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(1.1) In tro d u c t io n .

Surface defects have, within recent years, come to be identified with the ’active 

sites’ f ir s t  proposed by Taylor* in his theory o f catalysis. There have been many 

investigations into the role o f surface defects such as steps, kinks and dislocations in 

surface reactiv ity , and in many instances such defects are indeed found to be associated 

with an enhanced reactiv ity . The reader’s attention is directed to references 2 and 3 

in which some o f this work has been reviewed. Surface defects are by no means the 

only source o f the reac tiv ity  o f metal surfaces however, and the low index planes o f 

a crysta l each exhibit a reactiv ity  which is o ften  found to be markedly dependent on 

the surface orientation.

The aim o f this work is to investigate the effect of surface crystallography, and 

in particu lar the e ffe c t  o f a certain type o f surface defect, the monatomic step, on the 

chemical reac tiv ity  o f surfaces. There are basically two approaches to this problem. The 

most common approach is to investigate a particular reaction on several different samples 

all with d ifferen t surface orientations. An a lternative approach (the one used in this 

work) is to investigate a given chemical reaction on a sample which exhibits a range 

o f surface crystallographies. This la tte r  approach has many advantages and some 

disadvantages as will become apparent in the work which follows.

Tor this investigation, copper and nickel cylindrical single crystals were used which 

had been cut w ith a <110> axis. Thus, a ll three low index planes (001>, (111) and (110) 

were made available as well as the (113) face and a continuum o f vicinal surfaces. A 

unique property o f <110 > axis cylindrical single crystals of face centered cubic metals 

is tha t all step ledges run parallel to the cylinder axis, and this means that fo r  a 

perfect crystal, the kink density is zero. Furthermore, the step density varies in a linear 

manner between the planes (113) and (001), (113) and (111) and between (110) and (111). This

1 J.S.Arlow, 1985
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allows the investigation o f the e ffec t o f monatomic steps, and in particular, variations 

in step density, on the chemical reactiv ity  of surfaces. Such a sample also allows rather 

accurate comparisons to be made o f the properties of the various low index planes.

The analytic technique used in th is work was Auger electron spectroscopy which 

allowed accurate determination o f surface coverages in the sub-monolayer regime with 

good spatial resolution. The reactions studied are carbon and sulphur segregation in nickel 

(chapter 4), and the redox properties of the copper cylinder (chapters 5 and 6). In chapter 

S oxidation experiments on the copper cylinder are described in which two d ifferen t 

oxidizing agents, oxygen and N2O, are used, and the reactions are compared and contrasted. 

The oxygen adsorption experiments also provide a basis for the re-evaluation of two models 

proposed by Armitage* describing the kinetics of adsorption on all the surfaces provided 

by the <110> axis copper cylinder. A simple model describing the crystallographic variation 

of the initial reaction probability of N2O decomposition on copper surfaces is also described 

in this ohapter, and it  is found that the initial reaction probability shows a dependence 

on step density which is non-linear.

In chapter 6, the reduction o f chemisorbed oxygen films on copper single crystal 

surfaces is studied using two different reducing agents, CO and hydrogen, and it is shown 

that even such classically non-plane-specific reactions as these do, in fact, exhibit an 

observable crystallographic anisotropy. Also in chapter 6, the results o f the oxygen 

adsorption and CO oxidation experiments are extrapolated in a theoretical investigation 

o f the oxidation o f CO in a CO/oxygan gas mixture over copper single crystal planes. 

The theoretical treatment allows the calculation o f the ra te  o f CO oxidation, and the 

stationary oxygen coverage in the ’steady state' reaction where the rate o f reduction 

o f the surface is exactly equal to i t ’s rate o f oxidation. In the fin a l chapter, some 

preliminary data are presented on the reaction of chloroform with copper single crystal

- 2 - J.S.Arlow, 1985
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planes, a reaction which also is found to exhibit a s ligh t crystallographic anisotropy, 

and the previous work is summarized.
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(2.1) T h e  A u g e r  E f f a c t .

The Auger e ffec t, discovered by Pierre Auger* in 1925, occurs when an atom is 

ionized in an inner shell and the excited species so produced decays by the emission 

o f an electron. F ig. 2.1 shows the formation o f a core hole by incident ionizing energy 

and its  subsequent decay by one o f two competing processes ; Auger emission or X-ray 

fluorescence.

Both phenomena may be explained in terms of an internal rearrangement of electrons 

within the atom?. An electron o f h igher energy makes a downward transition to fill the 

core hole (the ’down’ electron) and imparts its excess kinetic energy to  either an X- 

ray photon (X-ray fluorescence) or via a Coulombic interaction to an electron of similar 

or higher energy (the 'up' electron) which is ejected from the atom as an Auger electron. 

It  should perhaps be noted by the reader that although the ’up’ and ’down’ electrons 

in the Auger process have been distinguished fo r the sake of this discussion, in reality 

both electrons are indistinguishable as they enter symmetrically in to  the quantum 

mechanical description o f the process. It can be seen that fo r  a K shell core hole o f 

energy Eg and fo r  a ’down’ eleotron o f energy El  ̂ that the X-ray photon emitted during 

X-ray fluorescence will have an energy given by:

hv -  Eg -  ELl (2.1)

The energy o f the Auger eleotron however, depends on the energy of the initial 

state core hole, Eg, the energy o f the ’down’ electron, El j , and the energy o f the ’up’ 

electron El 2 3. Thus, i f  the kinetic energy o f the emitted Auger electron is Egx^ l 2 3, 

then it  can be seen from conservation o f energy that

-  6 - J.S.Arlow, 1985
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•  •

X-Ray emission Auger emission

Fig. 2.1 This figure shows the formation of an atomic core-hole and it ’s subsequent 
decay by either X -ray emission (XRE) or Auger electron emission. In the case of X-ray 
emission, an electron from a higher energy level makes a downward transition to f i l l  
the core-hole, and in the process emits an X-ray photon. In the case of Auger electron 
emission, however, the decay is radiationless and the electron from the higher energy 
level imparts it 's  excess energy to another electron which is ejected from the atom as 
an Auger electron.

-  7 - J.S.Arlow, 1985
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EKL1,L2i3 * EK -  EL l “ EL2 3 <2.2)

where El 2 3 i* the ionization potential o f an atom which is already ionized in the inner 

shell, K. Conservation o f energy also tells us that only those transitions which obey 

the inequality

*4-2,3 * E k -  EL i (2.3)

will be allowed.

As the energy o f the Auger electron is observed to be a function of atomic binding 

energies only, then it  can be seen that each element must have a unique set of possible 

Auger transitions (a unique Auger spectrum) as no two elements have the same set of 

atomic binding energies. Thus, an Auger spectrum can be used as a ’fingerprint’ by which 

a given element may be identified. The use o f electron excited AES to identify surface 

impurities was f ir s t  suggested by Lander^ in 1953. X-ray fluorescence and Auger emission 

are the two competing de-excitation processes a fte r the formation o f an initial state 

core hole and fig . 2.2 shows the relative probabilities for de-excitation after the formation 

o f a X shell core hole as a function o f atomic number fo r  both processes. It can be 

seen th a t fo r elements with atomic number less than about 25, that Auger emission is 

the dominant process, and th is is also true fo r core holes in higher atomic levels, X- 

ray fluorescence spectroscopy is also a vary valuable tool fo r  elemental analysis, and 

because o f i t ’s inherently higher signal to background ratio exhibits a sensitivity similar 

to Auger electron spectroscopy even for light elements. X-ray emission spectroscopy (XRE) 

does not however exhibit the high degree o f surface sensitivity exhibited by AES as

- 8 - J.S.Arlow, 1985
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ATOMIC NUMBER , Z

Fig. 2.2 This figure shows the relative probabilities of Auger electron and X-ray photon 
amission as a function of atomic nuaibar, Z.

The probability o f photon emission (the fluorescence yeild, co) has been calculated
from*?:

to »  <1 + aZ-4)*1
Where a»1.12xi06 for a X-shell core hole.

The probability of Auger emission is given by (1-co).
Although the probability o f X -ray emission is seen to be very small compared to 

the probability o f Auger emission fo r ligh t  elements (Z<25), a consideration of signal to 
background ratios in X-ray and Auger emission spectroscopies clearly shows that the 
two techniques actually have very similar sensitivities.

? - J.S.Arlow, 1985
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the escape depth of the emitted X-rays is much larger than that of low energy electrons.

(2.2) T h e  n o m e n c la tu r e  o f  A u t e r  t r a n s i t io n s .

An Auger emission process involves at least three energy levels W,X and Y which 

may be used to specify the transition unambiguously. W is the energy level of the initial 

state core hole, X is the energy level from which the down electron originates and Y 

is the energy level from which the up electron is emitted. An Auger transition may thus 

be denoted by

where p,q and r denote sub shells within the atomic energy levels W,X and Y. This natation 

has already been used in equations 2.2 and 2.3. I f  X or Y is in the conduction band 

o f a metallic sample, then the convention is to use the symbol V for valence band.

A ll Auger electrons resu lting from a primary vacancy in the K shell are known as X 

Auger electrons, and by grouping together processes involving final vacancies in subshells 

o f X and Y, then it  becomes possible to re fe r to  the KLL or XLM Auger spectrum fo r 

example.

(2.3) Thm e n e r i i e s  o f  A u s « r  e le c t r o n s .

Chung and Jenkins4 have derived an empirical approximation to  the energy of 

an Auger transition Eabc in *n element o f atomic number Z.

UpXqYr (2.4)

EabcG>“E<zH wtEb«>+Eb<Z*i)lH).5CEc<Z)+Ec(Z+lH (2.5)

10 J.S.Arlow, 1985
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The Ej(Z) terms denote the binding energies of the ith levels and the 0.5CEj(Z)+Ei(Z+l)3 

terms take into account the increase in e ffec tive  nuclear charge on formation of the 

initial state core hole.

The energy o f an Auger transition may be more correctly  expressed in terms of 

the binding energies o f the in itia l state levels Ea .Eb and Eq, the interaction energy 

o f the two final state holes /(BC:x) (vhere x denotes the final state) and the intra and 

extra atomic relaxation energies Rjjjx and RgxXi These tvo relaxation energies arise from 

the inward collapse o f the outer electrons towards the core on the formation o f the 

core hole, and th is leads to an increased Coulombic interaction between the core and 

the valence electrons. The in tra atomic relaxation energy arises from the relaxation of 

electrons within the atom, whilst the extra atomic relaxation energy arises from the 

relaxation o f electrons originating from other atoms but which are in the vicinity of 

the atom in question. The relationship between the Auger energy and these parameters 

is expressed in equation 2.6

EABC,,EA"EB_EC“^ BC:X>+RINX+REXX (2.6)

(2.4) Expwrim wnta»! Augm r e l e c t r o n  » p e c t r o i c o p y  <AES).

Two initial requirements for experimental AES are :

(1) Soma form of excitation energy to form tha initial core hole.

(2) Some form of electron energy analyser to energy analyse the backscattered electrons.

i l J.S.Arlow, 1985
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(2.5) E x c i t a t io n .

Tha in itia l axcitation of tha system may be accomplished by beams o f ions, photons 

or electrons incident on the sample. Electron beams are in most common usage as they 

can be easily generated in well focussed high intensity beams in just the right energy 

range fo r AES. A main disadvantage o f electron beams is that focussed high intensity 

beams, which may be desirable for high spatial resolution, can cause electron beam damage 

to tha surface overlayer. Also, electron beams give a rather small signal to background 

ratio as inelastic interactions generate a large background of secondary electrons.

Fig. 2.3 shows a typical secondary electron spectrum run on the Auger spectrometer 

used in the current work. The x-ordinate is the electron energy in eV and the y-ordinate 

is E.N(E) where E is the spectrometer pass energy and N(E) is the number of electrons 

detected at that pass energy.

Obviously, there is a great deal o f information contained in the secondary electrons, 

and for convenience, the secondaries may be classified as follows.

1) TRUE SECONDARIES

True secondaries include the Auger electrons, but by far the greatest number of 

true secondaries are found at low energies in the ’slow* peak ; a smooth hump 

in th e  spectrum comprising o f electrons which exhibit a continuum of energies 

over a range. These ’slow’ electrons arise primarily from plasmon creation processes 

or electron/hole pair production when a true secondary undergoes an energy loss. 

The orig ina lly  wall defined energy o f the true secondary becomes distributed in 

a random manner amongst many electrons, and this randomizing process continues 

until the electrons have insu fficien t energy in teract further. This results in a 

cascade o f low energy electrons whioh exhibit a fin ite continuum of energies. As 

fa r as the Auger spactroscopist is concerned, the information content o f these
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(a)

Fig. 2.3 This figurs shows (a ) a typical secondary slsctron spsctrum and (b ) a typical 
darivativa moda Augar spactrum run on tha apparatus usad in this invastigation.
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slow electrons is zero, and they are the cause o f the low signal to background 

ratios found in AES as they form a large background on which the small Auger 

peaks are superimposed.

2) INELASTICALLY SCATTERED ELECTRONS

Inelastically scattered electrons are generally found at higher energies and are 

those electrons which have been back-scattered from the surface after undergoing 

some sort o f quantized energy loss. Energy losses may occur to create molecular 

vibrational and electronic excitations in the adsorbate and plasmon and phonon 

excitations in the adsorbent. Fig. 2.3 clearly shows a plasmon energy loss peak 

in nickel which is situated about 20eV below the elastic peak. Electron energy 

loss spectroscopy, (EELS), which is the spectroscopy o f these inelastically 

backscattered electrons, is an important tool in the investigation of adsorbate- 

adsorbent bonding.

3) ELASTICALLY SCATTERED ELECTRONS

The elastically scattered electrons are those electrons which have been 

backscattered without undergoing any energy losses, and in the secondary electron 

spectrum they form a huge spike at the primary beam energy. I f  the surface exhibits 

order over a range comparable to the coherence width o f the incident electron 

beam, then the elastically backscattered electrons, which have all undergone Bragg 

reflections from the f ir s t  few atomic layers, may be made (with the aid of suitable 

optics) to form an electron d iffraction  pattern. This teohnique is known as low 

energy electron d iffra ction  (LEED) and is perhaps the most important technique 

in surface science for the elucidation of surface crystallography as the diffraction 

pattern observed is the image of the surface net in wavevector (k) space.
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(2.6) E le c t r o n  e n e r g y  a n a ly s e r s .

Many d ifferen t electron energy analysers are in common usage and a useful review 

o f the more common types may be found in Sevier®. Only two types o f electron energy 

analyser will be discussed here, the retarding field analyser (RFA)^, and the hemi-cylindrical 

m irror analyser (HCMA) which was used in the current work. The RFA will be discussed 

in some detail as i t  is s till the most common electron energy analyser used fo r AES 

as it  has the advantage that it  may also be used for LEED.

(2.7) T h e  jre tau rd ing fim ld  a n a ly s e r  <RFA).

A typical set o f LEEO/Auger optics is shown schematically in Fig. 2.4. The optics 

consist of three concentric grids (or four i f  higher resolution is required) and a fluorescent 

screen. Generally, the primary electron beam will be generated by a low energy electron 

gun which will be situated so as to pass the beam across the face o f the grids to strike 

the sample at grazing incidence, or, alternatively, to  pass the beam along the axis of 

the grids through an earthed d rift tube (see Fig. 2.4). The beam will then strike a grounded 

sample positioned accurately at the centre o f curvature of the grids. Grazing incidence 

is generally preferred as this increases the sensitivity. Electrons from the grounded sample 

then travel radially outwards in the fie ld  free region between the sample and the first 

o f the grids which is also grounded. The phosphor screen is biased a few hundred volts 

positive with respect to earth in order to act as an electron collector, and the second 

and third grids are connected to a ramp generator which supplies a ramp voltage, V. 

An isolating transformer is used to impress a small modulating voltage rsin(cot) on this 

ramp. I f  the optics also have a fourth grid  , then th is is usually tied to earth in order 

to prevent A.C. coupling between the collector and grids two and three.
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consist of three concentric grids (or four i f  higher resolution is required) and a fluorescent 

screen. Generally, the primary electron beam will be generated by a low energy electron 

gun which w ill be situated so as to pass the beam across the face of the grids to strike 

the sample a t grazing incidence, or, alternatively, to pass the beam along the axis of 

the grids through an earthed d rift tube (see Fig. 2.4). The beam will then strike a grounded 

sample positioned accurately at the centre o f curvature of the grids. Grazing incidence 

is generally preferred as this increases the sensitivity. Electrons from the grounded sample 

then travel radially outwards in the fie ld  free region between the sample and the first 

o f the grids which is also grounded. The phosphor screen is biased a few hundred volts 

positive w ith respect to earth in order to aot as an eleotron collector, and the second 

and third grids are connected to a ramp generator which supplies a ramp voltage, V. 

An isolating transformer is used to impress a small modulating voltage rsin(cot) on this 

ramp. I f  the optics also have a fourth grid , then this is usually tied to earth in order 

to prevent A.C. coupling between the collector and grids two and three.
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Fig. 2.4 This is a schematic o f a typical retarding field  analyser vh ich  may be used 
fo r either LEED or Auger. In Auger mode, the analyser collects all electrons with energy 
greater than eV, where V is the retarding potential applied to 03 and 04.
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I f  tha retarding voltage is V, and the charge on the electron is e, then only 

those electrons with energy greater than eV will be able to overcome the potential barrier 

generated by the second and th ird grids and reach the collector. Thus, the current at 

the collector is given by :

Where N(E') is the number o f electrons with energy E’. It  can be seen that in 

order to acquire the energy distribution o f the electrons N(E’) from I(V), the signal at 

the collector must be d ifferen tia ted . Fortunately, this can easily be accomplished 

electronically using modulation techniques. For a ramp voltage V+dV where dV*ksin(o>t), 

the collector current, I(V+dV) may be expanded as a Taylor polynomial .-

Where I'(V)=dI/dV etc.

The terms corresponding to the d ifferen t harmonics of the modulating frequency 

may be collected together, and so;

assuming tha t k3 and h igher terms can be neglected. It  can be seen that fo r  small k, 

the fundamental frequency term is proportional to I’(V) and hence to N(E’). The second

E
<2.7)

I(V+dV) -  I(V) + I’(V)dV + I”(V)dV2 . r ’(V)dV3 I,m(V)dV4 +
21 3! 4!

(2.8)

ICV+dV) ■ I0(V) +tI’(V)k+ I"’(V)k3
T “

+..3sin«t -[ I”(V)k2  ̂I””(V)k4 
4 48 +.Jcos2cot

*  Iq(V) + I’(V )ksin»t - r ,(V)k2cos2mt
4 (2.9)
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harmonic is proportional to N'(E'), and th is is true even for larger k values as the next 

higher k term is k*. In practice almost all Auger spectra are recorded in the N’(E’) mode 

by using a lock-in amplifier which is tuned to the second harmonic.

The resolution o f the RFA is limited by local variations in the potential at the 

fir s t  grid and the retarding grid, deviations of the grids from spherical geometry, finite 

beam sizes and poor sample positioning. Variation in the work function of the grids may 

also present problems as may stray magnetic fields. In practice, retarding field analysers 

generally exhibit a resolution (p) o f between 60 and 500. p is defined as the pass energy 

o f the analyser, E, divided by the energy spread, AE^, o f the electrons transmitted by 

the analyser at that pass energy.

<2.8) T h e  C y l in d r ic a l  m irro r- a n a ly s e r  (CMA).

This device was first used by Blauth7 and was later drawn attention to by Palmberg 

et al® who showed that the CMA was particu larly suitable fo r  AES because of its high 

signal to noise ratio  and high transmission. The CMA, in contrast to the RFA (which 

acts as a high pass filte r), acts sim ilarly to a band pass f i l t e r  rejecting all electrons 

outside o f an energy window AE at a given pass energy, E. As the irreducible shot- 

noise in an analyser is proportional to  the square root o f the collector current, this 

means that the CMA will have an in trins ica lly  higher signal to  noise ra tio  than the 

RFA which collects many more electrons at a given pass energy which contribute nothing 

to the signal.

The CMA is a deflection type analyser consisting of two coaxial cylinders of radii 

r l  and r2 with annular entrance and ex it slits cut in the inner cylinder. In operation, 

the inner cylinder is earthed and a deflecting potential V, is applied to the outer cylinder. 

Fig. 2.3 shows schematically the analyser used in the current work. This analyser was
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Align trace

Fig. 2.3 This is a diagram of tha hami-cylindrical mirror analysar (HCMA) used in tha 
currant invastigation. Electrons with tha righ t anargy travel through the analysar as 
shown and strike tha scin tillator. Tha main advantage of tha HCMA as compared to tha 
RFA is the fa c t tha HCMA only collects those electrons in an anargy window £AE about 
tha analyser pass energy, E. This leads to a much higher sensitivity.
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Align trace

Fig. 2.3 This is a diagram o f the hemi-cylindrical mirror analyser (HCMA) used in the 
current investigation. Electrons with the right energy trave l through the analyser as 
shown and strike the scintillator. The main advantage o f the HCMA as compared to the 
RFA is the fact the HCMA only collects those electrons in an energy window iAE about 
the analyser pass energy, E. This leads to a much higher sensitivity.
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a V.G. hemi-CMA (HCMA), and d iffered  from the more conventional devices only in that 

the coaxial cylinders had been sliced axially and the upper halves replaced by an electron 

gun. Conventional CMAs w ill usually have an axial gun or a separate electron gun which 

is arranged to be at grazing incidence to the sample. The geometry o f the HCMA happens 

to be well suited to work on cylindrical crystals as the beam can easily be arranged 

to be at off-normal incidence to the sample (g iv ing a s ligh t increase in sensitivity in 

AES) and also in the plane containing the axis of the crystal and the sample normal.

In the CMA, electrons travel in a toroidal path and are brought to a focus on 

the axis. A small annular s lit  placed just before the focal plane is usually employed 

in order to increase the resolution. The V.G. HCMA was also equipped with fringing plates 

to compensate fo r  field  distorsions at the ends o f the hemicylinders, and a post energy 

analysis filte r , the 'align trace', whose function was to reject secondaries generated in 

the analyser, and so increase the signal to noise ratio. The current reaching the collector, 

1(E), in a CMA or a HCMA is given by equation (2.10)

1(E) -  XAEN(E) - KREN(E) (2.10)

Uhere X is a constant fo r  a particu lar analyser and geometry, R is the resolution AE/ 

E which is a constant, E is the pass energy and N(E) is the number of electrons collected 

at that pass energy.

In the case o f the V.G.HCMA, the electrons leaving the align trace region were 

then accelerated to a scin tilla tor which was kept at a high potential o f 6 to 10 kV 

w ith  respect to earth. The flashes o f light produced at the phosphor then passed through 

a glass window and impinged on a photomultiplier situated externally to the vacuum. This 

device produced a large current proportional to the signal.
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One o f the advantages o f the CMA (and HCMA) is that it  is a double focussing 

analyser and has second order focussing for electrons leaving an axial source and entering 

the analyser at the ideal entrance angle of 42.3* to the analyser axis. Consider the Taylor 

series for the focal distance L about the ideal entrance angle 0Cq :

Where An is the deviation o f the secondary electron beam angle from the ideal 

angle. A t ot=cc0«42.3*, the f ir s t  non vanishing partial derivative is (d>L/8a>)|Ra. I t  follows 

from this that fo r  electrons leaving the source at angle cc0+Aoc to the CMA axis, the 

image o f the source is at a distance proportional to Aa] from the focal point. This means 

that larger deviations from the ideal angle for a given resolution are possible than would 

be the case i f  the focussing were f ir s t  order where the f ir s t  non vanishing in tegral 

is the second.

As with the RFA, the output current of the CMA may be differentiated electronically. 

This is done by applying small sinusoidal modulating voltage, ksincot, to the outer plate 

usually via an isolating transformer. This causes a modulation o f the output current 

IlE+eksinCwt)] which may be expanded as follows :

The amplitude of the I’(E) term corresponds to the first harmonic, and using equation

(2.10) this may be written as :

(2. 11)

I(E + eksinut) ■ 1(E) ♦ eI'(E)ksincot + e2l"(E)k2sin2cot +
(2.12)21
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I(a>) »  ekl’(E) = ekK .  ekKRCN(E) + EN’(E)3 (2.13)
A E

It can be seen th a t the f ir s t  harmonic (which may be detected by using a lock- 

in amplifier) is not the pure derivative o f the output current as it  also contains an 

N(E) term. This term only becomes important at low energies however as EN(E) becomes 

small.

(2.9) Q u a n t ita t iv e  AES.

Consider the expression derived by Prutton9 for the total Auger current observed 

i£, in an experiment.

i^ «  ^  I0Tr(l-a>)4>sec4i (2.14)

Where 10 is the incident electron current, r is the backscattering factor (which increases 

the e ffec tive  value o f ID), ♦  is the ionization cross-section of the atom, $ is the angle 

o f the incident beam to  the surface normal, t  is the escape depth, <o is the fluorescence 

yield (the proportion o f  the decays lost to the competing process of X-ray fluorescence), 

and 8  is the solid angle accepted by the analyser. Also, the current actually measured 

will have been modified by the instrumental response function o f the analyser plus 

electronics. It can be seen then, that quantification of AES will be rather difficult and 

indeed, the d ifficu lty  involved in determining all o f these parameters is prohibitive to 

most workers. Generally, AES is quantified by using calibration  techniques based on 

prepared standards. This will be the approach used in the present investigation.
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<2.10) A d so rp t io n  on  s u r fa c e s .

Any free surface has associated with it  a surface energy which may be considered 

as arising from the bond breaking necessary to form the surface by cleaving the bulk 

solid^'iO'l*. The newly formed surface will undergo intrinsic relaxation processes such as 

surface relaxation and reconstruction, faceting and defect formation and change in band 

structure, but will be unable to completely eliminate the e ffe c t  o f the bonds lost at 

the surface. Thus a free relaxed surface may be likened in reactiv ity to a free radical 

or to an unsaturated molecule and w ill readily undergo chemical reactions in order to 

bring about a reduction in its excess surface energy. This minimization of surface energy 

is the driving force for all segregation and adsorption phenomena.

The forces binding adsorbate to adsorbent are the same as those which operate 

between two atoms or molecules except that the situation is made more complex by the 

fa c t that one o f the species is also bound in a solid matrix. The forces comprising the 

adsorbate/adsorbent interaction may be summarised as follows ;

(a) Attractive Van der Uaals forces.

(b) Repulsive overlap forces arising from the Pauli exclusion principle.

(c) Dipole interactions.

(d) Valency forces (responsible for chemisorption).

(e) Adsorbate/adsorbate interactions.

(2.11) P h y s iso rp t io n .

This is considered to be due to the superposition o f the attractive, long range 

Van dar Uaals forces and the rather shorter range repulsive overlap forces. Generally, 

a Lennard-Jones type expression fo r the resultant force will be applicable. Thus, for 

two isolated gas atoms we may write :
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E = (2.15)

Where E is the energy o f the interaction, r  is the separation o f the atoms and a,b,m 

and n are suitable constants. The adsorbate/adsorbent interaction is much more complicated 

than this however, as the adsorbate will interact in a complex manner with many adsorbent 

atoms. The required interaction potential w ill thus be the superposition of many such 

potential equations. F ig. 2.6 shows a hypothetical potential curve (curve P) fo r  the 

physisorption o f an atom onto a surface. The heat o f physisorption is the depth of the 

potential well, Ep. Physisorption energies are typically less than about 0.25eV and the 

physisorption bond is weak.

(2.12) Chem isorption .

In contrast to physisorption, chemisorption represents a much stronger bond between 

adsorbate and adsorbent, typically o f the order o f several eV in energy. Fig. 2.6 shows 

simplified potential curves fo r  the approach o f a molecule Y-Y to a surface and its 

subsequent dissociative chemisorption. The height o f the energy barrier Ea relative to 

the energy zero represents the magnitude o f the activation energy fo r  chemisorption, 

and it  is this energy barrier which controls the rate o f the chemisorption reaction. 

The depth o f the potential well, Ec, is the energy o f chemisorption, and the energy well 

Ep is the energy o f adsorption into the precursor state whioh is in this case identified 

with a physisorbed state. I f  Ea is grea ter than zero, then the process is said to be 

activated. The energy 0 is the dissociation energy of the species Y-Y.
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o
CL

Chemisorption

Fig. 2.6 This figure shows the hypothetical potential experienced by a molecule Y-Y 
approaching a surface along a reaction co-ordinate which is normal to the surface. X 
represents the surface, Y-Y is a diatomic molecule and 0 is the dissociation energy of 
Y-Y. The energies Ep and Ec are the energies for physisorption and chemisorption 
respectively, where curve P represents the physisorption potential and curve C represents 
the chemisorption potential. Ea is the activation energy barrier associated with the 
chemisorbed state, and (Ea-E p) is the energy barrier between the physisorbed and 
chemisorbed states.
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(2.13) The in flu e n c e  o f  s u r f a c e  c ry s ta l lo g r a p h y  on  p h y s is o rp t io n  and  

cham isorption .

The above discussions o f physisorption and chemisorption are simplistic in many 

ways, particu larly in tha t they ignore the surface crystallography and assume perfectly 

planar surfaces. For real crystallographies, there are many energetically distinguishable 

adsorption sites and so the adsorbate may reside on the surface in many different states. 

These states v i l l  be separated in energy by energy barriers determined by the crossing 

points o f complex physisorption and chemisorption potentials and it  is these potential 

barriers which control the rate o f transition from one state to another. Because of the 

re lative ly short chemisorption bond length, the local surface crystallography can be 

expected to have a profound influence on the chemisorption potential. The physisorbed 

state, however, can be expected to be much less aware of the local surface crystallography 

as the bond length is much greater.

<2.14) T h e  e f f e c t  o f  a d s o rb a ta / a d s o rh a te  in te ra c t io n s .

When two adsorbate molecules come into close proximity on a surface, interactions 

o f a repulsive or a ttra c tive  nature will oome into play between them. These adsorbate/ 

adsorbate interactions can have a profound e ffec t on the chemisorption potential well. 

These interactions may cause an increase or decrease in (a ) the depth of the chemisorption 

potential wall, (b ) the activation  energy fo r adsorption or (a ) the equilibrium distance 

o f the adsorbates from the surface.

<2.15) M echanism s f o r  chw m isorption  and m daojrptlon kinmtics.

Xing*? (see also re f.11) has proposed two mechanisms for chemisorption; the trapping 

Sr*# mechanism and the trapping dominated mechanism.
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In the trapping free mechanism there is no accommodation in the physisorption 

ve il p rior to chemisorption. This is characterized fo r  chemisorption on adjacent sites 

with a random distribution o f filled sites by a sticking coefficient which is proportional 

to the square of the number o f vacant sites. Thus for saturation defined as 8 * i :

Where sD is the stick ing fa cto r a t zero coverage. Because there is no energy barrier 

to adsorption, the temperature dependence of s(6) will tend to be small.

In the trapping dominated mechanism (the precursor state model), chemisorption 

is preceded by accommodation of the adsorbate into the physisorption well. These precursor 

state species may then undergo surface diffusion prior to either desorption or 

chemisorption. The transition from the physisorbed to the chemisorbed state is controlled 

by the energy barrier between the two states (Ea-Ep) and also by the degree of thermal 

accommodation o f the physisorbed molecules to the surface. This la tte r temperature 

dependence is expressed in a pre-exponential factor which contains the ratio o f the 

translational, rotational and vibrational partition functions for the activated complexes 

fo r  desorption and adsorption, qd/qa, and the initial sticking coefficient may be written 

as :

Where PD is the probability o f forming a precursor state species at zero coverage. If, 

as may be expected, qq is greater than qa and the temperature dependence of the pre- 

exponential term is substantially less than that of the exponential, then i f  P088s0, equation

s(6) * So<i-e)2 (2.16)

Sq ■ Poll ♦ 3d exp (E*~Ep) J“ 1 
q> Kt

(2.17)
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2.17 may be vrittan as :

Sq > AexpC-(Ea-Ep)/kTD (2.18)

This aquation doas, however, make the assumption of a fully thermally accommodated 

precursor state, i t  can be seen from th is aquation that an Arrhenius plot o f loges0 vs. 

1/T « i l l  have a slope equal to (Ea-Ep) and an intercept equal to loggA. If the precursor 

is not fully accommodated however, then the slope « i l l  be somewhat less than (Ea-Ep).

(2.16) The k in e t ic s  o f  r e a c t io n s  b e tw e e n  two g a s e s  ovet* m etal 

s u r fa c e s .

Consider the cata lytic oxidation o f CO by oxygen atoms chemisorbed on a copper 

surface. Langmuir1̂  has pointed out that there  are essentially two extreme mechanisms 

for such a reaction :

(a ) Both molecules are accommodated on the surface prior to reaction.

(b ) Only one molecule is accommodated on the surface, and reaction occurs when 

the other species, impinging from the gas phase, makes a collision with an 

accommodated molecule.

The two possible mechanisms will obviously be characterized by rather different 

kinetics. Mechanism (a ), known as the Langmuir-Hinshelwood mechanism, will be 

characterised by a low in itia l rata o f reaction as the surface is initially saturated with 

oxygen and there are no available sites fo r  the accommodation of CO. The reaction rate 

w ill go through a maximum as oxygen is removed by CO as CO2 (which is desorbed), and 

the number o f vacancies fo r  the CO molecule increases. Finally, the reaction rate becomes 

limited by the low concentration o f chemisorbed oxygen and begins to fa ll to zero. In
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contrast, mechanism (b ), the Eley-Rideal mechanism, predicts a high initial rate which 

fa lls  o ff as the number o f chemisorbed oxygen atoms decreases. This is because the chances 

o f a suitable collision with a gas phase species depends on the number of oxygen atoms 

on the surface. Both these reactions will be discussed in much more detail in chapter 

6.

(2.17) S e t r e ia t io n .

The driving fo rce  fo r  a ll adsorption phenomena is the lowering of the excess free 

energy o f the surface. This force may also cause diffusion o f impurities from the bulk 

to occupy surface sites and so lower the surface energy. This phenomenon is known as 

segregation, and its  equivalence to adsorption was f ir s t  h ighlighted by Gibbs14. In 

segregation, the chemical potential o f the system is controlled by the bulk concentration 

rather than by the gas pressure as in adsorption, and at a given chemical potential, 

the same state would be reached by either experiment once equilibrium had been attained. 

Whilst thermodynamically the two processes may be considered equivalent, it  is obvious 

that the kinetics o f segregation and adsorption will be very d ifferen t as in the case 

o f segregation the segregant diffuses from the bulk, whilst in the case of adsorption, 

the adsorbates impinge from the gas phase. There are many discussions o f the 

thermodynamics o f segregation eg. Oudar10 and Blakely1*, and the readers attention is 

directed to a recent discussion o f the kinetics o f segregation by Rowlands and Woodruff1*. 

As well as kinetic differences between the two processes, there is another very reel 

experimental difference in that chemical potentials accessible by one experiment are often 

not readily accessible by the other. It  is o ften  the case that the low coverages often 

found in segregation experiments would require impossibly low gas partial pressures to 

realise in an adsorption experiment.
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(3.1) In tro d u c t io n  to  c h a p t e r  3.

This chapter describes the equipment used in the present investigation. The Vacuum 

Generators Auger electron spectrometer vhich was used throughout the course o f this 

work will be described in some detail, with particular reference to some major enhancements 

made by the Author vh ich  alloved the device to be computer controlled. The cylindrical 

single crystals (prepared by Arm itage1) v i l l  be described along with a novel method of 

mounting cylindrical samples vh ich  allovs fo r  sample heating as well as accurate axial 

rotation. The operating programs and related so ftva re  fo r  the computer controlled 

spectrometer v i l l  be b r ie fly  described, along v ith  a b r ie f discussion of the application 

of digital smoothing filters to Auger electron spectroscopy.

(3.2) The u lt r a  h igh  vacuum  <VHV) cham ber.

The apparatus consisted o f a conventional stainless steel UHV chamber vhich was 

fitted  v ith  titanium sublimation and ion pumps, and vh ich  had a base pressure a fter 

bakeout o f better than 5x10"*0 t0rr. The chamber was equipped vith  a sample manipulator, 

a Vacuum Generators (V.G.) HCMA, a V.G. high intensity argon ion gun for sample cleaning, 

and a nude Bayard-Alphert type ionization gauge head fo r  pressure measurement. Gas 

from the gas handling line could be admitted into the main chamber via the argon ion 

gun vh ich  vas equipped v ith  a V.G. leak valve, and the chamber could be isolated from 

the main pumping line by using a ba ffle  valve. The main pumping line consisted o f a 

polyphenyl ether diffusion pump vhich vas separated from the experimental chamber by 

a liquid nitrogen cold trap to prevent back streaming o f oil vapour. The diffusion pump 

vas backed by an Edvards ED100 type rotary pump vh ich  vas fitted  with a molecular 

sieve foreline trap to prevent any back streaming o f ro ta ry  pump oil vapours into the 

diffusion pump. Pressures in the backing line were measured with a Pirani gauge head
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situated between the foreline trap and the diffusion pump. The main chamber with pumping 

and gas handling lines is shown schematically in fig . 3.1.

<3.3) The HCMA and  ram p g e n e r a to r .

The electron energy analysis system comprised of a V.G. HCMA (described in section 

2.8) and associated electronics. The voltages fo r  the HCMA outer plate and align trace 

were provided by a V.G. fast scan ramp generator which had been modified by the Authbr 

to accept a 0 to 10V programming voltage from an external source. Thus, as well as 

manual operation, the ramp generator could be computer controlled. The slew rate of the 

in ternal high tension supplies could be as high as lV/millisecond, and so i f  a large enough 

signal was available, Auger spectra could be observed in real time on an oscilloscope. 

The fa s t scan rate also allowed real time observation of the elastic peak in both E.N(E) 

and derivative modes and th is facilita ted  the setting up procedure which involved 

maximizing the elastic peak by adjusting the HCMA to sample distance. An external 

modulating voltage from a Brookdeal lock-in  amplifier was internally amplified by the 

ramp generator electronics and impressed on the outer plate ramp via an isolating 

transformer. The fast scan mode of the spectrometer necessitated a rather high modulation 

frequency o f about 40kHz, and care had to be taken to ensure that capacitive loss of 

the modulation voltage in the connecting cables was not significant. The modulation voltage 

could be manually varied from 0 to 25V peak-to-peak. A d ig ita l vo lt meter was added 

to the ramp generator and was calibrated to display the pass energy o f the analyser. 

The calibration point taken was the carbon peak at 272eV, and the ramp was found to 

be reasonably linear up to about 800eV.
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Fig. 3.1 This figure shows the main pumping line and the gas handling line of the apparatus 
used throughout th is investigation. Gas from the gas handling line was admitted to the 
main chamber via a leak valve attached to the argon ion gun.
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(3.4) The d e te c t io n  system.

As described in section 2.8, the detection system o f the V.G. KCMA consisted of 

a scintillator and an external high sensitivity photomultiplier tube. The scintillator power 

supply was orig ina lly  a V.G.IP80 programmable high tension power supply which was 

internally programmed to 4.5kV. Replacement of the original phosphor by the Author also 

necessitated the modification o f th is supply to be continuously variable between a few 

volts and lOkV as the new V.G. phosphor required a much higher operating voltage. In 

practice, the new scin tilla to r was operated at as high a voltage as was possible (about 

8.5kV), this voltage being limited by coronal discharges and insulator breakdown. The 

output o f the photomultiplier tube was taken directly to the input o f an XY display 

to allow monitoring o f the spectra in the E.N(E) mode and also to the input of a Brookdeal 

lock-in amplifier fo r  analogue d ifferen tiation  by the phase sensitive detection o f the 

f ir s t  harmonic o f the modulated signal (section 2.8). The output o f the Brookdeal was 

taken to an auxiliary input on the XY display and also via a xlO buffering D.C. amplifier 

to a 12 bit analogue to d ig ita l (AO) input port on a GEC 4080 computer which was used 

for experimental control.

(3.5) Thm e le c t r o n  su n  and po w er  supply.

The electron gun used in th is work was a Superior Electronics type SE-3K-5U 

low energy gun which was equipped with XY electrostatic deflection plates and which 

had bean modified to  take thoriated tungsten hairpin filaments. The gun is shown 

schematically in f ig .  3.6 (p.45). Tor Auger use at a constant primary beam energy, the 

A1 and A3 electrodes were earthed and focusing was accomplished by applying a suitable 

voltage to the A2 electrode. The gun was capable o f producing a maximum beam current 

at the sample o f about 4 microamps, and by using a physical imaging system, the spot
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size was estimated to be between 0.25 and 0.5 square millimetres. The electron gun power 

supply was designed and made by the University of Warwick Physics Department electronics 

workshop, and proved to be both highly stable and reliable.

(3.6) The p h y s ic a l im aging system .

The imaging system comprised o f a control box to drive the XY deflection plates 

o f the electron gun, a high impedance, low noise head amplifier to amplify the crystal 

current and an XYZ display to display the image. Both the head amplifier and the control 

box were designed and built by the electronics workshop. The box provided both X and 

Y sh ift and raster facilities and by feeding the raster to the X and Y inputs of the 

display and the amplified crysta l current to the Z input, an image o f the sample could 

be displayed. Because o f the rather stringent focal requirements o f the HCMA and the 

unusual geometry o f the sample, electron beam imaging was found to be essential to the 

correct alignment o f the system fo r AES. The imaging system also provided a useful 

diagnostic fo r  any faults in the electron gun. The head amplifier could be used with 

several signal sources:

(a ) The crystal current. This was the usual signal source for the head amplifier, 

and was utilised by connecting the head amplifier to the thermocouple wires which 

were spot welded to the top of the cylindrical samples.

(b ) The output o f the photomultiplier tube. Because o f the high noise content of 

this source, the resultant image was v irtually  useless. This precluded any useful 

attempts at scanning AES.

(c ) A copper gasket which had been coated with colloidal graphite and suspended 

in the vacuum chamber. By biasing the gasket a few hundred volts positive and 

connecting the head amplifier, a secondary electron image o f the sample could be
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obtained.

(3.7) The a r g o n  ion  gun.

Sample cleaning was accomplished by a combination of argon ion bombardment while 

the crystal was rotated under computer control (typically, for the copper sample, 40 minutes 

o f continuous rotation at a beam density o f 5pAcm- 2 and a beam energy of 0.5 to 1.5kV) 

followed by annealing to a suitable temperature. Because of the rather large surface 

area o f the cylindrical samples, a V.G. h igh  intensity ion gun was used. The ion gun 

was equipped with a large permanent magnet for ion beam focusing, and this was always 

removed prior to AES as it  was found to bend the electron beam.

<3.8) T h e  c y lin d r ic a l s in g le  c r y s t a ls .

The copper and nickel cylindrical single crystals used in this investigation had 

been prepared previously by Armitage*. The samples were accurately aligned by X-ray 

d iffraction  and then spark machined using brass tubes to form hollow cylinders. The 

crystals were then mechanically polished, using diamond paste (down to 0.25 microns), and 

given a b rie f electropolish. The samples were cut from 99.99% pure nickel and 99.999% 

pure copper (Metals Research Ltd.).

The method of preparation outlined above has several drawbacks; the surface finish 

a fte r spark machining is quite poor, and the samples invariably have a small taper from 

top to bottom due to erosion of the brass tube. The Author has found, in some preliminary 

investigations into the preparation o f cylindrical single crystals, that a more satisfactory 

method o f preparing such samples is to mount the aligned single crystal rod axially on 

a rotating chuck, and spark machine parallel to the required axis using the square edge 

o f a brass plate. The plate can be easily replaced i f  any signs o f erosion occur. This 

method was found to produce well aligned samples of almost perfect cylindrical geometry
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with an excellent, almost m irror-like, surface finish. A brass tube may be used to cut 

out the centre o f the cylinder. Unfortunately, lack o f time prevented the Author from 

pursuing this method, and the samples prepared by Armitage were used throughout this 

work.

<3.9) Sample heating .

All the samples used in the current investigation were equipped with chromel- 

alumel T1/T2 type thermocouples and, a fte r in itia l unsuccessful attempts at electron 

bombardment heating, heated radiatively by means o f an axial tungsten filament. The 

temperature o f the sample was originally controlled by adjusting the filament current 

using a Variac which was supplied with a stable input voltage from a Voltstat, but for 

la ter temperature controlled work a temperature control unit was built by the electronics 

workshop which could maintain the sample temperature to an accuracy of about ± 4*C.

<3.10) The sam ple m anipulator*.

The sample manipulator consisted of a V.O. universal motion drive type UMDi which 

provided translations in the XY plane o f 2 cm, a vertica l translation in the Z direction 

o f up to 9 cm and a polar rotation  about the sample axis (the Z axis). In itia lly , work 

was done using the RD1 rotary motion drive supplied w ith  the UMDI which was turned 

by hand. However, because o f the inherent inaccuracies o f the old RD1 drive (non axial 

rotation and poor angular reproducibility) and also the large amount of time taken to 

collect Auger spectra every 5* o f arc around the sample circumference, the drive was 

eventually replaced by a V.O. RD6 rotary motion drive which was then fitted  with a 

U.D. Technologies stepper motor. This enabled the drive to be computer controlled, and 

provided an angular resolution o f 0.9* with a quoted angular reproducibility o f 10.29* 

(the half step angle o f the motor). This compared very favourably with the estimated
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reproducibility o f £2* o f arc provided by the RD1. The UMD1 XYZ motions were more than 

adequate to position the sample accurately at the CMA focal plane.

<3.11) Sam ple h o ld e rs  f o r  c y lin d r ic a l c ry s ta ls .

The stringent focal requirements of the HCMA require that the sample be accurately 

positioned at the focal plane, and any small deviations from this position lead to large 

variations in the output signal. Indeed, deviations as lit t le  as imm can cause shifts in 

the Auger peak energies o f a few eV and variations in the Auger peak intensities of 

up to  20%. This presents a problem when Auger peaks are to be recorded around the 

circumference o f a cylindrical sample, as any eccentricity in the sample rotation  will 

cause the point o f analysis to move to and fro along the HCMA axis and so cause significant 

Auger peak position and intensity changes. This is not too important a problem however, 

as th e  net e ffe c t  o f this is to cause a single smooth sinusoidal oscillation of the Auger 

peak amplitudes around the 360 degrees o f crystal rotation. The crystallographically 

dependent e ffec ts  are superimposed on this oscillation and may be easily distinguished 

from it  by the ir 2mm point group symmetry (derived from that of the <110> axis cylinder) 

and the much smaller angles o f arc over which the features occur.

A much more important e ffect of eccentricity in rotation is the angular distortion 

it  produces in the data. As f ig .  3.2 shows, the angular rotation o f the sample about 

its axis, ®, is not identical to nor linearly related to, the surface plane rotation, 0. 

The a ffec t o f th is is that on one side o f the crysta l more than 180* o f 6 is bunched 

in to  180* of 9 whilst on the other side o f the sample the reverse is true. Tor a crystal 

o f approximately 12mm diameter as used in these experiments, an eccentricity of Just 1mm 

will produce a worst case angular error o f 10*. Without crystal symmetries this would 

be a very severe source o f error. Obviously, fo r convenience and accuracy, the crystal
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Fig. 3.2 This figure shows a plan view o f an eccentrically mounted cylindrical single 
crystal. A is the axis o f rotation o f the sample and B is the axis of the cylindrical 
single crystal. •  is the eccentricity, which is the linear distance between the axis of 
rotation and the cylinder axis, and r is the radius o f the cylindrical single crystal. 
It is easily seen that for such an eccentrically mounted sample, the surface plane rotation, 
8, is not equal to nor linearly related to the rotation about the axis of rotation, ty. 
Indeed, it  may be easily shown that:

«  -  v  + sin-ic 3 r
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should rotate with the minimum eccentricity and so a special sample holder was designed 

to facilitate ’centering' o f the sample on the axis o f rotation.

Fig. 3.3 is a diagram of the centering device, which consisted o f the following 

components :

(0  The sample mount S.

(ii) 10BA mounting bolts a, which could be adjusted in the ceramic disk A to provide 

an azimuthal t i l t  fo r  the crystal. The ceramic disk, A, served to isolate the sample 

from the earthed rotary drive shaft.

(iiO  A disc O which sits in a hole in plate C and which can be accurately positioned 

in the XY plan* by adjusting the centering bolts c.

(in ) A disk E which is mounted on the shaft o f the rotary drive and which can 

be clamped by bolts a to disk C in order to lock disc D in position and thus 

allow the removal o f the centering bolts c.

Centering was accomplished by observing the side o f the crystal in an optical 

microscope and then adjusting bolts c to minimize the excursion o f the sample across 

the field  o f view on rotation of the rotary drive. The sample was then clamped in position 

by tightening bolts « ,  using plate E as a fr ic tion  lock. This meant that the bolts c 

could be safely removed. A small amount o f azimuthal t i l t  could also be accommodated 

fo r by adjusting bolts a. This device proved to be exceedingly reliable, and allowed the 

centering o f the crys ta l to an eccentricity o f less than 0.25mm. Unfortunately, as the 

samples used in the current work were not perfectly cylindrical (tapering very slightly 

from top to bottom), the angular distortions could not be fully eliminated, but were, however, 

reduced to only 1 or 2 degrees.

The sample mount itself provided many problems due to the small size of the cylinders 

(inner and outer diameters o f 8mm and 12mm respectively) and the necessity of an axial
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Rotary drive shaft

Bolts, e Disk , E

Disk , D Bolts , c

Disk, C

Ceramic disk , A

Bolts, a

Sample holder, S 

Sample

Thermocouple

Fig. 3.3 This is » diagram of th* sinplt manipulator which was specially designed to fa cilitate  the centering of the axis of the cylindrical single crystals on the axis of rotation of the rotary drive. Using this device, the eccentricity in the sample rotation could easily be reduced to as little as 0.25mm, and the resultant angular distortions in the data were negligible. The operation of this device is fully described on the previous page.
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tungsten filament fo r radiative heating. Armitage1 had clamped the samples between 

stainless steel plates, but this was found to be rather unsatisfactory in the present 

investigation as the samples had a tendency to move on heating. The problem seemed 

to lie in the axial (rather than radial) expansion of the cylinders on annealing to 700-800*C 

a fte r argon ion bombardment. A special sample holder was designed which permitted some 

longitudinal expansion of the crystal whilst preventing any motion o ff axis. Two variants 

o f the design are shown in fig . 3.4a and b. Sample holder a was used fo r the copper 

crystal whilst sample holder b was used for the nickel crystal.

(3.12) T h e  c o m p u te r  in t e r fa c e .

In itia lly , all the data were taken by recording Auger spectra in the derivative 

mode on a chart recorder and measuring the peak-to-peak heights. As an experiment 

in which spectra were taken every 5 degrees of arc around the sample circumference 

entailed the recording of 74 spectra, and the spectrometer had to be reset and the crystal 

turned by 5 degrees between each datum, experimental time would seldom be less than 

three and a half hours and the subsequent processing of the data could easily take 

as long as two. This procedure was very slow, tedious and inaccurate and so it  was decided 

to computerize the experiment.

The oomputer used was a GEC 4080 which is a multi user system equipped with 

d igital, d ig ita l to analogue (DA), and analogue to digital (AD) ports with 12 bit resolution. 

A schematio o f the computer in terfacing is shown in f ig .  3.3. Basically, one 12 b it AD 

port was used to sample the analogue output o f the Brookdeal lock-in amplifier, one 12 

bit DA port was used to provide a programming voltage for the modified ramp generator, 

and two 8 b it DACs were used to provide TTL compatible control outputs for the stepper 

motor control unit (which was built by the Author from a schematic by WD Technologies).
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Fig. 3.4 This figure shows the two sample 
holders used in this investigation in cross- 
section. The hollow cylindrical samples are 
pushed onto hollow cylindrical tubes as 
shown, and clamped between the two end 
plates. This completely eliminated the 
problem of the samples moving o f f  axis 
during annealing.

Sample holder <a> was used fo r the 
copper sample, and it  can be seen that the 
current to the filament travels down 
through the cylindrical sample which is 
part of the circuit.
Sample holder (b) was used fo r the nickel 
sample, and in this sample holder sample and 
filament are completely isolated.

Filament
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Fig. 3.3 This figu re is a functional diagram of the apparatus used in this 
investigation. The letters P.M. stand for photomultiplier, the letters DVM stand for digital 
vo lt meter and the QEC4080 computer to which the apparatus was interfaced is denoted 
simply as 4080. The PSD used throughout this work was a Brookdeal lock-in  amplifier, 
and the spectra were d igitized to 12 bit resolution using analog to d ig ita l converters 
attached to the computer.
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(3.13) The so ftw a re .

All the operating software fo r  the computer controlled spectrometer was written 

in FORTRAN on the OEC 4080 computer in the physics department. The program ASPEC8 

was the main control program fo r the spectrometer and this was supplemented by several 

simple utilities. BOMBARD was a simple program which allowed the crystal to be continuously 

rotated during argon ion bombardment and gas dosing whilst XTALC measured the sample 

current at 1* intervals around the 360* of sample rotation. JPLOT2 was used to normalize 

the Auger peak-to-peak heights to the average peak-to-peak height of a reference peak 

recorded around the sample circumference and JIMPLOT simply plotted out previously 

recorded Auger spectra. A Televideo 912C terminal with Graffix 4010 emulation interfaced 

to an Epson FX-BO dot matrix printer provided the plots. When hard copy o f the data 

was not required, a BBC model B microcomputer with the Sussex University terminal 

emulation ROM was used as a graphics terminal. Several programs were written on the 

BBC microcomputer and also on a Sinclair Spectrum 48X microcomputer to allow file  transfer 

from the 4080 fo r fu rther data processing and archiving as space on the GEC cartridge 

drives was often limited. Two programs, SL1CE18 and 110CYL were written  on the 

microcomputers to plot out an arb itrary crysta l plane in an arb itrary la ttice  (of not 

more than 128 atoms) and to plot out all the crystal planes at 5 degree intervals around 

the crystal circumference. All the diagrams of crystal planes in this thesis were generated 

using one of these programs. All the calculations fo r the models presented in the later 

chapters of this thesis were performed on Spectrum and AppleX+ microcomputers.

-  46 - J.S.Arlow, 1985



AES on cylindrical singla crystals Chapter 3

(3.14) D ig ita l sm ooth ing  f i l t e r s .

One of the major advantages gained by computerizing the experiment was the ability 

to apply dig ita l signal processing techniques to the digitized spectra. Digital smoothing 

filte rs  can markedly increase the signal to noise ratio o f a noisy signal (as demonstrated 

fo r AES by Prutton2), and are much more versatile, accurate and controllable than their 

analogue counterparts. Two d ig ita l filte rs  were considered for use in the current work, 

each o f which fitted  a smoothing third order polynomial to the data. The smoothing 

spline algorithm (Reinsch^) has been recommended by Prutton2 and was already implemented 

on the GEC 4080 at Warwick. The smoothing spline gives a very good subjective smooth 

to the data, but has the disadvantage of being a long and slow algorithm, and requires 

the input o f two parameters by the operator, the ’s tiffn ess ’ and the 'signal to noise 

ra tio ’, which control the amount o f smoothing. The stiffness should be in the interval 

Ni«/N, where N is the number o f points in the peak to be fitted , and the signal to 

noise ratio should be estimated from the scatter on the data. The problem encountered 

with this routine was that for a given Auger peak, spectra of different intensities seemed 

to require widely d iffe ren t signal to noise ratios or stiffnesses fo r  a good fit. In the 

present work on cylindrical single crystals where there is a large anisotropy in Auger 

peak-to-peak heights around the sample, this necessitated input from the operator after 

every spectrum, and often  several guesses had to be made to find the correct signal 

to noise ratio. Prutton has approached th is problem by estimating the signal to noise 

ra tio  from least squares stra igh t lines fitted  to the beginnings and ends of the spectra 

and has had great success. This approach was tried in the present work, but still seemed 

incapable o f coping with the marked variations in Auger intensity observed around the 

cylinders. The reasons fo r this were never fully understood.
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The d ig ita l smoothing filte r  fina lly  chosen was a variation o f the Savitsky/Golay 

sliding least squares digita l smoothing algorithm4. This algorithm is based on equation

3.1, where the smoothed point y(0) is in the centre o f an odd number interval of points 

P, where P»2m+i and m is any integer. The experimental data points in the interval, ytt), 

are convoluted with appropriate integers Cj, and normalized by the factor NORM.

y<0> g C t / t t )
NORM

t=-m
(3.1)

The simplest case is with Ct,*l (fo r  all t) and NORM*P when the equation reduces 

to a sliding average. A least squares f i t  o f an nth order polynomial to the data over 

the interval will allow the calculation o f the integers and o f NORM to give an exact 

least squares f i t  of y(0). Values o f C{, and NORM fo r  polynomials of order 2 to 5 and 

intervals in the range 1 to 25 points are given in reference 4, and corrections to some 

of these by Steinier et al can be found in reference 5.

An unfortunate aspect o f this central point smoothing mechanism is that m points 

are o f necessity lost from each end o f the spectrum a fte r each smooth. In the extended 

sliding least squares f i t  used in the current work, Proctor and Sherwood4 fit  the first 

and last m spectral points with a smoothing parabola and add this to the smoothed 

data. This approximation works extremely well in practice, producing only very small end 

distortions, and it  also makes possible iteration of the smooth as the number of spectral 

points is conserved. Savitsky and Oolay state that iteration o f the smooth, such as a 

2a+l followed by a 2b+i point smooth, should be exactly the same as a smooth with an 

in terval o f 2(a+b)+l points. Proctor and Sherwood clearly demonstrate that this is not 

the case, and indeed recommend the use o f the smallest smoothing interval possible with 

many iterations. In the present work, perhaps due to the low number of points per spectrum
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(a )

F ig . 3.6 This figu re  shows <•> an Auger survey o f a carbon and sulphur contaminated 
copper surface and (b) a low-energy copper (60eV) peak. Both spectra have been digitized 
and then smoothed using a Savitsky-Golay digital smoothing filter. For the Auger survey, 
99 points were collected over the spectrum at a rate o f 1 second per point, and the 
data were smoothed using a 3 point smoothing interval. For the low-energy copper peak, 
the spectrum was recorded at the ra te o f approximately 3ms/point, and a nine point 
smoothing in te rva l was used. The beam current at the sample was about 4pA, and the 
beam energy was 1.7keV.
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(about th irty ), i t  vas found that there was litt le  advantage to be gained by iterating, 

and so a single smooth was used with an interval of twice the peak width at half maximum 

as suggested by Edwards and Villson7. For a 30 point oxygen or copper peak, a single 

9 point smooth consistently gave excellent results. An example of a smoothed copper peak 

is shown in fig.3.6.
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(4.1) In tro d u c t io n .

This chapter will describe the features of the <110> axis cylinders that have been 

used throughout th is work. Particu lar emphasis will be placed on the surface 

crystallography o f the samples, and on the stab ility  o f the vicinal surfaces expected 

from the terrace, ledge, kink (TLK) model under adsorption. No technique o f surface 

crystallography was made available fo r  the present study and so assumptions about the 

surface crystallography of the cylinder must be made based on the available evidence 

in the literature.

The chapter will go on to present some preliminary work on carbon monoxide 

adsorption and carbon and sulphur segregation in nickel which was done prior to the 

computerization o f the experiment. Whilst the results of these preliminary investigations 

cannot be considered conclusive, they do, however, serve to highlight certain experimental 

d ifficu lties , and also illustrate clearly the importance of sample purity in adsorption 

experiments. The design of the computerized experiment and the later work on the copper 

cylinder relyed heavily on the experience gained in this preliminary investigation.

<4.2) C y lin d r ic a l s in g le  c ry s ta ls .

In order to investigate the influence of surface crystallography on adsorption and 

segregation experiments, the experiment must be repeated several times on different crystal 

planes. One way o f approaching this problem is to prepare many different single crystal 

samples each of which exhibits a d ifferen t surface orientation. Many such comparisons 

have been made in the past, but it is difficult to rule out spurious effects due to differences 

in sample preparation and purity, and to ensure identical experimental conditions for 

each sample. Also, the range of orientations investigated tends to be limited by experimental 

time. These problems may be solved by using a sample which has been specially cut to
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display a range of surface crystallographies.

A spherical single crystal would exhibit all possible orientations, and indeed 

Gwathmey and co-workers have performed many experiments on such samples (see reference 

1 fo r  a review o f this work). For the current work, spherical single crystals were rejected 

in favour o f cylindrical single crystals which exh ib it a smaller range o f surface 

orientations, but have a geometry which is much more suitable for AES. Armitage? has 

attempted AES on hemispherical single crystals, but has had little sucess due to an inability 

to identify the particular orientation at the point o f analysis. If a cylindrical crystal 

is used, however, the crystal may be rotated axially causing the point of analysis to 

move around the circumference o f the cylinder, and by use of crystal symmetries in the 

data, the orientation may be identified unambiguosly.

(4.3) The <110> a x is  c y lin d e r .

I f  the axis of the cylindrical single crystal is defined as C1103, then the crystal 

surface presents all orientations (h,k,l) fo r which h «k . This means that the three low 

index faces (001), <110> and <1111 are available for study as the (113) face and a continuum 

o f vicinal orientations. F ig . 4.1a shows the relationship of the <110> axis cylinder to 

the FCC la ttice  and a plan view o f the cylinder looking down the <110> axis, showing 

the main low index orientations <001), <1111, <113} and <110>. The three low index planes 

1001), <1111, 1113} and <110> are wall characterized fo r  both copper and nickel, and much 

is known about the ir physical and chamical properties. A particular attraction  of 

cylindrical single crystals is that they present a range o f vicinal surfaces for study 

which have received little or no previous attention.
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Fig. 4.1a shows (i) a plan view of the <110> axis cylinder with the cylindrical 
axis defined as CllOJ, ( i i )  the relationship o f the <110> axis cylindrical single crystals 
to the FCC lattice, and (iii) the four low index planes (110), (113), (111) and (001).

Fig. 4.1b shows schematically the T.L.X. (terrace, ledge, kink) model o f a monatomically 
stepped surface.
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(4.4) V ic in a l s u r f a c e s

Kossel3 and Stranski^? have proposed a model fo r vicinal surfaces, the terrace, 

ledge, kink (TLK) model. This model assumes that any surface slightly misorientated from 

a low index plane is composed of low index terraces separated by monatomic steps. Curvature 

o f the steps may be accounted for by assuming the presence of kinks in the steps produced 

by missing atoms. A vicinal surface is shown schematically in fig . 4.1b as a combination 

of monatomic steps, terraces and kinks.

An important property of the <110> axis cylinder is that i f  the surface is perfectly 

TLK, and the crysta l well aligned, all step ledges will run parallel to the <110> axis, 

and the kink density will be zero. Furthermore, the TLK model predicts that the step 

density will vary linearly around the crysta l circumference from local maxima on the 

atomically ’rough* <110) and <1131 faces, to local minima on the atomically ’smooth’ <111> 

and <0011 faces2.4,5. Thus, the <110> axis cylinders present an excellent opportunity to 

investigate the e ffe c t  o f monatomic steps and differences in step density on surface 

reactivity.

There are many observations o f stepped surfaces described in the literature and 

many d ifferen t techniques have been applied to their study: LEED, reflection high energy 

electron d iffraction  (RHEED), transmission electron microscopy (TEM) and field  ion 

microscopy (FIM) observations have all been reported. The reader’s attention is directed 

to reference 6 for a useful summary of some of this work.

(4.5) T he  s t a b i l i t y  o f  vioinail s u r fa c e s .

I f  a Wulff construction is done in the <110> zone, then it  is seen that the cusps 

in the surface energy occur on the low index planes <110>, ( i l l )  and (001>. The equilibrium 

shape o f a cylindrical <11Q> axis single crystal is thus a polygonal prism with (110>,
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(001) and <111) type facets. However, the difference in surface energy between the different 

orientations is only o f the order o f IX, and the faceting is severely kinetically limited 

by the rate of mass transport.

It is not suprising then, that clean metal surfaces are not known to exhibit such 

macroscopic faceting except a fte r  long periods at high temperatures. It has been shown 

by various workers that clean vicinal surfaces o f platinum7-®’9 and copper1®-11»12, for 

example, exhibit the expected TLK morphology even at h igh  temperatures, whilst nickel 

vicinals which are close to either ( i l l )  or <001} have been shown to undergo a reversible 

step rearrangement with temperature which may or may not be linked with impurities13-14-13. 

Blakely and Somorjai9 have also observed faceting of atomically clean platinum surfaces 

in the (100) and (110> zones to 'h ill and va lley ' structures with multiple height steps. 

Under chemisorption, the situation is complicated still further as the adsorbate modifies 

the surface energy. Adsorbates may cause faceting o f a surface or may enhance the 

stability o f the TLK morphology as may be seen in the work on carbon and sulphur 

segregation in nickel by Thapliyal and Blakely14.

To summarize th is section then, it  is not possible to generalize about the stability 

o f metal vicinal surfaces. In the follow ing experimental sections, there will be a detailed 

summary of previous work done on the vicinal surfaces presented by the copper and nickel 

cylinders, and th e ir expected morphologies under the influence of the various adsorbates 

and reaction conditions encountered in this work. It will be seen that the copper cylinder 

can be expected to exhibit standard TLK vioinals under all of the conditions studied, 

whilst there is good evidence that the nickel cylinder facets under carbon segregation.
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(4.6) n o m en c la tu re  o f  v ic in a l s u r fa c e s .

An arb itrary crystal plane may be uniquely identified by its Miller indices. This 

notation, whilst concise, does not give any idea as to the actual surface morphology 

however. Lang et al.7 have devised a much more descriptive notation for stepped surfaces 

in which the surfaces are specified in terms o f the terrace orientation and width and 

the step orientation and height. A stepped surface is denoted in this notation by :

E(S)-[m(h,k,l) x nih'.k’.l’)] (4.1)

Where;

E denotes the element or compound.

S denotes a stepped surface.

m is the average number of atom rows comprising a terrace.

n is the average number o f atom layers in a step.

(h,k,l) are the Miller indices of the terrace.

(h’.k y i are the Miller indices of the ledge.

Thus, the stepped surface shown in fig . 4.2b is denoted by Cu(SM4(lll)xl(001)] and 

has the approximate Miller indices (117). Fig. 4.2a shows the TLK model o f the vicinal 

surfaces generated by progressive misorientations of 5* from (001) to (110) around the 

circumference o f the cylinder. These diagrams were generated by the program 110CYL (see 

section 3.13).

Eizenberg and Blakelyi* have proposed an alternative notation for stepped surfaces, 

which, whilst less descriptive than that of Lang, is often useful for its brevity. A surface 

which is misorientated from a low index plane (h,k,l) by a rotation «  in a zone Ch’.k’.H 

is denoted by;
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Fig. 4.2a This figure shows all the vicinal planes generated by progressive misorientations 
o f 3* from (001) to (110) around the circumference o f the cylindrical single crystal samples. 
The figure clearly shows the evolution of monatomic steps, and the regular variation 
of step density with misorientation from (001) in the <110> zone.
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Fig. 4.2a This figure shovs all the vicinal planes generated by progressive misorientations 
o f 5* from (001) to (110) around the circumference of the cylindrical single crystal samples. 
The figure clearly shows the evolution o f monatomic steps, and the regular variation 
of step density with misorientation from (001) in the <110> zone.
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Fig. 4.2b This figura illustrates the 
notation o f Lang et al7 fo r a stepped 
surface in the <110> zone. The surface has 
the Millar indices (117).

[111]

Cu(S) -  [A-(111)x1 (001)]
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<h,ktl>®1h,.k'in (4.2)

This notation is particularly useful fo r  vicinals in any one o f the three major 

zones 10011, CilOl or COlIl of the stereographic triangle.

(4.7) C ry s t a llo g ra p h ic  in c id en t beam a f fe c t s  in  AES.

It  is well known that Auger emissions exhibit an angular anisotropy that is 

crystallographic in orig in1’ . The e ffec t o f this anisotropy on quantitative and 

semiquantitative AES is small however, as the angular width o f the features (at least 

at high energies) tends to be less than the acceptance angle o f the most widely used 

analysers, and also the adsorbate backscattering is weak. A much more important effect, 

which has been highlighted by Armitage1®, is the anisotropy in the backscattering 

coeffic ien t which is dependent on the crystallographic direction of the incident beam. 

This effect has been known for a long time1’ , and has two causes;

(a ) the variation o f the penetration depth of the incident beam with its direction

with respect to the crystal lattice, and

(b ) the variation o f the intensity of the diffraction pattern of the internal source

(Xikuchi pattern) with surface orientation.

The internally d iffracted  elastically or inelastically backscattered electrons may 

excite Auger transitions, and this is the mechanism whereby these crystallographic incident 

beam e ffec ts  become impressed on the Auger intensities and other secondary electron 

phenomena. This is illustrated in f ig .  4.3 which shows the crystallographic dependence 

o f the crystal current as the nickel sample was rotated through 360* in fron t of the 

electron gun. The beam energy was 1.7kV, and the beam was incident at IS* to the sample
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110 001 110 001

Fig. 4.3 This figure shows the crystallographic variation in the sample current as the 
cylindrical single crystal was rotated axially in front of an electron beam. The beam 
was incident at IS* to the sample normal in the plane containing the sample axis, and 
the beam energy was 1.7kV. The single smooth oscillation of period 360* which is impressed 
on the data is an artifact due to a slight eccentricity in the sample rotation.
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normal in the plane containing the sample axis. Identical patterns were readily obtainable 

using the copper sample. The data clearly show the 2mm point group symmetry o f the 

sample about it ’s axis, and were useful in identifying the various crystal planes.

The single smooth oscillation o f period 360* which is impressed on the data is 

an a rtifact generated by a large eccentricity in the sample rotation, and the figure 

clearly shows th a t such e ffects  may be easily separated from the data. These 

crystallographic incident beam effects have been the subject of two recent investigations 

by Armitage et al18 and Gardiner et al20.

Armitage2 has shown that fo r oxygen adsorption on the cylindrical samples used 

in the current work, variations of up to 15% may be seen in the Auger intensities which 

are directly attribu tab le to crystallographic incident beam effects. Normalisation to a 

substrate Auger emission (which will also show crystallographic incident beam effects) 

has been suggested as a way o f removing the features which are not coverage dependent, 

but this tendp to either under or over compensate for the e ffec t and is generally not 

very satisfactory. Gardiner et al, however, have found that fo r oxygen adsorbed on a 

<U0> axis tungsten cylinder, that the incident beam effects  may be removed from the 

data by normalizing the adsorbate Auger signal to  the tota l exciting electron current 

at the sample.

In the present work, no attempt has been made to correct the data fo r  these 

incident beam e ffe c ts  as the variation in the Auger signal due to coverage differences 

alone was generally much greater than the 15% or so variation due to the crystallographic 

incident beam e ffec ts . Also features due to incident beam affects generally had a much 

lower angular extent around the crystal circumference than did the coverage dependent 

effects and so the two effects could be readily distinguished in the data.
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(4,8) P re lim in a ry  s tu d ie s  o f  c y lin d r ic a l s in g le  c r y s t a l  s u r fa c e s

The remainder o f this chapter is devoted to some preliminary work which was 

performed on the nickel crystal prior to the computerization o f the experiment and the 

main work which was performed on the copper sample.

<4.8.1) The thmr-mml decom position  o f  c a rb o n  monoxidei on the  v ic in a l 

s u r fa c e s  o f  nickwli P re v io u s  w ork .

The interaction o f carbon monoxide with nickel surfaces is of great industrial 

significance, and much work has been done on the system. Araki and Ponec21 have recently 

found that the methanation o f CO on Ni proceeds via the decomposition of adsorbed CO 

molecules followed by the hydrogenation o f chemisorbed carbon atoms, and so a study 

of the conditions under which CO dissociates on nickel surfaces has great importance.

The adsorption o f CO on the low index planes o f nickel has been widely studied, 

and it  is well established that room temperature adsorption on the three low .index planes 

o f nickel Ni<001>, <lii> and (ilO ) leads to a molecularly adsorbed species22-22’2*'2* which 

is characterized by a single thermally stimulated desorption (TSD) peak (the a state) 

at about 330K. Onchi and Farnsworth26 have also observed molecularly adsorbed CO by 

ultra vio let and X-ray photoemission spectroscopies (UPS and XPS). Adsorption at higher 

temperatures is known to  lead to a carbon build up due to the thermal decomposition 

o f CO molecules, and also to additional peaks at higher temperatures in the TSD spectrum 

which correspond to the associative desorption o f oxygen and carbon atoms as CO22'26. 

UPS and XPS have also been used to investigate the interaction of CO with Ni surfaces 

which exhibit a high density of surface defects27,28,

Joyner and Roberts22 have investigated CO adsorption on a polycrystalline nickel 

film, whilst Eastman et a l22 have investigated CO adsorption on a sputter damaged N i(lll)
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surface. Both authors observed molecular adsorption at room temperature, with thermal 

decomposition occuring at about 300K fo r  the Ni film, and at 350K for the sputter damaged 

surface.

The conclusion from these results is that surface defects in some way decrease 

the activation  energy fo r CO decomposition on Ni. Erley and Wagner29 have verified this 

by studying the interaction o f CO w ith  a stepped N it t l l )  surface. The surface studied 

was inclined at 10.3* to the t i l l }  plane in the C0011 zone and had Miller indices (7,9,11). 

Such a surface may be described as Ni(S)-C5(lll)x(110)l in the notation o f Lang et al7 

(see section 4.6), and will be fully kinked.

As well as the a state at 330K, Erley and Wagner observed a @2 state at TOOK 

which was attributed to the associative thermal desorption of carbon and oxygen atoms 

as CO, where the reaction occured a t the step/kink sites. It was already known that 

associative desorption from the terraces occured at 520X (the 6 } state). The conclusion 

from th is work was that step kink sites lower the activation energy for CO decomposition 

whilst ra ising the activation energy fo r  the associative desorption of C and 0 as CO. 

More recently, Erley et al30 have used electron energy loss spectroscopy (EELS) to 

investigate CO adsorption on the same sample and have found preferential binding on 

adsorption sites close to the step edges and an exceptionally low frequency C-0 stretching 

vibration  which is associated with these sites. This lowering o f the C-0 bond energy 

at the step sites is wholly consistent with the lowering in the activation energy fo r 

decomposition at these sites which was observed in the TSD experiments.

The work o f Erley et al29>30, whilst clearly demonstrating the special reactivity 

o f stap/kink sites, could in no way decide whether the reactiv ity  was confined to the 

steps, the kinks or indeed to a combination of them both. As the cylindrical nickel single 

crystal had a zero kink density, it was decided to perform some experiments to investigate
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tha affects of monatomic steps alone on the decomposition reaction.

(4.8.2) CO decom position  on  Ni: E xperim en ta l p ro c e d u re , rm sults and  

d iscu ss ion .

The sample «a s  cleaned by argon ion bombardment during continuous rotation (5kV, 

1.5|iAcm~2) and then briefly annealed to 1000K to re-order the surface. The surface so 

produced was completely clean except for a small trace (about 0.01 monolayers) of carbon. 

The crystal was then saturated with CO at room temperature (400L) and heated to about 

&00K fo r a few seconds in order to thermally desorb all o f the molecular species. This 

meant that any carbon or oxygen found on the surface on analysis by AES must be 

isolated C and O atoms generated by thermal decomposition of CO molecules at the step 

sites.

In itia l results looked quite promising in as much as some anisotropy could be seen 

in the oxygen and carbon signals recorded around the sample after the experiment. The 

data were not reproducible however, and this was due in part to equipment problems 

and in part to tha rapid contamination of the nickel crystal by carbon. The contamination 

may well have arisen from the heating of the CO saturated surface causing CO decomposition 

and diffusion o f the resultant carbon atoms into the bulk. High temperature annealing 

(1000K) in the re lative ly poor residual vacuum (2xl0~? torr) may also have contributed 

to the contamination by a similar decomposition mechanism as the residual vacuum would 

certainly contain CO and methane as major components. The Author can provide no concrete 

explanation fo r  the relatively sudden appearance o f such high levels of carbon as those 

observed in th is work as the crystal used had been cut from 99.99% pure Ni and had 

been found to be largely carbon free by a previous worker®.
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The presence o f carbon seemed to prevent the adsorption o f molecular CO as no 

oxygen could be seen on the surface using AES even prior to heating. This was not 

conclusive evidence that the CO was not sticking however, as it  is known that CO interacts 

strongly with electron beams and perhaps the relatively high beam densities used in the 

investigation (1.5|iAmm~2) caused electron stimulated desorption o f the molecular CO. A 

raster fa c ility  was available fo r the electron beam, and this reduced the beam density 

by a factor of 10. Even so, oxygen could not be detected on the surface. The Author 

thinks it  very likely that some oxygen fragments would be seen on the surface due to 

electron beam cracking o f the adsorbed CO even i f  most of the species were desorbed. 

It seems then, that the most likely conclusion from the available data is that the levels 

o f carbon contamination observed on the crystal surface were sufficient to completely 

inhibit the adsorption of CO.

It was found that the surface carbon did not completely inhibit the chemisorption 

o f oxygen, however, and indeed a few oxygen adsorption experiments were performed to 

test the apparatus. Attempts at sample cleaning using different beam densities and energies 

followed by anneals to d ifferen t temperatures and heating in low partial pressures of 

oxygen were all unsuccessful, and although surface oxygen and sulphur could be readily 

and reproducibly removed, the carbon contamination remained. It was found that carbon 

segregated reversibly on heating and cooling, and that sulphur could also be segregated 

by heating the sample to about 900K fo r a few minutes. It was decided to conduct an 

investigation into the behaviour of the impurities in the sample, and this work is described 

in the rest o f this chapter. To summarize this section then, we may say that although 

the original goal o f the CO experiments was not achieved, the importance o f carbon 

contamination in CO adsorption experiments on nickel has bean demonstrated.
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(4.8.3) C a rb o n  and su lp h u r  s e g re g a t io n  in niclt«al; P re v io u s  w ork .

Mroz et al31 have investigated the segregation o f carbon and sulphur to nickel 

(111) and (100) surfaces. It  was found that carbon segregated reversibly on both (111) 

and (100) faces, and that the surface carbon concentration decreased with temperature, 

disappearing at about 770K fo r (111) and 1070K for (100). In contrast to this, the surface 

sulphur concentration was found to increase with temperature, reaching a maximum at 

about 1070K to 1170K. Further heating was found to decrease the surface sulphur 

concentration, and Mroz et al attribute this to a reversible segregation o f sulphur. Mroz 

e t al have also observed that segregation o f sulphur, even in sub-monolayer quantities 

inhibits the segregation o f other impurities, including carbon. Indeed, more recently, 

Ramanathan and Quinlan33 have found that sulphur coverages in excess of 0.25 monolayers 

will completely supress carbon segregation to Ni(001).

Blakely and co-workers1*'*3»33’33 have conducted a systematic investigation into 

the segregation o f carbon to various low index and vicinal surfaces o f nickel, and 

reference13 contains a useful summary o f this work. Shelton et al3* and Eizenberg and 

Blakely13 have investigated the segregation of carbon to nickel (111) by using specially 

doped samples (about 0.1 atomic X of carbon). The heat o f adsorption of carbon on the 

nickel surfaces was about 7eV per atom and the heat o f segregation was found to be 

less than leV. Carbon monolayer formation was found to occur abruptly as the crystal 

temperature was raised, the transition temperature depending on the bulk carbon doping 

level. The carbon monolayer was found to assume the graphite structure, and was epitaxially 

orientated to the substrate. As well as this graphitic phase, two other phases were 

identified by Eizenberg and Blakely, a 'condensed monolayer* phase at temperatures greater 

than Tp (the preciptitation temperature o f the graphitic phase) which is characterized
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by a carbon coverage invariant v ith  temperature, and at temperatures greater than Ts 

(the segregation temperature) the ’dilute carbon' phase which is characterized by a low 

but constant carbon coverage. Tp was found to be about 1000K for a bulk carbon doping 

level o f about 0.15 atomic X, and in the condensed monolayer phase, between Ts and Tp, 

the carbon coverage was found correspond to 1 monolayer of graphite within the 

experimental error . The transitions between each phase were found to be quite sharp.

Thapliyal and Blakely14 have investigated two stepped surfaces in the CllO) zone

vicinal to the (111) plane, the (lll)5*Cll01 plane and the (HDlO'ClIO) plane. The notation

means that the planes are vicinal to the (111) plane and are 5 and 10 degrees respectively

from the plane about a ClIOl axis (see section 4.6). In the dilute carbon phase, both surfaces

exhibited the spot splitting characteristic of monatomically stepped surfaces, but on cooling

to the condensed monolayer phase both surfaces were observed to facet to (111) and (110>•
planes the size of the facets being about 100A. In the graphite precipitation region, 

the facets were found to become even more clearly defined. Eizenberg and Blakely have 

also investigated the segregation o f carbon to the (110) face of nickel; the results were 

very similar to those fo r  N i(lll), and there was no evidence of faceting on slow coaling. 

Facets o f (111) and (513) could be generated i f  the surface was rapidly quenched to room 

temperature from tha condensed phase, however, and this may be evidence fo r the existence 

o f facets at high temperatures. Eizenberg and Blakely also found that the segregation 

of carbon to Ni<110> could not be modeled by a Langmuir isostare.

In the COlI} zone, the two vicinals studied by Thapliyal and Blakely were (111)6*C0iI) 

and (111)9*1011) and these were found to behave similarly to their counterparts in the 

ClIOl zone. Monatomic steps were observed in the low coverage region w ith faceting to 

<1111 and (1131 in the condensed phase.
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In the lov  coverage region, Eizenberg and Blakely have found that the <1131 face 

is stable, but on cooling to the condensed phase there is evidence for faceting to { i l l }  

and (001) and then to  t i l l }  only on further graphite deposition. Isett32>33 has investigated 

carbon segregation to Ni(100) at lo v  carbon doping levels (about 0.02 atomic % C) and 

has found in contrast to the N i ( l l l )  work, a steady increase o f carbon coverage with 

decreasing temperature vhich could be fitted  to a Langmuir isostere derived fo r non 

interacting atoms restricted to a monolayer, with a saturation coverage of 1 carbon atom 

to every 4 nickel atoms. Eizenberg and Blakely have also investigated segregation to 

(100) using a more heavily doped sample, and their results are in good agreement vith  

Isett in the lov coverage region.

Several authors have observed a morphological phase transition occuring on clean 

and carbon contaminated nickel vicinal surfaces. Thapliyal and Blakely*4 report a change 

in step height and spacing at 3&0*C and 400*C for Ni(lll)10*[ll03 and Ni(lll)5*Cll0) 

respectively. Above the transition temperature both surfaces exhibit monatomic steps vhilst 

belov the transition temperature the 5* surface exhibits polyatomic steps vith  a step 

height distribution centred on 4 to 5 atoms vith  100A terraces. In contrast to this, the 

10* surface exhibited diatomic steps. This morphological transition of the clean surface 

vas found to be reversib le v ith  temperature, and Thapliyal and Blakely suggest that 

this phase transition  is related to an attractive interaction betveen steps. Equation (4.3) 

expresses Herring’s3® criterion for the stability of a vicinal surface to faceting.

Y(ct) * Yscoacc + * ?- Isinlctl ♦ I (4.3)
ao

Y is the surface tension o f the vicinal, cc is the surface tension of the lov index 

plane comprising the terraces, d0 is the step height, y >» the excess free energy per

- 7 0 - J.S.Arlov, 1985



AES on cylindrical single crystals Chapter 4

unit length o f the step (which includes the configurational entropy of a set of ledges 

each with its  own distribution o f defects), and I is the contribution from the mutual 

interaction among ledges. Thapliyal and Blakely propose th a t below the transition 

temperature there is a strong attractive interaction between the step ledges causing 

coalescence o f the steps whilst above the transition temperature, the attractive force 

weakens due to the tendency of the distribution of steps to maximize their configurational 

entropy. On increasing the temperature, the repulsion between steps will drive the surface 

to a simple unreconstructed monatomically stepped surface described by the simple TLK 

model. Carbon adsorption tends to increase the attractive interaction between steps and 

so the surface facets. Eizenberg has found that adsorbed sulphur prevents step coalescence 

and so it  would seem that sulphur adsorption increases the repulsive interaction between 

steps stabilizing a simple monatomically stepped surface. Jach and Hamilton1̂  have also 

observed this temperature dependent reconstruction of 'clean* nickel (U l)5*[0lll and (lii)10*C0iI) 

surfaces (carbon coverage less than about 0.1 monolayers), and relate it  to the 

paramagnetic/ferromagnetic transition at the Curie temperature (554*C). They do not, 

however, report such a large reconstruction o f the surfaces as do Eisanberg and Blakely, 

and they describe only small changes in step height and terrace width at the transition 

temperature. Jach and Hamilton have also performed carbon segregation experiments on 

the vicinals and on a N i ( l i l )  sample and they find that segregation also occurs at the 

Curie temperature. As Jach and Hamilton’s samples were cut from Marz grade nickel, their 

bulk carbon concentration was much lower than Eizenberg and Blakely's samples and 

consequently they did not observe the precipitation of graphite at any temperature. As 

the segregation temperature o f carbon in nickel is known to vary with bulk carbon 

concentrationlM4'32,33,34' ^  may be simply fortuitous that in Jach and Hamilton's case 

segregation happens to occur at the Curie temperature.
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By fit t in g  a Langmuir model to the data for the (111) plane and comparing results 

with those o f Eizenberg and Blakely, Jach and Hamilton predict that the heat o f 

segregation to the (111) face is negative below the Curie point and that the change 

in heat o f segregation at the Curie temperature is greater than 0.2eV per atom.

Cinti et a l13 have investigated two stepped surfaces o f nickel in the vicinity of 

the (001) plane; the Ni(S)C5(001)x(lll)l and the Ni(SK3(001)x(lll)l surfaces. They find that 

the (3(001)x(lll)) surface reconstructs on slow cooling from 300*C to a morphology similar 

to that o f the unreconstructed surface, except that the periodicity of the steps is doubled. 

They ascribe this to a two dimensional faceting o f the steps in the direction parallel 

to the step edges. The CS(001)x(lll)l surface was observed to show a certain amount of 

residual disorder on cooling from 300*C, and Cinti et al attribu te this to a similar two 

dimensional step faceting where the facets are uncorrelated between steps. They emphasise 

that the phase transitions observed could be correlated with neither carbon segregation 

nor the Curie temperature, and suggest that the driving force fo r  the reconstruction 

arises from the relaxation o f surface electronic states caused by faceting. Whilst it is 

not possible to prove this hypothesis about the relaxation o f surface electronic states, 

it  does seem that surface reconstructions on nickel are not necessarily associated with 

either carbon segregation or the Curie temperature, although Eizenberg and Blakely have 

clear evidence that high surface carbon concentrations do indeed lead to extensive faceting. 

Cinti et al also investigated the behaviour of the vicinals under sulphur adsorption, and 

in common with other authors, found a stabilization of the ’ideal' TLX morphology.

To summarize this section then, i t  can be seen that the segregation o f carbon 

to nickel surfaces is associated with several interesting morphological phase transitions. 

At high temperatures in the dilute carbon phase (low carbon coverage), the surfaces vicinal 

to (111) may be expected to exhib it their ’ideal’ morphology as predicted by the TLX
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model. On cooling and precipitating graphite, nickel surfaces facet to (110) and <111> for 

surfaces in the CliOl zone and to (111) and (113> (which may further facet to (001) and 

<111» in the C0113 zone. Clean nickel (111) vicinals in both zones undergo a reversible 

morphological phase transition close to the Curie temperature which involves a 

reconstruction to a surface with wide terraces and multiple height steps. Carbon 

segregation has a tendency to enhance faceting of {111) vicinals, whilst sulphur segregation 

seems to  have a stabilizing e ffec t on monatomic steps. The <110>, (113}, (001) and <111> 

surfaces all seem to be stable under carbon segregation but evidence o f faceting on 

quenching (110) and (113) samples from high temperatures may suggest that at high 

temperatures some faceting does occur. Sulphur segregation on (111) and (001) is found 

to occur at about 900*C and is found to inhibit the segregation of other bulk impurities. 

Clean nickel vicinals to the (111> and (001) planes undergo complicated reconstructions 

on raising the temperature, and it  is not at present clear what the driving force for 

this phenomenon is.

(4.8.4) C arbon  se g re g a t io n  in  nickmli E xperim ental p ro c e d u re .

The carbon segregation work conducted on the cylindrical single crystal of nickel 

comprised of two distinctly d ifferent types of measurement. Thermodynamic measurements 

were made on the (001) plane o f the sample o f the variation o f the carbon 272eV Auger 

spectrum peak-to-peak height with temperature, and anisotropy measurements were made 

of the variation of the carbon Auger signal peak-to-peak height with surface orientation 

at a given temperature. The sample was cleaned prior to every experiment by a combination 

of argon ion bombardment fo r 40 minutes at a beam energy o f 5kV and a beam density 

of about 2 |iAcm2( followed by a brief anneal to about 1000X. The crystal was continuously 

rotated by hand during the course o f the bombardment at a rate of about 30 degrees/

j l
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modal. On cooling and precipitating graphite, nickel surfaces facet to (110) and ( i l l )  for 

surfaces in the C lio) zone and to t i l l )  and <113> (which may further facet to <001> and 

d l l } )  in the COlI) zone. Clean nickel (111) vicinals in both zones undergo a reversible 

morphological phase transition close to the Curie temperature which involves a 

reconstruction to a surface with wide terraces and multiple height steps. Carbon 

segregation has a tendency to enhance faceting of d l l )  vicinals, whilst sulphur segregation 

seems to have a stab ilizing e ffec t on monatomic steps. The <110), (113), (001) and (111) 

surfaces all seem to be stable under carbon segregation but evidence o f faceting on 

quenching (110) and (113) samples from high temperatures may suggest that at high 

temperatures some faceting does occur. Sulphur segregation on d l l )  and <001) is found 

to occur at about 900*C and is found to inhibit the segregation of other bulk impurities. 

Clean nickel vicinals to the d l l )  and (001) planes undergo complicated reconstructions 

on raising the temperature, and it  is not at present clear what the driving force for 

this phenomenon is.

(4.8.4) Caurbon s e g re g a t io n  in nidcmli E xp erim en ta l p ro c e d u re .

The carbon segregation work conducted on the cylindrical single crystal of nickel 

comprised o f two d istinctly different types of measurement. Thermodynamic measurements 

were made on the (001) plane o f the sample o f the variation  o f the carbon 272eV Auger 

spectrum peak-to-peak height with temperature, and anisotropy measurements were made 

o f the variation of the carbon Auger signal peak-to-peak height with surface orientation 

at a given temperature. The sample was cleaned prior to every experiment by a combination 

o f argon ion bombardment fo r  40 minutes at a beam energy o f 5kV and a beam density 

o f about 2 pAcm?, followed by a brief anneal to about 1000K. The crystal was continuously 

rotated by hand during the course o f the bombardment at a rate o f about 30 degrees/
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minute in order to ensure uniform cleaning. This procedure was found to reproducibly 

produce a surface on which the only detectable impurity was carbon.

In the thermodynamic experiments, the carbon Auger peak-to-peak height was 

recorded on the (001) plane o f the sample as a function of temperature. Temperatures 

were measured using a chromel alumel thermocouple spot welded to the top face of the 

sample, and temperatures were controlled by manually adjusting the stabilized current 

supplied to the axial sample filament. The thermocouple was clamped between the sample 

holder and the sample, and so it  is suspected that there was a small systematic error 

in the temperatures measured due to conduction of heat away from the thermocouple by 

the sample holder. However, it  is estimated that the temperatures quoted are accurate 

to  within ilOX. The (001) plane of the sample was located by an examination of the crystal 

symmetries in the sample current, and it  is estimated that the sample was orientated 

to  within ±3* o f arc of this plane.

Between measurements o f the carbon 272eV Auger peak-to-peak height (of the 

d ifferen tia ted  spectrum) the sample was held at temperature for a sufficient length of 

time to allow thermodynamic equilibrium to be attained between the surface and the bulk 

carbon. The equilibration of the sample was judged to be complete when the carbon signal 

had reached a constant peak-to-peak height. The time necessary to reach thermodynamic 

equilibrium varied from a few minutes at the highest temperatures to nearly three hours 

a t the lowest temperature and although the equilibrium between the surface and bulk 

carbon at a given temperature is reached asymptotically, the Author estimates that all 

thermodynamic measurements were made at surface coverages within 10% or better of the 

true equilibrium coverage. The usual methodology for the thermodynamic experiments was 

to  firs t increase the sample temperature in slow stages whilst measuring the carbon 272eV 

peak-to-peak heights, and then to repeat the measurements with the sample being slowly
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cooled. Coincidence o f the two data sets showed that segregation was indeed occuring 

reversibly. Because o f the long times needed to equilibrate at some temperatures, great 

care had to be taken in order to maintain constant beam currents throughout the course 

of an experiment.

For an anisotropy experiment, the sample was first cleaned, allowed to equilibrate 

at the chosen temperature and then the carbon 272eV peak-to-peak heights were recorded 

at 10* intervals o f arc around the sample circumference starting at the (001) plane. As 

each non-equivalent region o f the sample embraces only 90* of arc, this angular sampling 

frequency is, in fact, rather low. It was decided to measure Auger peak-to-peak heights 

every 10* o f rotation as this was found to give the best compromise between angular 

resolution, signal to noise ratio and experimental time.

Anisotropy in the segregation o f sulphur to the surface was investigated in a 

similar manner, except that measurements of peak heights were taken every 5* o f arc.

The reader should note that the data presented in this chapter were collected 

manually as the experiments were performed prior to the computerization of the apparatus. 

Thus, the angular resolution is poorer and the noise level greater than that of the data 

presented in the later chapters. Also, because of the very long experimental times involved 

in the anisotropy experiments, no attempt has been made to record simultaneously one 

of the substrate peaks for normalization purposes.

(4.8.5) Besults and discussion.

Fig. 4.4« shows the variation in carbon 2?2eV peak-to-peak heights measured on 

the (001) plane (13*) as a function of temperature. The hollow circles show the data obtained 

on heating the sample, whilst the filled  circles are the data obtained on sample cooling. 

The carbon peaks recorded throughout this work were noted to have carbidic lineshapes

-  75 J.S.Arlow, 1985



AES on cylindrical singla crystals Chapter 4

TEMPERATURE /  K

Fig. 4.4a This figu re  shows the variation in the carbon (272eV) peak-to-peak height 
measured on the (001) plane as the sample was firs t slowly heated (hollow circles), and 
the slowly cooled (filled  circles). The sample was held at 900K for 15 to 20 minutes before 
being allowed to cool. The 'hysteresis' between the two curves is attributed to site blocking 
by sulphur which was segregated to the surface whilst the sample was held at 900X. 
The data have been normalized where e'»8/8M t and 8#at »* thought to correspond to 
1 monolayer of graphite.
Fig. 4.4b This figu re shows the variation in the carbon (272eV) peak-to-peak heights 
on rapidly heating (hollow circles) and then cooling (filled  circles) the sample. Under 
these conditions (no surface sulphur) the segregation o f carbon to the surface is seen 
to be reversible within the experimental error.
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at high temperatures (low coverages) which changed to a characteristically graphitic 

shape at temperatures less than about 500K. Using the published solubility data for carbon 

which has been extrapolated to these low temperatures by Isett32, the bulk carbon 

concentration must be less than 0.001 atomic X. Comparing the current data with Isett’s 

data fo r  carbon segregation on Ni(001), the Author concludes that high temperatures 

correspond to what Isett refers to as the dilute carbon phase, whilst at low temperatures 

the system has made the transition to the condensed monolayer phase where the surface 

carbon is graphitic in nature.

It can be seen from fig . 4.4a that there is a large ’hysteresis’ between the curve 

corresponding to sample cooling and that corresponding to sample heating. This effect 

was generated by holding the sample at about 900K fo r 15 to 20 minutes in order to 

segregate sulphur to the surface. The difference between the two curves shows clear 

evidence fo r the inhibition o f carbon segregation by the presence o f surface sulphur, 

and is in good agreement with previous pbservations^M^S. If the experiment was performed 

quickly so that no sulphur was segregated, then the segregation o f carbon was found 

to be reversible within the experimental error. Fig. 4.4b shows the results of two 'quick' 

carbon segregation experiments, and it can be seen that the hysteresis effect is no longer 

present in the data. Cycling the crystal between high and low temperatures was found 

to reduce the carbon coverage attained at a given temperature by a small amount as 

sulphur was segregated to the surface and presumably reduced the number of adsorption 

sites available to the carbon atoms.

Isett32>33 has shown tha t fo r  coverages o f less than 1 carbon atom / 4 nickel 

atoms, the segregation of carbon to Ni(001) can be accurately described by simple Langmuir 

kinetics. The data o f f ig . 4.4a have been normalized to the maximum peak-to-peak height 

observed, and because o f the lineshape and the trend o f the data (which suggests a
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saturation phenomenon at high coverages), the Author concludes that this actually 

corresponds to approximately 1 monolayer o f graphite. The lineshapes of the carbon (2?2eV) 

peaks recorded during these thermodynamic experiments clearly indicated a phase change 

from graphitic to carbidic carbon on ra ising the temperature. For this reason initial 

attempts to plot a Langmuir isostere fo r  this experiment were abandoned. Equipment 

malfunctions prevented the repetition of this experiment at higher temperatures at which 

the Langmuir isostere could have been applied. The Author feels that a high temperature 

experiment would have been rather inconclusive anyway, due to the problem of sulphur 

segregation.

Fig. 4.5 shows the anisotropy in the carbon Auger peak-to-peak heights which 

have been recorded around the sample circumference at 10* intervals o f arc. The data 

have been normalized at the average peak-to-peak height on the 1001) plane at a given 

temperature to the solid curve drawn through the data of fig . 4.4a.

It can be seen that at low temperatures (T<450K) the carbon coverage is isotropic 

to within, the experimental error. This is consistent with a graphitic monolayer on the 

faceted surfaces. At higher temperatures, the carbon coverage becomes increasingly 

anisotropic, exhibiting maxima on the {001} plane and minima in the region of the {110} 

plane. This suggests that under the conditions of the present work, the {001> plane exhibits 

a sligh tly higher heat o f segregation fo r  carbon than any o f the other planes. The 

<110> plane would seem to have the lowest heat o f segregation. The minima on the <110) 

planes are rather broad and seem to extend as fa r as the adjacent {111} planes. The 

amount o f carbon present then seems to increase in an almost linear fashion between 

(111) and {001> to a maximum on {001}, and this is observed to be true even at the highest 

temperatures where the surfaces can be expected to exhibit their ’ideal* morphologies.
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Fig. 4.3 This figure shows th . anisotropy 
in tha carbon (272aV) Auger p.ak-to-peak 
heights which have been recorded around 
the sample circumference at 10* intervals 
of aro. The data have been normalized to 
tha largest carbon peak observed which is 
thought to correspond to approximately 1 
monolayer o f surface graphite.
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The heat of segregation to nickel surfaces can thus be related to the amount 

o f <001) type surface present in the particular plane under investigation. The Author 

would like to see further data on carbon segregation to cylindrical single crystal surfaces 

to test the above conclusion. The difference in heats o f segregation which causes the 

anisotropy in the data is only small (Isett^  finds (001) and (111) to have heats of segregation 

similar to within about lkJmol-1), and this shows that studies on cylindrical crystal 

surfaces provide a sensitive probe for differences heats of segregation.

Fig. 4.6 shows the sulphur 152eV peak-to-peak heights recorded every 5* of arc 

around the sample circumference. The sulphur was segregated by holding the sample at 

HOOK fo r between 10 and 15 minutes, and the data o f f ig . 4.6 were recorded at this 

temperature. The carbon coverage at such high temperatures was essentially zero (less 

than 0.01 monolayers), and sulphur was the only contaminant found on the surface. The 

experiment was repeated several times at lower temperatures, but there was no noticible 

change in the sulphur coverage even when carbon began to be precipitated at around 

900K. It can be seen that a single smooth oscillation is impressed on the data of f ig . 

4.6, and this was due to a movement of the sample in the sample holder after many cycles 

o f heating and cooling, which caused it  to move o f f  axis and rotate eccentrically. This 

phenomenon has been discussed in section 3.11, and in no way detracts from the data.

It can be seen from fig . 4.6 that the sulphur coverage is characterized by local 

maxima on the (110) and (113) planes, with local minima on <001>, and somewhat lower 

minima on (111). The sulphur coverage is seen to vary linearly (within the experimental 

error) between maxima on the atomically 'rough' (110> and (113) planes to minima on the 

smooth (001) and (111) planes. There seems also to be some structure on the vicinal planes, 

but the features are o f such a size as to be attributable to the crystallographic incident 

beam effects known to occur in these experiments.
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Fig. 4.6 This figure shows the crystallographic variation  in the sulphur (152eV) peak- 
to-peak heights. The peak-to-peak heights were measured around the sample circumference 
at 5* intervals o f arc and the data were normalized to the largest recorded peak-to- 
peak height. The sulphur was segregated to the surface of the nickel sample by holding 
the sample at about HOOK for between 10 and 15 minutes.
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Rowlands and Woodruff^7 have shown that in tha in itia l stages o f segregation, 

the surface coverage will be limited by the rate o f mass transport in the bulk, and 

so should be independent o f crystallographic orientation. Thus, anisotropy such as that 

seen in the data implies that the surface and bulk sulphur must be very close to 

thermodynamic equilibrium with eachother. The Author concludes that the anisotropy seen 

in the data o f f ig . 4.6 is the result o f the equilibration o f surface and bulk sulphur, 

and hence re flects the differing heats o f segregation exhibited by sulphur on the various 

orientations.

All the evidence in the literature suggests that at these high temperatures and 

with this amount o f segregated sulphur, that all the orientations exhibited by the <110> 

axis cylinder will exhibit a simple TLX morphology. I f  this is the case, then the step 

density will vary linearly between adjacent low index planes from maxima on {1101 and 

<1131 to minima on (001) and {111) in approximately the same manner as the surface sulphur 

concentration. Thus it  is possible to say that the heat o f segregation o f sulphur to 

nickel surfaces varies approximately linearly with step density between <0011 and <113>, 

{1131 and <111>, and between <111) and <110). The heats of segregation of sulphur to the 

various low index planes planes of nickel may be put in the following decreasing order:

<U0> *  <113) > (001) > {111)

(4.8.6) Conclusion».

(1) The nickel sample used in the current investigation contained large amounts of carbon

which inhibited tha adsorption of CO.

(2) The carbon impurity in the sample segregated reversibly to the surface going from

the 'condensed monolayer' phase at low temperatures to the ’dilute carbon* phase 

at high temperatures.
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(3) Surface sulphur had an inhibiting e ffec t on carbon segregation on the {001} plane

suggesting site competition between the two species.

(4) Carbon exhibits marked anisotropy in its segregation to different crystal planes at

temperatures below the precipitation temperature of graphite. The <001> plane seems 

to have the highest heat of segregation, whilst the {110} plane exhibits the lowest. 

The vicinals exhibit heats o f segregation which vary approximately linearly between 

these two planes.

(5) Sulphur segregates anisotropically to nickel surfaces at 1000K. The low index planes

{110} and {113} have similar heats of segregation, which are also the largest, whilst 

the {111} plane has the lowest heat o f segregation. The {001} plane has a heat 

o f segregation which is intermediate between that o f the {110} and {113} planes 

and that of the {111} plane.

(6) Between adjacent low index planes, the vicinal surfaces exhibit a heat of segregation

for sulphur which varies approximately linearly with step density.

(7) Studies on cylindrical single crystals provide a sensitive probe for small differences

in heats of segregation.
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<5.1) In trod u ction  to  chanotT 5.

This chapter v ill describe some experimental work on oxygen adsorption and nitrous 

oxide decomposition on the copper surfaces made available by the <110> axis cylinder. 

The oxygen adsorption experiments are essentially a repetition o f those conducted by 

Armitage et al*>2 and were fe lt  to be necessary as the computerized Auger spectrometer 

used in th is investigation was able to produce data which were markedly superior to 

anything produced previously on this system. In particular, the scatter on the current 

data is much less than that o f Armitage’s data, and also the data have been normalized 

to  a substrate peak which allows quantification. This improved data on oxygen adsorption 

on the copper cylinder allows the re-evaluation of two models proposed by Armitage and 

Woodruff* fo r  oxygen adsorption on copper vicinals and allows much firmer conclusions 

to  be reached. Indeed, the oxygen adsorption data collected in this work justifies the 

application o f one of the models to a study of CO oxidation over copper which is described 

in chapter 6.

Tor the f ir s t  time, results on the oxidation o f the copper cylinder by nitrous 

oxide are presented and differences between the NjO/Cu and Oj/Cu reactions are discussed. 

A simple model is presented which describes the intial reaction probability for the N2O/ 

Cu reaction. The previous work on the adsorption o f oxygen on copper will be reviewed, 

with a particular emphasis on the expected surface crystallography of the cylinder under 

oxygen adsorption.

(5.2) Oxygen adsorp tion  on copperi P rev io u s  work.

There has been muoh work done on the copper/oxygen system, particularly on the 

low index planes, and this work will be summarized in the next few sections.
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Habrakan at al3-6 have conducted a systematic investigation into oxygen adsorption 

on the three lov  index planes Cu<ill}, {001} and (HO), and this vork will be particularly 

emphasized as it  provides a good basis fo r  comparison with the results obtained on the 

three lav  index planes in the present work. Armitage1-? has also conducted oxygen 

adsorption experiments on the <110> axis cylinder used in the present investigation, and 

this work will also be described.

(5.3> Oxygen on Cud 11).

Oxygen adsorption on copper ( i l l )  has been studied by many workers; (1..3, 8..11, 

53), and this list is by no means exhaustive.

At room temperature Habraken3 quotes an initial sticking coefficient, Sq, of about 

10~3, and this agrees veil v ith  values in the range 10~3 to 10~3 quoted by other workers. 

The sticking factor vas found to be constant up to about half of the saturation coverage 

o f 0.5 monolayers, and could be fitted by the equation of Xhort and Gomer? fo r dissociative 

adsorption requiring a pair of free nearest neighbour sites, and proceeding via a precursor 

state. The saturation coverage o f 0.5 monolayers strongly suggests that the adsorbed 

oxygen atoms are mobile or else a proportion o f the nearest neighbour free sites would 

be blocked.

LEED investigations show no ordered overlayers on this face for oxygen exposures 

less than 5x10* Langmuirs3-3- 10, and room temperature adsorption causes no measurable 

work function change3. The lack o f a vork  function change has been attributed by 

Habraken to the incorporation o f oxygen into the bulk. Niehus and Comsa11 however, 

have shown by low-energy He* ion scattering (LEIS), that no appreciable incorporation 

into the bulk occurs, and that the surface copper atoms are displaced by 0.3A v ith  the 

oxygen atoms probably situated in the surface layer. EELS data by Dubois33 suggests

- 88 J.S.Arlov, 1985



AES on cylindrical tingla crystals Chapter 5

that tha oxygan atoms occupy tha 3-fold hollov sitas on tha surfaca.

Habraken3 has obtainad activation anargias fo r tha raaction, and finds that the 

activation energy is about 0.4 kJ/mol fo r  temperatures lass than about 230*C increasing 

to about 1 kJ/mol at temperatures between 230 and 400*C. Tha initial sticking probability 

was found to increase with temperature. Armitage1'2 has found that the initial oxidation 

kinetics of the <111) face can be quite accurately fitted by a simple zeroth order equation;

0 a Es0 (5.1)

where 0 is the coverage, E is the exposure and sD is the initial sticking probability.

(5.4) Oxygen on Cu(llO).

The adsorption o f oxygen on Cu(110) has been the subject o f a large number of 

investigations using a variety of techniques1! 2> 4> It is well known that for exposures

between 10 and 1000L the (110) surface exhibits a (2x1) LEED pattern, and this is thought 

to correspond to a coverage of 0.5 monolayers4»12!12. Further exposure to oxygen in excess 

of 1000L gives rise to  a c(6x2) LEED pattern which is thought to correspond to the 

incorporation of oxygen into the lattice and tha initial stage of oxidation.

Bronckers and DeWit14 have investigated oxygen adsorption on Cu(110> using low 

energy ion scattering, and report that the (2x1) surface is reconstructed and that the 

reconstruction can be described by the ’missing row’ model whereby every row adjacent 

to an oxygan containing row is missing. In this model the oxygen atoms are thought 

to occupy the bridge sites in the surface row. Helium beam scattering experiments by 

Lapujoulade at a l1® also show a reconstructed (2x1) surface which agrees with the missing 

row model adopted by Bronkers. Lapujoulade also suggests that the adsorption proceeds
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by tha growth o f p(2xl) islands. Faidanhans’l and Stansgaard^, in a recant high energy 

ion scattering (KEIS) investigation, find that tha bast modal for the reconstructed (2x1) 

surface is a 'buckled' (110) surface (a shifted row modal) where every second <001> row 

is shifted outwards from its bulk like position by 0.2710.05A, with the remaining <001> 

surface rows shifted insignificantly inwards by 0.0210.03A and the second layer displaced 

outwards by 0.06+0.03A. Feidanhans’l and Stensgaard state that although the calculations 

favour a buckled (110) surface, there may also be a missing row structure which would 

f i t  the data. Neihus and Comsa1̂  have used impact-collision alkali ion scattering to 

investigate the reconstructed Cu(llO) surface, and have evaluated the missing row model 

o f Bronkers, a shifted row model suggested by Feidenhans'l and Stensgaard and a saw­

tooth model. Of the three, Neihus and Comsa state that missing row modal is correct.

Oobler et a l18 have recently identified the adsorption site fo r oxygen on 

reconstructed (2x1) Cu(110) using surface extended x-ray adsorption fine structure 

spectroscoRy (SEXAFS). The atomic oxygen is found to occupy the low symmetry twofold 

bridge site in the <001> direction 0.35A above the firs t Cu layer. Sesselmann et al*^ in 

an investigation into the local density o f states of capper (110) by the de-excitation 

o f noble gas atoms also provide evidence to support this conclusion. This adsorption site 

for oxygen is consistent with both tha missing row and the shifted row models.

Feidenhans'l and Stensgaard find that the (2x1) structure indicates an absolute 

coverage o f 0.5110.06 monolayers and that the e(6x2) pattern corresponds to a coverage 

of 0.901047 and both values are in excellent agreement with those of Habraken*.

Habraken finds that the formation o f tha (2x1) structure is accompanied by an 

increase in work function of between 370 and 420meV depending on the sample temperature. 

Tha work function then decreases by about 80maV on forming the c(6x2) structure which 

may imply incorporation o f the oxygen atoms into the surface. The initial sticking factor
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fo r  oxygen is about 0.17, and the rate o f adsorption is independent o f temperature up 

to coverages o f about 0.5 monolayers. Habraken also finds that the kinetics may be 

described by Langmuir kinetics in which dissociative adsorption occurs into empty nearest 

neighbour site pairs, and there is an a ttractive  interaction in the adsorbed layer in 

the <001> direction. Arm itage^2 has found that Habraken’s data may be fitted  rather 

accurately by the simple second order equation;

*° °  cE(O.5-0) (5.2)

where s0 is the in itia l sticking coeffic ient, E is the exposure, 6 is the coverage, and 

c is a constant.

(5.5) O xygen  a d s o r p t io n  on  Cu(lOO).

Oxygen adsorption on Cu<100> is known to progress via a c(2x2) structure at low 

exposures <which is often referred to as a («/2x^2)R*5* structure) to a W2x2>/2)tH5* pattern 

at exposures greater than about 1000L (5). The c(2x2) structure has been analysed by 

LEED (Onuferko and Woodruff23) and the bridge site position was suggested for the oxygen. 

Xono et a l2*-23 however, have determined that the oxygen atom is located in the fourfold 

hollow (FFH) site with a spacing, d, o f zero A between the oxygen atoms and the f ir s t  

copper layer. A recent normal photoelectron d iffraction  (NPD) study by Tobin et al2* 

favours the fourfold hollow site also, with a d spacing of 0.8A. Angle resolved secondary 

ion mass spectroscopy (ARS1MS) studies by Holland et al23 also favour the fourfold hollow 

site, but with a d spacing of 1.2 to 1.5A.

Richter and Gerhart23 have investigated the c(2x2) structure on spherical copper 

crystals to obtain a perfect (100) orientation, and conclude from the shape of the LEED
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spots that the oxygen actually sits in the bridge site as suggested by Onuferko and 

Woodruff. However, LEED intensity measurements by Yang et a l27 were found to favour 

a coplanar FFH site and ab in itio cluster calculations by Barker and Batra2® also favour 

a FFH site but with a d spacing of 0.9A. Dobler et al2® have recently determined the 

adsorption site using SEXAFS, and find a FFH site with a d spacing of 0.70A to be the 

most favourable. In summary then, most recent investigations favour the FFH site with 

the d spacing of 0.70A determined by SEXAFS being perhaps the most reliable.

With regard to the <*/2x2*/2)R45* structure, Tobin et al2* have evidence that the 

oxygen atoms also sit in the fourfold hollow site.

Habraken* has found the in itia l sticking coeffic ient o f oxygen on copper (100) 

to  be about 0.01 at room temperature, and has also found that the kinetics of the reaction 

may be described by Langmuir kinetics where dissociative adsorption occurs into nearest 

neighbour adsorption sites and the saturation coverage is approximately 0.5. This saturation 

coverage suggests some mobility o f the adsorbed oxygen atoms. The variation of sticking 

factor with coverage may be described by;

s<8> - s0(l-e )2 (5.3)

Arm itage1*2 also finds th is relationship to be true, except that the s0 term must 

be replaced by a cs0 term in order to correct for small differences in the initial sticking 

factor as determined by the two workers.
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(5.6) Oxygen adsorp tion  on copper v ic in a l su rfa ces .

Gwathmey30 and co-workers have investigated the oxidation of copper single crystal 

surfaces in a ll regions o f the stereographic triangle by using spherical copper samples. 

Copper spheres with (001), { i l l )  and <110) facets were also used so that the behaviour 

o f the low index surfaces could be accurately compared with that o f the vicinals. 

Ellipsometry was used as the analytic technique and film thicknesses could be measured 

to an accuracy of +5A. Because o f this limitation, Gwathmey’s work could not be extended 

into the sub-monolayer region and work by Arm itage1«3 and the current work focus on 

the sub-monolayer regime which was inaccessible to Gwathmey.

Milne31 has more recently used LEED to investigate clean copper vicinal surfaces 

8* and 5* o ff  (110) along ClIO) and C0011 respectively and also a surface 8* o ff (110) which 

was 52* from C0011 All surfaces were found to exhibit the simple TLK morphology. Perdereau 

and Rhead33 have investigated three surfaces in the (001) zone (all o f which exhibit 

fu lly kinked steps) 10*,15* and 20* from the (100) pole and has found that all the surfaces 

facet to (410) a fter as lit t le  as 60L o f oxygen at room temperature. This agrees well 

with the observations o f Bernt33. Perdereau and Rhead conclude that ’ adsorption takes 

place preferentially at steps, and that the ra te o f adsorption increases with step density",

Moison and Domanga34 have investigated all copper vicinals 4* o ff (100) and ( i l l )  

under oxygen adsorption and have found that the M i l l )  surfaces are stable at room 

temperature and on annealing. The M001) surfaces were also found to be stable at room 

temperature, and oxygen coverages of up to 1 monolayer. Heating to 400K caused a kink 

migration and a faceting to (12,1,0) which has fu lly kinked <100> type steps. Moison and 

Domange suggest that the driving force for this faceting is the exoellent meshing of 

the superstructure and substrate which is found fo r (n4,l,0) type surfaces, where n is 

an integer. Surfaces in the CilOl zone (step edges parallel to <U0> and zero kink density)
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were found to be stable to such faceting.

Baetzold3* has investigated two stepped surfaces close to (113), the CuC5(lli)x(100)l 

and the CuC2(lll)x(100)] surfaces. The 2(111) surface was found to be stable to oxygen 

adsorption up to exposures o f 6000L, whilst the 5(111) surface began to facet at around 

1000L, and developed into a surface with wide (111) terraces with non regular polyatomic 

steps at exposures greater than 6000L,

Boulliard et al^l have used high energy ion channeling to investigate the Cu(16,l,l) 

surface clean and under oxygen adsorption. The surface was saturated by heating to 

300*C in 10” ® torr o f oxygen, and this caused faceting to a structure exhibiting 

approximately equal areas of (410> and (100) domains. Boulliard found the saturation coverage 

to be 0.5 which is in disagreement with all other workers who report a saturation coverage 

o f about 0.75 a fter only 1000L exposure at room temperature. Boulliard attributes this 

discrepancy to the faceting o f the surface, and points out that i f  the average of the 

saturation coverages o f (0011 and (410) is taken, it  is indeed close to the value of 0.5 

observed fo r the vicinal. This result suggests that any faceting o f oxygen covered (100) 

vicinals on heating should manifest itse lf as a change in surface coverage. It should 

be noted here that this result is particularly relevant to the work described in chapter 

6, where the oxygen covered cylinder is heated to high temperatures prior to reaction 

with CO.

Lapujoulade at al®3 have recently used helium atom scattering to investigate the 

e ffe c t  o f temperature on the surface structure of Cu(lll), (100), (110), (113), (115) and (117), 

and have found tentative evidence fo r  a thermal roughening transition at temperatures 

between 300 and 500X fo r (110), (113) and the vicinal surfaces. Lapujoulade suggests that 

this roughening may be attributable to an increase in kink density and to the generation 

o f adatoms on the terraces.
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In summary, the Author concludes that the evidence in the literatu re suggests 

that fo r  oxygen exposures below 1000L and coverages less than about 0.5 monolayers, all 

surfaces in the <110> zone will exhibit their simple TLK morphology. This was also the 

conclusion of Armitage1̂ . At coverages greater than about 1 monolayer, various faceting 

phenomena begin to appear, especially fo r surfaces in the C0011 zone with kinked steps. 

The fu lly kinked steps in this zone are observed to be particularly susceptible to faceting 

to <n4,l,0> structures. At much higher oxygen exposures and substrate temperatures, in 

the oxidation regime, Gwathmey has shown that all copper surfaces facet to combinations 

of <0011 and Ull>.

As the present work is essentially a repetition under superior experimental 

conditions o f that o f Armitage, the previous work on oxygen adsorption on the copper 

cylinder will now be summarized.

(5.7) P re v io u s  w o rk  on oxygen  a d so rp t io n  on thw c o p p e r  c y lin d r ic a l  

s in g le  c ry s ta l .

Armitage1-2 has previously studied oxygen adsorption on the copper cylindrical single 

crystal used fo r the present work, in the coverage range 0 to 0.5 monolayers. The most 

important aspect o f Armitage's work, as fa r  as the current investigation is concerned, 

was the proposal of two models describing the kinetics of oxygen adsorption on the copper 

vicinal surfaces presented by the CliDJ axis cylinder. Indeed, a major aim o f the current 

work on oxygen adsorption was to re-evaluate these models.

According to Armitage, the vicinal surfaces between two adjacent low index planes 

in the <110> zone may be thought o f as being composed o f sections of the adjacent low 

index planes. The ridged <U0> and U13) surfaces are atomically ’rough’ surfaces whilst 

the (001) and (111) planes are atomically ’smooth’. Thus a vicinal surface in the <110>
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zone may be thought o f as being composed o f sections o f atomically rough and smooth 

surface.

Such vicinal surfaces may be viewed in terms of the TLX model as having a step 

density which varies with misorientation from a low index plane, or, they may equally 

well be viewed as being composed o f low index microfacets. The available evidence in 

the literature tends to support the TLX interpretation however.

The fraction  o f a given low index plane A, 4* ,̂ in a surface in the <110> zone 

which is vicinal to  A and to another low index plane B, also in the <110> zone is given 

by:

* A ■ ifcS i (3.4)

where a is the misorientation from A about the <110> axis, and $  is the angle between 

the two low index planes. Similarly, the fraction of the vicinal surface which is composed 

of plane B, 4>g, is given by:

*B .  I f c f i  -  l - * A (3.5)

where 0 is the misorientation from plane B, and a+0*$. I f  A is a rough (110) or <113} 

surface, then the parameter 4»^ or (l-4>g), is a measure o f the surface roughness, and 

is linearly related to the step density.

Oiven this deconvolution o f vicinal surfaces into rough and smooth regions, it 

can immediately be seen that there are two possible extremes of behaviour of the surfaces 

under adsorption:
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(a ) The rough and smooth regions of the vicinal (steps and terraces) interact with oxygen

completely independently o f eachother. In this case the fractional coverage of a 

given vicinal will be the weighted average of the fractional coverages of its rough 

and smooth components.

(b ) The rough and smooth regions o f the vicinal in teract completely, with adsorbates

from one region rapidly diffusing to the other. This will mean that the sticking 

factor o f a vicinal will be the weighted average o f the sticking factors of its 

rough and smooth components.

Armitage has shown that these two extremes o f behavior give rise to two very 

d ifferen t models fo r oxygen adsorption on the copper cylinder. The two models proposed 

by Armitage, the fa s t d iffus ion  and the d iffu s io n -fre e  model will now be described in 

some detail.

(5.8) Thm diffusion-frm m  modml.

Of the two models proposed by Armitage, the d iffusion-free model is by far the 

simplest. The rough and smooth regions o f the vicinal (steps and terraces) are assumed 

to behave completely independently, and so the coverage of a given vicinal is simply the 

weighted average o f the coverages o f its  component parts. Thus for a vicinal V between 

two low index planes A and B, the coverage of the vicinal a fte r  an exposure E , 6y(E) 

may be written as ;

6v(E) -  * a0a(E)+ * b8b(E> <5.6)

Where +A and * B have been defined in the previous section and 8A(E) *nd 8B(E) are 

the coverages of planes A and B respectively a fte r an exposure to oxygen, E. Coverage
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has its  usual meaning; the ratio o f the number o f adsorbate atoms to the number o f 

substrate atoms in the plane in question. Armitage has been able to f it  Kabraken's data 

for the {110) and <001) planes by simple second order equations of the form,

0 0.5 0.5
(XE+1)

(5.7)

The symbol K represents a constant term cjs0i in Armitage's notation, where s01 is the 

in itia l sticking coeffic ient o f the ith  plane in question and the constant Cj is chosen 

so that the exposure E may be in Langmuirs. The constant also improves the f it  between 

Armitage's simplified second order equations and Habraken’s data. The values of K and 

*oi fo r the low index planes <001), (110), <111) and <113) are given in table 3.1.

Unfortunately, Habraken presents no data fo r  the <113) face, and so Armitage 

assumed that this face behaves similarly to (110) except that it's initial sticking coefficient 

s0, is reduced by the ratio  o f the ridge densities on the (113) and <110) planes. Armitage 

found that this assumption gave an excellent f i t  to data he had obtained for the (113) 

face, and so was validated. A comparison o f the coverages calculated using the above 

model with data collected in the current work also shows good agreement between the 

expected and actual behavior o f the (113) face. The (111) face obeys simple zeroth order 

kinetics (for coverages less than 0.3 monolayers), and so the coverage of the (111) face 

is given by;

0 -  XE (5.8)

Where the value of X is given in table 3.1.
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Table 5.1 
T=*298K

FACE *o,i K

(110) 0.165 0.571

(113) X 0.487

(001) 0.0104 0.0094

(111) 0.00130 0.00034

Tab le  5.1 This table gives the values o f the in itia l sticking probability, s0 j, from 
Habraken2"* and the K values o f Armitage2 fo r the four low index faces. The 
K values are used in the fast diffusion and the diffusion free models of Armitage, 
and the s0 i value for the (113) face is unknown.
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(5.9) Thm f a s t  d i f fu s io n  m odel.

In this model it  is assumed that surface diffusion occurs instantaneously, and so 

all parts o f the vicinal in teract completely. The sticking fa cto r o f a vicinal sy(8) is 

thus given by the weighted average of the sticking factors  o f its  two component low 

index planes, sA<6) and sgiO):

sv <e) * s a (6 )  ♦ Sg<e> | - * a s a (6) *  * b s b (6) (5.9)

Where the symbols all have their usual meanings.

I f  the equations for the variation of sticking factor with coverage are integrated 

(Armitage?), then the equation describing the variation w ith exposure of the coverage 

of all surfaces except (U l) may be written as follows:

0.5KE 
9 (XE+1)

(5.10)

Where

X= C{uo)*o (110) for the (110) plane 

X» CdisjSQ^na} for the (113) plane 

K» C{Q01)*o (001) for the (001) plane

X* I*(001)°{0011*0,(001) + Ci_'l'{00lPc{113>4o,{113) tor vicinala between (0011 and (113)

K” +{Q0i>C{001>*o,(001> for vicinala between (001) and (111)

X» *{iio>C{iio>*0,{iiO> for vicinala between <1101 and (111)

It can be seen that the last two aquations are only approximate as no contribution 

is included from the (111) components. Armitage has found the error introduced by this
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to be acceptably small, hovever, as the <110) and <0011 planes have much greater initial 

sticking coefficients than {111}. The {111) plane approximates to zeroth order behaviour 

at coverages less than about 0.3 monolayers, as described previously (see equation 5.8).

<5.10) Oxygen ad sorp tion  on copper* c y lin d r ica l s ing le  c ry s ta ls ;

Experim ental p rocedure.

All the experiments on the oxygen/copper system were performed on the computerized 

apparatus described in chapter 3. This allowed a decrease in experimental time and, 

simultaneously, a decrease in the noise in the data which allowed a clarification of the 

preliminary results of Armitage.

Prior to oxygen adsorption, the copper cylinder was cleaned by argon ion 

bombardment and annealing. The sample was bombarded with IkeV argon ions for 30 to 

40 minutes with a beam density at the sample of about 4pAcm~2. During bombardment 

the sample was rotated continuously at a rate of about 2 revolutions per minute to ensure 

even cleaning. Reordering o f the surface was accomplished by a brie f anneal to about 

1000X. This procedure was found to produce clean copper surfaces as judged by AES, 

but i t  was found that prolonged annealing at 1000X could segregate small amounts of 

sulphur to the surface. The ordering o f the surface was judged from the sharpness of 

the crystallographic features seen in a plot of crystal current vs. rotation of the sample 

(ArmitageS*). This technique will certainly show up gross disordering of the surface, for 

example after prolonged sputtering.

A fter annealing, the crystal was allowed to cool to about 50*C prior to oxygen 

adsorption. Due to the large thermal mass o f the sample, cooling to room temperature 

could take as long as Vti hours, and so was generally considered to be impractical. Cooling 

to 50*C could be achieved in about lVi hours, and it  was found that the sample could
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ba le ft  in the residual vacuum fo r well over five  hours before any surface impurities 

began to be detectable. Specimen gas dosing was conducted with the sample rotating to 

minimize the e ffec t o f any directional anisotropies in the influx o f gas, and so ensure 

an equal exposure for all faces.

A fte r  sample dosing, the electron gun supplies were adjusted to give a beam current 

o f between 3 and 4pA at the sample at 1.5kV, (the spot size being about 0.25mm2) and 

then le ft  fo r  about 20 to 30 minutes in order to stabilize prior to data collection. During 

this time, the beam was rastered over an area of about ¿cm2 in order to reduce the 

beam density at the Sample and so prevent electron beam damage to the overlayer.

Data collection was performed under computer control by one of the ASPEC programs 

written specifically fo r that purpose. Because of noise problems in the spectrometer, quite 

long time constants had to be used in order to achieve a reasonable signal to noise 

ratio. Typically, the oxygen peaks were recorded at a rate of 3 seconds/point with 30 

points being collected over the whole peak. A high energy copper peak (920eV) could be 

recorded at the much higher rate o f 3ms/point with again, 30 points being recorded over 

each Auger spectrum. Tor a complete rotation  of the sample, with oxygen peaks being 

recorded at 5* intervals o f arc from 0 to 365*, the data collection time was about 2 

hours. Each spectrum was smoothed using a 5 point Savitsky-Oolay extended sliding least 

squares f i t  (section 3.14), and the peak-to-peak height recorded by the GEC4080 computer. 

Although it  was certain ly possibla, complete Auger spectra were generally not saved to 

the cartridge drives in order to  conserve space. Habraken has shown that the ratio  

o f the oxygen (503eV) Auger spectrum peak-to-peak height to that of the copper (920eV) 

spectrum is directly proportional to the surface coverage for coverages below 0.5 monolayers 

and so no purpose was served by saving the complete Auger spectra.
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Each Auger spectrum was displayed on the VDU a fter digitization  so that the 

operator could check for changes in peak shape or errors in recording. After the recording 

o f the oxygen peak-to-peak heights around the sample circumference, the Cu(920eV) peak- 

to-peak heights «e re  recorded in a similar manner. Because the simple algorithm used 

to calculate peak-to-peak heights could not distinguish between an Auger peak and a 

sloping background, it  was found necessary to do a ’clean surface’ experiment in which 

the background in the region o f the oxygen peak was recorded around the sample in 

exactly the same way as the oxygen peaks had been recorded. Both the oxygen peak- 

to-peak heights and the spurious background were normalized to the orientational average 

o f the Cu(920eV) peak-to-peak heights and the background was subtracted. It was found 

that the normalization o f oxygen and copper peaks on a one to one basis only served 

to impress the substrate crystallographic incident beam effects on the adsorbate signal 

(section 4.7), and so normalization to the orientational average of the copper signal was 

considered to be more appropriate.

(5.11) R esu lts and d iscussion .

Fig. 5.1 shows the oxygen peak-to-peak heights measured at 5* intervals around 

the crystal circumference with the background subtracted and normalized to the 

orientational average of the Cu(920eV) peak. The data have been normalized to a saturation 

coverage o f 0.5 as estimated from fig . 5.2a which is a plot of the variation of normalized 

oxygen Auger peak-to-peak heights vs. exposure for the four low index planes (001), ( i l l ) ,  

(110) and (113). These data have been extracted from fig . 5.1 and the average value of 

the normalized peak-to-peak heights taken at each exposure. This averaging uses the 

redundancy in the data to good effect, and improves the statistics of the extracted kinetics.
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Fig. S.l This figure shows the variation with exposure o f the oxygen (503eV) peak-to- 
peak heights recorded at 5* intervals of arc around the sample circumference. These data 
have been normalized to the orientational average of the peak-to-peak heights of similarly 
recorded Cu(920eV) peaks at each exposure, and then renormalized to the saturation value 
at 0.5 monolayers estimated from f ig .  5.2a. This normalization procedure is more fully 
described in section 5.10 p.101.
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T -  310 K T -  310 K

EXPOSURE / L

Fig. 5.2a This figure shows the variation 
in normalized oxygen (503eV) peak-to-peak 
heights with exposure on each of the 4 low 
index planes. The data have been 
renormalized to saturation at 6*0.5 
monolayers.
Fig. S.2b This figure shows the same data 
as Fig. 5.2a plotted on a logarithmic scale 
and compared with coverages calculated 
using the equations of Armitage2.
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Fig. 3.2b shows these same data plotted against log(0), and compared to Habraken's 

data as regenerated from the equations of Armitage. It can be seen that the agreement 

is excellent fo r  the <110> and <113> faces, but rather poorer for the <111} and <001> faces. 

This result is quite understandable i f  it  is remembered that because o f the relatively 

low angular sampling rate, it  is possible to be misorientated by as much as 2.5' from 

a given low index plane. As the kinetics o f the vicinals to (111) and <0011 will tend to 

be dominated by the amount o f active ’rough* surface present, any slight misorientation 

from these planes will have quite a drastic e ffec t on the observed adsorption kinetics. 

Armitage has previously located all low index planes accurately on the cylinder and has 

obtained coverage vs. exposure plots in good agreement with Habraken.

Fig. 3.1 clearly shows the large anisotropy in the adsorption kinetics of the various 

crystallographies available around the circumference of the CllOl axis cylinder, and the 

data are wholly consistent with those o f Armitage and Habraken; the ’rough* <110> and 

(113) planes exhibit the highest reactiv ity whilst the atomically ’smooth’ <111> and <0011 

planes are relatively inert. It should be remembered here, before any further interpretation 

is placed on the data, that variations in the Auger signal of less than about 15% may 

not be due to variations in coverage at all, but may be a result of the crystallographic 

incident beam effec ts  which have been described in section 4.7. The four low index planes 

may be put in the following decreasing order o f reactivity to oxygen adsorption as may 

be easily seen from a consideration of fig . 3.1 and 3.2«:

<110) > <113} > <001} > <111}

Fig. 3.3 compares the data o f fig . 3.1 with the predictions o f the fast diffusion 

and the diffusion free models. It can be seen that whilst both models behave similarly 

at low exposures, exhibiting an approximately linear variation of coverage with step density
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Fig. 5.3 This figure compares the data o f fig . 3.1 (solid lines) with the predictions of 
the fa s t diffusion and tha diffusion free models (dotted lines) of Armitage and Woodruff1.2. 
It can be clearly seen from this figure that at high exposures the fast diffusion model 
gives the best f it  to the experimental data.
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in both cases, at higher coverages the fast diffusion model rapidly begins to develop 

'cusps' on the smooth <001) and (111) planes whilst the diffusion free model maintains 

a linear variation between local maxima on the rough <110) and <113) surfaces and local 

minima on the smooth <001) and <111) surfaces. It should be noted that any cusps in 

the data will be rounded somewhat, as the angular sampling rate o f the data (5* of 

arc) is substantially greater than the predicted angular width of these features.

The data are in good agreement with both models at coverages less than about 

12L, and this is not surprising as there is lit t le  divergence between the models at such 

low exposures. At exposures greater than about 48L however, the fast diffusion model 

becomes increasingly superior as the data clearly begins to exhibit some cusping at the 

low index planes.

Examination of f ig .  S.l shows a local maximum developing between the <001) and 

<113) faces in the exposure range 3 to 480L. This feature is of such a size that it  may 

be attributed to a crystallographic incident beam a ffec t which is known to occur in 

this region. Although th is maximum obscures the data between <001) and <113) somewhat, 

there s till seems to be some evidence of surface diffusion on the <113)/<001) vicinals at 

high exposures.

It can also be seen from f ig . 9.3 that the cusping in the calculated coverages 

fo r the fast diffusion modal begins to be pronounced at much lower exposures than is 

the case in the actual data. This discrepancy may well be due to the fact that the 

model assumes in fin itely fa s t diffusion. Diffusion on the real surfaces will occur at a 

fin ite  rate, with perhaps some localization o f the adsorbate at the active step sites. 

With regard to the observed surface diffusion, it  is unclear whether the diffusing species 

is actually fully accommodated chemisorbed atomic oxygen, or the 'hot' excited species 

formed immediately after dissociation of the molecular species.
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(5.12) The decom position  o f  n it ro u s  ox ide  on c o p p e r  su r fa c e s ;

P re v io u s  w ork .

In contrast to the large amount o f work which has been done on the copper/ 

oxygen system, the interaction of nitrous oxide with copper surfaces has received relatively 

lit t le  attention. Spitzer and Luth** have used LEED, UPS, XPS, AES and work function 

measurements to investigate NjO adsorption on the three low index planes at low 

temperatures and find that no dissociation or adsorption can be detected on the (100) 

and (111) planes in the temperature range 90 to 300X. On (110) at ?0K, however, N2O is 

found to adsorb dissociatively at first, leaving atomic oxygen on the surface. For oxygen 

coverages above 025 monolayers, molecular N2O is observed on the surface with its molecular 

axis oriented along the surface normal.

At or above room temperature, Simmons et al37 and Scholten and Konvalinka38 have 

found that N2O decomposes on adsorption on copper surfaces with the formation of a 

chemisorbed oxygen atom and a molecule of nitrogen which is desorbed. The LEED patterns 

o f the oxygen overlayers so produced were identical to those produced by the dissociative 

chemisorption of molecular oxygen3-6»37“*8.

The decomposition of nitrous oxide on copper is found to be very slow on all planes 

at room temperature, and the process is found to be strongly activated. Even with copper 

powders, no oxidation o f the metal is found to occur at temperatures less than about 

120*C, but above this temperature oxidation has been shown to occur at pressures of 

between 200 and 600 torn (38,40). E rtl*3 has conducted a systematic investigation into 

the interaction o f N2O with Cu(lll), (100) and (110) as has Habraken3-6. Habraken's work 

on the interaction of N2O with copper (111), (100) and (110) was carried out in conjunction 

with his work on oxygen adsorption which has been described previously in this chapter.
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Habraken’s work provided the impetus fo r the present investigation, and so, because of 

its great relevance, it  will be briefly summarized.

<5.i3) N it ro u s  oxidm a d so rp t io n  on Cu<lll>.

Habraken et al3-6 define a reaction probability s(0) for NjO decomposition on copper 

which is analogous to a conventional sticking probability:

s(6) No. adsorbed 0 atoms 
No. incident N ^  molecules

(5.11)

For all copper surfaces, the surface reaction is;

N2O -*■ 0 ,d N2t (5.12)

Habraken3 finds that on the (111) plane the reaction kinetics may be fitted by 

a simple precursor state model where adsorption is to a single site and the reflection 

probability is independent of coverage (Khort and Comer7). Thus, i f  6’*6/6H t, then;

S(0>) m -So- .
' ' ci+K1e,.(i-e,)-1i

(5.13)

where K i«P ’d/(Pa+Pd) where Pa is the probability o f ohemisorption and Pd and P’dp the 

probabilities for desorption of the precursor state from empty and filled sites respectively. 

An Arrhenius plot o f s0 vs. 1/T gave an activation energy o f 43.5 kJ/mol and a pre­

exponential factor, A, of 0.09 over the temperature range of 250 to 400*C.

Habraken found that dissociative adsorption o f N20 led to a saturation oxygen 

coverage of about 0.5 monolayers, and that the in itia l reaction probability was about
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10~5 over the temperature range 250 to 400*C. Extrapolated to room temperature, the initial 

reaction probability is about 10~?. Habraken also found that the reaction probability 

increased with temperature.

<5.14) N it ro u s  ox ide  a d so rp t io n  on CudlO),

Habraken et al* have found for this plane an initial reaction probability so-0.15 

(at room temperature) which decreased linearly with coverage to a value close to zero 

at a coverage of about 0.36. A saturation coverage o f about 0.5 monolayers was reached 

after an exposure of about 10®L and at temperatures up to 400*C.

The in itia l reaction probability was found to decrease slightly with temperature, 

suggesting the presence o f a precursor state. The in itia l activation  energy was found 

to be 8 kJ/mol with a pre-exponential factor o f about 0.006, and this activation energy 

was found to increase with coverage.

Habraken has pointed out that i f  the decomposition is brought about by the capture 

of an electron from the substrate as suggested by Lunsford*? and Gagarin*8, then the 

activation energy may be related to the work function. Habraken found that the difference 

in activation energy between the (110) and (111) faces (58 kJ/mol) is approximately equal 

to the difference in work function between the two faces (52 kJ/mol). A correlation between 

work function and activation energy is also consistent with the increase in activation 

energy with coverage, as oxygen adsorption increases the work function of the surfaces.

(5.15) N it ro u s  oxidm a b so rp t io n  on Cu<100).

At room temperature, Habraken* finds an in itia l reaction probability fo r the 

decomposition of N2O on Cu(100) of 10“ ®. An apparent activation energy of 13 kJ/mol was 

found fo r s0, and a pre-exponential factor o f about 0.001. The reaction probability was 

found to decrease exponentially with coverage, and the apparent activation energy was
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found to increase. Habraken suggests on the basis of this, that a precursor state model 

is also appropriate to describe the kinetics o f the (001) face. Habraken also suggests 

that the increase in activation energy with coverage is brought about by the increase 

in work function of the surface.

Engell*3 and Hauffe44 have derived an equation for the sticking coefficient as 

a function o f coverage fo r cases where charge transfer over an increasing potential 

barrier is rate-lim iting. Habraken points out that the exponential decrease in sticking 

factor with coverage observed on the (100) plane is entirely consistent with such a model.

(5.16) N it ro u s  oxide on copper*; E xperim en ta l p ro ced u re .

The experimental procedure for the nitrous oxide experiments was identical to that 

used fo r the oxygen on copper experiments except fo r the greater pressures (10' to 

10"4 to rr) used during gas dosing. A fter the N2O pressure was established in the chamber 

(which was continually pumped), the ionization gauge was turned o f f  as it  is known45 

that exposure o f NpO to hot filaments leads to the production of NO. The pressure was 

checked periodically and maintained as accurately as possible over the 5 to 15 minutes 

taken fo r the exposures. All exposures were made at temperatures as near to room 

temperature as was considered practical, typically at about 40 to 50*C.

(5.17) R e su lts  and d iscussion .

Fig. 5.4 shows the variation in the oxygen (503eV) Auger peak-to-peak heights 

recorded around the sample circumference, which have been normalized to the orientational 

average o f the Cu(920eV) peak, and the ’background’ subtracted as described in section 

5.10. The saturation coverage of 0.5 monolayers was estimated from fig. 5.5a, which shows 

the variation  in normalized oxygen peak-to-paak heights with exposure for the 4 low 

index faces, <001>, (111), (110) and (113). Once again, the data of fig. 5.5a are the average
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Fig. 9.4 This figure shovs the normalized oxygen (503eV) peak-to-peak heights recorded 
at 5* intervals o f arc around tha sample circumference as a function o f N2O exposure. 
The saturation coverage o f 0.5 monolayers has been estimated from fig . 9.9«. It can be 
seen that there is a great sim ilarity between the anisotropy in these data and the 
anisotropy in the oxygen adsorption data of fig . 9.1 (p.104).
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A n g le  f rom  (110)

Fig. 3.3a This figure shows the variation of the average normalized Auger peak-to-peak 
heights on each o f the four low index planes with N20 exposure. This is the first time 
that kinetic data has been presented for N20 decomposition on the (113) face of copper.
Fig. 3.3b This figure shows the results of a calculation o f the orientational dependence 
o f the in itia l reaction probability fo r N20 decomposition on copper surfaces. The simple 
'work function* model used for this calculation is described fully in section 3.17 (p.112).
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coverages on a given low index face at a given exposure.

The data o f fig . 5.4 once again show a large anisotropy in oxygen coverage at 

a ll exposures. The order o f reactiv ity  o f the faces is the same as that observed for 

oxygen adsorption;

diO} > (113) > <001} > {111}

The d ifference in reactiv ity between the various faces is much more pronounced than 

in the case o f oxygen adsorption, and indeed, whilst the {110} face is almost saturated 

at exposures as low as 60L, the {111} face is almost completely inert even at the highest 

exposure o f 6x10*1.. It is entirely possible that because o f the intrinsic angular error 

o f about 12.5* caused by sampling only every 5* o f arc, that the observed reactivity 

o f the {111} plane at room temperature (which seems to be somewhat greater than that 

predicted by Habraken) is determined by a small step density due to a slight misorientation 

from d l l } .

The data o f f ig . 5.4 and 5.5a include fo r the first time data on the decomposition 

o f N2O on Cu{113} and it  can be seen that the {113} face exhibits a reactiv ity which 

is intermediate between that of the {110} and {001} planes.

I f  the data of f ig .  5.4 are compared with the oxygen anisotropy data (fig . 5.1), 

i t  can be seen that there is a great sim ilarity overall, with the activity of the crystal 

planes decreasing from ’rough* to ’smooth' in the same order in both cases. Closer 

examination o f the N2O data shows a broadening of the peaks at exposures greater than 

about 4.8x103l , and this is indicative of surface diffusion. The evidence for surface diffusion 

is once again somewhat obscured in the region o f (001) due to the presence of 

crystallographic incident beam effects which were seen also in the oxygen adsorption 

data.
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This evidence fo r surface diffusion in the N2O data is perhaps to be expected, 

as the adsorbed oxygen species is the sane as tha t generated by oxygen adsorption. 

Again i t  is not clear whether the diffusion occurs fo r oxygen atoms which are fully 

accommodated to the surface or whether diffusion is o f the ’hot’ atoms immediately following 

dissociation and prior to complete accommodation. I f  the la tter is true, then it  can be 

concluded that the dissociation of either molecule leaves the oxygen sufficiently excited 

for diffusion to occur.

Comparing the oxygen and N2O anisotropy data (fig . 3.1 and 5.4), it  can be seen 

that fo r  N2O decomposition the ratio  o f the in itia l reactiv ity of the (113) face to that 

o f the <110) face is approximately 0.5, whereas in the case o f oxygen adsorption, the 

ratio o f the in itia l reactivities is close to 0.8, the ratio o f the ridge densities. This 

implies that whilst the initial sticking coefficient is obviously dependent on ridge density, 

the dependence is no longer linear as was found in the case of oxygen adsorption.

Examination o f fig . 3.4 clearly shows that at exposures less than about 500L, the 

maxima in the data are narrower than either the fast diffusion or the zero diffusion 

models would predict. This ’inverse cusping’ of the data would seem to indicate a 'step 

blocking’ rather than a step feeding mechanism, or more appropriately, suggests that 

the steps are actually less reactive at large separations than when they converge to 

form a <1101 or <1131 face. This e ffec t is particularly noticeable in the region of (110), 

and is strong evidence fo r a non-linear dependence on step density of the initial rate 

of N2O decomposition on the copper vioinals. In fa c t it  is not uncommon fo r  a stepped 

surface to exhibit a reactiv ity whioh has a non linear dependence on step density, and 

fo r example CO oxidation over stepped P t (l i i )  surfaces shows a dependence on step density 

which is exponential46.
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Habraken* has suggested that the activation energy fo r N2O decomposition on 

copper surfaces is related to the work function o f the surface as it  is thought that 

the reaction proceeds via a rate determining electron capture from the substrate*?’*7'*8. 

Habraken does indeed find a linear relationship between his calculated activation energies 

and measured work functions which strongly supports this hypothesis. Peralta et al*? 

have measured the work function of a clean copper <110> axis cylinder similar to the 

one used in the current investigation, and have found that work function may be linearly 

related to step density, with minima in the work function on the rough <110) and <113> 

planes, and maxima on the smooth <001) and ( i l l )  planes. Peralta's data does exhibit some 

rounding of both the minima on the <113) planes and maxima on <001), but the e ffect 

is small and the variation is essentially linear. Given this information, it should be passible 

to calculate the variation  in activation energy fo r  the dissociation of nitrous oxide as 

a function of surface orientation, given the work functions of the (113), <110), (111) and 

<001) faces, and the linear relationships between work function, step density and activation 

energy. From these activation  energies, the initial sticking coefficient may be calculated 

using Habraken's pre-exponential factors and an estimated pre-exponential for the <113) 

plane.

The calculation o f activation energies directly from work function measurements 

was triad in itia lly  and abandoned as the agreement between published work functions 

fo r the low index faces o f copper is poor. The Author has, however, constructed a model 

fo r the in itia l reaction coeffic ient o f N2O on the copper cylinder based on the following 

three assumptions:

<1) The variation o f work function and hence activation energy is linear between two 

adjacent low index planes in the <110> zone. The activation energy o f a vicinal 

plane Ey. which is between two low index planes A and B with activation energies
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Ea  and Eg respectively, is given by

Ev  *  * a eA + *Be B <5.14>

where 4>a  »» the fraction of surface A comprising the vicinal and ♦g  is the fraction 

of surface B. The activation energy of a vicinal is thus seen to be the average 

of the activation energies of its low index components weighted by their respective 

contributions to the plane. This is an identical assumption to that made for the 

orientational dependence o f coverage in the diffusion free model (section 5.8). The 

fraction 4>a  ls defined as previously as 4»a * (♦ - « )/ ♦  and similarly 4>g is defined 

as (♦-B)/* where a and 8 are the angles from faces A and B respectively, and 

$  is the angle between the two adjacent low index planes.

(2) In order to construct a model fo r  the in itial reaction probability some assumption

must be made about the orientational dependence of the pre-exponential factor. 

It will be assumed that the pre-exponential factor varies linearly in the same 

manner as the activation energy between any two adjacent low index planes.

(3) Unfortunatly, Habraken does not quote an activation energy or a pre-exponential factor

fo r the (113) face and so some reasonable assumption must be made which will 

allow estimation o f these parameters. In the previous oxygen adsorption work, the 

<1131 face was shown to behave quite similarly to the (110) face, and so it  will 

be assumed that the pre-exponential factors of the two faces are identical. Peralta 

at al4? have shown that on both faces the steps exhibit a similar polarization, 

2.81xl04D/cm for (001) type ledges and 3.15xlO*D/cm fo r (111) type ledges, and so 

it  will be assumed that the <113> faoe can be treated as a (110) face except that 

the ridge density is lower by a factor of 0.83. The activation energy to a first
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approximation v i l l  be taken to be 0.83 times that o f the (110) face. That this 

is a good approximation can be seen by comparing this fraction  with the ratio 

o f the work function of <113> face to that o f the {1101. Using the data of Peralta 

et al, th is ratio o f vork  functions is found to be 0.95, which is within 15% of 

our original approximation. Given that it  is only the qualitative features of this 

model that are o f interest, and that there is probably a much larger error in 

the pre-exponential factor, it  matters lit t le  which ra tio  is used. It was found 

however, that the ratio  of the ridge densities gave better agreement with the 

experimental data.

Given the calculated activation energies, it it thus possible to calculate an initial 

reaction probability where

Sq * AexpC 1 <5.15)

where A is the pre-exponential factor, Ea is the activation energy for the face in question, 

k is Boltzmann’s constant and T is the absolute temperature.

Fig. 5.5b shows the result o f such a calculation of the orientational dependence 

o f in itia l reaction probability at a temperature o f 298X. The model predicts a marked 

'terrace retardation' effect where vicinals to the low index faces exhibit an initial reaction 

probability which is much lower than that predicted by either the fast diffusion or 

diffusion free  models. A feature o f both the fast and zero diffusion models was the clear 

distinction in terms of adsorption kinetics of the rough and smooth regions of the vicinal 

surfaces. Unfortunately, with a model based on activation energies, no account is taken 

o f the separate steps and terraces, and the vicinal is viewed as having an initial reaction 

probability determined by its activation  energy which is in some way determined by its
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surface structure. This ’averaged’ behaviour of the vicinals may be reconciled with the 

terrace feeding which is believed to be occuring at high coverages if it is remembered 

that the polarization o f the steps will lower the electrostatic potential experienced by 

the precursor molecule and hence the activation energy to dissociative adsorption. The 

fact that such a simple ’work function’ model successfully predicts a terrace retardation 

e ffect is good supporting evidence for Habraken's hypothesis that activation energy 

depends on work function fo r N2O decomposition on copper. It is clear, however, that 

fa r more information on the NjO dissociation reaction is needed in order to understand 

this terrace retardation phenomenon properly.
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(6.1) In tro d u c t io n  to  c h a p te r  6.

This chapter describes an investigation into the oxidation of carbon monoxide by 

oxygen which has been preadsorbed on copper surfaces. This is the first time that this 

reaction has been studied on cylindrical single crystals, and the reaction is seen to have 

a crystallographic anisotropy which has not been noted by previous workers. By using 

the fast diffusion model for oxygen adsorption (described in section 5.9) and empirical 

equations describing the kinetics of the CO oxidation reaction, the data are extrapolated 

to describe the crystallographic dependence of the rate o f oxidation of CO in a CO/ 

O2 gas mixture when copper surfaces are present as a catalyst. The final part of the 

chapter describes the oxidation of hydrogen by oxygen preadsorbed on copper, and this 

reaction is compared and contrasted with the previous CO oxidation experiments.

(6.2) CO absorp tion  on cornier s u r fa c es

There has been much work done on the adsorption of CO on copper low index 

planes and this work will now be briefly summarized.

CO absorbs only very weakly on a ll copper surfaces at room temperature, and the 

activation energy fo r  the process is found to be in the range 2 to 4 kJ/mol (Pritchard1, 

Conrad at a l2, Xessler and Thiema3). At temperatures less than about 200X, various CO 

superstructures form on the low index copper planes which have been investigated by 

LEED. On Cu(100) at temperatures of about 80K, a («/2xV2)R45* structure (usually referred 

to as a c(2x2) structure) forms at low coverages which develops into a compression structure 

at higher exposures (Andersson*»5, Chesters and Pritchard*, Tracey2).

On a ll crystal planes of copper, infra-red spectroscopy shows that the CO molecule 

is bonded via the carbon atom, and on the (100) face this bond is to a ’hill site' directly 

above a Cu atom5. Chesters and Pritchard* and Andersson and Pendry5 have found evidence
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fo r the occupation of another site (possibly a bridge site) in the compression phase. 

At low coverages, CO tends to bond at terminal sites rather than bridge sites on all 

copper surfaces.

CO adsorption on C u d lll gives rise to a («/3xV3)R30° structure which is thought 

to correspond to a coverage o f 0.3 and the surface is found to saturate at a coverage 

of about 0.45 (Lindgren et al9).

Woodruff and Bradshaw10 have investigated CO adsorption on copper (110) and find 

in common with Horn et a l11 that a c(2xl) pattern is initially produced which compresses 

at higher exposures to a structure which is approximately c(1.3x2). CO bonds terminally 

to copper surfaces with it 's  molecular axis parallel to the surface normal, and this bond 

is thought to comprise of a strong CO-Cu a bond which is strengthened by 2** back- 

bonding from the metal (Blyholder1?). This backbonding gives rise to a chemical shift 

in in fra-red  (IR) absorption spectra, but this e ffec t is complicated by dipole coupling 

between adsobed CO molecules and also between the molecules and their images in the 

metal surface10. Lindgren et al9 and McConville et al10 have investigated this phenomenon 

on copper (111) and (100) respectively, using photoemission, and find good evidence for 

the population of the 2s* state by back donation from the metal.

Hollins and Pritchard19 have investigated the adsorption of CO on Cu(lll)-o|| “J|, 

Cu(110)-O(2xl) and Cu(UO)-Oc(6x2), and find that in all cases, the heat of adsorption (as 

in ferred from thermal desorption experiments) is lowered. They suggest that for the (111) 

surface, the CO molecules are bonded to copper atoms which are not bonded directly to 

oxygen, whilst on the (110) surfaces, the CO molecules bond to copper atoms which are 

perturbed by bonded oxygen. Hollins and Pritchard also state that CO molecules bonded 

at step sites exhibit a vibrational frequenoy which is a few wavenumbers higher than 

that o f molecules at normal sites. It is difficult to say whether this is due to an increased
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binding energy at step sites, as the situation is complicated by dipole-dipole interactions.

(6.3) Oxygen adsorp tion  on copperi The therm al s ta b ility  o f  

chem isorbed oxygen  films.

There has been a great deal o f work done on the dissociative chemisorption of 

oxygen on copper surfaces, and this work has been thoroughly reviewed in sections (5.2) 

to (5.9) o f this thesis. With regard to the thermal stability of the resultant oxygen films, 

it  seems that very lit t le  work has been done and yet is is necessary fo r the Author 

to address this problem as the CO and hydrogen oxidation by chemisorbed oxygen, which 

is described later in this chapter, occurs only at temperatures greater than about 500K.

Boulliard et ali!> have found that the Cu(16,l,l) surface facets at high oxygen 

exposures (>100,000L) at 300*C, and that this faceting to regions of <100) and <410> modifies 

the saturation coverage of the surface. Any change in the surface morphology on heating 

the oxygen saturated copper cylinder may therefore be expected to be manifest as a 

change in the observed anisotropy in the oxygen coverage. The Author has investigated 

this e ffe c t  by giving the copper cylinder various oxygen exposures up to saturation at 

6>0.5 at about 50*C, and then heating the sample. It was found that the chemisorbed 

oxygen films remained unchanged on annealing to temperatures as high as 1000K. No loss 

o f oxygen or change in the oxygen coverage was observed. On heating to temperatures 

a few hundred degrees in excess of 1000K, however, it was noticed that oxygen was indeed 

lost from the surface. A fte r loss of oxygen at high temperatures, the anisotropy in the 

surface coverage strongly resembled that produced when CO or hydrogen is oxidised by 

chemisorbed oxygen on copper (section 6.9) and so the oxygen loss was attributed to 

reduction of the surface by the residual vacuum, which would certainly contain both 

of these gases.
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The Author has also investigated the oxidation o f the copper cylinder by N2O 

at temperatures up to about 650K. In all cases the anisotropy in the surface oxygen 

coverage was found to be very similar to that produced at room temperature, and this 

strongly suggests that no faceting had occured.

Lapujoulade et al16 have some tentative evidence for a thermal roughening transition 

on copper vicinals at about 500K which results in a non-zero kink density for surfaces 

in the <110> zone. This thermal roughening may not be a large e ffec t however, and it 

seems likely that the simple TLK model w ill be applicable to oxygen covered surfaces 

undergoing reduction at 600K providing that the surface coverage is only about 0.5 

monolayers.

(6.4) The oxida>tion o f  caurbon monoxide by oxygen  chmmisojrbmd on  

copper" s in w l« crystatl s u r fa c e s .

Jones and Taylor*7 have pointed out that copper metal is a very active catalyst 

fo r the oxidation o f CO to CO2, a reaction which has some importance in pollution control. 

The overall reaction is:

CO ♦ Oad -* C02t <*•*>

Thera has been some work conducted on the oxidation of CO by various types 

o f copper catalyst (Jones17, Garner et a l18, Smith19, van der Meijden20), but the 

investigation o f the oxidation o f CO by oxygen chemisorbed on well defined copper low 

index planes has recieved relatively little attention.

E rtl21 has conducted a LEED investigation o f the reaction on copper (110), (111) 

and (100), and this has been followed by a much more detailed LEED, AES and ellipsometry
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study by Habrakan at al22,23,24,25, Habraken's results, which are wholly consistent with 

those of Ertl, once again form the basis o f th is investigation. Habraken's results for 

the oxidation of CO by preadsorbed oxygen on the three low index planes will be summarized 

in the next sections.

(6.5) The ox ida tion  o f  CO by oxygen chem isorbed on Cu (lll).

Both Habraken22 and Ertl21 have found the oxidation of CO by preadsorbed oxygen 

to be largely non-plane specific on the three low index faces investigated. Thus, the 

behaviour o f the ( i l l )  plane is almost identical to that of the other two planes. Habraken 

has found that chemisorbed oxygen films on copper (111) may be reduced by CO exposures 

in the 10*L regime at CO partial pressures of between 5xi0-® and 5xl0~* torr and substrate 

temperatures o f 200 to 460*C. The overall reaction (which is the same on all crystal planes) 

was found to be:

CO + 0 ,d -*• COjt <6.2)

where the product, CO2, was desorbed and was not found to react in any way with the 

surface. Habraken has found that CO exposures o f up to 10^L produced no adsorption 

or dissociation on the surface and so it  can be seen that the reaction may be monitored 

by following the surface oxygen coverage either by AES or ellipsometry.

It was also found by Habraken that i t  was never possible to completely remove 

all o f the surface oxygen by reduction and the final oxygen coverage was estimated 

to be no less than about 0.004 monolayers. This final coverage was found to increase 

with many cycles o f oxidation and reduction and suggests either oxygen contamination 

o f the CO or the presence of some more strongly bound oxygen species on the surface
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which exhibits a resistance to reduction.

Habraken has defined a reaction probability p(6) for the reaction at coverage 

6, where p<6) is given by

p(g) = rate of removal of OaH (6 3)
rate of impingement of CO

The maximum reaction probability was found to be about 4xl0~® at 250'C, and the 

reaction was found to obey Langmuir-Hinshelwood kinetics with the rate of the reaction 

being proportional to the CO partial pressure.

Given the assumption of Langmuir-Hinshelwood kinetics, the reaction may be broken 

down into the following stages.

(1) O2 -*■ 20,d

(2) CO *  COad

(3) C0,d «• 0 ,d -*• C02t (6.4)

Habraken finds that the activation energy fo r the overall reaction is 33kJ/mol 

and given Ertl’s value o f 42 to 51 kJ/mol for the heat of adsorption o f CO on copper

(111) (step 2), a value of 75 to 84 kJ/mol was obtained for the activation energy of reaction 

3, the oxidation of chemisorbed CO by preadsorbed oxygen.

(6.6) The oxidaition o f  CO by oxygen  chemisorbed on Cu(llO)

The oxidation o f CO by oxygen chemisorbed on copper (110) has been investigated 

by Habraken23 over the temperature range 230 to 410*C with an initial oxygen coverage 

o f 0.5. CO partial pressures were between 5xl0"5 and 5xl0~4 torr, and exposures in the 

region of 10.000L were used. Once again it was found to be impossible to completely remove
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all tracts o f oxygen from tha surface by reduction with CO. The rate o f reaction was 

found to be proportional to the CO partial pressure, and the reaction was found to obey 

Langmuir-Hinshelwood kinetics. The maximum reaction probability at 250*C was 

approximately 3x10"®, and this corresponded to an oxygen coverage of 0.25 monolayers. 

Habraken found that the activation energy for the overall reaction was 26kJ/mol and 

by using E rtl’s heat o f adsorption for CO (54kJ/mol), an activation energy of 80kJ/mol 

was obtained for the oxidation of adsorbed CO by adsorbed oxygen.

The sim ilarity in the maximum reaction probabilities at 250*C and the activation 

energies fo r  the reaction on the (111) and (110) faces illustrates clearly the relative 

structural insensitivity o f this reaction as compared with oxygen adsorption or nitrous 

oxide decomposition on these surfaces.

(6.7) Thai oxidation  o f  CO by oxygen chemisorbed on Cu(lOO).

This reaction has also been studied by Habraken^*, who finds that surfaces with 

various oxygen coverages may be reduced by exposures to CO in the 10.000L regime at 

crystal temperatures o f between 200 and 400*C and CO partial pressures in the 2 to 8xl0~4 

torr range.

As was the case with (111) and (110) a small amount o f adsorbed oxygen remained 

on the surface after reduction by CO. The reaction followed Langmuir-Hinshelwood kinetics 

with a maximum reaction probability in the 10~6 to 10~9 range at temperatures between 

200 and 400*C.

The activation energy fo r  the overall reaotion was found to be about 29kJ/mol, 

and given E rtl’s value o f between 42 and 54 kJ/mol fo r the activation energy for the 

adsorption o f CO on Cu(100), a value of 71 to 83 kJ/mol may be estimated for the activation 

energy o f the oxidation o f adsorbed CO by adsorbed oxygen. This reaction (reaction 3,
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equations 6.4) is thought by Habraken to be the rate determining step on all faces.

(6.8) CO o x id a tion  by  oxygen  ad so rb e d  on  c o p p e r  s in g le  c r y s t a l  p lanes: 

E xperim enta l p rocedu re .

The sample was cleaned by the usual method of argon ion bombardment with lkV 

argon ions at a beam desity of about 4pAcm-2 for 40 minutes continuous rotation, followed 

by a brief anneal to about 900X.

A fte r  cooling to about 40-50*C, the sample was given an oxygen exposure of about 

480L which produced an essentially isotropic oxygen coverage on all faces which was 

previously found to correspond to about 0.5 monolayers (see section 5.7). The oxygen peak- 

to-peak heights were recorded around the sample circumference at 5* intervals of arc, 

and normalized to the orientational average of the Cu(920eV) peak-to-peak heights which 

were sim ilarly recorded. The spurious ’background’ generated by the simple detection 

algorithm was subtracted, and the data renormalised to a saturation coverage of 0.5 

monolayers. This procedure has been described in more detail in section 5.10.

The oxygen saturated sample was then raised to the reaction temperature (570, 

610 or 700X) and subjected to increasing exposures of carbon monoxide. The CO exposures 

were made at pressures o f between 10~* and 10“ ® torr in increments of approximately 

12000L up to a maximum exposure of about 90000L.

As up to 9 d ifferen t exposures were investigated at a given temperature, and the 

experimental time fo r each anisotropy experiment was about 2(6 hours, it  was not possible 

to investigate all nine exposures by successive CO doses after one initial oxygen saturation. 

If, fo r  example, CO exposures of 6, 12, 18, 24, 30, 36, 48, 60 and 84L were required, then 

the data would be obtained in two experiments. The firs t experiment would be arranged 

to give cumulative exposures of 6, 18, 30, 48, and 84L whilst the second experiment would

-  132 - J.S.Arlow, 1985



AES on cylindrical single crystals Chapter^

be arranged to give cumulative exposures of 12, 24, 36, and 60L. As the sample was cleaned 

and re-saturated with oxygen between the experiments the sucessful interleaving of the 

two separate sets o f experimental data was a good test for the reproducability o f both 

the data and the CO exposures. Between each sucessive CO exposure, the oxygen peak- 

to-peak heights were recorded around the sample and normalized to the orientational 

average of similarly recorded Cu(920eV) peak-to-peak heights as described previously. 

During each CO exposure, the required gas pressure was established in the chamber and 

the ionization gauge turned o ff. This was a necessary precaution as Habraken has found 

that the presence of a hot ionization gauge filament can increase the rate of CO oxidation 

by a factor o f two. The gas pressure was checked periodically and carefully maintained 

throughout the course of each exposure.

<6.?> Rmsults and d iscussion .

Fig. 6.1«, b and c show the variation in the oxygen coverage around the 

circumference o f the <110> axis cylinder as a function of angle and hence crystallographic 

orientation a fte r a series o f CO exposures ranging from 6000L to 9000L at the three 

crystal temperatures of 570, 610 and 700K respectively.

It can be clearly be seen from each o f these plots, that the oxygen coverage, 

which was in itia lly  isotropic (the small variations may be assigned to crystallographic 

incident beam effects), rapidly begins to develop marked anisotropy as the different crystal 

planes express their differing acitvities to reduotion by CO.

Consideration o f f ig . t . l « ,  b and c shows that the initial reaction rate increases 

with temperature as found by Habraken. At 570K, the data exhibits no marked anisotropy 

fo r CO exposures less than about 24x103l , whilst at the higher temperatures of 610 and 

69BK, the anisotropy begins to be noticeable at exposures of 12000L at 610K and at rather
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Fig. 6.1«, b, and c »how tha variation in tha oxygen covarag» around tha circumference 
of tha <110> axis cylinder as a function of cry»tallographic orientation after a »arias 
o f CO exposures ranging from 6.000L to 90.000L at the thraa crystal temperatures of 570, 
610 and 700K respectively. Auger spectra were recorded every 5* of arc around the 
circumference of the cylinder and their peak-to-peak heights normalised to the peak- 
to-peak haights of similarly recorded Cu(920eV) peaks. The data were then renormalised 
to the saturation coverage o f 0.5 monolayers. This procedure is more fully described in 
section 6.8 (p.132).
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less than 12000L at 700K which was the highest temperature investigated. As these 

temperatures were accurately maintained by a temperature control unit throughout the 

course o f the exposures, the absolute error in the quoted temperatures is estimated to 

be about +5K.

For all temperatures, the anisotropic data are characterized by broad local maxima 

in the region of <110>, sharp local maxima on the (001) planes and rather sharper local 

maxima on the <113) planes. In contrast to the oxygen adsorption and N2O decomposition 

data, maxima in these data indicate a slow, rather than a fast, rate of reaction. Vicinals 

to <113) roughly midway between <113) and <001) and between <113> and t i l l )  exhibit sharp 

local minima which indicate a fast rate o f reaction. As these vicinal surfaces exhibit 

an especially high reac tiv ity  to reduction by CO, they will be henceforth be referred 

to as the (113>/{111> and the <113)/{001> planes. Such enhanced reactivity seems to be largely 

absent from <110> vicinals, although there do seem to be some local minima roughly midway 

between <1101 and t i l l )  a t 570 and 610X. These features are so small tha t they cannot 

be readily distinguished from crystallographic incident beam effects however.

It  can be seen from the data, that although the in itia l reaction rate increases 

with temperature, the overall reaction rate increases from 570 to 610X and then decreases 

markedly at 700K. This is evidenced by the fact that at 700K the surface of the cylinder 

s till has an appreciable oxygen coverage even a fte r  a CO exposure of 90.000L. Habraken 

has investigated the CO oxidation reaction at temperatures up to 730K, and finds that 

the rate o f reduction increases with increasing temperature on all three low index planes. 

In ligh t o f this, it  is not clear to the Author why the present data should indicate 

a decrease in the overall rate o f reaction on raising the temperature from 610 to 700X 

rather than an increase as expected from the work o f Habraken. The 700K data presented 

here are o f noticeably lower quality than the data at either 570 or 610K, and the Author
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feels that much more data are neccessary at TOOK and higher temperatures before this 

apparently anomalous temperature dependence can be discussed in detail.

In order to investigate the 'special' vicinals in the region o f the <1131 face and 

also to make clearer the re lative rates o f reaction on different planes at the different 

temperatures, kinetic data in the form of oxygen coverage vs. CO exposure plots have 

bean extracted from the anisotropy data. These plots fo r the experiments at 570, 610 

and TOOK are shown in fig . 6.2. It is clearly seen from this figure that at all temperatures 

the reaction follows Langmuir-Hinshelwood kinetics as evidenced by the low initial rate 

o f reaction, which is then seen to pass through a maximum before decreasing. Eley-Rideal 

kinetics would be characterized by a decreasing rate of reaction with decreasing coverage 

where the in ita l rate o f reaction was the maximum rate. With regard to the Eley-Rideal 

mechanism, Norton26 pointed out that the interaction time in the direct collision 

o f an incident gas molecule with an adsorbed species is too short fo r product formation 

to be likely, and it  is fa r  more reasonable to envisage the Eley-Rideal mechanism as 

involving two species on the surface, at least one of which is not in a fully accommodated 

chemisorbed state. At th is point, the distinction between the two processes is far more 

diffuse. What the current data (and that of earlier studies) shows is that the state 

in which the CO interacts with the chemisorbed oxygen requires the availability of metal 

surface sites which are not blocked by the adsorbed oxygen. This would certainly be 

true o f fu lly accommodated CO, although in view o f the fact tha t CO is only weakly 

bound to copper surfaces (desorbing in ultra-high-vacuum conditions at around 250K), 

even this species is highly transient on the surface at the reaction temperatures studied.

In agreemant with Habraken, it  can be seen that all surfaces still exhibit a small 

oxygen coverage (about 0.02 monolayers) a fter the reduction. A t all three crystal 

temperatures studied, the various surface crystallographies may be placed in the following
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T « 570  K T .  610 K T « 700  K

CO EXPOSURE / 10‘  l

Fig. 6.2 This figu re shovs coverage vs. exposure plots for the <110>, <1111, <113>/{111>, <113>, 
<113>/<001> and <001> faces. The data have been extracted from the anisotropy data o f 
f ig .  6.1 by tak ing the average coverage for each face at each exposure and temperature. 
The solid lines drawn through the data at 570 and 610K were drawn by aye and later 
used to manually d ig itize the data in order to provide points at equal exposure intervals 
which allowed the application of a differentiating Savitsky-Golay digital smoothing filter 
(see fig . 6.3 p.145).

139 J.S.Arlow, 1985



AES on cylindrical singla crystals Chapter 6

decreasing order of reactivity to reduction by CO:

ui3>/a)oi>  > a i3 > / { i i i>  > a i3 >  > < iu >  > <uo> > tool}

From this it  can be seen that the previous correlation of reactivity with surface 

roughness, which was so sucessful in the description o f oxygen adsorption and N2O 

decomposition, is no longer valid fo r  the CO oxidation reaction. Indeed, it  is now the 

<113) vicinals which exhibit an approximately equal amount of 'rough' and 'smooth' surface 

which have the h ighest reactiv ity . This leads to two conclusions about the requirements 

for a high rate of CO oxidation on copper surfaces in the <U0> zone:

(a ) Roughly equal regions of rough and smooth surface are required ie. both steps and

terraces.

(b ) Steps of a type found on (113) but not on <110) increase the rate of reduction.

Obviously, the available data are insu fficien t to allow the establishment of a 

reaction mechanism which accounts fo r a ll o f this structural sensitivity. Nevertheless, 

much is known about chemisorbed CO and atomic oxygen on the low index faces of copper 

which supplements the data presented here. In particular, CO is known to prefer top 

sites on all three low index faces (with the CO perpendicular to the surface and bonded 

through the carbon end of the molecule) except at very high coverages. In general, atomic 

oxygen adsorbed on metal surfaces seems to adopt the highest available coordination sites; 

four fo ld  hollow fo r CutOOl), threefold hollow fo r C u flll) and a long bridge site for the 

reconstructed CufllO) (see section 3.3-3.S).

In view o f the preference which oxygen seems to display fo r  high coordination 

sites, it  seems likely that on a surface containing both steps and terraces, the chemisorbed 

oxygen would preferentia lly adopt the high coordination sites available at the bottom 

o f the steps. By contrast, the adsorbed CO molecule might be expected to preferentially
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adopt the top sites at the top o f the steps and indeed P ritchard1!® has found a shift 

in vibrational frequency in the IR spectra o f CO on (110) vicinals, (211) and (311), (755) 

and also on defect sites on (111) which is associated with step sites and which may be 

due to an increase in the binding energy o f the molecule (see section 6.2). This leads 

one to the rather attractive, i f  simplistic, picture o f the formation o f the linear COj 

species at step sites with the CO and O atoms approaching eachother in the appropriate 

geometry. Moreover, this picture only works i f  there are at least small terraces between 

the steps; i f  the (110> face is regarded as a "fu lly stepped” surface, it can be seen that 

the steps have become so close together that the oxygen atoms can no longer sit in 

the hollows, and in fact, s it above the hollows in the long bridge sites. Indeed, i t  is 

possible that the greater reac tiv ity  of the <113> face re la tive  to the (1101 face is in 

th is case due to the larger ridge spacing which allows the oxygen atoms to f i t  down 

into the hollows. Another reason for the particularly low reactivity of the (110) surfaces 

however, may be the oxygen induced reconstruction o f these surfaces which may well 

k inetically hinder the oxidation reaction. Moreover, i f  the widely accepted missing row 

reconstruction model fo r  the Cu(U0)(2xi)-O structure is considered, the rows of oxygen 

atoms above the top rows o f copper atoms are separated by rows in which the top copper 

atoms are removed, leaving only sites well below the oxygen atoms fo r possible CO 

accommodation.

A similar argument can be seen to be applicable to  the "buckled surface" model 

as the oxygen atoms also occupy the 2 fo ld  bridge sites which are situated above the 

possible adsorption sites fo r  CO. Insofar as the simple geometrical argument which has 

been applied to step sites is o f value, it  can be seen tha t the geometry offered by the 

reconstructed (110) surface is particularly unsuitable for the formation of carbon dioxide.
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(6.10) The oxidation of CO in a  CO/oxygert g a s  mixture over copper single crystal surfaces,
When CO is to be ca ta lytica lly  oxidised to COj in industry, a mixture of CO and 

oxygen is exposed to a copper catalyst. The overall reaction is;

CO ♦ W^2 *  C02t (6.5)

When a CO/O2 gas mixture is oxidised over copper single crysta l surfaces, then 

the above reaction may be broken down into several more fundamental s t e p s  a s  d e s c r i b e d  

in section 6.5.

(1) vjo2 0ad

(2) C0(g) *  CO,d

(3) C0ad ♦ Oad -*■ C02<g)t <6.6>

Step 3 assumes Langmuir-Hinshelvood kinetics. I f  both gases are in great excess, 

then the above series o f reactions « i l l  rapidly reach a steady state «here the rate of 

adsorption o f oxygen is equal to i t ’s rate o f removal by CO, and the surface oxygen 

coverage remains constant. Whilst such a reaction is obviously of interest, its investigation 

is experimentally difficult, especially so on cylindrical single crystals.

Fortunately, this ’steady state* reaction may be investigated theoretically by 

extrapolating the data previously obtained fo r  oxygen adsorption on copper and the 

oxidation o f CO by chemisorbed oxygen films. I f  d6/dt vs. 9 curves are obtained from 

both sets o f data, then assuming the CO molecules do not block the oxygen atoms (and 

there is no evidence that they do), the intersection o f the t « o  curves « i l l  give both 

the stationary oxygen coverage and the corresponding rate of reaction. Thus both the
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important parameters of the steady state reaction may be calculated.

Consider the kinetic data o f f ig .  6.2 at 570 and 610K. Smooth curves have been 

drawn through the experimental points by eye, and the curves manually digitized and 

then d ifferen tia ted  with respect to exposure by using a Savitzky-Golay extended sliding 

least squares f i t  adjusted to d ifferen tia te  as i t  smooths. It should be remembered that 

these d ifferen tia ted  curves may be expressed in terms o f d8/dt rather than d8/dE by 

using the definition o f exposure, E:

E = P.t (6.7)

and,

dE -  Pdt (6.8)

I f  the pressure P, is in ptorr (lptorr*10“ 6torr), the exposure E, is in Langmuirs 

(1L«10~6 to rr  fo r  1 second) and the time t, is in seconds, then division of d$/dE by the 

pressure in ptorr will give the rate of reaction (dd/dt) in monolayers s-1 at that pressure.

The d ifferen tia ted  data were modeled by th ird  order polynomials, fit te d  by the 

method o f least squares, in order to obtain simple analytic forms which described the 

data rather accurately. A single equation may then be written which, with d iffe ren t 

coefficients, describes the rate of removal o f adsorbed oxygen, -d6/dt, on all faces.

-  -  P< a«3 ♦ b«2 + c8 ♦ d ) (6.9)
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Where once again, P is in ptorr, and a, b, c and d are the coeffic ien ts  o f the 

polynomial as determined from the least squares fit.

Fig.6.3 shows the smoothed and differentiated experimental data (black circles) along 

with the fitted  polynomials (smooth lines) fo r  the (001>, (111), (113>, <110> low index faces 

and the {il3>/(001} and <113>/<lil> vicinals at the two temperatures, 570 and 610X. The 

coeffic ien ts o f the polynomials which describe the kinetics of the various faces are given 

in table 6.1, along with the coeffic ien t o f correlation  o f the f i t  in each case. It can 

be seen that the fits  are good even fo r  the worst case of the <0011 plane at 610K. It 

can also be seen that the errors introduced by th is procedure are small compared to 

the experimental errors. The data at 700K were not treated in this manner however, as 

they are noticeably inferior to those collected at the lower temperatures.

No data are availab le fo r  oxygen adsorption on the <110> axis cylinder at 570 

and 610X, but i t  has been shown in chapter 5 that the kinetics o f adsorption on the 

cylinder may be approximated reasonably accurately by the 'fast d iffusion ' model of 

Armitage??. Habraken22..25 has investigated the temperature dependence of the initial 

stick ing coeffic ien t o f oxygen on the three low index faces (001), (111) and (110), and 

by assuming zero temperature dependence fo r the (113) face (behaviour similar to (110», 

the model may be extrapolated to the temperatures o f interest. Armitage’s equations for 

the variation  o f surface coverage, 6, with exposure, E, for the (001), (113), (110) low index 

faces and the <113)/(001> and {113>/ail> vicinals may all be written as below.

6 > a5EK (6.10)
(EX+1)

Tor the (111) plane, the equation is different:
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T = 570 K T = 610 K

Fig. 6.3 This figure shows the smoothed and d ifferen tiated digitized experimental data 
(black circles) along with th ird  ordar polynomials (smooth lines) which have been fitted 
by the method o f least squares. The coeffic ien ts o f the polynomials and the coefficient 
o f correlation o f the f i t  in each casa are given in ta b la  6.1. This procedure allows the 
d ifferen tia ted  experimental data to be accurately described by simple equations of the 
form:

d6/dt »  a03 ♦ bô2 ♦ c0 ♦ d
In this casa d8/dt refers to the rate of removal in monolayers/second of chemisorbed 

oxygen from the surface by CO.
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Tab le  6.1 a 
S70K

FACE a b c d K R
(110 ) -0.790 -0.125 0.216 0.00563 0.59 0.99

(113) 1.81 -2.74 0.972 -0.0117 0.48 0.99

(00i)/(113) 1.23 -3.90 1.73 -0.0399 0.255 0.99

(001) -6.53 6.12 -1.78 0.168 0.030 0.85

(111)/(113) 3.70 -5.16 1.73 -0.0310 0.24 0.99

(1 1 1 ) -0.146 -0.395 0.262 0.00218 0.0011 1.0

Tab le  6.1 b 
610K

FACE a b c d K R
H iB ) -0.357 - 1.01 "o T R -0.66109 “055 6.5}

(113) 1.57 -4.22 1.85 -0.0505 0.48 0.99

(001)/(113) 4.84 -7.92 2.97 -0.0802 0.26 0.99

(001) 1.34 -1.29 0.329 0.0088 0.033 0.79

(ill)/(113) 5.64 -7.83 2.68 -0.0572 0.24 0.99

(1 1 1 ) -1.96 0.0299 0.532 -0.0115 0.0012 1.0

Tab le  6,1 This table lists the coefficients of 8 generated by a least squares f it  of equation 
6.9 to the d ifferen tiated d6/dt experimental data at the two reaction temperatures 
o f 570 and 610K. The parameter R, is the coeffic ien t o f correlation  of the fit  in 
each case.
Also presented in this table are the K values fo r  equations 6.13 and 6.16 which 
have been extrapolated from the CjS0|j values of Armitage?? using the temperature 
dependence curves of Habraken22-25,
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e = ke (6.11)

The K values are derived from combinations of Armitage’s CjS01 values (see section 

9.9) and it  has been assumed that the <113)/{001> and {113>/{111> vicinals lie exactly midway 

between the adjacent low index planes.

These equations may readily be differentiated to give:

d6 ,  0.5K
dE (KE+lP

fo r all planes except (111) which is described by;

(6.12)

"  -K  
dE

(6.13)

The equations must also be recast in terms o f time ra ther than exposure. Using 

equation 6.8:

d6 ,  Px 0.5
dt (EK+ÍP (6.14)

and;

-  PK (6.19)
at

Where P is in ptorr. fin a lly , equation 6.14 may be recast in terms o f coverage 

by using equation 6.10 which expresses the relationship between exposure and coverage
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for all the planes except (il l ) .

^  = P(0.5K-2Ke+2K62) (6.16)
at

The values of K for the various crystal planes at 570 and 610K have been calculated 

from Arm itage’s Cjs0>j values which have been extrapolated to the higher temperatures 

using temperature dependence curves from Habraken, and these values are given in table 6.1.

Prom Habraken it  is known that the initial sticking coefficient on the (110) plane 

is constant up to the temperatures studied, and it  is assumed that the <1131 plane (for 

which there is no such data) behaves similarly.

As was stated earlier, the steady state reaction is characterized by a stationary 

oxygen coverage brought about by the rate of adsorption o f oxygen (dd/dt) being exactly 

equal to i t ’s rate o f removal by CO (-d6/dt). At this point, the d6/dt values from equations 

6.16 and 6.9 are equal in magnitude, and so we may write,

PO(0.5K-2Ke+2Ke2) -  PC0(ae3+b62+ce+d) (6.17)

Where Pq denotes the oxygen partia l pressure, and Pco . U »  CO partial pressure. 

Rearranging, th is gives an expression fo r the variation o f coverage with R, the ratio 

of oxygen to CO partial pressures:

r »  Ea ■ (ae3+be2+ce+d) 
PC0 (0.5K-2K6+2Ke )̂

(6.18)
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Similarly for the (111> face:

R= la  * (a^+beZ+ce+d) (6il9>
PCO K

The above equations may be solved fo r the stationary oxygen coverage, 8, at any 

desired ra tio  o f partia l pressures. Using this coverage and equations 6.15 and 6.16, the 

rate o f reaction may thus be calculated at any CO and oxygen partia l pressures. The 

tota l gas pressure must be such tha t the gas mixture behaves as an ideal gas, or else 

the rate of reaction v ill no longer scale linearly v ith  gas pressure.

<6.11) Results and discussion.
F ig . 6.4 shows plots o f dd/dt vs. 6 fo r the two temperatures 570 and 610K which 

have been calculated from the equations derived above. The curves 1,2 and 4 show the 

rate o f adsorption o f oxygen on the various surfaces at oxygen partia l pressures o f 

1, 2 and 4 ptorr respectively. The curves A,B and D are similar curves fo r  the rate of 

removal o f chemisorbed oxygen by CO at CO pressures o f 1,2 and 4x10* ptorr of CO. The 

values o f dd/dt fo r  oxygen adsorption and CO oxidation may be readily converted into 

sticking probabilities, s(6), and reaction probabilities, r(6), respectively as:

s(q) m no. of molecules sticking (6.20)
no. impinging

and

r(ej m no. of molecules readm e 
no. impinging

(6.21)
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T = 570 K T = 610 K

Fig. 6.4 Curves 1, 2 and 4 show the rate o f oxygen adsorption as a function of 
coverage at oxygen partia l pressures o f 1, 2 and 4 ptorr respectively fo r  the 6 faces 
studied at temperatures o f 570 and 610X. The curves A, B and D show the rate o f oxygen 
loss from the surfaces during reduction by CO at CO partial pressures of 1, 2 and 4x10* 
p torr respectively. The crossing points of the curves give the stationary surface oxygen 
coverage on a particu lar face at tha t particu lar temperature and partial pressures of 
CO and oxygen. The dotted lines indicate a sticking probability, s, o f unity and a reaction 
probability, r, o f 10"4 fo r  an oxygen partial pressure of lptorr and a CO partial pressure 
of 104 ptorr (see page 151).
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In order to make th is  conversion, the d6/dt values must be expressed in terms 

o f the bombardment rate in atoms/cm2/s. This requires knowlege of the number of atoms/ 

cm? on each crystal face in question. These values may be easily calculated for the low 

index faces and also fo r the vicinal surfaces although the situation is complicated by 

the presence o f monatomic steps. The Author will, fo r  simplicity, assume an average 

monolayer o f about i.SxiO*1® atoms/cm? which is obtained from the average of the number 

o f atoms/cm2 on the three low index faces. Thus by dividing the rate o f bombardment 

o f the surface by the number o f atoms/monolayer, it  is possible to calculate the dd/ 

dt values corresponding to  unity sticking coeffic ien t or to unity reaction probability. 

The rate of bombardment, N, is given by:

N * 2.89xiO?2.p(MT)to molecules cm-2 s-1 (6.22)

Where p is the pa rtia l pressure in torr o f the gas in question, M is the molecular 

weight and T is the temperature in Xelvin. So, fo r  oxygen dissociative adsorption, the 

dS/dt value corresponding to unity sticking coeffic ien t at 1 ptorr partia l pressure is 

given by:

> ,-2 2 L , «0 .3  (6.23)
dt max i.5xi015

Where the factor o f  2 arises because the adsorption is dissociative. Similarly, for 

CO at a partial pressure o f 10* ptorr,
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C ^  1 * , - iL « «  *  1.5xi03 <6.24)dt max 1.5xi015

It has been assumed in the above calculation that Mq“ Mco*28 and that T-590K.

The dotted lines in f ig .  6.4 show unity sticking coefficient for an oxygen partial 

pressure o f 1 ptorr and a reaction probability  o f 1x10"* fo r  a CO partia l pressure of 

1x10* ptorr.

It  can be seen that the maximum reaction probabilities exhibited by the three 

low index faces are all in the region o f 10~3 as vas previously observed by Habraken33*33. 

As stated previously, the crossing points o f any o f the numbered and lettered curves 

give the rate o f reaction (dO/dt) and oxygen coverage which w ill be observed at that 

temperature and oxygen and CO partia l pressures. It can be seen from the curves, that 

at a constant CO partia l pressure and h igh oxygen coverage, the various faces may be 

put in the same order o f reactiv ity  as was found fo r  the CO oxidation experiments as 

the rate of CO oxidation is the rate determining step. ie.

<00i>/<113> > (lii>/{113> > U13> > t i l l )  > (110) > ( i l l )  

rate decreasing *

The same order o f reaction applies at both temperatures. Obviously, at very low 

oxygen partial pressures the dissociative chemisorption of oxygen will become rate limiting 

rather than the rata of removal of oxygen by CO.

F ig . 6.3 shows the rate o f reaction plotted as a function o f orientation for both 

temperatures, fo r  ratios o f 0:C0 ranging from 16:1x10* to  1:8x10* at a constant tota l 

pressure of 10* ptorr (0.01 torr). It is immediately obvious from these ratios, that:

(a ) CO must be in great excess for the reaction to proceed at any appreciable rate.
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f?0 + = 001 torr
113/ 113/ 113/ 113/
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Fig. 6.9 This figu re shows the rate o f reaction  and the reaction probability in the CO 
oxidation reaction as a function of crystallographic orientation for 02:CO ratios ranging 
from 16:lxl04 to  i:Bxl04 at a constant total gas pressure of lxlO4 ptorr. These data have 
been obtained from the intersections of curves such as those shown in fig . 6.4 which 
describe the kinetics o f oxygen loss and uptake by the surface, and have bean normalized 
to a total gas pressure of lxlO4 ptorr.
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(b ) The oxygen to CO ratio  must be controlled rather carefu lly as the rate of reaction 

depends strongly on this parameter.

It can also be seen from this figure that whilst near the optimum 0:C0 ratios the faces 

exhib it the order o f reac tiv ity  given above, at other ratios, the re la tive  reactiv ities 

o f the faces change. This is not at all surprising, as at ratios other than the optimum 

ra tio  the rate o f oxygen dissociation begins to affect the overall rate of reaction. Indeed, 

at the lowest oxygen partia l pressures, the faces may be put in roughly the same order 

o f reac tiv ity  to CO oxidation as their order of reactivity to oxygen chemisorption (section 

5.10).

Unfortunately, at these extremes o f behaviour, the fits  to the experimental data 

exhib it their greatest errors, and so it  is impossible to be precise. Indeed, the only regime 

acessible to th is model is that very regime where the 0:C0 ratio is such that the faces 

exhibit what is close to their maximum reactivity at a given total pressure.

It  should be noted tha t fo r  (001) at both temperatures the two sets o f curves 

cross at the extremes o f the CO data, and so the rates o f reaction given in f ig .  6.5 

fo r  th is face are necessarily very inaccurate. Also, in f ig .  6.5, the ra tio  o f gases is 

never close to optimum fo r the reaction on the (111) face due to it 's  low reactiv ity to 

oxygen chemisorption. The oxygen to CO ratio  would have to be increased by at least 

an order o f magnitude in order for this face to express it ’s maximum reaction rate.

The reaction rates in f ig .  6.5 will, o f course, all scale linearly with tota l gas 

pressure until the pressure is such that the gas no longer behaves in an ideal manner.

Finally, f ig .  6.6 shows the variation  in the ratio, R, o f 02:C0 partia l pressures 

with surface coverage. As expected, fo r  oxygen depleted mixtures (low values of R) the 

oxygen coverage is low , whilst fo r  oxygen rich gas mixtures (high R values), the oxygen 

coverage is high.
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COVERAGE, 8  /  monolayers

Fig. 6.6 This figure shows the vatiation  in R, the ratio of 02:C0 partial pressures, with 
surface covearge. These data have been calculated from equations 6.18 and 6.19. If these 
curves are used in conjunction with equations 6.13 and 6.16, then it is possible to calculate 
the rate o f the 'steady state* reaction at either temperature and for any total gas pressure 
(within the constraints of ideal gas theory) and composition of reaction gas.

-  153 - J.S.Arlow, 19B5



AES on cylindrica l single crystals Chapter 6

It can also be seen from the figure that at a given pressure ratio, the surface, 

oxygen coverage is always less at 610K than at 570K by a significant amount. This clearly 

shows th a t the reaction probability fo r  CO oxidation increases more quickly with 

temperature than the stick ing probability o f oxygen over the temperature range 570 to 

610K.

By using these curves in conjunction with equations 6.15 and 6.16, it is possible 

to calculate the rate o f the ’steady state’ reaction at either temperature and for any 

pressure and any composition o f reaction gas within the constraints o f the ideal gas 

theory.

(6.12) T h e  o x id a t io n  o f  h y d r o g e n  b y  o x y g e n  c h e m is o rb e d  on  c o p p e r

s u r f a c e s .

In chapter 5, the oxidation o f copper surfaces was studied using two d ifferen t 

oxidizing agents, O2 and N2O, whose reactivities were compared and contrasted. Similarly, 

in this chapter, the reduction o f chemisorbed oxygen films on copper surfaces is studied 

using two different reducing agents, CO and H2.

The oxidation o f hydrogen by oxygen chemisorbed on well defined copper planes 

has, to the Author’s knowledge, been the subject o f only one previous investigation29. 

There has, however, been quite a lo t o f work done on the interaction of hydrogen with 

clean copper surfaces, and the results o f this work, and the previous investigation into 

hydrogen oxidation, will now be summarized.

(6.13) H yd rod m n  a d s o r p t io n  o n  c o p p e r  s u r fa c e s .

Hydrogen adsorbs dissociatively on metal surfaces and on most metals this is a 

fast process which is not observably activated. On copper however, the adsorption o f 

hydrogen has been found to be activated (Balooch et al30, Hayward and Trapnell31, and
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Alexander and Pritchard32) with an apparent activation energy of between 1 to 2 kJmol-1.

The in itia l sticking fa c to r is about 10~2 at room temperature, and according to 

Balooch et al30, it  is dependent on crysta llograph ic orientation. A crystallographic 

dependence is also observed in the desorption kinetics (Balooch and Stickney33). Balooch 

et al have found in a molecular beam study o f the dissociative adsorption of hydrogen 

on copper (110), (100) and (310), tha t the ledge sites and other surface defects are not 

the principle sites fo r  H2 dissociation30. This conclusion was reached as the (100) and 

the stepped (310) surface (which has fully kinked steps and (100> terraces) behaved similarly 

in the molecular beam experiments. This is to be contrasted with hydrogen adsorption 

on platinum surfaces where Bernasek et a l34 have found good evidence that the process 

is activated on (111) terraces, but not on the steps found on (111) vicinals. Indeed, steps 

were found to be necessary fo r  any hydrogen adsorption at all to occur on P t ( l l l )  at 

room temperature.

(6.14) Thm o x id a t io n  o f  hvdjc'Okmn by  oxygmn chem isorbed  on Cu(llO ).

Hachicha et al2? have investigated the reaction between hydrogen and adsorbed 

oxygen on Cu(110) in the temperature range 625 to 800K and H2 partial pressures of about 

10-4 torr.

At temperatures less than 500K, the rate of reaction was reported to be immeasurably 

small, even at H2 partia l pressures as high as 10~3 torr. The oxygen overlayers initially 

corresponded to either the (2x1) (6>0.5) or the c(6x2) structures, and Hachicha et al state 

that the reduction sequence was found to be independent o f the the overlayer and the 

temperature at which it  was formed.

The activation energy for the reaction was found to be 82kJmol~1 and the reaction 

was found to be f ir s t  order in hydrogen pressure at temperatures below 650K. At higher
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Alexander and Pritchard33) with an apparent activation energy of between i to 2 kJmol- i .

The in itia l sticking fa c to r is about iO-3 at room temperature, and according to 

Balooch et a l30, it  is dependent on crystallograph ic orientation. A crystallograph ic 

dependence is also observed in the desorption kinetics (Balooch and Stickney33). Balooch 

et al have found in a molecular beam study o f the dissociative adsorption of hydrogen 

on copper (110), (100) and (310), that the ledge sites and other surface defects are not 

the principle sites fo r  H2 dissociation30. This conclusion was reached as the (100) and 

the stepped (310) surface (which has fully kinked steps and (100) terraces) behaved similarly 

in the molecular beam experiments. This is to  be contrasted with hydrogen adsorption 

on platinum surfaces where Bernasek et a l34 have found good evidence that the process 

is activated on (111) terraces, but not on the steps found on (111) vicinals. Indeed, steps 

were found to be necessary fo r  any hydrogen adsorption at all to occur on P t ( l l l )  at 

room temperature.

(6.14) The oxidation of hydrogen by oxygen chemisorbed on Cud 10).
Hachicha et al39 have investigated the reaction between hydrogen and adsorbed 

oxygen on Cu(110) in the temperature range 625 to 800K and H2 partial pressures of about 

10'* torr.

At temperatures less than 500K, the rate of reaction was reported to be immeasurably 

small, even at H2 partia l pressures as high as 10~3 torr. The oxygen overlayers initially 

corresponded to either the (2x1) (0-0.5) or the c(6x2) structures, and Hachicha et al state 

that the reduction sequence was found to be independent o f the the overlayer and the 

temperature at which it was formed.

The activation energy fo r the reaction was found to be 82kJmol-1 and the reaction 

was found to be f ir s t  order in hydrogen pressure at temperatures below 650X. At higher
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temperatures, the order in hydrogen pressure was found to be 0.8 to 0.9. It  was found 

that the maximum reaction probability was in the range 10-7 to 10“ ® over the temperature 

range 500-800K. Hachicha et al suggest that the reaction follows a Langmuir-Hinshelwood 

scheme which may be written as below:

(1) Oad + H2(g) *  O(ad) + 2H(ad>

<2) O(ad) + H(ad) *  OH(ad)

(3) OH(ad)+ H(ad) # H2Ot (6.25)

Hachicha suggests that the rate determining step is step 2, the reaction of adsorbed 

hydrogen atoms with adsorbed oxygen atoms.

<6.15) The oxidation of hydrogen by oxygen chemisorbed on coppersurfaces; Experimental procedure.
The experimental procedure fo r  the oxidation of hydrogen by chemisorbed oxygen 

films on the copper cylinder was essentially identical to that used for the CO oxidation 

experiments described in section 6.8. The cylinder was first cleaned by the usual method 

o f argon ion bombardment and annealing, and then saturated with oxygen to an isotropic 

coverage corresponding to approximately 0.5 monolayers of oxygen. The oxygen coverage 

on the various crystal planes was recorded by measuring oxygen and copper peak-to- 

peak heights at 5* intervals around the sample circumference. The crystal was then heated 

to the reaction temperature (570 or 630X), and subjected to increasing exposures to hydrogen 

at a partial pressure of about 10“ ® torr whilst being rotated.

A fte r  each exposure, the enisotropy in the surface oxygen coverage around the 

sample circumference was re-recorded. The resulting data were normalized to a saturation 

coverage of 0.5 monolayers of oxygen as described previously (section 6.8).
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(6.16) R e su lts  and  d iscu ssion .

Fig. 6.7 shows the anisotropy in the oxygen coverage recorded at 5* in tervals 

o f arc around the sample circumference at the two temperatures 570 and 630K, after H2 

exposures ranging from 6000 to 72000L.

These data may be pro fitab ly  compared with the data o f f ig .  6.1a and b, which 

are data collected at similar temperatures with CO as the reducing gas.

Considering fig . 6.7, i t  can be seen th a t the oxygen coverage, which is initially 

isotropic, begins to show marked anisotropies after an exposure of about 36000L at both 

temperatures. Also, it  can be seen that the data at the higher temperature (630K) show 

a s ign ifican tly  greater crystallographic anisotropy than do the data taken at 570K. At 

both temperatures, however, the reaction is seen to be rather less crystallographically 

dependent than is observed to be the case for the oxidation of CO by adsorbed oxygen.

As was found to be the case in the CO oxidation experiments, the data begin 

to develop minima (indicative o f a high rate o f reaction) on (113) vicinals roughly midway 

between <113> and (001), and between <113) and <111), at both temperatures. Considering 

the data from 48000L to 72000L at 570K, there is evidence for a special reactivity associated 

with <110) vieinals midway between <110) and <111) as minima in the data are seen to 

occur here also. This is in marked contrast to  the CO oxidation data, where the (110) 

vicinals were not observed to be especially reactive. It is not clear from the data whether 

this special reactivity of <110) vicinals is manifest at the higher temperature however.

F ig . 6.8 shows kinetic data extracted from the anisotropy data at the two 

temperatures. Again, the coverage o f a particu lar face at a given exposure is taken as 

the average coverage o f a ll similar faces in order to take advantage of the redundancy 

in the data. From these plots it  can be seen that the reaction follows Langmuir-Hinshelwood
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F ig . 6.7 This figu re  shows the anisotropy in the oxygen coverage recorded at 5* intervals 
o f arc around the sample circumference at the two temperatures 570 and 630K, after H2 
exposures ranging from 6000L to 72000L. F ig  6.7« shows the data recorded at 570K and 
f ig .  6.7b shows the data recorded at 630K. These data should be compared with the data 
o f fig . 6.1a and b which are data collected at similar temperatures with CO as the reducing 
gas.
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Fig. 6.8 This figu re  shows k inetic data extracted from the anisotropy data of fig . 6.7 
at the two temperatures 570 and 630X. The coverage o f a particular face at a given 
exposure is taken as the average coverage of all similar faces in order to take advantage 
of the redundancy in the data.
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kinetics on all faces investigated. It can also be seen that the rate of reaction increases 

on raising the temperature from 570 to 630K, and tha t at the higher temperature the 

faces may be put in the following order of reactiviy:

<113>/{001> *  <113>/<iil> > U10)/<111> > <iii> «  U13> > <0011 « (1101

This ordering is very similar to that found in the CO oxidation experiments, and 

once again, it  is the <113> vicinals which exhibit the highest reactivity.

A t 570X, the observed anisotropy is ra ther lower, and there is no clear ordering 

o f the faces except that the (113) vicinals seem to be sign ificantly more reactive than 

the other faces.

In section 6.9, a simple geometrical argument was used to explain the special 

reac tiv ity  o f (113) vicinals and <113> itself to reduction by CO. Essentially, it was proposed 

that the chemisorbed oxygen atoms sat at the bottom of the steps in high coordination 

sites, and adsorbed CO approached from the top of the steps in exactly the right geometry 

to react and form the linear CO2 molecule. Given these assumptions, only faces with an 

intermediate ridge density w ill be capable o f accommodating this geometry, and hence 

the special reactivity of 1113} and its vicinals.

It is thought tha t the rate determining step in the H2 oxidation reaction is the 

formation o f OHa(j from Oa(j and Ha(j (Hachicha et al29). If this is indeed the case, then 

it  is not d e a r  in what way this step could express any particu larly stringent steric  

requirements, and indeed, th is may well be the reason that the oxidation o f hydrogen 

by oxygen chemisorbed on copper surfaces is relatively structurally insensitive. However, 

as the OHa(j species is probably linear and bonded via the oxygen atom to the surface, 

any transition state where the adsorbed hydrogen atoms approach adsorbed oxygen atoms 

from above has the greatest sim ilarity to the fina l state species, and may, perhaps, be
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expected to exhibit a slightly lower energy.

It can be seen then, th a t our previous geometric arguments may also be applicable 

to th is reaction except th a t in this case the e ffe c t  is obviously much smaller. If, on 

the other hand, the rate determining step is the formation of H2O from OH(ad) and H(ad), 

then our geometric arguments are inadequate as in this la tte r  case approach of H(ad) 

from the side would probably be a more energetically favourable situation than would 

approach from above, and the low index atomically smooth surfaces might be expected 

to exhibit the highest reactivity. Clearly, in order to understand this reaction more fully, 

much more information is needed about the mechanism o f each stage o f the reaction 

and also about the structure o f the various intermediates.
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(7,1) F in a l  C onc lusion s.

(a ) Auger electron spectroscopy on cylindrical single crystals has been shown to provide

an extremely sensitive probe fo r crystallographic differences in the reactivity of 

copper and nickel surfaces. The technique has been shown to facilitate the detailed 

investigation and comparison of many different crystal planes.

(b ) Both carbon and sulphur segregation to nickel surfaces have been shown in chapter

4 to  exhibit significant anisotropy in heats of segregation which may be correlated 

w ith  surface crystallography. In particular, the equilibrium segregation of sulpur 

to  nickel surfaces has been shown to occur with a heat o f segregation which 

is approximately linearly dependent on the step density. Clear evidence has been 

found fo r the inhibition o f carbon segregation by sulphur, which suggests site 

competition between the two species.

(c )  In chapter S, the reaction o f oxygen and nitrous oxide with the copper cylinder has

been studied and whilst the in itia l sticking coeffic ien t seems to be linearly 

dependent on step density in the case of oxygen adsorption, in the case of N20 

decomposition, an exponential dependence on step density is found to be more 

appropriate. Both sets o f data show clear evidence for surface diffusion of oxygen 

on crystal planes between (110) and (113) at coverages approaching 0.5 monolayers. 

There is also some tentative evidence for surface diffusion on planes between (113) 

and (001). The two models proposed by Armitage which describe the adsorption 

k inetics o f the cylindrical single crystal surface have been re-evaluated, and it 

is clear that the 'fast diffusion' model is the most accurate.

(d ) In chapter 6, the reduction o f chemisorbed oxygen films on copper surfaces was

investigated using CO and hydrogen as reducing agents. In the case o f the CO 

oxidations, the reaction was found to require a surface consisting of both steps
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and terraces fo r  a high reaction rate. Steps o f a type found on (113) vicinals 

(but not on ( 1 10 ) vicinals) were found to be required for the highest rates of 

reaction. To the Author’s knowledge, this is the firs t  time that both steps and 

terraces have been found to be required for an enhanced reaction rate. A theoretical 

description of the steady state reaction between an oxygen/CO gas mixture and 

copper single crystal planes was also presented, and this allowed the calculation 

o f the steady state oxygen coverage and rate o f reaction on any crysta l plane 

in the (1101 zone at arb itrary CO and oxygen partial pressures. Hydrogen oxidation 

has also been investigated, and this reaction was found to be much less 

crystallographically dependent than the CO oxidation reaction. A simple geometrical 

argument was proposed to explain the necessity o f both steps and terraces in 

the CO and hydrogen oxidation reactions.

<7.2) F u r t h e r  w o rk .

In principle, any system which exhibits crystallographically dependent adsorption 

or segregation properties may be investigated using AES and cylindrical single crystals. 

Also, many o f the other techniques of surface science may be readily applied to cylindrical 

samples, in particular LEED, RHEED and photoemission. Such work would doubtless increase 

the understanding o f the relationship between surface defects and the rea c tiv ity  of 

surfaces.

The Author would like to take this opportunity to present some preliminary data 

on the in teraction  o f chloroform with copper surfaces. Fig. 7.1 shows the chlorine peak- 

to-peak heights recorded around the sample circumference at 5* intervals o f arc for 

4 chloroform exposures o f approximately 0.3, 0.6, 1.5 and 12L. As previously described for 

the oxygen data, the peak-to-peak heights have been normalized to the orientational
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and terraces fo r  a h igh  reaction rate. Steps o f a type found on (113) vicinals 

(but not on ( 1 10 ) vic ina ls) were found to be required fo r the highest rates of 

reaction. To the Author’s knowledge, this is the firs t  time that both steps and 

terraces have been found to be required for an enhanced reaction rate. A theoretical 

description o f the steady state reaction between an oxygen/CO gas mixture and 

copper single crysta l planes was also presented, and this allowed the calculation 

o f the steady state oxygen coverage and rate o f reaction on any crysta l plane 

in the ClIOl zone at a rb itrary  CO and oxygen partial pressures. Hydrogen oxidation 

has also been investigated, and this reaction was found to be much less 

crystallographically dependent than the CO oxidation reaction. A simple geometrical 

argument was proposed to explain the necessity o f both steps and terraces in 

the CO and hydrogen oxidation reactions.

<7.2) F u r t h e r  w ork .

In principle, any system which exhibits crystallographically dependent adsorption 

or segregation properties may be investigated using AES and cylindrical single crystals. 

Also, many o f the other techniques of surface science may be readily applied to cylindrical 

samples, in particular LEED, RHEED and photoemission. Such work would doubtless increase 

the understanding o f the relationship between surface defects and the reac tiv ity  of 

surfaces.

The Author would lik e  to take this opportunity to present some preliminary data 

on the interaction o f chloroform  with copper surfaces. Fig. 7.1 shows the chlorine peak- 

to-peak heights recorded around the sample circumference at 5* intervals o f arc for 

4 chloroform exposures o f approximately 0.3, 0.4, 1.5 and 12L. As previously described for 

the oxygen data, the peak-to-peak heights have been normalized to the orientational
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Fig. 7.1 This figura shows tha variation in chlorine coverage around the circumference 
o f the <110> axis cylinder as a function o f chloroform exposure. The Cl(181eV) peak-to- 
peak heights have been recorded around the sample circumference at 5* intervals of arc 
and then normalized to the orientational average of the similarly recorded Cu(920eV) peak- 
to-peak heights. The assumption is made that this parameter is proportional to the surface 
chlorine coverage.
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F ig . 7.1 This figu ra  shows tha variation in chlorina covaraga around tha circumfaranca 
o f the <110> axis cylinder as a function o f chloroform exposure. Tha CKiBleV) peak-to- 
paak heights have bean recorded around tha sample circumfaranca at 5* intervals of arc 
and than normalized to tha orientational average of the similarly recorded Cu(920eV) peak- 
to-paak heights. The assumption is made that this parameter is proportional to the surface 
chlorina coverage.
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average o f the Cu(920) peak sim ilarly recorded. Baetzold* has also studied this reaction 

on two ( i l l )  vicinals, Cu[2x(lll)x(100)) and CuC(5x(lll)x(100)l The Author finds in common 

with Baetzold that the rate o f chlorine adsorption from the dissociation of CHCI3 on 

the surface is indeed approximately linearly dependent on step density for vicinals close 

to (111). Also, no carbon could be detected in the Auger spectrum of the surface.

The data o f f ig .  7.1 have several interesting features. Firstly, it  can be seen that 

the reaction exhibits a noticeable anisotropy at coverages less than about l.SL (which 

corresponds to saturation). The (111) planes exh ib it the lowest reactivity with all other 

planes being similarly reactive and there is no clear correlation between surface reactivity 

and step density. The surface coverage rises quite sharply on either side of a (111) plane 

and then remains essentially constant. This feature o f the data is in sharp contrast 

to all other data collected on the copper cylinder where the observed anisotropy could 

always be correlated in some way with step density. In particular, the data are essentially 

isotropic between (113) and (001). This may possibly be due to adsorbate induced faceting 

in the region o f (001). Also, i t  can be seen that the (110), (111) and (113) planes are 

significantly more reactive at exposures less than 1.5L than their counterparts (IIO), ( III)  
and (Il3 ). This is the f ir s t  time that such an inequivalence has been observed on the 

cylindrical copper crystal. The feature was completely reproducible and suggests that 

in some way one side of the sample is significantly different from the other.

It is not clear what the cause o f this d ifference is. Very small impurity levels, 

undetectable by AES, may be the cause, but th is would seem to be unlikely as the effect 

is manifest as a single smooth oscillation in the Auger intensities and there seems to 

be no reason why random impurities should vary in such a regular manner. The fact 

that the oscillation is not present in the saturation data and in subsequent oxygen 

adsorption data e ffec tive ly  rules out an artefact due to eccentricity in sample rotation.
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The Author feels that this e ffe c t  may well be crysta llograph ic in origin. As stated in 

chapter 3, the samples used in the current work were not perfectly cylindrical but had 

a very sligh t taper. This slight misorientation may well give rise to  an appreciable density 

o f kinks on one side o f the sample but not on the other, and i t  is possible that the 

increased reac tiv ity  of one side o f the sample could be due to  the presence of kinks 

in the steps.

The above experiment immediately suggests three avenues for further research on 

the copper cylindrical single crystal.

(a ) The complex relationship between step density and reactiv ity which has been found

fo r  chloroform adsorption on copper should be investigated and surface structural 

information obtained to see i f  the phenomenon may be correlated with adsorbate 

induced faceting.

(b ) The kinetics o f the reaction should be studied as in the previous oxygen adsorption

experiments.

(c ) The effect of kinks on chloroform adsorption on copper should be investigated.

Experiment (c ) should be particu larly stressed as it would entail the preparation 

o f a cylindrical sample with surface orientations in a different zone of the stereographic 

triangle. All of the experiments conducted in this investigation could profitably be repeated 

on fu lly  kinked surfaces and shaped surfaces where the kink density, rather than the 

step density, is the variable. A technique of surface crystallography would be mandatory 

fo r  any investigations outside o f the <110> zone however, as i t  is known that kinked 

copper surfaces have a tendency to facet under oxygen adsorption.
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A P P E N D IX

In surface physics and chemistry two units are s t ill in common usage which are not

S.I. units: The torr and the Langmuir.

For the reader’s convenience, these units are now defined, and conversion factors are 

given to the appropriate S.I. units.

The to rr

The torr is the commonly used unit of pressure in surface science.

1 torr = 133.322 Pa 

1 Pa * 1 Nm-2

The Langmuir

The Langmuir (L) is still the most commonly used unit of exposure in surface science. 

One Langmuir corresponds to an exposure to a partia l pressure 10-6torr of a given gas 

for 1 second.

1 L ■ 10-6 torr s"1 -  133.322xl0-6 Pa s-1

-  i - J.S.Arlow, 1985


