of a digital plotter has been 

implied, the graphical results may be displayed at any device equipped 

to handle them (remote terminals, line printer, etc.). It is, 

however, convenient to limit graphics to the plotter as this provides 

a permanent, good quality hard copy of the results.
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4.4 Analysis of armature windings

The use of a conventional commutator In the disc armature motor 

makes it possible to specify winding patterns In the same way as 

conventional machines (lap, wave, etc.) even though the term 'slot' 

has no meaning. The most common arrangement is to have as many 

coilé as there are commutator segments and arrange these so that one 

side of a coil is positioned over the opposite side of another and 

both positioned with respect to an appropriate commutator segment.

This leads to a two-layer winding with each commutator segment having 

two^coil ends connected to it. It is of course possible to consider 

more than two layers in the armature winding and this option may 

be either specified, or initiated automatically in the computer- 

aided design procedure. To achieve this a 'multilayer coil' may be 

wound so that when nested with the other coils the required number of 

armature layers exists. This method is best suited to smaller 

machines designed to operate from a relatively high voltage supply, 

rectified mains, for example, where many turns of a thin wire can be 

easily shaped and accommodated. For traction applications, an 

alternative approach is usually adopted whereby two two-layer armatures 

are wound separately and then connected in a 'back-to-back' arrangement 

resulting in a four-layer composite armature. The colls may be 

either connected in parallel (four connections to each segment of a 

common commutator) or in series (a series of stub joints connecting 

the ends of coils from each layer). The former doubles the number 

of armature paths and halves the armature resistance, while the latter 

doubles the number of turns per coil and also the armature resistance. 

Several motors have been constructed in .this manner (see Chapter 3
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and Appendix II) although this method of connection has been applied 

only to A layer windings as the production of 6 or 8 layers involves 

a complex nesting and connection procedure. For the same value of 

the power output from a motor Is effectively doubled when the 

number of layers is doubled and this may be an advantage where space 

is limited.

A.4.1 Initial considerations for armature windings

Simple lap and wave windings are most usually adopted in disc 

armature motors and these are common and straightforward arrangements. 

However, as indicated earlier, there is occasionally the need for the 

number of parallel paths to be greater than two but less than the large 

number of poles. As discussed above, a wave connected back-to-back 

armature can yield four parallel paths but this involves added complica­

tion and also an increase in the amount of magnet material needed to 

maintain the same flux density in the longer airgap. An alternative 

solution, and one that has been adopted in the 7.5 kW motor 

described in the next chapter is to employ a duplex wave winding. This 

allows four parallel paths to be achieved from a two-layer winding 

by.the addition of an extra coil and commutator segment over that 

required for a simple wave arrangement. The number of parallel paths 

in a duplex wave winding is always four regardless of the number 

of poles employed. The arrangement may best- be considered as two 

simple wave windings, each with half the total number of coils 

and connected to alternate segments of a common commutator.

Depending on the detailed arrangement, there may either be two 

independent circuits, which are effectively connected in parallel by 

the brushes of the machine, or a larger closed circuit. Such winding
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and Appendix II) although this method of connection has been applied 

only to A layer windings as the production of 6 or 8 layers involves 

a complex nesting and connection procedure. For the same value of 

¿2 tl>e power output from a motor is effectively doubled when the 
number of layers is doubled and this may be an advantage where space 

is limited.

A.A.l Initial considerations for armature windings

Simple lap and wave windings are most usually adopted in disc 

armature motors and these are common and straightforward arrangements. 

However, as Indicated earlier, there is occasionally the need for the 

number of parallel paths to be greater than two but less than the large 

number of poles. As discussed above, a wave connected back-to-back 

armature can yield four parallel paths but this involves added complica­

tion and also an increase in the amount of magnet material needed to 

maintain the same flux density in the longer airgap. An alternative 

solution, and one that has been adopted in the 7.5 kW motor 

described in the next chapter is to employ a duplex wave winding. This 

allows four parallel paths to be achieved from a two-layer winding 

by.the addition of an extra coll and commutator segment over that 

required for a simple wave arrangement. The number of parallel paths 

in a duplex wave winding is always four regardless of the number 

of poles employed. The arrangement may besb be considered as two 

simple wave windings, each with half the total number of coils 

and connected to alternate segments of a common commutator.

Depending on the detailed arrangement, there may either be two 

Independent circuits, which are effectively connected in parallel by 

the brushes of the machine, or a larger closed circuit. Such winding
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arrangements are used In special machines (high speed for example) 

as the bar-to-bar voltage is reduced helping to prevent electrical 

breakdown.^

The simple lap winding is symmetrical about a pole-pair and 

thus there exist many sets of commutator segments which in theory 

should be at the same potential. In practice, slight discrepancies 

can occur due to Inaccuracy in the coll positions and to avoid the 

possibility of excessive circulating currents being carried by the 

brushes 'equalising' connections are often incorporated within the 

armature to connect together some or all of the commutator segments 

at the same potential. For example, in an 8 pole 48 coil lap connected 

machine, each pole-pair is associated with 12 commutator segments 

and thus there can be a maximum of 12 equalisers, each 

connecting four segments - one under each pple-pair. Alternate 

segments only may be equalised. In this case, only six equalising 

rings will be required.

The same state of affairs does not exist in a simple wave 

winding. The extra coil introduced (or subtracted) to allow multiple 

tours of the armature in the winding pattern has a displacing effect 

on the winding as a whole and thus no two commutator segments are 

maintained at equal potential. Even with a duplex wave connection, 

with two additional coils (or two coils subtracted) only pairs of 

segments on opposite sides of the disc will be at the same potential 

and thus the maximum number of equalising connections is equal to 

half the number of coils employed. For these reasons, it is 

Inappropriate to use equalisers on wave windings and thus any differences 

in generated e.m.f. must be tolerated. In the case of a duplex winding



there are often alternative connecting patterns available, as will be 

shown later, and it is only by a careful consideration of the e.m.f.s 

generated within the winding that the optimum pattern can be 

selected.

It has been found necessary to evaluate the emf.s Induced in the 

armature conductors as the armature rotates and sum these between 

brush pairs as appropriate in order to determine the magnitude of the 

e.m.f. induced in each armature path, and also those induced in coils 

short-circuited by the brushgear. The number of bushes obviously 

has considerable bearing on the analysis and accordingly results are 

presented for alternative numbers of brushes. Bi-directional rotational 

of the machine is required and the brushes are located on the neutral 

axis. As no additional generated e.m.f. is necessary to assist in 

commutation, the e^m.f.s induced in colls undergoing commutation and 

short-circuited by the brushes should ideally be zero. To continually 

evaluate and sum the conductor e.m.f.s as the armature rotates 

would be an extremely tedious process and it is doubtful whether such 

a calculation by hand would even be attempted. It is possible, 

however, to write a computer program which will achieve this evalu­

ation while taking into account changes in brush position and airgap 

flux as rotation occurs. The program may be used with any winding 

configuration but is applied here mainly to duplex wave configurations 

and in particular those relevant to the 7.5 kW traction motor that 

is being developed.

4.4.2 Calculation of e.m.f.s induced in primary and short-circuit 
armature paths

Assessments of the e.m.f.s Induced in armature coils during
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commutation and the application of digital computers to commutation
47 48 49analysis have already been reported * ’ . However, these were

directed towards the design of Interpoles for d.c. machines so that 

a prescribed current distribution between commutator and brush could 

be achieved. Since the majority of the Induced e.m.f.s that are 

considered in these analyses are negligible in disc armature motors 

(very small reactance voltage, no eddy current effects, end windings 

at 90° to main flux) such treatment is inappropriate here and thus 

the present discussion is confined to the e.m.f.s induced by the main 

field in all armature conductors, and how these vary for different 

winding configurations.

The analysis is based on a development of the armature 

winding diagram that is drawn up for every different armature that 

is produced. These show relative positions of brushes, commutator 

segments, coils and poles, and examples corresponding to simple lap 

and simple wave windings are given in Figs. 4.7 and 4.8 respectively.

The symmetrical nature of the lap winding is evident with each of the 

8 brushes centred on a commutator segment, an equal number of coils 

between each brush and in the position shown no coils shorted by the 

brushes. An alternative representation is to trace through the complete 

winding denoting each coil side by the number of the commutator 

segment it is most closely aligned to. This is shown in Fig. 4.9 

where the 8 parallel paths are clearly seen - the dash notation 

represents coll sides in another layer. The conditions illustrated 

in Figs. 4.7 and 4.9 will only be true for one angular position of the 

armature. If the armature rotates by half the pitch of a commutator 

segment each brush will now contact two segments and this situation is
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represented in Fig. 4.10. The coils that are short circuited are 

represented as coil sides connected to the same brush.

Fig. 4.8 shows a winding diagram having the same number of 

poles and brushes as Fig. 4.7 but wave connected. It can be seen 

that an extra coil is employed and there is no longer a symmetrical 

pattern relating brushes to commutator segments. Several of the 

brushes are thus shorting two commutator segments and this always 

is the case as the armature rotates. Fig. 4.11 shows this winding 

represented in a similar fashion to Fig. 4.9 and the two parallel 

paths through the armature may easily be seen although more coils are 

shorted by the brushes than in the lap winding. When two brushes 

are used an improvement in this situation is evident (Fig. 4.12) but 

the value of armature current often dictates that more than one 

brush pair is employed. With reference to Fig. 4.7 if the armature 

is displaced by half a commutator segment with respect to the brushes 

(and poles) the coil sides connected to the brushes lie in the neutral 

zone between the poles and therefore any e.m.f. induced in them 

should be extremely small. When the wave winding is considered (Fig. 

4.8) it can be seen that some of the coils shorted by the brushes 

have sides laying more towards the sides of a pole and these will 

have a comparatively larger e.m.f. induced. This problem is 

aggravated if the ratio of pole arc to pole pitch is too large or if 

the number of coils per pole is too small. Experience has shown 

that for pole arc/pole pitch ratios of around 0.75 the minimum number 

of coils per pole should be about five, unless exceptional circumstances

warrant otherwise.
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With reference to a diagram such as Fig. A.8 and for a constant 

motor speed it is possible to calculate the induced e.m.f.s by 

considering the flux associated with each conductor. If a coil has 

five turns then each commutator segment may be divided into five 

smaller segments each of which will be associated with one 

conductor from each layer, and either lie under a pole or in a 

neutral region. This assumes an idealised rectangular flux 

distribution and thus conductors will have either a single 'unit' of 

e.m.f. induced in them, or zero e.m.f. The e.m.f. in a coil side 

may be found by summing the contributions from the five conductors 

and then the total e.m.f. in each armature path is found using a 

diagram such as Fig. A.11. Allowance must of course be made for

e.m.f.s in coil sides in the other layer or under an opposite pole
/

to be of the appropriate sign. In addition to constant speed and 

rectangular flux distribution the method assumes a uniform distribution 

of conductors through the disc. The actual e.m.f.s Induced in the 

armature paths may be found by multiplying the number of summed units 

in each case by the airgap flux density, length of conductor and 

average velocity. ' j

While this method has proved useful for initial assessment or

comparison of windings the limitations it imposes are quite severe.

A more representative flux distribution is shown in Fig. 5.15 and

although it is possible to allow for this, the summation becomes

extremely time-consuming. The resulting e.m.f. values are true

for only one armature position although they repeat after rotation 
by an Integral number of commutator segments. To Investigate changes '

in position by one conductor position would require the complete
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winding diagram to be reassessed taking into account the change in 

brush position and flux pattern with respect to the armature. . 

Similarly, any change In pole arc/pole pitch ratio would not be 

easily allowed for.

The computer program that has been developed takes Into account

the actual flux distribution as measured In Chapter 5, and numbers of

poles, coils, turns per coil and brushes. The flux distribution is 
stored as numerical data within the program (one pole pitch is required)

and the width of a brush in terms of a commutator segment is also

required. With reference to Fig. 4.13 the winding pattern is

specified by two numbers, x and y,-which are selected by the

designer. Together they define the coil pitch and commutator pitch

in terms of commutator segments. Each commutator segment is divided

into conductor positions and for each of these positions the

initial flux density is calculated according to the number of poles and

the specified flux distribution. They are then summed in appropriate

groups to find the units of e.m.f. associated with each coil side.

Each brush is taken in turn and the commutator segments contacting it

are identified. Using the specified values of x and y (Fig. 4.13)

the path from every segment In contact with a brush is traced through

the armature, summing the coil e.m.f.s until another brush is

reached. In this way, all of the armature paths are accounted for

and the output consists essentially of the starting brush, the

finishing brush and the units of e.m.f. generated between them. It

has been found most convenient to allow one unit of e.m.f. to be

equal numerically to the maximum value of the flux distribution. The

actual e.m.f. is then calculated by multiplying the number of units by



Coil

x and y in terms of commutator segment pitches 
(here x«2,y«4)

y - coil pitch
2x+y - commutator pitch

Pig. 4.13 : Representation of winding pattern
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conductor length and average velocity as before.

Once the Initial e.m.f.s have been evaluated the armature Is 

rotated by one conductor pitch. This requires new values of flux 

density to be calculated for each conductor position, and also 

the new position of the brushes with respect to the commutator.

The Induced e.m.f.s are then calculated as before.

The entire process is repeated until rotation by one

commutator segment has occurred, and the results show how the e.m.f.s

between the brushes vary with rotation. The program will cater for

any number of coils, turns per coil or poles, and as the details of *

the armature winding are specified by two numbers, found from the

winding diagram, any conventional arrangement may be investigated.

The program has been of greatest value in comparing two alternative

duplex wave arrangements and this particular aspect is considered in 
the next section.

A.A.3 Application to the duplex wave winding

The winding under consideration is that specified for the 7.5 kW 

traction motor intended for use in the Reliant Robin electric vehicle 

conversion. There are 8 poles in the machine and the armature has 

A2 coils each of 5 turns to allow for the duplex wave winding. A set 

of 8 brushes is employed to handle the full armature current and the 

remainder of the specification is given in Table 3.A. In a simple 

wave wlriding the coil and commutator pitches are easily chosen from 

the nearest integer to the number of coils per pole. In the A1 coil,

8 pole arrangement of Fig. A.8 the number of coils per pole is 5.125
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and thus the coil pitch must be 5 and the commutator pitch 10. With 

the duplex wave winding and especially with 8 poles the commutator 

pitch is not so well defined and could be either of two integers.

The number of coils^per pole in the arrangement under consideration 

is 5.25, and while this leads to a coil pitch of 5, the commutator 

pitch could be either 10 or 11. These two possibilities must be 

investigated to assess whether any advantage is to be gained by 

specifying a particular configuration. The winding diagram for the 

version with a commutator pitch of 10 (Option 1) is illustrated in Fig. 

4.14 and is shown as a series of coil sides in Fig. 4.15. Similarly 

the version with a coil pitch of 11 (Option 2) is shown in Figs. 4.16 

and 4.17.

It can be seen that option 1 leads to two separate circuits 

which are connected in parallel by the brushes, while option 2 is 

a continuous winding. It has been suggested"^ that the latter 

configuration is easier on the brushes as it does not rely on them 

for paralleling the two circuits.

The relevant parameters for each winding are input to the 

computer program and the values of e.m.f.s. for the armature circuits 

are output and plotted graphically in terms of units of e.m.f. for 

rotation by a conductor pitch. They are illustrated in Figs. 4.18, 

4.19, and 4.20 which correspond to using 2, 4 and 8 brushes 

respectively. In Figs. 4.19 and 4.20 there exist a second set of 

values identical to those illustrated and thus only 2 main armature 

paths are shown. In Fig. 4.18 several of the e.m.f.' values for the 

four main paths in option 1 are coincident. In all of the diagrams, 

the positive-going short circuit e.m.f.s are those due to the
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negative brush while the negative-going short circuit e.m.f.s are 

due to the positive brush. It is clear that as the number of brushes 

increases, the spread of the main e.m.f.s reduces although this is 

at the expense of a reduced average value of main e.m.f. with a 

corresponding Increase in the number of short-circuit paths. It is 

apparent that the generally higher values of short-circuit e.m.f. in 

the option lv.winding exist to the detriment of the e.m.f.s in the 

main paths and this has been found to adversely affect the performance 

as will be seen later. In addition, the values of the short-circuit 

e.m.f.s associated with either the positive or negative brush average 

to approximately zero over the period of rotation by one commutator 

segment in the option 2 winding while this is not the case in option

1. This too has a direct bearing on motor performance. However, 

further discussion on the relative merits of the windings will be 

reserved until the performance of each in an identical stator is 

considered in the next chapter.
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5: CONSTRUCTION AND PERFORMANCE OF A DUPLEX WAVE DISC ARMATURE

TRACTION MOTOR

The motor considered in this chapter is built to the specifi­

cation given in Table 3.4. Armatures using both the winding arrange­

ments discussed in section 4.4.3 are constructed and a comparison 

made of their performance. The constructional details have much 

in common to all prototype disc armature motors and it is 

convenient to consider independently the stator and the armature 

particularly as their construction may be performed concurrently 

if necessary up to final assembly. The general assembly drawing 

for the motor is reproduced for convenience in Fig. 5.1. The 

dimensions of the armature are determined from D1 and D2 in Table

3.4, making a suitable allowance for the end windings at the 
inner and outer circumferences. Additionally, several coils may

be trial—wound and nested before the final mechanical specification

is drawn up and in motors involving significant departure from

pervious mechanical arrangements, this is sometimes the case. The

dimensions of the armature encapsulation mould are usually

finalised after the first winding has been constructed. Although

two different windings are being evaluated, the mechanical details

of each are precisely the same and the stator parts are also common

to both. Consideration must also be given to fitting the motor

into the electric car and Fig. 5.1 shows details of the gearbox

and input shaft.

151



Air vents

Fig. 5«1 * Assembly drawing for 7 «>fcW motor
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5.1 Construction of stator and armature

The first task in constructing any prototype disc armature 

motor is the specification of the magnets as the small quantities 

that are generally required often take some time to be produced. 

Occasionally, the magnet manufacturer will have a standard shape 

which is close to that desired - in this situation it may be worth 

redesigning the motor so that this can be used. However, for the

7.5 kW motor purpose made segments of the alloy Hycomax III are 

specified and these are cast to the desired shape. The magnet 

dimensions are given by Dl, D2, ALPHA and LMAG from Table 3.4.

LMAG refers to the total magnet length and as can be seen from 

Fig. 5.1, magnets of half this total length are situated either 

side of the armature. The non-linear BH characteristic of the 

Hycomax III material makes it necessary to magnetise the segments 

after the motor has been assembled and the correct airgap set up. 

Magnetising windings will thus need to be incorporated in each 

stator half and brought out to external connections. The steel 

flux-return rings form part of the motor case and a narrow ring is 

incorporated onto each to allow location to the gearbox of the 

vehicle. The bearing housings are made of aluminium as is the 

cylindrical ring forming the remainder of the motor case. These 

components are all bolted directly to the flux-return rings and the 

bearing housings constructed so that the magnet segments can be 

located against the outer circumference of each (Fig. 5.1). The 

motor shaft is made with a coupling suitable for connection to the 

rotating clutch member in the gearbox and a bush which will be
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encapsulated with the armature winding Is made to key onto the 

centre portion of the shaft. The brush holders are Integral with 

one of the bearing housings and as a face-type commutator Is used, 

the brushes and holders are trapezoidal In section. As In previous 

prototypes, the advice of a brush manufacturer is sought regarding 

brush grade and size for a machine of these dimensions, power and 

speed - Morganite metal/graphite brushes of the grade CM12 are 

finally specified.

After delivery of the magnets, they are Inspected and then 

fixed to the steel flux-return rings in the appropriate positions 

with an epoxy adhesive. Once this has been done, the magnetising 

windings can be located around the magnet segments and these are 

connected on each side to two threaded brass bushes fixed into, 

but Insulated from, the steel rings. The connection to the 

magnetising equipment is made to the opposite ends of these bushes 

after assembly of the machine. Figs. 5.2 and 5.3 show photographs 

of the stator components.

Because of the unconventional nature of the armature 

prototypes are constructed completely by hand at present and this 

is a time-consuming procedure. (Suitable winding machines have 

been developed for commercial production.) Having established 

d^, and the number of coils in the machine, a former is made 

up allowing individual coils to be wound by hand. The size of the 

former Includes a running clearance between the end-windings and the 

edges of the magnets. Fig. 5.4 shows the former and several 

armature coils, with colls nested together and ready for connection
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Pig. 5.5 : Half stator assembly of 7.5^W motor
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5.2 : Magnets used in 7.5kV motor

Fig. 5.3 s Half stator assembly of 7.5kW motor



Pig. 5.4 : Winding formers
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Fig. 3»4 » Winding
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to the commutator Illustrated In Figs. 5.5 and 5.6. As a 

suitable face-type commutator with A2 segments Is not commercially 

available, a purpose-built commutator was drawn and manufactured.

The design has the unusual feature that the individual segments 

are left connected to a copper blank for rigidity until encapsulation 

after which the unused copper is then machined away. Fig. 5.7 

shows the armature coils connected to this commutator. A 

steel mould for the armature is designed and manufactured and the 

base and lid are shown in Fig. 5.8. The copper blank attached to 

the commutator serves another purpose as it may be drilled and 

tapped in order to locate the winding firmly in the mould with 

the commutator concentric to the shaft. The keyed bush which 

fits onto the motor shaft is positioned in the base of the mould and 

fixed in position by a dummy shaft which itself locates in thè lid. 

Fig. 5.9 shows an armature about to be pressed down into the mould 

ready for encapsulation.

The moulding material used is an epoxy resin type PX 237C 

supplied by Robnorganic Systems Ltd. The specification is 

detailed in Table 5.1 and the resin is supplied in a twlnpack form,

the user mixing two constituents by hand after breaking the dividing 
seal of an evacuated polythene container. This method allows

the resin to be mixed thoroughly with no risk of spillage or 

ingress of air bubbles. The encapsulation process is carried 

out by hand after pre-heating the armature, mould and resin to 

approximately 40°C. Sufficient twinpacks are prepared and these 

mixed as required. The containers are then opened and the warm 

resin poured over the armature windings, commutator and 

centre bush. To facilitate the removal of any air bubbles that

137





Fig» 5 ,6  : Coxplete set of armature coils

Kig. 5.7 : Coils connected to commutator
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Pig. 5«8(a) : Base of encapsulation mould
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Fig* 5.8 (a) : Base of encapsulation mould

Fig 5.0(h) ¡ Lid of encapsulation mould
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Fig. 5,9 ; Armature windings positioned In mould

Fig. 5.10 : Complete armature
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Fig. 5.9 : Armature windings positioned in mould
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• Md I let • 
C o m p o n e n t *  - 

I w i n  • P*cW* 

tp o n y . P o ly u r« - 
ne. Po lyette» R * sin » 

Silicon* Rubber*

nonxon epoxy casting resin  px 2 3 7 c

This resin system is a w a r m  citrine cas t i n g  system formulated 
for the encapsulation of  e l e c trical components. It possesses 
particularly good resistance to thermal c y c l i n g  and to thermal 
shocV.

It can bo supplied i n  an y  of  the standard range of colours 
or its natural colour w h i c h  is a light cream.

Mi xing
If in twtnpack form, m i x i n g  is c arried out as described in the 
twinpack literature. If  in bulk, the r e s i n  and hardener are 
mixed in the ratio 1 7 s2 .

The usable life of PX 2 3 7 0  w h e n  m i x e d  is as follows s —

C u r i n g

1 2 ho u r s at 20 ° C
u hours at Uo°c
2 hours at 6o°c

for at least : —

2 h hours a t 6 0 °i
10 ho u r s at 80°'

1« h o u r s a t 1 oo°
2 h o u r s at 1 20°

Properties

Initial Viscosity 
S pe c i fi c Gravi ty
Resistance to Heat (continuous) 
Thermal. Conductivity 
Electric Strength 
Volume Resistivity
Coefficient of Exp a n s i o n  
Deflection Temperature

El asti c i ty

XOTFS

5O - 6O poises 
I . 5 6  
1 2 ° ° c
7 x IO cal/cin 
110-120 kV/cm 
> 1 . 5  log. „ ohm
*». 5-5
130°C

10- "* in/in linear/°C
10

O x
improved by extended 

post cure. n
2 7 O - 3 3 O kg/mm*' (unfilled)

d u n n i n g  o'fi i m  inn t

All equipment must bo cleaned before the compound has linriennl. 
Acetone or cellulose thinners a r e  suitable cleaning agents.

Table 5.1 t Specification for epoxy resin for encapsulation
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may be present, the mould is placed on a vibrating table while 

pouring proceeds. When the base of the mould is filled with resin, 

the lid is attached and extra resin added if required through the 

holes in the lid. Having applied the clamps, the complete mould 

is then transferred to an oven where the resin is cured according 

to the specification. When.cool, the mould is opened and the 

completed armature removed. The unused copper may then be machined 

off to expose the commutator segments and the armature is now 

complete (Fig. 5.10). As it is not possible to test the armature 

electrically before encapsulation as the commutator segments are 

shorted together, a voltage drop test is carried out to ensure that 

there are no electrical faults. Once this has been done, the 

commutator segments are undercut, the armature is balanced and it 

is then ready for Installation in the motor. The machine is shown 

disassembled in Fig. 5.11 and complete in Fig. 5.12 where the 

magnetising winding connections can be seen.

Although the encapsulation process just described is a slow 

and time-consuming procedure, it is very suitable for prototype 

work. Techniques are available today to perform such operations 

much more quickly, and on a commercially viable basis. All the 

mechanical parts of this motor and the armature encapsulating 

mould were constructed by staff at the Engineering Department 

workshops at Warwick University. The armature was manufactured 

externally and encapsulated at the University by the author, who 

also assembled the magnetic circuit.
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Fig. 5.11 : 7.5kW motor - disassembled

I

Fig. 5.12 i 7.5kW motor - assembled
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Fig. 5.11 • 7»5kW motor - disassembled

Fig. 5.12 : 7.5kW motor - assembled
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5.2 Performance of the magnetic circuit

With the stator assembly complete, It Is Important to carry

out a detailed Investigation of the flux within the machine to

ensure that a uniform pattern is apparent with no serious deteri-
26oration at the edges of the poles. This Is done without the 

armature present In order to facilitate the use of the measuring 

transducer - In this case a Hall Effect probe.

Supplied with the magnets is a demagnetisation curve with a 

shaded area marked within which the demagnetisation curves of the 

magnets lie (Fig. 5.13). A comparison of this curve with the 

standard curve used in the computer-aided design program, 

indicates that the standard curve passes quite close to the centre

of the shaded area in Fig. 5.13. It may therefore be assumed that 
the magnets supplied are within specification and that the field

will be as predicted. The stator is assembled and an impulse 

magnetiser connected to the magnetising windings. The magnetiser 

works by charging a large bank of capacitors to a high voltage and 

then discharging them through the magnetising windings of the motor 

using a thyristor switching element. Extremely high currents are 

caused to flow for a very short time and the magnetic field 

produced is sufficient to saturate the magnets and thus allow them 

to operate at the desired point on the BH curve. Because the 

saturation flux density is higher than the working flux density, 

the flux-return path needs to be extended while magnetisation is 

being carried out. This is accomplished by temporarily locating 

additional steel rings either side of the motor case. It is
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recommended that for the Initial magnetisation of this material, the

magnetising force should be Increased to the maximum value in

several stages as this will ensure maximum alignment of the magnetic

domains. Once magnetisation is complete and the connections to the

magnetising windings removed along with the auxiliary flux-return

rings.measurements of the airgap flux density can be made. This is

done by marking out a grid pattern over the magnet positions and then

locating the Hall Effect probe at these grid points in the centre

of the airgap. (The probe is inserted through the ventilation

holes in the aluminium casing of the machine.) Measurements are

taken at positions between opposite magnets and also between

opposite neutral zones, so that a continuous assessment of the flux

distribution may be made. Although some variation from pole to

pole is evident, this is within the spread of BH values given in

Fig. 5.13. Fig. 5.14 shows typical values of flux density for the

indicated sections of the magnet segment. A slight reduction in

flux is noticed towards the edge of the magnet and although

this is more pronounced at the comers, the airgap flux density over

most of the pole area is maintained at approximately 0.5 Tesla.

With the value of B taken from Table 3.4 this corresponds to an m
actual leakage coefficient of 1.36 for this configuration of 

magnets. With the measurements of neutral zone flux combined 

with those above Fig. 5.15 gives the average airgap flux density 

distribution over a pole pair, and it is this particular distribu­

tion which is used in the computer program for armature winding 

analysis detailed in section 4.4.
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Boundary of segment

Fig. 5.14 : Flux density in airgap at grid points, Tesla
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Fig. 5*15 * Average airgap flux denelty in 7 ♦ motor
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5.3 Performance of the motor

Having characterised the magnetic circuit, the motor may be 

assembled with the armature in place, remagnetised and run. As 

the surfaces of both brush and commutator are flat, no extensive 

bedding-in procedure is necessary, although the brush surfaces are 

given a light treatment with a fine abrasive cloth to remove any 

residual deposits. The motor is run on light load until a good 

patina (collecting surface) is formed on the commutator.

In section A.4. it was shown that significant differences 

occur in the e.m.f.s generated in both the primary and short circuit 

armature paths of the two winding options considered. In 

particular, the generally higher short circuit e.m.f.s in winding 

option 1 (commutator pitch 10) exist to the detriment of those in 

the primary paths. Over rotation by one commutator segment these 

short circuit e.m.f.s average to a significant fraction of the 

average primary e.m.f. which is not the case in winding option 2 

(commutator pitch 11) where the short circuit e.m.f.s average to 

approximately zero. Clearly, this effect must be investigated in 

a machine equipped with the alternative windings. Study of 

the results from the computer program relating to the e.m.f. 

calculations reveals that, except in the case of two brushes only 

in the machine, no single brush short circuits an armature path, 

l.e. for four and eight brushes all short circuit paths are formed 

between different brushes (positive or negative). It is thus feasible 

to measure the voltages developed between like brushes in a 

machine equipped with, say, four brushes, but only using two to supply
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power (Fig. 5.16), thus indicating the magnitude of the e.m.f. 

developed between positive and negative brushes. A similar test 

may be carried out for the case of eight brushes. The tests are 

performed for both armature windings and on light load for a range 

of values of supply voltage. The voltages developed between 

positive brushes, Vp, and between negative brushes, V^, as a fraction

of the supply voltage, Vg , are given in Table 5.2 for both winding 

options. For each armature four brushes and eight brushes are used 

but with only two providing electrical power. These may be 

compared with similar results derived from the e.m.f. analysis 

(Figs. A.18 to 4.20) and which are presented in Table 5.3.

Agreement is generally good, but with a tendancy for the voltages 

between the .positive brushes to be somewhat higher than expected - 

this occurs in both brush sets in the case of eight brushes used in 

the option 2 winding. When all brushes are powered, the e.m.f.s 

generated between like brushes are shorted together and it is 

reasonable to expect that this has greater consequence for winding 

option 1. This is observed in practice by a degree of sparking at 

the brushes when this armature is used while no significant 

sparking is apparent with winding option 2. When two brushes 

only are used in the machine any short circuits are caused by a 

single brush and in this particular motor occur for only relatively 

short periods of time (Fig. 4.18). Although there is no way of 

measuring this e.m.f., it is clear from Fig. 4.18 that the e.m.f.s 

to be expected in winding option 1 are considerably larger than 

those in winding option 2, with an effect on performance similar to 

that which has already been observed.
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Winding option 1 Winding option 2

Pour Vp - 0.178VS Vp - 0.032VS
Brushes VN - 0.121Vg V„ - 0.032VS

Eight Vp - 0.106Vg Vp - 0.022Vg
Brushes vN - o.o76vs VR - O.OITVg

Table 5« 2 : Voltages measured between like brushes as a 
fraction of the supply voltage

Winding option 1 Winding option 2

Pour
Brushes

Vp - 0.135VS Vp .  0.020Vg

VN - 0.123VS VR - 0.027Vg

Eight
Brushes

Vp - 0.074ts Vp .  0.007Vg

VR - 0.070Vg VR - O.OOlVg

Table 5.3 t Predicted voltages between like brushes as a 
fraction of the supply voltage
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In addition to the measurement of short circuit e.m.f.s, 

it is important to assess the effect of the alternative winding 

arrangements when the motor is used on load. To this end, it is 

coupled to a Ward Leonard test set already existing in the Department 

(shown schematically in Fig. 5.17). As this equipment has been 

used and described on several previous occasions^’̂ , no detailed 

description is given here. The generator used to load the disc 

armature motor is a compound wound machine and is selected to have 

an operating speed similar to the disc armature motor with an 

output voltage similar to the second d.c. machine in the test set. 

Power for the disc armature motor Is derived from a set of traction 

batteries with a carbon pile stack to provide the necessary voltage 

variation. Output torque from the motor is measured using an 

ASEA 'Torductor' (type 5693-719/A) which derives the value of 

mechanical torque from the change in the magnetic characteristics 

of a shaft when it is under torsion. The motor speed is measured 

by a hand-held tachometer and a supply voltage of 96V is used 

throughout. The motor is tested under load, with four brushes, 

for both winding arrangements and the results are shown in Figs. 5.18 

and 5.19 with the computer predicted results shown for comparison in 

Fig. 5.20. It will be noted that the maximum achieved armature 

current was, in each case, approximately 30 amps and this results 

from serious difficulties encountered with the mechanical stability 

of the discs. It was noticed that after running for a short time 

while drawing currents of between 20 and 30 amps, the disc came into 

contact with the magnets on the stator. This occurred in both 

armatures and after dismantling and Inspecting, it became clear
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Pig. 5.18 : Performance curves' of 7 .5kW motor - winding option 1
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Supply voltage = 9&V H . 7 o

Fig. 5.19 * Performance curves of 7.5^W motor - winding option -2



Supply voltage » 96V

Fig. 5»20 : Computer predicted performance curves of 7.5kW motor-



that the armatures were flexing at comparatively low temperatures. 

This eventually resulted in a circumferential fracture of the 

encapsulation material at a radius somewhat less than r̂  (the 

inner active radius) and the armature discs were eventually so 

distorted that they became unusable. Consultation with the 

resin manufacturers revealed that the specification of the material 

in Table 5.1 is incorrect and in particular the specified 

deflection temperature is 30°C and not 130°C as indicated. This 

explains the low temperature flexing and eventual failure of the 

discs, although it does place a serious limitation on the load 

testing possible..

However, results that are available show that a significant 

reduction in speed is apparent when winding option 1 is used.

The value of this reduction (over option 2) is calculated from 

Figs. 5.18 and 5.19 to be 8.6% and this may be compared with the 

difference in the average values of the primary e.m.f.s for four 

brushes found from Fig. A.19 - the reduction is 6.0%. In terms 

of overall motor efficiency, the lower speed of winding option 1 

leads to a reduction in efficiency over the measured range and the 

results clearly show the difference in performance when the 

alternative armatures are used in otherwise identical machines.

Although the results from testing the motor are not as 

extended as was originally thought possible, they do indicate the 

value of the e.m.f. analysis presented in Chapter A as it is 

essential to determine the optimum winding arrangement for a given 

basic motor specification.
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5.4 Rating of disc armature motors

An extremely important consideration for traction motors is

their thermal behaviour as this will dictate the amount of overload

that can be tolerated by the machine. Many such motors are

required to perform arduous duty cycles which necessitate the

flow of high peak currents, often for appreciable durations.

For example, the motor in an electric vehicle under conditions of

extreme gradient or high acceleration may be producing torques

far in excess of the manufacturers continuous rating, and it is

the machine's ability to withstand such overload without damage that

is of prime importance. Traction machines are thus usually given

load ratings - for example, the current that can be drawn for one

hour or for half an hour, etc., after which overheating is likely

to cause damage to the motor. More complex rating conditions

may also be specified. The British Standard relating to battery

electric vehidles^ calls for the current that can be maintained

for one hour followed by an increase of 200% for 5 minutes.
_ 66Improvements in recent years have led to a gradual raising of 

thermal limits, but it is important to realise that such limits 

exist and choose a traction motor with careful regard to the duties 

it will be required to perform. In applications where a vehicle 

will undertake known and repeatable duty cycles the specification 

of a suitable motor is a relatively easy task, but for general 

battery electric traction purposes (cars, commercial vehicles, etc.) 

such a choice may not be so straightforward. Ideally, typical 

duty cycles for such vehicles would be established and these applied
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to an accurate thermal model of the traction motor. Until such 

methods are available, however, the forms of rating mentioned 

above must suffice to represent the motor's thermal performance. 

Conventional traction machines contain an appreciable amount of iron 

in the rotor which allows heat energy to be stored for a period of 

time before the temperature rise becomes excessive. Some heat is 

dissipated, especially in motors that are self-ventilated or 

force-cooled and under these conditions the overload tolerance of 

the motor will be higher than when totally enclosed. The amount 

of heat that can be stored depends on the size of the rotor and it 

is this '.thermal capacitance' which largely dictates the overload 

capability of a motor. By contrast, the disc motor, with its 

thin, iron-free armature, has considerably less capacity for 

thermal storage, and it is the motor's ability to dissipate heat 

that dictates overload capability and thermal rating. Fortunately 

the motor has good heat dissipation due to the proximity of the 

armature conductors to the surface of the disc, the relatively 

large disc surface area and the radially induced airflow which 

occurs naturally as the disc rotates. The benefit of this airflow 

may be enhanced by providing suitable vents in the motor casing 

and in prototype traction machines this has been done.

Although the thermal performance of disc armature motors is 

dictated by different factors, it would still be convenient to have 

a rating method similar to that used for conventional machines. 

Temperature limits have therefore to be established and these 

related to the armature current drawn and the time duration under 

consideration. It is first necessary to consider which machine



components are most susceptible to excessive temperatures. In 

conventional machines, the limit is imposed to protect the armature 

winding insulation but in the disc armature machine, it is the 

deflection temperature of the armature moulding compound which is 

the critical parameter. Although the winding insulation is Class 

F and thus able to withstand temperature rises of up to 155°C, 

typical deflection temperatures of the epoxy resin used are around 

100°C which places a lower limit on armature operating temperature. 

This also makes it more appropriate to use the lower temperature 

(75°C) of the two specified in B.S. 1727 for motor performance 

curves.  ̂ Although the magnets will not reach temperatures where 

permanent demagnetisation is likely, the reversible coefficient 

of demagnetisation must be taken into account if continuous, high 

temperature operation is envisaged.

Once a particular motor has been constructed, it may be 

tested at various values of armature current and the temperature 

rise over a period of time recorded. Although the data thus 

gathered would enable a suitable rating to be given to the motor 

in question, it would be preferable if a parameter common to all 

motors could be used instead of armature current. It is therefore 

proposed that the current density specified for a motor (the 

current per unit cross-sectional area of armature conductor) would 

provide the means of this more general rating assessment. This is 

one of the fundamental parameters in the computer-aided design 

process and its adoption would enable motors to be designed with 

predetermined rating conditions. To establish the correlation 

between current density, temperature rise and time results from
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previous and current machines involving temperature testing are 

investigated. The most recent of such tests were those carried 

out at the University by Ozpolat^ on a low power traction 

motor (see Appendix II). The results relevant to this study are 

the temperature/time curves for the motor armature at two values
2 2of current density, 5 A/mm and 10 A/mm . These curves are 

presented in Fig. 5.21 and relate to a motor which is self- 

ventilated. Results from the earlier prototypes covered in 

Chapter 3 are considered in a similar way taking into account the 

current density at which they are tested. Although the tests are 

not as extensive as those resulting in Fig. 5.21, the results com­

piled from all motors show a clear relationship between current 

density, temperature and time (Fig. 5.22). It is evident that the 

thermal time constant of disc armature motors tends to be much 

less than that in conventional d.c. machines. It must be appreci­

ated that the size of machine in question has considerable bearing 

on the thermal performance available. With the heat generated 

within an armature dependent on its volume and heat dissipation 

dependent on surface area, the current density corresponding to a 

given rating condition will be less in large machines than in small 

machines unless additional cooling is specified. The present 

discussion is thus valid only for motors of the same order of 

size, which is approximately true in the motors considered. The 

conclusions drawn below will therefore need to be modified if 

machines of widely differing sizes are to be considered, and 

until more extensive thermal testing has been carried out rating 

conditions for such machines will need to be determined by 

experience. The results that are presented do, however, give 

some guidelines for an appropriate choice.
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Consultation with manufacturers of the moulding compound 

following the poor performance of the armatures discussed earlier 

(section 5.3) resulted in a specification of achievable deflection 

temperatures being more realistically assessed as between 115°C 

and 120 C. Information supplied by other manufacturers generally 

supported these figures. Allowing for a reasonable margin of 

safety a maximum operating temperature of 100°C is appropriate for

motors of this kind, and referring to Fig. 5.22 this corresponds to
2a continuous operating current density of 9 A/mm . Because of the

short thermal time constant of the machine this continuous rating

is also appropriate for any rating period above one hour. Assuming
2the extrapolation to 12 A/mm in Fig. 5.22 is valid, the following 

rating conditions are appropriate to machines of this type.

2Continuous - 9 A/mm
2One hour - 9.5 A/mm

45 minute - 10 A/mm^
230 minute - 12 A/mm

Lack of short-term test results precludes specifying the 

10 minute rating of B.S. 2613, or the 15 minute, 5 minute and one 

hour plus 200% overload for 5 minutes as specified in B.S. 1727.

It will be recalled that the computer-aided design procedure
2uses a default value for current density of 8 A/mm and this 

represents an appropriately conservative limit on thermal rating 

for general use. However, the opportunity exists while running 

the program for any desired value of current density to be 

specified according to the envisaged motor application and working
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environment. The specification of forced cooling would allow an 

increase in permitted current density but at present the amount of 

such an increase related to forced air-flow must be determined by 

experience as no motors with forced cooling have been tested.

!
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6: APPLICATION TO BATTERY ELECTRIC VEHICLES

While the major limitation on electric vehicle performance 

remains that imposed by the lead/acid battery every effort must be 

made to ensure the most efficient use of the relatively small 

amount of energy available for vehicle propulsion. On an energy per 

unit weight basis, petrol has 200 times that of the lead/acid 

battery^ with the obvious advantages for road transportation.

Two parameters relating directly to the electric traction motor 

which have considerable bearing on the overall vehicle performance 

are the efficiency and power density. The d.c. disc armature 

motor is superior in both respects to the conventional series 

wound motor which has been an almost universal choice for battery 

electric traction applications. While the usual constant voltage 

testing of motors is extremely useful for initial comparison 

purposes and will provide a good indication of this improvement in 

efficiency, the only meaningful way of comparing two traction motors 

is to test both in the actual working environment i.e. when 

installed in a battery electric vehicle. To this end, an on-going 

project has been established at Warwick University involving the 

conversion of a three-wheeled vehicle (the Reliant Robin) to 

electric drive. To gain an accurate assessment of vehicle 

performance, it is necessary to study the power flow along the 

vehicle drive chain and as the working efficiency of the motor 

(and indeed of any vehicle sub-component) depends on the performance 

of the other vehicle sub-components, these must also be determined. 

The easiest way of studying the overall vehicle performance is 

to set up an accurate model of the complete system, based on suitable
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models of the sub-components (transmission, motor, controller, 

etc.), so that this Interrelation can be allowed for. Such a 

simulation technique is developed for use on a digital computer 

in parallel with the vehicle conversion work. The series wound 

motor is used in the vehicle to establish performance standards and 

to prove the simulation. The model for the disc armature traction 

motor is then substituted for the series machine to assess the 

advantages of this type of drive.

6.1 The electric vehicle system model

With recent renewed interest in electric vehicles for road 

transportation, much research effort has been expended in studying 

the performance of such vehicles under various operating conditions. 

This has led to the specification of several mathematical models

or computer simulations to allow a more comprehensive analysis of
52 53vehicle behaviour to be carried out. ’ An extension of these 

methods to computer-controlled testing on a stationary test-bed 

is also becoming more popular as it allows the testing of a vehicle 

under precisely repeatable conditions which is useful for a direct 

comparison of different sub-components. Such a facilitity is being 

installed at Warwick University as part of the general programme of 

research into electric vehicle performance. Many simulation models 

rely on a certain amount of experimental data from the various 

sub-components and this approach is adopted for the electric Reliant 

Robin - i.e. the individual vehicle components are tested and 

characterised before their incorporation into the final simulation
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computer program. This has the advantage of allowing substitution 

of any particular component as long as the new component has been 

characterised in a similar manner.

A block diagram of the complete vehicle model is given in 

Fig. 6.1. The system is considered in its widest sense here and 

represents the complete power flow from the lead/acid battery to 

the ' roAd power' - that used to overcome aerodynamic and tyre 

losses. The basis of the model is the calculation of the power 

into each block in Fig. 6.1 for a given value of power drawn from 

it. The power is determined in terms of torque and speed for 

mechanical systems, and voltage and current for electrical systems. 

After calculating the road power for the vehicle, it is possible 

to work back through the system until the battery voltage and 

current have been predicted. A useful by-product of this 

technique is the working efficiency of each component under 

particular operating conditions, and it is also possible to deter­

mine the energy flow through the vehicle for an assessment of the
54various loss areas involved. The individual components of the 

block diagram in Fig. 6.1 will now be discussed separately along 

with the mathematical model set up to describe each.

6.1.1 Consideration of the road losses

It will be assumed that the road losses may be completely 

accounted for by tyre rolling resistance and aerodynamic drag. The 

former is proportional to the weight of the vehicle and dependent, 

to a certain extent, upon vehicle speed; the latter is proportional
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Fig. 6.1 t Block diagram of electric vehicle system
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to the cube of the vehicle speed and is independent of the 

vehicle weight. Although methods are available for direct 

measurement of the coefficient of rolling resistance for a 

pneumatic tyre, K^, extensive tests have been carried out by 

various bodies for just this purpose. For example, extremely 

comprehensive results are available from the American National 

Bureau of Standards including those related to typical crossply 

tyres used on the Reliant vehicle. Values of rolling resistance 

are presented for varying conditions of load, speed and inflation 

pressure and since accurate measurement of this parameter is not 

feasible within the present confines of the project, suitable 

results are drawn from the NBS data.^"* The relevant information 

may be shown in a single curve (Fig. 6.2) which illustrates 

coefficient of rolling resistance against vehicle speed - to 

obtain the actual value of retarding force it is only necessary 

to multiply by the vehicle weight. As can be seen, a slight increase 

in with speed is evident.

The force due to aerodynamic drag is given by:-

Fa = i Cp.p.v2 .Ap (6.1)

where Fa is the retarding force, Cp the drag coefficient, p the density

of air, v the velocity and Ap, the front area of the vehicle. A

suitable value for p is taken from standard tables while the vehicle

frontal area and the value of Cp are taken from manufacturers data, 
the latter found from wind-tunnel measurements on the Robin body

shape. If a coefficient Kj is expressed
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K2 * •CD-AF ( 6. 2)

then the total drag force of a vehicle of mass and speed v is 

g iven by: —

2 (6.3)

It is thus possible to calculate Fr at any given speed, and 

knowing the diameter of the roadwheel the output torque and 

speed required from the rear axle may be found.

6.1.2 Consideration of the transmission

The transmission of the vehicle consists of a change-speed 

gearbox to which the motor is coupled through the clutch, a 

propellor shaft, a differential unit and twin rear half-shafts 

with associated universal joints and bearings. The components 

are those used in the standard l.c. engined version of the 

vehicle, and it will be assumed that all losses between the motor 

output shaft and the road wheels may be accounted for by the 

transmission inefficiency. The change speed gearbox is retained 

in order to assess the merits of having different gear ratios 

between the motor output shaft and the final drive. If not 

required, top gear may be selected continuously with an allowance 

made for the slight inefficiency it introduces. The clutch is 

used only to facilitate gear-changing - any loss it introduces in 

normal running are assumed to be included in the gearbox losses. 

The transmission system is divided into its two basic components 

(differential and gearbox) and each is treated as a separate loss
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area. It is appropriate that the efficiency of each unit is 

determined for the power output required from it and to this end, 

a series of tests on the transmission are carried out. A 3rd year 

undergraduate project was established to undertake this work 

which involved testing the transmission under various speed and 

torque conditions. Measurements associated with each component 

were taken while the transmission was being driven by an electric 

motor, and loaded by a band brake on the rear wheels. A theoretical 

approach was also applied which showed very close agreement with 

the results obtained by experimentation. A full description of 

this project with the techniques used is given in reference 56.

For the differential and each of the four forward gears, the 

efficiency is determined for various values of output speed at 

constant output torque, and various values of output torque at 

constant output speed. As can be seen from the graphs in Figs. 6.3 

to 6.7, linear relationships may be used to describe the variation 

of efficiency with output torque and speed with empirical equations 

written to express these relations. For 1st gear:-

n = 0.9252 0.0352 (n _ 263) 
387 + 0.0468 (T-14) 

51 (6.4)

For 2nd gear:-

+ 0.061(T-13)
28 (6.5)

For '3rd gear:-

rr 0.9725 - 0.0325(n-720) | 0.0045(T-15)
IlSO 20 ( 6 . 6)
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Fig. 6.3(a) s Efficiency versus output speed, 1st gear

Pig. 6.3(b) i Efficiency versus output torque, 1st gear
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Fig. 6.4(a) : Efficiency versus output speed, 2nd gear

Fig. 6.4(b) s Efficiency versus output torque, 2nd gear
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Fig. 6.5(a) s Efficiency versus output speed, 3rd gear

Fig. 6.5(b) ; Efficiency versus output torque, 3rd gear
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Fig. 6.6 : Efficiency versus output speed, top gear

Neglegible variation with output torque
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Fig. 6.7(a) : Efficiency versus output speed, differential

Fig. 6.7(b) : Efficiency versus output torque, differential
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For top gear:-

0.0088(n-1250) 
1250n * 0.9877 - (6.7)

For the differential:-

n = 0.76 0.06(n-100) , 0.1(T-38.75)
500 72.15 ( 6 .8 )

where n is the efficiency of the unit, n the output speed in rev/min 

and T the output torque in Nm. Equations (6.A) to (6.8) are 

thus sufficient to model the transmission for this simulation 

study. The input speed may be found by multiplying the output 

speed by the gear ratio; the input torque may be found by 

dividing the output torque by the gear ratio and the efficiency.

6.1.3 Consideration of the electric traction motor

The model of the traction motor is more complex than any 

other component as it involves not only the transmission of 

power but the conversion of electrical power to mechanical.

However the same approach is adopted in that the input power neces­

sary for a given output power is determined, or more specifically 

the voltage and current necessary to sustain a given torque 

and speed. These relationships are found for both the series 

motor and the disc armature motor so it is only necessary to 

specify torque, speed and the motor being considered for the 

simulation model to provide the values of voltage and current 

that will be required. All motor losses are taken into account 

and as before a value of motor efficiency is available although 

not actually used itself.
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6.1.3.1 Serles wound motor

This motor Is supplied by the Electro Dynamic Construction 

Company Ltd. (EDC) and develops 7.5 kW (10 h.p.) at 3400 rev/mln.

As It Is a series wound machine, the working flux will be approxi­

mately proportional to armature current until saturation occurs, 

and constant thereafter. This accounts for the non-linear speed 

and torque characteristics shown in the performance curves 

(Fig. 6.8). Although an idealised linear flux/current relationship 

(Fig. 6.9) is often used to describe the performance of a series 

wound d.c. motor, in the model developed here an accurate 

assessment of flux variation is required. To this end, the 

performance curves in Fig. 6.8 are used in the evaluation of an 

'effective working flux', 0 ^ ^  which is defined as:-

eff
60E. a 
n.z.p. (6.9)

with the other symbols remaining as previously defined. If E is 

expressed in volts and n in rev/min then 0 ^ ^  will be in Webers. 

Values of a, z and p are known for the motor and E may be 

determined from the applied voltage, current, armature resistance 

and brush voltage drop. Thus by use of the speed v. current curve 

of Fig. 6.8, may be determined for any given value of current.

This value for effective working flux is assumed to include all 

leakage, loss and secondary effects. A graph of 0 ^ ^  against 

current is given in Fig. 6.10 and shows a saturation value of
-3

7.3 x 10 Wb. Although a linearised version of the curve could be 

made, the availability of powerful curve-fitting techniques using 

digital computing facilities allows a good fit to be found using a
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Fig. 6.9 s Idealised linear flux/current relationship
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polynomial expression. The Time Series Process (TSP) routines 

available at Warwick are able to perform such curve fitting relatively 

quickly and easily using a least-squares technique. The majority 

of the curve in Fig. 6.10 may be expressed as:-

I = -2700.19 0 __ + 11361900 0 „ 2 erf eff

-2676.12 x 106 0 ,,3 + 2290 x 10® 0 (6.10)- eft eft

where I is the current flowing. The equation is valid for values 

of I between 20A and 200A. Above 200A the flux is assumed
_3constant at 7.3 x 10 Wb, and below 20A an alternative equation 

is used:-

I = 4.2658 x 1O4.0 ,,1'21 (6.11)et 1

The complete curve fit is shown by discrete points on the curve in 

Fig. 6.10. Having established the relation between flux and current, 

it may now be used in the development of a motor model suitable 

for use in the electric vehicle simulation program. Equation (6.9) 

may be rearranged into its more usual form:-

60E. a

with the same notation as before, 

machine may be expressed as:-c

( 6 . 12)

The power output from the

Pr = E.I - Losses (6.13)

where P^ is the power output and losses consist of mechanical, 

iron and brush loss. The mechanical power may also be expressed as:-

T.n. it 
r 30 (6.14)
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where T is in Nm and n in rev/min to yield Pr in watts. Combining 

equations ( 6 . 1 2 )  to ( 6 . 1 4 )  : -

T.n. it
30

n.0 ,,.z.p. I .” eff - Losses ( 6 . 1 5 )
60a

( 6 . 1 6 )

Thus for any value of the output torque and speed, and knowing the 

losses, the product of the current and flux may be calculated. 

Combining this with equatioh ( 6 . 1 0 )  allows the unique value of 

each to be found. Equation ( 6 . 1 2 )  is used to find E and the applied 

voltage calculated from E, I, the armature resistance and a 

suitable value for the brush voltage drop. Initial values for the 

losses are taken from data supplied by the manufacturer although 

once the speed, voltage and current have been determined, new 

values may be estimated and substituted in equation ( 6 . 1 6 )  so that 

the procedure may be repeated. As the values of the losses are 

small when compared with the power output of the machine, it has 

been found that two such repetitions are required to give sufficient 

accuracy for the simulation. For a given output speed and torque, 

the required Input voltage and current have been determined, and 

the efficiency may be calculated if required in the usual way.

As a check on the operation of this model, corresponding 

torque and speed values are taken from the performance curves in 

Fig. (6.8) and values of V,I and efficiency calculated. These are 

shown in Fig. (6.11), marked on the original curves, and very close 

agreement is evident. In all cases, the value of the predicted
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required voltage lies within the range 88 to 92 volts.

6.1.3.2 Disc armature motor

Consideration of this machine is considerably easier than 

the series motor as in this case the flux is constant. The 

method is derived from that used to predict the performance of 

disc armature motors which is described in Chapter 4. For a 

given rotational speed, the generated e.m.f. is found directly 

from equation (6.12). The mechanical losses are dependent on the 

speed and machine dimensions are are given by equation (A.14). 

Having determined these parameters the required armature 

current is given by:-

I c( T '̂ -̂ T- + Losses). (6.17)

where losses include mechanical and brush loss only as there are no 

iron losses. The applied voltage may be found as before knowing 

E, I, the armature resistance and a suitable value for the brush 

voltage drop. Similarly, the motor efficiency at this particular 

operating point may be calculated.

The methods described above may easily be used to give an 

'efficiency map' for each machine. This is a table of efficiency 

values for given values of torque and speed and such maps are 

useful in quickly gauging how a motor will be expected to perform 

under given operating donditions. The efficiency maps for the 

series machine and the disc armature machine are given in Tables 

6.1 and 6.2 respectively, and the superiority of the latter is 

evident under all operating conditions.
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Table 6.2 : Efficiency map - disc armature motor



6.1.4 Consideration of the controller

Controlling the speed of a d.c. motor for battery electric 

traction has traditionally been achieved by varying the voltage 

applied to the motor armature and various methods exist to fulfil 

this basic requirement"*^ (battery switching, series resistance, 

etc.) More recently electronic switching controllers have been 

specified and developments from these have led to complex micro­

processor-based controllers which utilise both armature control
5 8and control of a separately excited field . The controller 

selected for the Reliant Robin project is a modem electronic 

chopper-type controller intended for use with the disc-armature 

motor. The chopper controller operates by switching the supply 

voltage across the motor at frequencies between 600 Hz and 1 KHz. 

The average voltage seen by the motor depends on the ratio of 

on-time to off-time which is known as the mark-space ratio.

Fig. 6.12 shows how low and high average voltages are achieved.

The switching element is usually a thyristor, although recent 

developments in switching transistor technology have allowed these 

devices to be used in some chopper circuits. The thyristor has 

the advantage of being able to handle relatively large currents 

although it requires additional electronic components to turn it 

off. The transistor may be turned on and off relatively easily, 

may operate at higher frequencies but cannot stand such high peak 

currents.

The main elements of a typical thyristor chopper circuit 

are shown in Fig. 6.13 and includes the commutating thyristor, Tj« 

necessary to turn off the main thyristor, T^. Initially, Tj is
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Fig. 6.12 : Operation of chopper controller
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Fig» 6.13 » Typical chopper circuit
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switched on and the left hand side of C is charged to the supply 

voltage through the motor. turns off naturally when current

ceases to flow through it. T^ is then turned on allowing the full 

voltage to be applied across the motor, drawing sufficient current 

to supply the load. In addition, due to LC action, the right hand 

side of C is now charged to a voltage approaching twice the supply 

voltage. This is maintained as is reversed-biased and T2 Is 

turned off. At the end of the drive pulse it is required to turn 

off T^ and this is done by switching on T2 and applying the 

voltage on the right hand side of C to causing it to become 

reversed biased which turns it off. At the same time, the left 

hand side of C is charged to the supply voltage ready for the cycle 

to be repeated.

Diodes are provided across the armature and field windings 

to permit the continued flow of motor current when the main 

thyristor is switched off. The inductance of the motor windings 

helps to sustain a relatively constant current flow through the 

mtoor. By contrast, the disc armature motor has an extremely low 

inductance which dictates the use of a much higher switching 

frequency for the same degree of 'current ripple'. Unfortunately, 

there are limits to the upper switching frequency of both thyristors 

and transistors, although no appreciable differences in performance 

have been noticed in motors tested with transistor chopper controller 

(see appendix II).

Very little power Is dissipated in such a controller as when 

the thyristor is on and passing current the voltage across it is 

small; when it is off, no current is flowing although there is a
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and thus D (6.25)
V + V MA
V - V  +V B T

D1
Dl

Also I - Im .D (6.26)

where Is the average motor voltage and IgA the average

battery current. Thus, knowing V ,V n, V and V_ the value of Dn A  L/i 15 l

may be calculated which in turn is used to find I„.. V.„. and I..BA MA M
are taken from the electric motor model, VT and V may be given

suitable values from manufacturers data and V„ is initially taken

as the nominal battery voltage. In practice, V„ will depend on

IgA> as will be discussed in the next section and this dependence 
Is allowed for by determining a modified value for Vg when the

initial value of IgA has been calculated. The modified value of

Vg is then used in equation (6.25) to allow a corrected value for

IgA to be found, and this is sufficiently accurate for the

simulation.

It is assumed in this analysis that average values of 

voltage and current are sufficient to describe motor and controller 

behaviour - i.e. a unity form factor is achieved. Further, the 

assumption is made that the losses associated with the auxiliary 

components not shown in Fig. 6.14 are negligible by comparison 

with the components that are considered.

6.1.5 Consideration of the traction battery

In recent years, several alternative storage batteries have 

been proposed and developed including the high-temperature sodium- 

sulphur battery and the zinc-chloride battery where superior energy
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densities and cycle life over the traditional lead/acid battery 

have been reported. However, it is widely considered that the 

lead/acld battery, possibly in an improved form, will be the 

only realistic choice for battery electric traction for some time 

to come. Much effort has been expended in studying the performance 

and behaviour of the lead/acid battery under conditions imposed by 

electric traction. Although this has resulted in many simulation 

models of varying complexity, the mathematical modelling of such

a battery is not a straightforward process and no universally
model

satisfactory^ has yet been found which can cope with the random

and irregular demands often made of the battery. It has been

widely debated whether electronic chopper controllers have a

significant effect on battery performance although a recent 
59study has compared steady discharge with a similar, but chopper

driven load, and found no noticeable difference in battery 
capacity.

In addition to the nominal terminal voltage, the lead acid 

battery is characterised by the ampere hour capacity at a given 

discharge rate. For example, a battery with specified capacity 

60 Ah at the 20 hour rate will supply 3A for 20 hours before 

discharge. Because of the high currents involved in traction 

applications, 5 hour and 2 hour discharge rates are often quoted. 

It is well-known that the ampere-hour capacity of a battery 

decreases with increasing discharge current. A simple empirical 

formula^ describing the relationship is:-

T
m

CB (6.27)
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where Tm is the discharge time, Cg the battery capacity,Ifi the 

discharge current and N a constant.

As well as the relation between battery capacity and output

current, there are two further important areas of investigation.

These are the variation of terminal voltage with discharge current

and remaining capacity. Although it is known that the voltage

falls with increasing current and depth of discharge, numerous

studies have been made to accurately assess this dependence. A 
37recent study has involved investigating the behaviour of a lead/

acid cell when performing a series of charge/discharge cycles as 
might be encountered in a typical ■hybrid/electric vehicle appli­

cation. A bank of batteries is subjected to random current flow in 

both directions characterised by a different fundamental frequency.

A diffusion model is proposed to predict the battery voltage and 

though agreement between the predicted and actual voltages is 

excellent, different model coefficients need to be used for each 

frequency.

For the purposes of the EV simulation model developed here, 

a simplified battery model is sufficient and this is based on 

variation of capacity with discharge current, of voltage with discharge 

current and of voltage with discharge. The variation of capacity 

with discharge current is relatively straightforward to deal with 

as this has been the area of much specific investigation and the 

results of extensive tests are available in textbooks^ or from 

manufacturers. For ease of analysis, two parameters are defined - 

the rated and normalised discharge current:-
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! , Capacity________________
R Specified discharge time

and IN

where I„ is any given discharge current. For example, the rated 

discharge current of a 60Ah battery specified at the 20 hour rate 

is 3A, and when discharging at 12 A, 1^ “ A. The battery capacity 

is also normalised so that at rated discharge, it is equal to 1. 

Battery discharge data is collated and a curve produced of normalised 

capacity against normalised discharge current. (Fig. 6.15). Using 

curve fitting techniques, a polynomial may be used to express the 

relationship although this is quite complex and only valid for a 

range of values of 1^. The prediction of cell terminal voltage with 

discharge current is dealt with in a similar way except that the 

discharge current is normalised to the 5 hour discharge rate as 

most data is presented in this way. The resulting curve and 

polynomial fit is shown in Fig. 6.16 although this is only true for 

a fully charged battery. The variation of cell voltage with depth 

of discharge is shown in Fig. 6.17 and this is true for the 

specified rated discharge current. Although it is possible to combine 

the results from Figs. 6.16 and 6.17 to give total voltage dependence, 

the validation by test of such a relationship is beyond the scope 

of this work. It will thus be assumed that in all subsequent 

simulation studies and practical testing that the battery is fully 

charged, or as near fully charged as to make the difference in 

voltage negligible. It will be observed from Fig. 6.17 that 

discharge to 78% of the original capacity is necessary to cause just 

a 1% change in cell terminal voltage.
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Fig. 6.16 8 Cell voltage versus normalised discharge current
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Fig. 6.15 and 6.16 enable the battery capacity and terminal 

voltage to be determined for any value of discharge current 

(within the considered range). The latter is necessary for use 

in equation (6.25) for the controller model while the former 

allows an assessment of the expected vehicle range to be made. As 

the equations are based on steady state discharge characteristics, 

they are obviously most closely related to the use of the electric 

vehicle at a constant speed. Although the model does not take 

account of aging or temperature change, considerable variation can 

occur in supposedly identical batteries and the generation of a more 

sophisticated model is outside the scope of this work. However, 

it will be seen later that the model presented above is sufficient 

for the analysis of vehicle performance undertaken here.

6.2 Application of the vehicle model

There have been proposed several methods of assessing and

comparing the performance of electric vehicles under various

operating conditions. They range from determining the vehicle

range under steady speed operation to the complex duty cycles that

may be encountered in typical urban or city driving. Several such

driving cycles are available, some of which have formed the basis

for official standards. Probably the most authoritative of these

are those incorporated in the SAE/J227 electric vehicle test 
62specification . This standard is intended for use in comparing 

different vehicles under similar operating conditions and the tests 

include range (steady speed and repeated cycle), acceleration and
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gradeability. As the J227 standard has been widely adopted, it is 

considered most suitable for application to the electric vehicle 

model, particularly as two motors are being compared. However, 

precisely repeatable operating conditions are unlikely to be 

achieved in practice and thus the most accurate means of comparing 

vehicle performance without the availability of extensive test 

apparatus is to use results from constant speed tests.

Having characterised the vehicle components, the complete 

system model is constructed in the form of a Fortran computer 

program incorporating the equations and iterations developed in 

the preceding sections. Input to the program consists of such 

parameters as vehicle weight, motor weight, battery weight and 

capacity, etc. Much of the vehicle data is written into the 

program but there is no reason this could not be changed if 

necessary. The program will then take each forward gear in turn 

and for increasing speeds work through the system model calculating 

the torque, speed, current or voltage associated with each com­

ponent - in this way the full interdependence of components on one 

another is taken into account. The required speed is increased 

until the voltage demanded at the motor is greater than the battery 

voltage. The vehicle range at a given speed and in a particular 

gear may be determined, on an energy basis, from the discharge 

current, effective capacity and speed. An analysis of power 

flow and dissipation within the vehicle is possible and this can 

be of great assistance in determining the effect of a change in 

component or attempting to optimise the vehicle system as a 

whole”**1. A flowchart of the simulation program is shown in Fig. 6.18
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and the only decision to be made at run time is the selection of the 

motor to be considered - series wound or disc armature.

Results from the simulation study are presented in Tables 6.3

and 6.4 for the series motor and 6.5 and 6.6 for the disc armature

motor. Each gear is used and road speeds from 10 to 30 m.p.h.

are used where appropriate. The advantages of the disc armature

motor aire immediately apparent and the results shown here are 
particularly valuable for comparison with actual road-test results

covered in the next chapter. Although constant speed testing is

often considered impractical and unrealistic, it does remain

one of the best ways of comparing the perfonnances of a vehicle

which uses different drive components.
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Gear 1 2 2 2 2 2 3 3

Road Speed, m.p.h. 10 10 15 20 25 30 •• 10 15

Propshaft torque, N.m 9.08 9.08 10 .29 11.95 14.09 16.68 9.08 IO.29

Propshaft speed, rev/œln 608 608 912 1216 1520 1824 608 912

Differential efficiency 0.75 0.73 0.73 0.72 0.72 0.72 0.73 0.73

Gearbox efficiency 0.89 0.90 0.85 0.81 0.77 0.73 0.97 0.97

Motor torque, N.m 2.63 4.93 5.88 7.19 8.94 11.18 7.06 8.07

Motor speed, rev/min 2358 1246 1869 2492 3115 3738 802 1204

Motor voltage, Y 50.9 20.9 32.5 46.5 63.2 82.8 16.4 24.4

Motor current, A 36.0 47.6 51.1 56 .6 65.5 71.9 57.6 59.9

Motor efficiency 0.59 0.65 0.69 0.72 0.75 0.73 0.64 0.70

Battery voltage, V 96.1 96.3 94.5 9 1 .6 89-9 87.8 96.5 94.9

Battery current, A 1 2 .2 1 1 . 1 I8 .5 29.7 45-9 69.0 10.7 16.4

Predicted range, miles 41.5 47.2 35.2 25.5 19.1 14 .3 49.7 41.3

Table 6.3 s Results of computer simulation - E.D.C. motor



Cear 3 3 3 4 4 4 4 4

Road Speed, m.p.h. 20 25 30 10 15 20 25 30

Propshaft torque, W.m 11.95 14.09 16.68 9.08 10 .2 9 11.95 14 .09 16.68

Propshaft speed, rev/min 1216 1520 1824 608 912 1216 1520 1824

Differential efficiency 0.72 0.72 0.72 0.75 0.73 0.72 0.72 0.72

Gearbox efficiency 0.96 0.95 0.94 0.99 0.99 0.99 0.99 0.98

Motor torque, N.m 9.5 11.2 13.4 9.1 10.39 12.1 14.3 17.0

Kotor speed, rev/min 1605 2006 2407 608 912 1216 1520 1824

Motor voltage, V 33.8 44.6 57-0 14.4 21.1 28.8 37.6 47.5

Motor current, A 64.3 70.1 77.4 66.7 68.4 73.2 79.7 88.0

Motor efficiency 0.74 0.76 0.77 0.61 0.69 0.74 0.76 0.78

Battery voltage, V 92.8 90.8 89.5 96.4 95.0 92.9 9 1 .0 89.8

Battery current, A 24.5 35.7 30.6 11.1 16.3 23.9 34.4 48.1

Predicted range, miles 32.4 25.6 20.5 47.5 41.6 35.5 26.8 21.7

Table 6.4 ; Results of computer simulation - E.D.C. motor



Gear 1 2 2 2 2 2 3 5

Road Speed, m.p.h. 10 10 15 20 25 30 10 15

Propshaft torque, N.m 8.80 8.80 9.99 11.65 13 .8 0 * 8.80 9.99

Propshaft speed, rev/min 608 608 912 1216 1520 * 608 912

Differential efficiency 0.73 0.73' 0 .72 0 .72 0 .72 * 0.73 0.72

Gearbox efficiency 0.89 0.90 0.85 0.81 0.77 * 0.97 0.97

Motor torque, N.m 2.55 4.77 5.71 7.01 8.75 * 6.83 7.85

Kotor speed, rev/min 2558 1246 1869 2492 3115 * 802 1204

Motor voltage, V 66.0 35.5 52.9 70.4 88.0 * 23.5 34.6

Motor current, A 12.5 20.4 24.2 29.3 36.1 * 27.8 31.9

Motor efficiency 0.77 0.86 0.87 0.89 0.90 * 0.88 0.69

Battery voltage, V 97.0 97.3 95.6 95.3 90.8 * 97.4 96.1

Battery current, A 8.7 7.8 1 5 .8 22.7 35.7 * 7.2 12.1

Predicted range, miles 66.5 77.7 52.5 35.8 25.6 * 86.8 63.2

* 50 m.p.h. not available in 2nd gear

Table 6.5 8 Results of computer simulation - disc armature motor
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Gear 3 3 3 4 4 4 4 4

Road Speed, m.p.h. 20 25 30 10 15 20 25 30

Propshaft torque, N.m 11.65 13.80 16.57 8.80 9.99 11.65 13.80 16.37

Propshaft speed, rev/mln 1216 1520 1824 608 912 1216 1520 1824

Differential efficiency 0.72 0.72 0.72 0.75 0.72 0.*72 0.72 0.72

Gearbox efficiency O .96 0.95 0.94 0.99 0.99 0.99 0.99 0.98

Motor torque, N.m 9.21 11.0 13.2 8.9 10.1 11.8 14.0 16.6

Motor speed, rev/min 1605 2006 2407 608 912 1216 1520 1824

Motor voltage, V 46.1 57.6 69.0 18.4 27.0 55.7 44.5 53.4

Motor current, A 37.3 44.1 52.5 35.3 40.2 46.8 55.2 65.4

Motor efficiency 0.90 0 .9 1 0 .92 0.87 0.89 0.90 0.91 0.91

Battery voltage, V 94.4 91-9 90.3 97.4 96.1 94.5 92.0 90.4

Battery current, A 18.9 28.5 41.1 7.2 12.0 18.5 27.7 39-8

Predicted range, miles 45.6 33.7 26.0 85.7 64.0 46.8 34.8 27.0 i

Table 6.6 : Resuite of computer eimulation - dise armature motor
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7: PREPARATION AND TESTING OF ROAD VEHICLE

As discussed earlier it is intended to convert a Reliant 

Robin car to electric drive and then compare the performance of 

a conventional series wound motor with that of a disc armature 

motor. The availability of the EDC motor (Fig. 7.1) allowed the 

first stage of the work, involving preparation of the vehicle 

and initial testing using the series motor, to be carried out in 

parallel with the development of the disc armature motor. Owing to 

difficulties encountered with the disc motor on bench testing a 

suitable machine has not yet been available for use in the 

vehicle, although limited performance testing that has been 

carried out (Chapter 5) has indicated that with the correct 

armature winding, the specified high performance will be obtained. 

However, it remains to prove the electric vehicle system model so 

that a realistic assessment can be made of the improvements to 

vehicle performance when a disc armature motor is specified. The 

following sections detail this work and results are presented for 

the constant speed testing that is more appropriate to the present 

investigation.

7.1 Vehicle conversion and instrumentation

The Reliant Robin is supplied directly from the manufacturers 

without the i.c. engine and relevant ancilliary components (fuel 

system, cooling system, high voltage electrical system, etc.). The 

gearbox, propellor shaft and rear axle are as fitted to the 

standard vehicle although as the gearbox is no longer connected to
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Pig. 7.1 : E.D.C. series wound traction motor

Fig. 7.2 : E.D.C. motor in Reliant vehicle
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the engine a suitable supporting bracket is made and welded to the 

vehicle chassis. The space in front of the gearbox is available 

for the electric motor and/or other components and the maximum 

motor diameter is determined to assist in the specification of the 

disc armature motor (section 3.5.2). The 7.5 kW series motor fits 

easily into the available space (Fig. 7.2) and is supported at the 

driving end by the gearbox, and also by brackets welded to the 

chassis and bolted to each side of the motor. As it is vital to 

ensure correct alignment between the motor and the clutch/gearbox 

assembly, a steel mating ring is constructed which is bolted to 

both motor and gearbox, and is of sufficient length to locate 

the clutch plates, which are first coupled to the motor shaft, in 

the correct position on the gearbox splined input shaft. Owing 

to the intricate nature of this operation, requiring precise 

measurement and adjustment, it is found most convenient to work 

on the motor and gearbox external to the vehicle and fix the 

complete assembly into the vehicle at a later stage (Fig. 7.3). 

Mechanical alignment and location of the proposed disc armature 

motor would not be as complex as the shaft length and mounting 

fixtures are intended for direct location onto the gearbox bell­

housing.

Siting of the batteries is the next major task to be under­

taken. It was originally intended to retain the vehicle's 

functional capability as far as possible and thus locate the 

batteries in the space originally occupied by the fuel tank, with 

additional space used under the bonnet as necessary. However, it 

soon became evident that major structural alterations of this nature 

were beyond the scope of the project and thus the vehicle was 

reduced to a 2-seater with the space behind the seats to the small
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’hatchback-type’ rear window of the car utilised. The rear seats 

are folded forward and a wooden platform is made to the dimensions 

of the exposed space. This fits on top of the rear wheel arches 

and is large enough to site the 8 Lucas 66 Ah C P U  heavy-duty 

SL1 batteries. A cage-type housing is constructed to support the 

batteries and this i6 bolted through the platform and car body onto 

4 brackets welded to the chassis. The complete assembly is able 

to restrain the batteries when driving.

As the under-bonnet space contains only the motor, it is

possible to locate the electronic controller here. This in fact

takes up most of the available space and Fig. 7.4 illustrates the

size of a similar controller. The various controller components

are bolted to a wooden shelf made to fit over the traction motor.

A cable link connects the accelerator pedal to the speed control

potentiometer, and although regenerative braking is available, the

braking control unit is not connected at this stage. The motor

armature and field are connected to the appropriate contactors

(allowing electrical reversing) and connections are made through a 
high current fuse to the batteries at the rear of the vehicle.

After taxing, insuring and M.O.T. testing, the Reliant is ready

for the road.

In order to assess how the various vehicle components perform 

under actual operating conditions, instrumentation .must be 

installed which can be used to record the relevant values of 

voltage, current, torque and speed associated with these components. 

The instrumentation used on the Reliant Robin allows the following 

parameters to be measured. Battery voltage and current, motor
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Fig. 7.4 ! Typical chopper controller





voltage and current, propshaft torque and speed. The battery 

voltage is measured directly and the motor voltage measured 

between one side of the armature, and the field coils' reversing 

contactor (i.e. positive voltage is always displayed). Both 

voltages are monitored on meters within the vehicle. Battery and 

motor currents are measured by the use of two high-current shunts 

in the electric circuit. Measurement of the voltages developed 

across these allows the current to be determined, and the voltages 

themselves are measured by a battery-powered mean-sensing digital 

voltmeter carried in the vehicle.

In any electromechanical system, it is important to determine 

the mechanical power at some point in the drive chain and this is 

best accomplished on a vehicle such as the Robin by direct 

measurement of the torque transmitted along the propshaft and

its speed of rotation. Fortunately considerable experience in such 
measurement is available at the University due to a more general

involvement in road vehicle technology where the values of such 

parameters are important to an understanding of i.c. engine 

behaviour. The speed of rotation of the vehicle propshaft is 

determined by means of a toothed wheel fitted onto it. A 

magnetic transducer is used to generate a series of pulses, the 

frequency of which is proportional to the rotational speed of the 

propshaft. Determination of the torque transmitted along the 

propshaft is a more complex problem. Apparatus which is readily 

available utilises a strain gauge bridge mounted on the propshaft. 

As the torque increases and the bridge becomes unbalanced, the 

changing voltage level alters the output frequency of a voltage-
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controlled oscillator (V.C.O.) which In turn is amplified and 

taken to a simple aerial. This oomplete electronics package must 

also be fixed to the propshaft and the VCO/transmitter is housed 

in a small metal case with the batteries in a similar case on the 

opposite side of the propshaft. The two cases are securely chained 

to the propshaft and connections made to the strain gauges and the 

rotating aerial. The strain gauges themselves are aligned along 

the axis of principal stress which lies at 45° to the propshaft 

axis. Care is needed in fixing the strain gauge elements to the 

shaft and extreme cleanliness is necessary. After attaching the 

leads which are to be connected to the electronics unit, the 

gauges are protected from the elements by covering with glass 

fibre matting and a suitable resin. The rotating aerial is a 

simple brass collar, approximately 40 mm wide, which is fixed 

around the propshaft but insulated from it. The signal from the 

transmitter is fed directly to this aerial and picked up using 

capacitative coupling by a stationary receiver mounted on the 

vehicle. Finally, the signal passes to the decoding unit on the 

vehicle which displays a meter reading proportional to the torque 

transmitted along the propshaft. Calibration of the instrument is 

required and this is carried out in the laboratory, using a beam 

and known weights, with the propshaft, aerials and decoding unit 

removed from the vehicle.

The instrumentation described above is sufficient for an 

accurate analysis of the vehicle performance and comparison of 

results with those predicted by the computer simulation model 

outlined earlier. With proposed operating conditions established, 

practical testing may be carried out to collect the data necessary 

for such an analysis.
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7.2 Road testing procedure

As discussed earlier, constant speed tests corresponding to 

the SAE/J227 standard are proposed as these particular tests are 

most appropriate to the electric vehicle model. Although it is 

generally not possible to drive a vehicle continuously at constant 

speed, the range may be determined according to the discharge current 

at the speed in question. A suitable test route is needed over 

which values of all the relevant parameters may be measured at 

constant speed. Fortunately , part of the ring road at Warwick 

University (essentially a private road) may be utilised as a 

good portion of this is straight and level, enabling testing to be 

carried out without significant difficulty. After several initial 

runs are made to assess the route and ensure the instrumentation 

is working correctly, a suitable test procedure is established.

Two people are needed to perform this safely and accurately - 

the driver concentrates on controlling the vehicle at the desired 

speed while the assistant records the values of the voltages, currents 

and torque. Several runs are carried out, in both directions, and 

the average values of the measured parameters taken. It is assumed 

that throughout the tests the battery is fully charged, or very 

nearly so, and after short periods of testing, the batteries are 

given a recharge to ensure that this assumption is valid. It is 

also necessary to zero the torque measuring apparatus before each 

test to compensate for any frequency drift. The road and weather 

conditions are chosen to be as good as possible and approximately 

the same for each set of tests, although this is judged on a
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subjective basis. It may be assumed that any discrepancies 

introduced by the wind and gradient are compensated for by running 

the vehicle in opposite directions. The weights of the vehicle 

components and test instrumentation are already known, and the 

weights of the two people involved in the vehicle testing are 

measured and recorded for the analysis.

Iij practice, the proposed test methods prove to be very 

satisfactory allowing a good and representative sample of measure­

ments to be made. Test speeds of 10 m.p.h., 20 m.p.h. and 30 m.p.h. 

are taken and each gear used as appropriate - first gear is not 

used about 10 m.p.h. Iti order to maintain the batteries in good 

condition for as long as possible they were never discharged 

beyond approximately 25% to 30%, and recharging was carried out 

overnight at a slow rate. To avoid possible high charging currents, 

the regenerative braking unit was not connected and this would only 

have been of use if the duty-cycle approach to range assessment was 

being considered.

7.3 Results from road testing

Although the battery and motor voltages are read directly, the 

values of currents and torque are initially taken from the relevant 

meter-readings with the appropriate calibration factors being 

applied at a later stage. A complete set of results is given in 

Table 7.1, with an indication of the accuracy of measurement in 

each case. The figures show the clear benefit of using the higher 

gears wherever possible, although there are speeds below 10 m.p.h. 

where the selection of a lower gear enhances the efficiency of the
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Gear 1 2 2 2

Road speed, m.p.h. 10 10 20 50

Propshaft torque, K.m 9-5 9.5 15 17

Motor voltage, V 50 24 49 85

Motor current, A 59 54 57 71

Battery voltage, V 96 96 94 92

Battery current, A 17 16 55 71

Predicted range, miles 25.6 28.4 21.2 15.9

Gear 5 5 5 4 4 4

Road speed, m.p.h. 10 20 50 10 20 50

Propshaft torque, N.m 9.5 15 17 9.5 15 17

Motor voltage, V 18 57 55 17 51 50

Motor current, A 60 68 80 66 72 90

Battery voltage, V 96 94 92 96 92 90

Battery current, A 15 50 55 15 29 52
*

Predicted range, miles 51.7 25.2 19 .2 51.7 26.1 19 .8

* see text

Table 7.1 : Test results for electric vehicle
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complete vehicle system . The battery current can also be reduced 

when a lower gear Is selected for (Initial) acceleration or hill 

climbing although this effect is not measured in the test programme.

For comparison, Table 7.2 provides values of the measured 
parameters which have been predicted by the computer simulation

model. Agreement is generally good with the largest observed

discrepancy being in values of the battery current at the lowest

speed. This discrepancy becomes less as the vehicle speed

increases and points to possible inaccuracy in the controller

model. At lower mark-space ratios, extra switching losses could be

incurred which have not been allowed for in the proposed model -

an in-depth analysis of the controller behaviour would be needed

to resolve this discrepancy. The values of motor current and voltage

show very good agreement with predicted values indicating that the

proposed motor model is highly suited to this kind of analysis. The

good agreement between predicted and actual mechanical output (as

determined from propshaft torque) indicates the suitability of the

methods used in determining the power flow through the vehicle.

Although it is impractical to determine the vehicle range 

directly by experiment, an assessment may be made by considering the 

battery current drawn at a particular speed and the effective 

battery capacity at this level of current. The battery model 

described in section 6.1.5 is used here to determine the range in 

the same way as in the vehicle system model. The discharge current 

is normalised, the effective capacity found and the total discharge 

time calculated. Multiplying this by the vehicle speed gives the 

total range of the vehicle and is presented in the bottom row of



Gear 1 2 2 2

Road speed, m.p.h. 10 10 20 50

Propehaft torque, H.m 9.1 9.1 12.0 16.7

Motor voltage, V 51 21 47 83

Motor current, A 36 48 57 72

Battery voltage, V 96 96 92 88

Battery current, A 12 11 30 69

Predicted range, miles 41.5 47.2 25.5 14.3

Gear 3 5 3 4 4 4

Road speed, m.p.h. 10 20 30 10 20 30

Propshaft torque, N.m 9.1 12.0 16.7 9.1 12.0 16.7

Motor voltage, V 16 34 57 14 29 48

Motor current, A 58 64 77 67 75 88

Battery voltage, V 97 93 90 96 93 90

Battery current, A 11 25 51 11 24 48

Predicted range, miles 49.7 32.4 '20.5 47-5 33-5 21.7

Table 7.2 : Theoretical results corresponding to Table 7.1 

E.D.C. motor

224



Table 7.1 for each gear and at the three speeds considered. It 

must be emphasised that these figures correspond to total battery 

discharge and are for comparison purposes only, as to continually 

discharge a battery will place a severe limitation on the useful 

life expected from it.

For completeness, Table 7.3 gives similar results (including 

range) for the disc armature motor in the vehicle as predicted by 

the simulation. These results assume that similar controller 

efficiencies are likely but do not make any allowance for possible 

additional losses at low speeds. Comparison of these results 

with those in Table 7.2 is thus most appropriate. The significant 

increase in vehicle range under these steady-state driving 

conditions is a very valuable benefit although it would also be 

possible to specify a smaller battery for vehicles where the 

duty cycle is already known.
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Gear 1 2 2 2

Road speed, m.p.h. 10 10 20 30

Propshaft torque, N.m 8.8 8.8 11.7 *

Motor voltage, V 66 36 70 *

Motor current, A 15 20 29 *

Battery voltage, V 97 97 93 *

Battery current, A 9 8 23 *

Predicted range, miles 66.5 77.7 35.8 *

* 30 m.p.h. not available in 2nd gear

Gear 3 3 3 4 4 4

Road speed, m.p.h. 10 20 30 10 20 30

Propshaft torque, N.m 8.8 11.7 16.4 8.8 11.7 16.4

Motor voltage, V 24 46 69 18 36 53

Motor current, A 28 37 53 55 47 65

Battery voltage, V 97 94 90 97 95 90

Battery current, A 7 19 41 7 19 40

Predicted range, miles 86.8 45-6 '26.0 85.7 46.8 27.0

Table 7.3 : Theoretical results corresponding to table 7.1

Disc armature motor

226



8: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

A study has been made of the use of disc armature motors for

traction applications. A comprehensive design procedure has been

developed and with the aid of results from earlier prototypes the 
performance of a machine with a given set of design parameters

can be accurately predicted. The necessary routines to achieve this

are contiined in a computer program and by the use of the interactive

facility the designer can investigate a large number of design

alternatives in an extremely short time with varying degrees of

freedom on the operation of the program. Machines designed using

these methods have been built and tested with close agreement

between predicted and actual performance.

As the relatively large number of poles in the machine 

often dictates a duplex wave arrangement rather than a lap wound 

armature this type of winding has been of particular interest. It 

has been shown that in certain cases two alternative connection

methods may be adopted for the same winding specification in terms 
of coils and poles. One such case has been investigated and it

is only by careful study of the e.m.f.s generated in the primary and 

short-circuit armature paths that the optimum configuration may be 

specified. This is where the short-circuit e.m.f.s developed 

between like brushes average to approximately zero over a period of 

rotation. If the optimum winding arrangement is not chosen then 

significant deterioration in machine performance results which is 

explained by two mechanisms. The non-zero average value of e.m.f.s 

short-circuited by the brushgear leads to significant sparking 

at the brushes, while the lower values of e.m.f. generated in the



primary paths causes a reduction in flux linkages leading to reduced 

motor speed and torque. These effects have been discussed on a 

theoretical basis and also de-monstrated experimentally. A computer 

program has been developed which will calculate the values of the 

primary and short-circuit e.m.f.s in any armature winding for a 

given pole shape and number of brushes.

The thermal behaviour of the machine is of particular 

importance in traction applications and rating methods similar to 

those used in conventional machines (B.S. 1727) are a desirable 

ideal. Although insufficient testing has been carried out to 

enable general and extensive rating conditions to be specified 

results from existing machines that are available enable ratings to 

be proposed for time periods above 30 minutes.

The use of the motor in a typical battery electric traction 

application has been investigated with the aid of a simulation 

model of an electric vehicle and practical road testing. Incor­

poration of the disc armature motor into the model enables its 

advantages to be demonstrated. Improved vehicle performance 

results when such a machine is specified as an alternative to 

the more conventional series wound motor. This may be taken either 

as increased range for the same battery capacity or, in a vehicle 

whose duty cycle is known, a reduced battery requirement.

A continued study of the e.m.f.s generated in the various 

armature paths forms the basis for further work in this area. In 

the case of duplex wave windings, alternative arrangements may 

easily be investigated in order to determine the optimum. For



simple wave windings the procedures developed will be of greatest 

use in assessing the correlation between the magnitudes of primary 

and short-circuit e.m.fs and the pole shape, number of coils and 

number of brushes used. For the particular machine in question, 

it will be valuable to have an extended set of performance curves 

to verify that reduced machine performance is apparent over the 

complete operating range when the non-optimum winding arrangement 

is selected. This will entail constructing two new armatures and 

encapsulation using an appropriate grade of material to ensure that 

low-temperature flexing does not occur.

Investigation of the thermal behaviour of the motor is another 

area where research must continue. Ideally an accurate thermal 

model of the motor should be developed as an aid to understanding 

this behaviour. Comprehensive load/temperature measurements are 

needed to verify or modify the proposed rating conditions, and if 

the general standard for rotating electrical machines (B.S. 2613) 

is to be complied with, the embedded thermocouple technique must 

be used for these measurements. Of particular interest are the 

very short-term ratings as specified in B.S. 1727 for battery elec­

tric vehicle motors. The effect of forced-cooling the motor 

should also be assessed. As ferrite materials are likely to be 

used in the majority of traction applications, the effect of 

temperature rise on magnet performance must also be studied, and 

incorporated into the design procedure - possibly as some function 

of armature current density.

The continued study of motor performance in actual vehicle
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operating conditions will enable much valuable information to be 

gained and highlight areas where improvements or modifications to 

the design procedures are necessary.
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APPENDIX I: AN ALTERNATIVE FERRITE DESIGN

The motor described in Chapter 5 was based on a design using

Alnico magnets (Hycomax III) in order to achieve a relatively high

working flux density and thus good efficiency. However, the

recent fluctuations and general upward trend in the world price

of cobalt led to Alnico materials becoming much more expensive

and prohibitively so for most traction applications. The only

feasible economic alternative at present is to use ferrite materials,

although the penalties are a low energy product and lower flux

densities. Specification of a ferrite material will thus generally

require a larger amount of armature copper to be used, with a
2corresponding increase in the I R loss and lowering of motor 

efficiency. It is, however, possible to obtain some degree of 

compromise by using a ferrite material well above the ®Hmax point 

on the demagnetisation curve. This represents inefficient usage 

of the material and a larger amount will be required than for 

operation at BHmax. However, as ferrites are relatively inexpensive, 

an economic motor design can generally be produced with an 

acceptable value of efficiency. To this end, the C.A.D. procedures 

are used to produce an alternative ferrite design for the 7.5 kW 

traction application. The same design constraints are imposed in 

that as the ferrite motor must directly replace the Hycomax III 

motor the same value of D2 (280 mm) is used. The design parameters 

for the resulting machine are given in Table Al.l with the predicted 

performance curves in Fig. Al.l. It can be seen by comparison 

with Table 3.A that in addition to a common value of D2 the length 

of the magnets used is practically the same, although the flux per

258



D ï S 1 G \ >» C' : 2 i7

DESI GN SPECIFICATION

OUT’ UTs 7500.  WATTS 
VOLTS:  96. V
SPE i 0 : 3A03. PPM

DESIGN DATA

D2: 283. MM
Dl :  171. MM 
POLES: 8.

M AG T ETIC CI RC UIT DATA

B i 0. 300 TESLA
HT 5 AO03. 4/M
LC OEr F 1 . 30
Lr A CT 1.20
P-tl . 0009 35 WEBERS
A.PHA .75
L1AG 62.0 MM
W3TMAG 8.  A A KG
T H ICK 5. 53 MM
Wi TFRR 3. 33 KG
GAP 15.20 MM
MAGDSY A T 00 . KG/M*»3
BT S 1 . 80  TE SLA

ELECTRIC CIRCUIT DATA

PATHS A.
C3ILS 57.
TJRNS A.
7 91 2.
GAUGE 2.3 0 MM 
Wi TKI R A .60 KG 
CT TDS Y 7 . 0  A/KM*«2 
AT PC3 T 8 3 . 3A AMPS 
L3SS 668. 08 WATTS 
LAY A
TCMP 75.  DEGkEES 
Sr .3 5
RARM 0.059 OHMS 
ET 38.  AV VOLTS

Table ¿1,1 : Design parameters for 7.5kW ferrite motor
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T J  T HI * 3 J . 0 4 r.o
ME CM. 0 2) 3. WAT TS 
S» EE) 343 2. 7 b p h  
P ) HER 7« 9 3 • 9 WATTS 
T)R QUE 23.55 NH 
PiRHGT 21.9. 45 K a TTS/KO 
EFT . 884

PERFOTMAWCE SPECIFICATIONS

PRE NT 
MSI TY

AM ATURE
cut r e n t SPEED POWER TOR OUE EFFICIENCY

P/KM»» 2 . AM» S PPM___ _  WATTS ‘IM

1. 12.57 368 7.~5~ 833.2 2.16 .691
2 . 21.13 3653.6 1992. 3 5.21 .825
3. 37.70 3619.6 3129. 8 8.26 .865
A. 5 ) .  27 3535.6 A2A5.5 11.31 . 88)
5. 6» .83 3551.7 5339.6 14.36 .885
6. 75 . AO 35! 7.7 641 2. 0 17.41 .886
7. 8» . 9 6 3A33.8 7A62.7 20.46 .83 4
6 . 10) .53 3AA9.8 8A 91.7 23.51 .88)
9. 111 .10 3A1 5.8 9499. 1 26.56 .875

10. 1 2 5 . 6£ 3381.9 1 0484 .7 29.61 .869
11. 133.23 3 3A 7.9 11A A 8. 7 32.66 .863
12. 15) .80 3 31 A . 0 12390.9 35.70 .856
13. 163.36 3280.0 13311.5 38.75 .849
1A . 175.93 324 6.0 14210.4 41.80 .841
15. 18) .50 321 2.1 15087.6 44.85 .834
16. 2 0 i . 06 317 8.1 _1 594 3. 2 47.90 .826

Table Al.l (continued) : Design parameters for 7.5^W motor
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Fig, Al.l ! Predicted performance of 7»5kW ferrite motor



pole in the ferrite motor is only 0.43 times that in the Alnico 

motor. The armature winding is a 4-layer simple wave arrangement 

with armature resistance increased by a factor of 1.8 over the 

Hycomax III motor. However, a slightly reduced current density 

is necessary for a similar power output at similar speed. The 

power density of the ferrite design is increased by 25%, the 

efficiency is approximately 3% less at the specified power output 

and although this falls off more markedly, it is still acceptable 

for the application representing a good compromise between cost 

and performance.
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APPENDIX II: FURTHER TRACTION APPLICATIONS

The machines described here have been developed very recently 

and designed using the CAD procedures developed in Chapter A.

With the need for economic design ferrite materials have been 

used exclusively and again usually worked well above the ®^max 

point on the demagnetisation curve.

A2.1 The 130W, 2000 rev/min motor

This machine was developed for an invalid wheelchair drive 

after consultation with a major U.K. manufacturer of such 

wheelchairs. It was considered that the use of two disc armature 

motors (per unit) with high efficiency transmissions would offer 

substantial benefits to the overall performance of the wheelchair.

The development program was carried out in conjunction with a small 

industrial company (Moore Reed and Co. Ltd.) and a successful 

motor has been designed, built and tested. The design parameters 

are given in Table A2.1, and it can be seen that the motor operates 

from a nominal 2A volt supply derived from two lead/acid batteries 

in series. Predicted performance curves are given in Fig. A2.1 

with the measured curves in Fig. A2.2.

A2.2 The 130W, A000 rev/min motor

The development of this machine follows directly from that 

described above. It was found that a more efficient motor/transmission 

system could be achieved by specifying the higher motor speed and 

a purpose-built gyratory gearbox. The design parameters are given 

in Table A2.2 and it will be noted that a smaller machine than above
245



Talle '2.1 : par.in«trrt for 150*, 20 0 0 rev/nin rotor

D T s : - A  «MATURE MOTO R Or S I G ‘l

DESIGN NO: 4 00

DESIGN SPEC IE I CATI  CN

OUTPUT:  130. WATTS
VOLTSï  24.  V 
SP EE O : 21 00 .  RPH

DESIGN DATA

02:  1 90.  MM 
D l :  105.  MM 
POLES:  a.

MAGNETIC CIRCUIT DATA

BH 0. 22C TESLA 
HM 115 0 00.  A/M 
LCOEFF 1. 3C '
LFACT 1. 20  
PHT .000312 WEBERS 
ALPHA .75 
LM AG 5.6 MM 
WGTMAG 0. 39 KG - 
THICK 2.65 MH 
WGTFRR 0.62 KG 
GAP 4 . 00  MM “
MAGDSY 4700. KG/M**3 
BMS 1 . 6 0  TESLA

ELECTRIC CIRCUIT DATA

PATHS 2 . -r.
COILS 41.
TURNS 6.
2 492.
GAUGE 1.00 MM 
WGTHIR 0.403 KG 
C9TDSY 5 . 0  A/MM**2 
ARMCRT 7. 35  AMPS 
LOSS 24.07 MATTS 
LAY 2
TEMP 75.  DEGREES 
SF . 8 5
RARH 0.39 0 OHMS 
ER 20.94 VOLTS
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F i r ; .  A 2 . 1  : P r e d i c t e d  p e r f o r m a n c e  o f  1*0W, 200 0  r c v / m in  m otor
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F i r .  A 2.2  : Xrarurc-d p e r f o r m a n c e  o f  150W, 2000 r e v / m i n  m otor
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ri nl f* ' .? : J>f»P i ftr< T-. •• terp 1‘C" , rav/

dcsi gn src: i f i c a t ; or.

OUT* UTs 130.  *ATT£ 
VOLTS:  2C. V
SPEED: A1 93 . ppm

DES IGN DATA

02: 152. KM
Di :  89. KM
POLES: 6.

MAGNETIC Cl PC L I T  DATA

«M 0. 250 TESLA
HM * 9 2503 . A/K
LT OEF F 1. 30
L r A CT 1.2 0
Pi I . 0002 90 WEBERS
A.P4A .75
L1 ‘ u 12.9 KM
WIT MAG 3 . 5  5 KG
Ti  I CK 3. 27 MM
WO TF? R 0 . 62  KG
GAP 6.53 HK
MAGDSY A7 00.  KG/K**3
3MS 1 . 8 0  TESLA

I L E :  TP3C Cl PCU1T DATA

PATHS 2.
COILS 25. 
t j f :c  5.
2 29 0.
G A U GF 1 . A 0 KM 
WOT W3 P. 0 . A 6 KG 
CT TDSY A .5 A / M M ■» * 2 
AT MC-T 1 3 . E5 AMPS 
LOSS A2.91 KATTS 
LAY 2
TE HP 75.  DECmEES 
S“ .9 5
RAR’i 0 . H 5  OHMS 
ER 16.93 VCLTS

OJ T PUT DATA

r-ir. motor
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results with fewer poles. The lower supply voltage of 20V 

was specified after it was found that significant regulation 

occurs in the controllers used to drive the wheelchair motors. 

Predicted and measured performance curves are shown in Figs. A2.3 

and A2.4 respectively. This machine has been extensively bench- 

tested using several chopper controllers and the performance with 

such a controller is identical to that obtained when using a 

steady d.c. supply. The development programme is now effectively 

concluded with the machine at a marketable stage. Evaluation of 

its use in the envisaged application presently continues.

A2.3 The 20 kW motor

Collaboration with another small industrial company (Lee Dickens 

Ltd.) led to the development of this more powerful machine. The 

application is in the drive system of a high-performance hybrid 

car. The motor itself is unusual in that two electrically indepen­

dent armatures rotate in a common magnetic circuit (Fig. A2.5) 

with drive to the vehicle wheels taken via a belt reduction 

transmission. The design parameters for each 'half' of the motor 

are given in Table A2.3 with predicted performance in Fig. A2.6.

The relatively large amount of ferrite magnet material gives a 

good working flux with associated high efficiency. Development of 

this machine continues with bench testing and practical evaluation 

in progress.
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Ot j I(i*i 'i 0 ? A<

DC SI GN S P L O I F 1 C A T I 0 N

OUT* UTs 113 0 0 .  WATTS 
V O L T S :  9 fc. V
S P E E D :  a o o o .  ppm

DES I GN DA TA

0 2: 305 . KM
O i :  1 7 i .  KH 
P O L E S :  8.

MAGNETI C C I P C t i T  DAT#

6 M 0. 33C TESLA 
H1 3 50 CO • A/K 
LOOEFF 1.  30 
L r ACT l . ? 0  
P- I I  . O O l i S O  AE6EPS 
A _ P HA . 75 
L M A G 83. 1  y y  
WGTMA G 1A . 2 8  KG Til or fc. a 9 y . y  

WGTFPF A . 9 A  KG 
GAP 1 2 .  CO HP 
KAGOSY A7 0 0 .  KG/ K* *3  
94S 1 . 8 C  TESLA

E L E O T P I C  C I A C L I T  DATA

P A T *G 8 .
ClILS 72.
TJP'.t 8.
Z *. 15 2 .  
g a u g e  1.3 3 yy.

WIT <C ? A . 25 KG 
C5T0SY 5 . 0  A/«**»*«? 
a < - C ? T  13 3 . 5 5  AMPS 
LOSS 5A0. 5  A WATTS 
L A T A
r : - P  2 5 .  DEGREES 
:• . 55
P A s M C.G3G Cr-S 
ET 3 9 . 7 5  T C l TS

'■-.. rr. p*r=i.-n*:vsrs r ‘W  ’r.*..?' '/** ■ v.
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u i j  x Ci « \ 0 • 2 A C

DESIGN S P L : I F ICAT1ON

OUT’ UTs 11ÏOO.  WATTS 
VOLTS:  96. V
SPCED:  AOOO. KPN

DESIGN DATA

O Z: 305. NM " 
01: 17S. NM
POLES: 0.

MAGNETIC CI P C DIT DATA

Bi  0. 330 TESLA 
. -  Hi 35000. A/M

L: OEFF 1.30 
L r ACT 1.20 
P i l  .001160 HEBERS 
ALPHA .75 
LH AG 83.1 NN 
HITMAG 1A .2e KG 
TH ICK 6. A 9 NM 
WGTFRfi-A .9* KG -

—  GAP l  2. CO MM--------
------MAGDSY A7 00.  HIG/M**3- -

... -------  B i S -1.80 TESLA

ELECTRIC CIRCUIT DATA

PATHS 8.
CD ILS 72.
TUR NS 8.
Z 1 15 2 .
GAUGE 1.5 3 NM 
Hl T WI R A . 25 KG 
CTTD5Y 8. 0 A/MM**2 
AHMCRT 13 3. 55 AMPS 
LDS5 8A0.9A WATTS 
LA Y A
TEMP 75. DEGREES 

-- Sr .85
_ - • - - ■ L - - ■ -  PARK 0.036 OHMS

-  -  ET S9.70 VOLTS

Table A2.3 : Design parameters for each ’half' of 20kW rotor
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p i  j .  0 7  P* »

T 3 T T *9.33 NO 
MECMLO 520.  WATTS 
SPEE" 402B.5 BPM 
P3H£R U U O . i  WATTS 
T3PQHE 2 7. 1/  NM 
PWRWGT 291.  41 WATTS/KO 
EFF . 894

PERFORMANCE SPECIFICATIONS
. _ ..

CJ PfiE NT AR-1AT0RE
DENSITY — CUR RENT— —  -SPEED POWER TOh CUE EFFICII
A< >»/rtM**2 AM* S RPM WATTS NM

1. IS .65 4 21 7 . C 1 0 1 5 .e 2 .30 .634
2. 33.39 4 19 0.0 2567.9 5 .85 .801
3. 53.0 6 416 3.1 4^00.0 9.40 .853
4 . 6i .7 0 4136.2 5612.1 12 .96 .87»
5. 83.47 4 13 9.3 7104.1 16 .51 .887
6. 1 03.1 6 .4 0« 2. 3 6576.1 20.96 .892
7. IIS.3£ 4005.4 1 CC26.1 23 .61 .894
b. 1 33.55 4 02 8.5 11460.1 2 7.17 .8 94
9. 153.24 4 CO 1.5 12872.0 30.72 .892

1 C. 1 6b • 9 4 397 4.6 14263.9 3 4 .2 7 .893
11. 183.63 3 94 7.7 15635.8 37.82 .857
12. 2 03.3 3 3920. e 16987.6 41.37 .883
13. 217.02 389 3.6 16319.4 44 .°3 .87?
1 4 . --- 2 33.7 1“ 386 6.9 — 19631V2 ---48 .48 .875
15. 253.41 384 0.0 2CS23.0 52 .03 .873
6 • 2 67 .-10 3 81 3*1 22194.7 55.58 • OD3

Table A2.3 : Design parameters for each 'half' of 20kW motor
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APPENDIX III: FURTHER APPLICATION OF THE E.M.F. ANALYSIS

Although the method of calculating the e.m.f.s Induced in

the various armature paths was primarily developed to analyse the

alternative duplex arrangements considered earlier, it may be

equally well applied to any winding arrangement. As an example, a

low speed traction motor developed for bicycle propulsion is

investigated particularly as the design involves significant

departures from the design principles established here. The

machine was designed and built at Cambridge University and has

been well documented recently particularly with regard to adverse 
26 68commutation effects * . The stator of the machine consists of 10

poles of Alnico material (Hycomax III) but with a ratio of pole- 

arc to pole pitch of approximately 0.86 compared to the value of 

0.75 that has been used in many other designs. Although the 

flux per pole will be increased, this extension of the pole area 

has the effect of significantly reducing the neutral area, or 

commutation zone, between poles. The armature winding is a wave 

arrangement consisting of only 31 coils (c.f. the minimum of 5 coils 

per pole specified earlier) and with 10 brushes necessary to carry 

the full armature current, it is evident that a large number of 

coils will be short-circuited. Fig. A3.1 shows the connection dia­

gram for this motor and consideration of this reveals that with 

10 brushes used in the machine, 18 of the 31 coils are short- 

circuited by the brushes as the armature rotates. With A and 2 

brushes used, the numbers of short-circuit coils are 15 and 10 

respectively. Further, since the commutation zone is relatively 

small, many of the short-circuit colls will lie under the influence
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Fig. A5.1 : Connection diagram for 51 coil, 10 pole motor



of one or other of the poles and thus have relatively large e.m.f.s 

induced in them. This may well lead to adverse commutation 

conditions and may be investigated further with the aid of the 

e.m.f. analysis technique developed earlier. Accordingly, the 

program is run using details of the 31 coil winding and a pole 

shape similar to that illustrated in Fig. 5.15 but modified to 

take into account the larger pole-arc to pole-pitch ratio.

Results are shown in Figs. A3.2 to A3.4 which illustrate the 

primary and short-circuit e.m.f.s for 2, 4 and 10 brushes. As 

before the values of the primary e.m.f.s reduce as the number of 

brushes is increased although the effect is much more pronounced 

than in the duplex wave winding considered earlier. Although the 

short-circuit e.m.f.s average to zero as the armature rotates they 

represent a very considerable fraction of the primary e.m.f.s.

Large peak values are evident when 2 or 4 brushes are used, which, 

when shorted by the brushes, may well affect the performance of the 

machine as a whole. With 10 brushes the magnitudes of the 

short-circuit e.m.f.s are reduced as the paths are formed between 

adjacent like brushes and thus involve only the e.m.f. generated 

in a single coil. However, as 18 such paths are formed in the 

armature it is reasonable to suppose that their combined effect could 

also possibly lead to an adverse effect on machine performance and 

symptoms of the kind that have been reported. It is thus clear 

that with wave windings, and particularly when using multiple brush 

sets, the effect of the e.m.f.s generated in the short-circuited 

coils must be carefully considered, especially when using a small 

number of coils and/or a relatively high ratio of pole arc to pole 

pitch. The calculation of these e.m.f.s in the manner indicated 

can be of considerable benefit in assessing this effect.
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Units of e.m.f.

Rotation by one conductor pitch

Fie. A3.2 : E.m.f.s penerated in 31 coil, 10 pole armature (2 brushes)
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Primary e.m.f.s

Units ofe.m.f.

Short-circuit e.m.f.s

, , y  ■ 4___-----------1--------1---- ------------ 1--------1
--------» ------ 1--------1----

A Rotation by one conductor pitch

Fig. A3.3 ! E.m.f.s generated in 31 coil, 10 pole armature (4 brushes)
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*5 -
Primary e.n.f.s

Pig. A3.4 8 E.m.f.s generated in 31 coil, 10 pole armature (10 brushes)
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APPENDIX IV: SELECTED PUBLISHED PAPERS

The reprints submitted here have been published jointly with 

the author's supervisor and emanate from or relate to the work 

described in this thesis. In order, the papers are:-

' Selecting permanent magnet materials for disc-armature d.c. 

motors' - presented at the International Conference on Electrical 

Machines, Brussels, 1978.

'The economic design of disc armature traction motors' - published 

in Electric Vehicle Developments, No. 5, 1980.

'Computer-aided design of permanent magnet motors' - presented at 

the 1st U.K. Conference on Permanent Magnets, June 1980.

'Disc-armature traction motors' - presented at the Drive Electric 

80 Conference, October 1980.
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SELECTING PERMANENT MAGNET MATERIALS FOR DISC-ARMATURE D.C. MOTORS

A.F. Corbett and C .S. R o e r ig ,
U n iv e rs ity  o f Warwick, Coventry, England.

ABSTRACT

The d .c . d isc-arm ature  motor has a d isc-shaped  ir o n le s s  armature ro ta t in g  
in  a m u ltip o la r  permanent magnet a x ia l f ie ld .  The magnetic a ir-ga p  length  
thus includes the th ick n e ss  o f  the d is c  and there fore  tends to be longer  
than th a t in  conventional machines. Although a wide choice o f  permanent 
magnet m ateria l i s  c u rre n t ly  a v a ila b le  the type used depends h eav ily  on the 
motor a p p lic a t io n  and fa c to r s  such as e f f ic ie n c y ,  w eight and co st. The 
long a ir -ga p  lends, i t s e l f  to  magnetic m ateria ls  o f  h igh  c o e rc iv ity  but in 
many cases s iz e  l im it a t io n s  demand a m ateria l w ith  h igh  remanence. Here a 
compromise has to be sought and a computer-aided procedure has been 
developed to help  op tim ize  the design fo r  a g iven  a p p lic a t io n .  The pro­
cedure i s  i l lu s t r a t e d  w ith  reference to motors be ing developed fo r  several 
app li ca tion s.

INTRODUCTION

Permanent magnets have lo n g  been used to  supp ly  the f ie ld  e x c ita t io n  o f  d .c. 

machines and developments in  recent years have le d  to a w idening o f  the  

choice o f  a v a ila b le  m a te r ia ls .  In  p a r t ic u la r ,  very h igh  energy d e n s it ie s  

have been achieved w ith  com binations o f  the ra re -e a rth s  and these are now 

sp e c if ie d  in  p lace  o f  the more conventional ceram ics o r  a l lo y s  in  some a p p li­

ca tio n s. However in  many o ther a p p lic a t io n s  they must be ru led  out on the 

grounds o f co st  a lone.

When choosing magnets f o r  use in  the d .c. d isc-arm ature  motor the somewhat 

longer magnetic a ir - g a p  must be c a re fu lly  considered as i t  has an im portant 

in fluence  on the amount o f  magnetic m ateria l requ ired . The e f fe c t iv e  use o f  

high-remanence a l lo y  magnets n e ce ss ita te s  keeping the a ir -g a p  as sm a ll as 

p o ss ib le  thereby l im it in g  the amount o f  armature copper th a t can be used.

For a p p lic a t io n s  such as low in e r t ia  d rives t h is  con d it ion  o f  h igh  m agnetic 

lo ad ing  and low e le c t r ic  lo ad in g  i s  very s u ita b le .  On the o ther hand 

sp e c ify in g  h ig h -c o e rc iv it y  f e r r it e  magnets a llow s la r g e r  a ir -ga p s  to  be
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con s id e re d  but the  r e l a t i v e l y  low f l u x  d e n s it y  leads to  a requirement for 

more armature copper -  p re c ise ly  the opposite  con d it ion  to th a t above.

T h i i  type o f  magnet c o s t s  le s s  than the a l lo y  type fo r  a given magnetic 

energy, and i t s  h igh  i n t r i n s i c  coercive  force makes i t  h ig h ly  re s is ta n t  to 

dem agnetisation. I t  i s  thus a popular choice fo r  many a p p lic a t io n s .

In  p ra c t ic a l terms there e x is t  many v a r ian ts  o f  the two b a s ic  types (a llo y  

and f e r r it e )  and the motor designer needs to  be aware o f  the advantages and 

l im it a t io n s  o f  them a l l .  Many magnets used today are a n iso t ro p ic ,  i . e .  they 

have a preferred d ir e c t io n  o f  m agnetization, and w ith  the continua l in tro ­

duction  o f  new and sometimes more e x o tic  m ate r ia ls  the problems involved  in  

magnet se le c tio n  can become q u ite  complex.

*
HISTORICAL ASPECTS OF PERMANENT MAGNETS

Development o f  c o b a lt  s t e e ls  in  the 1920's enabled magnets to be ca st  to 

shape in  ad d itio n  to the prev ious processes o f  r o l l i n g ,  fo rg in g  and machining. 

In  the m id-1930's b r i t t l e  carbon-free a l lo y s  were produced which could  only  

be c a s t ,  and 1940 saw the advent o f  the f i r s t  a n iso tro p ic  a l lo y s  o f  n ick e l,  

aluminium, co b a lt,  copper and iron  -  the 'a ln ic o ' s e r ie s .  A dram atic  

improvement in  c o e rc iv ity  occurred when ceramic f e r r it e s  co n ta in in g  barium, 

stron tium  or lead  were in troduced  in  the e a r ly  f i f t i e s .  Th is m ateria l i s  ' 

produced by p re ssin g  and s in t e r in g  and i s  a v a ila b le  in  both is o t r o p ic  and 

a n iso tro p ic  forms. In  1960 magnets became a v a ila b le  u sin g  co b a lt  and a ra re -  

earth  -  in  p a r t ic u la r  samarium*. These are u su a lly  pressed and s in te re d  and 

are ge n e ra lly  a n iso t ro p ic .  A usefu l va r ian t o f  th is  i s  where the rare-earth  

powder i s  bonded w ith a polym er to produce a cheaper but easily-m ach ined  

m ate ria l. A more recent development was in  1967 when magnets o f  manganese, 

aluminium and carbon were made a v a ila b le . The I n i t i a l  m ateria l was is o t ro p ic  

and i t  was not u n t i l  very rece n tly  th a t an ex trusion  process was developed to
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2 3y ie ld  an a n iso tro p ic  magnet * .

RANGE-€F MAGNETIC MATERIALS AVAILABLE

A bew ildering range o f  m agnetic m a te r ia ls  i s  a v a ila b le  today although the 

c h a ra c te r is t ic s  o f  many are c lo se  enough together to enable ju s t  one o f  a 

group to  be considered. From the motor d e sign e r 's  p o in t  o f  view there are 

types that he would not norm ally consider u s in g, aga in  making a choice e a s ie r.  

In t h is  paper a group o f  f iv e  m a te r ia ls  i s  compared a lthough  prototype motors 

have been b u i l t  u s in g  o n ly  two o f  these . I t  i s  considered th a t these f iv e  

m ateria ls  cover the a v a ila b le  choice a t  present and one o f the groups -  the 

a ln ic o  type -  has been subd iv ided  to contain  two members due to the wide 

range a v a ila b le .  Re levant magnetic and physica l p ro p e rtie s  are shown in  

Tables 1 and 2 re sp e c t iv e ly  and F ig . 1 i l lu s t r a t e s  the w orking demagnetisa­

t io n  curve fo r  each. In  o rde r o f  in c re a s in g  remanence the m ateria ls  are 

barium fe r r it e ,  polymer bonded SmCo5 , Mn-Al-C a llo y ,  SmCo^, A ln ico  A and 

A ln ico  B. The Mn-Al a l lo y  i s  not y e t  a v a ila b le  fo r  motor a p p lic a t io n s  but 

i s  inc luded  fo r  comparison purposes.

Table 1 : Comparison o f m agnetic p roperties

M ate ria l
B r,

T e sla
He,

kA/M
BH max, 

kJ/m3
Max. temp, 

°C •

R eve rsib le  coefY, 
o f temperature

Barium F e rr ite 0.37 240 26 200 0 .20%

Polymer SmCo^ 0.55 400 55 100 0.03%

Mn-Al-C 0.57 185 44 300 0 . 12%

SmCog 0.87 660 152 250 0.04%

A ln ico  A 1.15 n o 89 200 0 . 02%

Aln ico  B 1.35 59 60 200 0 .02%
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l a b lc  2 : Comparison o f  ph y s ica l  p ro p o r t i r s

M ateria l D ensity , kg/m3 M ach ineab ility

Barium F e rrite 4700 Hard, B r it t le -G r in d in g  Only

Polymer SmCOg 5200 E a s i ly  Machined and D r ille d

Mn-Al-C 5100 E a s ily  Machined and D r ille d

SmCOg 8200 B r i t t le  -  Grinding Only

A ln ico  A 7300 Hard, B r i t t le  -  Grinding Only

A ln ico  B 7300 Hard, B r i t t le  -  Grinding Only

F ig. 1 : Demagnetisation Curves
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I t  i s  appreciated  th a t  many o the r  grades e x i s t  but i t  i s  f e l t  tlia t th is  i s  a 

rep re sen ta tive  sample o f  the best com m ercially  a v a ila b le  m a te r ia ls .  The 

re la t iv e  cost o f  each m ateria l has not been in c lu ded  here as i t  w i l l  be 

d iscu ssed  la te r .  I t  i s  im portant to  note however that the p re ss in g  and 

s in te r in g  process requ ired  fo r  f e r r it e  and SinCo^ magnets i s  more expensive 

than the c a s t in g  o f  a l lo y s  and fa b r ic a t io n  o f  polymer-bonded m a te r ia ls ,  

whereas the to o lin g  co sts  fo r  the former are much h igher. The most s i g n i f i ­

cant co st  d iffe re n ce  i s  in  the raw m ateria l c o s t  which i s  much lower fo r  the 

f e r r it e  m ate r ia ls  both on a per un it mass b a s is  and on a per u n it  energy 

b a s is .  The optimum w orking po in t fo r  each typ e  o f  magnet i s  shown in  F ig . 1. 

Th is represents the  most e f f ic ie n t  u t i l iz a t io n  o f  the m ateria l although many 

designers often work fu rth e r up the curve, e it h e r  to achieve an increased  

working f lu x  o r to  ensure a greater re s is ta n c e  to dem agnetisation. In  both 

cases the penalty  i s  an in crease  in  magnet w e igh t. In  s p ite  o f  a low working 

f lu x  the very h igh  c o e rc iv ity  and s t r a ig h t - l in e  c h a ra c te r is t ic  o f  the rare- 

earth m ate ria ls  a llo w  designs to  be contemplated where no f lu x -re tu rn  r in g  i s  

used, thus sav in g  w eight. In  co n tra st, the a ln ic o  type has a very poor "open 

c i r c u i t "  performance and fo r  best u t i l iz a t io n  needs to  be magnetized in  s it u .  

Most fe r r it e s  can be premagnetized but a f lu x -re tu rn  r in g  i s  s t i l l  u su a lly  

needed.

DESIGN FACTORS IN  THE CONSTRUCTION OF DISC-ARMATURE MOTORS 

The development o f  the motor has been d escrib ed  e x te n sive ly^ ’5,5 and i t  only  

remains to s ta te  th a t the a x ia l  f ie ld  i s  produced by a m u lt ip o la r  system  o f  

segment-shaped permanent magnets. A complete assembly i s  shown in  F ig .  2.

The magnets can be mounted on one o r  both s id e s  o f  the armature depending 

mainly upon the length  o f  magnet invo lved  and the desire  to prevent exces­

s ive  leakage.
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F ig . 2 : D isc-arm ature motor assembly

The design o f  a d .c .  d isc-arm ature  motor i s  a stra igh tfo rw ard  process. With

5 7
reference to F ig . 3 i t  has been found ’ th a t fo r  maximum power the inner and 

outer ra d ii o f  the magnet r in g  are re la ted  by: .

r2 - yS'r, (1)

A lso  the power ou tpu t o f  the motor has been found to be p roportional to the 

cube o f  and thus fo r  a given magnet m ate ria l, vo ltage , speed and power 

an optimum value fo r  can be found.

\
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F ig . 2 : D isc-arm ature motor assembly

The design  o f  a d .c . d isc-arm ature  motor i s  a s tra igh tfo rw ard  process. With

5 7
reference to F ig .  3 i t  has been found * that fo r  maximum power the inner and 

outer r a d ii  o f  the magnet r in g  are re la ted  by: .

r2 - 0 )  

A lso  the power output o f  the motor has been found to be p roportiona l to the 

cube o f  rg ,  and thus fo r  a given  magnet m ate ria l, vo lta ge , speed and power 

an optimum value fo r  r£  can be found.

/
I
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F ig . 3 : Schematic o f  magnets w ith a s in g le -tu rn  co il

The d ifference between Tg and r-j i s  the a c t iv e ‘length o f a conductor. The 

number o f  poles and c o i l s  are important fac to rs  in  the design p rocess. I f  

too few poles are s p e c i f ie d ,  the c o i l  end-w indings, represented by BC and 

DA in  F ig . 3, become e x ce ss iv e ly  long and bulky. Th is leads to h igh  I  R lo s s  

and poor copper u t i l iz a t io n .  For commutation reasons i t  i s  necessary to have 

a minimum number o f  c o i l s  per po le , and thus as the number o f  po le s  increases  

the number o f  c o i ls  and.conmutator segments a lso  increase, le ad in g  to more 

c o s t ly  designs and u lt im a te ly  to im p ractica l ones. Experience has shown th a t  

unless exceptional circum stances warrant i t  the minimum number o f  poles should  

be 6 and the maximum i s  determined p a r t ly  by cost and p a rt ly  by the s iz e  o f  

the machine. Several computer routines have been w ritten to a s s i s t  th is  

choice and these are described  la te r .

CHOOSING THE RIGHT MAGNET MATERIAL FOR THE APPLICATION

A number o f  prototype motors has been b u i l t  and evaluated w ith output powers 

from 90M to.2200W and speeds in  the range 2500 rev/min to 10000 rev/min.
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ted iii ; I.,. I,  u l Uunigh so:.;e o the r alnic.o wi Lit l'.-..vr woi k in g  f lu x  d e n s it ie s  

tinvc been used. The a p p lic a t io n s  invo lved  have been varied . A motor fo r  a 

ride -on  luwnmower lias been developed u sing  ferrite* magnets. This operates 

from a 12V batte ry  and develops a power output o f  950W a t a speed o f  2500 rev/ 

min. A s im i la r  motor but w orking at 72V has a lso  been constructed.

An e le c t r ic  co o lin g  fan fo r  an automobile engine a lso  uses fe r r it e  magnets. 

This develops 90W a t  2500 rev/m in and M V . In stead  o f  the more usual 

s ta t io n a ry  f lu x -re tu rn  r in g  t h is  motor employs a d is c  o f  compressed iron  

powder f ix e d  to th e -s id e  o f  the armature remote from the magnets. This 

e lim in a te s  one o f  the a ir - g a p s  a llow in g  a very compact u n it  to be constructed  

as shown in  F ig . 4. The motor i s  a c tu a lly  he ld  together by the a ttra c tio n  o f  

the iro n  powder r in g  to the magnets.

F ig .  4 : Radiator co o lin g  fan motor 

w ith a conventional model
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/.it ¡liter» ' t in y  extens ion  o f t h i s  work if. tne p o s s i b i l i t y  o f  load ing  the
o

armature encapsu lating m ateria l with iron  powder . Although some eddy cur­

rent and h y ste re s is  lo s s  i s  introduced the e ffe c tive  a ir -g a p  length i s  

considerab ly  reduced.

In  the prototypes d iscussed  above the f lu x  density  o f  the fe r r it e  m aterial 

i s  su itab le  fo r  the a p p lic a t io n  involved and machines o f  sh o rt a x ia l length  

were produced. Th is was not the case however when a h igh  to rq u e -to -in e rtia  

motor was considered. A 90V, 320W motor was required which would accelerate  

an in e r t ia  load frpm re s t  to 6000 rev/min in  300 ms and decelerate from 

th is  speed to re s t  in  200 ms. C le a rly  th is  performance depends on the 

in e r t ia  o f  the armature and a very th in  armature d isc  has to  be sp e c ifie d .

As there i s  r e la t iv e ly  l i t t l e  copper in  the armature the h igh e st f lu x  

density  p o ss ib le  i s  required and magnets o f  the A ln ico  B type were chosen.

Due to the low c o e rc iv ity  o f  t h is  m aterial even a sm all a ir -g a p  needs a long 

magnet length and F ig . 2 shows how the magnets have been d iv ided  so that one 

h a lf  i s  s itu a te d  on each s id e  o f  the armature.

Under construction  a t  present i s  a high-power d is c  motor intended fo r  use as 

a tra c t io n  motor. I t  w i l l  have an output o f  7500 W a t  3400 rev/min and 

operate at 96 V. I t s  performance i s  to  be evaluated in  a sm all car. Another 

tra c t io n  a p p lic a t io n  i s  a d ire c t-d r iv e  wheel motor fo r  an e le c t r ic  moped. A 

design has been produced to develop an output o f  750 W a t  600 rev/min and 

24 V. In  both tra c t io n  a p p lic a t io n s  a s ize  l im ita t io n  i s  imposed 

n e ce ss ita t in g  the use o f  the  A ln ico -type  m ateria l. Furthermore, h igh  

e ff ic ie n c y  which i s  so im portant in  th is  f ie ld  can be more re a d ily  achieved 

using A ln ic o .  In  co n trast, design  stud ies are a lso  being ca rr ie d  out on 

automobile accessory a p p lic a t io n s  where low co st  i s  paramount and e ff ic ie n c y  

i s  o f minor importance. In  such cond itions no m ateria l can compete w ith the
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f e r r i t e s .

MAGNET COMPARISON AT THE DESIGN STAGE

To i l lu s t r a t e  the d if fe re n c e s  in  magnet m ateria ls  in  a more r e a l i s t i c  way a 

p a r t ic u la r  motor s p e c i f ic a t io n  i s  in ve stiga te d  u sin g  each o f  the above 

magnets in  turn. The d e s ig n  chosen i s  the lo w -in e rt ia  prototype de ta iled  

above i . e .  320 W, 90 V, 6000 rev/min although i t  i s  recognized that the 

acce le ra tio n  requirement w i l l  ra re ly  be met. To make the comparison f a ir e r  

the id e a l magnetic w ork ing p o in t i s  chosen in  each case and thus no 

re s t r ic t io n  on s iz e  i s  imposed. Table 3 shows the external diam eter, magnet 

and copper w e igh ts, and r e la t iv e  magnet and copper co sts  o f  each design , 

w ith the cost o f  barium f e r r i t e  magnets represented as 100.

*
Table  3 : Comparison o f  magnet co sts

M ate ria l Motor 
Di amete r

Copper
Weight

Magnet 
Weight ....

Copper
Cost

Magnet 
. Cost

Barium F e rr ite 205 mm 0.30 kg 0.15 kg 163 100

Polymer SmCo5 182 mm 0.18 kg 0.13 kg 97 1800

Mn-A l-C 170 mm 0.17 kg 0.19 kg 92 *

SmCo 5 160 mm 0.15 kg 0.14 kg 81 5000

A ln ico  A 136 mm 0.08 kg 0.60 kg 43 2000

A ln ico  B 124 mm 0.07 kg 1.15 kg 38 4000

*  No re lia b le in fo rm ation a v a ila b le at present

The magnet co sts  re la te  to  the f in ish e d  product and the co st  advantage o f  

sp e c ify in g  the f e r r it e  m ate ria l i s  immediately apparent a lthough a la r g e r  

motor re s u lt s .  With a l l  o th er m ateria ls the cost o f  the copper i s  n e g lig ib le  

in  comparison w ith the magnets. I t  must be emphasized th a t the motor
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a p p l ic a t io n  i s  o f  prime im portance and the a c c e le ra t io n  c h a r a c t e r i s t i c s  

requ ired  o f the low in e r t ia  design can only be achieved u sin g  A ln ico  B.

COMPUTER-AIDED DESIGN

The design o f an e le c t r ic  motor by hand can be a ted ious p rocess, s ince  fo r  

op tim ization  purposes i t  i s  necessary to consider d if fe re n t  numbers o f  po les,  

numbers o f  c o i l s ,  w ire  gauges, e tc. To overcome th is  problem several 

computer programs have been w ritten  which considerab ly  ease the burden on 

the designer. In  i t s  most powerful form the program, when given  the power, 

vo lta ge  and speed requirem ent produces a se r ie s  o f  a lte rn a t iv e  designs in  

any o r  a l l  o f  the magnet m a te r ia ls  a v a ila b le .  These designs encompass wide 

v a r ia t io n s  in  the numbers o f  poles and c o i l s ,  and a l l  o f  them meet the 

o r ig in a l  sp e c if ic a t io n  to  w ith in  a given to le rance. Th is i s  norm ally the 

f i r s t  stage o f  the procedure.

The designer would study the computer output w ith  due regard to the motor 

a p p lic a t io n  in  terms o f  s iz e  l im it a t io n ,  economics o r other fa c to rs .  He can 

then return to  the computer w ith more s p e c if ic  requirements in c lu d in g  number 

o f  p o le s, magnet m ateria l and working po in t, or gauge o f  w ire to  be used.

The a lte rn a tiv e  designs in c o rp o ra t in g  these r e s t r ic t io n s  are provided and 

the f in a l  stage  o f  the process i s  the complete s p e c if ic a t io n  o f  one design  

w ith  output in c lu d in g  a s e t  o f  pred icted  performance curves. The procedure 

i s  very f le x ib le  and has been o f  great value in  the design  o f  these motors. 

The re su lts  presented in  Tab le 3 are a l l  obtained u s in g  th is  process.

In stead  o f  spending a con sid e rab le  time in  a r ith m e tic  computation the 

designer i s  free to concentrate on the many other im portant aspects o f  h is  

work. . •
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Economic design oi d.c. 
disc-armature traction motors
by A. E.Corbett an d  C.S.Roerig University of W arw ick

The use of permanent-magnet material 
in the field of d.c. motors can often 
lead to a reduction in size, and there­
fore an increase in power-to-weight 
ratio, or in power density. Their use in 
electric vehicles, where low weight is 
very important, would thus seem highly 
appropriate. The d.c. disc-armature 
motor1 offers a further advantage in 
that, as an ironless armature is used, 
the associated losses can be eliminated, 
resulting in a very high efficiency 
maintained over a wide range of oper­
ating conditions.
This motor has found various appli­

cations,3 but its use as a traction 
machine has been the subject of much 
investigation.3,4 The selection of mag­
net material to be used in the machine 
is often not a straightforward task as 
this choice can drastically affect the 
design of a motor of given specifica­
tion in terms of size, efficiency, power 
density and cost. The purpose of this 
article is to highlight the aspects of 
motor performance and cost which are 
affected by this choice.
Magnet characteristics and performances
There are many types of permanent- 

magnet material available today, of 
widely differing magnetic character­
istics and with considerable variation 
in cost. They range from the cheapest 
available — the ferrite types, which 
have the disadvantage of low working 
flux-density — to the high flux-density 
Alnicos, to the highly expensive rare- 
earth materials, for example SmCo5. 
The selection of suitable material for 
disc-armature motors has been covered 
recently,5 but the performance 
required from the motor obviously has 
nsiderable bearing on this choice.
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Economic design of d.c. 
disc-armature traction motors
by A. E.Corbett an d  C.S.Roerig University of Warwick

The use of permanent-magnet material 
in the field of d.c. motors can often 
lead to a reduction in size, and there­
fore an increase in power-to-weight 
ratio, or in power density. Their use in 
electric vehicles, where low weight is 
very important, would thus seem highly 
appropriate. The dx. disc-armature 
motor1 offers a further advantage in 
that, as an ironless armature is used, 
the associated losses can be eliminated, 
resulting in a very high efficiency 
maintained over a wide range of oper­
ating conditions.
This motor has found various appli­

cations,2 but its use as a traction 
machine has been the subject of much 
investigation.3’4 The selection of mag­
net material to be used in the machine 
is often not a straightforward task as 
this choice can drastically affect the 
design of a motor of given specifica­
tion in terms of size, efficiency, power 
density and cost. The purpose of this 
article is to highlight the aspects of 
motor performance and cost which are 
affected by this choice.
Magnet characteristics 
and performances
There are many types of permanent- 

magnet material available today, of 
widely differing magnetic character­
istics and with considerable variation 
in cost. They range from the cheapest 
available — the ferrite types, which 
have the disadvantage of low working 
flux-density — to the high flux-density 
Alnicos, to the highly expensive rare- 
earth materials, for example SmCo,. 
The selection of suitable material for 
disc-armature motors has been covered 
recently,5 but the performance 
required from the motor obviously has 
considerable bearing on this choice.

It is important to recognise, how­
ever, that, particularly in electric 
vehicle applications, cost is all-im­
portant, especially when comparing 
such vehicleswithinternal-combustion- 
engined counterparts. It is thus the 
clear duty of the motor designer to 
minimise the cost of his designs, while 
maintaining acceptable performance. 
If a vehicle manufacturer is presented 
with two alternative motors, one with 
5% higher efficiency but costing fou. 
times as much, there is little doubt as 
to which he will choose.
To get the best performance from 

any permanent-magnet material it is
Aubrey Corbett and Chris Roerig are with 
the Department of fngineering. University 
of Warwick, Coventry CV4 7AL, England

necessary to operate it under condi- 
tions where the BH product, or energy 
product, is a maximum. This entails 
careful consideration at the design 
stage of such factors as working flux- 
density, airgap and magnet dimensions. 
Deviation from this principle can result 
in the reduction of some aspect of 
motor performance, although this is 
sometimes justified. For example, 
higher efficiency can be obtained at 
the expense of an increase in magnet 
weight. This ‘nonideal’ mode of oper­
ation often leads to a more expensive 
machine as a larger quantity of magnet 
material will be required. In the disc- 
armature motor the use of high flux- 
density magnets, such as Alnico, will 
generally result in higher efficiency, 
and such materials are often specified 
for this reason. However, as the motor 
is intrinsically an efficient machine the 
difference in efficiency between high 
and low flux-density motors need not 
be too pronounced.
Expensive choice

A recent study6 proposed disc- 
armature motor designs for traction 
using magnets of the Alnico and rare- 
earth types, and discounted the cheaper 
ferrite material. However, the cost 
penalty in specifying the former 
materials in traction applications 
weighs heavily against their use. 
Fortunately, it is possible to use ferrite 
material in the ‘honideal’ condition 
outlined above to achieve motor 
designs of not only comparable per­
formance but which are very much 
cheaper.

As an example of this technique the 
design specification used in the study6 
is considered, namely a 10-7 kW, 
2630 rev/min motor, working at 240V 
and with an overall diameter of 420 
mm. As indicated earlier it is necessary 
to use the (ferrite) magnet material 
inefficiently in order to achieve a 
higher working flux-density. It is 
possible, however, to design within the 
specified diameter a motor with ferrite 
magnets which has acceptable perform­
ance. The armature contains a larger 
amount of copper, and the overall 
length is just 20 mm greater than the 
extremely short rare-earth design.
Performance and cost

The power density of the ferrite 
design is a very respectable 440 W/kg, 
second only to the rare-earth motor at 
670 W/kg, and 2-5 times that of the Alnico 5-7 design.

The relative costs are difficult to 
ascertain owing to the fluctuating 
price of cobalt used in Alnico and 
rare-earth material. Based on informa­
tion available at the time of writing, 
the cost of the ferrite magnets would 
be £21, that of Alnico 9 £300 and 
Alnico 5-7 £450, while the rare-earth 
magnets would cost £430-470. The 
cost advantage of specifying the ferrite 
material is immediately apparent.

In terms of efficiency the difference 
is not so great. All the motors have a 
very high efficiency (greater than 90%) 
and as expected Alnico magnets give 
the highest value. The rare-earth design 
has a 1% reduction in efficiency 
compared with Alnico, while the ferrite 
design yields some 4% less.
Careful design

In conclusion, therefore, it has been 
shown that far from being discounted 
for use in traction applications, careful 
design using ferrite can result in a 
considerable cost benefit. The small 
reduction in efficiency is acceptable 
for most applications and further 
research and development into disc- 
armature motors is being undertaken 
with the expectation that the results 
will benefit the electric vehicle industry 
as a whole.

At a time when a common criticism 
levelled at electric vehicles is one based 
on economic factors, every attempt 
must be made to ensure that initial 
costs as well as running costs are as 
competitive as possible.
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Computer-Aided Design of 
Permanent Magnet Motors'

A.E. Corbett, U n ive rs ity  o f  Warwick 
C.S. R oerig, Moore Reed and Co. Ltd.

In troduction

Permanent magnets have long been used to supply the f ie ld  exc ita tion  of 
ro ta tin g  e le c t r ic a l machines and developments in  recent years have led to a 
widening o f  the choice o f  a v a ila b le  m ateria ls. In  p a r t ic u la r ,  very high energy 
d e n s it ie s  have been achieved w ith combinations o f the ra re -e arth s and these are 
now sp e c ifie d  in  p lace o f  the more conventional ceramics or a llo y s  in  some ap p lica ­
t io n s . However in  many other ap p lica tio n s they must be ruled out on the grounds o f 
co st  alone. In  the f ie ld  o f e le c tr ic  tra c t io n  or automobile components, fo r  
example, c o s t  i s  a very important fac to r and the inexpensive fe r r it e  m ateria ls are 
u su a lly  sp e c if ie d . On the other hand, a servo system may requ ire  a high-performance 
stepper motor and’ in  th is  case high energy-density magnets may well be used. Thus, 
any design routine  must be f le x ib le  enough to incorporate a wide range o f magnet 
m ateria ls and be ab le  to work w ith in  the lim ita t io n s  imposed by the app lica tion  
( s iz e ,  c o s t ,  performance e tc .) to produce designs which meet the o r ig in a l 
sp e c if ic a t io n .  I t  must a lso  be able to consider new magnetic m ateria ls as they 
become a v a ila b le  and h ig h lig h t  the b en e fits, i f  any, o f u sing  them. Therefore some 
means of comparison o f  designs using both new and e x ist in g  m ateria ls  should a lso  be 
possib le .

The modern high-speed d ig i t a l  computer i s  an ideal base on which to bu ild  a 
design  process o f th is  nature and as an example a procedure developed fo r  the design  
o f ax ia l f ie ld  d .c . machines w i l l  be described. These machines have found varied  
ap p lic a t io n s  ( 1,2) and are unconventional in  that the armature i s  shaped l ik e  a d isc  
and contains no iron  (F ig .  1 ). Thus the magnetic a i r  gap tends to be la rge  compared 
with conventional machines and th is  often d ic ta te s  the choice o f magnet m a te r ia l.(3)

Optimum use o f  Permanent Magnets

F ig . 2 shows the demagnetisation ch a ra c te r is t ic s  fo r  several types o f magnet 
m ateria l. To achieve the maximum energy from a given volume o f material the pro­
duct o f the f lu x  d en s ity  and m agnetising force should be a maximum. Th is ideal 
working p o in t, BH , i s  shown fo r each m ateria l. I t  i s ,  however, not always 
poss ib le  to  achievexthese cond ition s in  practice  and a motor spec ifica tion , often  
d ic ta te s  some departure from BH . I f  a high to rq u e -to -in e rtia  ra t io  i s  required 
an a llo y  magnet may be used welTaup the demagnetisation curve sim ply to achieve the 
highest p o ss ib le  working f lu x  density. Another example i s  motors fo r  battery  
e le c tr ic  t ra c t io n . The e ff ic ie n cy  o f such a motor gene ra lly  increases with the 
working f lu x  density . As A ln ico  m ateria ls are u su a lly  too expensive to be con­
sidered in  th is  a p p lic a t io n  fe r r it e  m aterial may often be worked above the BHmax 
point on the curve to g ive  some compromise between co st and good e ffic ien cy .

A d isadvantage o f  A ln ico  is  that in  order to operate a t  BH i t  must e ither 
bo magnetised in  s itu  or keepers must be used. This i s  due to ' the non-linear 
c h a ra c te r is t ic  o f the demagnetisation curve and as can be seen from F ig .  2, fe r r ite  
and rare -earth  m ateria ls  do not su ffer from th is  lim ita t io n . Further consideration  
o f the cho ice  o f magnetic m ateria ls i s  given in  references 3 and 4.

Computer Techniques

The advent o f  the d ig i t a l  computer not only elim inated many long and tedious 
hand c a lc u la t io n s  but a lso  made possib le  op tim isation  techniques which were not 
prev iously  attempted. I t  i s  to  th is  type o f ap p lica tio n , where a set o f
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ca lc u la t io n s  may be performed many times over, that the computer i s  idea lly  suited. 
The design  parameters o f  a motor, fo r  example, could be given some in i t ia l  values; 
from these the expected performance i s  ca lcu lated  and compared w ith the required 
performance, and f in a l l y  the design parameters are modified in  some way to try  and 
improve the agreement between required and calcu lated performance. The whole pro­
cedure i s  then repeated u n t il the agreement 1s c lo se  enough fo r  a l l  practical 
purposes. Methods o f  th is  nature form the basis  o f  mai\y design  programs or design  
'so ftw a re '.

When applied  to  the design o f ro ta tin g  e le c tr ica l machines an added advantage 
1s  th a t changes in  the design  parameters (number o f poles or c o l l s ,  wire gauge etc.) 
may be made re a d ily ,  and qu ick ly  assessed, and i t  1s possib le  fo r  a program to con­
s id e r  a wide range o f  these values in  the search fo r  the optimum design . The 
accuracy o f  the f in a l  design  obviously  depends on the mathematical re la tion s used 
1n the computer program; 1t  i s  p o ss ib le  to spend many man-years developing software 
which 1s s u f f ic ie n t ly  accurate fo r  general use. ..

' When design ing permanent magnet motors there must be some means ava ilab le  of
^ s to r in g 'd a ta  re la t in g  to  the magnet m aterial to be used, in  p a r t ic u la r  the relevant 

portion  o f  the B-H c h a ra c te r is t ic .  Th is could be written into  the computer program, 
although fo r  general usage 1t w ill  be found more convenient to sto re  th is  Informa­
tio n  separately and access the relevant portion when required. Excursions about 
the BH point are  e a s i ly  allowed fo r  in  th is  way. • , v-''>.««-—

Once the software i s  w ritten the next step i s  to run i t  in  the most con­
venient way. Perhaps the most basic and fa m ilia r  method i s  to punch out the pro­
gram on cards, add cards contain ing the necessary data inputs (power and speed re ­
quired, s iz e  l im ita t io n s ,  e tc .) and then allow  a computer operator to handle the 
actual run. Inform ation from the program (the required design parameters) w ill  
normally be printed out on the central lin e p r in te r  and returned to the designer 
fo r  consideration . A fa s te r  method e n ta ilin g  more user involvement i s  to w rite an 
'in te ra c t iv e ' computer program and then use a remote terminal (F ig .  3 ). Here, the 
designer types 1n h is  requirements and the program is  executed immediately with the 
re su lt s  d isp layed  a t  the terminal screen, and a lso  printed out i f  required. An 
important bene fit from th is  technique i s  the f a c i l i t y  to a lte r  any o f  the design
sp e c if ic a t io n s  w h ils t  a t  the terminal -  the e ffe c t o f any change may be assessed a ___
few seconds a fte r  i t  i s  made. A l l  the software described here i s  o f  th is  in teractive
nature.
■K.V.Ì • gL »• ' ■ I '

• -*-V. ’ ' * » -  . ^  . I . jj* • . ... »• • • •.• ■■■ >
. A fu rther advantage 1n using the computer i s  i t s  a b i l i t y  f o r  graphical 

representation. Th is enables design re su lt s  to be considered in  a more meaningful 
form and a wealth o f software has been w ritten (by others!) and some incorporated 
in to  the design procedure which w ill g ive  the predicted performance curves.
Graphical output may be seen a t  the terminal o r, more u su a lly , as hard copy from a 
p lo tt in g  device. Of a l l  the benefits th a t the d ig it a l  computer can bring to a 
design  process i t  i s  the time saved th a t i s  most apparent. To consider two or 
three design  a lte rn a t iv e s ,  even with the a id  o f a c a lcu la to r, can be a long process. 
The computer program that has been developed covers some 40 d if fe re n t  a lternatives  
1n le s s  than seven seconds o f  computer time, although the hard copy w ill take 
s l ig h t ly  longer to produce. With the introduction  o f low -cost, microprocessor-based 
desk top computers 1t  may soon be common fo r  even small companies to have such 
design  f a c i l i t i e s  in-house.

Software Development

The development o f  computer programs su itab le  for the design  o f  a x ia l- f ie ld  
d .c. machines has taken place over a period o f years with continued refinement and 
updating o f  the rou tine s. The f i r s t  step was to write a program which would deter 
mine the performance o f  a machine when given a l l  the design data. (5) This was a
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set o f one-o ff c a lc u la t io n s  and the onus was very much on the designer in h is  
choice o f  parameters. There was o f course no guarantee th a t the motor would per­
form as Intended, and u su a lly  several attempts were needed to  give a sa t is fa c to ry  
re su lt .  I t  was decided to improve on th is  by allow ing for parameter change and 
introducing the in te ra c tiv e  f a c i l i t y  so that the designer i s  s t i l l  ab le  to make 
changes according to h is  experience. This i s  now the second stage o f  a two-stage 
procedure and the f i r s t  stage  presents a lte rn a tive  designs encompassing a wide 
va r ia t io n  in  parameters such as po les, c o i ls  etc. The only input needed here i s  
the power, vo ltage  and speed required, along with the choice o f  magnet m ateria l.
A ll  o f the re su lt in g  designs w ill  meet the o r ig in a l sp e c if ic a t io n  to w ith in  a given  
tolerance. R e str ic t io n s  may be imposed i f  necessary and as the program i s  f u l ly  
in te ractive  prompts are supplied where appropriate so that the operator need have 
no working knowledge o f computer programming. Selected parameters are varied over 
a wide range and the re su lt s  are output as described e a r lie r .

A s im p lif ie d  flow chart o f th is  stage i s  given in  F ig .  4 and although the pro­
gram n ecessarily  contains much mathematical manipulation the basic re la t io n sh ip s
may be summarised as fo llow s. With reference to F ig s .  4 and E :-

R2 = f(n ,P ,V ,B m)

where R~ i s  the outer a c tive  rad iu s, n i s  the ro ta tio n a l speed, P the power 
output, c V the operating vo ltage  and B the f lu x  d e n s ity  on the magnet BH 
curve. m

R-j = R2//T

where R. i s  the inner ac tive  rad iu s. This re la t io n  has been found ( 6) to g ive  
maximum power fo r  a given  motor diameter.

The in i t ia l  number o f  poles depends on the value o f R2 , while the wire 
gauge, number o f p a ra lle l paths, c o i l s  and turns per c o il are chosen
according to the power, vo ltage  and speed. The a irgap  i s  determined from the gauge 
of wire spe c ified  with an allowance made fo r  d isc  th ickness and a su itab le  running 
clearance. The magnet dimensions may now be calcu lated from the number o f poles, 
a irgap , R2 and the operating point on the BH curve.

The predicted power and speed are then calcu lated  and compared with the r e ­
quired values. I f  agreement i s  not c lo se  enough a co rrection  fac to r i s  applied and 
the en tire  procedure repeated. When one p a rt icu la r  design  has been f in a lise d  the 
re su lts  are stored and new values o f  poles and/or c o i ls  taken. These values over­
ride  those set i n i t i a l l y .  A fte r a l l  v a r ia t io n s  have been allowed fo r  a complete 
set o f re su lts  i s  output with an in d ica t io n  o f the optimum designs in  terms o f  
e ffic ie n cy  and power density  (power per u n it weight). Although th is  summary i s  
extremely condensed i t  does represent the ite ra t iv e  nature o f  the process.

The second stage o f  the design procedure may be considered even more b r ie f ly .  
B a sc ia lly  data derived from stage one i s  input, with the op tion  o f m odification  to 
any parameter. The performance i s  ca lcu lated  and the re s u lt s  output as before with 
the option o f graph ics. Additional m odifications may then be made and the process 
repeated. A flow chart i s  given in F ig .  6. Examples of numerical and graphical 
re su lts  are shown in  F ig s .  7 and 8 , respective ly.

P ractica l App lication

Many machines have been designed and b u i lt  using t h is  process and the 
ap p lica tion s include a low -in e rtia  d rive , automobile co o lin g  fan , low power tra c ­
tion  and a 20 kW trac tio n  motor i l lu s t r a te d  in  F ig . 9. The program has been 
su cce ssfu lly  used to design motors v/ith vo ltages in the range 12-240 V, powers in
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the range 20 W -  20 kW, and speeds in the range 200 -  18000 rev/min. The only  
l im ita t io n s  are those imposed by the i n i t i a l  sp e c if ic a t io n . For example, i f  a size  
l im i t  i s  imposed the computer w i l l  try  a l l  reasonable means o f producing a design, 
but i f  i t  cannot, then a message w ill be output to t h is  e ffe c t.

Although one p a r t ic u la r  type o f motor has been h igh ligh ted  here, s im ila r  
methods are ap p licab le  to conventional e le c tr ic a l machines. The p rin c ipa l 
advantages are th a t a la rge  sav in g  in  time can be made, many design a lte rn a tive s  
may be compared, excursions a long the BH curve are catered fo r ,  and an assessment 
o f the re la t iv e  m erits o f  d if fe re n t  magnet m ateria ls  may e a s i ly  and qu ick ly  be made.

The software i s  simple enough to be operated by inexperienced personnel and 
there i s  a lso  the p o s s ib i l i t y  o f  using i t  as a learn in g  to o l,  as tedious c a lc u la ­
tio n  i s  elim inated a llow ing concentration on the o ve ra ll e ffe c t o f change in  design  
parameters.
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Fig 6 Flowchart of Stage Two Design



D I S C - 4  {VM í T U N E  H C TQ  R C i .^ I  í '̂-í

DESIGN NO: 235

DE SI GN SPECIFICATION

OUTPUT:  7500.  WATTS
VOLTS:  96. V
SPEED: 34C0• RPH

DESIGN DATA

D 2: 260.  HM 
D l :  171.  MM
POi.ES: 8.

MAGNETIC CIPCUIT DATA

BM 0.642 TESLA 
HM 70722. A/M 
LCCEFF 1. 30 
L ” ACT 1. 20 
PHI .001811 WEBERS 
AL PH# .76 
LMAG 60.0 MM 
WG TH*G 12.86 KG 
THICI« 12.00 MM 
WGTFFR 7 . 23  KG 
GAP 9 . CO MM 
MAGDST 7300.  KG/M**3 
BMS 1.80 TESLA

ELECTRIC CIRCUIT DATA

PATHS 4.
COILS 46.
TURNS 5 .
Z 4 f 0 .
GAUGE l . B O  MM 
WGTWIR 1 .83 K G 
CRTDSY 8. 0  A/MH**2 
ARMCFT 81.43 AMPS 
LOSS 275.69 WATTS 
LAY 2
TEMP 75.  DEGREES 
SF .85
RARH 0. C42 OHMS 
ER 52.61 VOLTS

OUTPUT DATA

Piß. 7: Example o.f Computer Numerical Output





^Armature



DISC ARMATURE TRACTION MOTORS

M.R.N. A l i ,  C. Anscomb and A.E. Corbett (U n ive rsity  o f Warwick)
C.S. Roerig (Moore Reed and Co. Ltd .)

1 . INTRODUCTION

While the major lim ita t io n  on e le c t r ic  vehicle performance remains 

th a t imposed by the lead /ac id  battery every e ffo r t  must be made to ensure 

the most e f f ic ie n t  use o f the energy ava ilab le  fo r  veh icle  propulsion. On 

an energy per un it weight b a s is  petrol can have up to 200 times that o f a 

lead/acid  trac tio n  battery^ with obvious advantages for road transporta­

tio n . Two parameters o f  the e le c tr ic  trac tio n  mctor which have con­

side rab le  bearing on the overa ll veh icle  performance are the e ffic ien cy  

and power density  ( r a t io  o f  motor power to motor w eight). The d isc  

armature d .c. motor i s  superior in both respects to the conventional 

se rie s  wound motor which has been an alm ost un iversal choice fo r  battery  

e le c tr ic  trac tio n  a p p lic a t io n s.

The topology o f  the machine i s  ra d ic a lly  d iffe re n t from conven­

tion a l machines in th a t the active conductors run r a d ia lly  and are en­

capsulated in  a p la s t ic  m aterial (e .g . epoxy re s in ) to form a thin d isc .

I t  is  thus necessary fo r  the working magnetic f lu x  to be oriented in the 

ax ia l d ire c tio n . The machine i s  m u ltipo lar with ty p ic a lly  6 to 12 poles.

As no iron  i s  contained in  the armature the associated lo sse s are elim inated  

but the magnetic a irgap  tends to be re la t iv e ly  long which makes i t  

appropriate to use permanent magnets to  supply the magnetic f ie ld .  The 

e lim ination  o f eddy-current and h yste re sis  losses combined with permanent 

magnet exc ita tio n  lead to the high e ff ic ie n cy  and power density mentioned 

above. The machine d if fe r s  from the printed c ir c u it  ax ia l f ie ld  motor in 

that wound, m u lti-tu rn  c o i ls  are used with conventional commutator and 

brushgear. This has the advantage o f p o te n tia lly  h igher r e l ia b i l i t y ,  

esp e c ia lly  under overload cond itions, as the conductors are shielded from 

the elements. I t  i s  a lso  possib le  to consider a l l  the usual armature 

winding patterns ( la p ,  wave e tc .).  A fte r  winding the ind iv idua l c o ils  

(F ig . 1) they are nested together, connected to the commutator (F ig . 2) 

and the complete assembly i s  then encapsulated in  a purpose-built mould.

The s ta to r  assembly i s  made by f ix in g  the segment magnets to stee l f lu x -  

return r in gs  which can form part o f the motor case. A complete motor 

assembly i s  i l lu s t r a te d  in  F ig. 3.



2 . MAGNET MATERIAL CHOICE
As w ith any permanent magnet machine the choice o f magnet material

2
depends h eav ily  on the machine ap p lica tio n  . A wide range of m aterials is  

ava ilab le  and the c h a ra c te r is t ic  demagnetisation curves o f  a 

representative se le ction  are shown in  F ig. 4. Machines using m aterials of 

higher remanance (o r h igher working f lu x ) tend to have higher values of 

e ffic ie n cy  but unfortunately these m ateria ls are u su a lly  very expensive. 

The re la t iv e ly  long a irgap  in the machine, e sp e c ia lly  in  the traction  

version s, lends i t s e l f  to  m ateria ls o f high co e rc iv ity  although these do 

not provide a high working f lu x  density. C learly  a compromise has to be 

sought but as the machine i s  inheren tly  e f f ic ie n t  i t  has been found 

poss ib le  to produce designs u sin g  the cheapest m aterial ava ilab le 4
(Barium F e rr ite ) which compare very favourably with s im ila r  designs 

using the more expensive m ateria ls (A ln ico  and rare-earth  SmCog). The 

fe r r ite  m aterial i s  worked well above the BHmax po in t on the 

demagnetisation curve (th a t po in t corresponding to optimum material 

u t i l i s a t io n )  and although th is  means a la rge r amount o f  magnet material 

w il l  be required the low cost o f  the m aterial does not preclude th is  with 

the bene fit apparent as a h igher working f lu x  density . However, as the 

f lu x  i s  s t i l l  le ss  than that obtained using any other m aterial a higher 

copper content in  the armature must be sp e c ifie d  to compensate. This in 

turn w i l l  lead to h igher copper lo sse s and thus the machine w ill  tend to 

have a s l i g h t ly  reduced e ff ic ie n cy . While i t  i s  d i f f i c u l t  to generalise  

here an impression o f  the d ifference in  e ff ic ie n cy  between an A ln ico- 

magnet d is c  motor, a ferrite-m agnet d isc  motor and a conventional series  

wound motor may be gleaned from Fig.  5, and although fo r  the reasons ( 

stated the e ff ic ie n cy  o f  the fe r r it e  d isc  motor w i l l  never be as good as 

the a ln ico  version the improvement over the serie s machine i s  quite 

dramatic. One method o f  reducing the e ffe c tive  length o f  the airgap in 

the machine, and thus the amount o f magnet m aterial required is  to in ­

troduce iron  powder in to  the epoxy resin  used for encapsulating the 

armature5 . However, th is  a lso  introduces eddy-current and hysteresis  

losses and re su lts  in  magnetic p u ll between s ta to r  and rotor.

3. USE IN BATTERY ELECTRIC TRACTION

In  the o r ig in a l patent fo r  the design o f  the machine6 e le c tr ic  

traction  was mentioned as a s p e c if ic  app lication  and the early  prototypes 

were b u i lt  fo r  th is  purpose7’ although other, very d iffe re n t applications 

have a lso  been found9 . Of p a r t ic u la r  in te re st is  the concept of motorised



wheel units^' where the e le c tr ic a l machine is  s itu a te d  adjacent to the 

driven wheel and becomes part of the vehicle unsprung weight (F ig . 6).

The un it should be as l i g h t  as possib le  and thus the e le c tr ic  motor i s  

designed to have a very high operating speed (in  excess of 10,000 rev/min). 

Su itab le  gearing must, o f  course, be interposed between motor and road- 

wheel. More recent work has employed the more conventional layout o f an 

inboard motor d r iv in g  the wheels o f the vehicle through reduction gearing. 

(Any so lu tion  in vo lv in g  d ire c t drive of the road wheels generally  

necessitates the sp e c if ic a t io n  o f a heavy and in e f f ic ie n t  machine.)

Various projects have been estab lished  to demonstrate the benefits  

o f  drives using disc-arm ature motors. A machine rated at 96 V, 7.5 kW 

and 3400 rev/min has been b u i lt  fo r  evaluation in  a small e le c tr ic  car 

based on the R e lian t Robin. In th is  project the d is c  motor i s  being com­

pared with an equivalent series-wound motor with both machines designed to  

drive  through the e x is t in g  4-speed gearbox and rear axle. The d isc  motor 

employs magnets o f the a ln ico  type (Hycomax 3) which allow a moderately 

high a ir-gap  f lu x  density  and lead to a very high motor e ff ic ie n cy  (F ig . 5). 

Unfortunately the co st o f a ln ico  material has increased quite dram atically  

during the course o f  the project owing to a large  increase in  the world 

price  of coba lt, and i t  i s  considered that magnet material o f th is  type 

w i l l  not become widespread in  traction  motor usage. A machine using 

fe r r it e  magnets has been developed for use in a hybrid  sports car, the 

Dragonfly Nova (F ig . 7 ). The motor i s  rated at 96 V, 20 kW, 4000 rev/min 

and i s  novel in  that two ro ta tin g  armatures are used in a common magnetic 

c ir c u it .  The motor has two independent output sh a fts  which power the rear 

wheels through be lt-reduction  gearing thereby e lim inating  the need fo r  a 

mechanical d if fe re n t ia l gear. S ig n if ic a n t  sav ings in  weight and cost 1 
re su lt  from adopting the tw in-rotor arrangement rather than two separate 

motors. The veh icle  a lso  employs a disc-armature generator having many 

parts which are common to the motor.

Prototypes fo r  lower power traction  ap p lica tion s have been produced 

inc lud ing  machines rated at 12 V, 900 W, 2500 rev/min; 72 V, 1100 W, 2500 

rev/min; 24 V, 130 W, 2000 rev/min and 20 V, 180 W, 4000 rev/min.

4. MOTOR PERFORMANCE

Although d if fe re n t in construction the d isc  armature motor obeys the 

same fundamental electrom agnetic laws as any ro ta tin g  e le c tr ic a l machine.

As permanent magnets are used to provide a constant magnetic f ie ld  the 

operating ch a rac te r is t ic s  o f the machine are qu ite  straightforw ard.



E s se n t ia lly ,  the ro ta tio n a l speed i s  proportional to the applied voltage  

and the torque developed i s  p roportional to the current drawn. At any 

constant applied  vo ltage  the speed f a l l s  only s l ig h t ly  as the torque and 

current increase. The f ie ld  d is to r t io n  caused by armature reaction  

e ffects  is  n e g l ig ib le  as the a ir-co re d  c o ils  and large  number o f poles 

means that the dem agnetising force per pole i s  quite  sm all. S im ila r ly ,  

no permanent dem agnetisation e ffec ts  have been recorded with any motor of 

th is  type. The low inductance of the armature allow s good commutation 

and thus machines w ith high ro ta tiona l speeds may be considered, leading 

to high sp e c if ic  outputs. As the armature reaction f ie ld  is  n e g lig ib le  

the brush p o s it io n  may be se t on the neutral ax is thus a llow ing re­

generation and motor reversal to be accomplished e a s ily .  As can be seen 

from F ig. 5 the h igh  motor e ff ic ie n cy  i s  maintained over a wide range of 

power output.

An important fac to r in  traction  ap p lica tion s i s  the thermal behaviour 

o f the motor e sp e c ia lly  when related to conditions o f overload.

Conventional motors have a large  mass o f  iron in  the rotor to absorb the 

heat produced by the armature w indings. By comparison the heat storage 

cap ab ility  o f a d is c  armature motor i s  poor and the thermal performance 

must be based upon how q u ick ly  heat from the armature can be d issipated.

The use o f a permanent magnet f ie ld  means, o f course, that there i s  no 

heating from f ie ld  w indings. The armature encapsulation m aterial must be 

able to w ithstand high temperatures w ithout undue f le x in g , but i t  must 

a lso  be able to accommodate expansion o f  the copper i t  surrounds. Good 

heat tran sfe r r e s u lt s  from the armature conductors being close to the 

surface o f the d is c  and the large  surface area presented by the d isc  

geometry. The n a tu ra lly  induced ra d ia l a irflow  can a lso  a s s i s t  in the - 

coo ling process w ith  forced coo ling po ss ib le  under p a r t ic u la r ly  arduous 

conditions o f operation. Extensive te sts  have been carried  out on proto­

type machines in  order to in ve stiga te  the performance parameters 

thoroughly and accura te ly . These include measurement o f armature and case 

temperatures under various loading cond itions and i t  has been found 

p o ss ib le ^0 to  operate the motor with armature temperatures in excess o f  

100° C. I t  i s  necessary however to take into  account the reduction 1n f lu x  

density a t these temperatures, p a r t ic u la r ly  in the case o f fe r r ite  mag­

nets whose re v e rs ib le  co e ffic ie n t  o f demagnetisation with temperature is  

approximately 10 times that o f a ln ico  m ateria ls.



5 . MACHINE DESIGN
The design o f a d isc  armature motor i s  based upon two fundamental 

re la t io n sh ip s .  With reference to  F ig. 8 these are:

P a r23 (.1)

where P i s  the output power and r 2 the outer active  radius (the outer 

radius o f the magnet r in g ) .

r2 = ’r j  r l (2)

where r-j i s  the inner active rad iu s. Equation (2 ) has been found^ to

y ie ld  the maximum power output fo r  a given machine diameter. The constant

o f  p ro p o rt io n a lity  in  equation ( 1) depends on such parameters as magnet

choice, w inding d e ta i ls ,  operating vo ltage e tc ., and i t  has been found

p o ss ib le  to derive an equation re la t in g  these fac to rs  to y ie ld  the

optimum value o f r2 fo r  a given  motor speed, power, voltage, and magnet

m ateria l. Having determined r 2 (and thus r-j) in  th is  manner there are

s t i l l  many design p o s s ib i l i t ie s  a va ilab le  with wide variation  in the number

o f poles and c o i ls ,  fo r  example. Specify in g  too few poles leads to2
excessive ly  long end-windings thereby increasing the associated I R lo ss. 

On the other hand, since  fo r  commutation reasons, a minimum number o f 

c o i ls  per pole must be sp e c if ie d , a large  number o f  poles can re su lt in  

an excessive number o f  c o ils  and commutator segments and ultim ately in  

im practica l so lu t io n s .  A lso magnetic leakage increases with pole number.

I t  would ce rta in ly  be a tedious process to design by hand even several of 

these options fo r  optim isation  purposes, but fortunate ly  d ig it a l computing 

techniques can be used to advantage here. Several programs have been 

w ritten  which ease the burden on the motor designer and the most powerful 

version produces a se r ie s  o f a lte rn a tiv e  designs when given the power, 

speed and voltage requirement. In  add ition , the designs for optimum 

e ff ic ie n c y  and power density are output separately and once a given design 

has been chosen a se t o f predicted performance curves may ad d itio n a lly  be 

produced.^3

6 . MOTOR CONTROL

There are several methods o f co n tro llin g  the speed of a battery 

e le c tr ic  vehicle ranging from the simple but in e ff ic ie n t  re s is t iv e  control 

to complex and expensive e lec tro n ic  chopper c ir c u it s .  The choice o f



c o n tro lle r  re sts  very much with the envisaged app lication . For a vehicle  

which runs fo r  the m ajority o f the time at maximum speed a combination of 

battery sw itch ing and r e s is t iv e  control would probably be the b est option; 

fo r  those intended to operate on pub lic  roads alongside conventional i.c .  

engined veh ic le s an e f f ic ie n t  e le c tron ic  chopper may well be the most 

appropriate so lu t io n . While battery sw itch ing and re s is t iv e  control may 

e a s i ly  be app lied  to d is c  armature motors care must be exercised i f  a 

chopper c o n tro lle r  i s  to  be used. The extremely low value of armature 

inductance means that a high degree o f current ripp le  w ill be l ik e ly  at 

conventional sw itch ing  frequencies. This i s  exactly the opposite condition 

to that found in  the se r ie s  wound motor whose inductance a s s is t s  in sus­

ta in in g  a r e la t iv e ly  constant motor current. The problem may be overcome 

by sp e c ify in g  a h igher sw itch ing frequency although th is  e n ta ils  using a 

power t r a n s is to r  in stead  of the more usual th y r is to r .  There i s ,  however, 

a maximum sw itch ing rate that may be used with tran s isto rs  and research 

i s  continuing in to  th is  important area o f app lication .

7. CONCLUSIONS

The disc-arm ature motor has been shown to have s ig n if ic a n t  advan­

tages when used in tra c t io n  ap p lica tio n s. The e ff ic ie n cy  and power 

density  are improved over comparable d .c. machines and the motor performs 

w ell under cond itions o f  overload. The design o f such motors i s  now a 

stra igh tfo rw ard  process using CAD procedures and, although se le c t in g  

control methods requ ires some care, considerable benefits are nevertheless 

a va ilab le  fo r  battery e le c t r ic  veh ic le s.

}•
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F ig . 2: Armature winding connected to commutator



F ig. 3: Components o f complete motor

a
b
c
d
e
f

- Barium Ferrite
- Fblymer Bonded SmCo^
- Mn-AI-C Alloy
- Sintered SmCo,
Alnico A 
Alnico B

O- Ideal Working Point

H, kA/m

600 400

F ig. 4: C h a rac te r is t ic s  o f permanent magnet m ateria ls



F ig . 5: Comparative motor e ff ic ie n cy  ch aracte ristics

F ig . 8: Schematic o f  magnets with a s ing le -turn  co il
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