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Abstract 

This present study investigates the effect of membrane tension on the molecular-mediated 

adhesion between two soft elastic materials in a steady state, which simulates the specific adhesion 

between two cells with cyto-membrane tension taken into consideration. A coupled surface 

elasticity-bulk elasticity-stochastic model is developed to describe the adhesive contact scenario, 

which is represented by a Fredholm’s equation of the second kind. The numerical results show that 

the rupture behavior of the two elastic materials transmits from Griffith-like mode to Bell’s model 

when the adhesion size decreases. Unlike the classic case (Wang and Gao, 2010), the pull-off stress 

exhibits a non-monotonic dependence on the adhesion size ascribed to the presence of membrane 

tension. In addition, the interfacial stresses become evenly distributed attributed to membrane 

tension, which again verifies the conclusion that membrane tension facilitates adhesion optimization. 

 

1. Introduction 

It is well-known that surface adhesion plays a significant role in the contact mechanics of 

micro/nano scales. In this area, the JKR theory (Johnson et al., 1971) predicts well the adhesive 

contact behavior of large and compliant spheres, whereas the DMT (Derjaguin et al., 1975) theory 

is appropriate for small and stiff spheres. The transition between DMT and JKR models is realized 

by the Maugis-Dugdale model (Maugis, 1992), where the Dugdale cohesive zone model is utilized 

to characterize the interfacial stresses. Later on, Greenwood (1997) adopted the Lennard-Jones 

potential law to simulate the interaction forces, and also presented the JKR and DMT extremes, in 

terms of pull-off forces.  

   Contrary to the above studies where the adhesion is due to nonspecific interactions such as van 

der Waals forces, substantial attention has been paid to adhesive contacts mediated by specific 

molecular bonds (Evans, 1985a, b; Qian et al., 2008; Qian et al., 2009; Wang and Gao, 2010; Qian 

et al., 2013; Qian et al., 2017), namely known as receptor-ligand bonds (Alberts et al., 2002). It is 

known that molecular bonds are responsible for the interaction between cells and extracellular 

matrices and play a paramount role in many adhesion-mediated cellular processes, such as migration, 

spreading, differentiation, growth and healing, known as mechanotransduction, even though the 

molecular bonds were subsequently integrated into the context of standard peel test (Evans 1985 a, 

b; Dembo et al., 1988; Freund and Lin, 2004). For example, Evans (1985 a, b) developed a peeling 

model for membrane-membrane adhesion which is mediated by continuous specific molecular 

bonds, whereas the prototype of this model is presumably the contact between two cells with cyto-
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membrane tension. In the present study, membrane tension is considered to be responsible for the 

separation between two adherent membranes, which enables us to investigate how membrane 

tension affects specific adhesion.  

  Here we use on the conception of surface tension to simulate membrane-membrane tension1 in 

cell interactions. The surface tension stems from surface effect that atoms (or molecules) on the 

surface of materials behave differently from those within the bulk. The surface effect is related to 

the ratio of surface tension to the elastic modulus of the bulk material, which is considered as an 

intrinsic material length. To elucidate the surface effect, Gurtin and Murdoch (1975, 1998) 

developed a 3D theory based on continuum mechanics. The Gurtin-Murdoch (G-M) surface 

elasticity predicts well the results from experiments and atomic simulations (Miller and Shenoy, 

2000; Shenoy, 2002), in terms of some elementary deformation modes. In this regard, this theory 

prevails in the explanation of many size dependent phenomena at nanoscale (Altenbach et al., 2012; 

He et al., 2004; Huang, 2008; Lu et al., 2011). Following the G-M surface elastic theory, Hajii (1978) 

obtained the Green’s function of an elastic half-space with constant surface tension, based on which 

Hajii et al. (1979) improved the measurements of shear modulus and pleural membrane tension of 

the lung. Inspired by Hajii’s work, the present study aims to investigate the effect of cyto-membrane 

tension on the specific adhesion by means of the concept of surface effect, whose prototype is the 

molecular bonds-mediated adhesion between two cells with cyto-membrane tension taken into 

account. On the other hand, previous studies which successfully characterize the effect of surface 

tension on nonspecific adhesion (Hui et al., 20015; Zhu and Xu, 2018) would provide substantial 

support for the present study, in terms of computational methods.  

 

2. Theoretical background 

  The G-M surface elasticity theory assumes that the surface of a material is a thin membrane of 

negligible thickness which ideally adheres to the bulk. Reminiscent of the fact that ctyo-membrane 

thickness (7-8 nanometers) is infinitesimal compared to the size of cells (usually several microns), 

the G-M surface theory would be a plausible characterization for cytoplasm and cyto-membrane 

(with constant tension) system. In another word, the cytoplasm and cyto-membrane are modeled as 

an elastic half-space and a film of infinitesimal thickness respectively. The bulk material (cytoplasm) 

has the same equilibrium and constitutive equations as those of the classical elasticity theory.  

The equilibrium equations of the membrane are written as (Chen et al., 2006; Mogilevskaya et 

al., 2011) 

𝜎𝛼𝛽,𝛽
𝑠 = 𝜎𝑖𝑗𝑛𝑖𝜈𝑗

𝛼 − 𝑡𝛼 (1) 

𝜎𝛼𝛽,𝛽
𝑠 𝜅𝛼𝛽 = 𝜎𝑖𝑗𝑛𝑖𝑛𝑗 − 𝑡3 (2) 

where σs
αβ is the membrane stress tensor, σij is the bulk stress tensor, n(n1, n2, n3) is the unit normal 

vector to the membrane, να(να
1, ν

α
2, ν

α
3) is the unit tangential vector along the xα direction, t(t1, t2, 

t3) is the membrane traction, and καβ is the curvature tensor of the deformed membrane. For repeated 

Greek indices (1, 2) and Latin indices (1, 2, 3), Einstein's summation convention is adopted. For the 

membrane with constant tension, the membrane stress can be simply given as 

𝜎𝛼𝛽
𝑠 = 𝜏0𝛿𝛼𝛽 (3) 

In this sense, Hajii (1978) developed the Green’s function where the bulk material is regarded as an 

infinite elastic half-space: 

                                                             
1 The present study does not distinguish membrane tension from cyto-membrane tension deliberately. 
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    𝜎𝑧(𝑟, 0) =
𝑃

2𝜋𝑠
{

𝜋

2𝑠
[𝐻0 (

𝑟

𝑠
) − 𝑌0 (

𝑟

𝑠
)] −

1

𝑟
} (4) 

𝑢(𝑟, 0) = −
(1−2𝜈)𝑃

4𝜋𝐺
∫

𝐽1(𝑟𝑡)

1+𝑠𝑡
𝑑𝑡

∞

0
 (5) 

𝑤(𝑟, 0) =
𝑃

4𝛤
[ 𝐻0 (

𝑟

𝑠
) − 𝑌0 (

𝑟

𝑠
) ] (6) 

where s = τ0(1 – ν)/G is an intrinsic material length indexing the relative significance of surface 

tension. The shear modulus and Poisson’s ratio are denoted by G and ν respectively. Hn(•), Jn(•) and 

Yn(•) denote the Struve function, Bessel function of the first kind and Bessel function of the second 

kind, respectively, and n is the order. P is a concentrated normal force. 

 

3. The model 

To illustrate the scenario of the contact problem stated above, Fig. 1 depicts the axisymmetric 

contact problem of two elastic half-spaces connected by a cluster of ligand-receptor bonds which 

constitute an adhesion patch whose radius is a. The two half-spaces are covered with membrane of 

infinitesimal thickness with constant tension as mentioned above. 

 

E1, ν 1 

E2, ν 2 

2a 

r

z

O

h(x)

ξ ,ρ b

P

P

𝜏2
0 

𝜏1
0 

 

Fig. 1. Schematic illustration of molecular bonds-mediated adhesion between two elastic materials with membrane 

tension. 

 

Throughout this study, we only consider specific adhesion due to ligand-receptor linkages, and 

ignore secondary nonspecific interactions, e.g. van der Waals forces. The cylindrical coordinate (r, 

φ, z) is adopted as shown in Fig. 1, where the origin is located at the center of the adhesion patch of 

the lower substrate, so that the upper and lower surfaces are located at z = h(x) and z = 0 respectively, 

where h(x) denotes shape function. It is hypothesized that in the adhesion patch area, there are ρt 

pairs of ligand-receptor bonds per unit area, of which ρb bonds are closed.  

The surface displacement w1 and w2, corresponding to the lower and upper elastic half-spaces 

respectively, can be formulated in terms of the normal traction p(x) between the two surfaces as 

(Zhu and Xu 2018) 
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𝑤1(𝑟) = −
1

2𝜏1
0 ∫ 𝑝(𝑡)𝑡𝑑𝑡 ∫ [𝐻0 (

√𝑟2+𝑡2−2𝑟𝑡 cos 𝜃

𝑠1
) − 𝑌0(

√𝑟2+𝑡2−2𝑟𝑡 cos 𝜃

𝑠1
)]

𝜋

𝜃=0

𝑎

𝑡=0
𝑑𝜃 (7) 

𝑤2(𝑟) =
1

2𝜏2
0 ∫ 𝑝(𝑡)𝑡𝑑𝑡 ∫ [𝐻0 (

√𝑟2+𝑡2−2𝑟𝑡 cos 𝜃

𝑠2
) − 𝑌0(

√𝑟2+𝑡2−2𝑟𝑡 cos 𝜃

𝑠2
)]

𝜋

𝜃=0

𝑎

𝑡=0
𝑑𝜃 (8) 

where τ0
i (hereafter i = 1, 2) denotes the membrane tension of the two materials, and si = τ0

i (1 – 

νi)/Gi. The relative displacement w(r) between the two surfaces is given as  

𝑤(𝑟) = 𝑤1(𝑟) − 𝑤2(𝑟) (9) 

According to the geometrical relation, one has 

𝑒(𝑟) + 𝑤(𝑟) = ℎ(𝑟) (10) 

where e(r) denotes the elongation. Here we consider a simple shape h(r) = aκ[1 – (r/a)2]. For 

simplicity, the closed bonds are treated as Hookean springs with stiffness ξ, and thus one has 

𝑝(𝑟) = −ξ𝜌𝑏(𝑟)𝑤(𝑟) (11) 

  The reversible transitions between rebinding and dissociation of the ligand-receptor bonds are 

assumed to be governed by a chemical reaction (Orsello et al., 2001): 

[𝑅] + [𝐿] ⇔ [𝐵] (12) 

where [R], [L] and [B] represent the densities of the receptors, the ligands and the receptor-ligand 

bonds respectively. In this regard, the ligand-receptor bond density is ruled by a simple kinetic 

relationship (Wang et al., 2008): 

𝑑𝜌𝑏(𝑟,𝜏)

𝑑𝜏
= 𝛾[𝜌𝑡(𝑟, 𝜏) − 𝜌𝑏(𝑟, 𝜏)] − 𝑒𝜉𝑢 𝐹𝑏⁄ 𝜌𝑏(𝑟, 𝜏) (13) 

In the steady state (τ→∞), one has 

𝜌𝑏(𝑟) =
𝛾𝜌0

𝛾+𝑒𝑥𝑝 [
𝜉𝑤(𝑟)

𝐹𝑏
]
 (14) 

Inserting Eqs. (7), (8), (11) and (14) into Eq. (10) results in 

𝑒(𝑡) + ∑
1

2𝛾𝑖
∫ 𝐺 (

𝑟

𝑠𝑖
,

𝑡

𝑠𝑖
)

𝑎

𝑡=0
𝑡2

𝑖=1 ξ
𝛾𝜌0

𝛾+exp[
𝜉𝑒(𝑡)

𝐹𝑏
]
𝑒(𝑡)𝑑𝑡 = 𝑎𝜅[1 − (

𝑟

𝑎
)

2
] (15) 

Introducing the following dimensionless parameters: 

𝜌 =
𝜌𝑏

𝜌0
, 𝜏 =

𝑡

𝑎
, 𝜚 =

𝑟

𝑎
,  𝛼𝑖 =

𝜉𝑎𝜌0

𝐸𝑖
∗ , 𝛽𝑖 =

𝐸𝑖
∗

𝜌0𝐹𝑏
, 𝑠𝑖

′ =
𝑠𝑖

𝑎
, 𝑒′ =

𝜉

𝐹𝑏
𝑒, 𝑄 =  

𝑃

𝑎𝜌0𝐹𝑏
 (16) 

Eq. (15) is rewritten as 

𝑒′(𝜚) + ∑
𝛼𝑖

𝑠𝑖
′ ∫ 𝐺 (

𝜚

𝑠𝑖
′ ,

𝜏

𝑠𝑖
′)

1

𝜏=0
2
𝑖=1

𝛾𝑒’(𝜏)

𝛾+𝑒𝑥𝑝[𝑒’(𝜏)]
𝜏𝑑𝜏 = 𝛼1𝛽1𝜅(1 − 𝜚2) (17) 

It is noted that Eq. (17) is the Fredholm’s equation of the second kind, and Newton-Raphson 

iteration method is adopted to solve this equation.  

 

4. Results and discussions 

Eq. (17) denotes a coupled elastic-membrane tension-stochastic model, which enables us to 

investigate the validation of the concept of Griffith and Bell molecular adhesion in the presence of 

membrane tension. By assuming the two half-spaces have the same mechanical properties2 and 

after solving the Fredholm’s equation of the second kind given in Eq. (17), the relationship between 

the normalized pull-off stress and normalized cluster size under different normalized membrane 

tension values is illustrated in Fig. 2.  

 

                                                             
2 In this regard, one has α1 = α2 = α, β1 = β2 = β and s’1 = s’2 = s’ according to Eq. (16). 
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Fig.2. Dependence of normalized pull-off stress on adhesion size, under γ = 2, κ = 0 and β = 5. 

 

Following Bell (1978), when the bond density reaches the steady state without any external load, 

the strength of molecular adhesion (σBell) is given as 

𝜎𝐵𝑒𝑙𝑙 ∝
𝛾𝜌0

1+𝛾
𝜉𝑢𝑚𝑎𝑥 =

𝛾𝜌0

1+𝛾
𝜉

𝐹𝑏

𝜉
=

𝛾𝜌0𝐹𝑏

1+𝛾
 (18) 

In this sense, Eq. (18) can be rewritten as  

𝜎𝐵𝑒𝑙𝑙

𝜌0𝐹𝑏
= 𝐶𝐵

𝛾

1+𝛾
 (19) 

As shown in Fig. 2, for a single α-σoff/ρ0Fb curve, as the cluster size approaches zero, the 

normalized pull-off stresses converge to approximately 0.35, irrespective of the value of sξρ0/E*, 

which coincides with Eq. (19) because infinitesimal cluster size corresponds to zero external load. 

On the other hand, as the adhesion size increases largely enough, there exhibits a linear relation 

between the normalized pull-off stress and normalized adhesion size in the logarithmic coordinate, 

which resembles the classic situation, i.e. the Griffith concept where the normalized pull-off stress 

is inversely proportional to the square root of the normalized adhesion size (Wang and Gao, 2010). 

In general, Fig. 2 presents the transition of adhesion behavior between Griffith’s theory and Bell’s 

molecular adhesion theory, even if with the presence of membrane tension. 

For a certain value of s, as the adhesion size increases, the normalized pull-off stress rises from 

0.35 to the maximum value (approx. 0.46) and dramatically decays. Compared with the classic 

situation (c.f. the red curve in Fig. 2), there is a non-monotonic dependence of the normalized pull-

off stress on the normalized adhesion size when surface tension is taken into consideration. 

Moreover, the normalized adhesion size corresponding to maximum pull-off stress decreases as the 

surface tension weakens3, and thus one can predict that the pull-off stress decreases monotonically 

with α increasing when surface tension is zero (i.e. the red curve in Fig. 2). Alternatively speaking, 

the peak point in the σpulloff–α curves shifts in lower left direction as surface tension weakens, and 

thus one can predict that this vertex would land on the ordinate as surface tension is null, which is 

the red curve in Fig. 2.  

 

                                                             
3 In fact, the maximum pull-off stress decreases moderately as the surface tension decreases by a careful comparison. 
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Fig.3. Radial distribution of interfacial stress corresponding to γ = 5, κ = 0, β = 5 and α = 2 

 

Gao and Yao (2004) have indicated that the optimal adhesion between a flat-ended cylinder and 

a substrate could be realized by size reduction if the adhesion is non-specific, and this conclusion is 

also confirmed for adhesion via molecular bonds by Wang and Gao (2010). However, for the latter 

situation, when membrane tension is taken into account, it is observed that the normalized pull-off 

stress becomes saturated faster with membrane tension enhanced, as adhesion size decreases, which 

indicates that membrane tension tends to enhance the behavior of optimal adhesion. In addition, 

with other parameters fixed, a stronger membrane tension would result in a more uniform 

distribution of interfacial stresses, as shown in Fig. 3, which again demonstrates that membrane 

tension would facilitate optimal adhesion. Furthermore, the non-monotonic relation between pull-

off stress and adhesion size implies that the existence of membrane tension would incur a maximum 

pull-off stress, which would potentially facilitate optimal adhesion. 
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 (a) 

 

 

 
(b) 

Fig.4. The dependence of pull-off stress on normalized adhesion size α under different binding rates, where κ = 0, β 

= 5, for (a) s = 0 (classic case) and (b) s = E*/ξρ0,  

 

  Fig. 4 illustrates the dependence of normalized pull-off stress on the parameter α, where the 

dimensionless rebinding rate γ varies with other parameters fixed. It can be seen that, for a given α, 

higher rebinding rate results greater pull-off stress, which is consistent with one’s intuition. Contrary 

to the non-surface tension situation [Fig. 4(a)], the relationship between α and normalized pull-off 

stress is non-monotonic in the membrane tension case as illustrated in Fig. 4(b). The peak point in 

the curve keeps move in up-left direction as the rebinding rate γ strengthens. Therefore, it is revealed 

that the presence of membrane tension affects the impact of rebinding rate (γ) on the pull-off stress.  
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Fig.5. Radial distribution of interfacial stress under α = 1, γ = 2, κ = 0.1 and Q = 0.17. 

 

  Fig. 5 shows the effect of surface tension on the distribution of interfacial stress. With other 

parameters fixed, it is observed that increasing surface tension would cause a more even distribution 

of the stress. As the surface tension decreases, the interfacial traction distribution tends to be singular, 

with minimum and maximum stress being at the center and edge respectively. Noticing that the 

stress concentration index4 α = 10 is relatively high, Fig. 5 indicated that increasing surface tension 

can weaken the stress singularity on the edge. 

  Fig. 6 shows the distribution of normalized density of closed bonds under different membrane 

tensions. It can be seen that the density of closed bonds tends to be evenly distributed as membrane 

tension increases. For a small membrane tension, the density of closed bonds is evenly distributed 

in the center and drops dramatically at the edge. Reminding that the parameter ρ denotes the ratio 

of closed ligand-receptor bonds, which play a significant role in the transfer of mechanical stimuli 

in mechanotransduction of cells. In this sense, one can predicts that membrane tension can 

ultimately regulate mechanotransduction behavior of cells. 

 

                                                             
4 The adhesion size α can also be regarded as stress concentrated index, as defined by Qian et al. (2008) 
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Fig.6. Radial distribution of the normalized density of closed bonds, with α = 10, γ = 2, κ = 0 and β = 5.  

 

 

 

(a)  
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(b)  

 

  

 (c)  

Fig. 7. Radial distribution of interfacial stresses corresponding to different rebinding rates, under α = 0.1, β = 5 for 

(a) s = E*/ξρ0, (b) s = 10E*/ξρ0 and (c) s = 20E*/ξρ0 

 

Fig. 7 shows the distribution of interfacial stress for different contact profiles represented by κ = 

0, 0.1, 0.2, 0.5 and 1.0. It can be seen that the stress concentration at the adhesion edge increases as 

κ increases, which is opposite to the situation in non-surface tension. This indicates the membrane 

tension can inversely alter the dependence of stress concentration on the parameter κ. On the other 

hand, when the surface tension increases, the bandwidth of the interfacial stress corresponding to κ 

= 0, 0.1, 0.2, 0.5 and 1.0 decays, indicating that it becomes less insensitive to variations of the 

contact surface profile.  

 

5. Conclusions 

The present study combines continuum mechanics, surface elasticity theory and stochastic 

mechanics concepts to study how cyto-membrane tension affects specific adhesion mediated by 

molecular bonds, which is represented by a Fredholm’s equation of the second kind. The numeric 
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results indicate that the pull-off behavior exhibits a transition from Griffith like mode by crack 

propagation at the edge to the Bell type of even bond rupture, as the adhesion size keeps decreasing. 

However, the pull-off stress presents a non-monotonic dependence on the adhesion size due to the 

existence of cyto-membrane tension, implying that manipulation of cyto-membrane tension can 

contribute to the optimal adhesion. This conclusion is further verified by the fact that interfacial 

stresses are evenly distributed sue to surface tension. The results presented in this study would shed 

potential light on the effect of cyto-membrane tension on mechanotranduction of biological cells. 
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