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Abstract

Drug resistance is becoming a major concern in both the western world and in de-

veloping countries. The over use of common anti-bacterial drugs has resulted in a

plethora of multi-drug resistant diseases and an ever reducing number of effective

treatments – and is now of major concern to the UK government. One of the major

reasons behind this is the difficulty in identifying bacterial infections from viral in-

fections, especially in primary care where patients have an expectation of receiving

medication. For most viral conditions, there is no effective treatment and the body

fights off the disease, thus prescribing anti-bacterial drugs simply results in the pro-

liferation of drugs within the community – increasing the rate of drug resistance.

Increasing drug resistance contributed to the rise of superbugs (drug resistant bac-

teria) which are expected to kill an about 10 million people a year worldwide by

the year 2050 and could result to an economic loss of £63 trillion. Increasing drug

resistance contributed to the rise of superbugs (drug resistant bacteria) which are

expected to kill an about 10 million people a year worldwide by the year 2050 and

could result to an economic loss of £63 trillion. Therefore, there is a strong medical

and economic need to develop tools that can diagnose bacterial diseases from viral

infections, focused towards primary care.

One means of achieving this is through the detection of gas-phase biomarkers

IX



of disease. It is well known that the metabolic activity of bacteria is significantly

different from its host. Many studies have shown that it is possible to detect a bacte-

rial infection, identify the strain and its current life-cycle stage simply by measuring

bacterial metabolic emissions. In addition, the human body’s response to a bacterial

infection is significantly different from a viral infection the human body’s response

to a bacterial infection is significantly different from a viral infection, allowing hu-

man stress markers to also be used for differentiating these conditions. Thus, there

is evidence that these bio-markers exist and could be detected.

However, a major limiting factor inhibiting the wide-spread deployment of this

concept is the unit cost of the analytical instrumentation required for gas analy-

sis. Currently, the main preferred methods are GCMS (gas chromatography/mass

spectrometry), TOF-MS (time of flight – MS) and SIFT-MS (selective ion flow tube

– MS). Though excellent at undertaking this role, the typical unit cost of these

instruments is in excess of £100k, making them out of reach of current GP bud-

gets. Therefore, what is required is a low-cost, portable instrument that can detect

bacterial infections from viral infections and be applicable to primary care.
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Chapter 1

Introduction - Smell in diagnostic

medicine

Before the advent of sophisticated diagnostic instruments physicians diagnosed dis-

eases based on their senses [1, 2]. It was not uncommon for physicians to touch,

taste or smell their patients’ wastes in an attempt to identify their ailments. The use

of smell in diagnosis grew traction because it was understood that certain diseases

resulted in the production of Volatile Organic Compound (VOC)s with characteris-

tic smells. Greek physician Hippocrates (460 -370 BC) poured human sputum over

hot coal to release distinct smells indicative of tuberculosis infection [3]. There has

been other reports in literature of physicians diagnosing diseases using smell. For

example, Poulton et al. reported that nursing sisters at the East Birmingham Hos-

pital were able to diagnosis rotavirus gastroenteritis by smelling stools of patients

before culture results were available. The nurses classified 69% of stools correctly

for 23 babies [4].

The method of diagnosing diseases by smelling patients’ waste has several advan-
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tages when compared with conventional diagnostic methods. Conventional bacterial

diagnostic methods can be expensive, time consuming, and sometimes requiring sev-

eral days for cell culture. The delay associated with cultures has a negative effect

on patients’ therapy [2, 3]. For example, in the case of sepsis patients’ for exam-

ple, delays in administering antibiotic has been reported to increase mortality by

10 to 15% [5]. Physicians aim to administer antibiotics after bacterial infection is

confirmed to curb the rise in drug resistant bacterial strains which has resulted in

about 700,000 deaths a year and could cost about £63tn per year[6]. Consequently,

physicians wait for a positive prognosis before giving antibacterial medication. With

each hour delay in confirming bacterial infection, the risk of progression to septic

shock for sepsis patients increases by 8% [7]

Diagnosis based on detection of VOCs enables a rapid, non-invasive method

of identifying pathogens. VOCs have been described as organic compounds with

boiling points from about 50◦C to about 260◦C, therefore they have relatively high

vapour pressure at room temperature [8, 9]. This includes sulfides, ketones, alcohols,

isocyanates, aldehydes, and hydrocarbons, which are vapours at ambient tempera-

tures [10]. VOCs are produced in living organisms as a result of normal metabolic

function. These compounds are released in saliva, blood, urine, faeces and sweat.

Pathogens in the human body have distinct metabolism hence produce characteristic

VOC profiles [11, 12]. Therefore the presence of these pathogens can be diagnosed

by detecting their VOC profile in human waste[13].

VOCs from breath, saliva, skin, blood, urine and faeces samples have been anal-

ysed to diagnose diseases such as tuberculosis, lung cancer, schizophrenia, diabetes,

inflammatory bowel disease and infections [10, 13–22]. The ease of obtaining waste

samples from humans along with the rapid nature of gas based diagnostic methods
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has led to increased research in VOC based analytic tools. Currently, Gas Chro-

matography Mass Spectrometry (GC-MS) systems [10, 14–17] Ion Mobility Spec-

trometry (IMS) systems [16, 19, 20, 22, 23], and electronic noses [16, 21, 23, 24]

are some of the major instruments used in analysis of gas samples for diagnosing

diseases. Photoionization Detector (PID) technology has also been used in diagnosis

[25].

Mass Spectrometry (MS) is often stated as the gold standard for VOC analy-

sis because of its high sensitivity, accuracy, reproducibility and overall robustness.

However, wide adoption of this technology is limited by several factors including

cost of purchase, complexity of operation and long analysis time [26, 27]. Its size

and weight reduce their portability and restrict their use to mostly laboratory anal-

ysis. Similar factors also limits wide adoption of IMS, although IMSs are slightly

smaller and cheaper than MSs. The cost and size of this equipment limits their

use in point of care in hospital wards and GP surgeries, especially in developing

countries [23]. PIDs and electronic nose instruments are smaller in size and more

portable in comparison.PIDs are significantly cheaper than the other technologies

mentioned. However, both electronic nose and PID technologies do not offer infor-

mation on the identity of VOCs under test as they are sensitive to a wide range of

compounds hence have poor selectivity [21, 28]. A major advantage in using PID

sensors is the speed of analysis with some commercial PIDs offering analysis times

within a second [29]. Therefore, what is needed is a diagnostic tool that offers sim-

ilar sensitivity and accuracy of the MS systems at a lower price point. Such a tool

will enable faster diagnosis of bacteria by eliminating the need for time consuming

culture method, improve therapy for patients and help curb the rise of drug-resistant

bacterial strains.
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1.1 Research aims

The goal of this project is to develop a prototype point of care tool that has the

potential to be developed into a future commercial product for bacterial detection.

The biological medium selected is urine. To achieve this goal, a low-cost novel VOC

detector has been designed. The design approach merges merits of commercial IMS

systems and PID sensors. Unlike these commercial PID devices, the detector de-

veloped in this study provides compositional information on the compound being

tested. With the design approach taken, the instrument could be made available to

consumers at a lower cost than IMS systems with a market potential to sit some-

where between the lower end PID and higher end MS and IMS systems. Peripheral

Pre-concentrator (PC) and Gas Chromatograpy (GC) systems were also developed

to boost the sensitivity and specificity of the detector. An end user software was de-

signed to enable non-technical personnel to use the instrument for diagnosis. Several

chemical analysis were carried out on the components to benchmark the instruments

performance in VOC analysis. Initial diagnostic tests were also carried out using

urine and some key biomarkers for bacterial infections. Finally, statistical methods

applied in the area of gas based diagnostic medicine were also investigated. This was

done to develop an understanding of statistical approaches which were best suited

for this instrument.

1.2 Thesis structure

This section presents a brief overview of the thesis.
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Chapter 2 PID and IMS Technologies

Since the work done in this project hinges on PID and IMS technologies, this chapter

discusses the theories, principle of operation, and development of PID and IMS

technologies. It presents some commercially existing designs and their applications.

It also discusses some of the merits and disadvantages of these technologies.

Chapter 3 Development of a Gas Sensor Calibration Rig

This chapter discusses the development of a gas sensor calibration test rig which was

designed with the aim of producing a repeatable test environment for calibrating

gas sensors. The test rig provides gas mixtures at defined flow rates, pressure,

temperature and humidity.

Chapter 4 Design of a Pre-concentrator and Gas Chromatograph

PCs and GCs help to improve concentration, sensitivity accuracy and selectivity

of gas analytical systems. Therefore, PCs and GCs were designed to improve the

overall performance of this diagnostic instrument. The development of a PC and

GC will be presented in this chapter.

Chapter 2.2 Design and development of a VOC Ionisation Detector

The design of a novel VOC sensor that combines the advantages of PID and IMS

sensors is described in this chapter. The chapter also discusses VOC detection tests

that were carried out to demonstrate the sensor’s performance.
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Chapter 6 System Assembly and Software

In this chapter, the assembly of the PC, GC and VOC detector components into a

prototype diagnostic analytical instrument will be presented. This chapter will also

cover the software designed to manage various aspects of the instrument including

power supply, pneumatics, data management.

Chapter 7 Biomedical Tests and Results

Preliminary tests were carried out using urine and key biomarkers for bacterial

infections. This chapter presents findings from these tests. It also presents statistical

tools that aids users in diagnostic tests using this instrument.

The results of all of the tested technologies are compared in the concluding

chapter. The qualities and limitations of the instrument are explored and recom-

mendations are presented for further work.
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Chapter 2

PID and IMS Technologies

2.1 Introduction

In Chapter 1, it was explained that the aim of this initiative is to develop a gas

analytic instrument based on the Photoionization Detector (PID) and Ion Mobility

Spectrometry (IMS) technology for the diagnosis of bacterial infection. To embark

on such work, a review of these technologies is required. This chapter discusses

the theories, principle of operation, and the development of PID and IMS technolo-

gies that has been undertaken. It presents some commercially existing designs and

their applications. It also discusses some of the merits and disadvantages of these

technologies.
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2.2 PID

2.2.1 Theory

Literature on current design and development of PIDs is scarce. There is tough

competition amongst manufacturers, therefore major design components are care-

fully guarded secrets in the sensor industry. However, general information on its

working principles have been released by some PID manufacturers and they will be

covered in this section.

The PID is a sensor for detecting compounds using photoionization. A PID

functions by ionising molecules using high-energy photons in the Ultraviolet (UV)

range [1] and detecting the charge given off when these molecules become neutral.

The timescale of this process is in the order of femtosenconds to milliseconds [2]

resulting in the increased use of PIDs for instantaneous analysis. The operation of

commercial PIDs can be divided into three steps:

• supply of gas phase analytes

• ionisation

• detection

In PID devices, ionisation is achieved using high-energy photons from an UV

light source (Figure 2.1). The light source or bulb houses a discharge gas that re-

leases energy when excited. This energy ionises Volatile Organic Compound (VOC)

molecules which are later detected by anode and cathode electrodes.
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Figure 2.1: General schematic of a PID sensor [3].

Properties such as wavelength and ionisation energy of the bulb are affected by

the nature of discharge gas selected, pressure within the bulb accelerating voltage,

e.t.c [4]. Figure 2.2 shows the intensity and spectrum of light from bulbs with xenon,

krypton and argon gas. When excited, a krypton bulb will emit 116.9 ηm and 123.9

ηm an equivalent of 10 eV and 10.6 eV [5].

Figure 2.2: The wavelengths emitted by xenon, krypton and argon UV bulbs [5].

Common fill gasses used in photoionization bulbs and their ionisation energies
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(IE) are shown in Table 2.1 [2].

Table 2.1: Ionisation energy of common UV lamps.

Fill gas Nominal eV
Argon 11.7 - 11.8
Krypton 10.6
Hydrogen 10.2
Krypton 9.5
Oxygen 9.5
Xenon 8.44

The choice of bulb used in ionisation is essential to the performance of a PID

device. The PID is only able to ionise molecules with ionisation energies below

the ionisation energy of the UV bulb used. A comparison of fill gas and ionisation

energies of compounds is shown in Table 2.2. From Table 2.2, a PID device with a

Krypton UV bulb will not be suitable for detection of choloroform. Hence ionisation

bulbs are selected to match the gas application.
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Table 2.2: Ionisation energy of common VOCs and UV lamps.

UV Lamp Compound IE (eV)
Oxygen 12.07
Acetonitrile 12.20
Nitrogen 15.58
Water 12.62

Argon: 11.7 Acetic acid 10.65
Methanol 10.84
Chloroform 11.47

Krypton: 10.6 Isopropanol 10.17
Ammonia 10.07
Hexane 10.13
Heptane 9.93
Acetone 9.7
Toluene 8.83
Propanol 10.02
Ethanol 10.48
Isobutylene 9.22
2-Pentanone 9.381
2-Hexanone 9.35

Xenon: 8.4 Benzyl radical 7.2
Acridine 7.8
Anisole 8.2
Napththalene 8.14

In photoionisation, molecules are ionised by absorbing the energy released from a

photodischarge source. The ionisation reaction mechanism leading to the formation

of photoions is given by Equation 2.1 [6].

hv +M →M+ + e− (2.1)

Photons (hv) from the photodischarge source are absorbed by a molecule of the

analyte (M). When hv is greater than the ionisation energy (IE) of the molecule,

an electron is released leading to the formation of a cation.
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In the detection step, an electric field is supplied to drive the cations to an elec-

trode. The resulting current is measured and it is an indication of the quantity

of M+ present, hence, providing information on the concentration of the analytes.

Inherent in this process are two advantages of PIDs. One advantage is that some

level of selectivity can be achieved due to the difference in hv and IE of the ana-

lytes. Depending on the choice of UV lamp used for ionisation, detection could be

targeted at compounds below the ionisation potential of the UV lamp. However, the

system will still detect all molecules below the ionisation potential and so specificity

is limited. This advantage enables analysis in air since the components of air have

higher IE than most UV lamps. A second advantage in using PID sensors is their

ability to function in ambient pressure requiring less auxiliary equipment to operate.

This facilitates portability of PID sensors and makes them suitable for testing in

a range of environments and has resulted in their increased use for in situ analy-

sis. While these advantages are desirable, application of PIDs sensors in analysis

requiring compositional information is limited because PIDs sensors only provides

a concentration value of the sample being tested.

2.2.2 Commercial PID devices

PID is a compact high-performance device with response time in the order of seconds

[7] and sensitivity down to 0.5 parts per billion (ppb). Some commercially available

PID sensors are listed in Table 2.3.

16



Table 2.3: Selected commercial PID devices

Distributor Product Range (ppm)

AdvancedSense DirectSens IAQ Graywolf LOD < 5ppm [8]

Alphasense PID-AH2 0.001 - 50 [9]

Alphasense PID-A12 0.050 - 6000 [10]

Dräger Multi-PID 2 0 - 20000 [11]

Dräger PID HC N/A [12]

HNU Portable Analysers 0 - 3000 [13]

Ion Science MiniPID 2 0 - 6000 [14]

Ion Science Club 0.001 - 5000 [15]

Ion Science Tiger 0 - 20000 [16]

Mocon piD-TECH 0.00005 - 10000 [17]

RAE Systems MiniRAE 3000 0 - 15000 [18]

RAE Systems ppbRAE 3000 0.001 - 10000 [19]

Commercial PIDs sensors could be placed in two manufacturing categories, namely

Original Equipment Manufacturer (OEM) and consumer devices.

OEM PID devices

This category of PID devices are designed to be integrated as components in another

analytical equipment. Most commercial designs are similar to the OEM PID sensor

from Mocon one shown in Figure 2.3. This compact design houses the detection

circuit, electrodes and UV ionisation source in a 20 × 17 mm package.
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Figure 2.3: An OEM piD-TECH PID sensor by Mocon Inc.

The electronics are manufactured on a flexible PCB that wraps around the bulb.

An insulating material is used to shield the circuit from external Electromagnetic

Interference (EMI) or Radio Frequency Interference (RFI). This is represented in

the section view in Figure 2.4. Molecules to be analysed travels through the filter

into the chamber. This filter protects the sensor from particles and dirt and allowing

only gas samples to go through. The molecules are ionised in the chamber by the

photons entering the chamber form the UV bulb below. Electrodes are used to

partition the chamber area and create and electric field. Current generated at the

electrodes is measured and processed by electronics housed on a flexible PCB. A

voltage signal corresponding to the gas concentration is produced from one of the

signal connectors at the bottom of the sensor.
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Figure 2.4: An OEM piD-TECH PID sensor by Mocon Inc.

There are usually 3 connector pins at the bottom sensor. They are used for power

supply, return and concentration signal. OEM PID sensors available currently sold

by several manufacturers including Mocon, Alphasense, Ion Science. They cost

approximately $500.

Consumer PID

These PID devices are designed to be used without the need for support equipments

like power supplies. This category of PID devices usually add several peripherals

such as screens, pumps and batteries to the PID sensor. These peripherals enhance

the performance of the sensor. For example, the addition of a pump improves sample

flow through the device increasing the sample size and concentration output.

Figure 2.5 shows an example of a PID device targetted at the end user. It

includes a pump and a battery with up to 24 hours run time. It also includes a

USB port to for easy download of measurement data. The Tiger VOC detector is

enclosed in a portable package 340 × 90 × 60 mm package. It only weights 0.72
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kg making it suitable for hand held in situ applications [20]. Some end user PID

devices are available from HNU, Ion Science and RAE Systems.

Figure 2.5: The Tiger VOC Detector by Ion Science [21].

2.2.3 PID applications

PID sensors were previously used mainly for the detection of effluents from Gas

Chromatograpy (GC) columns [22]. In one of the early designs, Driscoll (1977) in

collaboration with HNU reported mounting a PID sensor on the end of a GC [23].

Driscoll design also incorporated a Flame Ionisation Detector (FID) for comparison

and several compounds including toulene, benzene, acetone, ethlene and ethonol

were analysed. It was observed that the 10.2 eV PID detector offered a 30 fold

improvement in sensitivity. Driscoll recommended that the PID should be considered

a sensitive detector “in it’s own right”. In the 1980’s, the PID continued to be used

as a detector for GC systems. Freedman reported using the PID sensor designed by

Driscoll in the analysis of hydrocarbons from oil vapour in carbon dioxide. Freedman
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reported responses for concentrations as low as 2 ppb.

With improvement in design technology, PID sensors became more compact in

size and portable handheld designs became commercially available. The application

of PID sensors began to shift from GC detectors to stand alone VOC detectors

given the rapid analysis offered by PIDs [24]. This shift was also fuelled by the fact

that Mass Spectrometry (MS) and IMS systems were becoming more available and

performed better as detectors for GC effluents.

One of the early commercially available stand alone PID instrument was the EE

300-100 portable PID Solvent Detector by ELE Internation in Herfortshire, England.

This design featured a 10.2 eV UV ionisation source. The instrument was used by

Hobbs et al. in 1994 to analyse odours from pig and chicken wastes. Hobbs et al.

reported responses for VOCs, NH3 and H2S.

Currently, stand alone PID sensors are used to detect VOC in various industries.

Provectus Remediation LTD, an environmental remediation company reported us-

ing the Tiger PID to indicate VOC concentrations in contaminated ground during

their environmental investigations, trials and treatment. They have also applied

the instrument in the area of safety, using it to check occupational exposure on

very contaminated sites [25]. Also in the area of safety and personnel protection,

Southampton’s National Oceanography Centre (NOC) reported using two Cub PID

devices from Ion Science to reduce employees’ risk of exposure to chemicals. The

PIDs used provides quick response to the presence of hazardous VOCs.[26].
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2.3 Ion Mobility Spectrometry (IMS)

2.3.1 Theory

IMS is a term used to refer to methods, instrumentation and principles for charac-

terising substances through a stream of supporting gas in an electric field [6]. This

includes flow, gas compositions, pressure, modes and strength of electric fields and

methods of ion formation. Over the years, several types of IMS technologies have

been developed. For traditional IMS, swarm of ions are injected into a pathway

called the drift tube, and the time taken to travel accross the tube is measured. The

velocity of drift vd is obtained from the time td taken to transverse the tube with a

distance d cm (Equation 2.2).

vd =
d

td
(2.2)

The length of the drift tube has varied over the years and tubes down to 4 cm

have been designed. The environment in the drift tube is ambient pressure with an

electric field E which is given by Equation 2.3.

E =
V

d
(2.3)

The drift velocity vd in 2.2 is normalised to the electric field E to produce the

mobility coefficient K (Equation 2.4). The value of k and hence the drift velocities

are different for different ion species [27].

K =
vd
E

(2.4)
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The drift velocity is affected by temperature T and pressure p inside the drift

tube, hence the mobility coefficient is usually normalised to 273 K and 760 torr.

This produces the reduced mobility coefficient K0:

K0 = K ∗
(

273

T

)(
P

760

)
(2.5)

Operation of an IMS system, begins with the formation of ions from molecules in

a sample by the reaction between the molecules and already existing charge (Figure

2.6(a)). This charges are referred to as reagent or reactant ions. The reaction

between the reactant ions and sample ions produces product ions which are injected

down the drift region (Figure 2.6(b)) through the ion gate. The product ions travel

through the drift region up to the end of the drift tube where they come in a

contact with the detector, which is usually a Faraday plate. On collision with the

Faraday plate, ions lose their charge and become neutral inducing a current flow at

the plate. This current is measured and plotted against time to give the mobility

spectrum (Figure 2.6(c)). A stream of gas referred to as buffer gas or drift gas

constantly flows through the drift tube in opposite direction to the ion stream. This

gas helps to maintain a constant purified atmosphere for collisions within the drift

tube.
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Figure 2.6: Illustration of IMS showing (a) ion formation (b) ion drift and (c) ion
mobility spectrum [6].

Over the years, various IMS designs have been developed including Drift Time

Ion Mobility Spectrometer (DTIMS), Traveling Wave Drift Tubes (TWDT), Trapped

Ion Mobility Spectrometer (TIMS), Aspirator Drift Tube (ADT) and Field Asym-

metric Ion Mobility Spectrometry (FAIMS). Before discussing these technologies,
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the next section covers some ionisation techniques that have been implemented

across the various IMS technologies.

2.3.2 IMS ionisation techniques

Ion formation is a major component of IMS systems. Ionisation in IMSs usually

occurs at ambient pressure. The commonly deployed ionisation methods for IMS

instruments are radioactive, corona discharge, and photoionisation and an overview

of these is given in this section.

Radioactive ionisation

Radioactive sources are preferred in IMSs because they provide reliable stable op-

eration without the need for external power supply and have been used in many

IMS instruments [28–33]. 63Ni is the preferred source for radioactive ionisation in

IMSs[29]. In use, a thin layer of 10 mCi 63Ni is coated onto a metal strip [34]. The

ionisation process begins with the emission of high energy beta particles from the

radioactive source. This process is shown in Equation 2.6.

63
28Ni −−→ β− + 63

29Cu (2.6)

The beta particles collide with nitrogen in the atmosphere in air to produce N +
2

as shown in Equation 2.7.

N2 + β− −−→ N +
2 + β

′
+ e− (2.7)

Positive ions are formed after this reaction is followed by further reactions leading
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to the ionisation of samples [34, 35]. In a purified air, the reaction process terminates
in the formation of H+(H2O)n proton clusters as shown in Equation 2.8 - 2.13.

N2 + e− −−→ N +
2 + 2 e− (2.8)

N +
2 + N +

2 −−→ N +
4 + N2 (2.9)

N +
4 + H2O −−→ 2 N2 + H2O

+ (2.10)

H2O
+ + H2O −−→ H+H3O + OH (2.11)

H3O
+ + H2O + N2 −−→ H+(H2O)2 + N2 (2.12)

H+(H2O)2 + H2O + N2 −−→ H+(H2O)3 + N2 (2.13)

The H+(H2O)n reactant ions react with neutral sample molecules M , yielding a

product ion and a protonated monomer:

H+(H2O)n + M←−→ MH+(H2O
∗)n ←−→ MH+(H2O)n−x + xH2O (2.14)

Negative polarity product ions are also formed. This is as a result of the association

of the sample molecule M and negative reactant ion O–
2 (H2O)n:

O−2 (H2O)n + M←−→ MO−2(H2O
∗)n ←−→ MO−2 (H2O)n−x + xH2O (2.15)

Other radioactive isotopes have also been used as ionisation sources in IMS in-

struments including 241Am [36], similar to those in household smoke detectors and

beta-emitting tritium sources [37, 38].
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Corona Discharge (CD) ionisation

CD has been utilised as ion source for IMS systems with some works reporting a 106

times increase in the number of electrons produced when compared with 63Ni[39–41].

In CD ionisation IMS (Corona Discharge Ion Mobility Spectrometry (CD-IMS)), a

sharp needle or thin wire is placed close to metal plate and a potential difference of

1 - 3 kV is applied between the needle and the plate. Electric discharges develop in

the gap between the needle tip and the plate and the ions formed in this gap are

similar to those formed using a 63Ni ionisation source.

Figure 2.7: Corona discharge ionisation in IMS.

The gap is usually between 2 to 8 mm. As there is no radioactive source, CD

ion sources have been deemed valuable. However, the need for an external power

source is a major drawback in the implementation of CD ionisation.
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Photoionisation

As discussed in Section 2.2, the photoionisation process involves ionising molecules

using high energy photons released from a photodischarge source. The ionisation

reaction mechanism leading to the formation of photoions is given by Equation 2.16

[6, 31].

hv +M →M+ + e− (2.16)

Photons (hv) from the photodischarge source are absorbed by a molecule of the

analyte (M) leading to the formation of an excited molecule (M∗). When hv is

greater than the ionisation energy (IE) of the molecule, the molecule releases an

electron leading to the formation of a cation.

The cation travels to the detector where it loses the charge to become a neutral

molecule. The current generated as a result is measured at the detector. Gesellschaft

fur analytische Sensorsysteme (Dortmund, Germany) manufactures several IMS in-

struments using photoionisation [42].

2.3.3 IMS drift tubes designs

DTIMS

DTIMS is the one of the first IMS concepts developed. Here, ions travel in a drift

tube through opposing neutral gas in the presence of an electric field [43]. Voltages

from ±1 to 10 kV are required to generate electric fields [44] in DTIMS and this has

been considered a drawback to implementing this technology. Ionised samples in a

carrier gas are introduced into a drift tube with a uniform electric field. Stacked

metal rings in a tubular geometry [6] are used generate the electric field in the drift
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tube. The rings could also be separated by alternative insulating rings. Each ring

in the stack is connected to a node in a series of resistors. This provides a gradient

of electric field within the drift tube when a voltage is applied across the resistors.

A counter flow of neutral gas flows from the detection region towards the ionisa-

tion region preventing the build-up of impurities in the drift tube. The counter or

drift gas flow also decelerates the ion swarm based on their size and shape resulting

in a separation of ions based on these characteristics [45]. An electronic ion gate or

shutter between the ionisation region and the drift tube is used to pulse ions into

the drift tube and a predetermined interval. The gate is usually fabricated from

thin parallel wires. An electric field at the gate is used to pass or block ions from

entering the drift tube. The ions travel through the tube at a constant velocity

which is proportional to the electric field and interaction with the neutral gas.

The drift tube terminates at the detector or Faraday plate. After colliding with

the detector, ions in the stream lose their charge and current is generated due to

the flow of electrons. The current is measured and plotted against the drift time

for a packet of ion to obtain the DTIMS spectra. In some designs, optional guard

ring is added between the metal rings and the detector to capacitively decouple the

detector from the approaching ions.

Some DTIMS designs over the years have improved these basic concepts to en-

hance performance. For example Balm and Hill [46] showed that it was possible to

improve the speed of response by using a unidirectional flow in the drift tube. Their

DTIMS design comprised of a 7.5 cm drift tube operated at 140◦C with an electric

field gradient of 215 V/cm. The electric field gradient was obtained using a 3000 V

supply applied to a repeller plate at the detector. The voltage was dropped across

the tube using a series of 1 MΩ resistors which are connected to the rings. This
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was also one of the first designs to feature a microprocessor [6]. An 63Ni radioactive

source was used but the design could be reconfigured to use a photoionisation source.

In use, ions are generated when gaseous samples enters the vicinity of the 63Ni ra-

dioactive source as already explained. The ions formed are stopped from entering

the drift tube by a 900 V/cm field applied at the entrance gate (Figure 2.8). This

electric field is removed for 0.2 ms thus opening the gate and allowing ions to travel

down the drift tube. The ions migrate down the drift tube at different mobilities

arriving at the exit gate at different times depending on their mobilities. If the exit

gate is opened, the ions continue to the detector. If the exit gate is closed, detection

does occurs. The opening and closing of entrance and exit gates are controlled at

intervals to produce and ion mobility spectrum.

Figure 2.8: Illustration of unidirectional DTIMS by Balm and Hill [46].
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In the late 1980s, Graseby Dynamics showed that the resolving power of DTIMS

could be improved by increasing the length of the drift tube [6]. Their drift tube con-

sisted of copper bands as drift rings and measured 50 cm in length with a diameter

of 1 cm. The resolving power of the drift tube was over 150 in air at ambient pres-

sure. In another work, Davis et al improved resolving power by increasing pressure

and temperature within the drift tube [47]. A resolving power of 100 was achieved

using 10.7 cm drift tube operated at 2.3 atm.

The IONSCAN 400B was one of the first bench top DTIMS commercial designs.

It was targeted at explosive/narcotic analyses and had a resolving power of 20. The

drift tube was 10 cm long and housed several rings referred to as focussing rings

(Figure 2.9) [6, 48] . The gating grid served as an ion shutter, pulsing packets of

ions into the drift tube. Clusters of ions with similar mobilities drift through the

focusing ring until they arrive at the collector. The ions lose charge and generate

a current at the collector. A plot of the drift time and measured current is used to

produce the mobility spectrum.
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Figure 2.9: Cross section of inlet and drift tube from a Barringer IONSCAN 400B
drift tube IMS [6].

Current commercial devices using DTIMS technology includes RAID-M 100 from

Bruker [49], GC-IMS-ODOR from G.A.S. Gesellschaft für Analytische Sensorsys-

teme mbH [50], Quantum Sniffer QS-H150 from Implant Sciences [51],GDA-FR from

Airsense Analytics [52], E5000 Series Trace Detectors from Scintrex [53].

TWDT

In TWDT, ions a propelled through a drift tube with a repeating series of symmet-

ric waves which propagates through the tube [54]. Separation in the drift tube is

achieved by altering the magnitude and speed of the waveform. TWDT does not re-

quire a counter drift gas however, ions entering the drift types are pulsed analogous

to the DTIMS. This technology is employed in the Synapt G2-Si High Definition

Mass Spectrometry from Waters [55]. The SYNAPT G2-Si High Definition Mass

Spectrometry by Waters Corporation is a commercial TWDT IMS instrument cou-
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pled with a MS [56, 57].

The rings in a TWDT drift tube are connected to opposite phase of a Radio

Frequency (RF) field [54]. A voltage pulse is superimposed on one or a couple rings

resulting in ion motion. The pulse is moved to the neighbouring ring(s) and is

relaxed on the previous ring(s). This is propagated down the drift tube at a rate of

300 to 1300 m/s [6]. This process is repeated as stream of ions travel form through

the drift tube. Separation of ion packets by their mobilities occur in drift tube due

to the velocity and amplitude of the wave and gas pressure in the drift tube.

Trapped ion mobility spectrometer (TIMS)

In TIMS, ions are separated in a drift tube with increasing electric field. Ions

travelling through the drift tube are trapped in a region where the electric field is

compensated for by the gas drift force. The ions are separated based on their size-to-

charge ratio and packets of ions are released to the detector by varying the electric

field [58, 59]. Commercial instruments using this drift tube technology includes the

Itemiser DX from Morpho [60] and Kaye Validator by GE Sensing (Billerica, MA)

[61].

ADT

The ADT is one of the simplest concepts of IMS drift tubes. In this design, the

ionised gas sample flows through a series of opposing plates with constant electric

field (Figure 2.10). Ions are collected at the plates based on their mobility [62].

Smaller ions with high mobility are easily deflected on fall on the front set of plates.

Larger ions with less mobility will be deflected less and are collected primarily by
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end electrodes.

Figure 2.10: An ADT IMS drift tube [62].

A major advantage in the ADT designs is the simplicity of the drift tube and

electronics required. This allows ADT to be implemented in handheld designs.

However this simplicity is at the expense of resolving power. Zimmerman et al

reported on the design of miniature IMS unit using an ADT [63]. In their design,

a 65Ni radioactive source was used for ionisation of gas samples and the test was

carried out at room temperature. The electric field was swept from -94 V to 94 V

in 30 steps and a resolving power of 5.5 was obtained.

The Chempro 100i by Environics OY is a handheld IMS instrument utilising an

ADT.The battery powered unit in Figure 2.11 measures 230 × 101 × 57 mm in size

and weighs approximately 880 g [64].
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Figure 2.11: The Chempro 100i using aADT IMS drift tube [65].

Field Asymmetric Ion Mobility Spectrometry (FAIMS)

From Equation 2.4, the drift velocity vd is normalised to the electric field E to

produce the mobility coefficient K. At constant density N , the dependence of

mobility coefficient K on the electric field can be simplified in Equation 2.17 [6, 27,

54] under strong field conditions.

K

(
E

N

)
= K0

(
1 + α

(
E

N

))
(2.17)

Therefore in FAIMS, mobility of the ions is not fixed but undergoes changes de-

pending on the electric field. The dependence of the ion mobility K to the ratio of

electric field strength E and the neural density N is accounted for by the function
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α. In this approach, ions are transported through continuous conducting surfaces

by a carrier gas. The conducting surface could be parallel plates [27] or concentric

cylinders [66]. Various gap sizes between the conducting surfaces have been reported

ranging from 27 µm to 2 mm [66, 67, 67, 68]. An asymmetric wave with an am-

plitude of 20000 V/cm or greater is applied to the plates or cylinders and the ions

in the stream moves with the electric field using the relation ship in Equation 2.17.

The waveform as seen in Figure 2.12 is designed such that the the integrals of the

positive and negative regions are equal.

Figure 2.12: An ideal FAIMS waveform.

The positive and negative regions or the waveform induces a zigzag motion in

the ions and only ions with mobility coefficients that are independent of the electric

fields (where α = 0) will pass through the drift tube.
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Figure 2.13: Effect of high asymmetric waveform on ions.

The asymmetric waveform results in filtering of ion species. Some ions are de-

flected in the drift tube and collide with the drift tube walls. These ions do not reach

therefore are not detected by the detector. A small Direct Current (DC) referred to

as the compensation voltage could be superimposed on the waveform to control the

deflection of ions towards the side walls of the drift tube. As shown in Figure 2.14,

ion species reaching the detector could be varied by varying the magnitude of the

compensation voltage (UC).

37



Figure 2.14: Effect of compensation voltage UC on ion species.

A balance between the plate gap and the waveform properties is necessary to

achieve deflection of ions. With smaller gaps measuring 35 µm asymmetric wave-

forms with 22.2 MHz have been used [67]. For larger gap sizes such as the 0.5 mm

design by Miller et al, a 1700 V 2 MHz waveform with a duty cycle of 30% was used

[69]. The effective gap between the electrodes g, which is the gap required for the

ions to oscillate without colliding with the walls is given by:

g = d− SK

2F
〈|f |〉 (2.18)

Where d,S,K,F is the gap between the plates, amplitude of the waveform, ion

mobility, and frequency [68]. 〈|f |〉 relates to the separation field waveform. Design-

ing power supplies and generation circuits for the ideal waveform in Figure 2.12 is
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hampered by engineering constraints. Hence, approximations of this waveform has

been implemented in FAIMS drift tube designs[54] and these are shown in Figure

2.15. It includes the bisinusoidal and clipped sinusoid waveforms.
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Figure 2.15: Waveforms used in FAIMS drift tube (a) ideal (b) bisinusoidal (c)
clipped waveform.

The bisinusoidal [68] waveform is most used in FAIMS designed. This sinusoidal
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waveform F (t) is obtained by adding a sinusoid to its second overtone shifted by

90◦:

F (t) = [f sinωt+ sin(2ωt− π/2)]/(f + 1) (2.19)

The effect of the three waveforms on ion species are compared using the separa-

tion coefficients which are computed from Equation 2.20.

〈fn〉 =
1

T

∫ T

0

fn(t)dt (2.20)

Separation coefficients for rectangular or ideal, bisinusoidal and clipped wave-

forms are compared in Table 2.4. Best separation is obtained using the rectangular

waveform, however, due to the difficulty in practical implementation of this wave-

form, the bisinusoidal waveform is commonly used in literature and commercial

FAIMS devices.

Table 2.4: FAIMS waveform separation coefficients [68]

Waveform f 2 f 3 f 4

Rectangular(ideal) 0.512 0.269 0.330

Bisinusoidal 0.310 0.110 0.120

Clipped 0.236 0.111 0.103

Two major advantages of FAIMS over ADT IMS drift tube designs are its high

speed and an ion focusing effect that often improves sensitivity [70]. The ion fo-

cussing effect of FAIMS has led to increased used as a precursor to other analytical

systems such as MS.

41



2.3.4 IMS applications

Over 5000 stand-alone IMS instruments are currently used throughout the world in

the detection of chemical-warfare agents, drugs and explosives [71–75]. As result

of the sensitivity, selectivity and rapid response times offered by IMS instruments,

growing number of these instruments have also been applied in clinical analysis,

pharmaceuticals, food and drink, environmental monitoring and process monitoring

[29, 76, 77]. This section discusses literary works describing the application of IMS

technology in three areas - food and drink, pharmaceuticals and clinical analysis.

Food and drink

Several reports have been published on analysis to determine the state of food and

drink using IMS technology. IMS has also been applied in assessing the quality of

a wide variety of food and drink [33, 78–82]. Alonso et al reported discriminating

between meats from free range pigs fed in pasture and confined pigs by analysing

VOC in fats using a photoionisation IMS [42]. Vestergaard et al investigated the

quality of pork meat toppings on consumer pizza samples using a multi drift tube

IMS instrument[83]. A a portable IMS produced by Gesellschaft für Analytische

Sensorsysteme (G.A.S. mbH, Dortmund, Germany) with Tritium ionization source

was used by Márquez-Sillero et al to investigate the presence of 2,4,6-Trichloroanisole

which is one of the musty odours of wines [38].

Pharmaceuticals

The sensitivity and response speed of IMS systems makes them suitable for quality

control and quality assurance tests in the pharmaceutical industry. IMS has been
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applied in the rapid qualitative and quantitative of active ingredients in drugs for

quality assurance tests [84]. Strege et al showed a TIMS instrument for cleaning

verification of manufacturing equipments to avoid contamination between batches

of pharmaceutical products [61]. In their quality assurance tests, Qin et al analysed

30 samples from pharmaceutical machinery in 2 hours offering a mode of quality

assurance that reduces machine downtime [85].

Clinical analysis

IMS technology has also been applied to the diagnosis of diseases and metabolic

profiling using human exhaled breath, urine, vaginal and blood samples [28, 30–32,

86, 87]. In diagnostic analysis, analytic results obtained from patients with a specific

disease is compared to healthy control. Statistical methods were used to generate

models for identifying disease groups from healthy control. Vera et al analysed VOCs

in breath using an IMS with a 63Ni radioactive source coupled to a Multi Capillary

Column (MCC) [29]. The study had 40 subjects with 18 healthy controls and 22

pulmonary lung infection patients. Different spectra were obtained for patients and

control groups. In a similar study, Baumbach analysed exhaled breath from 32

patients with lung cancer and 54 healthy control patients using an IMS instrument

coupled with a MCC [88]. Using linear discriminant analysis, Baumbach’s results

showed separation between lung cancer groups and control patient groups (Figure

2.16).
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Figure 2.16: Linear discriminate analysis of IMS samples from lung cancer and
control groups [88].

Some of the application of IMS technology in diagnosis are summarised in Table

2.5. The table shows the technologies, diseases and associated compounds that have

been used in medical diagnosis

Table 2.5: IMS in diagnosis.

Technology Disease Medium Ref.

IMS Sarcoidosis Breath [86, 87, 89]

FAIMS Clostridium difficile Stool [90]

IMS Lung cancer Breath [30]

IMS Fat metabolism related diseases Urine [31]

IMS Bacterial vaginosis Vaginal fluid [32]

IMS COPD Breath [91]

IMS Lung carcinoma Breath [92]

IMS Polychondritis Breath [93]

IMS Alzheimer’s\Parkinson’s disease Breath [94]

IMS Neutropenia Breath [95]

CD-IMS Renal failure Breath [96]

FAIMS Inflammatory Bowel Disease (IBD) Urine [97]

FAIMS IBD Breath [90]
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IMSs has been used in investigating drugs and drug metabolites in the human

body using various biological mediums. This includes the detection of thiocyanate

in the saliva of smokers [98], cocaine [99], Verapamil [48], and ephedrine [100] in

urine.
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and Bert Van de Beld. Development of an on-line tar measurement method

based on photo ionization technique. Catalysis today, 176(1):250–252, 2011.

[25] https://www.ionscience.com/wp-content/uploads/2017/03/pr-76-provectus-

chooses-ion-science-tiger-pid-for-humidity-resistant-and-anti-contamination-

design-1-2.pdf, November, 2018.

[26] https://www.ionscience.com/wp-content/uploads/2016/11/pr-46-national-

oceanography-centre-waves-goodbye-to-potential-exposure-to-volatile-

organic-compounds-uni-lab.pdf, November,2108.

[27] IA Buryakov, EV Krylov, EG Nazarov, and U Kh Rasulev. A new method

of separation of multi-atomic ions by mobility at atmospheric pressure using

a high-frequency amplitude-asymmetric strong electric field. International

Journal of Mass Spectrometry and Ion Processes, 128(3):143–148, 1993.

[28] M Westhoff, P Litterst, L Freitag, and Ji Baumnach. Ion mobility spectrome-

try in the diagnosis of sarcoidosis: Results of a feasibility study 1 lung hospital

47



hemer, hemer, germany; 2 isas-institute for analytical sciences, department of

metabolomics, dortmund, germany.

[29] Vera Ruzsanyi, Jörg Ingo Baumbach, Stefanie Sielemann, P Litterst, M West-

hoff, and Lutz Freitag. Detection of human metabolites using multi-capillary

columns coupled to ion mobility spectrometers. Journal of Chromatography

A, 1084(1-2):145–151, 2005.

[30] Michael Westhoff, Patric Litterst, Lutz Freitag, Wolfgang Urfer, Sabine Bader,

and Joerg Ingo Baumbach. Ion mobility spectrometry for the detection of

volatile organic compounds in exhaled breath of lung cancer patients. Thorax,

2009.

[31] R Garrido-Delgado, L Arce, CC Pérez-Maŕın, and M Valcárcel. Use of ion
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Chapter 3

Development of a Gas Sensor

Calibration Rig

3.1 Introduction

Currently gas sensors and gas based analytic instruments implement several tech-

niques to both identify and quantify compounds. The difference in design approach

from several manufacturers results in different sensitivity and selectivity of gas sensor

products [1]. Manufacturers therefore, test their sensors in controlled environments

to calibrate the sensors. There are other advantages to be gained from rigorously un-

dertaking sensor calibration tests. For example, these tests ensure a predictable re-

sponse to test samples under defined test conditions. This information is paramount

to the end used as it helps them to ascertain the capabilities and limitations of the

sensor devices and ensure they are operated within an optimum window. Addition-

ally, the response of any gas sensing system is affected by several factors including

the composition, humidity, temperature and pressure of the test gas. These factors
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are often varied during sensor calibration tests and the behaviour of the sensor to

changes in these parameters is recorded. For instances where results of these tests

are not satisfactory when compared with the manufacturer’s design goals, the re-

sults could inform further developments necessary to improve the sensor. Analysis

of these results could also infer adjustments needed in one parameter, for example

flow rate, to improve overall sensor performance. A gas calibration rig is required to

carry out these tests and to this end, such a unit has been manufactured in-house.

This chapter presents the design and manufacture of the gas calibration test rig.

The goal of calibration tests is to define the capabilities and limitations of the

sensor in a given environment and for a particular test gas. To achieve this goal

the calibration rig is expected to produce a repeatable test environment for these

tests. The test rig needs to provide gas mixtures at defined flow rates, pressure,

temperature and humidity. The unit was divided into four distinct sections namely:

the Gas Mixer, Dilutor, Permeation Source, Humidity Generator, Gas Analyser.

The design of these components are discussed in Section 3.2 - 3.6. Section 3.6.2 and

3.7 highlights the integration and control of the devices as a single unit.

3.2 The Gas Mixer

Calibration tests require compounds in many concentrations and compositions.

Gasses for laboratory use are usually purchased in gas bottles with a single com-

pound or a mixture of compounds at known concentrations. However, it is expensive

to acquire gas bottles for every concentration and mixture required. The solution to

this challenge is Gas Mixer device that takes several gas inputs and provides a gas

output at the required concentration and composition. During operation, the user
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inserts gasses with known concentration into the input. Using a software designed

in-house, the user can regulate the flow rates of the input gasses to obtain an output

with desired composition from the input gasses.

3.2.1 Mechanical design

The Gas Mixer system was designed to provide a single airflow from two input

gas/vapour streams in a consistent and safe manner. The major mechanical com-

ponents used in this design and its layout are illustrated in Figure 3.1.

Figure 3.1: Schematic of the Gas Mixer pneumatic system

Mass flow controllers

Flow through the system was controlled using electronic flow meters to ensure pre-

cise flow rates that were repeatable. Two UFC-1100A MFC manufacture by Unit

Instruments Inc., USA were used to control flow rates through the system. Both

UFC-1100A MFCs were rated for a maximum pressure of 500 psi at 300 ml/min.

The inlets and outlets were fitted with 1/8 inch Swagelok compression fittings which

allows a leak proof integration with other components upstream and downstream.
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The Mass Flow Controller (MFC) is powered by providing ± 15 V to its input pins.

The user inputs a signal between 0 - 5 V to specify a required flow rate, which is

linearly related to applied voltage. The input voltage 0 and 5 V corresponds to

no-flow and maximum flow respectively. A 0 - 5 V signal voltage output from the

MFC gives the user and indication of the current flow rate over the MFC flow rate

range.

Electronic valves

Electronic valves were added to the flow path to ensure safety and avoid leakage.

Several ETO-2-12 in-line electronic valves from Clippard, USA were used. These

valves offer fast response times taking between 5 to 10 milliseconds to switch states.

The valves operate on a 12 V supply. These are normally closed valves therefore

a voltage signal must be supplied to open the valves. The valve supply lines are

threaded with a 10 - 32 UNF thread therefore a Swagelok adapter was fitted to

adapt this thread to a 1/8 inch Swagelok compression fitting ensuring consistency

across the system. This also avoids leak throughout the system. An additional

manual Swagelok 2-way valve was placed in-line with the output to allow a safe

manual override of the system’s output.

3.2.2 Electronics design

Several voltage levels are required to power the components in the Gas Mixer con-

sequently a power supply and distribution circuit board was designed. Additionally,

a communication interface circuit board was manufactured and this is discussed

below.
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Electronics power supply

The main power requirements for the Gas Mixer were - supply regulated ± 15 V(for

both MFCs) and 12 V (for both electronic valves). An electronic circuit to provide

these voltages was designed using Autodesk EAGLE electronic design application.

Support for connecting to a National Instrument Data Acquisition board (NI-DAQ)

board was also added. This provision allows easy integration of the power supply

and communication circuits leading to a more compact design.

Communication interface

Precise flow control was achieved using a custom computer program via the NI-DAQ

USB-6001 OEM Data Acquisition Board. This NI-DAQ board is a full-speed USB

device that provides 8 single-ended analogue inputs which were used to measure

the analogue flow rate signals from the MFCs. It also includes 2 analogue output

channels and these were used to set the flow rate on both MFCs by providing voltage

signals between 0 and 5. There are 13 digital input/output channels on the data

acquisition board. Two of these digital channels were connected to the electronic

valves to open or stop fluid flow.

3.2.3 System assembly

A physical model of the device was designed before construction to ensure there

was enough physical space within the inside the 19-inch rackmount enclosure for

all internal components. The model also informs appropriate placing of structural

supports and fasteners for the internal components. SolidWorks (2016, France),

a modelling computer-aided design application by Dassault Systèmes was used to
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model the system assembly. Each of the major components in the unit were modelled

and placed in the enclosure. Accurate models of structural supports were designed

and the fasteners required to hold these in place were added. The CAD assembly is

shown in Figure 3.2.

Figure 3.2: CAD modelling of Gas Mixer assembly

After modelling, the panels of the enclosure were machined for mounting com-

ponents. On the front panel, a slot was added for a power switch which turns on

the power supply to the device. An LCD display was also mounted at the top of

the front plate. This display shows mixture states giving the user an indication of

the flow rates of both MFCs. Two LEDs were also added to indicate when power is

supplied or cut-off from the MFCs. To ensure safety during power down, two man-

ual mechanical valves were installed in the front panel in-line with the outlet from

the MFCs. The valves are connected to two 1/8 inch Swagelok buckheads mounted

on the front panel and serving as outlet. A similar configuration of two 1/8 inch

Swagelok is mounted on the back panel and this serves as gas inlet to the device. A

socket is also mounted on the back plate for power supply connections. Internally,
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the electronic circuits and the NI-DAQ were mounted on a support below the MFCs

to save space. Both electronic valves were mounted on the inlet pipe. The system

assembly is shown in Figure 3.3.

Figure 3.3: The assembled Gas Mixer Unit

3.3 The Dilutor

The Gas Mixer was sufficient for tests requiring flow rates below 300 ml/min and

dilution of a single compound. It was also applicable for tests requiring mixture

of a maximum of two compounds. However, some gas analytic techniques like IMS

and the VOC sensor designed in this project sometimes require flow rates in excess

of 1 L/min [2]. Additionally some sensor characterisation and chemical selectivity

tests require mixtures of more than two compounds. For this reason, a high flow

rate multi channel gas mixer was developed. The unit consists of a portable gas

mixer developed in-house coupled with a Model 700 Mass Flow Calibrator T-API.
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At high flow rates, gas bottles do not provide a cost effective solution since they

are consumed quickly. An alternative to using gas bottles is to obtain VOC vapour

from compounds in the liquid state and use the volatiles that evaporate from it.

This process is tedious but offers a low-cost and flexible alternative to purchasing

gas bottles. A method of obtaining VOC at known concentrations from liquids is

discussed briefly in the next section before presenting the mechanical and electronic

design of the Dilutor.

3.3.1 VOC vapour generator

As mentioned in the preceding section, a more cost effective alternative to purchasing

analytes in gas bottles is obtaining vapours from liquids of pure substances. There

are several formulae for evaluating the vapour pressure of a system at vapour-liquid

equilibrium when the temperature is known[3]. Antoine’s equation widely used to

correlate vapour pressure, Pvp to temperature and is given in Equation 3.1 [4] where

t is temperature in degree Celsius.

log10Pvp = A− B

t+ C
(3.1)

Constants A, B and C are tabulated for a number of substances. These tables

can be found in [4–7]. The vapour pressure term Pvp obtained is with the units

mmHg. In use, an aliquot of the liquid compound is poured into a bottle that is

kept in a chiller bath to control the vapour temperature. In this project, a Neslab

RTE-300 chiller bath was used as shown in Figure 3.4.
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Figure 3.4: Neslab RTE-300 chiller bath and with bubblers

The bottles used have two bores on the cap serving as an inlet and outlet. The

inlet is connected to a bubbler in the bottle and externally to a clean air source.

The outlet from the bottle is connected to gas mixer where the bubbled VOC is

mixed or diluted with other gasses. The concentration of vapour Cvp (ppm) is given

by Equation 3.2 where P was previously measured as 760.0021 mmHg and Pvp is

the vapour pressure obtained from Equation 3.1.

Cvp =
Pvp

P
∗ 106 (3.2)

The flow rate of carrier clean air through the bubbler Fvp is used to obtain a

desired output concentration C (in ppm) of vapour and is obtained using Equation

3.3 where Ftotal is the sum of the flow rates of the vapour and the diluting gas

through the mixer.

Fvb =
C ∗ Ftotal

Cvp

(3.3)
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Using the setup and the equations described in the section above, vapours at

known concentrations can be obtained. For most compounds, Cvp from Equation

3.2 are in excess of 1000 parts per million (ppm) hence a Dilutor is required to

dilute the concentration to desired levels using Equation 3.3. The mechanical and

electronic design of the Dilutor is shown in the following section.

3.3.2 Mechanical design

Here, a Dilutor was developed in-house and then coupled with a Model 700 Mass

Flow Calibrator T-API. The schematic showing the gas flow paths for both units is

shown in Figure 3.5.

Similar to the Gas Mixer, the Dilutor has two MFCs for precise flow rate control.

Two UFC-1100A MFC manufacture by Unit Instruments Inc., USA were used. One

of the UFC-1100A MFCs was rated for a maximum flow rate of 2000 mL/min and

the other UFC-1100A MFC was rated for a maximum flow rate of 2000 mL/min.

The larger flow ratio between the flow controllers increases the mixing ratio capacity

of the system. Additionally, the portable gas mixer adds two mixing channels when

used in combination with the Gas Mixer. Both MFCs were powered by providing ±

15 V to its supply pins. The user inputs a signal within 0 - 5 V to specify a required

flow rate with 0 and 5 V corresponding to no-flow and maximum flow respectively.

A 0 - 5 V signal output gives the user an indication of the current flow rate over

through MFC. The inlets and outlets were fitted with 1/8 inch push-fit fitting. A

schematic diagram of the portable gas mixer is shown in Figure 3.6.
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Figure 3.5: Schematic of the Portable Gas Mixer and Model 700 Calibrator
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Figure 3.6: Mechanical and electronic components of the Dilutor.

The Model 700 Mass Flow Calibrator T-API (Figure 3.7)is equipped with two

MFCs rated at 100 mL/min and 10000 mL/min. The higher flow rate ratios between

the MFCs increases the mixing ratio capacity of the system. This instrument has

four channel input and a single output. However, only two of these inputs can be

used simultaneously. Four electronic valves, a pressure and flow sensor are used to

select flow input into device. A combination of the Model 700 calibrator, Dilutor

and Gas Mixer allows mixture of up to six different gasses/vapours over a wide range

of concentrations.
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Figure 3.7: Model 700 Mass Flow Calibrator T-API

3.3.3 Electronics design

Similar to the Gas Mixer, the main power requirements for the Dilutor unit were

to supply regulated ± 15 V to both MFCs. A custom electronic circuit steps down

240 VAC to regulated ± 15 V which is supplied to the MFCs. Flow control and

communication were managed by an ATmega328P microcontoller. This microcon-

troller features six analogue inputs. Two of these analogue pins were used to read

flow rate from the MFCs. The voltage signal to control flow was generated using

an MCP4725 12-Bit Digital to Analog Converter (DAC). Using this high resolution

DAC enables precise flow control. The Graphical User Interface (GUI) was designed

on the Universal Windows Platform (UWP) using Microsoft Visual Studio 2017 and

C] programming language. Communication between a computer running the soft-

ware and both units was achieved via Bluetooth LE 4.1 interface using the Nordic

nRF51822 chipset. A 4D system touch screen was added to front panel to display

system information to the user. The assembled unit is shown in Figure 3.8.
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Figure 3.8: The Dilutor

The Model 700 Mass Flow Calibrator multitasking operating system allows it

to do instrument control, monitor test points, provide an analogue test output,

interface with dataloggers or analysers, and provide a user interface via the display

on the front panel. It can be interfaced with external devices via an RS-232 port on

the back panel. Although the Model 700 Calibrator includes buttons and a display

for setting process parameters, using this function was cumbersome for processes

with more than one steps. Additionally, the system often shuts down when there are

unexpected changes to system parameters such as input gas pressure. To resolve this

issue an interface to manage the Model 700 Calibrator was added to the Universal

Windows Platform (UWP) app used to control the Dilutor. This app communicates

with the Model 700 Calibrator via the RS232 port. An added advantage with this

approach was a seamless control of both mixers via a single software allowing the

user to set timing and test gas sequences for both devices from a single application.

A setup of the portable gas mixer and Model 700 Calibrator is shown in Figure

3.9. This setup in isolation can be used to deliver gas mixtures to test sensors in
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situations were only concentration is to be investigated.

Figure 3.9: The Dilutor and Model 700 Calibrator

3.4 Permeation Source (OVG 4)

Low concentration gasses/vapour can be achieved using the Gas Mixer and VOC

vapour generating technique presented earlier. However, generating low (ppb) con-

centrations is challenging owing to the fluctuations of the MFC at very low flow

rates. An Owlstone Calibration Gas Generator (OVG-4) unit was purchased as a

solution to this challenge. The OVG-4 (Figure 3.10) is a calibration gas system

that can generate NIST traceable, precise, repeatable, and accurate concentrations

of chemicals and calibration gas standards [8] at low ppb.
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Figure 3.10: Owlstone Calibration Gas Generator (OVG-4) unit [8]

During use, a small quantity of the target compound is sealed in the permeation

tube and placed in a heating chamber within the unit. As the analyte permeates

from the surface of the tube, a stream of carrier gas flows over the surface of the

tube carrying the permeated analytes through the outlet at a fixed flow rate.This

device requires the user to make and calibrate tubes similar to the one shown in

Figure 3.11 for each compound they wish to analyse.

Figure 3.11: Owlstone permeation tube [9].

Equation 3.4 is used to compute the concentration from the properties of the
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permeation tube and the flow rate through the chamber [10].

C =
qd ∗ 22.4

F ∗Mw

(3.4)

In this Equation, the output concentration C (ppm) is related to the flow rate

F (mL/min) and the molecular weight Mw (g/mol) of the analyte. The permeation

rate (ng/min), qd is obtained during calibration of the tube at a fixed temperature.

3.5 Humidity Generator

As mentioned previously, humidity is factor that affects the performance of sensors

hence tests are carried out to evaluate sensor performance at various humidity levels.

A humidity generator (Figure 3.12) was designed in the School of Engineering to

facilitate humidity calibration of gas sensors. The Humidity Generator provides gas

flow at specified humidity. This is achieved by flowing clean laboratory air through

a series of water bubblers to humidify it before using this air to dilute analytes from

the Gas Mixer, Dilutor and Model 700 Calibrator. The device houses two MFCs

which are programmed to channel air through a ‘dry line’ or through the ‘wet line’

(water bubbled) to produce the desired humidity. A Sensiron SHT75 and an NXP

MPXM2053GS sensor were installed in the gas flow path to provide temperature,

humidity and pressure measurements. A custom software was also designed to pro-

vide precise humidity control via a NI-DAQ 6008 OEM Data Acquisition module.
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Figure 3.12: Humidity generator device and water bubbler

3.6 Gas analyser

The previous sections describe the development of equipment needed to generate

gases/vapours with known humidity, concentration, and flow rate. To check the

output of the gas rig is as desired by the user, a “gas analyser” was created to

measure the gas output. The Gas Analyser was designed to examine the composi-

tion and quantity of gas from sensor undergoing calibration. As illustrated in the

system schematic in Figure 3.13, the Gas Analyser uses several sensors to produce

information on the temperature, pressure, flow rate and chemical composition of the

effluent from the calibration process. This section presents the design of the Gas

Analyser.
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Figure 3.13: Schematic of the Gas Analyser

3.6.1 Sensors

An array of commercial sensors were used in this design to analyse gas composition

of calibration process. These sensors are:

Methane gas sensor

The Prime 1 high resolution methane sensor, acquired from Clairair LTD, was used

to sense a wide range of hydrocarbons. This sensor integrates an infrared radiation

source, custom infrared detector and an internal ARM7 core microprocessor into a

compact 20 × 8 mm package. The Prime 1 is temperature compensated and was

selected for its high resolution (0-100% LEL methane) [11]. This sensor provides

measurement signals on the hydrocarbon content of gasses after going through gas

test rig and calibration sensor. A Cirius X transmitter board from Clairair LTD

was added to the design to manage sensor power supply and provide communication

interface with the sensor [12].
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CO2 sensor

This sensor was added to the Gas Analyser to measure CO2. The Alphasense IRC-

AT CO2 sensor was selected because it covers a wide range of concentrations (0 - 5000

ppm[13] ) . Additionally, the sensor only requires up to 60 mA and has a transmitter

board (Alphasense IRC-TX NDIR CO2 [14]) which enables easy integration of the

sensor with the other electronics in the device.

Temperature and Humidity

The SHT75 is, a high end sensor by Sensiron, was used to measure gas temperature

and humidity. Desirable features of the sensor for this project includes a 12-bit

resolution measurement of relative humidity to an accuracy to ±1.0% r.h. and a low

average power consumption of 90 µW [15] . Temperature is measured to ± 0.3 ◦C

accuracy at a resolution of 0.01 ◦C .

PID sensor

The PID sensor measures VOCs to very low concentrations and is considered the

gold standard for VOC measurement. The sensor uses UV light to ionise target

compounds which are later detected and measured. A voltage signal of this mea-

surement is given by the sensor’s onboard electronics and is an indication of the

concentration of the gas tested. Available commercial sensors covers concentration

in a range of 1 ppb to 6000 ppm. The Alphasense PID-A12 with a range of 50 ppb

to 6000 ppm was used to provide information on the VOC composition of gasses

from the sensor undergoing calibration [16].
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CO, NO2 and H2S sensors

Sensors for common test gasses such as CO, NO2 and H2S were added for concen-

tration measurement of these compounds. An Alphasense CO-A4 electrochemical

sensor was used to measure CO levels. This sensor covers a 0 - 500 ppm range and a

sensitivity of ≈ 0.3 mA/ppm in 2 ppm CO [17]. NO2 and H2S electrochemical sen-

sors were also purchased from Alphasense. All three sensors output analogue current

corresponding to the concentration of the test gas. An Analogue Front End (AFE)

circuit was also purchased from Alphasense which provides low noise electronics to

drive the sensors and optimise their performance. The PID, CO, NO2 and H2S and

the AFE housed in a gas hood, as shown in Figure 3.14.

Figure 3.14: PID, CO, NO2 and H2S and the AFE housed in a gas hood.

Mass Flow Meter (MFM)

The MFM is similar to MFC described previously. Unlike the MFC the MFM does

not control flow, it only measures flow rate. Hence, a control signal is not required

to drive the MFM. It is powered by supplying ± 15 V to its power supply pins.

During use, the MFM outputs a linear signal within 0 - 5 V with 0 indicating no

flow and 5 V indicating maximum flow. The inlets and outlets of the MFM were
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fitted with 1/4 inch Swagelok compression fittings.

3.6.2 Electronics and communication

The electronic components discussed in Section 3.6.1 require various voltages for

their operation. It is also important that these supply voltages are free from inter-

ference which could affect the measurement obtained from the sensors. A summary

of these requirements is shown in Table 3.1.

Table 3.1: Summary of voltage requirements for Gas Analyser components

Component Manufacturer Voltage(s) Current/Power
Prime 1 (via Ciriux X) Clairair 8.0 - 36.0 V 1.5 W
IRC-AT (via IRC-TX) Alphasense 12 - 40 V ≈ 60 mA
SHT75 Sensiron 2.4 - 5.5 V 80 µW
PID-A12 Alphasense 3.6 - 10.0 V 85 mW
CO, NO2 and H2S Alphasense 3.6 - 6.4 V -
MFM Units Instruments Model ± 15 V 150 mA
Pump - 6v -

An electronic circuit was designed to provide regulated voltages at the levels

shown in Table 3.1 from a single 24 V power supply. Most of the components have

low power requirements, however ,the MFM requires a significant amount of power

to function. Therefore, a Traco TEN 5-2423 DC-DC converter was used to supply

regulated ± 15 V at 200 mA to the MFM. An electronic circuit board was designed

using Autodesk EAGLE electronic design application and is shown in Figure 3.15.
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Figure 3.15: Gas Analyser power distribution circuit.

Two 34-way sockets were added to the board to interface with the NI-DAQ 6001

OEM Data Acquisition Boards. The NI-DAQ is connected to the electronic compo-

nents listed in Table 3.1 and has a USB interface to transfer these measurements to

a computer and control signals from the computer to the Gas Analyser. A control

software was designed using National Instruments LabVIEW to provide a GUI for

users to interact with the Gas Analyser. Using the LabView software, users get a

visual feedback of the components in the Gas Analyser such flow rate, concentra-

tions, temperature etc. The software also allows users to log these parameters for

further investigation.
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3.6.3 System assembly

A major consideration in the assembly of the Gas Analyser was the PID. Most

commercial PID sensors are designed to allow gas travel to through the sensor and do

not provide a leak-proof inlet and outlet. Consequently, an enclosure is required for

the PID when testing hazardous compounds. Without this enclosure test compounds

will leak into the environment. To prevent this, it was decided to use IP68 certified

enclosure for the Gas Analyser. The Ingress Protection marking, IP, rates the degree

of protection against dust, dirt, intrusion, water, air etc. IP68 certification is applied

when a test unit has complete protection against particles entering or leaving the

unit in a vacuum and can be immersed in 1m or more of water without leaking. After

modelling the internal components to ascertain the space requirements for the Gas

Analyser, a 330 × 230 × 110 mm IP68 certified Euronord enclosure was selected.

This enclosure also includes an O-ring seal compressed around the lid to provide

adequate seal. As shown in Figure 3.16, the internal components were mounted to

perspex sheets compressed to the internal walls with a middle structure added to

provide support for the horizontal supports.
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Figure 3.16: Assembly of the Gas Analyser.

This technique was employed to ensure the components were not screwed to the

enclosure side walls and could lead to leaks. A mini vacuum pump was mounted

inside the unit to pump air within the enclosure through an outlet on the back on the

back panel. Two female USB sockets were also mounted on the back plate. These

USB mounts were connected to the NI-DAQ boards and provided a connection

port to the computer running the control software. On the front panel, two 1/4

inch Swagelok buckheads were mounted. One of these buckheads was used as inlet

and this was connected to the MFM. The other buckhead is the unit’s outlet and

connected to the outlet of the sensors stacked on the AFE. The completed Gas

Analysers is shown in Figure 3.17.
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Figure 3.17: The Gas Analyser

3.7 System Integration and Software

The entire Gas Test Rig is shown in Figure 3.18. The unit comprises the Gas Mixer,

OVG 4 Permeation Unit, Humidity Generator, Model 700 Calibrator, Dilutor, Gas

Analyser and computer running the control LabVIEW software.
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Figure 3.18: The Gas Test Rig

The Gas Mixer, OVG 4 Permeation Unit, Humidity Generator and Gas analyser

are enclosed in an acrylic sealable enclosure. This setup allows calibration tests using

hazardous compounds as these are trapped in the acrylic and released through the

exhaust system. A Crowcon Gas-Pro sensor with 4 gas sensors (CH4, H2S, CO and

O2) was mounted in the enclosure for safety. This sensor provides information on

the composition of air in the enclosure and sounds an alarm when a certain limit is

exceeded informing the user if it is safe to open the enclosure. Space is also provided

within the enclosure for users to place their test sensors for calibration.

The computer on the Gas Test Rig enclosure runs the control LabView software.

A screenshot of the software’s interface is shown in Figure 3.19. This software is

used to set, measure and record the Test Rig parameters such as flow rates and

humidity
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Figure 3.19: The Gas Test Rig

3.8 Conclusion

This chapter presented the development and construction of Gas Test Rig for sensor

calibration tests. The Test Gas Rig includes a Gas Mixer, OVG 4 Permeation Unit,

Humidity Generator, Model 700 Calibrator, Dilutor, Gas Analyser. A combination

of these devices enables users to generate test gas at specified flow rates, concentra-

tions, humidity and composition. Custom software was designed to control the unit

was also shown.
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Chapter 4

Design of a Pre-concentrator and

Gas Chromatograph

4.1 Introduction

Over the years several technologies have been developed for Volatile Organic Com-

pound (VOC) detection. This includes mass spectrometer, Ion Mobility Spectrome-

try (IMS), Photoionization Detector (PID), Metal Oxide Sensor (MOS) and optical

sensors to name a few. Although all of these technologies are able to detect VOCs in

the ppm range, trace analysis of vapours with theses technologies can be challenging.

MOS and optical sensors, for example, struggle with analysis of compounds below

1ppm [1]. PID, mass spectrometers and IMS can offer detection limits in the ppb

region [1] [2]. However, they offer limited selectivity when used in isolation [3]. To

improve the sensitivity and selectivity of these sensing technologies they are usually

coupled with a Pre-concentrator (PC) and/or Gas Chromatograpy (GC).
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PCs are integrated in the frontend of analytical instruments to improve over-

all performance of the system. PCs improve concentration and purify a chemical

sample before introduction to an analytical system [4] thereby increasing the limit

of detection of the overall system. Advantages from using PCs includes selective

sampling of target compounds and operation at high flow rates. GCs provides ana-

lytical systems with a mixture of good accuracy and precision, very high selectivity

and resolution, wide dynamic concentration range and high sensitivity [5]. It is used

to separate complex mixtures before analysis by detectors such as IMS and PID

[6]. When integrated with gas detection technologies, both PC and GC increase the

limit of detection, selectivity, sensitivity of the sensor device. The development of

at PC and GC will be presented in this chapter.

4.2 Pre-concentrator design

In practical gas analysis situations, the concentration of test samples may be lower

than the limit of detection for a specific detector. PC resolves this issue by allowing

the collection of enough sample mass to obtain detectable signals from the detector.

Additionally, PC can provide some degree of humidity compensation [7]. Conven-

tional PCs are made up of a stainless-steel tube or glass-capillary tube coated with

an absorbent material [8–12]. In use, the sample is flowed over adsorbent material

and the target compound is trapped in the pores of the adsorbent. After this cap-

ture process, the trapped concentrated samples are released or desorbed by heating

the adsorbent material [4]. The adsorbent material is the most important compo-

nent of the PC and selecting a suitable adsorbent material is important to ensure

proper pre-concentrating of the target sample. Adsorbent material selection for this
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research is discussed in the next section.

4.2.1 Adsorbent material

A major design requirement for PC is high affinity for target compounds and large

surface area for increased adsorption. Adsorbent materials such as amorphous silicon

dioxide powder [13], carbowax x [14][15], mesoporous silica, zeolite [16], Tenax TA

[13, 17] meet this requirement and have been used in many PC designs. In this design

however, Activated Carbon Cloth (ACC) which is both easily available and capable

of adsorbing VOCs was used. Woven ACC has been utilised extensively as a filter

to trap VOCs and has been shown to have a high affinity for VOCs [18], however

it has not been fully investigated as a PC material. ACC is usually processed to

increase its porosity, surface area and selectivity. One major advantage in the use of

ACC is its high porosity and large surface area (1000-2000 m2/g [19]) compared with

standard commercial adsorbents such as Tenax ( 35 m2/g [20]). Another advantage

is the lower regenerative temperature of ACC (150◦C [21]) compared with Tenax

(300◦C) leading to more power efficient and safer designs. Additionally, the lower

price point of ACC compared to the other adsorbent materials mentioned allows it

to be implemented in disposable designs where cross contamination is crucial.

ACC are usually manufactured by weaving or knitting activated carbon. An

SEM image comparing the microstructure of a knitted and woven ACC is shown in

4.1.
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(a) Knitted

(b) Woven

Figure 4.1: Microstructure of ACC

Several proprietary ACC are commercially available and some of these are shown

in Table 4.1. These clothes were compared using adsorption and desorption tests.

In these tests, VOCs were sampled from several chemicals and desorbed into dif-

ferent analytical instruments. To aid the adsorption and desorption process several

sampling and desorbing instruments were developed.
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Table 4.1: ACC materials and manufacturers

Commercial name Manufacturer
IAC Cloth Mast Carbon

C-Tex Mast Carbon
DL laminated -

FM 30 K Chemviron
FM 40 k Chemviron
FM 70 Chemviron
FM 120 Chemviron

4.2.2 Adsorber and thermal desorber development

The pre-concentrating process involves passing a stream of the low concentration

sample over the surface of the adsorbent material. Target compounds to be pre-

concentrated are trapped in the pores of the adsorbent material or adhere to its

surface. This process is referred to as adsorption. To extract the concentrated

sample from the adsorbent material, the temperature of the adsorbent material

is increased until all trapped molecules are released into a stream of flowing gas.

This process is known as thermal desorption. The pre-concentration is achieved by

releasing the adsorbed compounds into a smaller volume of gas. Several devices

were developed to aid adsorption and desorption of the ACC materials shown in

4.1. This includes a headspace sampler, several adsorbers and thermal desorbers.

Headspace sampler

Many biomedical test samples exist in the liquid phase, therefore, analysis of such

samples requires extracting VOC from the liquid phase. To facilitate this process, a

headspace sample ‘stool’ was designed to suspend the ACC in the headspace above

a target liquid in a vial. A CAD of the headspace suspender is shown in Figure

4.2. The headspace suspender carries the ACC at a height 30 mm above the base
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Figure 4.2: CAD of the ACC headspace suspender

of the vial. For a 20 mL vial, this height allows 10 mL of liquid sample to be stored

below the ACC. The suspender is manufactured from stainless steel for improved

inertness and to avoid corrosion. During adsorption, an aliquot of the test liquid is

pipetted into a 20 mL vial. The suspender is inserted into the vial and several 15 mm

diameter ACCs were stacked on the suspender. After this, the vial is sealed with the

cap. The rate and amount of adsorption can be increased by releasing more VOC

from the liquid into vapour. This is achieved by inserting the vial into a hotplate

(Stuarts CB162) and increasing the temperature to 40◦C. VOCs released from the

liquid are trapped in the ACC suspended above. Vials containing the suspender and

ACC during a sampling process is shown in Figure 4.3.

After sampling is completed the ACC is removed from the vial and inserted into

a Thermal Desorber (TD) to extract the concentrated VOC for analysis in a gas

based analytical instrument. Several TDs were designed to heat the ACC in an

enclosed space and channel the concentrated VOC released into a test instrument.

These thermal desorbers are presented in the next section.
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Figure 4.3: Headspace suspender with ACC during sampling

Thermal desorbers

After capturing VOC with the ACC, the VOC is extracted for analysis using a

TD by heating the cloth to its regenerative temperature of 150◦C resulting in the

release of trapped VOC. Three concepts of TD were developed and manufactured.

The design approach for each concept was to manufacture a stand-alone TD that

could be integrated with various gas analytic instruments. The first concept allows

quick desorption of the ACCs previously charged with VOC using the headspace

sampler. The 15 mm diameter ACC can be heated in a confined heating chamber

in Concept-1 therefore the released VOC is carried from the chamber with a carrier

gas flow. A CAD representation of this concept is shown in Figure 4.4.
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Figure 4.4: Concept-1 thermal desorber for ACC

The TD is manufactured from stainless steel for increased inertness to desorbed

compounds. The inlet is a 6.35 mm stainless tube attached to 20 mm base plate.

This baseplate screws into a 20 × 30 mm cylinder which acts as the heating chamber.

The cylinder is shown in Figure 4.4 and has been made transparent to show the filter

mesh. These stainless steel mesh plates are used to position the ACC perpendicular

to the direction of flow, increasing the surface that is exposed to the carrier gas. The

mesh also improves heat transfer by transporting heat from the cylinder surface to

the ACC. Another 20 mm stainless steel plate is used to the seal base end of the

cylinder. This back plate is attached to a 6.35 mm outer diameter stainless tube

which serves as outlets.

The heating system comprises a 25 gauge nichrome wire wrapped around the

heating chamber. The wall of the heating chamber is 1 mm thick to improve heat

transfer. For electrical insulation, the nichrome wire was sleeved with a Pro-Power

GSX-S24-1100-NAT fibreglass sleeve. Temperature control was achieved using a K-

type thermocouple wound around the cylinder between the nichrome wire to mea-

sure the cylinder surface temperature. The thermocouple is interfaced with an AT-
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SAMD21 microcontroller using the MAX31855 thermocouple-to-digital chip which

allows 14-Bit temperature measurements over SPI. The ATSAMD21 is programmed

to read the current chamber temperature from the thermocouple and adjust the tem-

perature of the nichrome as required. A Proportional Integral Derivative controller

software was designed in C++ language to provide precise temperature control.

This software controls the PWM output pins on the ATSAMD21 microcontroller.

This PWM signal is used to control the voltage input on a Crydom CMX60D10 relay

with the load voltage pins of the relay connected in series with the nichrome coil and

a 24 V power supply. The heating system was improved by enclosing the heating

coils and chamber in a Spacetherm thermal insulating blanket of 1 cm thickness.

The insulating blanket ensures heat generated is transferred to the chamber only

and not lost to the environment. The assembled Concept-1 TD with the input end

unscrewed is shown in Figure 4.5.

Figure 4.5: Assembled Concept-1 thermal desorber for ACC

Using this TD the adsorption and desorption capabilities of several ACC were

tested. The unit was also explored as a simultaneous sampler and TD. In the

sampling configuration, new ACC were first inserted in the TD before sampling.

The inlet cap was screwed in place and a 1/4” tube was connected from the outlet
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of the vial carrying the sample liquid. While heating the liquid a purified air carrier

gas is used to flush the headspace from the vial into the TD. The ACC in the TD

adsorb the VOC in the flow stream. Once sampling is complete, the adsorbed VOC

is extracted using the desorption method described previously.

During tests it was observed that temperatures beyond the 150◦C regenerative

temperature was required to fully extract VOC from the ACCs. This was due to less

heat transferred to the surface of the cloths. To improve heat transfer and reduce

power consumption while increasing sampling capacity Concept-1 was revised. A

CAD of Concept-2 is shown in Figure 4.6.

Figure 4.6: CAD of Concept-2 thermal desorber for ACC

In Concept-2 the ACC are placed in cells separated by heating fins in a heating

chamber. The fins were added to transfer heat from the TD surface to the ACC. This

designs ensures a the entire surface area of the cloth and heating fins are in contact

improving heat transfer to the ACC. Additionally, adsorption and desorption was

improved in Concept-2 as the sample travels in a serpentine flow path along the
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plane longitudinal of the ACC cloth. The chamber and fins in Concept-2 TD were

manufactured from a single block of stainless steel (31 × 47 mm). Two stainless

steel plates (45 × 61 mm) with 10 mounting holes were used to cap both ends

of the chamber. Similar to Concept-1, nichrome wire and a K-type thermocouple

was wrapped around the chamber. The heating circuit is also driven with a PWM

signal from a programmed ATSAMD21 microcontroller. The assembled unit with

the cover plates removed to show the internal fins is shown in Figure 4.7. Less

power consumption was recorded when using Concept-2 compared with Concept-1.

Additional, trapped VOCs were completed released without increasing the surface

temperature above 150◦C.

Figure 4.7: Assembled Concept-2 thermal desorber for ACC

With both concepts presented, changing the ACCs after desorption of toxic com-

pounds may lead to hazardous exposure. Additionally, sampling with disposable

ACC to avoid cross contamination was challenging since it was difficult to reach

the heating chamber. Concept-3 was developed to eliminate these issues. Here, the

ACC are enclosed in disposable tubes. A CAD illustration of this design is shown
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in Figure 4.8.

Figure 4.8: CAD of Concept-3 thermal desorber for ACC

In this design, the ACC is wound into a cylinder and inserted into metal tubes.

The tubes had an internal diameter of 6.35 and were 80 mm in length. The tubes

carrying the ACC is inserted into Concept-3 TD. The user is shielded from the cloth

and its contents during sampling and analysis. This design also allows adsorption

to be performed without the TD by mounting the tubes on a vial containing the

sample as seen in Figure 4.9.
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Figure 4.9: Adsorption using stainless steel sample tube

After sampling, the tubes are transported to the TD for desorption. Another

improvement with Concept-3 was that it has a faster desorption cycle as the tubes

can be changed immediately to run another test without waiting for the unit to cool

down before running another adsorption/desorption test. The adsorption tube slots

into a PTFE recess on one end of the TD and a spring loaded 3.50 mm tube with

a 30 mm flange plugs into the tube from the other end. A semicircular stainless

steel section stretching 40 mm is mounted between both end plates of the TD. This

section is wrapped with nichrome and is used to heat the tube sitting above it in a

similar manner to Concept-1 and Concept-2. The assembled Concept-3 TD is show

in Figure 4.10.
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Figure 4.10: Concept-3 TD

Some of the ACCs shown in Table 4.1 and the TD concepts presented were used

for adsorption and desorption tests. The test setup and results are shown in the

next section.

4.3 Tests, results and discussion

Initial tests were performed to ensure compounds of interest were adsorbed by the

ACC and no artefacts were introduced as a result of dissociation of the ACC material

during the adsorption and desorption process. In this test, 0.1% solution of acetone

and propanol and 0.05% solution were adsorbed onto a FM30K ACC and desorbed

into the Owlstone Lonstar Field Asymmetric Ion Mobility Spectrometry (FAIMS)

instrument. The test method involved adsorbing the samples for 10 minutes. This

was achieved by mounting a tube containing the ACC in a flow path of the sample

to be tested. After sampling is completed, the tube was inserted in Concept-3 TD
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and the desorbed into the FAIMS. The desorption procedure included heating the

tube to 100◦C for 5 minutes. Next the desorbed compounds were flushed from the

tube using a flow of laboratory clean air. The test was repeated six times for each

test compound. The compounds were also directly analysed on the FAIMS without

using the PC. The direct tests were carried out for comparison with ACC adsorption

and desorption test results. Scaled PCA plots of the direct control tests shown in

Figure 4.11.

Figure 4.11: FAIMS analysis of acetone, isopropanol and propanol.

As expected, the FAIMS instrument showed good separation between acetone,

isopropanol and propanol groups. Scaled PCA plot of the adsorption and desorption

tests with ACC is shown in Figure 4.12 below.
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Figure 4.12: FAIMS analysis of desorbed acetone, isopropanol and propanol.

The desorption tests results in Figure 4.12 shows clustering of analysed acetone,

ethanol and propanol. This results shows that ACC adsorbs and desorbs VOC ef-

fectively without introducing artefacts which would have been present in all test

resulting in poor separation of the test compounds. Further tests were carried out

to compare the ACCs mentioned in Table 4.1. In this series of tests, each adsorp-

tion sampling was carried out by suspending a 15mm strip of ACC in the headspace

of a solution using the suspenders shown in Figure 4.3. Solutions containing 0.1%

acetone, 0.1% propanol and 0.05% isopropanol in water were used. The vial con-

taining the solutions and ACC was placed in a Techne DB200/2 Dri-Block heater

and heated to 45◦C for 10 mins. For adsorption using the ACC tubes, an outlet slot

was added to the vial cap and the tubes were mounted over the slot. After adsorp-

tion, the samples were desorbed into several instruments including the Cyranose 320

electronic nose. This procedure was repeated 10 times for each compound.

104



Figure 4.13: Scaled PCA plots of desorbed acetone, propanol and isopropanol using
AC

Figure 4.14: Scaled PCA plots of desorbed acetone, propanol and isopropanol using
DL cloth
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Figure 4.15: Scaled PCA plots of desorbed acetone, propanol and isopropanol using
C-Tex cloth

Figures 4.13, 4.14 and 4.15 shows the sensor response obtained from the Cyranose

320 after desorbing AC, C-Tex and DL ACC with the thermal desorber. All three

cloths exhibit good VOC adsorption properties with observable clustering for the

compound groups tested. It was also observed that desorption results from the AC

and C-Tex cloths showed better separation than those obtained from DL cloths.

Pre-concentration properties of the cloths were tested to show the capabilities of

the assembled ACC and TD to function as a PC unit. In these sequence of tests 55

ppb isbutylene and acetone were adsorbed onto C-Tex cloths. They were desorbed

at 150◦C into a Tiger VOC Detector from Ion Science. Additional control tests

were performed by testing the compounds directly on the Tiger instrument without

using the PC unit. Figure 4.16 is a plot of the responses obtained from the Tiger

instrument showing a 110 times increase in concentration for the compounds tested.
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(a) Isobutylene

(b) Acetone

Figure 4.16: Tiger PID sensor response with and without PC

More tests were carried out to determine the concentration factor of the ACC.

Adsorption tests were performed with a 15 mm strip of ACC in the headspace of

a solution using the suspenders shown in Figure 4.3. Solutions containing 0.1%

acetone were used. The vials containing the solutions and ACC was placed in a

Techne DB200/2 Dri-Block heater and heated to 45◦C for 10 mins. The ACC was

extracted from the vial and inserted in the TD with the outlet connected to a 1st

Detect MMS1000 R© mass spectrometer. The test was repeated without using the
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PC therefore the vial was connected directly to the 1st Detect MMS1000 R© mass

spectrometer.

(a) Without ACC

(b) With ACC

Figure 4.17: Mass spectra of acetone from MMS1000 mass spectrometer with and
without ACC

Figure 4.17 shows the mass spectra obtained from the 1st Detect MMS1000 R©

after desorption. A peak for acetone is observed at peak at 57.5 m/z showing
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that acetone was successfully captured and desorbed. There was an 830% increase

in response intensity from a maximum peak of 1175 without ACC to 10878 when

ACC.

The tests and results obtained shows the suitability of the PC presented for

sampling and concentrating VOC. There are several advantages in using PC in gas-

based analytical systems detection systems. The concentrated target compound can

be released in a single pulse providing a narrow time width of high concentration

signal, thereby improving the overall effectiveness of the analytical instrument. As

demonstrated in the tests, another advantage of the PC is that it can be interfaced

with different types of chemical instruments serving as a convenient channel between

sample and instrument. Apart from PCs, many analytical instruments incorporate

a GC to provide further compositional information. The next section presents work

carried out to design the GC.

4.4 Gas Chromatograph development

A GC separates compounds in a mixture based on their boiling points, polarity

and relative affinity for a stationary phase lining the GC column [22]. The solvent

travels through the column and the retention time in the column is used for qual-

itative analysis. It suggests the identity of the solute when it is compared to a

predefined standard. The height of the resulting response peak or area determines

the concentration of the solutes when again compared with known standards. When

separation is completed, it is expected that the results have non-overlapping curves

with their respective narrow peaks. The main objective of the GC in this scenario

is to ensure that a compounds going through the column is delayed before being
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reaching the analytical instrument of choice. This delay will vary for different com-

pounds depending on their interaction with the stationary phase lining the walls of

the GC. The aim here is not to obtain a complete separation of the compounds,

as in commercial GC systems but to introduce a temporal delay that will improve

compound discrimination.

4.4.1 GC design

Current trend in GC design utilises micromachining techniques to manufacture

miniature GC columns. Various silicon micromachining methods, such as LIGA[23]

and DRIE[24], can be used to construct high aspect ratio micro-channels and mi-

crostructures and have been applied in micro channel GC manufacture. However,

fabricating structures using silicon machining is time consuming and costly. Addi-

tionally these techniques do not produce true 3D structures. For this design, Micro

Stereo Lithography (MSL) and CNC has been selected over silicon micromachining

as it enables manufacture of full 3D structures. One advantages of using MSL is

the rapid development of high-resolution three dimensional objects during design.

Utilising MSL and CNC, GC systems with serpentine column topologies were de-

signed and manufactured. In the School of Engineering, at Warwick University, we

have access to MSL machines including the Form2 Desktop 3D printer and Envi-

siontec Perfactory Mini. GC concepts were first designed using the SolidWorks CAD

software before being transferred to the MSL machines for manufacture.

The preliminary concept consist of a block with interconnected rectangular pas-

sages acting as the GC column. A CAD illustration of this concept is shown in

Figure 4.18. Externally, this design measures 20.5 × 20.75 × 12 mm. The columns

have a cross sectional dimension of 0.5 × 0.5 mm. In total, the 179 columns stretch
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≈ 2.5 m. Columns were connected by a recess on the face of the block. The inlet

and outlet were designed to fit standard 3.175 mm push-fit fittings.

Figure 4.18: CAD of Concept-1 GC

Sealing this GC design was achieved by mounting two acrylic places on both

exposed sides of the GC. Before attaching the plates, a thin layer of the R11 resin

used by the Envisiontec Perfactory Mini for additive manufacturing was spun on

the surfaces of the plates. Both plates were aligned on the exposed surfaces of the

GC. The plates were secured using 8 M3 screws and nuts (Figure 4.19). After the

assembly process, the R11 was cured by exposure to Ultraviolet (UV) light.
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Figure 4.19: Assembled Concept-1 GC

Although the part was successfully built, removing excess material from the

structure before curing was challenging. Since the columns were narrow and rel-

atively long, ejecting stuck material before curing introduced imperfections to the

column walls which resulted in uneven coating of the column wall with the stationary

phase. This could lead to peak broadening and overlapping effluents. This situation

was eliminated with Concept-2 design where all of the build was held in a single

plane. The column in this design consist of a semi-circular channel which runs as a

spiral on both faces of a 20 × 20 × 5 mm block (Figure 4.20(a)). The cross sectional

geometry of the column was a 0.5 × 0.9 mm rectangle with rounded corners of 0.1

mm. The corners were rounded to stop manufacturing material or stationary phase

coating from getting stuck at the right angle corners. The column is terminated

with a 3 mm recess at both ends. One end of the spiral has a 3 mm hole leading to
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another 3 mm recess on the opposite face. This bore is used to transport samples

from one spiral to the spiral on the opposite side of the GC. Using this method,

two separate spirals could function as one GC. This also opens the opportunity for

multi-dimensional analysis by using different coatings on different sides of a single

GC.

(a) Single GC (b) Stacked GC

Figure 4.20: CAD representation of Concept-2 GC

The second pot serves as inlet or outlet to the spiral column depending on the

configuration. When a single GC is used, a 10-32 UNF threaded hole on an acrylic

cover is aligned with this pot. The acrylic also has two other holes for mounting to

the GC using two M2 screws. When multiple GCs are stacked as shown in Figure

4.20(b), this pot aligns with inlet pot on the subsequent GC. An acrylic plate is

inserted between stacked GCs to separate samples and ensure transport to the next

GC stage is via the recess. Sealing the GC was performed similarly to Concept-1.

An acrylic plate measuring 20 × 20 mm with two M2 mounting holes and a a 10-32

UNF threaded hole for the inlet. The acrylic plate was coated with a thin layer of

the R11 on one surface. The coated surface was mated with one face of the GC.
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This procedure was repeated for the second face and the two M2 screws and nuts

were used to secure the acrylic covers to the GC. Next the resin serving as adhesive

was cured by exposing the assembly to UV light source.

In GC, separation can be improved by increasing the length of the column.

Longer columns increase interaction between the sample and the stationary phase

coating the column wall. This leads to further delay between effluents from the

GC. A single block of Concept-2 GC measures 0.5 m. It would require a stack of

5 to achieve similar length to Concept-1 column albeit with a larger cross sectional

area. Additionally, it was observed the stacking process made the unit susceptible

to leaks. It was decided that the length of the column will be increased to increase

the efficiency of the column.

Concept-2 was altered to increased separation by increasing length. The external

dimensions were increased to 100 × 100 × 4 mm. Similar to the original geometry

with a a 0.5 × 0.8 mm rectangle with rounded corners of 0.1 mm. With the larger

face estate, the column was extended to measure 8.75 m on a single block. This

design was larger than the base plates of the available rapid prototyping instru-

ments. At this stage, CNC manufacturing technique was employed. The column

was manufactured from a 4 mm aluminium plate. The new design features a single

inlet recess on either face (Figure 4.21). A 1 mm bore at the centre of the plate

transports analysed samples from the column on one face to the other. A 3.2mm

hole was bored in the middle of the plate to allow securing a cover from the middle

of the GC and 16 additional 3.2 mm holes were bored around the spiral column to

ensure the covering plates mates completely with the GC.
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Figure 4.21: CAD of Concept-3 GC

The plates used to seal the GC were manufactured from a single piece of 4 mm

acrylic plate measuring 100 × 100 mm. Holes aligning with the 17 holes located

in the GC were bored on the cover . A 10-32 UNF thread was machined to align

with the inlet\outlet ports which allows a 10-32 UNF to Swagelok 1/8 fitting to be

connected to the GC. The acrylic and aluminium block were sealed by coating a

single face with a thin layer of the R11. The coated surface was mated with one face

of the aluminium GC block. This procedure was repeated for the second face and

17 M3 screws and nuts were used to secure the acrylic covers to the GC. Next the

R11 was cured to form a solid bond between the components of the GC by exposing

the assembly to UV light. The assembled GC showing the inlet with a 10-32 UNF

to Swagelok 1/8 fitting is shown in Figure 4.22.
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Figure 4.22: Concept-3 GC

The heating system comprises a 25 gauge nichrome wire wrapped around the

aluminium wall of the GC. For electrical insulation, the nichrome wire was sleeved

with a Pro-Power GSX-S24-1100-NAT fibreglass sleeve. Temperature control was

achieved using a K-type thermocouple wound around the GC wall between the

nichrome wire. The thermocouple is used to measure the GC surface tempera-

ture. The thermocouple is interfaced with an ATSAMD21 microcontroller using the

MAX31855 thermocouple-to-digital chip which allows 14-bit temperature measure-

ments over SPI. A Proportional Integral Derivative controller software similar to

the controller used for the TDs was designed in C++ language to provide precise

temperature control. This software controls a separate PWM output pin on the

ATSAMD21 microcontroller. This PWM signal is used to control the voltage input
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on a Crydom CMX60D10 relay with the load voltage pins of the relay connected

in series with the nichrome coil and a 12 V power supply. The heating system was

improved by enclosing the heating coils and chamber in a Spacetherm thermal insu-

lating blanket of 0.5 cm thickness. The GC with the heater and insulation is shown

in Figure 4.23.

Figure 4.23: Assembly of Concept-3 GC

4.4.2 Stationary phase coating

Separation of compounds in mixture is achieved by interactions between the sta-

tionary phase lining the column and the compounds travelling in the column. This

makes the stationary phase one of the most important components in GC systems.

Over 200 stationary phases were analysed by McReynolds[25] and of these Delley

[26] suggested four phases: Carbowax 20M, OV-225, OV-17 and OV-101 as suitable

for about 80% of GC analysis. GC stationary phases are generally categorised into

117



ionic, polar and non-polar phases depending on their interaction with compounds

in those categories. Stationary phases are selected to match the compounds that

will be analysed, hence, a polar compound will interact more with a polar phase

leading to better separation. Non-polar phases are usually preferred in systems

where one column is to be targeted at a broad range of compounds because of its

better resistance to hydrolysis and oxidation. Poly(organosiloxane) phases are the

most commonly used phases owing to their increased chemical inertness, thermal

stability, low column bleeding, solubilizing power, selectivity and wide range of po-

larities [6, 23]. For this design, OV-1(100% Polydymethilsiloxane) was selected as

the stationary phase.

There are several methods of coating the stationary phase to the inner walls

of the GC column. These methods fall into two groups: static and dynamic coat-

ing techniques[27]. Dynamic coating technique involves preparing a solution of the

stationary phase and filling the column with it. Next, a plug is used to drive the

solution through the column [28, 29]. Figure 4.24 illustrates this procedure showing

the red stopper driven along a cutaway section of a column. Lambertus et al re-

ported using pressurised helium to drive the stationary phase through the column

[30]. Once the coating is complete, the GC is left to dry overnight. This method

produces a thin film of the stationary phase on the column wall.

Figure 4.24: Dynamic coating procedure plug driven through the column

Static coating is commonly used commercially as it produces a highly uniform

film on the column wall [6, 31]. In this technique, the column is filled with a solution
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of the stationary phase and some low boiling point solvent such as pentane. A cross

sectional view of a column using technique is illustrated in the Figure 4.25. One end

of the column is sealed and a vacuum pump is connected to the other end causing

a controlled evaporation of the solvent[29]. This leaves behind a uniform deposition

of the stationary phase on the column. Given the geometry of the designed columns

and the longer time required to execute the dynamic coating technique, the static

coating technique was used.

Figure 4.25: Static coating procedure with plug at column end

The static coating procedure was initially performed as described by Liu et al

[32] who reported successfully coating OV-1 stationary phase onto a micro-fabricated

GC column to produce a 200 nm coating. A solution of the stationary phase was

prepared by dissolving 22.3 mg of OV-1 in 6 ml dichloromethane. This mixture

was placed on a flash shaker for 45 mins to ensure complete mixing of solute and

solvent. Next the column was filled with the solution and one end of the column was

sealed. A vacuum pump was connected to the other end to evaporate the solution

from the column. The GC was inserted in a vacuum pumped oven (Figure 4.26) for

5 hours at 50◦C to evaporate any remaining solvent.
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Figure 4.26: Croydon vacuum oven

After coating it was observed that the parts of the channel were blocked by dried

stationary phase solution (Figure 4.27). Further examination showed that this was

because the dichloromethane in the stationary phase dissolved the acrylic before it

was completely evaporated.

Figure 4.27: GC with blocked column
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The coating process was adjusted to resolve this issue. The stationary phase

solution was prepared by dissolving 22.3 mg of OV-1 in 6 ml dichloromethane as

was mentioned earlier. This mixture was placed on a flash shaker for 45 mins to

ensure complete mixing of solute and solvent. Next the exposed column without

the acrylic was filled with the solution and allowed to stand for 10 mins. The

aluminium spiral column was inserted in a vacuum oven for 1 hour. This procedure

was repeated for the other side of the spiral column. Finally, the acrylic cover and

aluminium block were sealed by coating a single face with a thin layer of the R11.

The coated surface was mated with one face of the aluminium GC block. This was

repeated for the second face and 17 M3 screws and nuts were used to secure the

acrylic covers to the GC. Next the R11 was cured to form a solid bond between

the components of the GC by exposing the assembly to UV light. This procedure

produced a coated GC without any blockages. Tests using the PC, GC and VOC

detector are presented in Chapter 7.

4.5 Conclusion

This chapter discussed the design process for a PC and GC. ACC was introduced

as a PC adsorbent material. Several iterations of TD were designed to improved

desorption and efficiency. These designs were tested with the ACC. The steps taken

to manufacture the GC was also discussed.
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Chapter 5

Design And Development of VOC

Ionisation Detector

5.1 Introduction

There has been an increase in the application of Volatile Organic Compound (VOC)

detectors in various fields due to increasing regulatory requirements for VOCs which

are considered harmful at even low concentrations. Detection of VOCs have been

applied to the diagnosis of various diseases [1–5]. It has also been widely used in

monitoring agricultural produce [6–9], pharmaceuticals [10], air quality [11], food

and beverages [10, 12, 13].

Several technologies have been employed in VOC detection. Currently, instru-

ments used for VOC analysis include Gas Chromatography Mass Spectrometry

(GC-MS), Gas Chromatography Ion Mobility Spectrometry (GC-IMS), Photoionization

Detector (PID), Metal Oxide Sensor (MOS) and optical sensors to name a few.
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GC-MS is often stated as the gold standard for VOC analysis because of its high

sensitivity, accuracy, reproducibility and overall robustness. However, wider adop-

tion of this technologies outside the lab environment is limited by several factors

including cost of purchase, complexity of operation and long analysis time. Its size

and weight reduce their portability and restrict their use. MOS and PID instruments

are smaller in size, significantly cheaper and more portable in comparison. Some

commercial PIDs offer analysis times within a second [14]. MOS sensors are the

cheapest but tend to suffer from cross sensitivity to inorganic gases. They also have

poor humidity tolerance and can drift over time with low accuracy outputs. PID

sensors are still relatively low cost and are highly sensitive and so used extensively

for the detection of a broad range of VOCs. They can provide a linear output to a

single chemical or mixture of chemicals, in real-time, and have a sensitivity in the

parts per billion (ppb) range [15, 16]. Furthermore, as they are undertaking a physi-

cal measurement, they are less likely to drift over time. PIDs have also been used to

detect effluent from Gas Chromatograpy (GC), Liquid Chromatography (LC) and

coupled with Ion Mobility Spectrometry (IMS) and Mass Spectrometry (MS) [16].

Several PID sensors are commercially available from manufacturers including Al-

phasense and Mocon and cost under $500. Although these attributes make the PID

a suitable sensor for many VOC analysis, PID sensors only provides a concentration

value of the sample being tested, without any additional information of the chemical

composition. In this chapter, a novel VOC ionisation detector that offers additional

compositional information about the sample under test is presented.
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5.2 Theory

As explained in Chapter 2, the operation of a commercial PID can be divided into

three steps: gas supply, ionisation and detection. In use, gas phase samples flow

through an ionisation chamber within the PID sensor. Some commercial PIDs in-

clude pumps to enhance gas flow through the chamber. Once in the chamber, the gas

is ionised by absorbing the energy released from an ionisation source. The ionisation

reaction mechanism leading to the formation of photoions is given by Equation 5.1.

hv +M →M+ + e− (5.1)

Photons (hv) from the ionisation source are absorbed by an analyte molecule (M)

leading to the formation of an excited molecule (M∗). When hv is greater than the

ionisation energy (IE) of the molecule, the molecule releases an electron leading to

the formation of a cation.

In the detection step an electric field applied to drive the cations to an electrode.

The resulting current is measured and it is an indication of the quantity of M+

present hence providing information on the concentration of the analytes. In use,

PIDs sensors do not provide any compositional information, giving only an indication

of the concentration value of the sample under tested. Additionally these sensors

cannot be used for the analysis of toxic samples, without additional equipment

as they are not leak proof. The following sections presents the mechanical and

electronic work undertaken to design a leak proof PID sensor that provides some

compositional information.
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5.3 Mechanical Design

The ionisation detector was separated into three regions namely:

Ionisation region where samples are trapped in a cavity and ionised.

Electric field/filtration region where ionised samples are filtered/separated.

Detection region where surviving ion species from the previous steps are

measured.

These regions are shown in the PID device depicted in Figure 5.1

Figure 5.1: Active sections in a PID sensor

5.3.1 Ionisation source

To improve ionisation in comparison to commercial PID sensors, several ionisation

sources were considered including the following:
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1. Electrospary

2. Corona discharge

3. Radioactive sources (Americium - 241, Nickel – 63 etc.)

4. Photoionisation

The cost and complexity of designing an electrospray and corona discharge ionization

source made these options unsuitable for a simple, low-cost instrument. Addition-

ally, the large size of these sources and their associated power supply would reduce

portability. Since these options are contrary to the design objective of a simple,

low-cost device, they were discarded. Radioactive and photoionisation sources are

compared Table 5.1.
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Table 5.1: Comparison of Photoionization and Radioactive Sources

Characteristics Photoionization Radioactive Sources

Ionising energy 9 – 11 eV 5.48 MeV

Ionisation range VOCs with ionization en-

ergy less than 11eV

All VOCs

Ionisation distance Few centimetres Few centimetres

Safety Relatively safe when kept in

ideal case

Requires specialized casing

Human exposure ef-

fect

Damaging to eyes and skin

when exposed to Ultraviolet

(UV) light

Toxic and radioactive. Fa-

tal radiation sickness when

in direct contact or within a

few centimetres from source

Power source RF or high voltage None

Procurability Easy Difficult

Radioactive ionisation offers higher ionisation potential. However, the hazard as-

sociated with radioactive sources makes them difficult to procure, use, transport and

dispose. These factors also increase the cost of devices using radioactive ionisation

as special ionisation chambers, instrument enclosures and transportation cases are

required to meet legal requirements for using radioactive sources. Photoionisation

sources are relatively straightforward to implement in industrial designs and is the

cheapest of the four ionisation sources presented. The electric potential of the UV

sources cover most of the target VOCs and the risk associated with their use is low

when compared with radioactive sources.

Several photoionization sources were considered from various manufacturers in-
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cluding Hamamtsu and Alphasense. Photoionisation light sources from Hamamtsu

measured about 240 × 110 mm and required an additional cooling fan and a mains

powered power supply measuring 298 × 123 mm and cost about £ 1300. These

units were too large and expensive for the intended application. UV light bulbs

from Alphasense measure 6 × 11 mm. They can be powered using RF power or

high voltages (>1000 V) and these circuits could be integrated with the PID power

supply circuit. Their small size enhances the design of a smaller ionisation chamber

and reduces the power required for ionisation. Additionally, it improves portability

of the overall instrument. UV bulbs with 9.6 eV, 10.6 eV and 11.7 eV are available

from Alphasense. The 9.6 eV bulbs have ionisation energy too low for some of the

target VOCs. While the 11.7 eV bulb covers the ionisation energy range of inter-

est, it has a very short lifetime. The 10.6 eV UV bulbs have a 2000-hour lifetime

and can ionise most of the VOCs to be analysed hence it was decided that 10.6 eV

bulbs would be utilised for ionisation in this system. One of the bulbs sourced from

Alphasense is shown in Figure 5.2.

5.3.2 Ionisation chamber

The ionisation chamber traps the analytes in a defined space ensuring it is ionised

by high energy photons from a UV bulb. The leak proof chamber was designed to

enhance ionisation by allowing maximum exposure of the analytes to the ionisation

source. The design of the ionisation chamber was improved over several iterations.

This design process discussed in the following section.

A CAD model and fluid simulation of the first prototype ionization chamber is

shown in Figure 5.3. It shows the mounting hole for the UV bulb, inlet and out-

let into the filtration/separation region. This approach was to ensure exposure of
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Figure 5.2: UV ionisation bulb

analytes to photons from the UV source and to create a good seal. Manufacturing

this prototype was expensive and complex, as it required the assembly of four dif-

ferent components - the top cover with UV bulb mount, inlet male connector, base

cover and outlet to separation/filtration connector. Additionally, this design makes

it difficult to integrate electronic connections that will be required for the filtration

and detection signals downstream, while ensuring the integrity of inner chamber

surfaces.
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Figure 5.3: Design-1 Ionisation chamber and detection region

Design-1 was simplified by redesigning the ionisation chamber. The new design

requires fewer components and improved integration with the required electronics.

This novel design incorporates all electronic components onto a single PCB with

the electrodes exposed on the PCB surface. The chamber is designed to enclose the

electrode and provide a sealed cavity for sample flow perpendicular to the UV rays.

In design-2, the ionisation chamber was machined from a single block of aluminium

measuring 70 × 35 × 5 mm. Two holes were machined on the top of the chamber

to serve as sample inlet and outlet. Both holes were threaded to 10 - 32 UNF size.

Two 10 - 32 UNF to 1/8” push-fit connector adapters were connected to the top of

the ionisation chamber. These adapters made it easier to connect the inlet to 1/8”

tubing for sample injection and ejection. A 6 mm bore was machined between the

inlet and outlet to mount the UV bulb and allowed the UV rays into the stream of

molecules travelling in the chamber. A channel with 0.2 mm depth was machined to

link the inlet to the outlet beneath the UV bulb mounting hole. This channel guided

the samples from the inlet to the outlet through the exposed bore for the UV bulb.
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The chamber was fastened to the PCB already containing the filtering/detection

electrodes and electronics using 14 M3 screws and nuts. Design-2 chamber is shown

in Figure 5.4.

Figure 5.4: Design-2 ionisation chamber

A 0.6mm groove was machined around the channel, inlet and outlet and a 1 mm

O-ring was inserted into the groove. When fastened to the PCB, the O-ring was

compressed between the bottom of the ionisation chamber and the PCB to improve

the sealing of the chamber. This is shown in Figure 5.5.

Figure 5.5: Design-2 ionisation chamber with groove and O-ring
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It was observed that the tubing connection to both the inlet and the outlet via

the 10-32 UNF fittings resulted in mechanical stresses which were transferred from

the chamber to the PCB. With prolonged use, the PCB began to flex leading leaks

from the mating surface between the PCB and chamber surfaces. This situation

originated from the location of the tubing and fittings transverse to the length of

the chamber, hence the forces of both upright fittings were increased by the moment

at the chamber surface.

In Design-3, the inlet, outlet and sample path were redesigned to lie parallel to

the length of the chamber, which significantly reduced the forces transferred from

the tubing to the chamber. Additionally, the size of the chamber was reduced to be

45mm × 18mm × 10 mm. This reduction in size reduces the moments acting on the

chamber, and reduced the overall footprint of the sensor. A CAD design of Design-3

with both inlet and outlet fittings attached is shown in Figure 5.6. The chamber

Figure 5.6: Design-3 showing UV bulb bore and 10-32 UNF inlet and outlet fittings

volume and distance of travel between inlet and ionisation source were also reduced

in to improve ionisation and detection. Additionally, a channel was machined to
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guide analytes from the inlet through the ionisation, filtration and detection regions

to the outlet. The channel path just below the UV bulb was constricted to the

diameter of the UV bulb window (6 mm) to ensure all analytes were sufficiently

exposed to the high energy photons from the bulb. The path after the ionisation

region was split in two to allow simultaneous analysis of the same ion species using

different electric fields. Both sides of this split were separated using a 0.6 mm O-

ring. A 0.6 mm groove was machined around the sample path and a 1 mm O-ring

was inserted into the groove to seal the chamber. The channel in Design-3 and split

sample path is shown in Figure 5.7.

Figure 5.7: Design-3 ionisation chamber with 0.3, 0.1, 0.05 mm channel depth and
split sample path

Design-3 had several advantages including ease of manufacture, requiring fewer

components, smaller footprint and relatively easy integration with the PID elec-

tronics. Tests carried out using Desing-3 showed low concentration ionised samples

were easily ionised and detected. However, applying high voltage electric field in the

filtration region resulted in interference at the detection electrode. A contributing

factor was the small gap between the PCB and the chamber which allows electro-

magnetic interference to be transmitted through the chamber. The interfering signal
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travels along the chamber to the detection region where it affects sensitive detection

circuit.

Design-4 was developed to reduce the interference between the filtration and the

detection regions. The chamber was split into two halves with the split located at

17 mm from the outlet. A 3 x 2 mm thick flange were machined into the mating

faces of the outlet and inlet halves respectively. The CAD assembly of this design

is shown in 5.8.

Figure 5.8: Design-4 CAD assembly

It was a challenge to machine features under the chamber including O-ring

grooves, sample channel pathway and slots. This was because the PTFE flexed

during machining resulting in misalignment between both halves of the chamber. A

custom metal case was manufactured to improve the rigidity of the chamber during

machining (Figure 5.9).
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Figure 5.9: Design-4 CAD assembly

Five 2 mm holes were drilled through the flanges to mate to the chamber parts.

For electrical isolation between the different regions of the chamber, a 1 mm PTFE

section was inserted between both halves and the assembly. The PTFE isolator was

held in place by five PTFE M2 screws and nuts. PTFE screws and nuts were used

to ensure electrical insulation between the filtration and detection regions. The final

assembly of the chamber with the PTFE isolator is shown in Figure 5.10.
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Figure 5.10: Design-4 ionisation chamber.

Electromagnetic/radio frequency interference was significantly reduced with the

split chamber in Design-4. However, the metal chamber acts as an antenna when

high voltages are supplied, which resulted in some interference when the high volt-

age filtering signal is in use. To solve this challenge, electrically insulated chambers

manufactured from “Clear Photoreactive Resin” (FormLabs) were explored. Clear

Photoreactive Resin is a rapid prototyping material consisting of methacrylic acid

esters and photoinitiator. Using 3D printing technology, chambers were built from

ensuring complete electrical insulation between different regions in the chamber.

These chambers were manufactured using 3D printing technology. The Form 2

Desktop 3D printer manufactured by FormLabs was used to manufacture the cham-

ber models. The printer is capable of achieving resolutions down to 200 microns. A

CAD design of this approach is shown in Figure 5.11.
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Figure 5.11: CAD representation of Design-5 ionisation chamber showing bores for
deflection pads.

The chamber measures 46 × 18 mm. However, the depth was increased to

15 mm. This was necessary to allow further machining and polishing of the mating

surface since the flatness/smoothness of the 3D printed surface is not assured during

manufacture. Two 15 × 3.5 × 3 mm slots were built into the chamber to house

electrode pads that will be used as opposing electrodes above the PCB. Connections

to the pads are serviced by four 2 mm bores. A 1 mm O-ring is inserted into a 0.6

mm groove to provide a seal around the sample path. The threaded plastic material

does not provide enough strength to fasten the chamber to the PCB. For this reason,

the 12 M2 threads used to fasten the chamber to the PCB were replaced with 10

2.2 mm bores running through the depth of the chamber. In this configuration, 10

× 22 mm length M2 screws and nuts were used to affix the chamber to the PCB.
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Figure 5.12: 3D manufactured ionisation chamber with exposed slots for electrode
pads

The upper electrodes were designed from a single PCB with two pads on one

side. A 0.8 mm via was drilled in the middle of the pads and a 20 mm copper pin

was soldered to the via. This assembly was inserted into the slot in the 3D printed

chamber with the copper pins emerging from the top of the chamber. Filtration

and detection signals were transmitted to the chamber via cables soldered to the

electrode pins. The assembly was held in place with Loctite glue. This approach

produced the least interference at the detection circuit.

5.4 Electronics Design

Traditional PID sensors provide concentration information by measuring the total

current generated from the ionisation in the previous stage. In this work a novel
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filtration/separation stage was introduced to affect the ions generated and provide

some form of compositional information on the sample tested. The generated ions

are propelled over an array of electrodes for filtering and detection. This array

consists of electrodes supplying a high electric field to deflect the stream of ions

resulting in some ions striking the chamber walls. Some of the ions reach the other

electrodes serving as detectors. Two of this array configuration was implemented

in the design. In one array, the electric field was held constant and the output

from this configuration is an indication of the total sample concentration (similar

to commercial PID sensor). This configuration comprises a concentration electrode

generating a fixed electric field for deflection ions and a detection electrode measuring

the concentration of the sample. In the second array, the electric field is varied

resulting in changes to the deflection of ions. This electric field acts as a filter

by eliminating some ion specie before the detection stage. The output from this

configuration provides some composition information on the analytes. The arrays

are separated by a grounded plane to ensure there is no interference between the

electrode configurations. Additionally, each configuration sample path is isolated,

therefore, ions from one configuration cannot reach the detectors of the other.

5.4.1 Filtration electronics

Cations from the ionisation chamber carry a net positive charge. By varying the

electric field in the filtration region the trajectory of ions could be changed to af-

fect ions reaching the detection. Three approaches were developed to alternate the

electric field in the filtration region. These are sweep, integral and field asymmetric

waveform concepts.
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Sweep electric field

Here the electric field is generated by applying a triangular waveform to the filtra-

tion region. This waveform was swept between a fixed positive and negative voltage

at 2Hz. As the magnitude and charge of the electric field changes its effect on the

ionised samples changes depending on the charge and mass of the ions. A LabVIEW

software was designed to generate the triangular waveform. The software drives a

Ni-DAQ USB 6008 which generates a triangular waveform from + 10V to - 10V.

This output is connected to the sweep electrodes. The array of electrodes is shown

in Figure 5.13. The concentration electrode is held at a ground potential which

allows all ions generated at the ionisation stage to reach the concentration detector.

The measurement obtained from the concentration detector corresponds to the to-

tal detectable molecules in the sample. The electric field was further increased by

Figure 5.13: Sweep electric field sensor electrode layout

increasing the voltage peak to 22 V resulting in increased filtering of ions. The Ni-

DAQ USB 6008 was replaced with an ATSAMD21G18 M0 microcontroller offering

12-bit analogue to digital converter, smaller form factor and easier customisation of

electronics and software. An MCP4725 digital to analogue converter was connected
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to one of the I2C ports exposed on the ATSAMD21G18. A C/C++ software was

written for the ATSAMD21G18 to control the MCP4725 and generate a 5Vpp tri-

angular waveform output from the MCP4725. This waveform was fed into a voltage

Figure 5.14: Sweep electric field generator

divider circuit shown as R11 and R12 in Figure 5.14. The voltage divider is used to

convert the 0 to 5V waveform from the MCP4725 to a -1.25V to +1.25V triangular

waveform at the inverting input of the op-amp. The triangular waveform output

from the opamp could be swept from +6 kV/cm to - 6 kV/cm. The output from

this op-amp is connected to the sweep electrode in Figure 5.13.

Integral electric field

By scanning through a range of voltages the sweep electric field generates a varying

electric field that is non dependent on the molecules tested. The integral electric

field was developed to introduce a relationship between the samples tested in the

concentration electrode and the electric field generated in the integral electrode.

The electrode configuration in this setup is shown in Figure 5.15.
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Figure 5.15: Integral electric field sensor electrode layout

The measured current from the concentration detector is fed back into the com-

position electrode after passing through a trainsimpedance amplifier. The electronic

circuit for the integral electric field generator is shown in Figure 5.16. The concen-

tration detector is connected to U1D, which converts and amplifies the current to

be a voltage. This voltage is supplied to U1B inverting input through R4. The

inverting input is connected to the voltage obtained from the composition detector.

The op-amp U1B serves as an integrator, it generates a voltage that corresponds to

the magnitude and duration of the peak voltage measured from the concentration

detector in U1D.
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Figure 5.16: Integral electric field sensor electrode layout

For a constant concentration voltage the output of U1B is ramped and fed to the

composition electrode. The ramp in the composition electric field results in an in-

crease or decrease in ions detected at the composition electrode. Current measured

at the composition electrode is fed into the non-inverting input of U1B after the

transimpedance amplifier U1A. This makes U1B produce an output that equates to

the difference between the magnitude and duration of a particular molecules concen-

tration and the measured composition voltage. This setup changes the composition

electric field to find an electric field that corresponds to the molecules under test.

Field asymmetric waveform

The approach applied here was to design a waveform similar to the filtration wave-

form used in Field Asymmetric Ion Mobility Spectrometry (FAIMS). In FAIMS,

the mobility of most ions in the filtration region is described by Equation 5.2 where

α represents the dependence of mobility on the ratio of the electric field E and the
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(5.2)

The mobility of ions depends on an asymmetric waveform applied to the ion stream

with E greater than 20,000 V/cm and -1000 V/cm. The waveform changes the

trajectory of the ion species depending on their individual mobility and the electric

field. Some ions pass through the electric field to the detector, while others are

deflected towards the chamber boundaries. A low DC voltage can be superimposed

on the waveform to direct a narrow band of ions through the channel towards the

detector. This voltage is referred to as the compensation voltage.

The FAIMS waveform was generated by amplifying a 5 V square wave signal

using a 555 chip running in astable mode is shown in Figure 5.17.

Figure 5.17: 555 PWM signal generator

Resistors R13, R14 and capacitor C1 can be varied to produce the desired PWM

frequency. To create an asymmetric waveform, the voltage at pin 5 of the 555 timer

is varied to change the pulse width. The ATSAMD21 microcontroller is programmed

to change the voltage at pin 5 using MCP4725 Digital to Analog Converter (DAC).
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This allows evaluation of the FAIMS against several pulse widths for ion filtration

optimisation. The PWM output from the 555 chip was fed into a hex inverter which

helps to reduce distortion in the waveform at high frequencies.

Several waveform amplification techniques were investigated to step up the PWM

signal to generate electric fields in excess of 20,000 V/cm. The monostable multivi-

brator was also explored however this suffered from distortion at frequencies above

300 kHz. A custom MOSFET driver was designed with the aim of amplifying PWM

peak voltage to 600 V with frequency above 1 MHz. An illustration of the compo-

nents of this circuit is shown in Figure 5.18.
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Figure 5.18: Custom FAIMS amplifier design

The PWM signal from the 555 PWM generator is fed into the hex inverter which

is used to split the waveform into two square wave with opposing polarities. The

hex inverter also ensured both waveforms were in phase. Both waveforms were fed

into delay circuits to ensure the MOSFETs were not powered on at the same time.

An isolator stage was used to isolate the high voltage MOSFET stage from the low
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voltage PWM generator circuit. Finally the waveforms was used to switch two n-

channel MOSFETs in a half-bridge configuration. A high voltage power supply was

designed to convert 240 VAC to 900 VDC which was fed to the half-bridge MOSFET

network. The compensation electric field was generated with a similar circuit design

described in Section 5.4.1. Both waveforms are added using a custom mixer and fed

into the FAIMS electrode shown in Figure 5.19.

Figure 5.19: FAIMS electrode layout

As mentioned earlier, a FAIMS waveform must be without distortion to achieve

molecular filtration. A distortion free square wave was obtained from the FAIMS

circuit when 260 V was supplied and the PWM was set to 600 kHz at 50% duty

circle. This waveform is shown in Figure 5.20 .
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Figure 5.20: Integral electric field sensor electrode layout

However, FAIMS requires and asymmetric waveform so the duty cycle was re-

duced to 33%. The frequency was also increased by 100 kHz. This resulted in curves

in the leading edges of the waveform as seen in Figure 5.21.

Figure 5.21: Integral electric field sensor electrode layout
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Increasing the high voltage supply to 400 V and the frequency to 1 MHz resulted

in some distortion to the waveform as seen in Figure 5.22. It was initially suspected

that this may have been due to the delay in switching the MOSFETS introduced by

the delay network. However, further tuning of the delay network did not improve

the waveform.

Figure 5.22: Integral electric field sensor electrode layout

At 1.1 MHz the peak-to-peak voltage output from the circuit dropped to 316 V

(Figure 5.23). Several power switching MOSFETS with low gate charge were tested

to improve the FAIMS output. This includes IXTH16P60P manufactured by IXYS,

C3M0065090D by Cree. These made little improvements to the output waveform

distortion or peak voltage. It was concluded that the current circuit design will be

used at 260 V and 700 kHz for optimum waveform output.
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Figure 5.23: Integral electric field sensor electrode layout

5.4.2 Detector electronics

Ionised molecules surviving the filtration region lose their charge when they reach

the detector electrodes. This process generates current, usually in the picoamp

range. An amplification circuit (Figure 5.24) was designed to measure and amplify

this current.

Figure 5.24: Schematic showing detector amplification circuit.
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The opamp U1A is used as first stage transimpeadance amplify which converts

current to voltage. The opamp U1B serves as a differential amplifier which ampifies

the difference between the non-inverting input voltage and the output voltage from

U1A. The amplified voltage is fed to the ADC on the ATSAMD21 microcontroller.

The chamber and electronics where assembled into a single unit. A modular

configuration of this unit is shown in Figure 5.25.

Figure 5.25: Modular IMS amplification circuit with ionisation chamber and UV
bulb

5.5 Tests and results

5.5.1 Chemical concentration information

Performance of the VOC sensors was characterised using isobutylene. This is a com-

mon test gas for characterising gas sensors and is used extensively by industry. The
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standard test procedure involves supplying a known concentration of isobutylene gas

into the sensor and measuring the current generated at the detection electrode. This

output is related to the concentration of isobutylene gas. An isobutylene gas bottle

was purchased (BOC, UK) at 100 parts per million (ppm) concentration in air. It

was diluted with zero air gas using an API Model T700 Dynamic Calibrator to gen-

erate low concentration isobutylene gas at 9 mL/min. The diluted gas was supplied

into the sensor and the current generated at the detector electrode was measured

using a custom windows application (this application is discussed in Chapter 6).

To characterise the dynamic response time and repeatability of the sensor, 10 ppm

isobutylene was supplied into the sensor inlet for 10 s followed by a supply of zero

air for 10 s. This sequence was repeated 4 times. Figure 5.26 shows the amplified

signal response. Once the system has stabilised in clean air. The VOC detector

shows a fast response time of less than 2 seconds (defined as time to achieve 90% of

final value). This response time can be adjusted in software by increasing/reducing

the cycle time and noise reducing algorithm effect but is ultimately limited by the

characteristics of our test station. However, better stability was observed between

pulses using 100 ms cycling time. The result also shows repeatability of the sensor

to a fixed concentration. The voltage output was similar across all four tests shown.
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Figure 5.26: Dynamic concentration response for isobutylene.

Figure 5.27: Dynamic response for 0-18ppm isobutylene at 10 seconds intervals

One of the advantages of commercial PID sensors is fast response to varying

concentration. This property of the VOC detector was tested by delivering increasing

concentrations of isobutylene gas into the sensor. Isobutylene was delivered into the

sensor with concentration increasing from 0 to 18 ppm in steps of 2 ppm. The sensor
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concentration output shown in Figure 5.27 shows that the limit of detection is likely

to be in the ppb region for isobutylene.

5.5.2 Chemical composition information

The VOC detector provides a second output with information on the chemical com-

position of the analytes, a feature not available in commercial PID sensors. This

feature was investigated by analysing various VOCs using the VOC detector and

comparing the sensor response. During analysis, a supply of test VOC with a fixed

concentration was delivered to the sensor. The electric field, which results in a de-

flection of cations, was varied from -7 kV/m to +7 kV/m in steps of 500 V/cm. At

zero electric field strength there is no deflection of the flow of ions and all of the ions

contact the detector plate and giving the maximum response. Sweeping the electric

field in the positive or negative direction results in reduced current (and thus signal)

due to loss in charge when ions hit the walls of the chamber and thus do not reach

the detection electrode. The deflection observed could be due to the interaction

between the charge and/or weight of the ions in the stream and the intensity of the

electric field. Between each step change in electric field, the gas supply was turned

off and resumed after changing the electric field. Signal response due to the varying

amount of ions reaching the compositional electrode is measured over the period

of test. This analysis was repeated for 10 ppm isobutylene and 2-pentanone. To

remove any bias associated with concentration, the compositional sensor response

was normalised. This is shown in Figure 5.28 and 5.29.
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Figure 5.28: Normalised chemical compositional signal response for 10 ppm isobuty-
lene

Figure 5.29: Normalised chemical compositional signal response for 2-pentanone.

The results show significant difference in sensor output for isobutylene and 2-

pentanone over the range of applied electric fields. An electric field of 1 kV/m
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on the composition electrode results in a 0.67 V separation between the signal ob-

tained for both compounds. This information can be used to train the sensor to

target the identification of certain compounds. To achieve this, the electric field

could be set to a value associated with a known response for the target compound.

The response from the concentration electrode array could also be added providing

increased dimensionality for statistical methods such as linear discriminate analysis.

In another test, 2 ppm of 2-hexanone was fed into the sensor at 7 mL/min. In

this test, the supply of analytes remained constant for the duration of the analysis.

The electric field voltage was varied from -3 kV/cm to 3 kV/cm in steps of 200

V/cm. This procedure was repeated for 10 ppm propanol. Testing compounds of

different concentration was carried out to represent real life test scenarios where

test compounds will not always have a similar concentration, but the instrument is

expected to provide responses not biased towards concentration. A comparison of

the normalised compositional signal response for both compounds sensor is shown

in Figure 5.30.
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Figure 5.30: Comparison of chemical compositional signal response for 2-hexanone
and propanol

A 0.063 V separation in signal response when the electric field is set to 1000

V/cm, which was repeatable over 5 different experiments. This shows that by

sweeping through a range of electric field, the VOC detector can distinguish between

VOCs . Although the compositional output at a fixed electric field is different, the

shape of the curve and area under the curve for the period of analysis provides more

information for pattern recognition analysis.

The repeatability of results obtained during analysis of VOCs and the detector’s

potential to distinguish between VOC compounds were further verified using 10 ppm

2-hexanone, 2-octanone, propanol and 2-heptanone, in dry zero air. In this analysis,

a fixed concentration of VOC was supplied in to the sensor inlet. The electric field

was varied from -7 kV/m to +7 kV/m while the voltage response from the sensor was

measured and recorded. After sweeping through the voltages, the supply of VOC

was shut off. This procedure was repeated 20 times for 2-hexanone, 2-octanone
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and propanol. Principal Component Analysis (PCA) was utilized to reduce the

dimensionality of the recorded data. The first and second principal component

accounted for 96 % of data variance in the original dataset and a scaled plot of

these components is shown in Figure 5.31. The results from the VOC detector

shows discrimination between responses obtained for 2-hexanone, 2-octanone and

propanol.

Figure 5.31: Scaled PCA plot of the VOC detector response for 2-hexanone, 2-
octanone and propanol

Further tests were carried out using 10 ppm 2-heptanone and 2-octanone as test

VOC samples. Fixed concentration of VOC was flowed into the sensor during the

analysis. The electric field was varied from -7 kV/m to +7 kV/m. This procedure

was repeated 20 times for both VOCs . The compositional responses measured

during the tests were recorded and analysed using PCA. Figure 5.32 shows a scaled

163



plot of the first and second principal components. The first and second components

accounted for 97.8 % variance in the original data set. As depicted in Figure 5.32,

there is also clear discrimination between compositional information obtained for

2-heptanone and 2-octanone.

Figure 5.32: Scaled PCA plot of the VOC detector response for 2-heptanone and
2-octanone

These results demonstrate that the sensors can be used to detect low concen-

tration VOCs. They also show that the VOC detector can distinguish between

VOCs. In the current sensor design, the high voltage electric field required for VOC

identification results in considerable interference and signal loss at lower concentra-

tion. Future efforts will focus on improving the electric field generator to reduce

interference and improve signal response when testing low concentration VOCs .

Additionally, further investigate into the VOC detector electric field potential to

separate complex mixtures of VOCs during analysis will be required.
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5.6 Conclusion

This chapter reports on the design of a novel VOC detector sensor with added

sample composition output that has been designed, manufactured and tested. The

sensor provides two voltage outputs proportional to the concentration and compo-

sition of the test sample. Concentration tests were carried out with low concen-

tration isobutylene and the concentration response was found to increase linearly

with concentration. An increase in concentration in from 0 – 18 ppm resulted in an

increase in output voltage of 2.3V, with an estimated sensitivity of below 1 ppm.

The composition response shows a significant distinction between 2-pentanone and

isobutylene when 1kV/m was applied in the chamber. A 0.063 V difference was

observed between 2-heptanone and propanol when 1000 V/cm electric field was ap-

plied. the VOC detector compositional response also discriminated between 10 ppm

2-hexanone, 2-octanone and propanol when the electric field was varied from -7

kV/m to +7 kV/m. This chapter also showed discrimination between 2-heptanone

and 2-octanone over the same electric field range. The added composition infor-

mation, leak proof feature and low cost makes this unit potentially provide more

information at a lower price point when compared with existing commercial sensors.
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Chapter 6

System Assembly and Software

6.1 Introduction

In Chapter 4 the design and assembly of the Pre-concentrator (PC) and Gas Chro-

matograpy (GC) were discussed. Chapter 5 covered the design and testing of a novel

advanced Photoionization Detector (PID) sensor. In this chapter, the assembly of

these components into a single analytical instrument is presented. This chapter

will also cover the software designed to manage various aspects of the instrument

including power supply, pneumatics, and logging test data.

The mechanical assembly of the components and system pneumatics will be

covered in the next section. Section 6.3 will discuss the power and communication

electronics and Section 6.4 covers the control software.
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6.2 Mechanical assembly

This section presents the integration of the 3 major components - PC, GC and VOC

detector, into a single analytical device. It is essential that the sample flow through

the instrument is consistent and repeatable across several tests as change in sample

flow could lead to difference in system performance. The pneumatic system was

designed to ensure repeatable sample flow through the instrument, using a process

of flow control instrumentation and control software. The components have been

designed using a modular approach which allows various components to be used

individually or together in a range of combinations. A schematic of the mechanical

assembly showing the pneumatic connection is shown in Figure 6.1.

Figure 6.1: Schematic of the Gas Mixer pneumatic system

The sample travels from the inlet through the Mass Flow Controller (MFC) M1

which is used to regulate fluid flow into the instrument. Next the valve V1 is used

to direct flow through the PC or towards the GC and PID. Elute from the PC can

either go through valve V2 to the outlet or valve V3 to the GC or through both

V3 and V2 depending on the selected operated mode. The operating modes will be
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covered in Section 6.2.2. Flow through the GC is controlled using MFC M2. The

ratio of flow through M1 and M2 is used to set the GC split flow. Finally the sample

exits the GC and enters the VOC detector, mixed with carrier gas flowing through

M1. Pumps were installed after the PID to pull sample through the unit and send

sample through the outlet after analysis. A brief description of these components is

given below.

Mass flow controllers

Two UFC-1100A MFCs (M1 and M2) manufactured by Unit Instruments Inc., USA

were used for precise flow through the instrument. One of the UFC-1100A MFCs

M1 was rated for a maximum flow rate of 2000 mL/min and the other (UFC-1100A)

MFC, M2 was rated for a maximum flow rate of 300 mL/min. Both MFCs were

powered by providing ± 15 v to its input pins. The user inputs a signal within

0 - 5 v to specify a required flow rate with 0 and 5 v corresponding to no-flow

and maximum flow respectively. A 0 - 5 v voltage signal output gives the user an

indication of the current flow rate through the MFC flow rate range. The inlets

and outlets were fitted with 1/8 inch push-fit fitting. M1 is used to set the total

flow rate through the instrument. M2 is used to set the flow rate through the GC

only. During use GCs operate at low flow rates for increased separation of analytes.

However, the PID operates at flows in excess of 1 L/min. As shown in Figure 6.1

M1 and M2 were installed in a configuration that allows the flow through the GC

to be set independent from the flow through PID.
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Valves

An ETO-3-12 3-way valve (V3) and three ET-2-12 2-way valves (V1, V2, V4) man-

ufactured by Clippard (US) were used to control flow direction through the instru-

ment. Both valves were operated on a 12 V signal. The ET-2-12 is set to be normally

closed and requires a 12 V signal to open. The ETO-3-12 has two inlet ports and a

single outlet port. Flow is normally open through one of the inlet ports and a 12 V

signal applied to the valve switches flow to the second inlet. Valve V1 was installed

to direct flow to the PC or to the other components in the unit via V4. V2 is used

to control flow from the PC to the pumps. Valve V3 is used to select input into the

GC. Depending on the operation mode, flow from either the PC or M1 could be

allowed into the GC.

6.2.1 Sensors

Several sensors were integrated to measure system temperatures and humidity. Two

MAX6675 chips from Maxim Integrated were used to convert K-type thermocouple

readings into a digital output. The thermocouples were wrapped around the PC

and GC to measure their temperatures. The HTU21D from sharp was originally

used to measure humidity. A chamber was designed channel gas over the sensor.

The sensor and the chamber assembly is shown in Figure 6.2.
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Figure 6.2: HTU21D sensor and chamber assembly

During humidity calibration tests with the EL-USB-2 Data Logger from Lascar

Electronics, it was observed that the HTU21D was not as accurate as stated in the

datasheet and an additional sensor was tested, specifically the SHT75 which showed

better humidity response. Therefore, the SHT75 sensor was used. A housing was

designed for the sensor as shown in Figure 6.3. Therefore, the SHT75 sensor was

held in place and sealed using a transparent EVA glue from SilverlineTools.
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Figure 6.3: SHT75 sensor and chamber assembly

6.2.2 Operating modes and flow paths

As mentioned earlier, the unit was designed with a modular approach to allow oper-

ation in various configurations depending on the intended procedure. Complete gas

analysis with the instrument involves sampling analytes, pre-concentrating, desorp-

tion, injection, analysis and cleaning of the PC. These procedures will be referred

to as operating modes for clarity. The sample flow path and activated components

vary depending on the operating mode and this is expanded on below.
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Sampling

During sampling, the aim is to capture the gaseous analyte from the external sample

into the instrument. A schematic of the flow path and activated component is shown

in Figure 6.4. The activate flow path is highlighted in red.

Figure 6.4: Schematic of the VOC detector’s pneumatic system.

In this operating mode the pump is powered on to provide suction. Gaseous

sample flows through M1 at a sampling flow rate prescribed in software. Valve V4

is closed to stop flow to the rest of the system. V3 is also closed to stop flow into

the GC. Valve V1 is opened allowing samples into the PC where VOC are adsorbed

by the carbon cloth housed in the PC. The flow continues through valve V2 which

is also opened to the outlet through the pumps. The duration of the sampling

procedure is also set in software.

Desorption

After sampling, the M1 is set to 0 mL/min and valve V1 is closed before switching of

the pump. The delay in switching off the pump allows the system to create a vacuum
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downstream. This vacuum is needed to assist with fast elution of samples from the

PC during the injection procedure. The active flow path during the desorption stage

is represented in Figure 6.5.

Figure 6.5: Schematic of the VOC detector’s pneumatic system.

During this procedure the temperature of the PC is set to the desorption tem-

perature defined in software. The duration of the procedure is also set in software.

All the sample eluted during desorption is trapped in the PC since valves V1,V2

and V3 are closed.

Injection

The aim during injection is to get the samples into the GC in a narrow band to

ensure efficient desorption. Hence the desorbed samples in the PC is quickly swept

into the GC during injection. For concentrated samples it is possible to overload

the GC, to avoid this valve V2 could be opened during injection. Figure 6.6 shows

the flow path during this procedure. The temperature of the GC is now increased

to the desired temperature set in software if an isothermal GC analysis is desired. If
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the GC temperature will be ramped, the temperature is set to the first temperature

in the ramp sequence.

Figure 6.6: Schematic of the VOC detector’s pneumatic system.

The injection procedure begins with switching on the pumps and setting M2 to

the desired flow rate using the software. Next M1 is set to the desired total flow rate

and valves V1 and V3 are opened. The duration of injection can be set to values as

low as from 500 ms.

Analysis

After injection is complete, V1 and V3 are switched off to stop sample flow from the

PC into the GC and allow carrier gas from M1 to flow through the GC (Figure 6.7

). Valve V4 is opened to allow carrier gas flow through the GC at the flow rate of

M1. The temperature of the GC remains unchanged if an isothermal GC analysis

is desired. If the GC temperature will be ramped, the temperature begins to ramp

as prescribed by the user in the software.
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Figure 6.7: Schematic of the VOC detector’s pneumatic system.

Elute from the GC is mixed with carrier gas as it enters the PID chamber. This

configuration allows both PID and GC to operate at their optimum flow rates albeit

dilution of the sample entering the PID. The dilution ratio is given in Equation 6.1.

GC : PID =
M2flowrate

M1flowrate
(6.1)

Cleaning

During cleaning, the PC temperature is set to the regenerative temperature for the

carbon cloth. Flow is channelled through the PC, V2 and out through the pump as

shown in Figure 6.8.
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Figure 6.8: Schematic of the Gas Mixer pneumatic system

The flow rate is set to 2 L/min to force the remaining desorbed samples from

the PC.

6.3 Power supply and digital electronics

6.3.1 Power electronics

The components in the system have varying power requirements. It is important that

the power is supplied to these components is free from interference as it could affect

the functioning of the actuators, measurement signals from sensors or damage the

instrument altogether. High power components such as the PC heater and GC heater

require high current to reach the desired temperatures in a short period of time. For

example the PC requires 12 V at 2 A to increase desorption temperature from room

temperature to 150 ◦C in 20 s. Intermittent power components such as the valve

and pump require power supply for a short time period. However their switching

action introduces noise in the power lines. This is more the case with the fast
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switching high voltage generator for the detector unit. The Field Asymmetric Ion

Mobility Spectrometry (FAIMS) waveform generator outputs up to 260 V at 700 kHz

introducing Radio Frequency Interference (RFI) and Electromagnetic Interference

(EMI) into the system. Measurements from highly sensitive components such as the

Volatile Organic Compound (VOC) detector circuit and other sensors integrated in

the system could easily be adversely affected by these interference if powered on

the same power supply lines. Therefore, the power system was developed with two

power lines to isolate sensitive components from high power components. This is

shown in Figure 6.9.

Alternating Current (AC) at 240 V was supplied from mains into the system via

a Qualtek 880-06/006 EMI panel mount filter citequaltek. Its function is to reduce

high frequency electronic noise in the mains voltage that may cause interference with

other devices in the system. This EMI filter consists of passive components, includ-

ing capacitors and inductors, to form a filtering LC circuit. The inductor blocks

the harmful unwanted high frequency currents and allows low frequency currents or

Direct Current (DC) or to pass through. The capacitors divert the high frequency

noise away from the filter network by providing a low impedance path to the ground

connection or back into the power supply. The X and Y capacitors used in this

filter meet EMI regulations safety standards. The X class capacitors are connected

between the AC lines to eliminate the potential for shock in the event of failure.

The Y capacitors are connected between the AC lines and ground [1].
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Figure 6.9: Power supply layout
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The filtered AC supply is split at this point to separate lines feeding components

categorised as either high power or sensitive components. This fed into a trans-

former to isolate the system from mains power supply and step down the voltage.

A rectifier and filtering network converts the AC to DC. This DC is supplied to

various components through regulators that ensure the correct voltage is supplied

to the component. The power requirements of major components in summarised in

Table 6.1.

Table 6.1: Summary of system component power requirements

Component Category Quantity Voltage Current/power

Pumps High power 3 12 V

Fans High power 2 12 V 100 mA

PC heater High power 1 12 V 2 A

GC heater High power 1 12 V 2 A

Detector filter High power 1 12 V ≈200 mA

Microcontroller Low power 1 12 V ≈300 mA

Bluetooth Low power 1 5 V 50 mA [2]

Detector amplifier Low power 1 ± 3 V ≈10 mA

SHT75 Low power 1 5 V 1 mA [3]

6.3.2 Digital electronics

The digital electronic system was designed to manage functions relating to the flow

of samples to the VOC sensor, measuring the sensor response, control temperatures

and communicating all of this information to and from the control software. An

Arduino Micro microcontroller unit was selected to manage this task. It interfaces
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with the many transducers, actuators and sensors in the system. The Micro [4]

is based on the ATmega32U4 microcontroller. It has 20 digital input/output pins

( 7 can be used as Pulse Width Modulation (PWM) outputs and 12 as analogue

inputs,) which is sufficient to control the components used in this project. Another

reason why the Micro was selected is because it has a 5 V operating voltage [5]

which eliminates the need to for level shifters when interfacing with peripherals like

the Bluetooth LE to UART module.

Control signals from the Micro were used to actuate 4 valves, 2 MFCs and 3

pumps. It was also used to supply power for heating to the PC and GC. The Micro

also controls the filtering circuit, powering it off when not in use to save power. The

5 V signal from the Micro is interfaced with those components via the Ningbo Songle

Relay SRD-05VDC-SL-C non latching relays [6]. This relay is rated to supply 10 A

30 V load using a 5 V signal. Digital pins from the Micro were connected to the relay

inputs. The relay load pins was used to control power supply to other components.

The response signals from the VOC detector were fed to the analogue pins on the

Micro. The Micro also receives gas humidity and temperature measurements from

the SHT75 using I2C communication protocol. GC and PC temperatures are tracked

by the Micro using the MAX31855 thermocouple-to-digital chips, which sends this

information to the Micro via a SPI communication protocol. All this information

are processed into a data stream that is then sent through Bluetooth LE 4.0 to a

controlling software running on a computer. The computer receives this information

and sends instructions to the Micro using the same Bluetooth channel.

Bluetooth communication module is based on the CC2540 2.4-GHz Bluetooth

low energy System-on-Chip [7] from Texas Instruments. This module is compliant

with worldwide Radio Frequency (RF) configurable resolution regulations (ETSI
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EN 300 328 and EN 300). It includes a Generic Attributes Profile (GATT) that

exposes several services and characteristics. Information to be streamed form the

Micro is loaded into one of these characteristics through Universal Asynchronous

Receiver/Transmitter (UART). This information can be read from this characteris-

tic by another Bluetooth LE device. Information from an external device is received

into one of the characteristic on the CC2540 chip. The chip sends this information

to the Micro via UART.

The mechanical components discussed in Section 6.2 and Section 6.3 were assem-

bled in two-tier configuration. The lower stage houses the electronics. This includes

the transformers, power supply and distribution circuits. It also contains the FAIMS

voltage generator and relay network banks to digital control.

The upper tier houses the gas flow network including pumps and valves. It

also carries the VOC detector sensor, Micro and Bluetooth communication module.

The assembly was enclosed in a CiT F3 Micro-ATX Case from CiT. This enclosure

measures 37 × 21 × 42 cm and is shown in Figure 6.10.
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Figure 6.10: System assembly enclosed in the CiT F3 enclosure

6.4 Software design

Control algorithms for gas sensing instruments tend to mimic smelling in animals.

For humans the smelling process involves uptake of air into the nose where odorants

bind to localised receptors on olfactory neurons. This activate cells in the olfactory

receptor cells sending signals to the glomeruli. The signals are then transmitted

to higher regions of the brain where the signal is processed. The human brain is
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able to process smells based on the receptors that trigger the signal [8] and we have

approximately 393 olfactory receptor genes [9]. This amazing ability to smell is not

so amazing when compared with animals in nature. Guinea pigs, for example, have

796 olfactory receptor genes, rats have 1207. Elephants have 1948 which helps them

detect water 12 miles away. The animal believed to have the best sense of smell

is the Bear with a sense of smell 2100 times better than that of a human. Bears

use this keen sense of smell to keep track of their cubs, find mates and food, avoid

danger and detect an animal’s carcass 20 miles away. [10–13]. In recognition its

sense of smell, it was decided that the overarching control software for this detector

will be called Bear!

Bear was designed to manage the gas testing operations for the instruments cov-

ered in Chapter 3 - 6. The aim was design a single port of operations to allow these

instruments function together during analysis. Bear also provides a layer of abstrac-

tion to the user by managing gas flows, timing, humidity, concentration, heating

and several other parameters. It is essential that these parameters are consistent

across gas analysis ensuring repeatable and reproducible results. Additionally Bear

records test measurements to a .csv file for further statistical analysis. Bear was

written in C] for the Universal Windows Platform (UWP) and targeted at the 64

bit Windows 10 version 1803.

This section will discusses the design of Bear for humidity, concentration, PID

and manual analysis using the Model 700 Calibrator, Dilutor and the AC,PC,VOC

detector assembly described earlier.
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6.4.1 Software overview

Bear is designed to provide the user with at automated control interface for analysis

using the Model 700 Calibrator, Dilutor, AC,PC and VOC detector. It allows the

user to use all of these instruments for robust sensor calibration or select a few

components for simple sample analysis. A chart of the software layout is shown in

Figure 6.11.
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Figure 6.11: Bear software layout.

Bear provides four test scenarios namely Humidity, Concentration, PID and
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Manual control. Each test scenario has an associated Settings page allowing the user

to set specify test parameters for the sensor. Bears Graphical User Interface (GUI)

is designed in a Master-Detail style. The Master pane on the left lists analysis

scenarios and the general Settings button at the bottom of the pane. The Detail

view covers majority of the screen and provides controls for the user to interact with

the instrument. The controls available to the user as will be explained depends on

the selected scenario. These test scenarios are discussed next.

6.4.2 General settings

The General Settings page is where housekeeping for Bear is managed. Here the

user specifies a directory to be used as the working directory. This is where test

sequences, measurements and sensor responses are stored. On this page (Figure

6.12) Bear enumerates surrounding Bluetooth LE devices and allows the user to

establish a Bluetooth connection between Bear and the VOC detector and Dilutor.

Bear also connects to the Model 700 Calibrator via a USB to RS232 converter.
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Figure 6.12: General Settings page

6.4.3 Humidity

The Humidity test page is designed to aid humidity calibration tests on the instru-

ment. The gas flow for this sequence is illustrated in Figure 6.13.

Figure 6.13: Humidity test gas flow
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Calibration analyte of a known concentration is fed into the 300 mL/min MFC

in the Dilutor. Zero air is fed supplied into the 2 L/min and 10 L/min MFCs in

the Dilutor and Model 700 Calibrator. The output from the Model 700 Calibrator

is bubbled in a water bubbler to humidify the air before being mixed with the

output from the other MFCs. The mixture is passed through a chamber containing

the SHT75 sensor before being fed into the VOC detector. The relative humidity

measurement from the SHT75 is sent to Bear. Using this information Bear adjusts

the dry air flow through either the 2 L/min or the wet air flow through the 10 L/min

MFC. A proportional derivative controller class was designed to aid with precise

humidity control. This controller is simplified in Equation 6.2.

Flowratew = Kpe(t) +Ki

∫ t

0

e(t′) +Kd
de(t)

dt
(6.2)

This equation determines the wet flow rate, Flowratew, through the 10 L/min

MFC. e(t) is the error or difference between the humidity set-point and the current

humidity. Kp, Ki and Kd are the proportional, integral and derivative gains which

are specified by the user. The proportional term adjusts the flow rate proportionally

to the current error, the integral term accounts for both the magnitude and duration

of the error while the derivative term accounts for the rate of change of the error.

By varying Kp, Ki and Kd, the controller response can be tuned to adjust humidity

as desired by the user. Bear computes the dry flow rate Flowrated using Equation

6.3 by subtracting the wet flow rate Flowratew and the input gas flow rate GF

(obtained using Equation 6.4) from the total flow rate specified by the user.

Flowrated = Totalflowrate− Flowratew −GF (6.3)
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For Humidity analysis, the user specifies calibration settings on the Humidity

settings page (Figure 6.14). Here, the user specifies if the responses obtained from

the VOC detector and test measurements should be logged and provides a file name.

They also provide the input concentration of the analyte to be tested, the desired

output concentration to be fed into the VOC detector and the fixed flow rate from

the test. The user now goes on to build a humidity test sequence in the test sequence

table by specifying humidity and duration. Bear ensures that the calibration gas

supplied to the instrument is at fixed flow rate and concentration and that only

humidity is varied and prescribed by the test sequence. This approach allows sensor

calibration based on humidity alone eliminating the effects of changing concentration

and flow rates on the sensor.

Figure 6.14: Humidity Settings page.

Bear computes the gas flow rate GF through the 300 mL/min to achieve the
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desired test concentration or calibration concentration CC using Equation 6.4.

GF =
Totalflowrate ∗ CC

IC
(6.4)

The Totalflowarate and input concentration IC are provided by the user in

the Humidity settings page. Clicking the Accept button at the bottom of this page

navigates the user to the Humidity main page (Figure 6.15). Here the user can click

the Start button at the bottom of the page to start the Humidity test.

Figure 6.15: Humidity Test page.

During tests Bear creates a timer on a separate processor thread. This ensures

accurate repeatable test timing since the test timer in not impeded by any other

computing processes. The timer raises an event at predefined intervals and the

event handler checks if the duration for a particular sequence has expired. Once

the duration for a sequence is complete Bear iterates to the next step in the test

sequence until the test is complete. Three input controls are provided for the user
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to adjust the proportional, integral and derivative gain during a analysis ensuring

that the desired humidity is always achieved.

6.4.4 Concentration

The Concentration test page is designed to aid concentration calibration tests. It

allows the user to mix gasses and perform analysis such as Limit of Detection (LOD)

tests on the VOC detector. The gas flow path for this test setting is shown in Figure

6.16.

Figure 6.16: Concentration Settings page.

Two analytes, A1 and A2, can be supplied into the 100 mL/min and 300 mL/min

MFCs respectively. Diluent air is supplied into the 10 L/min and 2 L/min MFCs

allowing a maximum of 0.99% gas dilution. For calibration analysis the user specifies

if the test will involve mixing of two gasses or a single gas test. After supplying the

analyte concentration Aconc and total flow rate FT Bear computes the maximum

concentration Maxconc and minimum Minconc that is achievable for analyte A1
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using Equation 6.5 and 6.6.

Maxconc =
100

FT + 100
∗ A1conc (6.5)

Minconc =
20

FT + 20
∗ A1conc (6.6)

Using this information the user builds a concentration test sequence within the

concentration range by specifying duration and concentrations in the sequence table

(Figure 6.17). Bear ensures that the total flow rate reaching the sensor is fixed during

analysis so that sensor responses obtained are only due to changes in concentration

of analyte and not flow rate.

Figure 6.17: Concentration Settings page.

A second test sequence table is provided for tests where the effect of changes to

flow rate is also investigated. This table allows the user to change flow rates for each

sequence in the test. This is for tests where the effect of flow rates on the sensor is to
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be analysed. Clicking on the accept button navigates the user to the Concentration

test page (Figure 6.18). Here the user starts the analysis by clicking start at the

bottom of the page. Similar to the Humidity page, Bear creates are timer and

iterates through the user prescribed concentrations. A graphical representation of

the sensor responses are displayed for user as well as flow rates from the MFCs.

Figure 6.18: Concentration Test page.

6.4.5 PID

This page was designed aid operating the instrument as a gas analytical instrument.

On the PID Settings page (Figure 6.19) the operating modes described in Section

6.2.2 are presented to be customised by the user. Various operating modes can be

enabled or disabled. The duration, flow rates and temperature controls allows the

user to define complete tests sequences for the GC, PC, and VOC detector.
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Figure 6.19: Detector Settings page.

After entering the analytic settings, the user navigates to the PID test page

(Figure 6.20) to begin the test. Clicking start at the bottom of the page creates a

timer for each operating mode enabled. This allows Bear to independently manage

the function of each mode. For example, during the desorption process, Bear runs

a parallel timed background tasks that prepares the GC and pumps for sample

injection. Using this technique, Bear ensures all three components are in the required

state before the sample reaches each component. The interface displays a plot of

the detector responses, flow rates from the MFCs and temperature measurements

from the AC and GC. All system measurements are also saved to a .csv for future

statistical analysis.

197



Figure 6.20: Detector Test page.

6.4.6 Manual control

The final test scenario on the Bear software is the Manual Control. This mode

allows the user to build a manual test sequence specifying duration, valve and pump

states, PC and GC temperatures, MFCs flow rates etc. All of these settings are

collected on a central data grid in the Manual Control Settings page.
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Figure 6.21: Manual Settings page.

On the Manual Control test page (Figure 6.22), the user begins the test by

clicking Start button at the bottom of the page. Toggle controls and textboxes are

added to this settings page to allow manual override of the test sequence during

analysis.

Figure 6.22: Manual Test page.
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6.5 Conclusion

In this chapter the assembly of the PC, GC and PID VOC detector have been

presented. The power supply design approach to ensure various components in the

system function without EMI and RFI were also discussed. An analytic software

was also developed to manage the operation of the assembled system. The next

chapter discusses gas analysis tests and results carried using this instrument.
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Chapter 7

Biomedical Tests and Results

7.1 Introduction

Chapters 4 to 6 presented the work carried out to design a new Volatile Organic

Compound (VOC) detection instrument for biomedical diagnosis. Various tests were

presented in those chapters showing the ability of the instrument to detect VOCs

at very low concentrations. To be used as a diagnostic tool, a significant amount

of biomedical testing and trials must be done with this instrument. This chapter

presents the biomedical tests carried out using this instrument. Before discussing

the tests, the next section introduces the biomedical premise for the test.

7.2 Biomedical premise

In the United States, sepsis is becoming increasingly prevalent affecting 240 per

100,000 per year [1]. Sepsis is often lethal with a survival rate of 55 to 65 percent in
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affected patients [2]. Antimicrobial drugs are necessary for the treatment of sepsis

to prevent septic shock from bacterial infection. Mortality rate increased by 10 to 15

percent for patients who do not receive prompt appropriate antibiotic therapy[2]. In

a study of 3929 patients where 984 progressed to septic shock, Whiles et al. reported

that for each hour that passed between triage of these patients at the emergency

department and antibacterial administration, the risk of progression to septic shock

increased by 8% [3]. In their findings, the timing of antibiotics is an important factor

in determining progression to sepsis shock.

Although the prompt delivery of appropriate antibacterial limits the progres-

sion of sepsis, antibacterials should not be administered until bacterial infection is

diagnosed[4]. This is due to the prevalence of antibacterial resistance which in part,

has resulted from medical abuse of antibiotics and the proliferation of drug resistant

bacteria strains [5, 6]. Resistance to multiple drugs was first reported in the 1950s

and has been detected in several bacteria including Escherichia coli, Shigella and

Salmonella [5–8]. Therefore there is a need for swift detection of causative pathogens

before the onset of antimicrobial therapy [9].

Current diagnostic methods incudes developing cultures for pathogen strains.

However this may take days before the test results are available [9]. Addition-

ally cultures may have limited sensitivity for patients already receiving antibiotics

for a different infection [4]. Several studies have shown that bacteria have dis-

tinct metabolic pathway leading to the formation of certain VOCs. These VOCs

are detected using gas analytic instruments such as electronic noses, Selected Ion

Flow Tube Mass Spectroscopy (SIFT-MS), Gas Chromatography Mass Spectrome-

try (GC-MS) [10–12]. The presence of these compounds indicates the presence of

the causative bacteria hence an infection is diagnosed.
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Several bacteria have been detected in patients with sepsis. The six most abun-

dant are Klebsiella pneumoniae, Staphylococcus aureus, Enterococcus faecalis, Strep-

tococcus pneumoniae, Pseudomonas aeruginosa, and Escherichia coli [9]. All of

these bacteria produce isopentanol, formaldehyde, methyl mercaptan, and trimethy-

lamine which are not produced by humans. Table 7.1 shows the volatile biomarkers

released in from the metabolic activities of some of these bacteria.

Table 7.1: Bacteria and volatile biomarkers given off during metabolism [9, 13, 14]

Bacteria Volatile biomarkers

Staphylococcus aureus Isovaleric acid, 2-methyl-butanal, ace-

tone

Pseudomonas aeruginosa 1-undecene, 2,4-dimethyl-1-heptane, 2-

butanone, 4-methyl-quinazoline, hy-

drogen cyanide, and methyl thio-

cyanide, acetone, indole

Escherichia coli Methanol, pentanol, ethyl, acetate,

acetone, and indole

For strains of Escherichia coli bacteria, indole (C8H7N) is the major VOC re-

leased [10, 12, 15–18]. Indole consists of six-membered benzene ring fused to a

five-membered pyrrole ring (Figure 7.1) and could be detected in faeces, saliva and

urine of infected humans [19].
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Figure 7.1: Indole.

Indole is biosynthesized in the Shikimate pathway from the amino acid Trypto-

phan by the enzyme tryptophanase as shown in Equation 7.1[20].

L−Tryptophan + H2O
Tryptophanase−−−−−−−−→
PLP,NH4+

Indole + Pyruvate + NH3 (7.1)

Although the concentration of indole in faeces is documented and is available in

the Human Metabolome Database [19], literature on the concentration of indole in

urine is not readily available. Thorn et al. reported a concentration of 551.21 ppb

of indole after incubating Escherichia coli for 24 hours and 147 ppb after incubat-

ing for 5 hours in some strains. They also reported a 210 parts per billion (ppb)

concentration of acetone after 5h incubation of Escherichia coli [12].

The tests reported here were carried out to characterise the performance of this

VOC analytic instrument as a diagnostic tool for detecting Escherichia coli, Staphy-

lococcus aureus and Pseudomonas aeruginosa in urine medium. The test and sta-

tistical analysis where aimed at:

• detecting indole and acetone biomarkers in urine

• discovering limit of detection for indole and acetone
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• identifying statistical methods best suited for diagnosis with this instrument

7.3 Materials and methodology

Experiments were designed to access the performance of the instrument in diag-

nosing bacterial infection in urine by detecting the presence of indole and acetone

in urine. Therefore three tests were carried out to characterise the instruments

performance as a diagnostic tool. The tests and aims are listed in Table 7.2:

Table 7.2: Diagnostic test sequence

Test Aim

Detection of indole biomarker in urine Demonstrate the instruments ability to

detect Escherichia coli, Staphylococcus

aureus, and Pseudomonas aeruginosa.

Test for Limit of Detection (LOD) for

indole and acetone to ascertain the

minimum concentration of biomarker

detectable by the instrument

Detection of random indole concentration Eliminate the effect of biomarker con-

centration in diagnosis

Detection of indole and acetone in urine General diagnosis of bacteria in urine

For each test in the sequence, a set of urine was analysed and compared with the

urine containing the biomarker. To ensure consistency across urine samples used

for the tests, synthetic urine was used. Surine Neg Urine Control was purchased

from Sigma-Aldrich. The indole biomarker used was the Indole 99% (50 g) which
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was obtained from VWR. Liquid acetone was also purchased from Sigma-Aldrich

to be used as biomarker for the tests. Section 7.3.1 - 7.3.3 describes the sample

preparation and test methodology for the different sample groups.

7.3.1 Urine

The preparation process involves pipetting 10 mL of urine sample into a 20 mL glass

vial. The vial was covered with a vial cap. Since the urine samples are stored in

a fridge, the vial was allowed to sit for 3 hours to attain 25◦C room temperature.

Next the vial cap was replaced with a sampling cap with two 1/8 inch push-fit

adaptors to allow 1/8 inch tubing to be connected to the vial. One of the adaptor

was connected to the inlet of the instrument and the other end was blocked to trap

VOCs in the headspace of the vial. The vial was placed in a Dri-Block (Techne)

heater and heated to a temperature of 40◦C for five minutes. This step releases the

volatiles in the solution in the headspace in the vial. Next, the analytic process

with the instrument is started using Bear and the block on the other vial inlet is

removed. Bear’s settings for analysis are presented in Table 7.3. The sample was

supplied into the instrument with at a flow rate of 300 mL/min with 1200 mL/min

clean air make-up flow.

Table 7.3: Instrument analytic sequence using Bear

Procedure Duration (s)

Sampling 10

Desorbtion 30

GC and PID analysis 40
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7.3.2 Indole

Urine containing indole were analysed on the VOC detector instrument to simulate

diagnostic tests for bacteria infection. As mention earlier, Escherichia coli and

Pseudomonas aeruginosa have been shown to produce indole in urine, breath and

saliva. Preparation of the indole sample begins with dissolving the solid indole in

urine solution. However to obtain a lower concentration sample, indole was first

dissolved in water and the dissolved solution was added to urine. The masses of

indole were measured using the GR-202 Semi-Micro Analytic Balance from A&D

Company LTD. The analytic balance offers a 0.01 mg resolution allowing precise

indole mass measurement. In this procedure, the concentration of indole in water

Ciw is given by Equation 7.2

Ciw =
mi

Vw
∗ 1000 (7.2)

Using 7.2 a solution with a known concentration of indole in parts per million

(ppm) can be obtained from a given mass of indole (mi) and volume of water Vw.

The solid indole in water was dissolved in water by stirring with magnetic stirrer for

45 minutes. Next 0.1 mL of this solution is pipetted into a 10 mL solution of urine.

The concentration of indole in urine Ciu was obtained using Equation 7.3.

Ciu =
Viw

Viw + Vu
∗ Ciw (7.3)

Using 7.3, a urine solution with a known concentration of indole in ppm can be

obtained from a fixed volume of aqueous indole Viw containing a known concentration

of indole Ciw and volume of urine Vu. Using equation 7.2 and 7.3, several urine and
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indole solutions were generated.

The test procedure is similar to tests with urine alone. Again, 10 mL of indole

and urine mixture were pipetted into a 20 mL glass vial and allowed to sit for 3

hours to attain room temperature. Next the vial cap was replaced with a sampling

cap with two 1/8 inch push-fit adaptors to allow 1/8 inch tubing to be connected

to the vial. One of the adaptor was connected to the inlet of the instrument and

the other end was blocked to trap VOCs in the headspace of the vial. The vial was

placed in a Dri-Block (Techne) heater and heated to a temperature of 40◦C for five

minutes to release the volatiles in the solution. Next, the analytic process process

with the instrument is started using Bear and the block on the other vial inlet is

removed. Bear’s settings for analysis are the same with the urine tests as presented

in Table 7.3. The sample flow was set to 300 mL/min with a clean air flow of 1200

mL/min. This dilution enables the instrument to test lower concentration of indole

Cid using the Gas Test Rig presented in Chapter 3.

The mixtures and concentrations of indole tested are summarised in Table 7.4.

Higher concentrations of indole were obtained by dissolving indole directly in

urine. Dissolving a given mass of indole mi in a volume of urine Vu gives a urine

solution with an indole concentrations Ciu in ppm given by Equation 7.4.

Ciu =
mi

Vw
∗ 1000 (7.4)

The indole solutions obtained by directly dissolving indole in urine are shown in

Table 7.5.
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Table 7.5: High concentration indole and urine mixtures

mi (mg) Vu (mL) Ciu (ppm) Cid (ppm)
0.5 10 50 10
1 10 100 20

7.3.3 Acetone

Urine containing acetone was tested on the VOC detector instrument to simulate

diagnostic tests for bacteria infection from Pseudomonas aeruginosa and Staphylo-

coccus aureus. Preparation of the acetone and urine samples begins with mixing

small quantity of acetone in urine solution. Similar to the preparation of indole

samples, low concentration acetone samples were obtained by mixing in two stages.

First, a fixed volume of acetone Va is mixed with a known volume of water Vw.

The concentration of acetone Caw (ppm) in the acetone water solution is given by

Equation 7.5

Caw =
Va

Va + Vw
∗ 1000000 (7.5)

Next 0.1 mL of the acetone water mixture Vaw is pipetted into a fixed volume

of the urine sample. The concentration of acetone in urine Cau (ppm)was obtained

using Equation 7.6.

Cau =
Vaw

Vaw + Vu
∗ Caw (7.6)

The test procedure is similar to tests with indole. Again, 10 mL of acetone and

urine sample were pipetted into a 20 mL glass vial and allowed to sit for 3 hours

to attain room temperature. Next the vial cap was replaced with a sampling cap
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with two 1/8 inch push-fit adaptors to allow 1/8 inch tubing to be connected to the

vial. One of the adaptor was connected to the inlet of the instrument and the other

end was blocked to trap VOCs in the headspace of the vial. The vial was placed in

a Dri-Block (Techne) heater and heated to a temperature of 40◦C for five minutes

to release the volatiles in the solution. Next, the analytic process process with the

instrument is started using Bear and the block on the other vial inlet is removed.

Bear’s settings for analysis are the same with the urine tests as presented in Table

7.3. The sample flow was set to 300 mL/min with a clean air flow of 1200 mL/min.

This dilution enables the instrument to test lower concentration of acetone Ciad

using the Gas Test Rig presented in Chapter 3. The mixtures and concentrations of

acetone tested are summarised in Table 7.6.
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The acetone, indole and urine solutions described in this section were used for

the diagnostic test sequences listed in Table 7.2. Before discussing the results, the

next section introduces the statistical approach used in the analysis of the test

measurements.

7.4 Statistical analysis

The signals produced by gas based diagnostic instruments are translated to mean-

ingful results using statistical analytic methods. The statistical analysis carried out

in this section was not exhaustive and was aimed at identifying statistical methods

that best demonstrate the instrument’s performance as a diagnostic tool. Several

statistical methods are often used in medical diagnosis including Logistic Regres-

sion (LR)[21], Random Forest (R-F)[22], Support Vector Machine (SVM) [22–24],

Linear Discriminant Analysis (LDA) [25], Hierarchical clustering (HC) [23], k -means

clustering (KMC) [22], K-nearest neighbour (KNN) [26], Naive Bayes (NB) [27].

These methods could be group into supervised and unsupervised learning methods.

With supervised learning methods, the sample groups (i.e infected, control) groups

are known. For unsupervised learning methods, the groups are not known and the

selected statistical method is expected to find clustering of these groups within the

dataset. With a view to identifying the best statistical analytic method for this

diagnostic instrument, all the methods mentioned were evaluated. In the end an

analytic pipeline based on the best models were designed for both supervised and

unsupervised diagnostic scenarios. For supervised learning methods, classes of in-

dole, acetone and urine test results were used to train the model and later tested on

a separate test set. For unsupervised models, it is assumed that classes of indole,
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acetone and urine test results were unknown. The result of this analysis demon-

strates the instruments ability to separate within these groups. A summary of the

statistical methods used for the various tests are shown in Table 7.7.

Table 7.7: Statistical methods

Test Learning type Statistical methods

Detection of biomarker Supervised LR, NB, SVM, R-F, KNN

Detection of random biomarker conc. Unsupervised HC, KMC

Detection of indole and acetone Supervised & unsupervised LDA,HC, KMC

All statistical pipelines where written in the Python programming language

(Python 3.7.2) using the sklearn package for data analysis and the matplotlib

package for visualisation. Microsoft’s Visual Studio Code (version 1.30.1) was used

as the integrated development environment. The major processing steps for the

supervised and unsupervised learning pipelines are summarised in Tables 7.8 and

7.9.
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Table 7.8: Steps in unsupervised learning pipeline

Step Processes

Data preprocessing Obtain data

Binary encode labels

Standardize dataset

Data analysis Split data into training set (60%) and test (40%) sets

Feature extraction using Principal Component Anal-

ysis (PCA) (not applicable for LDA)

Select and fit models using training set

Predict outcome using test set

Model validation Tune hyper-parameters using GridSearch cross-

validation

Re-run model fitting and prediction using optimum

hyper-parameters

Validate model using 10-fold cross-validation

Compute Confusion Matrix (CM), f1-score, accuracies

of model

Visualise diagnostic results
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Table 7.9: Steps in supervised learning pipeline

Step Processes

Data preprocessing Obtain data

Remove labels

Standardize dataset

Data analysis Plot dendograms (HC) to deduce number of clusters

Use elbow method to deduce number of clusters

(KMC)

Fit model to dataset

Visualise diagnostic results

After each statistical method was fitted to the test results, the CM, f1-score and

accuracies for the models were computed to ascertain the appropriate statistical

model for such tests using this instrument.

7.5 Results and discussion

7.5.1 Detection of biomarkers in urine

The aim of this test is to demonstrate the instrument’s performance in diagnosing

the presence of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus

by indole and acetone in urine. The test procedure included testing 20 sets of urine

controls. For the indole infected group, sets of indole in urine samples were tested

various indole concentrations. The concentration of indole was reduced between

tests to discover the LOD for the instrument. The sample groups are summarized

in Table 7.10
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Table 7.10: Indole detection samples

Simulated Group Sample Concentration (ppm) Quantity

Control Urine N/A 10

Infected Urine and indole 20 20

Infected Urine and indole 10 10

Infected Urine and indole 4 10

Infected Urine and indole 2 10

Infected Urine and indole 1 10

Infected Urine and indole 0.2 10

Infected Urine and indole 0.02 10

Infected Urine and indole 0.002 20

For the acetone group, various concentration of acetone in urine samples were

tested. The concentration of acetone was reduced between tests to discover the LOD

for the instrument. The sample groups are summarized in Table 7.11

Table 7.11: Acetone detection samples

Simulated Group Sample Concentration (ppm) Quantity

Control Urine N/A 10

Infected Urine and acetone 20 20

Infected Urine and acetone 10 10

Infected Urine and acetone 2 10

Infected Urine and acetone 1 10

Infected Urine and acetone 0.2 20

The sensor response for urine and 2pp indole after 20 repeats are shown in Figure

7.2.
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Figure 7.2: Sensor response for urine and 2pp indole after 20 repeats.

Classification of urine versus the infected groups were obtained using LR, NB,

SVM, R-F, KNN. The best accuracy and f1-score was obtained using the R-F

classification method with an f1-score of 1 and an accuracy of 100% for indole tests.

An f1-score of 0.94 and an accuracy of 93% was obtained using R-F on the acetone

test samples. The decision boundary obtained using this classifier for the training

and test sets of the 2 ppb indole samples are show in Figure 7.3 and 7.4.
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Figure 7.3: Plot showing decision boundary classifying 2 ppb indole and urine train-
ing set using R-F

Figure 7.4: Plot showing decision boundary classifying 2 ppb indole and urine test
set using R-F

220



The results demonstrate that the instrument differentiates between low concen-

tration indole, acetone and urine samples and urine samples. As mentioned earlier,

Thorn et al. reported a concentration of 551.21 ppb of indole after incubating Es-

cherichia coli for 24 hours and 147 ppb after incubating for 5 hours in some strains.

They also reported a 200 ppb concentration of acetone after incubating Escherichia

coli for 5 hours. Lower concentrations of acetone in urine could not be tested due to

limitations of the liquid measuring instrument. However, the classification results

presented for 2 ppb indole suggests the instruments would be suitable to test the

presence of indole in urine without the need for incubation.

Figure 7.5: Plot showing decision boundary classifying 200 ppb acetone and urine
train set using R-F
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Figure 7.6: Plot showing decision boundary classifying 200 ppb acetone and urine
test set using R-F

Results from classification of urine versus 2 ppb indole infected groups analysed

using LR, NB, SVM, and KNN are presented in Appendix 9.1. Results from classifi-

cation of urine versus 200 ppb indole infected groups analysed using LR, NB, SVM,

and KNN are presented in Appendix 9.2.

7.5.2 Detection of random biomarker concentrations

This test was performed to demonstrate the effect of biomarker concentration on

the clustering of the sample groups. Unsupervised statistical learning methods were

used for this analysis. This was done to simulate test scenarios where the identity

of the of the sample group is not available.

Two sets of tests were carried out. One set involved testing 20 urine samples

and 80 indole samples. The indole samples had concentrations ranging from 2 ppb
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to 20 ppm. The other set involved testing 20 urine samples and 50 acetone samples

with concentrations ranging from 200 ppb to 20 ppm. The KMC method was used

to find clusters within the results. To find the number of clusters within the test

results, the Elbow method was used. The within-cluster sums of squares (WCSS)

and number of clusters are plotted in Figure 7.7 for indole and for acetone 7.8.

Figure 7.7: Elbow method plot for urine and indole tests

Both plots suggests there are three classes in the group. Analysis using a k value

of 2 and 3 produces similar clustering plots as shown in Figure 7.9 and 7.10 for

indole.
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Figure 7.8: Elbow method plot for urine and acetone tests

Figure 7.9: Clustering of urine and indole test samples using KMC (k = 2)
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Figure 7.10: Clustering of urine and indole test samples using KMC (k = 3)

The third centroid when k = 3 appears to be an outlier and a better clustering

of the test groups is observed when k = 2. Using a cluster number of 2 produces

better clustering using the HC method. A plot of the indole and urine clusters using

HC is shown in Figure 7.11.
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Figure 7.11: Clustering of urine and indole test samples using HC (n components

= 2)

The results are more interesting for acetone samples. Analysis using a k value

of 2 and 3 produces distinct clustering plots as shown in Figure 7.12 and 7.13.
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Figure 7.12: Clustering of urine and acetone test samples using KMC (k = 2)

Figure 7.13: Clustering of urine and acetone test samples using KMC (k = 3)

Distinct clusters of acetone and urine samples are shown for k values of 2 and

3. The third centroid appears to be closer to the acetone clusterindicating separate
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clusters within the acetone cluster. This could be as a result of the varying con-

centration in the sample set. However, both centroids are further from the urine

centroid indicating a separation between the sample groups. Similar distinction

between clusters is observed using HC with n components set to 2.

Figure 7.14: Clustering of urine and acetone test samples using HC (n components

= 2)

The results presented shows that the instrument could be used to analyse urine

samples with varying concentration of acetone or indole. However, there was signif-

icant overlap between these clusters using the KMC method for analysis of indole

tests. This could be due to the lower concentration levels of indole in the dataset.

However, the results improved, showing significant clustering between urine and

indole when the HC method is used. This demonstrates that mixed samples of

urine control and infection could be analysed using this instrument without prior

knowledge of the sample groups.
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7.5.3 Detection of acetone and indole in urine

Patients are likely to be infected with either Staphylococcus aureus, Pseudomonas

aeruginosa or Escherichia coli or a combination of these. It is expected that this

diagnostic tool should diagnose the causative pathogen from the amount of acetone

or indole in urine. This test was designed to ascertain the instruments performance

in this aspect. The test samples consisted sets of 20 urine, 20 indole and 20 acetone.

The results were analysed using LDA. This is because LDA models the difference

between the classes of data. The decision boundary obtained from the analysis are

plotted in Figure 7.15.

Figure 7.15

The instrument clearly differentiated between the infected samples (acetone and

indole) and the urine samples. However, the model did not completely separate

between indole and acetone samples. This shows the instrument is better suited

to diagnosing infection than separating between the infections using the biomarkers
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tested.

7.6 Conclusion

This chapter presented the practicality of using this instrument as a non-invasive

diagnostic tool for bacterial infection. The initial results indicate that the instrument

is capable of detecting VOCs released by causative pathogens such as Staphylococcus

aureus, Pseudomonas aeruginosa orEscherichia coli. Indole and acetone, known

biomarkers for these pathogens were tested. From the results, the instrument is

capable of detecting the presence of the biomarkers in urine, down to 2 ppb indole

and 200 ppb acetone. These results indicate that the instrument diagnosed the

simulated infected groups from control with the possible benefit of eliminating the

need for culture before testing for bacterial infection. The time saved by faster

diagnosis of bacterial infection could improve the treatment and mortality rate of

sepsis patients.
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Chapter 8

Conclusion and Further Work

The aim of this project is to develop a prototype point of care tool that has the

potential to be developed into a future commercial product for the detection of bac-

teria in patients. The need for this product stems from the limitations associated

with current gas based diagnostic tools such as Gas Chromatography Mass Spec-

trometry (GC-MS), Ion Mobility Spectrometry (IMS) and electronic noses. Factors

limiting the widespread adoption of these techniques includes cost of purchase, com-

plexity of operation and long analysis time. The size and weight of these instruments

reduce their portability and restrict their use to mostly laboratory analysis. There-

fore, limits their use in point of care in hospital wards, GP surgeries. Electronic noses

and Photoionization Detectors (PIDs) are further limited to analysis where compo-

sitional information of the compound under test is not required, as they generally do

not offer information on the identity of Volatile Organic Compound (VOC). They

are sensitive to a wide range of compounds hence have poor selectivity. Therefore,

in this project a portable, low-cost diagnostic tool was designed to enable faster

diagnosis of bacterial infection.
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As mentioned in Chapter 1, the objectives to achieve this aim included designing

a low-cost novel VOC detector. The design approach combines the merits of com-

mercial IMS systems and PID sensors. Unlike commercial PID devices, the detector

developed in this study provides compositional information on the compound being

tested. With the design approach taken, the instrument could be made available to

consumers at a lower price point than IMS systems with a market potential to sit

somewhere between the lower end PID and the higher end IMS systems. Peripheral

Pre-concentrator (PC) and Gas Chromatograpy (GC) were also developed to boost

the sensitivity and specificity of the detector, for particularly complex chemical

compositions. An end user software was designed to enable non-technical personnel

to use the instrument in diagnosis. Several chemical analyses were carried out on

the components to benchmark the instruments performance in undertaking VOC

detection. Initial diagnostic tests were also carried out using urine and some key

biomarkers for bacterial infections. Finally, statistical methods applied in the area

of gas based diagnostic medicine were also investigated. This was done to develop

an understanding of statistical approaches that were best suited for this instrument.

The conclusions from carrying out these objectives are discussed in more detail in

the next section.

8.1 Conclusions

In the first part of the work a literature review on PID and IMS technology was

carried out. The review presented some existing PID and IMS designs and their ap-

plications. It also discussed some of the merits and disadvantages of these technolo-

gies. From the review it was stated that depending on the choice of Ultraviolet (UV)
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lamp used for ionisation, PIDs could be targeted at compounds below the ionisation

potential of the UV lamp. However, the system will still detect all molecules below

the ionisation potential and so specificity would be limited. This was one of the

reason PID technology was used in this project as it enables analysis in air since

the components of air have higher Ionisation Energy (IE) than most UV lamps. A

second advantage in using PID sensors is their ability to function in ambient pres-

sure requiring less auxiliary equipment to operate. This facilitates portability of

PID sensors and makes them suitable for testing in a range of environments and

has resulted in their increased use for in situ analysis. While these advantages

are desirable, application of PIDs sensors in analysis requiring compositional infor-

mation is limited because PIDs sensors only provides a concentration value of the

sample being tested. The IMS technology was also reviewed and two major advan-

tages of Field Asymmetric Ion Mobility Spectrometry (FAIMS) over Aspirator Drift

Tube (ADT) IMS drift tube designs were presented. This includes the high speed

and an ion focusing effect that often improves sensitivity of FAIMS over ADT and

IMS. This review informed the design decision to develop a novel advanced VOC

detector based on the PID and FAIMS technologies.

The design of a Gas Sensor Calibration Rig was also presented. The Gas Sensor

Calibration Rig comprises of a Gas Mixer, Permeation Source, Humidity Generator,

Dilutor, and Gas Analyser. This instrument enables users to test their sensors in

controlled environments to calibrate the sensors. The test rig provides gas mixtures

at defined flow rates, pressure, temperature and humidity.

Several PCs and GCs were also developed to improve the analytical performance

of the system. PCs are used with gas based analytical equipment to enable selec-

tive sampling of target compounds, reduce Limit of Detection (LOD), and allow
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operation at high flow rates. GCs provides analytical systems with a mixture of

good accuracy and precision, very high selectivity and resolution, wide dynamic

concentration range and high sensitivity. GCs are used to separate complex mix-

tures before analysis by detectors such as IMS and PID. When integrated with gas

detection technologies, both PC and GC increase the limit of detection, selectivity,

and sensitivity of the sensor device. This project presents a novel use of Activated

Carbon Cloth (ACC) as an adsorption material. The results presented shows a 830%

increase in response intensity when ACC was used. As demonstrated in the tests,

the PC serves as interface for different types of chemical instruments serving as a

convenient channel between sample and instrument.

The design of a novel advanced VOC ionisation sensor that offers additional

compositional information about the sample under test was presented. The sensor

provides two voltage outputs proportional to the concentration and composition of

the test sample. Tests were carried out with low concentration isobutylene and the

response was found to increase linearly with concentration. An increase in concen-

tration from 0 – 18 ppm resulted in an increase in output voltage of 2.3V, with an

estimated sensitivity of below 1 ppm. The composition response shows a significant

distinction between 2-pentanone and isobutylene when 1kV/m was applied in the

chamber. A 0.063 V difference was observed between 2-heptanone and propanol

when 1000 V/cm electric field was applied. The VOC detector compositional re-

sponse also discriminated between 10 ppm 2-hexanone, 2-octanone and propanol

when the electric field was varied from -7 kV/m to +7 kV/m. Similar discrimina-

tion was also observed for 2-heptanone and 2-octanone over the same electric field

range.

The PC, GC, and VOC detector were assembled into a single analytical in-
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strument. A new software - Bear, was designed to manage various aspects of the

instrument including power supply, pneumatics, and data. Bear was designed to

function as a single port of operations to allow these instruments function together

during analysis. The software also provides a layer of abstraction to the user by

managing gas flows, timing, humidity, concentration, heating and several other pa-

rameters. It is essential that these parameters are consistent across gas analysis

ensuring repeatable and reproducible results. Additionally Bear records test mea-

surements to a .csv file for further statistical analysis. Bear was written in C] for

the Universal Windows Platform (UWP) and targeted at the 64 bit Windows 10

version 1803.

Biomedical testing and trial were carried out to demonstrate the practicality of

using the designed instrument as a non-invasive diagnostic tool for bacterial infec-

tion. Several statistical models used in medical diagnosis were also investigated. The

initial results indicated that the instrument is capable of detecting VOCs released

by causative pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa

orEscherichia coli. Indole and acetone, as known biomarkers for these pathogens

were tested. From the results, the instrument is capable of detecting the presence of

these biomarkers in urine, down to 2 parts per billion (ppb) indole and 200 ppb ace-

tone. These results indicated that the instrument diagnosed the simulated infected

groups from control with the possible benefit of eliminating the need for culture be-

fore testing for bacterial infection. It also demonstrated the feasibility of using this

instrument as point-of-care diagnostic tool in a primary healthcare environment.

Further trials with urine samples from patients with these bacterial infection would

be required. Therefore, the next section discusses recommendation for further work.
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8.2 Recommendations for further work

The recommendations are separated into three major sections:

8.2.1 GC

The design of a spiral GC was presented in this work. However, extensive tests are

required to characterise the performance of the GC. These tests will demonstrate

the GCs as a stand-alone precursor for gas based analytical instruments.

8.2.2 VOC detector

The FAIMS based VOC detector requires high voltage waveform to achieve filtra-

tion of ions. Designing a low voltage filtration circuit will reduce space, costs and

power requirements. This approach will lead to more compact, battery powered de-

tector instruments for mobile point-of-care applications. Additionally, the reduction

in waveform power will reduce the Electromagnetic Interference (EMI) and Radio

Frequency Interference (RFI) in the system. Therefore, a more sensitive detection

circuit could be used without interference from the filtration circuit.

8.2.3 Biomedical trials and statistical analysis

The biomedical tests in this work were carried out using Surine Neg Urine Control

to simulate urine. Indole and acetone were used as biomarkers for Escherichia coli,

Staphylococcus aureus, and Pseudomonas aeruginosa. Further tests with urine sam-

ples from patients will be required to validate the results obtained in this projects.

240



From the statistical investigation it was observed that Logistic Regression (LR),

Hierarchical clustering (HC), Linear Discriminant Analysis (LDA) were the best sta-

tistical methods for supervised, unsupervised and non-binary supervised biomedical

diagnosis respectively. It is recommended that these analytical methods are built

into Bear. This enables faster diagnosis at the point of care eliminating the delay

associated with exporting test results to a statistician for analysis.
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Chapter 9

Appendix

9.1 Classification of indole infected groups

Figure 9.1: Plot showing decision boundary classifying 2 ppb indole and urine test
set using LR
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Figure 9.2: Plot showing decision boundary classifying 2 ppb indole and urine test
set using Naive Bayes (NB)

Figure 9.3: Plot showing decision boundary classifying 2 ppb indole and urine test
set using Support Vector Machine (SVM)
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Figure 9.4: Plot showing decision boundary classifying 2 ppb indole and urine test
set using K-nearest neighbour (KNN)
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9.2 Classification of acetone infected groups

Figure 9.5: Plot showing decision boundary classifying 200 ppb acetone and urine
test set using LR

Figure 9.6: Plot showing decision boundary classifying 200 ppb acetone and urine
test set using NB
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Figure 9.7: Plot showing decision boundary classifying 200 ppb acetone and urine
test set using SVM

Figure 9.8: Plot showing decision boundary classifying 200 ppb acetone and urine
test set using KNN
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