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ABSTRACT 33 

Objectives  34 

 The corticotrophin-releasing factor (CRF)/urocortin system is expressed in the adipose 35 

tissue of mammals but its functional role in this tissue remains unknown. 36 

 37 

Methods 38 

 Pharmacological manipulation of CRF-Receptors, CRF1 and CRF2, activity was 39 

performed in 3T3L1 white pre-adipocytes and T37i brown pre-adipocytes during in vitro 40 

differentiation. The expression of genes of the CRF/Urocortin system and of markers of white 41 

and brown adipocytes was evaluated along with mitochondrial biogenesis and cellular oxygen 42 

consumption. Metabolic evaluation of corticosterone-deficient or supplemented Crhr null 43 

(Crhr-/-) mice and their wild-type controls was performed along with gene expression analysis 44 

carried out in white (WAT) and brown (BAT) adipose tissues.  45 

 46 

Results  47 

 Peptides of the CRF/Urocortin system and their cognate receptors were expressed in 48 

both pre-adipocyte cell lines. In vitro pharmacological studies showed an inhibition of the 49 

expression of the CRF2 pathway by the constitutive activity of the CRF1 pathway. 50 

Pharmacological activation of CRF2 and, to a lesser extent, inhibition of CRF1 signaling 51 

induced molecular and functional changes indicating transdifferentiation of white pre-52 

adipocytes and differentiation of brown pre-adipocytes. Crhr-/- mice showed increased 53 

expression of CRF2 and its agonist Urocortin 2 in adipocytes that was associated to brown 54 

conversion of WAT and activation of BAT. Crhr-/- mice were resistant to diet-induced obesity 55 

and glucose intolerance. Restoring physiological circulating corticosterone levels abrogated 56 

molecular changes in adipocytes and the favorable phenotype of Crhr-/- mice. 57 

 58 

Conclusions 59 

 Our findings suggest the importance of the CRF2 pathway in the control of adipocyte 60 

plasticity. Increased CRF2 activity in adipocytes induces browning of WAT, differentiation of 61 

BAT and is associated with a favorable metabolic phenotype in mice lacking CRF1. 62 

Circulating corticosterone represses CRF2 activity in adipocytes and may thus regulate 63 

adipocyte physiology through the modulation of the local CRF/Urocortin system. Targeting 64 

CRF-receptor signaling specifically in the adipose tissue may represent a novel approach to 65 

tackle obesity. 66 

Keywords: CRF, urocortin, white adipose tissue, brown adipose tissue, CRF1, CRF2, obesity, 67 
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adipocyte plasticity  68 

 69 

Introduction  70 

The corticotrophin-releasing factor (CRF)/urocortin system is a complex 71 

neuroendocrine system that includes four structurally related peptides [CRF, and urocortins -1, 72 

-2 and -3] and two seven-transmembrane domain receptors, CRF1 and CRF2, which mediate 73 

the physiological effects of these peptides (1). CRF is a preferential CRF1 ligand, while 74 

urocortin 1 has high affinity for both receptors and urocortin 2 and -3 are specific for CRF2. 75 

Apart from its pivotal role in orchestrating responses to stress, the CRF/urocortin system also 76 

regulates energy balance (1-5). Proposed effects include modulation of energy expenditure, 77 

fuel partitioning and metabolism through various mechanisms, including the regulation of the 78 

sympathetic nervous system (SNS) activity and of glucocorticoid secretion, as well as 79 

regulation of food intake (1-3; 5).  80 

The distinct anatomical distributions of CRF1 and CRF2 imply diverse physiological 81 

functions. Although the relative contribution of the two receptors in energy homeostasis 82 

remains debatable, emerging evidence suggests an independent and prominent role of the CRF2 83 

pathway in the CNS to regulate feeding, glucose metabolism and thermoregulation (1; 3; 5; 6). 84 

CRF2 pattern of expression suggests that this receptor may also participate in the regulation of 85 

energy balance in key peripheral tissues involved in energy metabolism and modulate fuel 86 

utilization by acting locally through paracrine mechanisms at the level of pancreatic β- and 87 

skeletal muscle cells (7-9).  88 

CRF, urocortins and CRF-R are expressed in the white adipose tissue of various 89 

species, including human subcutaneous and visceral white adipocytes (1; 10-13). The 90 

functional role of CRF-R in the adipose tissue remains unknown. Only one pharmacological 91 

study found that activation of the CRF2 reduces lipolysis in mature human subcutaneous white 92 
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adipocytes (14). Therefore, the purpose of the present study was to investigate the functional 93 

relevance of CRF-R pathways in the adipose tissue. 94 

 95 

MATERIALS AND METHODS 96 

Total RNA extraction and quantitative RT-PCR (qPCR) 97 

Samples (inguinal white adipose tissue, interscapular brown adipose tissue, 3T3-L1 and T37i 98 

cells) were homogenized with lysis buffer and total RNA was extracted using Qiagen 99 

RNeasyTM Lipid Tissue Mini Kit, according to the manufacturer’s instructions. Extracted total 100 

RNA was reverse-transcribed into cDNA by two-step reverse transcription PCR using 101 

SuperScriptTM II Reverse Transcriptase. QPCR was carried out using a Light CyclerTM system 102 

(Roche Molecular Biochemicals Germany). The qPCR primers are listed in Supplemental 103 

Table 1. The reaction was carried out in a 10 μl of reaction mixture containing 5 μl PCR 2 x 104 

Mastermix with 2 mM MgCl2, 0.5 μl Light Cycler DNA Master SYBER®Green I, 1 μl of each 105 

primer (2 μg/ μl), and 1 μl cDNA. The qPCR protocol consisted of a denaturation step at 95C 106 

for 15 sec, following by 40 cycles of amplification at 95C for 5 sec, 58C for 10 sec, 72C for 107 

15 sec, and finally by a melting curve analysis step at 95C for 10 sec, 56C for 15 sec, and 108 

99C for 10 sec. Quantitative amounts of gene of interest were standardized against the 109 

housekeeping genes β-actin and GAPDH. Preparations lacking RNA or reverse transcriptase 110 

were used as negative controls. RNA expression was tested in 4 independent experiments. 111 

mRNA relative level of expression was calculated using the comparative (2-∆∆CT) method.  112 

 113 

3T3-L1 and T37i cell cultures  114 
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3T3-L1 cells were differentiated in growth medium (DMEM/F12 medium containing 10% 115 

BCS, 100 U/ml penicillin and 100 mg/ml streptomycin) and 15 nM HEPES with 1 g/l glucose. 116 

Differentiation was induced by incubation with 10% FBS with 5 μg/ml insulin , 0.25 μM 117 

dexamethasone, and 0.5 mM IBMX for 2 days before return to growth medium. 3T3-L1 fully 118 

differentiated within 6-10 days. T37i cells were cultured in DMEM/F12 medium with 10% 119 

FBS, 2 mM glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin, and 15 nM HEPES 120 

with 1 g/l glucose. Differentiation was achieved by incubating sub-confluent undifferentiated 121 

T37i cells with 2nM triiodothyronine and 20 nM insulin for 8-12 days. In some experiments, 122 

3T3L1 preadipocytes were exposed to CRF (100 nM), urocortin 2 (100 nM), and/or the CRF1 123 

antagonist NBI 27914 (1 µM) for various time periods (2, 4, 6 or 8 days). At the end of the 124 

required period, cells were washed with ice-cold PBS and lysed in RNA extraction buffer. 125 

Extracted RNA was further processed by qPCR.  126 

Immunocytochemistry 127 

Adipose tissue samples were fixed for 16-24 hr in 4% paraformaldehyde (PFA) at 4C, 128 

paraffin embedded and cut at 7m using a microtome (Leica Microsystems, USA). Fixed 129 

tissues were washed with filter-sterilized PBS. Non-specific banding was blocked with 3% 130 

BSA in PBS-Triton X-100 (0.01%) for 1h.  131 

For cell fixation, round glass cover slips (25 mm) were treated with acetic acid for 30 min, 132 

then with 70% ethanol for 30 min, and acetone containing 200 l 3-(aminopropyl) triethoxy 133 

saline (APES). Prior to use, the plates were sterilized by UV radiation for 30 min. The cover 134 

slips were coated with 100 g/ml poly-D-lysine in PBS. After 10 min soaking, cover slips 135 

were washed with filter sterilized PBS. Confluent cells were trypsinized, and resuspended in 136 

15 ml of media. 100-150 l  of cells were left on a cover slip for 20 min, and 4 ml medium 137 

was added. When appropriate, media were removed from the wells, and cells were briefly 138 
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washed with PBS and fixed with 0.5 ml of 4% PFA in PBS for 30 min. After washing with 139 

PBS, cells were processed for immunostaining. 140 

After 3 washes with PBS, slides were incubated overnight at 4C with primary 141 

antibodies (1:50 and 1:100) for COXIV, (Invitrogen, Paisly, UK) or UCP1 (Abcam, 142 

Cambridge, UK). Then slides were washed with PBS and incubated with secondary antibodies 143 

(donkey anti-rabbit Alexa-Fluor®488) for 1h at RT. Sections were mounted with VectaShield® 144 

Hard SetTM mounting medium. Samples were examined under an oil immersion objective using 145 

Leica model DMRE laser scanning confocal microscope with TCS SP2 scan head. Between 30 146 

to 35 individual cells in 6 random fields of view were selected and analyzed. The scan speed 147 

was 400 Hz, and the format was 1024 x 1024 pixels. No specific fluorescence was observed in 148 

cells treated only with the secondary antibody. The images were manipulated with Leica and 149 

Image J (National Institute of Health, Bethesda, Maryland, USA) software.  150 

Cellular respiration assay 151 

3T3L1 preadipocytes were exposed to CRF (100 nM), Urocortin 2 (100 nM), isoproterenol (1 152 

µM) and NBI 27914 (1 µM). On days 4 and 8 of cell differentiation, measurements of the 153 

oxygen concentration were made over 1 to 2 min using the Seahorse XF24 instrument 154 

(Seahorse Bioscience) and the rates of oxygen consumption were determined. DMSO was used 155 

as vehicle throughout the Seahorse respiration assays.  Cells were equilibrated in the medium 156 

at 37C for 30 min, and then baseline metabolic rates were measured over the next 30 min and 157 

were reported in nM/min of the oxygen consumption rate. Results were normalized to total 158 

protein level.  159 

Animal procedures 160 
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All experiments involving animals were conducted in strict compliance with the European 161 

Union recommendations (2010/63/EU) and were approved by the French Ministry of 162 

Agriculture and Fisheries (animal experimentation authorization n° 3309004). 163 

Housing and Diets 164 

Crhr deficient mice (Crhr-/-) on a C57BL ⁄ 6Jx129Sv-Ter genetic background were generated 165 

and genotyped as previously described (15) and their WT (Crhr+/+) littermates used as 166 

controls. Experiments were performed in 7-8 months individually housed male mice under a 167 

12/12h light/dark cycle and controlled temperature (23°C). The regular chow diet contained 168 

9.5% Kcal as fat with an energy density of 2.9 Kcal/g (AO4, UAR). The HF diet contained 169 

45% Kcal as fat with an energy density of 4.73 Kcal/g (N° 12450B, Research Diets). Food 170 

intake and body weight were recorded and feed efficiency calculated as body gain weight 171 

(g)/total caloric intake (100/Kcal). Corticosterone (SIGMA-Aldrich) was supplemented at 172 

5µg/ml in drinking water while Crhr+/+ mice received the vehicle only (0.2% ethanol in 173 

drinking water). 174 

Body Composition  175 

Whole body composition was evaluated by dual energy X-ray absorptiometry (Piximus, 176 

General Electric).  177 

Locomotor activity  178 

Locomotor activity of Crhr-/- and Crhr+/+ littermates was evaluated using individual locomotor 179 

activity cages with two levels photocell beams allowing recording of both horizontal 180 

(locomotion) and vertical (rearing) behaviour (Imetronic). Mice were housed for 22h a day for 181 

3 days for habituation and then locomotor activity was recorded.  182 

Plasma measurements 183 
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Blood samples were collected by tail bleeding in heparinized capillary tubes. Blood samples 184 

for corticosterone measurement were obtained 1 h before the onset of the dark phase within 1 185 

min of removal of mice from their cage. Corticosterone, leptin and insulin were measured 186 

using immunoassays (ICN Pharmaceuticals and Linco). Triglycerides were measured using an 187 

enzymatic kit (PAP 150 kit, bioMerieux). Plasma catecholamines were measured by HPLC as 188 

previously described (16). Whole β-hydroxybutyrate was measured using the β-189 

hydroxybutyrate deshydrogenase method (17). For the glucose tolerance test (GTT), mice 190 

were tested in the morning after an overnight fast. Glucose (2 g/kg in saline) was administered 191 

ip and tail blood collected immediately before and 30, 60, 90 and 120 min after injection. 192 

Glucose was measured using a Lifescan One Touch glucometer (Johnson and Johnson). 193 

HOMA-IR was calculated using the formula [insulin (mU/L) x glucose (mg/dl)]/405. 194 

Statistics  195 

Data are presented as mean  SEM. Data were tested for homogeneity and comparison 196 

between groups was performed by Student’s unpaired t-test with Prism software (GraphPad). 197 

For multiple comparison tests, ANOVA followed by Dunnett test was used. For data with non-198 

normal distribution, the Kruskal-Wallis ANOVA followed by Bonferroni test was used. 199 

P<0.05 was considered significant. 200 

 201 

RESULTS  202 

 203 

Regulation of the adipocyte CRF/urocortin system in vitro.  204 

To determine the role of the CRF/urocortin system in adipocytes, we first investigated 205 

the expression of CRF1 and -R2 and the impact of their pharmacological manipulation in 206 

3T3L1 white pre-adipocytes or T37i brown pre-adipocytes (18; 19). CRF1 and CRF2 as well as 207 
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CRF, Urocortin 1 and Urocortin 2 mRNAs were detected in both cell lines (Figures 1A and 208 

2A). Treatment of 3T3L1 cells with CRF increased CRF1 mRNA expression only (Figure 1A). 209 

Differently, treatment with the specific CRF2 agonist Urocortin 2 during differentiation 210 

stimulated mRNA expression of CRF and of the CRF2 pathway components Urocortin 2 and 211 

CRF2 (Figure 1A). Inhibition of the endogenous CRF1 activity by the specific CRF1 antagonist 212 

NBI-27914 mimicked the effects of Urocortin 2, suggesting that activity of the CRF1 pathway 213 

spontaneously represses the CRF2 pathway. Roughly similar changes were also induced in the 214 

brown adipocyte precursors T37i cells (Figure 2A). 215 

 216 

CRF1 and CRF2 pathways differently regulate in vitro the transcriptional machinery 217 

promoting the brown adipocyte phenotype.  218 

During 3T3L1 cells differentiation, activation of the CRF2 pathway by Urocortin 2 219 

dramatically increased mRNA expression of PRDM16 and BMP7, two key factors inducing 220 

brown adipocyte phenotype and able to stimulate beige adipocyte differentiation (20-22) 221 

(Figure 1B). Furthermore, Urocortin 2 increased the mRNA expression of PGC1-α and of 222 

UCP1, two markers of brown or beige adipocyte activation (20; 21) (Figure 1B). Similar 223 

effects, albeit less potent, were induced by the β-receptor agonist isoproterenol, a strong 224 

activator of BAT thermogenesis that induces ectopic expression of UCP1 in WAT (23). 225 

 While simulating the expression of brown fat-promoting genes, Urocortin 2 inhibited 226 

the differentiation-dependent induction of the white adipocyte gene markers leptin, Wdnm1, 227 

resistin and chemerin (Figure 1B). Conversely, exposure of 3T3L1 cells to the preferential 228 

CRF1 agonist CRF during differentiation did not induce expression of brown fat-promoting 229 

genes, but enhanced by 4 to 20 fold the expression of the aforementioned white adipocyte gene 230 

markers (Figure 1B). Blockade of CRF1 by NBI-27914 mimicked, although less potently, the 231 
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effects of Urocortin 2 (Figure 1B). Similarly, Urocortin 2 induced the expression of molecular 232 

markers characteristic of brown adipocyte differentiation in T37i cells (Figure 2B). 233 

Activation of the CRF2 pathway and inhibition of the CRF1 pathway induces 234 

functional changes consistent with the browning of white preadipocytes 235 

To further investigate the opposing actions of CRF1 and CRF2 pathways on the white 236 

pre-adipocyte transcriptional machinery, we studied the functional consequences of 237 

pharmacological manipulations of CRF-Rs on mitochondrial biogenesis in 3T3L1 cells. 238 

Urocortin 2 and, to a lesser extent, NBI-27914 increased protein expression of COXIV, a 239 

marker of mitochondrial biogenesis in a time-dependent manner (Figure 1C). To determine 240 

whether these molecular changes were associated with changes in cellular metabolism, we 241 

measured oxygen consumption rate (OCR) in stimulated 3T3L1 cells. Treatment with Urocotin 242 

2 during differentiation enhanced OCR, whereas CRF had no effect (Figure 1D). NBI-27914 243 

mimicked to a lesser extent the effects of Urocortin 2 (Figure 1D). Whereas the combination of 244 

these two drugs had no additive effect over Urocortin 2-induced OCR (data not show). These 245 

results are therefore consistent with increased mitochondrial respiration confirming the 246 

transdifferentiation of white preadipocytes towards metabolically activated “beige” adipocytes 247 

(20; 21; 24; 25) as the result of the activation of the CRF2 pathway and, to a lesser extent, to 248 

the inhibition of the CRF1 pathway.  249 

These findings therefore identify divergent roles for CRF1 and -R2 pathways in pre-250 

adipocyte differentiation and pinpoint the importance of the local interplay between the CRF1 251 

and CRF2 pathways regulating adipocyte precursors fate in vitro. 252 

 253 

Increased CRF2 activity in Crhr-/- mice induces browning of WAT in vivo that is 254 

reversed by corticosterone. 255 
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To confirm the hypothesis that unimpeded CRF2 activity induces brown conversion of 256 

WAT in vivo, we performed complementary studies in Crhr-/-  and their Crhr+/+ littermates. 257 

Deletion of Crhr decreases ACTH and corticosterone secretion (15). We therefore also studied 258 

Crhr-/- mice supplemented with corticosterone in drinking water.  259 

As expected, plasma corticosterone at the time of the diurnal peak in Crhr-/- mice was 260 

decreased compared to that of Crhr+/+ mice  (3.9 ± 0.5 ng/ml vs. 23.8 ± 3.85 ng/ml 261 

respectively, p < 0.001) while it was restored to physiological levels in steroid-supplemented 262 

Crhr-/- mice (Crhr-/- Cort) (27.3 ± 5.6 ng/ml). Since Crhr deletion induces variable alterations 263 

in the expression of other components of the CRF/urocortin system within tissues (11; 26), we 264 

carried out gene expression analysis in the adipose tissue of Crhr-/- mice. Molecular changes in 265 

the inguinal WAT of Crhr-/- mice were similar to those induced by the pharmacological 266 

inhibition of the CRF1 pathway in 3T3L1 cells, including a 3 to 4 fold increase in CRF, 267 

Urocortin 2 and CRF2 mRNA expression (Figure 3A). Urocortin 2 and CRF2 protein 268 

expression was also increased (Figure 3A, right panels). Similar changes were observed in the 269 

BAT (Figure 4A). Interestingly, mRNA levels of CRF, Urocortin 2 and CRF2 in WAT and 270 

BAT were comparable between Crhr+/+ and Crhr-/- Cort mice, suggesting that the upregulation 271 

in urocortin 2 and CRF2 expression induced by the lack of CRF1 signaling in vivo is secondary 272 

to the reduced levels of circulating corticosterone.  273 

Similarly to our in vitro findings, genes involved in determining the beige phenotype 274 

were upregulated in the inguinal WAT of Crhr-/- mice, while the expression of WAT-specific 275 

genes was strongly decreased (Figure 3B). These changes were associated with a dramatic 276 

increase in the expression of UCP1 and COXIV proteins, confirming the browning of WAT 277 

(Figure 3C). Up-regulation of brown-adipocyte gene markers was also observed in the BAT of 278 

Crhr-/- mice (Figure 4B). Importantly, 3-adrenergic receptor expression in inguinal WAT and 279 

BAT (data not shown) and plasma levels of norepinephrine (Crhr+/+: 13.3 ± 1.5 μg/l vs. Crhr-/-: 280 
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14.9 ± 1.2 μg/l, p=N.S.) did not differ between genotypes. As already reported elsewhere (27), 281 

plasma epinephrine levels were lower in Crhr-/- than in Crhr+/+ mice (3.2 ±0.4 μg/l vs. 15.5 ± 282 

2.9 μg/l respectively; p<0.001). Corticosterone supplementation in Crhr-/- mice completely 283 

prevented the molecular changes suggestive of WAT browning (Figure 3, B and C) and 284 

activation of BAT (Figure 4B).  285 

 286 

Crhr-/- mice display a lean phenotype and resistance to high-fat (HF) diet that is 287 

reversed by physiological circulating levels of corticosterone. 288 

To determine the in vivo metabolic impact of the above-described changes, we further 289 

characterized Crhr-/- mice. Adult Crhr-/- mice maintained on regular chow displayed similar 290 

weight as compared to their Crhr+/+ littermates, but had a decrease in fat mass and an 291 

associated increase in lean mass (supplementary figure 1, A-D). The reduced adiposity could 292 

not be explained by differences in food intake or locomotor activity (supplementary figure 293 

figure 1, E and F). Crhr-/- mice displayed reduced fasting plasma insulin concentrations, 294 

although glucose tolerance was similar between genotypes (supplementary figure figure 1, G 295 

and H). Crhr-/- mice maintained on a HF diet for 50 days showed reduced body weight gain, 296 

adiposity and leptin levels compared to Crhr+/+ mice (Figure 5, A-D). Locomotor activity and 297 

caloric intake were similar between genotypes (Figure 5, E-F) while Crhr-/- mice had decreased 298 

feed efficiency (Figure 5G), suggesting an increase in energy dissipation. Accordingly, Crhr-/- 299 

mice had increased plasma hydroxybutyrate levels (Figure 6H), characteristic of increased fatty 300 

acid oxidation. Crhr-/- mice were also protected from diet-induced metabolic alterations and 301 

had significantly lower fasting HOMA index, lower plasma triglycerides and improved glucose 302 

tolerance as compared to Crhr+/+ mice (Figure 5, H-J). Conversely, the replacement of 303 

physiological levels of corticosterone abolished the protection against the deleterious effects of 304 

a HF diet (Figure 5, A-K). 305 
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DISCUSSION  306 

This study demonstrates that, in vitro, the CRF/urocortin system critically contributes to 307 

regulate the differentiation fate and function of preadipocytes cell lines and, more specifically, 308 

that increased activity of the CRF2 pathway, through local mechanisms, induces 309 

transdifferentiation of white pre-adipocytes to metabolically active beige adipocytes and 310 

promotes differentiation of BAT. These pharmacological results were corroborated in vivo 311 

using Crhr-/- mice in which CRF2 activity is unimpeded and that show molecular evidence of 312 

browning of WAT, activation of BAT and resistance to diet-induced obesity. Our study also 313 

identifies a previously unknown role of circulating corticosterone in hampering the browning 314 

of WAT and activation of BAT through the inhibition of the CRF2 pathway in adipocytes.  315 

In accordance with previously described expression of the CRF/urocortin system in the 316 

adipose tissue of humans and various animal species (1; 10-13), we demonstrate that white and 317 

brown preadipocytes cell lines express the mRNAs of CRF1 and -R2 and their ligands CRF, 318 

Urocortin-1 and Urocortin-2. The increased expression of Urocortin 2 and CRF2 mRNAs after 319 

Urocortin 2 treatment suggests that activation of the CRF2 pathway establishes a positive 320 

feedback loop potentially favoring further auto-activation. Conversely, the increased 321 

expression of the components of the CRF2 pathway observed after treatment with the CRF1 322 

antagonist NBI-27914 implies that the constitutive activity of the CRF1 pathway limits the 323 

expression and function of the CRF2 pathway. Although we did not measure the CRF/urocortin 324 

family peptides in the cell culture media, the local expression of the members of the CRF 325 

system on the one hand and the results of the in vitro pharmacological studies including use a 326 

receptor antagonist on the other suggests a paracrine regulation of the CRF/urocortin system 327 

within the adipocytes. 328 
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Our in vitro experiments demonstrate the ability of the CRF/urocortin system to 329 

regulate the transcriptional machinery governing the differentiation of preadipocyte cell lines. 330 

Divergent roles for CRF1 and -R2 pathways were identified. Activation of CRF2 signaling 331 

stimulated the transcriptional machinery characteristic of the differentiation and activation of 332 

brown adipocytes in both 3T3L1 and T37i cell lines, while inhibiting the induction of white 333 

adipocytes gene markers in white preadipocytes, presumably through the induction of key 334 

transcriptional factors such as BMP7 and PRDM16 (20; 21; 28). Inhibition of CRF1 mimicked, 335 

although to a lesser extent, the consequences of the activation of the CRF2 pathway. The 336 

transformation of white preadipocytes into activated “beige” adipocytes suggested by the 337 

increase in PGC-1α and UCP1 mRNAs and consistent with a transdifferentiation process (24; 338 

25; 29) was confirmed by the increased mitochondrial biogenesis and cellular respiration 339 

induced by CRF2 activation and, to a lesser degree, CRF1 inhibition. Altogether, these in vitro 340 

data suggest that the balance between the CRF1 and CRF2 intracellular signaling in pre-341 

adipocytes play an important role in determining, through paracrine mechanisms, cell 342 

commitment towards divergent differentiation. More specifically in white preadipocyte cell 343 

lines, the CRF2 pathway strongly stimulates the differentiation towards a brown adipocyte 344 

phenotype while activation of the CRF1 pathway by endogenous CRF prevents it, allowing the 345 

expected programmed differentiation towards a white adipocyte phenotype. Notably, several 346 

studies have stressed the importance of the balance between the activity of the CRF1 and CRF2 347 

pathways in the regulation of gastro-intestinal motility, behavioral responses to stressors and 348 

SNS activity (2; 5; 26; 30).  349 

In agreement with our in vitro results, Crhr-/- mice exhibited features suggesting an 350 

unrestrained CRF2 activity, including an increased expression of Urocortin 2 and CRF2 mRNA 351 

levels in inguinal WAT and interscapular BAT. In agreement with the in vitro results observed 352 

after pharmacologically-induced upregulation of CRF2 mRNA expression or direct activation 353 
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of the CRF2 pathway, these changes were associated with an increased expression of the 354 

transcriptional machinery characteristic of brown adipocytes in both WAT and BAT and 355 

decreased expression of the white adipocytes gene markers.  356 

The CRF1 pathway stimulates the activity of the SNS (1; 2; 31). Crhr-/- mice had similar 357 

levels of 3-adrenergic receptor expression in adipocytes and similar plasma levels of 358 

norepinephrine compared to Crhr+/+ mice. Thus, it is unlikely that the browning of WAT and 359 

activation of BAT observed in Crhr-/- mice results from a local or systemic increase in SNS 360 

activity. However, whether the changes observed in the WAT of Crhr-/- mice represents 361 

recruitment of beige adipocytes or transdifferentiation of white adipocytes deserves further 362 

studies.  363 

In accordance with a functional activation of brown and beige adipocytes through 364 

heightened CRF2 activity, Crhr-/- mice were obesity resistant and showed features typical of 365 

increased energy dissipation, overall suggesting an important role for the CRF2 pathway in the 366 

regulation of energy balance in vivo. Interestingly, peripheral chronic administration of a CRF2 367 

agonist in rats reduces white fat mass while inducing expression of typical muscle genes in the 368 

WAT (32). Elsewhere, transgenic expression of the CRF2 agonist Ucn3, or in vitro stimulation 369 

of the CRF2 pathway with Urocortin 2 activates energy dissipating substrate cycles in the 370 

muscle and up-regulates UCP2 and UCP3 mRNAs (9; 33). Taking into account that myocytes 371 

and brown adipocytes are derived from a common mesenchymal precursor (28; 34), we might 372 

speculate for a broader role of the CRF2 pathway in promoting mitochondrial thermogenesis in 373 

peripheral tissues, such as the adipose tissue and skeletal muscle. We therefore cannot exclude 374 

at present the involvement of additional mechanisms to the modification of adipocyte activity 375 

to account for the favorable metabolic phenotype of Crhr-/- mice including increased lipid 376 

oxidation in the liver (13). Since our in vitro studies involved pre-adipocyte cell lines and 377 

whole animal studies involved loss-of-function since birth, the effects of manipulation of the 378 
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CRF system after differentiation of adipocytes or during  adulthood remain to be determined. 379 

Complementary studies using chronic infusion of Ucn2 or selective and inducible knockdown 380 

of Crhr1 as well as inducible over expression of Crhr2 or Ucn2 in the adipose tissue will allow 381 

addressing these important mechanistic issues".  382 

Although the importance of glucocorticoids in the differentiation of white preadipocytes 383 

is well acknowledged (18; 19; 35), our experiments also identify a previously unknown role of 384 

corticosterone in white adipocyte biology and energy balance.   385 

Glucocorticoids influence the expression of components of the CRF/urocortin system in 386 

a tissue-selective manner (11; 36; 37). Indeed, corticosterone administration inhibits the 387 

overexpression of Urocortin 2 and CRF2 in the skin (11) and hypothalamus (36) of Crhr-/- and 388 

adrenalectomized mice. Accordingly, our data suggest a repression of CRF2 activity in white 389 

adipocytes by physiological levels of corticosterone, which allow the expected white adipocyte 390 

differentiation. Conversely, corticosterone deficiency in Crhr-/- mice results in unrestrained 391 

CRF2 activity that promotes the browning of WAT (Figure 6). Concordantly, in vivo reduction 392 

of active glucocorticoids specifically in the adipose tissue of 11β-hydroxysteroid 393 

dehydrogenase type 2 transgenic mice promotes the expression of brown adipocyte markers in 394 

the subcutaneous WAT, decreases the expression of white adipocytes gene markers and is 395 

associated with increased thermogenesis, leading to resistance to diet-induced obesity (38). 396 

Thus, corticosterone should be considered as one of the secreted molecules that is able to 397 

modulate the plasticity of adipose tissue and the induction of beige adipocytes (21). 398 

Complementary studies focusing on the expression of components of the CRF/Ucn system in 399 

the adipose tissue of adrenalectomized mice clamped with various doses of corticosterone and 400 

of mice treated with molecules targeting the 11-hydroxysteroid dehydrogenase in the adipose 401 

tissue are mandatory in order to further dissect the interactions between circulating 402 

corticosterone and adipocytes plasticity 403 
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Finally, it should be mentioned that recent studies have shown the presence of 404 

functional brown and beige adipocytes in adult humans (24; 39; 40). Stimulating the 405 

thermogenesis of adipose tissue represents a promising strategy to tackle obesity and type 2 406 

diabetes (20; 21; 41-43). In this perspective, our study suggests that the adipocyte CRF2 407 

pathway could be a specific target for the pharmacological treatment of metabolic disease. 408 
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REFERENCES 544 

Figure Legend 545 

Figure 1 546 

Modulation of CRF receptors activity during 3T3L1 differentiation induces brown 547 

adipocyte characteristics. (A-B) Activation of CRF2 by 100nM Ucn2 or inhibition of CRF1 548 

by 1M NBI-27914 or ß-adrenergic receptor activation with 1μM isoproterenol induced 549 

changes in mRNA expression of CRF receptors, cognate agonists and brown-adipocytes genes. 550 

*p<0.05 treatment vs. day 0 of differentiation without any treatment, n =4 independent 551 

experiments in triplicate (C-D) Activation of CRF2 with Urocortin 2 or inhibition of CRF1 with 552 

NBI-27914 stimulated mitochondrial biogenesis and cellular respiration as determined by 553 

Cytochrome c oxidase (COX) IV immunostaining (in green; blue: nuclear DAPI staining) and 554 

O2 consumption analysis. *p<0.01 treatment vs. day 0 of differentiation without any treatment, 555 

n =3 independent experiments in triplicate. Black boxes denote genes relevant to white 556 

adipogenesis.  557 

Figure 2 558 

Inhibition of CRF1 or activation of CRF2 in T37i pre-adipocytes promotes brown 559 

adipocyte characteristics. (A) Inhibition of CRF1 by NBI-27914 (1M) or activation of 560 

CRF2 by Urocortin 2 (100nM) induced changes in mRNA expression of CRF receptors and 561 

cognate agonists. (B) Treatment with Urocortin 2 or NBI-27914 induced transcription of key 562 

genes promoting T37i differentiation into brown adipocytes. *p<0.05 treatment vs. day 0 of 563 

differentiation without any treatment, n =4 independent experiments in triplicate.  564 

 565 

Figure 3 566 
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Crhr deletion induces brown-fat characteristics within the white adipose tissue (WAT). 567 

(A) Increased mRNA expression of CRF2 and related ligands as well as increased 568 

immunostaining of Urocortin 2 and CRF2 (in green; blue: nuclear DAPI staining) in the WAT 569 

of  Crhr-/- mice. (B) Changes in the mRNA expression of key genes involved in white or brown 570 

adipocyte differentiation in the WAT of Crhr-/- mice. Restoration of corticosterone levels in 571 

Crhr-/- mice reversed these changes. (C) COXIV and UCP1 protein expression (in green; blue: 572 

nuclear DAPI staining) in Crhr+/+, Crhr-/- and corticosterone-supplemented Crhr-/- mice. 573 

*p<0.05, **p<0.01, vs. Crhr+/+ or corticosterone supplementation. n =5 animals for each 574 

condition. 575 

Figure 4 576 

Lack of CRF1 alters transcriptional levels of key genes in brown adipose tissue. (A) 577 

Brown adipose tissue from Crhr-/- mice shows increased mRNA expression of CRF2 receptors 578 

and cognate agonists. (B) Increased mRNA expression of key genes involved in brown 579 

adipocyte differentiation in the BAT of Crhr-/- mice. Restoration of corticosterone levels in 580 

Crhr-/- mice reverses changes described in A and B. *p<0.05, **, p<0.01 vs. Crhr+/+or 581 

corticosterone-supplemented Crhr-/- mice; n =5 independent experiments in triplicate.  582 

Figure 5 583 

Deletion of crhr induces resistance to diet-induced obesity, an effect reversed by 584 

corticosterone supplementation. (A-L) Crhr+/+, Chrh-/- and Crhr-/- mice supplemented with 585 

corticosterone (Crhr-/- Cort) were fed with a HF diet for 50 days (n=5-6 animals per group). (A) 586 

Body weight gain (% above baseline weight on regular chow diet). & p <0.05, && p<0.01, Crhr -587 

/- vs. Crhr+/+ mice; ##p< 0.01; ###p< 0.001, Crhr-/- Cort vs. Crhr+/+ mice. (B) Fat mass evaluated 588 

by DEXA. (C) Weight of inguinal (PG), mesenteric (MES) and retroperitoneal (RET) fat pads. 589 

(D) Plasma leptin concentration, (E) locomotor activity, (F) cumulative food intake, (G) feed 590 
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efficiency, (H) plasma beta-hydroxybutyrate concentration, (I) fasting homeostatic model 591 

assessment (HOMA), (J) plasma triglycerides concentration, and (K) intraperitoneal glucose 592 

tolerance test (Area under curve analysis: *p<0.05). *p<0.05, **p <0.01, *** p <0.001 vs. 593 

Crhr+/+ and Crhr-/- Cort groups.  594 

 595 

Figure 6 596 

Proposed model illustrating the role of the CRF/urocortin system and of circulating 597 

corticosterone in white adipocytes differentiation. CRF1 and CRF2 intracellular signaling in 598 

white adipocytes determines cell commitment towards divergent differentiation through 599 

autocrine mechanisms. Activation of the CRF2 pathway by local Urocortin stimulates the 600 

differentiation of white adipocytes towards a "brown-like" phenotype, whereas activation of 601 

the CRF1 pathway by local CRF prevents it, thus allowing the expected differentiation 602 

towards a white adipocyte phenotype. CRF1 signaling in the central nervous system stimulates 603 

the activity of the hypothalamo-pituitary-adrenal (HPA) axis and results in corticosterone 604 

secretion. Physiological levels of circulating corticosterone dampen the activation of the CRF2 605 

pathway in adipose tissue and repress the browning of WAT through endocrine mechanisms.  606 

 607 

Supplementary Figure 1 608 

Adult male Crhr-/- mice fed a regular chow diet have a lean phenotype . (A) Body weight 609 

of Crhr+/+ (black circles) and Crhr-/- mice (white circles). (B) Fat mass and (D) lean mass 610 

measured by DEXA. (C) Weight of inguinal (PG), mesenteric (MES) and retroperitoneal 611 

(RET) fat pads. (E) Cumulative food intake. (F) 24-hours locomotor activity during dark and 612 

light phases. (G) Fasting plasma insulin levels and (H) plasma glucose changes in response to 613 
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an intraperitoneal glucose tolerance test. *p <0.05, **p <0.01 vs. CRFr1+/+ mice, n = 6 – 14 614 

animals per group.  615 

 616 

 617 
 618 
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