

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/132228

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/132228
mailto:wrap@warwick.ac.uk

High Throughput Accelerator Interface Framework
for a Linear Time-Multiplexed FPGA Overlay

Xiangwei Li∗, Kizheppatt Vipin†, Douglas L. Maskell‡, Suhaib A. Fahmy§ and Abhishek Kumar Jain¶
∗School of Electrical and Information Engineering, The University of Sydney, Australia
†School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan

‡School of Computer Science and Engineering, Nanyang Technological University, Singapore
§School of Engineering, University of Warwick, United Kingdom

¶Xilinx Inc., United States

Abstract—Coarse-grained FPGA overlays improve design pro-
ductivity through software-like programmability and fast com-
pilation. However, the effectiveness of overlays as accelerators is
dependent on suitable interface and programming integration
into a typically processor-based computing system, an aspect
which has often been neglected in evaluations of overlays. We
explore the integration of a time-multiplexed FPGA overlay
over a server-class PCI Express interface. We show how this
integration can be optimised to maximise performance, and
evaluate the area overhead. We also propose a user-friendly
programming model for such an overlay accelerator system.

I. INTRODUCTION

The flexibility of FPGAs affords the significant benefits
of custom hardware architectures with a level of flexibility
not offered by ASICs. However, the compilation time from a
hardware description to a bitstream is significant as a result
of the fine-grained nature of the architecture and hence design
tool complexity. Partial reconfiguration allows different accel-
erators to be loaded dynamically at runtime but these must be
designed in advance to generate partial bitstreams, and runtime
compilation is not supported [1]. Hence, for more dynamic
workloads, overlays have been proposed as an alternative
approach. Coarse-grained overlays implemented on FPGAs
enable faster compilation and software-like programmability
because the coarse-grained to fine-grained mapping of the
overlay is performed during the architecture design phase,
optimising for the resources on the FPGA, and with a reg-
ular structure. Mapping an application to this overlay then
only requires description and compilation at a coarser grain,
significantly simplifying the design process.

FPGA overlays can be broadly categorised as spatially
configured (SC) or time-multiplexed (TM). In an SC overlay,
a functional unit (FU) is allocated to a single computational
operation in the accelerated kernel, with FUs connected by
a routing network which is essentially static during execu-
tion [2]. A TM overlay, on the other hand, shares both the
FUs and the interconnect across kernel operations, allowing
improved usage of the limited FPGA resource [3]. However,
TM overlays suffer from relatively large area overheads, due to
their underlying processor-like architecture [4], [5], [6], [7], [8]
or, for CGRA-like overlays, due to the routing resources and
instruction storage requirements [9], [10]. Reducing the area

overhead for CGRA-like overlays, specifically for the routing
network, and utilizing their fast context switching capabilities
is likely to result in improved usability with corresponding
improvements in design productivity. A streaming architecture
based on feed-forward pipelined datapaths, with a simple
linear interconnect, was shown to drastically reduce hardware
requirements [11]. However, performance analysis of such
overlays often ignores the system interfacing aspects that are
crucial to usability, as the interface between processor/memory
subsystems and the overlay must be able to provide high-
bandwidth, large scale data transmission. Existing FPGA
interfacing frameworks fall into one of two categories, AXI
bus-based solutions for FPGA SoC systems (like the Xilinx
Zynq) and PCle-based solutions for integration into a host PC.
Most AXI bus-based solutions are limited by the theoretical
maximum bandwidth (400 MB/s) of the AXI Direct Memory
Access (DMA) IP core [12], so PCIe-based interface frame-
works are a better choice for overlay accelerators because of
the much higher throughput.

In this paper, we implement overlay accelerator sys-
tems with PCIe connectivity, based on the Xillybus [13],
RIFFA [14] and DyRACT [15] frameworks. The architecture
of the TM overlay and its essential control are presented,
along with a full working implementation integrated into the
memory subsystem. The PCIe-based overlay accelerators are
evaluated for a range of benchmarks to determine the most
suitable interface in terms of its supporting configuration and
streaming through the overlay.

II. RELATED WORK

A. Coarse-grained TM Overlays

A number of overlays have been proposed which share
functional units among kernel operations in an attempt to
reduce overlay resource requirements [4], [10], [16]. This
time-multiplexing of the overlay means it can change its
behavior on a cycle-by-cycle basis while the compute kernel
is executing, better sharing the limited FPGA resources.

ADRES [17] integrates of a Very Long Instruction Word
(VLIW) processor tightly-coupled with a coarse-grained re-
configurable matrix, with some FUs and register files (RFs)
shared by both. Thus, there is no need to transfer data between

the processor and the reconfigurable array compared to tradi-
tional CGRAs. Taras [16] implemented ADRES on Intel and
Xilinx FPGAs using the CGRA-ME modeling framework [18].

QuickDough [10] consists of an array of nearest neighbor
interconnected processing elements (PEs), referred to as the
SCGRA overlay. The 250 MHz FU consists of an ALU,
multiport data memory (256×32 bits) and customizable depth
instruction ROM (Supporting 72-bit instructions) resulting in
significant BRAM utilization, which limits its scalability. Only
a 5×5 array can fit on the Xilinx Zynq, along with a significant
frequency degradation caused by the tight placement and
routing.

VectorBlox MXP [4] is a commercial soft vector processor
overlay targeting Altera or Xilinx FPGAs via the Avalon or
AXI interfaces. Data transfer is handled by a double-buffered
vector scratchpad and a dedicated DMA engine communicat-
ing with the scalar host processor via the AXI HP port. MXP
can operate at a maximum frequency of 110 MHz on a Xilinx
XC7Z020 device with 16 vector lanes [19]. It demonstrates up
to 1000× speedup over MicroBlaze. The programming model
is a combination of ANSI-C and VectorBlox C extensions.
However, it is difficult to implement applications which cannot
be easily vectorized.

B. PCIe-based Accelerator Interfacing Frameworks

Northwest Logic [20] and Xillybus [13] are two repre-
sentative commercial solutions which support PCIe interfaces
for different generations while providing portability across
different FPGA devices. Northwest Logic is a licensed closed
source while Xillybus is provided free of charge for research
and teaching purposes. Xillybus users have full access to the
source code, with good documentation provided. The latest
version of Xillybus (Revision XL) can achieve a maximum
data rate of ∼3.5 GB/s for Gen 2×8 PCIe interfaces.

RIFFA [14] is an open source framework for the integration
of FPGA accelerators supporting PCIe Gen 2 and Gen 3
standards. A scatter-gather DMA-based design bridges the
vendor-specific PCIe endpoint core and multiple communi-
cation channels for user defined IP cores. The latest RIFFA
release (V2.2.2) achieves a unidirectional maximum band-
width of 3.6 GB/s for the Gen2×8 configuration on the Xilinx
VC707 platform and 3.5 GB/s for the Gen3×4 configuration
on the Terasic DE5-Net. DyRACT [15] focuses on dynamic
partial reconfiguration over the PCIe Gen2×4 interface, along
with a configuration controller and clock management. Other
solutions include, EPEE [21] which is a general purpose
PCIe communication library, targeting a wide range of FPGA
devices, and JetStream [22] which is a PCIe Gen3 solution
supporting not only FPGA-to-Host communication but also
multi-FPGA interfacing.

Although overlays have shown potential in improving FPGA
design productivity, few of them have been developed as full
accelerator systems. Among the existing PCIe implementa-
tions, Xillybus, RIFFA and DyRACT appear to be the most
promising solutions due to their availability, ease-of-use and

Time-multiplexed
Functional Unit

FIFO channel

Time-multiplexed
Functional Unit

Programmable
ALURegister File

Instruction
Memory

DSP Block

Time-multiplexed
Functional Unit

FIFO channel

Fig. 1: A linear TM overlay.

portability. In subsequent sections we explore these solutions
and analyse overlay capabilities with these interfaces.

III. LINEAR TM OVERLAY

A. Architecture Description

A 32-bit TM overlay with a linear array of FUs is used to
develop the accelerator system, similar to the design in [11],
where each FU can be time multiplexed among operations
present in a single scheduling stage of a directed acyclic graph
(DAG). It consists of a quasi-streaming data interface made
up of two FIFO channels implemented using Block RAMs,
which transmit data through daisy-chained fully pipelined
TM FUs, as in Fig. 1. By eliminating the fully flexible
routing of CGRA-like overlays, this structure achieves a much
more area-efficient design, using fewer than 6% of the logic
and DSP resources on a Xilinx Zynq device. The initiation
interval (II) [23] can be significantly reduced by making minor
architectural enhancements, such as adding a rotating register
file and replicating the data stream. These changes result in a
peak throughput of 1.8 GOPS with a frequency of 335 MHz.
Adding write-back to the FU design reduces the overlay depth
requirement by allowing multiple nodes on the critical path
to be combined. This also eliminates the need to reconfigure
the overlay when the application kernel changes, making the
overlay suitable for more general purpose applications.

B. Overlay Control

A back-pressure control circuit is built around the input
FIFO channel to manage overlay functionality, as in Fig. 2.
There are three control signals, inst load, reg wren, and
data wren, which indicate the instruction load, overlay setup
and data write periods, respectively. Initially, FU instructions
are read from the memory and streamed through the daisy-
chained FUs (when inst load is asserted). During the instruc-
tion load period both the write enable port of the FIFO and the
valid signal (valid out) for the data output are disabled. After
the instruction load, when the reg wren signal is asserted, two
integers are written to the back-pressure control circuit. The
first is the number of data words input to the first FU for a
specific compute kernel, while the other is the II minus one
(II−1) and determines the interval between data loads.

Input FIFO Channel

empty

counter

rd_en

data_in

data_out valid_out

inst_loaddata_wren

instruction

full

reg_wren reg_in

wr_en

Fig. 2: Back-pressure control circuit.

Memory	Subsystem

FPGA

Linear	TMFUs	Array

Input	
FIFO

Output	
FIFO

Linear	TMFUs	Array

Linear	TMFUs	Array

Linear	TMFUs	Array

[31:0]

[63:32]

[95:64]

[127:96]

[31:0]

[63:32]

[95:64]

[127:96]

DMA	Engine

Overlay	Subsystem

PC
Ie

x86-64
CPU

PC

DDR
SDRAM

DIMM

Fig. 3: The proposed overlay accelerator system.

In Fig. 2, the left dashed box is the control for the write
enable port of the FIFO, while the right dashed box contains
the logic to control the FIFO read enable port. Data is written
into the FIFO when wr en is high. The FIFO read enable
signal (rd en) is generated using a counter which starts from
0 when the empty signal goes low (indicating that FIFO data
is available). The counter counts up until II−1, at which point
it rolls over back to zero. This repeats until the amount of data
matches the number written to the back-pressure controller.

IV. OVERLAY ACCELERATOR FRAMEWORK

The linear TM overlay is area efficient, with fast con-
text switching and high throughput [11]. However, a high-
bandwidth PCIe interface between the processor/memory sub-
system and the overlay is required to fully demonstrate the
FPGA accelerator, as shown in Fig. 3. Register access is also
required so that the user can control the overlay system, i.e.
perform instruction load, overlay setup, and data write. To
make full use of PCIe’s 128-bit data bandwidth we replicate
four 32-bit linear TM overlays, which can then run four kernel
instances at runtime, reducing the II to a quarter that of a
single overlay. Data transfers between the internal memory
subsystem and the DDR SDRAM are under DMA control.

TABLE I: Example code.

fpga_reg_wr(0x30,0x0); //Tag of FU0
fpga_reg_wr(0x34,0x3033D080); //Instruction 0

fpga_reg_wr(0x30,0x1); //Tag of FU1
fpga_reg_wr(0x34,0x8852000); //Instruction 1

fpga_reg_wr(0x38,5); //No. of input data
fpga_reg_wr(0x38,5); //(II-1)

dyract_send_data((unsigned char *)mydata, sendSize*sizeof(
int)); //Send data

dyract_recv_data((unsigned char *) recvdata, recvSize*
sizeof(4)); //Receive data

A. System Integration

FIFO connections controlled by the back-pressure circuit
are used between the TM overlay and PCIe interface. Taking
DyRACT as an example, the original version was modified
to support the proposed overlay architecture. DyRACT orig-
inally used high-speed PCIe communication between a host
computer and user logic on FPGA to provide support for
partial reconfiguration (PR). It also provided multiple AXI4-
stream backend interfaces for seamless integration with vendor
supplied IP cores. As we do not need PR, the reconfiguration
control logic is disabled, and a single AXI4-stream interface
is enabled, configurable through width-conversion FIFOs. A
new AXI-Lite interface is added to support the command-
data interface between the host and the overlay. The low-level
communication protocols and interrupts are managed by the
driver and the user library provides APIs for integration with
application programs.

B. Programming Model

Xillybus and RIFFA provide RTL design along with driver
support and software code demos, but generally do not have
direct access to the FPGA RAMs. However, DyRACT allows
register access via the AXI-Lite interface. Thus, the user can
send the instructions and streaming data from the PC to the
FPGA at runtime via dedicated APIs, instead of reconfiguring
the overlay. In the modified DyRACT system, three registers
are provided for overlay control. One register (0x30) is written
with a 4-bit tag, which is followed by a write to register 0x34
to store an instruction into its corresponding FU. Register 0x38
is used to store the number of data words to be input to the
first FU for a specific compute kernel (determined based on
the instructions and the II). Next, user data is transferred to
the overlay, processed, and then sent back to the host PC.
An example code snippet (Table I) shows how to load the
instructions, set up the overlay and write the data to the FPGA.

V. EXPERIMENTAL EVALUATION

The three proposed PCIe-based overlay accelerators were
evaluated in terms of bandwidth and FPGA resource con-
sumption. A set of kernels (Table II) extracted from compute
intensive applications available from [24], [25] are used. These
were evaluated on a HP Z420 workstation (six 3.5GHz Intel
Xeon E5-1650 cores) running Ubuntu 14.04.5, with a Xilinx
VC707 board plugged into a motherboard PCIe Gen2 slot,

TABLE II: DFG characteristics of benchmark set.

No. Benchmark
Characteristics

I/O graph op graph graph
nodes edges nodes depth width

1. chebyshev 1/1 12 7 7 1
2. mibench 3/1 22 13 6 3
3. qspline 7/1 50 25 8 6
4. fft 6/4 24 10 3 4
5. kmeans 16/1 39 23 5 8
6. mm 16/1 31 15 4 8
7. spmv 16/2 30 14 4 8
8. stencil 15/2 30 14 5 6

clocked at the maximum frequency (250 MHz). The Xillybus
and RIFFA accelerators required that FU instructions are hard-
coded as they have no direct access to the FPGA RAMs, thus
requiring that the overlay is reconfigured when the application
kernel changes. In comparison, the DyRACT accelerator can
write to FPGA memory to modify the FU instructions (along
with the tags), the amount of input data and the value of II-1.

Fig. 4 shows the performance of the four 32-bit linear
TM overlays integrated with Xillybus, RIFFA and DyRACT.
The Xillybus and DyRACT accelerators use a block size of
1M words, while the RIFFA accelerator uses a block size of
128K words. Fig. 4(a) shows that the DyRACT accelerator
achieves an average throughput of 1892 MB/s, which is ≈45%
higher than the RIFFA accelerator (average throughput of 1300
MB/s) and 5.3× better than the Xillybus accelerator (average
throughput of 358 MB/s). These system ratios are roughly
maintained when the overlay throughput is examined in terms
of mega-operations per second (MOPS). All three accelerators
show only slight differences in the throughput, in MB/s, for
the various applications. However, there are large differences
when the throughput is presented in terms of overlay MOPS.
This is mainly related to the number of I/O nodes in the
application, which results in larger II values and thus reduced
throughput. Thus, the linear TM overlay accelerators are more
suitable to the benchmarks which have fewer I/O ports.

Table III shows the FPGA resource usage of the Xilly-
bus, RIFFA and DyRACT based systems, respectively. The
Xillybus based system consumes the fewest FFs (33% fewer
than the RIFFA based system), while the RIFFA based system
requires the least number of LUTs (20% fewer than the
DyRACT based system). The DyRACT based system is the
most area efficient in terms of BRAM consumption (96%
fewer than the RIFFA based system). While the logic and
DSP resources used are comparable among all these imple-
mentations, there is a big difference in the BRAM utilization
specifically for the RIFFA based system. This is due to the
half-duplex operating mode of the RIFFA interface, which
requires a large number of BRAMs to implement the two large
depth FWFT FIFOs. Developing a full-duplex RIFFA based
system would minimize the BRAM resource usage. Currently,
the DyRACT and Xillybus based systems are more efficient
in terms of area than the RIFFA based system.

1 2 3 4 5 6 7 8
0

1,000

2,000

3,000

M
B

/s

Xillybus RIFFA DyRACT

(a) Data processing throughput in MB/s

1 2 3 4 5 6 7 8
0

1,000

2,000

3,000

4,000

M
O

PS

(b) Throughput in MOPS

Fig. 4: Performance comparison for the benchmarks.

TABLE III: Area overhead of PCIe-based systems.

System Resource Usage
LUTs FFs BRAMs DSPs

Xillybus 16,027 12,488 14.5 32
RIFFA 13,657 18,581 289.5 32
DyRACT 17,029 16,302 10 32

Available 303,600 607,200 1,030 2,800

VI. CONCLUSIONS

In this paper, we have proposed high-performance overlay
accelerator systems based on a number of PCIe interfaces,
i.e. Xillybus, RIFFA and DyRACT. The DyRACT based
system has a 5.3× speed improvement when compared to
the Xillybus based system, and a 45% better throughput than
the RIFFA based system, achieving a throughput of 1892
MB/s on average. Currently, the DyRACT based system is
the most promising overlay accelerator, as it provides the
best data throughput with the least BRAM utilisation and
comparable LUT and FF consumption. Furthermore, it has
a simple programming model thus avoiding overlay recon-
figuration whenever a compute kernel changes. Xillybus and
DyRACT are full-duplex implementations, and implementing
a full-duplex RIFFA based system would not only reduce its
BRAM utilization but also potentially improve the throughput,
although this is left for future work.

ACKNOWLEDGMENT

This research was funded by the Ministry of Education
(MOE), Singapore under grant MOE2017-T2-1-002.

REFERENCES

[1] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration:
A survey of architectures, methods, and applications,” ACM Computing
Surveys, vol. 51, no. 4, pp. 72:1–72:39, 2018.

[2] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented FPGA
overlays using DSP blocks,” in Proceedings of the Design, Automation
and Test in Europe Conference (DATE), 2016, pp. 1628–1633.

[3] X. Li and D. L. Maskell, “Time-multiplexed FPGA overlay architectures:
A survey,” ACM Transactions on Design Automation of Electronic
Systems, vol. 24, no. 5, pp. 54:1–54:19, 2019.

[4] A. Severance and G. G. Lemieux, “Embedded supercomputing in FPGAs
with the VectorBlox MXP matrix processor,” in Proceedings of the
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2013.

[5] R. Rashid, J. G. Steffan, and V. Betz, “Comparing performance, produc-
tivity and scalability of the TILT overlay processor to OpenCL HLS,”
in Proceedings of the International Conference on Field Programmable
Technology (FPT), 2014, pp. 20–27.

[6] M. Al Kadi, B. Janssen, and M. Huebner, “FGPU: An SIMT-architecture
for FPGAs,” in Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA), 2016, pp. 254–263.

[7] J. Gray, “GRVI-Phalanx: A massively parallel RISC-V FPGA ac-
celerator,” in Proceedings of the International Symposium on Field
Programmable Custom Computing Machines (FCCM), 2016, pp. 17–
20.

[8] P. Duarte, P. Tomas, and G. Falcao, “SCRATCH: an end-to-end
application-aware soft-GPGPU architecture and trimming tool,” in Pro-
ceedings of the International Symposium on Microarchitecture, 2017,
pp. 165–177.

[9] K. Paul, C. Dash, and M. S. Moghaddam, “reMORPH: a runtime re-
configurable architecture,” in Proceedings of the Euromicro Conference
on Digital Systems Design (DSD), 2012, pp. 26–33.

[10] C. Liu, H.-C. Ng, and H. K.-H. So, “QuickDough: a rapid FPGA loop
accelerator design framework using soft CGRA overlay,” in Proceedings
of the International Conference on Field Programmable Technology
(FPT), 2015, pp. 56–63.

[11] X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “A time-multiplexed
FPGA overlay with linear interconnect,” in Proceedings of the Design,
Automation and Test in Europe Conference (DATE), 2018, pp. 1075–
1080.

[12] Xilinx Ltd. AXI DMA v7.1 LogiCORE IP Product Guide. [Online].
Available: www.xilinx.com

[13] Xillybus Ltd., “IP core product brief.” [Online]. Available: https:
//www.xillybus.com

[14] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA
2.1: A reusable integration framework for FPGA accelerators,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 8, no. 4,
p. 22, 2015.

[15] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled
accelerator and test platform,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL),
2014.

[16] I. Taras and J. H. Anderson, “Impact of FPGA architecture on area
and performance of CGRA overlays,” in Proceedings of the Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2019, pp. 87–95.

[17] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” in Proceedings of the Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2003, pp. 61–70.

[18] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi,
and J. Anderson, “CGRA-ME: a unified framework for CGRA modelling
and exploration,” in Proceedings of the IEEE International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2017, pp. 184–189.

[19] S. J. Jie and N. Kapre, “Comparing soft and hard vector processing in
FPGA-based embedded systems,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL),
2014.

[20] Northwest Logic Inc., “PCI Express solution overview.” [Online].
Available: https://nwlogic.com/products/pci-express-solution/

[21] J. Gong, T. Wang, J. Chen, H. Wu, F. Ye, S. Lu, and J. Cong,
“An efficient and flexible host-FPGA PCIe communication library,” in
Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), 2014.

[22] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy, “JetStream: An open-
source high-performance PCI express 3 streaming library for FPGA-to-
Host and FPGA-to-FPGA communication,” in Proceedings of the In-
ternational Conference on Field Programmable Logic and Applications
(FPL), 2016.

[23] M. Lam, “Software pipelining: An effective scheduling technique for
VLIW machines,” in ACM Sigplan Notices, vol. 23, no. 7, 1988, pp.
318–328.

[24] S. Gopalakrishnan, P. Kalla, M. B. Meredith, and F. Enescu, “Finding
linear building-blocks for RTL synthesis of polynomial datapaths with
fixed-size bit-vectors,” in Proceedings of the International Conference
on Computer Aided Design (ICCAD), 2007, pp. 143–148.

[25] C.-H. Hoy, V. Govindarajuz, T. Nowatzki, R. Nagaraju, Z. Marzecy,
P. Agarwal, C. Frericks, R. Cofell, and K. Sankaralingam, “Performance
evaluation of a DySER FPGA prototype system spanning the compiler,
microarchitecture, and hardware implementation,” in Proceedings of
the International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2015, pp. 203–214.

