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Raising Capital from Heterogeneous Investors

Marina Halac Ilan Kremer Eyal Winter∗

Abstract

A firm raises capital from multiple investors to fund a project. The

project succeeds only if the capital raised exceeds a stochastic threshold,

and the firm offers payments contingent on success. We study the firm’s

optimal unique-implementation scheme, namely the scheme that guaran-

tees the firm the maximum payoff. This scheme treats investors differently

based on size. We show that if the distribution of the investment thresh-

old is log-concave, larger investors receive higher net returns than smaller

investors. Moreover, higher dispersion in investor size increases the firm’s

payoff. Our analysis highlights strategic risk as an important potential

driver of inequality.
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Firms often have worthwhile projects that require the participation of mul-

tiple investors. A key problem is that these investors face strategic risk: if not

enough of them choose to invest, the firm will not have enough capital to im-

plement its project and generate a return. As a result, there may be outcomes

in which some or all the investors choose not to invest because they expect

that others will not invest. These outcomes are bad for the firm and typically

inefficient.

This paper studies the firm’s optimal scheme that guarantees investment as

the unique outcome. In a world without contracting constraints, where payments

can be made contingent on third parties’ choices, eliminating the possibility of

bad outcomes would impose no extra cost on the firm. But the real world is not

unconstrained, and as pointed out by the literature, bilateral contracts are often

all a firm can rely on.1 Guaranteeing investment then requires compensating

investors for their strategic risk, a risk that depends on the amount of capital

each investor pledges. A natural question arises: how does heterogeneity in

investor size affect the firm’s scheme and the returns yielded to the firm and the

investors? In particular, does an optimal scheme treat investors differently based

on size, and, if so, which investors get better terms? How does the distribution of

capital among investors affect the firm’s profits and the feasibility of investment?

Our model consists of a firm and a set of agents. The firm owns a project that

generates a surplus if implemented, and each agent has an amount of capital to

invest, which varies across the agents. The firm’s project can be implemented—

i.e., the project “succeeds”—only if the capital raised from the agents exceeds

a stochastic, initially unknown threshold.2 The firm offers each agent two pay-

ments for investing, one if the project succeeds and another if it fails. Each

agent then chooses whether to invest with the firm or put her capital in a safe

asset that pays a fixed net return. We characterize the firm’s optimal unique-

implementation scheme. This scheme specifies individual capital amounts and

the least-cost payments such that investing these amounts with the firm is the

1See Section 1 as well as the discussions in Innes and Sexton (1994) and Segal (2003).
2This threshold captures common factors such as the project involving inputs whose prices

are random, or the firm having a stochastic source of external credit to use as additional
funding. More abstractly, our model simply assumes that the probability of project success is
increasing in the amount of capital invested.
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unique Nash equilibrium outcome.3

Our first main result addresses how the optimal returns that the firm offers

vary with investor size, given a fixed set of investors. We show that if the project

fails, the firm simply refunds the agents their capital, thus paying the same zero

net return to each of them.4 However, if the project succeeds, the firm pays

the agents differential net returns depending on the size of their investments.

Under a distributional condition on the investment threshold (which we discuss

subsequently), we show that agents investing larger amounts of capital receive

higher net returns (per unit of capital) than those investing smaller amounts.

This pattern is consistent with evidence from private equity, where large limited

partners are given preferential terms compared to small ones (see, e.g., Clayton,

2017). By showing that larger investors get more per unit invested, this result

also yields important implications for dynamic capital markets: we identify

a mechanism through which capital becomes dispersed, pointing to “winner-

takes-all dynamics” such as those that arise in tournament theory and models

of superstars (Lazear and Rosen, 1981; Rosen, 1981).

Our second main result concerns the optimal set of investors for the firm.

Fixing the total amount of capital, we find that the firm benefits from dealing

with agents whose capital is more unequal. Specifically, any increase in the

dispersion of agents’ capital (in the sense of majorization, i.e. concentrating

capital in the hands of a small number of agents) reduces the firm’s cost of raising

any given level of capital. Higher dispersion in investor size therefore increases

the firm’s expected payoff from any given investment, as well as the range of

investments that are feasible. Furthermore, as an implication, we find that the

firm targets those agents with the largest endowments of capital, generating

differences not only in agents’ net investment returns but also in their access to

investment opportunities.

Our last main result considers the relationship between the distribution of

capital and the distribution of returns. One might be tempted to conclude from

3See Section 1 for details. Our unique implementation requirement is equivalent to having
the firm maximize its expected payoff in its worst possible equilibrium outcome.

4This result applies to our benchmark setting with no initial firm capital. If the firm owns
initial capital, a subset of the agents are paid a positive net return under failure; yet, as shown
in Section 4, our qualitative conclusions are unchanged.
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our previous results that not only larger investors are offered higher net returns,

but also their return advantage is larger when the agents’ investments are more

unequal. We show that the opposite is true, in the following sense: higher

capital dispersion reduces the difference in net returns between the largest and

smallest investors. In fact, we find that this return difference can decline to the

extent that even the difference in the investors’ final capital holdings declines

when initial capital becomes more unequal.

To provide intuition for these results, we next describe a simple example.

Consider a project that requires I units of capital to succeed, where the threshold

I is uniformly distributed on the interval [0, 30]. If the project succeeds, it

generates a fixed surplus A > 0 in addition to the initial investment. Suppose A

is large enough that the firm wishes to guarantee full investment by two agents,

where agent 1 has 10 units of capital and agent 2 has 20 units. The agents’

outside option is to invest in a safe asset that pays a net return of 10%.

In this simple example, the project succeeds for sure if both agents invest

with the firm. Hence, paying each agent a net return under success equal to the

safe return of 10% would suffice to induce an equilibrium in which both agents

invest. However, an equilibrium in which neither agent invests would also exist

given this (or a slightly higher) return. To implement full investment as the

unique equilibrium outcome, the firm must make it dominant for one of the

agents to invest.

Consider first a scheme that makes investment dominant for agent 1. If

only agent 1 invests, the project succeeds with probability 1/3, namely the

probability that the investment threshold is I ≤ 10. To ensure that agent 1

invests no matter what agent 2 does, it thus suffices to offer her a net return

under success (slightly above) r satisfying r/3 = 10%, i.e. r = 30%. Given agent

1’s participation, it then suffices to offer agent 2 a net return of 10% for her to

also invest. It follows that the firm can guarantee full investment at a cost of

10(30%) + 20(10%) = 5.

The alternative is to make investment dominant for agent 2. If only agent 2

invests, the project succeeds provided that I ≤ 20, which occurs with probability

2/3. Thus, it suffices to offer agent 2 a net return under success of 15% to

guarantee her participation. Since agent 1 will then invest as well if she is
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offered at least 10%, the firm’s cost is now equal to 10(10%) + 20(15%) = 4,

which is lower than under the previous scheme. Intuitively, agent 2’s larger

investment provides her with more self-insurance compared to agent 1, and this

allows the firm to pay a lower compensation for risk when agent 2’s participation

is made dominant. Consequently, the firm uses a scheme that pays a higher net

return to the large investor compared to the small investor. This illustrates our

first main result.

Consider next transferring capital from the small to the large investor. For

example, suppose we transfer 4 units of capital from agent 1 to agent 2, so that

the capital of agent 1 becomes 6 and that of agent 2 becomes 24. Following

analogous steps to those above, the firm’s scheme in this case entails a net

return under success of 12.5% for agent 2 and 10% for agent 1. The firm’s cost

is equal to 6(10%) + 24(12.5%) = 3.6, which is lower than the cost of 4 prior to

the transfer. Because the large investor becomes better self-insured when her

capital is increased, the overall compensation for risk that the firm has to pay

declines. We thus obtain that when the distribution of capital is more unequal,

the firm’s expected payoff is higher, and a lower surplus A from success suffices

for the investment to be profitable. This illustrates our second main result. Our

third main result is also clear in this exercise: the difference in the agents’ net

returns is smaller when their investments are more heterogeneous.

Our paper examines a general setting in which the number of agents and their

capital levels are arbitrary, as is the distribution of the investment threshold

I. We identify a condition on the distribution function of I under which our

results hold for all capital distributions. The condition is that the reciprocal of

the cumulative distribution function (cdf) be convex, a property implied by log-

concavity of the cdf and thus satisfied by most commonly used distributions.5

Our analysis elucidates the role of this condition and how our findings change if it

is not satisfied. In the example above, the condition implies a risk premium per

unit of capital which declines at a decreasing rate with the agents’ investments,

and this is why the firm minimizes costs by first guaranteeing the participation

of the large investor.

5These include the exponential, gamma, log-normal, Pareto, and uniform distributions (see
Bagnoli and Bergstrom, 2005).
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We discuss different extensions and implications of our model. We show that

our results apply to a setting in which the firm has some initial capital of its

own. The firm in this case uses its capital to fully insure small investors, thus

continuing to offer higher net returns to larger investors and delivering different

levels of risk for investors of different size. Our results also apply to a general

equilibrium setting in which the investors’ outside options are endogenously

determined. Moreover, while derived for a firm that maximizes its profits, our

findings are also relevant to a social planner concerned with agents’ welfare.

Beyond capital raising, we discuss how our model may be applied to other

contracting problems with externalities. These include a monopolist offering

exclusive dealing contracts to buyers to deter market entry; a firm rewarding

workers to complete a joint task; and a bank offering interest and collateral to

depositors to prevent a run. Heterogeneity is common in these situations, and

our results can be useful to understand its implications.

A broad insight from our analysis is that strategic risk may be a driver of

inequality. A profit-maximizing mechanism favors certain agents in order to pin

down their choices and reduce the strategic risk on the part of other agents.

We show that under a plausible condition, the more favorable terms are given

to those agents who are already in a more favorable position. The mechanism

therefore exacerbates initial differences among the agents, and it also extracts

increased revenues from these differences. Inequality being undesirable for a

number of reasons that we do not study, our paper uncovers important economic

forces that may be behind it. We discuss policy implications for a social planner

in Section 5.

Related literature. Our model is one of multi-agent contracting, similar to

models used in the literature on contracting with externalities pioneered by Segal

(1999, 2003) (see also Bernstein and Winter, 2012).6 These are abstract models

with externalities among the agents which are exogenously given. In contrast,

we consider an applied problem in which the externalities among the agents are

endogenously determined by the firm’s contract offers.

Our main departure from the literature is that we study agents who are

6Most such models focus on unique implementation like we do; see Section 1.3.
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heterogeneous in their endowments. Our analysis of course also has implications

for the case in which the agents are homogeneous: we find that the firm’s optimal

scheme gives investors differential net returns even if they all have the same

amount of capital. This is analogous to the results in Winter (2004), where an

optimal team incentive scheme is shown to discriminate among identical workers.

Similar results appear in Segal (2003) and Eliaz and Spiegler (2015), as well as in

Inostroza and Pavan (2018) in the context of persuasion. Given that an optimal

scheme creates heterogeneity among homogenous agents, our paper examines

the natural question of how the scheme deals with heterogeneous agents, and in

doing so it reveals implications for inequality.

Two related papers that analyze heterogeneity are Bernstein and Winter

(2012) and Sákovics and Steiner (2012). Unlike our model, neither of these fea-

ture contingent payments: the principal offers fixed subsidies for the agents to

participate in the mechanism, and agents’ benefits from participating and their

externalities are exogenous. Bernstein and Winter (2012) study how asymme-

tries in the agents’ bilateral externalities affect the principal’s scheme and rev-

enue. Instead, we look directly at differences in agents’ attributes, whose effects

on the matrix of externalities may be complex and endogenous.7 Sákovics and

Steiner (2012) consider a global game with incomplete information, where agents

differ in their influence over the aggregate action, their benefit from project suc-

cess, and their cost of investment. Importantly, these papers are silent about

our main object of study, namely the per-dollar returns on investment. These

returns and their dependence on investors’ wealth are the crux of the persistent

inequality that we show is generated by the firm’s capital raising.

In this regard, the most closely related paper to ours is Akerlof and Holden

(2019).8 In independent work, the authors consider a principal who has access

to a production technology and faces a set of investors. The production function

achieves a global maximum at a high level of investment, has a local maximum

7In fact, while in our model the magnitude of an investor’s externality is related to size,
we find that the relationship between size and contract terms depends on a distributional
condition, so a higher externality does not necessarily imply more favorable terms as in Bern-
stein and Winter. The difference arises primarily from the fact that here agents’ externalities
are neither bilateral nor additive. In our framework, the externality that an agent exerts on
another agent’s gains depends on who else is in the pool of investors.

8See also Akerlof and Holden (2016).
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at a low level, and is such that for an intermediate range the output would

not suffice to compensate investors for their outside options. The paper first

analyzes a setting with many identical small investors. If the principal seeks

to raise the high investment level while offering investors their outside option,

there is an equilibrium in which investors invest less and the principal gets zero

payoff. As a result, the principal seeks to raise the low level of investment. The

authors then contrast this setting with one in which there is a large investor in

addition to the small investors. If the principal offers the large investor a junior

debt claim and promises her a fraction of the surplus generated by the high

investment, then both the large and small investors invest and high investment

is the unique equilibrium outcome.

Our paper differs from Akerlof and Holden (2019) in a number of aspects.

First, they show that by facilitating investment, a large investor can earn a

high return if he has some bargaining power vis-a-vis the principal. If the large

investor is instead a price-taker as the small ones, then all investors get the

same net return regardless of size. In contrast, in our model all the bargaining

power is in the hands of the firm, and the firm offers higher net returns to

larger investors to guarantee itself a maximum payoff. Put differently, we take

a mechanism design approach to solve for an optimal unique-implementation

scheme, whereas Akerlof and Holden (2019) provide an equilibrium analysis

that shows how outcomes vary with the environment. Second, while their paper

focuses on the role of large investors in improving overall investment, we study

how the firm and investors’ payoffs depend on the distribution of capital. In

fact, unlike in Akerlof and Holden (2019), the firm in our model benefits from

targeting larger investors, and offers them a higher net return compared to

smaller investors, even if the overall investment is kept unchanged.

Finally, our paper is also related to Andreoni (1998), which studies the role

of seed money in charitable contributions. Since the success of such fundraising

relies on a minimum threshold of funds, contributions from seed donors increase

the incentives of other donors to also contribute.
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1 Model

1.1 Setup

A firm owns a project which yields a fixed surplus A > 0 if implemented.

The firm can implement the project only if the capital invested in it exceeds

an initially unknown, stochastic threshold I. We assume that I has a twice

differentiable distribution function F with support
[
0, I
]
, for some I > 0.9

Hence, if capital x is invested, with probability F (x) the threshold satisfies

I ≤ x and the project is implemented, yielding final capital x + A.10 With the

remaining probability 1 − F (x) the threshold is I > x and the project is not

implemented, so the final capital is x. We will refer to project implementation

as success and to no implementation as failure.

We begin by assuming that the firm has no capital of its own, deferring

the study of how the firm would use any initial capital to Section 4. The firm

raises capital from a set of N > 1 heterogeneous agents, indexed by n ∈ S =

{1, . . . , N}. Each agent n has a capital endowment xn > 0. Instead of investing

with the firm, agents can invest their capital in a safe asset that pays a net

return θ > 0.11 (All returns are net percentage returns, meaning that if agent

n invests xn in the safe asset, her payoff is (1 + θ)xn.) All of this is common

knowledge.

The order of moves is as follows. First, the firm offers each agent a contract

specifying payments in the events of project success and failure, as we describe

in the next subsection. These are publicly observable contracts to which the

firm commits. Second, the agents decide simultaneously whether to invest with

the firm or put their capital in the safe asset. Finally, the investment threshold

9Setting the lower bound of the support to zero simplifies the exposition. As will be clear
in the next sections, our results are unchanged so long as this bound is smaller than the largest
investor’s amount of capital, and our problem is moot otherwise.

10In Section 5, we show that our results also apply if the firm’s surplus from implementing
the project is proportional to the capital invested instead of a constant amount.

11We thus model the loss from project failure as an opportunity cost, reflecting the fact
that, in practice, there is a lag between the capital raising and the actual investment decision.
This formulation is mathematically equivalent to one in which, instead of the agents forgoing
an outside option, a failure corresponds to an unsuccessful investment that depletes a portion
of the invested capital.
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I is realized, the project is implemented if and only if the capital raised by the

firm exceeds I, and payments are made.

1.2 Firm’s problem

The firm wishes to guarantee its maximum possible payoff. Its problem is to

choose a payoff-maximizing scheme subject to satisfying its budget constraint

and to inducing a unique equilibrium outcome.

As further discussed in Section 1.3, we focus on contracts that are bilateral

and simple. For each n ∈ S, the firm specifies an amount of capital xn ∈ [0, xn]

and returns (rn, kn) conditional on agent n investing xn in the firm’s project.

The return rn is the net return that agent n receives if the project succeeds; the

return kn is the agent’s net return in the case of failure.

Given a scheme specifying investments (xn)n∈S and returns (rn, kn)n∈S, de-

note agent n’s decision by yn ∈ {0, 1}, where yn = 1 means invest xn with

the firm and yn = 0 means invest xn in the safe asset. The firm’s budget con-

straint requires that the total payments offered to the agents do not exceed the

firm’s final capital, regardless of the set of agents who invest in the project and

whether or not the project is implemented. That is, for all profiles of choices

Y = (y1, . . . , yN), the firm’s scheme must satisfy12

N∑

n=1

rnynxn ≤ A and
N∑

n=1

knynxn ≤ 0. (BC)

In addition, the firm’s scheme must implement the agents’ investments in a

unique outcome. The firm’s problem can be decomposed in two steps:

(i) For fixed capital amounts (xn)n∈S, find the optimal return schedule (rn, kn)n∈S

guaranteeing investments (xn)n∈S.

(ii) Given step (i), find the optimal capital amounts (xn)n∈S, where xn ∈ [0, xn]

for each n ∈ S.

12This budget constraint can be relaxed to only require budget balance on the equilibrium
path without altering our results. See our discussion in Section 1.3.
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We address step (i) in Section 2 and step (ii) in Section 3. We next formalize

step (i).

Fix capital amounts (xn)n∈S where, to avoid trivialities and without loss,

we take xn > 0 for each n ∈ S. Given (xn)n∈S, say that a return schedule

(rn, kn)n∈S is incentive inducing (INI) if Y1 ≡ (1, . . . , 1) is the unique Nash

equilibrium of the game induced by (rn, kn)n∈S. An optimal return schedule for

the firm is a least-cost INI schedule. A technical issue is that the set of INI

schedules is open (since rn and kn take continuous values); we resolve this by as-

suming that agents invest with the firm when indifferent given their conjectures

of others’ behavior.13 Formally, let Un(yn,Y−n) be agent n’s expected return

on xn given net returns (rn, kn), investment choice yn, and investment choices

Y−n = (y1, . . . , yn−1, yn+1, . . . , yN) of the other agents:

Un(yn,Y−n) =

[
F

(
N∑

n′=1

yn′xn′

)
rn +

(
1− F

(
N∑

n′=1

yn′xn′

))
kn

]
ynxn+θ(1−yn)xn.

Given our assumption on behavior under indifference, we define a Nash equi-

librium as a profile Y = (y1, . . . , yN) such that, for each n ∈ S, yn = 1 if

1 ∈ argmaxy∈{0,1} Un(y,Y−n) and yn = 0 otherwise. Denote by E ((rn, kn)n∈S)

the set of Nash equilibrium profiles under schedule (rn, kn)n∈S. Then the firm’s

unique implementation requirement is:

E((rn, kn)n∈S) = {Y1}. (U)

Let XN ≡
∑N

n=1 xn. An optimal return schedule (r∗n, k
∗
n)n∈S guaranteeing

investments (xn)n∈S solves the following program:

V ((xn)n∈S) = max
(rn,kn)n∈S

{(
A−

N∑

n=1

rnxn

)
F (XN)−

N∑

n=1

knxn (1− F (XN))

}

(P)

subject to (BC) and (U).

13This assumption is equivalent to defining an optimal return schedule as a least-cost sched-
ule (rn, kn)n∈S such that, for any ε > 0, raising rn by ε for each n ∈ S yields an INI schedule.
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1.3 Discussion of assumptions

Before we solve the firm’s problem, it is worth discussing our model assumptions.

Unique implementation. We have assumed that the firm cannot coordinate

the agents to its preferred equilibrium when multiple equilibria exist. This

assumption is what motivates the requirement of unique implementation, both

in our paper and in related work (Segal, 2003; Winter, 2004; Bernstein and

Winter, 2012). If the firm could “pick” the equilibrium to be played by the

agents, then it would be able to extract the full surplus by specifying returns

(rn, kn) = (θ/F (XN), 0) for each n ∈ S and some (xn)n∈S. Under such a scheme,

there is an equilibrium that implements investments (xn)n∈S and keeps all agents

to their outside option, but equilibria with lower investment also exist. The

presence of multiple equilibria gives rise to the possibility that agents may play

a non-desirable one. Indeed, several experiments find that subjects are often

trapped in bad equilibrium outcomes in environments with externalities (see,

e.g., Devetag and Ortmann, 2007). This tendency bears on the fact that agents’

first order optimism alone would not suffice to ensure the good equilibrium: even

if an agent believes in the intentions of her peer to pitch in, it may be enough

for her to suspect that the peer might be pessimistic about her for the good

equilibrium to unravel.

Our unique implementation requirement is equivalent to having the firm

maximize its profits in the equilibrium outcome yielding the lowest profits for

the firm.14 While real-world firms and managers may not be directly worried

about this worst-case scenario, they do aim to ensure a minimum payoff. The

unique implementation solution provides insight into how these principals struc-

ture payments in order to avoid bad outcomes, without having to specify priors

over different action profiles, which may be arguably difficult in practice. One

can also view this worst-case focus as reflecting how the agents behave: if in-

vestors are reluctant to invest in the firm’s project unless they are sufficiently

compensated in every equilibrium outcome, then the firm’s worst equilibrium

outcome would indeed prevail.

14See Segal (2003) for a general argument.
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Another desirable feature of our solution concept is that it permits an anal-

ysis free of strong assumptions on agents’ ability to predict others’ behavior.

Specifically, we will show in Section 2 that our requirement of unique imple-

mentation in Nash equilibria yields a unique rationalizable outcome. The firm

therefore only relies on agents being rational and this rationality being common

knowledge, and not on agents being able to make correct conjectures of others

agents’ choices. This is in contrast with other approaches such as selecting equi-

libria based on the risk dominance criterion, which imposes strong demands on

the ability of agents to predict how others will behave.

Timing of moves. We have assumed that the agents make their investment

choices simultaneously, i.e. under imperfect information. This simultaneous

game is a simple (and stark) way to capture the fact that investors in real-

ity may have limited information about others’ investment choices, and their

decisions may not be sequential insofar as they can be revised.

Our analysis however also applies to a sequential game. Suppose that the firm

approaches the agents sequentially, with each agent observing the investment

decisions of her predecessors.15 Naturally, by offering rn = θ/F (XN) and kn = 0

to each agent n ∈ S, the firm can induce investments (xn)n∈S as the unique

subgame-perfect Nash equilibrium and extract the full surplus. But such a

solution appears unrealistic, as it requires investors to believe that others who

have not yet moved will choose to invest with the firm. Without these beliefs,

guaranteeing investments (xn)n∈S amounts to making each of these a dominant

strategy in the underlying subgame of the sequential game, a solution concept

that is used in Innes and Sexton (1994) among others. One can show such an

approach yields the same results as our unique implementation requirement in

the simultaneous game.

The sequential moves specification is of interest in itself. This specification

imposes the weakest demands on agents’ information and behavior: when mak-

ing their investment decisions, agents are not required to know the structure of

the remaining game, the contracts offered to other agents, or how much capital

15The discussion that follows is valid regardless of whether the firm commits to the rules of
the game (i.e., the contracts and the order of moves) ex ante or not.
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other agents own. In fact, agents need not even know whether other agents

are rational, as they simply establish whether they want to invest with the firm

given the capital already accumulated, no matter what happens next.16 In terms

of our application, the sequential moves setting offers additional predictions on

the order in which the firm should approach investors to maximize profits. Our

results imply that, under the condition of Proposition 2, it is optimal for the

firm to first lock large investors and only then approach smaller investors.

Bilateral, simple contracts. Following the literature (Segal, 2003; Winter,

2004), we have assumed that the firm can rely on bilateral contracts only. That

is, contracts cannot directly condition on third parties’ actions: the payment to

an agent does not depend on other agents’ investment decisions except insofar as

these decisions affect whether the project gets implemented. The motivation for

this restriction stems from the difficulty to verify in practice the capital pledged

by third parties. If an agent sues for breach of contract, a court can require

the agent to prove that she invested with the firm (or else she lacks standing

to sue), and it can plausibly verify whether or not the firm implemented some

large project. It is less clear whether the court can identify the firm’s other

investors and the amounts that they may or may not have invested. We focus

on situations in which it cannot.17

Another assumption is that the firm uses “simple” contracts. Specifically,

our analysis abstracts from menu contracts in which the firm offers an agent n

different returns (rn(x′n), kn(x′n)) for different amounts x′n that the agent may

choose to invest. In a simple contract, the firm specifies an amount xn and

returns (rn, kn) conditional on the agent investing that amount (and zero returns

otherwise). Naturally, only simple contracts are relevant if agents’ decisions are

binary, as is the case when there are indivisibilities in investment.18 Moreover,

16Interestingly, since such a decision rule allows the investors to extract more surplus, it is
to their benefit—and they would want to tell the firm when negotiating the terms—that they
are reluctant to rely on speculations about the behavior of future investors.

17If instead contracts can condition on third parties’ choices, then it can be shown that the
firm would be able to extract the full surplus.

18Indivisibilities are common in applications where capital takes the form of a specific re-
source or skill, or where the project requires a number of discrete investments. See Section 5
for some examples.
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even when investment is fully divisible, we provide conditions in the Online

Appendix under which simple contracts are without loss of optimality.19

Budget constraint. We have required that the firm satisfy its budget con-

straint both on and off the equilibrium path. That is, the firm must be able

to follow through on its commitments to the agents regardless of which agents

decide to invest in the project.20 An alternative possibility would be to allow

the firm to offer any returns (rn, kn)n∈S that satisfy its budget constraint on the

equilibrium path (i.e. under the investments (xn)n∈S), and each agent n ∈ S

would then assess the credibility of her offer (rn, kn) according to her conjecture

of others’ behavior. We show in the Online Appendix that, given our focus on

unique implementation, both possibilities yield the same results. We regard the

stronger budget-balance condition as more plausible, since the irrational behav-

ior of some investors cannot serve the firm with an excuse for not fulfilling its

contracts with other investors.

2 Return Schedule

In this section, we address step (i) of the firm’s problem: for fixed capital

amounts (xn)n∈S, we study the firm’s optimal return schedule that guarantees

these investments, namely the schedule that solves program (P). Without loss,

we take xn > 0 for each n ∈ S. We begin by restating constraint (U) in program

(P) using the following equivalence:

Lemma 1. (U) holds if and only if there exists a permutation π = (n1, . . . , nN)

of the set of agents such that, for each i ∈ S, agent ni is willing to invest with

the firm if agents (n1, . . . , ni−1) invest with the firm, no matter what the other

agents do.

An optimal return schedule makes it iteratively dominant for each agent to

invest with the firm. To see why this follows from (U), note that uniqueness

of the full-participation equilibrium Y1 implies that there is an agent n1 who is

19See Segal (2003) for an analysis of menu contracts in a more general setting.
20This is analogous, for example, to the requirements in Holmström (1982).
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willing to invest with the firm when no other agent does. Moreover, existence

of this equilibrium implies that n1 is also willing to invest when all other agents

do. We show that as a result, n1 is willing to invest with the firm no matter

what the other agents do. The reason is that n1’s expected payoff from investing

is a weighted average of her returns under success and under failure, where the

weights are the probabilities of each event and thus achieve their highest and

lowest values when all and none of the other agents invest. Having established

this property for n1, we then use an induction argument to complete the proof

of the “only if” claim in Lemma 1.21

Given this result, an optimal schedule specifies some permutation π = (n1, . . . , nN)

of the set of agents and returns (ri, ki) for each agent ni ∈ S satisfying the cri-

terion in Lemma 1. We proceed by first characterizing the optimal returns

(r∗i , k
∗
i )i∈S and then solving for an optimal permutation π∗ = (n∗1, . . . , n

∗
N).

2.1 Optimal returns

Given a permutation π = (n1, . . . , nN), denote the aggregate capital of the first

i agents in the permutation by Xi ≡
∑i

j=1 xnj
, where we omit the dependence

on π to ease the exposition. (Note that, as previously defined, XN corresponds

to the total amount of capital.) We obtain:

Proposition 1. Suppose that there exists an optimal return schedule guar-

anteeing investments (xn)n∈S. Any such schedule specifies some permutation

π = (n1, . . . , nN) and returns (r∗i , k
∗
i )i∈S such that, for each i ∈ S, agent ni

is indifferent over investing with the firm if agents (n1, . . . , ni−1) invest with

the firm and agents (ni+1, . . . , nN) do not. Moreover, the following returns are

optimal:

r∗i =
θ

F (Xi)
and k∗i = 0.

An optimal schedule implies a permutation π = (n1, . . . , nN) such that the

first agent in the permutation is indifferent between investing and not when no

21The proof of Lemma 1 is general in that it does not rely on specific externalities between
the agents. The result will also apply to the setting studied in Section 4 in which the firm
owns some initial capital.
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other agent invests, the second agent is indifferent between investing and not

when the first agent invests and the others do not, and so on. For intuition,

recall that by Lemma 1, there is a permutation π = (n1, . . . , nN) in which each

agent ni is willing to invest when agents (n1, . . . , ni−1) invest, no matter the

rest. This implies that for each i ∈ S and each j ∈ {i, . . . , N},

r∗iF (Xj) + k∗i (1− F (Xj)) ≥ θ. (1)

Now note that the firm’s budget constraint (BC) requires ki ≤ 0 for each

i ∈ S;22 given no initial capital of its own, the firm cannot credibly commit to

pay an agent a positive return under failure. Since the agents can obtain a net

return θ > 0 by investing in the safe asset, condition (1) then requires that the

firm offer a strictly positive net return ri > 0 under success. It follows that for

each i ∈ S,

r∗i > 0 ≥ k∗i , (2)

and thus the schedule induces strategic complementarities. That is, under an

optimal return schedule, each agent ni’s expected payoff from investing with the

firm is increasing in the other agents’ investments.

The strategic complementarities in turn simplify the agents’ participation

constraints. Given the inequalities in (2), we obtain that condition (1) is satisfied

for each i ∈ S and each j ∈ {i, . . . , N} if and only if it is satisfied for each i ∈ S
and j = i. Intuitively, the firm can induce agent ni to participate no matter

what agents (ni+1, . . . , nN) do if it can induce agent ni to participate when all

such other agents do not. Furthermore, we show that by optimality, condition

(1) must hold with equality for each i ∈ S and j = i: otherwise, the firm could

lower a return ri and increase its payoff while preserving the agents’ incentives

to participate and relaxing its budget constraint. Therefore, we obtain

r∗iF (Xi) + k∗i (1− F (Xi)) = θ (3)

for each i ∈ S. This yields the first part of Proposition 1, which, in the litera-

22(BC) requires that the sum of net returns under failure be non-positive for all profiles of
choices. Since any one agent being the only investor is a possible choice profile, this constraint
in turn requires that each agent’s net return under failure be non-positive.
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ture’s jargon, shows that any optimal scheme is a “divide and conquer” scheme.23

The second part of Proposition 1 uses the binding participation constraints

in (3) to derive optimal returns. We show that it is optimal to set (r∗i , k
∗
i ) =

(θ/F (Xi) , 0) for each i ∈ S.24 The idea is intuitive. The firm conditions on

all agents (n1, . . . , nN) investing in the project, whereas, as shown in (3), each

agent ni conditions on only agents (n1, . . . , ni) investing. Hence, for all i ∈ S,

the firm assigns a higher probability to success than agent ni does, which means

that the firm values ri relative to ki more than agent ni. As a consequence, the

firm benefits from reducing ri, and thus increasing ki, as much as it can, subject

to its budget constraint (BC) and the participation constraints in (3).

Formally, we show that if a return schedule specifies ki < 0 for some i ∈ S,

we can perform a perturbation in which we slightly increase ki and reduce ri so

as to keep the left-hand side of (3) unchanged. The perturbed schedule satisfies

the firm’s budget constraint and preserves the agents’ incentives to participate.

Moreover, we show that the perturbation increases the firm’s expected payoff in

(P). It follows that it is optimal to set k∗i = 0 and thus, by (3), r∗i = θ/F (Xi)

for each i ∈ S.25

Proposition 1 has important implications for the agents’ payoffs. The propo-

sition shows that the firm treats the agents symmetrically under failure: each

agent is refunded her capital if the project is not implemented. However, in

the case of success, returns differ across the agents. Given the permutation

π = (n1, . . . , nN), agents who are positioned towards the beginning of the per-

mutation are offered a higher net return (per unit of capital invested) than those

positioned later in the permutation. The reason is that agents with a higher

rank i condition on a larger set of other agents investing with the firm; thus,

given the strategic complementarities, their participation constraints are less

costly to satisfy. Clearly, in light of this result, a key question is how an opti-

mal permutation π∗ ranks the agents given the heterogeneity in the size of their

23See Segal (2003). Divide and conquer strategies are also discussed in the literature on
exclusionary contracts, including Rasmusen, Ramseyer and Wiley (1991), Innes and Sexton
(1994), and Segal and Whinston (2000).

24Given (BC), if the agents were protected by limited liability, then the firm would be
constrained to offer ki = 0 for all i ∈ S. Here we obtain these same returns under failure but
by optimality.

25These returns are strictly optimal for i ∈ {1, . . . , N − 1} and weakly optimal for i = N .
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investments. We turn to this question in the next subsection.

A useful property of the returns in Proposition 1 is that they maximally

relax the firm’s budget constraint. Specifically, since k∗i = 0 for each i ∈ S,

these returns minimize not only the firm’s total costs but also its costs under

success,
∑N

i=1 rixni
, for some permutation π. It follows that an optimal return

schedule guaranteeing investments (xn)n∈S exists if and only if a schedule with

returns (r∗i , k
∗
i ) = (θ/F (Xi), 0) for some permutation π satisfies (BC) given

(xn)n∈S. As formalized in the next corollary, the latter requires that the firm’s

surplus A from success be large enough.

Corollary 1. An optimal return schedule guaranteeing investments (xn)n∈S ex-

ists if and only if there exists a permutation π = (n1, . . . , nN) such that

θ
N∑

i=1

xni

F (Xi)
≤ A.

We end our discussion of Proposition 1 with a remark. As noted above,

the firm’s scheme induces a supermodular game among the agents, namely one

characterized by strategic complementarities. As a result, our requirement of

unique implementation in Nash equilibria also yields unique implementation in

rationalizable strategies.

Remark 1. Take an optimal return schedule guaranteeing investments (xn)n∈S.

Then these investments constitute the unique Nash equilibrium as well as the

unique rationalizable outcome.

2.2 Optimal permutation

We now turn to the question of how an optimal permutation ranks the agents.

Assume hereafter that the condition in Corollary 1 holds, so an optimal return

schedule guaranteeing investments (xn)n∈S exists. By Proposition 1, it is optimal

for the firm to specify some permutation π = (n1, . . . , nN) of the set of agents

and returns (r∗i , k
∗
i ) = (θ/F (Xi), 0) for each agent ni ∈ S. Substituting in the
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firm’s expected payoff yields

V ((xn)n∈S) =

(
A− θ

N∑

i=1

xni

F (Xi)

)
F (XN) (4)

for some permutation π = (n1, . . . , nN). It follows from (4) and Corollary 1 that

a permutation π is optimal if and only if it minimizes the firm’s costs under

success, given by

θ
N∑

i=1

xni

F (Xi)
. (5)

The next proposition shows that (5) is minimized by ranking the agents in

decreasing order of the size of their investments, provided that a condition on

the investment threshold distribution holds. This condition is that 1/F (x) be

convex (over the relevant range), and it is satisfied by most commonly used

distributions, as we explain subsequently (see Remark 2).

Proposition 2. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0. Then for any

investments (xn)n∈S with XN ≤ X, an optimal permutation is π∗ = (n∗1, . . . , n
∗
N)

such that

xn∗1 ≥ . . . ≥ xn∗N (6)

Consequently, larger investors receive higher net returns than smaller investors.

The logic for the optimal permutation is as follows. Given a permutation

π = (n1, . . . , nN), Proposition 1 shows that an optimal return schedule com-

pensates each agent ni ∈ S on the marginal unit of capital invested in the

project. Specifically, for each unit invested by agent ni, the firm pays the

agent a return under success r∗i = θ/F (Xi). As discussed in Section 2.1, the

agent’s return thus decreases with Xi; moreover, if 1/F (·) is convex, θ/F (Xi)

decreases at a decreasing rate with Xi. This means that the firm benefits from

moving down the return curve as quickly as possible: the faster capital is ac-

cumulated along the sequence (xn1 , . . . , xnN
), the lower is the sum of returns

xn1θ/F (X1) + xn2θ/F (X2) + . . .+ xnN
θ/F (XN) that the firm has to pay under

success. It follows that it is optimal to rank the agents in decreasing size order,

from the largest investor to the smallest one.
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Intuitively, to guarantee investment, the firm has to compensate the agents

for the strategic risk that they face in addition to the fundamental risk. The risk

premium for agent ni is proportional to 1/F (Xi), which depends on the agent’s

rank i and her investment xni
. For any given rank, a large investor demands

a lower risk premium than a small one because her large investment secures

itself. That is, given Xi−1 fixed, a larger investment xni
allows to reduce the

risk premium 1/F (Xi−1 + xni
) that the firm has to pay on each unit of capital

invested by ni. Now the magnitude of this reduction depends on Xi−1: if 1/F (·)
is convex, the risk premium decreases most sharply with ni’s investment when

the aggregate investment Xi−1 of preceding agents is small, and thus when ni’s

rank i is low. As a consequence, placing large investors early in the permutation

minimizes the total risk premia that the firm has to pay when 1/F (·) is convex.26

Figure 1 illustrates the result using the example described in the Introduc-

tion. We take F uniform over [0, 30] and θ = 10%. The figure depicts the

return curve θ/F (Xi), showing that the return that the firm pays under success

declines at a decreasing rate with each additional unit of capital invested in the

project. For N = 2 agents with investments x1 = 10 and x2 = 20, Proposi-

tion 2 implies that the optimal permutation is π∗ = (2, 1). That is, the firm sets

n∗1 = 2 and n∗2 = 1 as agent 2’s investment is larger than agent 1’s. As shown

in the left panel of Figure 1, the optimal returns under success are r∗1 = 15%

for agent n∗1 = 2 and r∗2 = 10% for agent n∗2 = 1, yielding a cost for the firm

of 20(15%) + 10(10%) = 4. If the firm instead ranks the agents according to

π = (1, 2), as in the right panel of Figure 1, then the returns are r1 = 30%

for agent n1 = 1 and r2 = 10% for agent n2 = 2, yielding a higher cost of

10(30%) + 20(10%) = 5.

As stated in Proposition 2, our characterization of an optimal permutation

has direct implications on investors’ returns: given Proposition 1, it implies

that larger investors receive higher net returns than smaller ones. The analysis

therefore provides an explanation for the patterns of returns often observed

in practice. As mentioned in the Introduction, our results are consistent with

evidence from private equity. Tan (2016) and Clayton (2017), for example,

26Conversely, if 1/F (·) is concave, the firm would benefit from placing large investors late
in the permutation. See Section 5.
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Sketch of proof (3)

Claim

For each i, k⇤
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✓
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F (Xi)
� 0

Intuition: firm conditions on all investing, ni on only nj , j  i

• Hence, firm values ri relative to ki more than ni

Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓
N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

x2 � x1

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there
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Figure 3: Price of coordination for N = 2 agents with aggregate capital X2 = 30, F uniform
over [0, 30], and ✓ = 10%, as

�
xn⇤

1
� xn⇤
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�
increases from 10 to 30.

H of capital in S, and let bS be the set of N agents induced by bH. The set of viable

projects in bS is larger than that in S.

0 10 20 30

Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns

20
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entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.
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showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns

20

0

0.1

1 1.4 1.8 2.2 2.6 3

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓
N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

x2 � x1

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

18

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓
N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

�
xn⇤

1
� xn⇤

2

�

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

18

Figure 3: Price of coordination for N = 2 agents with aggregate capital X2 = 30, F uniform
over [0, 30], and ✓ = 10%, as

�
xn⇤

1
� xn⇤

2

�
increases from 10 to 30.

H of capital in S, and let bS be the set of N agents induced by bH. The set of viable

projects in bS is larger than that in S.

0 10 20 30

Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Figure 1: Return curve for F uniform over [0, 30] and θ = 10%. Given N = 2 agents
with investments x1 = 10 and x2 = 20, the left panel shows the returns paid by the
firm under the optimal permutation π∗ = (2, 1). The right panel shows these returns
under π = (1, 2).

point out an increasing tendency of private equity firms to give preferential

treatment to limited partners based on size. The empirical findings in Dyck and

Pomorski (2016) reveal that large investors receive higher net returns than small

investors even when restricting attention to private equity investments without

any preferential access.27

Proposition 2 suggests that the observed differences in returns across in-

vestors may arise as a firm’s profit-maximizing solution to a coordination prob-

lem in investment. A natural question is whether other factors could instead

explain the evidence. For example, a simple theory of transaction costs may

justify firms’ offering better terms to larger investors. However, the differential

returns across investors are sizable, so these transaction costs would have to

be too large to provide a justification. In fact, this discontinuity is a testable

implication of our theory that distinguishes it from other explanations such as

transaction costs: we find that small differences in agents’ investments can yield

large differences in the net returns that they receive.

By showing that larger investors get more per unit invested, Proposition 2

27From private conversations with industry experts, we find that similar patterns are ob-
served in debtor-in-possession financing, often in the form of fee reductions for large investors.

21



also has implications for dynamic capital markets. In particular, we will estab-

lish in Section 3.1 that the agents from whom the firm induces larger invest-

ments are precisely those who have larger endowments of capital to begin with.

Therefore, as we discuss in that section, the differential treatment of investors

described in Proposition 2 will imply that any differences in initial capital among

the agents will be exacerbated by the firm’s optimal scheme.

We close this section with two remarks. The result in Proposition 2 is shown

to hold under a condition on the distribution of the investment threshold. First,

it is worth noting that this condition is implied by log-concavity:

Remark 2. If F (x) is log-concave, then 1/F (x) is convex.

Many familiar distributions have a log-concave cdf, including exponential,

gamma, log-normal, Pareto, and uniform (see Bagnoli and Bergstrom, 2005).28

Second, one may wonder about the necessity of our condition on F . We

can show that if 1/F (x) is non-convex for some x ∈ [0, X], X > 0, then there

exist investments (xn)n∈S with XN ≤ X such that a permutation that ranks the

agents in decreasing size order is not optimal. Hence,

Remark 3. Convexity of 1/F (x) over the relevant range is not only sufficient

but also necessary for the statement in Proposition 2 to hold.

Our emphasis is on the case in which 1/F (x) is convex because, as noted,

most of the distributions that are frequently used satisfy this property. In fact,

1/F (x) cannot be globally concave (since 1/F (x) → ∞ as x → 0), and thus

an analysis under 1/F (x) concave must be conditioned on the range of capital

[min{xn|n ∈ S}, XN ] given (xn)n∈S. We discuss this possibility in Section 5.

3 Distribution of Capital

So far we have focused on step (i) of the firm’s problem, taking the amounts of

capital (xn)n∈S that the firm raises as given. We now consider step (ii): given

28Log-concavity of the cdf is implied by, but weaker than, log-concavity of the probability
density function.
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that an optimal return schedule guaranteeing investments (xn)n∈S is character-

ized by Proposition 1 and Proposition 2, we study the optimal investments that

the firm induces. Put differently, we ask: how does the distribution of capital

among the agents impact the firm’s payoff?

To address this question, we use the majorization partial ordering of vectors

(Hardy, Littlewood and Pólya, 1934):

Definition 1. For two N-vectors x = (x1, . . . , xN) and x̂ = (x̂1, . . . , x̂N), vector

x̂ majorizes x if the components of x̂ and x have the same total sum and, for

all m, the sum of the m smallest components is weakly smaller in x̂ than in x.

Majorization provides a formal definition of dispersion. Given a total invest-

ment XN , the investments in x̂ = (x̂1, . . . , x̂N) are more unequal than those in

x = (x1, . . . , xN) if the vector x̂ majorizes x. This concept is analogous to that

of mean-preserving spread for probability distributions.29

3.1 Optimal investments

The next proposition shows that for any given total investment XN , the firm

benefits from the individual investments (xn)n∈S being more unequal:

Proposition 3. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and con-

sider investments (xn)n∈S with XN ≤ X. Let the investments (x̂n)n∈S majorize

(xn)n∈S. The firm’s expected payoff under (x̂n)n∈S is higher than that under

(xn)n∈S.

For intuition, consider the example from the Introduction, with F uniform

over [0, 30] and θ = 10%. Suppose first that the firm raised capital from N = 3

agents with x1 = x2 = x3 = 10. By our results in the previous section and as

can be seen in Figure 1, the firm’s optimal scheme would then entail costs equal

to 10(30% + 15% + 10%) = 5.5. Now suppose that two of these investors were

29For any x > 0, let Hx(x) and Hx̂(x) denote the number of components of x and x̂
respectively that do not exceed x. Then Hx̂(x) is a mean-preserving spread of Hx(x) if it
is second-order stochastically dominated by Hx(x). By the results in Rothschild and Stiglitz
(1970) and Machina and Pratt (1997), our analysis goes through without change with this
definition of inequality.
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“merged” into a single larger investor, so the firm raises capital from N = 2

agents with x1 = 10 and x2 = 20 (which is equivalent to N = 3 agents with

x1 = 10, x2 = 20, and x3 = 0). The firm’s costs under an optimal scheme would

then be lower, equal to 20(15%) + 10(10%) = 4. The reason is that merging

the agents reduces the strategic uncertainty: while each separate agent faces

uncertainty about the investment decision of the other agent, the merged agent

knows that she will invest the whole capital amount in the firm’s project. This

allows the firm to guarantee the same total investment at a lower risk premium.

Proposition 3 shows that this logic holds more generally. We find that

any increase in the dispersion of investments, as formalized by the notion of

majorization, increases the firm’s payoff. To see why this is the case, take

(xn)n∈S. Any capital amounts (x̂n)n∈S that majorize (xn)n∈S can be derived

from (xn)n∈S by performing a finite sequence of transfers from smaller to larger

investors, increasing the gap between them (see Hardy et al., 1934). We show

that each such transfer makes the firm better off. Fixing an optimal permuta-

tion π = (n1, . . . , nN) under (xn)n∈S, a transfer from a small to a large investor

allows the firm to move down the optimal return curve θ/F (Xi) more quickly

and thus reduce its costs. Intuitively, the transfer lowers the required risk pre-

mium by increasing the self-insurance of the large investor. This implies that

the firm’s payoff under the induced amounts (x̂n)n∈S is higher than that under

(xn)n∈S given optimal returns and the original permutation π. Clearly, changing

to a permutation that is optimal under (x̂n)n∈S can only raise the firm’s payoff

further. It follows that this operation always benefits the firm.

In the limit, the operation in Proposition 3 would concentrate all the capital

in one of the agents. In fact, if the firm raised capital from only one agent, this

agent would face no strategic risk, and the firm would be able to raise the total

investment XN by offering a net return under success equal to θ/F (XN). The

firm’s costs in this case would be minimized and equal to XNθ. The firm’s costs

are higher when raising capital from multiple agents because of the coordination

problem governing the agents’ interaction. The price of coordination is the addi-

tional cost above XNθ that the firm pays when dealing with N > 1 agents, given

by θF (XN)
∑N

i=1 xn∗i

(
1

F (Xi)
− 1

F (XN )

)
for Xi =

∑i
j=1 xn∗j . Proposition 3 implies

that the price of coordination is lower the more unequal the agents’ investments.
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Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to
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Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns

20

0 1 2 3

Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5

ADD GRAPH

Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5

ADD GRAPH

Sketch of proof (3)

Claim

For each i, k⇤
i = 0 and thus r⇤i =

✓

F (Xi)

� If ki < 0, � ki by small � > 0 and � ri by ��i for �i ⌘
1 � F (Xi)

F (Xi)

� Incentives are preserved

� Firm’s payo� V changes by �
(F (XN ) � F (Xi))

F (Xi)
� 0

Intuition: firm conditions on all investing, ni on only nj , j  i

• Hence, firm values ri relative to ki more than ni

Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5

ADD GRAPH

Example

If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 0.4. If reverse order in permutation, cost is 0.5

0 1 2 3

Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5

ADD GRAPH

Example

Suppose F uniform on [0, 3], ✓ = 10%, integer capital units

• Pay 30% on first unit, 15% on second, 10% on third

• If N = 2 with (x1, x2) = (1, 2), pay 15% to agent 2, 10% to agent 1

• Firm’s cost is 4. If reverse order in permutation, cost is 5

ADD GRAPH

Sketch of proof (3)

Claim

For each i, k⇤
i = 0 and thus r⇤i =

✓

F (Xi)

� If ki < 0, � ki by small � > 0 and � ri by ��i for �i ⌘
1 � F (Xi)

F (Xi)

� Incentives are preserved

� Firm’s payo� V changes by �
(F (XN ) � F (Xi))

F (Xi)
� 0

Intuition: firm conditions on all investing, ni on only nj , j  i

• Hence, firm values ri relative to ki more than ni

Xi

0

0.1

1 1.4 1.8 2.2 2.6 3

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we
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the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns

20

0

0.1

1 1.4 1.8 2.2 2.6 3

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓

N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

x2 � x1

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

18

Figure 2 shows that if we now were to transfer � 2 (0, 1] units of capital from agent 1

to agent 2, we would lower the firm’s costs further. This is the essence of the result in

Proposition 3.

Figure 3 shows how the price of coordination defined in (8) changes as we modify

the distribution of capital. The figure depicts this price when dealing with N = 2

agents with capital x1 � � and x2 + �. We take x1 = 1, x2 and vary � from 0 to

1. When � = 1, the firm deals with one single agent with capital x = 3, so its costs

are equal to 3(10%) = 0.3. The price of coordination for any � 2 [0, 1) is equal to

✓(x2 + �)
⇣

1
F (x2+�)

� 1
⌘
. Given F uniform over [0, 3] and ✓ = 10%, this simplifies

to 10%(1 � �), so the price of coordination decreases linearly in this example as we

transfer capital from the small investor 1 to the large investor 2.

✓

N=2X

i=1

xn⇤
i

✓
1

F (X⇤
i )

� 1

F (XN)

◆
.

�
xn⇤

1
� xn⇤

2

�

5 Extensions

5.1 Firm’s initial capital

5.2 Proportional surplus

5.3 Credibility of payments

5.4 Social planner

6 Concluding Remarks

A Proofs

Throughout the Appendix, we abbreviate Nash equilibrium by NE.

A.1 Proof of Lemma 1

(=)) We begin by proving that (C1)-(C2) imply a permutation as described in the

lemma. Suppose that (C1)-(C2) hold under a given scheme. Note that by (C2), there

18

Figure 3: Price of coordination for N = 2 agents with aggregate capital X2 = 30, F uniform
over [0, 30], and ✓ = 10%, as

�
xn⇤

1
� xn⇤

2

�
increases from 10 to 30.

H of capital in S, and let bS be the set of N agents induced by bH. The set of viable

projects in bS is larger than that in S.

0 10 20 30

Our model therefore predicts that innovation will be higher in more unequal soci-

eties. A more unequal distribution of wealth fosters entrepreneurship by increasing the

profitability, and thus viability, of new projects. There is in fact empirical evidence

that wealth inequality is positively correlated with entrepreneurship (Naudé, 2010), and

the literature has pointed to credit constraints and di↵erential savings rates as possible

explanations. Our model reveals a di↵erent mechanism, which operates directly via an

entrepreneur’s costs of raising capital to fund new projects. Of course, while the result

suggests that wealth inequality could have positive e↵ects on social welfare by increasing

innovation, there are other important negative welfare implications of inequality that

our model does not reflect.

Our last result concerns the relationship between the distribution of the agents’ initial

capital and the distribution of their returns and final capital. Our analysis in Section 3.2

showed that given a fixed set S of N > 1 agents, an optimal scheme pays higher returns
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Figure 2: Return curve for F uniform over [0, 30] and ✓ = 10%. If there are N = 3 agents
with capital amounts x1 = x2 = x3 = 10, the firm’s costs under an optimal scheme are equal
to 10(30%+15%+10%). If there are N = 2 agents with capital amounts x1 = 10 and x2 = 20,
the firm’s costs under an optimal scheme are equal to 20(15%) + 10(10%).

XN by o↵ering a net return under success equal to ✓/F (XN). The firm’s costs in this

case would be minimized and equal to XN✓. The firm’s costs are larger when raising

capital from multiple agents because of the coordination problem governing the agents’

interaction. The price of coordination is the additional cost above XN✓ that the firm

pays when dealing with N > 1 agents, given by

✓F (XN)
NX

i=1

xn⇤
i

✓
1

F (Xi)
� 1

F (XN)

◆

for Xi =
Pi

j=1 xn⇤
j
. Proposition 3 implies that the price of coordination is lower the

more unequal is the distribution of agents’ investments. Figure 3 provides an illustration

using the example discussed above.

Proposition 3 has immediate implications on the feasibility of investment. Since a

more unequal distribution of capital among the agents increases the firm’s payo↵ from

any given investment, such a distribution also reduces the minimum surplus A that is

required from a project for investment to be profitable. As a consequence, we find that

a larger range of projects can be undertaken when the population of investors is more

heterogeneous.
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Figure 2: Price of coordination for F uniform over [0, 30], θ = 10%, and N = 2
agents with total investment X2 = 30, as we increase

(
xn∗1 − xn∗2

)
from 10 to 30.

Figure 2 provides an illustration using the example discussed above.

Returning to the firm’s problem, the result in Proposition 3 immediately

tells us what are the optimal investments (x∗n)n∈S that the firm induces from the

agents given their endowments of capital (xn)n∈S. For any given total investment

XN , we find that the firm raises as much capital as it can from the agents with

the largest endowments. This solution yields the most unequal investments

(xn)n∈S that are feasible given the agents’ endowments (xn)n∈S, and so it is

optimal by Proposition 3.

Corollary 2. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and agents’ en-

dowments satisfy
∑N

n=1 xn ≡ XN ≤ X. Consider a permutation π = (n1, . . . , nN)

that ranks the agents in decreasing endowment order, i.e. with i ≤ i′ if and only

if xni
≥ xni′ . For any given total investment XN ≤ XN , an optimal scheme

specifies investments (x∗ni
)i∈S satisfying

x∗ni
=





xni
if i < i∗,

x∗ni∗
if i = i∗,

0 otherwise,
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where i∗ ≡ max{i ∈ {0, . . . , N + 1} :
∑

i<i∗ xni
≤ XN} and x∗ni∗

≡ XN −∑
i<i∗ xni

. Moreover, letting X∗i ≡
∑i

j=1 x
∗
nj

and noting that the investments

x∗ni
are a function of XN , the optimal total investment X∗N then solves:

max
XN∈[0,XN ]

(
A− θ

N∑

i=1

x∗ni

F (X∗i )

)
F (XN) . (7)

Given the optimal individual investments as a function of XN , the second

part of Corollary 2 completes our characterization of the firm’s optimal scheme

by solving for the optimal total investment X∗N . The program in (7) follows

directly from our characterization in Proposition 1 and Proposition 2.

Corollary 2 has several important implications. First, since agents with larger

endowments of capital make larger investments in the firm’s project, our findings

in Section 2 imply that agents with larger endowments receive higher net returns

on their investments than those with smaller endowments. As such, our analysis

highlights a mechanism through which capital becomes dispersed. We find that

the firm’s optimal scheme exacerbates differences in agents’ initial capital. In

fact, the results point to “winner-takes-all dynamics,” whereby agents with large

capital endowments become relatively larger over time, even when differences in

initial endowments may be small. These effects resemble those that arise, albeit

for different reasons, in tournament theory and models of superstars (Lazear

and Rosen, 1981; Rosen, 1981).30

Second, we find that the firm’s optimal scheme may imply differences among

the agents not only in their net returns from investment but also in their access to

investment opportunities. Specifically, if the total capital available XN exceeds

the amount X∗N that the firm optimally raises, then the firm targets the largest

investors and excludes smaller investors from the project.

Finally, our results have implications on the feasibility of investment. Since a

more unequal distribution of capital among the agents increases the firm’s payoff

from any given total investment, such a distribution also reduces the minimum

30In a dynamic setting, further considerations may come into play, as the firm could po-
tentially offer returns as a function of an agent’s history of investments. See Rey and Tirole
(2007) for an insightful related study in the context of cooperatives. A dynamic analysis is
beyond the scope of this paper.
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surplus A that is required from a project for investment to be profitable. As a

consequence, we find that a larger range of investments can be undertaken when

the population of investors is more heterogeneous.

3.2 Distribution of returns

Our last main result concerns the relationship between the distribution of agents’

investments and the distribution of their net investment returns. Consider an

optimal return schedule guaranteeing investments (xn)n∈S. By Proposition 1

and Proposition 2, the schedule specifies a permutation π∗ = (n∗1, . . . , n
∗
N) rank-

ing the agents in decreasing size order and yields each agent ni an expected

net return F (XN)r∗i . Since r∗i ≥ r∗i′ for i ≤ i′, the range of net returns is

equal to the difference between the largest and smallest investors’ net returns,

F (XN) (r∗1 − r∗N). We find that if the distribution of investments becomes more

unequal, the range of net returns declines:

Proposition 4. Suppose 1/F (x) is convex for x ∈ [0, X], X > 0, and con-

sider investments (xn)n∈S with XN ≤ X. Let the investments (x̂n)n∈S majorize

(xn)n∈S. The range of net returns offered by the firm under (x̂n)n∈S is smaller

than that under (xn)n∈S.

Recall that any investments (x̂n)n∈S that majorize (xn)n∈S can be obtained

from the latter by performing a finite sequence of transfers from smaller to larger

investors. To prove the proposition, we show that any such transfer keeps the

smallest investor’s net return unchanged (and equal to θ) while reducing the

largest investor’s net return (strictly if the transfer increases this investor’s cap-

ital). These effects apply regardless of whether the identities of the smallest and

largest investors change, and they imply that the range of net returns becomes

smaller. In this sense, we find that the firm’s scheme is less discriminatory when

the agents are more heterogeneous.

The example from the Introduction offers an illustration. For F uniform

over [0, 30] and θ = 10%, compare two agents who invest the capital amounts

(x1, x2) = (10, 20) against two agents investing (x̂1, x̂2) = (6, 24). Under an

optimal return schedule, agent 1 and agent 2 receive expected net returns of 10%
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and 15% respectively in the former case, whereas in the latter case these expected

net returns are 10% and 12.5%. The range of net returns is therefore smaller

under the more unequal distribution of capital: (12.5− 10)% < (15− 10)%.

Of course, the range of agents’ initial capital amounts is larger under the

more unequal distribution. In the example, this range is 20− 10 under (x1, x2)

and 24− 6 under (x̂1, x̂2). The net effect of heterogeneity on the range of final

capital is thus unclear, as final capital holdings depend on both the agents’

investments and their net returns. In the example, the range of final capital is

larger under (x̂1, x̂2): 24(1 + 12.5%)− 6(1 + 10%) > 20(1 + 15%)− 10(1 + 10%).

More generally, either direction is possible depending on parameters. That is,

perhaps surprisingly, we find that by reducing the range of net returns, a more

unequal distribution of initial capital can lead to a more equal distribution of

final capital.31

4 Firm’s Initial Capital

Our model has considered a firm which owns no initial capital, so any payments

it offers to the agents must be self-financed by its project. In this section, we

study how the firm’s problem changes when the firm has some capital of its

own. We show that our main qualitative results continue to hold, with larger

investors receiving higher net returns than smaller ones. What is new is that

the firm now uses its funds to insure part of the investment, and we are able to

provide a characterization of the level of insurance offered to different investors

depending on their size.

Suppose the firm has initial capital W > 0 and wishes to raise an additional

amount XN from the set S of N agents. Consider a scheme specifying invest-

ments (xn)n∈S and returns (rn, kn)n∈S, where without loss we take xn > 0 for

each n ∈ S. The firm’s budget constraint now requires that, for all profiles of

31For an example, take F (x) = x5 for x ∈ [0, 1], θ = 10%, and capital amounts (x1, x2) =
( 1
3 ,

2
3 ) and (x̂1, x̂2) = ( 1

4 ,
3
4 ). The range of final capital is 0.81 under (x1, x2) and 0.79 under

(x̂1, x̂2).
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agents’ choices Y = (y1, . . . , yN), the scheme satisfy

N∑

n=1

rnynxn ≤ W + A and
N∑

n=1

knynxn ≤ W. (BCW )

If W ≥ θXN , the problem is trivial: the firm can offer net returns (rn, kn) =

(θ, θ) to each agent n ∈ S and fund its project at the safe rate. As all the agents

are given full insurance, there is no coordination problem among them. In what

follows, we thus assume that the firm’s capital is limited, satisfying W < θXN .

The firm’s problem is the same as that in (P) but with the budget con-

straint given by (BCW ) above (and with the total investment in the project now

including the firm’s capital W in addition to the capital XN raised from the

agents). To solve this problem, observe first that Lemma 1 continues to hold in

this setting. Given investments (xn)n∈S, the firm’s return schedule must thus

specify a permutation π = (n1, . . . , nN) such that, for each i ∈ S, agent ni is

willing to invest when agents (n1, . . . , ni−1) invest, no matter the rest. The key

difference relative to the analysis of Section 2.1 is that the firm can now pay

positive returns under failure, and hence, in principle, offer returns satisfying

ki > ri to some agent ni ∈ S. Such an agent’s expected payoff from investing

with the firm would be decreasing in the other agents’ investments. That is,

unlike when W = 0, inducing strategic substitutabiliy is now feasible.

Nevertheless, we are able to show that an optimal return schedule for the

firm induces strategic complementarities among all the agents. Suppose by

contradiction that ki > ri for some agent ni ∈ S in any optimal schedule. Such

an agent’s participation requires ki > θ, and so by (BCW ) and W < θXN ,

there must exist j 6= i with kj < θ < rj. Furthermore, by analogous logic as

in Section 2.1, agent ni must be indifferent over investing with the firm when

all other agents invest, whereas agent nj must be indifferent conditioning on

only agents (n1, . . . , nj−1) investing. This means that agent ni conditions on

weakly more other agents investing, and hence on a weakly higher probability

of success, than agent nj. We thus consider a perturbation that reduces ki and

increases ri while at the same time increasing kj and reducing rj. We show that

this perturbation either contradicts the optimality of the original schedule or
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allows us to construct another optimal schedule which satisfies ri ≥ ki for all

i ∈ S.

Using the strategic complementaries, we obtain the following characteriza-

tion:

Proposition 5. Consider the firm’s problem with initial capital W > 0. Suppose

1/F (x) is convex for x ∈ [0, X], X > 0, and there exists an optimal return

schedule guaranteeing investments (xn)n∈S with W +XN ≤ X. Then an optimal

such schedule specifies a permutation π∗ = (n∗1, . . . , n
∗
N) satisfying

xn∗1 ≥ . . . ≥ xn∗N

and returns (r∗i , k
∗
i )i∈S satisfying

k∗i =
min{θxn∗i ,Wi}

xn∗i
and r∗i =

θ − k∗i (1− F (W +Xi))

F (W +Xi)
,

where Xi =
i∑

j=1

xn∗j , WN ≡ W, and Wi ≡ max{W −
N∑

j=i+1

k∗jxn∗j , 0} for i ∈
{1, . . . , N − 1}.

An optimal scheme for the firm includes full-insurance contracts, with returns

under success and failure equal to the safe rate θ. That is, we find that the firm

uses its initial capital W to fully insure some of the capital XN that it raises

from the agents. Since W is limited, only an amount of capital W/θ can be

insured. Once W is depleted, the firm faces the same problem that we solved

in the previous sections, and hence it guarantees investment using a schedule

analogous to that characterized in Proposition 1 and Proposition 2.

Proposition 5 shows that the smallest investors are the ones who receive in-

surance. The intuition is simple. The firm’s cost of fully insuring the portion

of capital W/θ is equal to W and thus independent of how this capital is dis-

tributed among the agents. In contrast, the firm’s cost of raising the additional

capital XN −W/θ does depend on its distribution: by Proposition 3, this cost is

minimized when XN −W/θ is raised from the largest investors. Consequently,

it follows that it is optimal for the firm to raise the fully insured portion W/θ
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from the smallest investors.

The characterization in Proposition 5 shows that our results in Section 2 and

Section 3 are robust to the firm owning initial capital.32 In addition, this charac-

terization offers predictions on the levels of risk afforded to investors of different

size. Interestingly, empirical studies find that large investors hold riskier portfo-

lios than small investors, and some of the explanations discussed in the literature

include capital market imperfections and investors’ risk aversion declining with

wealth (see Carroll, 2000).33 We contribute to this discussion from a different

perspective, that of optimal design. Proposition 5 indeed predicts a high-risk,

high-return investment for large investors and a low-risk, low-return investment

for small investors. Here, however, the distinction arises as an optimal solution

to the firm’s problem of raising capital in the presence of strategic risk.

5 Discussion

Below we discuss some extensions and applications of our model and results.

Social planner and policy implications. We have solved the problem of

a firm that seeks to maximize its profits while guaranteeing a unique outcome.

We point out here that our results also have implications for a social planner

who internalizes agents’ welfare.

Consider the problem of a planner who maximizes the probability of project

success, subject to budget and unique implementation constraints as those in

program (P). Because the budget constraint requires limiting the cost of raising

capital, the solution to this problem coincides with that of the firm when the

budget constraint is tight enough, namely when the surplus A from project

success is sufficiently small. Specifically, the planner may have to give higher

net returns to larger investors compared to smaller investors in order to be

able to finance the investment in the project. Furthermore, the planner may

32Note that the smallest investors who receive full insurance also receive a lower net return
on their investment compared to other investors, since θ ≤ F (W+XN )r∗i +(1−F (W+XN ))k∗i
for any i ∈ S.

33Capital market imperfections may cause entrepreneurs to finance their activities with their
own capital and to earn a high return on their investments.
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benefit from a more unequal distribution of capital among the agents, as such a

distribution allows to reduce costs and make the investment viable.

Of course, things change if we take different social welfare functions, and

in particular if we include a concern for inequality. Our analysis shows that

the need to address strategic risk gives rise to an important tradeoff between

equality and efficiency.

Policy responses aimed at limiting inequality should support small investors,

who we find will be at a disadvantage relative to larger investors. A direct

measure would be to prevent the use of differential returns based on investor

size, either by regulation or by design. For example, in the context of venture

capital, all participants of the same investment round receive the same price,

as the firm has only one valuation at any given point in time. Our model and

results show that constraining differential pricing can protect small investors

from getting worse terms than others, possibly at the expense of a lower revenue

for the firm or greater strategic uncertainty.

Intermediaries that bundle the capital of small private investors into a single

larger investment could also help limit inequality, provided that they do not

extract any additional surplus by charging high fees. Additionally, regulators

can generate instruments to facilitate coordination. For example, it may be

possible to promote platforms where small investors can make commitments to

invest that are legally binding but contingent on a minimum total investment.

Such instruments would reduce the strategic risk which, we have shown, drives

inequality.

Threshold distribution. Our analysis has focused on situations in which

the distribution F of the investment threshold satisfies the condition of 1/F (x)

being convex. As noted in Section 2.2, 1/F (x) cannot be globally concave, and

it is indeed globally convex for most commonly used distribution functions. Yet,

it is worth considering how our results would change if the condition on F is

not met.

Given capital amounts (xn)n∈S, suppose 1/F (x) is concave over the whole

relevant range, namely for x ∈ [min{xn|n ∈ S}, XN ]. Then our results in Propo-

sition 2 would be reversed: given optimal returns (r∗i , k
∗
i )i∈S as characterized in
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Proposition 1, we would find that an optimal permutation π∗ = (n∗1, . . . , n
∗
N)

ranks the agents in increasing as opposed to decreasing size order. The intu-

ition is the same as in Proposition 2 but also reversed: the firm benefits from

placing large investors in the permutation according to when the risk premium

drops most sharply with investment, and if 1/F (x) is concave, this occurs at the

end of the permutation, when Xi =
∑i

j=1 xnj
is largest. The implication is that

larger investors would now receive lower net returns than smaller investors, as

opposed to the case in which 1/F (x) is convex. The contrasting results that we

obtain in the two cases offer predictions that could be empirically tested.

Regarding the analysis in Section 3, we maintained the assumption of 1/F (x)

convex throughout that section for consistency with our results in Section 2.

However, our results on the distribution of capital in Section 3 are more gen-

eral. In fact, if 1/F (x) is concave over the whole relevant range, one can follow

the same proof strategy used for Proposition 3 to verify that the result sill ap-

plies, namely that the firm benefits from distributions of capital which are more

unequal.

General equilibrium. We have taken a standard mechanism design approach

by considering a single firm that makes take-it-or-leave-it offers to the agents.

We assumed that the agents have the same outside option and differ only in

their wealth, which is the focus of our study. From a theoretical perspective,

this monopolistic setting permits a clean analysis where differential returns are

not driven by considerations other than wealth. From an applied perspective,

while there are multiple entrepreneurs with whom an investor may choose to

contract in practice, these markets are far from competitive. Entrepreneurs do

not sell “identical goods,” and shifting from one enterprise to another is costly.

Indeed, investors spend substantial time and effort on understanding the nature

of the enterprise they may invest in (see, e.g., Fried and Hisrich, 1994), which

creates a holdup problem and grants entrepreneurs a certain degree of monopoly

power. This does not mean that investors’ only outside option is a risk-free asset,

but we believe modeling the outside market as one in which investors are price-

takers approximates reality better than a model in which they can costlessly

switch entrepreneurs.
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That said, it is still of interest to explore how our analysis translates to a

competitive market setting. With that goal, we study in the Online Appendix a

simple extension of our model in which two firms compete for the capital of two

heterogeneous investors. In this oligopolistic environment, the investors’ outside

options are not necessarily the same, as they are endogenously determined by

the firms’ equilibrium offers which can condition on investor size. Analogous

to our analysis of the one-firm problem, we study equilibria where the firms’

offers yield a unique outcome in the interaction between the investors (given an

assumption on behavior under indifference) and where, upon a firm’s deviation,

the investors play the equilibrium that is worst for the firm. We show that under

weak conditions, our main qualitative results continue to hold: in equilibrium,

larger investors receive higher expected returns than smaller investors, on a

per-dollar basis.

Proportional surplus. Our model has assumed that project success yields a

fixed surplus A > 0, and only the probability of success varies with the amount of

capital invested in the project. More generally, the surplus from project success

may also be a function of the investment. Consider a simple case in which

success yields a net surplus Rx if capital x is invested in the project, for some

R > θ. Given a scheme specifying investments (xn)n∈S and returns (rn, kn)n∈S,

the firm’s budget constraint then requires that, for all profiles Y = (y1, . . . , yN),

N∑

n=1

rnynxn ≤
N∑

n=1

Rynxn and
N∑

n=1

knynxn ≤ 0. (BCR)

Relative to the original budget constraint (BC), this constraint places further

restrictions on the firm’s scheme. In fact, note that given R, (BCR) implies (BC)

under a fixed surplus AR ≡ RXN , as both constraints require that the sum of

payments under success do not exceed this amount. But (BCR) adds restrictions,

by requiring that the payment to any agent under success be no larger than the

surplus generated by the project when only such an agent has invested. That

is, the firm’s budget constraint now requires maxn∈S rn ≤ R.

Despite this difference, we can show that our analysis continues to apply
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to this setting. Specifically, given R, consider the firm’s problem in (P) when

project success yields a fixed surplus equal to AR. As just explained, this is a re-

laxed problem relative to the firm’s proportional surplus problem that is subject

to (BCR). Hence, it follows that if the solution to (P) described in Proposition 1

and Proposition 2 satisfies (BCR)—namely, if this solution specifies r∗n∗1 ≤ R—

then it is also a solution to the firm’s proportional surplus problem. Moreover,

note that among all return schedules guaranteeing investments (xn)n∈S subject

to (BC), the solution to (P) minimizes the highest return that the firm has to

pay to any agent n ∈ S under success. Therefore, if the solution described in

Proposition 1 and Proposition 2 specifies r∗n∗1 > R, no schedule can guarantee

investments (xn)n∈S while satisfying (BCR).

Applications. We have formulated our problem in the context of a firm that

raises capital to fund a project. There are various examples that may fit this

description. As mentioned, our results resonate with evidence from private

equity investments. The project in our model could also concern the building of a

property to which agents contribute with purchase commitments, or fund-raising

for a charity as in Andreoni (1998). We next discuss some further applications

that relate to other literatures.

Exclusive contracts: A number of influential papers study how an incumbent firm

may coordinate buyers on signing exclusive dealing contracts (see Rasmusen,

Ramseyer and Wiley, 1991; Innes and Sexton, 1994; Segal and Whinston, 2000).

Our analysis can be applied to this question. Consider an incumbent monopolist

offering exclusive dealing contracts to buyers of different size, namely who differ

in the number of units that they demand.34 A potential entrant enters the mar-

ket only if the total demand that has contracted with the monopolist is below

a stochastic threshold, and the monopolist offers prices contingent on entry to

guarantee a given total demand. Our results suggest that under certain condi-

tions on the threshold distribution, the monopolist will offer lower unit prices

to larger buyers compared to smaller ones. Moreover, the more heterogeneous

34Note that due to compatibility and cost considerations, these demands are often indivisi-
ble.
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the buyer population, the higher the monopolist’s incentive to offer exclusive

dealing contracts to fight market entry.

Joint task: Consider a team incentive problem similar to that in Winter (2004)

but allowing for heterogeneity. A principal contracts with multiple agents who

can contribute towards a joint task. Agents differ in their ability, with more

skilled agents being able to make larger contributions than less skilled ones.

Suppose that the probability of completing the joint task is increasing in the

sum of agents’ contributions, and the principal offers rewards contingent on

task completion in order to guarantee a level of participation. Applying our

results to this setting suggests that optimal rewards will be convex: the principal

compensates agents with high ability more than proportionally relative to those

with lower ability.

Bank runs: A sizable literature studies bank runs and how to prevent them.

Consider a simple setting in which N agents have their funds deposited in a

bank and can withdraw them at any time. Suppose there is a random threshold

such that if the total withdrawal exceeds it, a bank run occurs and the bank

collapses. To exclude a run, the bank can offer depositors collateral (to be paid

in the case of a run) or a higher interest rate on deposits (absent a run). A

conjecture that can be derived from our analysis is that large depositors will be

treated more favorably than small ones even on a per-dollar basis, whether it is

collateral or an increased interest rate that is used to prevent the run.
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A Proofs

This Appendix provides proofs for the results in Section 2 and Section 3. Supple-

mentary proofs and results can be found in the Online Appendix. We abbreviate

Nash equilibrium by NE.

A.1 Proof of Lemma 1

As defined in Section 2.1, denote the aggregate capital of the first i agents in a

permutation π = (n1, . . . , nN) by Xi ≡
∑i

j=1 xnj
.

(=⇒) We begin by proving that (U) implies a permutation as described in

the lemma. Suppose (U) holds. Note that there must exist an agent n1 who is

willing to invest with the firm when no other agent does. If this was not true,

there would be a NE in which no agent invests, contradicting (U). Hence, we

have:

r1F (X1) + k1 (1− F (X1)) ≥ θ. (8)

Additionally, agent n1 must be willing to invest with the firm when all other

agents do. Otherwise, there would not be a NE in which all agents invest with

the firm, contradicting (U). Hence, we also have:

r1F (XN) + k1 (1− F (XN)) ≥ θ. (9)

For any set of agents SI ⊆ S, let X(SI) ≡
∑

i∈SI
xni

be the aggregate capi-

tal of the agents in SI . Since F (X1) ≤ F (X1 +X(SI)) ≤ F (XN) for SI ⊆
{2, . . . , N}, equations (8) and (9) imply

r1F (X1 +X(SI)) + k1 (1− F (X1 +X(SI))) ≥ θ

for all SI ⊆ {2, . . . , N}. Therefore, agent n1 is willing to invest with the firm no

matter what the other agents do.

We now proceed by induction: for any i ∈ {2, . . . , N − 1}, suppose that

there is an agent ni who is willing to invest with the firm if agents (n1, . . . , ni−1)

invest, regardless of what the other agents do. Then there must be an agent ni+1
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who is willing to invest with the firm if agents (n1, . . . , ni) invest and the other

agents do not. Otherwise, there would be a NE in which agents (n1, . . . , ni)

invest with the firm and agents (ni+1, . . . , nN) do not, contradicting (U). Thus,

we have

ri+1F (Xi+1) + ki+1 (1− F (Xi+1)) ≥ θ. (10)

Moreover, by (U), agent ni+1 must also be willing to invest with the firm when

all other agents do:

ri+1F (XN) + ki+1 (1− F (XN)) ≥ θ. (11)

Since F (Xi+1) ≤ F (Xi+1 +X(SI)) ≤ F (XN) for SI ⊆ {i+2, . . . , N}, equations

(10) and (11) imply

ri+1F (Xi+1 +X(SI)) + ki+1 (1− F (Xi+1 +X(SI))) ≥ θ

for all SI ⊆ {i + 2, . . . , N}. Therefore, agent ni+1 is willing to invest with the

firm if agents (n1, . . . , ni) invest with the firm, regardless of what the other

agents do.

(⇐=) We next prove that a permutation as described in the lemma implies

(U). First, note that since each agent ni ∈ S is willing to invest if (n1, . . . , ni−1)

invest no matter what the rest does, it must be that each agent ni is willing to

invest when all other agents invest. Hence, there exists a NE in which all agents

invest.

Next, to show uniqueness, suppose towards a contradiction that there exists

a NE in which some agents do not invest with the firm. Recall that all such

agents must strictly prefer not to invest. Call the set of non-investing agents

SNI . We claim that SNI must be empty. Clearly, n1 cannot be in SNI , as n1

is willing to invest with the firm no matter what the other agents do. So n1

must be in the set of agents who invest, call it SI . Now proceed by induction:

for any i ∈ {2, . . . , N − 1}, suppose agents (n1, . . . , ni) are in SI . Then by the

permutation stated in the lemma, agent ni+1 is willing to invest with the firm,

and thus she cannot be in SNI either. The claim follows.
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A.2 Proof of Proposition 1

We begin by proving the first part of the proposition. By Lemma 1, any op-

timal return schedule specifies some permutation π = (n1, . . . , nN) and returns

(ri, ki)i∈S which satisfy, for each i ∈ S and each j ∈ {i, . . . , N},

riF (Xj) + ki (1− F (Xj)) ≥ θ. (12)

As argued in the text, the firm’s budget constraint (BC) requires ki ≤ 0 for each

i ∈ S. Given this and θ > 0, equation (12) then requires ri > 0 for each i ∈ S.

It follows that ri > 0 ≥ ki for each i ∈ S, and thus the left-hand side of (12) is

increasing in F (Xj). Since F (Xj) is increasing in j, it follows that (12) holds

for each i ∈ S and each j ∈ {i, . . . , N} if and only if, for each i ∈ S,

riF (Xi) + ki (1− F (Xi)) ≥ θ. (13)

We show that optimality requires (13) to hold with equality for each i ∈ S.

Suppose by contradiction that there is an optimal return schedule under which

(13) holds as a strict inequality for some i′ ∈ S. Then consider a perturbation

in which we reduce ri′ by ε > 0 arbitrarily small while keeping all other returns

unchanged. Since (13) was a strict inequality for i′, this constraint continues

to be satisfied for all i ∈ S. It is also clear that the budget constraint (BC) is

relaxed by the perturbation. Moreover, note that the firm’s expected payoff is

(
A−

N∑

i=1

rixni

)
F (XN)−

N∑

i=1

kixni
(1− F (XN)) , (14)

which is decreasing in ri for any i ∈ S. Therefore, we obtain that the perturba-

tion increases the firm’s expected payoff while preserving the agents’ incentives

to participate and the firm’s budget constraint, and thus the original return

schedule cannot be optimal.

We next prove the second part of the proposition. By the claims above,

any optimal return schedule specifies some permutation π = (n1, . . . , nN) and
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returns (ri, ki)i∈S satisfying

riF (Xi) + ki (1− F (Xi)) = θ (15)

for each i ∈ S. We show that it is optimal to set ki = 0 for each i ∈ S,

which combined with (15) implies ri = θ/F (Xi) for each i ∈ S. Suppose by

contradiction that this is not the case, i.e. any optimal schedule has ki′ < 0 for

some i′ ∈ S. (Recall that by the firm’s budget constraint, ki ≤ 0 for all i ∈ S.)

Then consider the following perturbation: for any such i′, we increase ki′ by

ε > 0 arbitrarily small and reduce ri′ by εηi′ , where

ηi′ ≡
1− F (Xi′)

F (Xi′)
.

Since we had ki′ < 0, the perturbed schedule continues to satisfy the firm’s

budget constraint (BC). Moreover, by construction, the left-hand side of (15)

is unchanged by the perturbation, so the agents’ incentives to participate are

preserved. Finally, note that the perturbation changes the firm’s expected payoff

in (14) by

ε
(F (XN)− F (Xi′))

F (Xi′)
,

which is positive (and strictly positive if i′ ∈ {1, . . . , N − 1}). Therefore, the

perturbation increases the firm’s expected payoff while preserving the agent’s

incentives to participate and the budget constraint. Since we can perform this

perturbation whenever ki < 0 for some i ∈ S, this contradicts the assumption

that an optimal schedule with ki = 0 for each i ∈ S does not exist.

Finally, we prove that if an optimal return schedule given investments (xn)n∈S

exists, there exists an optimal schedule specifying some permutation π = (n1, . . . , nN)

and returns (r∗i , k
∗
i ) = (θ/F (Xi), 0) for each i ∈ S. As shown above, any opti-

mal schedule specifies some permutation π = (n1, . . . , nN) and returns (ri, ki)i∈S
such that (15) holds for each i ∈ S. It is clear that for each agent ni, the return

ri that satisfies this binding participation constraint is decreasing in ki. Thus,

given a permutation π, setting ki as high as possible for each i ∈ S, subject

to (BC), minimizes the firm’s costs under success,
∑N

i=1 rixni
. It follows that
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setting ki = 0 for each i ∈ S maximally relaxes the firm’s budget constraint. As

we have shown that setting (r∗i , k
∗
i ) = (θ/F (Xi), 0) for some permutation π is

optimal subject to the budget constraint, this proves the claim.

A.3 Proof of Proposition 2

Assume that 1/F (x) is convex for all x ∈ [0, XN ]. We proceed in two steps.

Step 1. Define

Ψ (a, b, c) ≡ 1

c

(
1

F (a+ b)
− 1

F (a+ b+ c)

)
− 1

b

(
1

F (a+ c)
− 1

F (a+ b+ c)

)
.

(16)

We show that for any a ≥ 0 and b > c > 0 satisfying a+ b+ c ≤ XN ,

Ψ (a, b, c) ≤ 0. (17)

To prove this claim, observe that

Ψ (a, b, c) =
1

c

∫ b+c

b

F ′ (a+ z)

(F (a+ z))2dz −
1

b

∫ b+c

c

F ′ (a+ z)

(F (a+ z))2dz.

Define ψ (z̃) = cz̃+b2−c2
b

. Note that ψ is linear with ψ (c) = b, ψ (b+ c) = b + c,

and ψ′(z̃) = c
b
. Hence, a change of variables yields:

Ψ (a, b, c) =
1

b

∫ b+c

c

(
F ′ (a+ ψ(z̃))

(F (a+ ψ(z̃)))2 −
F ′ (a+ z̃)

(F (a+ z̃))2

)
dz̃. (18)

Note that given b > c, ψ (z̃) ≥ z̃ for all z̃ in the integration region. Given a ≥ 0

and a + b + c ≤ XN , the assumption that 1/F (x) is convex for all x ∈ [0, XN ]

then implies that the integrand in (18) is (weakly) negative. The claim follows.

Step 2. By Step 1, (17) holds for any a ≥ 0 and b > c > 0 satisfying a+b+c ≤
XN . Using (16), this inequality can be rewritten as

b

F (a+ b)
+

c

F (a+ b+ c)
≤ c

F (a+ c)
+

b

F (a+ b+ c)
. (19)
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We now show that there is an optimal permutation π∗ = (n∗1, . . . , n
∗
N) satis-

fying

xn∗1 ≥ . . . ≥ xn∗N . (20)

Suppose that some permutation π = (n1, . . . , nN) is optimal. If π satisfies (20),

we are done. Suppose instead that (20) is not satisfied. Take the lowest index

j < N for which xnj
< xnj+1

. We perform a perturbation in which we swap

agents nj and nj+1. Note that this swap has no effect on Xi for any i < j or

i > j+ 1. Hence, the perturbation only affects the terms j and j+ 1 of the sum

in the firm’s costs in (5). Under the original permutation, these terms sum to:

xnj

F
(
Xj−1 + xnj

) +
xnj+1

F
(
Xj−1 + xnj

+ xnj+1

) . (21)

The perturbation changes the sum of these terms to:

xnj+1

F
(
Xj−1 + xnj+1

) +
xnj

F
(
Xj−1 + xnj

+ xnj+1

) (22)

Letting a = Xj−1, b = xnj+1
, and c = xnj

, it follows from (19) that the sum

in (22) is no larger than the sum in (21). Therefore, the perturbation (weakly)

reduces the firm’s costs and thus increases the firm’s expected payoff. Note that

we can proceed by performing this perturbation for the next pair of agents with

(higher) indices (i, i+ 1) such that xni
< xni+1

, repeating until the permutation

satisfies (20). Since each perturbation increases the firm’s expected payoff and

the original permutation was optimal, we obtain that a permutation satisfying

(20) is optimal.

A.4 Proof of Proposition 3

The capital amounts (x̂n)n∈S can be obtained from the original amounts (xn)n∈S

by performing a finite sequence of transfers from smaller to larger investors

(Hardy et al., 1934). Thus, it suffices to show that each such transfer makes

the firm better off. Without loss of generality, consider the first such transfer.

Let the permutation π = (n1, . . . , nN) be optimal under (xn)n∈S. Take any two

agents nj and n` where j < ` and, thus, xnj
≥ xn`

. For any ∆ ∈ (0, xn`
], let
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(x̂n)n∈S be the result of transferring ∆ units of capital from agent n` to agent

nj. We will show that the firm’s minimized costs under (x̂n)n∈S are lower than

its minimized costs under (xn)n∈S when keeping the permutation π unchanged.

Since the transfer does not change the probability of project success (as it does

not affect the total amount of capital invested in the project), it will follow

that the firm’s expected payoff under (x̂n)n∈S is higher than that under (xn)n∈S

when keeping the permutation π unchanged. Clearly, changing to a permutation

that is optimal under (x̂n)n∈S can only increase the firm’s payoff from these

investments further, so this is sufficient to prove the claim.

To show that the transfer from agent n` to agent nj reduces the firm’s costs

when keeping the permutation unchanged, note first that the costs from returns

paid to agents ni with ranks i < j or i > ` are unaffected. The change in the

firm’s minimized costs in (5), divided by the constant θ > 0, is thus equal to

∆

F (Xj + ∆)
− ∆

F (X`)
−

`−1∑

i=j

[
xni

F (Xi)
− xni

F (Xi + ∆)

]
. (23)

Replacing F (Xj + ∆) by F (Xj) and xni
by xni+1

, (23) is no larger than

∆

F (Xj)
− ∆

F (X`)
−

`−1∑

i=j

xni+1

[
1

F (Xi)
− 1

F (Xi + ∆)

]
.

This expression can be rewritten as

∆
`−1∑

i=j

xni+1
Λi,

where

Λi =
1

xni+1

[
1

F (Xi)
− 1

F
(
Xi + xni+1

)
]
− 1

∆

[
1

F (Xi)
− 1

F (Xi + ∆)

]

=
1

xni+1

∫ Xi+xni+1

Xi

F ′ (z)

(F (z))2dz −
1

∆

∫ Xi+∆

Xi

F ′ (z)

(F (z))2dz.

45



Define ψ (z̃) =
xni+1 z̃−Xi(xni+1−∆)

∆
. Note that ψ is linear with ψ (Xi) = Xi,

ψ (Xi + ∆) = Xi +xni+1
, and ψ′(z̃) =

xni+1

∆
. Hence, a change of variables yields:

Λi =
1

∆

∫ Xi+∆

Xi

(
F ′ (ψ(z̃))

(F (ψ(z̃)))2 −
F ′ (z̃)

(F (z̃))2

)
dz̃. (24)

Since ∆ ≤ xn`
and xn`

≤ xni+1
for all j ≤ i ≤ ` − 1, we have ∆ ≤ xni+1

for all

j ≤ i ≤ ` − 1. Thus, one can verify that ψ (z̃) ≥ z̃ for all z̃ in the integration

region and j ≤ i ≤ `−1. Given Xi ≥ 0 and Xi+xni+1
≤ XN for all j ≤ i ≤ `−1,

the assumption that 1/F (x) is convex for all x ∈ [0, XN ] then implies that the

integrand in (24) is (weakly) negative. It follows that Λi ≤ 0 for all j ≤ i ≤ `−1,

so the change in costs in (23) is no larger than a (weakly) negative number. The

claim follows.

A.5 Proof of Proposition 4

Let π = (n1, . . . , nN) and π̂ = (n̂1, . . . , n̂N) be optimal permutations under

(xn)n∈S and (x̂n)n∈S respectively, where we consider only agents with strictly

positive investments. The smallest investor’s expected net return is the same

under (xn)n∈S and (x̂n)n∈S, as it is equal to F (XN) θ
F (XN )

= θ regardless of how

XN is distributed among the agents. The largest investor’s expected net return

is equal to F (XN) θ
F (xn1 )

under (xn)n∈S and F (XN) θ
F (x̂n̂1

)
under (x̂n)n∈S. Recall

that the capital amounts (x̂n)n∈S can be obtained from (xn)n∈S by performing a

finite sequence of transfers from smaller to larger investors (Hardy et al., 1934).

It follows that x̂n̂1 ≥ xn1 , and since F is increasing, the largest investor’s net

return is weakly lower under (x̂n)n∈S compared to (xn)n∈S. The claim follows.
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