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Abstract

Interactions within and between urban environments include the price of houses,

the flow of traffic and the intensity of noise pollution, which can all be restricted

by various physical, regulatory and customary barriers. Examples of such re-

strictions include buildings, one-way systems and pedestrian crossings. These

constrictive features create challenges for predictive modelling in urban space,

which are not fully captured when proximity-based models rely on the typically

used Euclidean (straight line) distance metric.

Over the course of this thesis, I ask three key questions in an attempt to

identify how to improve spatial models in restricted urban areas. These are: (1)

which distance function best models real world spatial interactions in an urban

setting? (2) when, if ever, are non-Euclidean distance functions valid for urban

spatial models? and (3) what is the best way to estimate the generalisation

performance of urban models utilising spatial data?

This thesis answers each of these questions through three contributions sup-

porting the interdisciplinary domain of Urban Sciences. These contributions are:

(1) the provision of an improved approximation of road distance and travel time

networks to model urban spatial interactions; (2) the approximation of valid dis-

tance metrics from non-Euclidean inputs for improved spatial predictions and

(3) the presentation of a road distance and travel time cross-validation metric to

improve the estimation of urban model generalisation. Each of these contribu-

tions provide improvements against the current state-of-the-art. Throughout,

all experiments utilise real world datasets in England and Wales, such datasets

contain information on restricted roads, travel times, house sales and traffic

counts. With these datasets, I display a number of case studies which show

up to a 32% improved model accuracy against Euclidean distances and in some

cases, a 90% improvement for the estimation of model generalisation perfor-

mance.

Combined, the contributions improve the way that proximity-based urban

models perform and also provides a more accurate estimate of generalisation per-

formance for predictive models in urban space. The main implication of these

contributions to Urban Science is the ability to better model the challenges

within a city based on how they interact with themselves and each other using

an improved function of urban mobility, compared with the current state-of-the-

art. Such challenges may include selecting the optimal locations for emergency

services, identifying the causes of traffic incidents or estimating the density of

air pollution. Additionally, the key implication of this research on geostatis-

tics is that it provides the motivation and means of undertaking non-Euclidean
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based research for non-urban applications, for example predicting with alterna-

tive, non-road based, mobility patterns such as migrating animals, rivers and

coast lines. Finally, the implication of my research to the real estate indus-

try is significant, in which one can now improve the accuracy of the industry’s

state-of-the-art nationwide house price predictor, whilst also being able to more

appropriately present their accuracy estimates for robustness.

iii



Dedicated to...

everyone that has ever believed in me.



Acknowledgements

My special thanks go to Dr. Theodoros Damoulas who has supported my

technical and written work far beyond the call of duty. You have enabled me

not only to complete my doctoral thesis, but to challenge it, which in turn has

shown me to see the true joy in research. Another huge thank you also goes

to Professor João Porto de Albuquerque who has opened up my world of

research to new areas and supported me through all my different endeavours.

My academic career so far would be non-existent without Professor Stephen

Jarvis who set me on my path of research and introduced me to some fantastic

opportunities for personal growth and applications.

In addition, I would like to thank Professor Celia Lury and Dr. Narushige

Shiode who each in turn saw my potential at the early stages, allowing me to

enter a university department and research area which may not have other-

wise been accessible to me. Furthermore, the support of Yvonne Colmer and

Katie Martin is truly appreciated. Additionally, the Warwick Urban Sci-

ence Doctoral Programme provides a supportive community of like minded

researchers - thank you to all within it.

I would like to express my special thanks to Elizabeth, Chris, Libby,

Kev and Sarah for all of the good times and your loving help throughout. My

dearest Claire, you have been the most amazing wife I could ever have asked for

over the past three years. Not only have you supported me but you have made

my every day interesting, exciting and wonderful - here is to a lifetime more of

these days! Finally, my parents Jane and Rob - you have taught, supported

and believed in my abilities every day and for that, this thesis is dedicated you.

My sincerest gratitude goes to you all!

v



Declarations

This thesis is submitted to the University of Warwick in support of my appli-

cation for the degree of Doctor of Philosophy. It has been composed by myself

and has not been submitted in any previous application for any degree. Parts

of this thesis have been published by the author:

1. Crosby, H., Davis, P. and Jarvis, S.A., 2015, November. Exploring New

Data Sources to Improve UK Land Parcel Valuation. In Proceedings of the

1st International ACM SIGSPATIAL Workshop on Smart Cities and Urban

Analytics (pp. 32-35). ACM.

2. Crosby, H., Davis, P. and Jarvis, S.A., 2016, September. Spatially-

Intensive Decision Tree Prediction of Traffic Flow across the entire UK Road

Network. IEEE/ACM 20th International Symposium on International Sympo-

sium on Distributed Simulation and Real Time Applications (pp. 116-119).

3. Crosby, H., Davis, P., Damoulas, T. and Jarvis, S.A., 2016, October.

A spatio-temporal, Gaussian process regression, real-estate price predictor. In

Proceedings of the 24th ACM SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems (p. 68). ACM.

4. Crosby, H., Damoulas, T., Porto de Albuquerque J., Caton, A., and

Jarvis, S.A., 2018, May. Road distance and travel time for an improved house

price Kriging predictor, Geo-spatial Information Science, 21:3, 185-194, DOI:

10.1080/10095020.2018.1503775

5. Crosby H., Damoulas T and Jarvis S.A., 2019. Embedding road networks

and travel time into distance metrics for urban modelling, International Journal

of Geographical Information Science, DOI: 10.1080/13658816.2018.1547386

6. Crosby, H., Damoulas, T. and Jarvis, S.A., 2018, November. Road and

Travel Time Validation for Urban Modelling. Final draft completed for submis-

sion to the International Journal of Geographic Information Sciences (IJGIS).

vi



Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• Sponsor 1 : Engineering and Physical Sciences Research Council (EPSRC)

Centre for Doctoral Training in Urban Science (EP/ L016400/ 1). 2014-

2018.

• Sponsor 2 : Assured Property Group, Innovation Center, Warwick Inno-

vation Center, Gallows Hill, Warwick, CV34 6UW. 2015-2016.

vii



Abbreviations

i.i.d independent and identically distributed

UK United Kingdom

AI artificial intelligence

ML machine learning

OSM OpenStreetMaps

OSRM Open Street Routing Machine

SAC spatial autocorrelation

RQ research questions

PD positive definite

PSD positive semi-definite

CND conditionally negative definite

ROI return on investment

CPT Central Place Theory

AVM automated valuation model

AVMs automated valuation models

ITS intelligent traffic systems

GIS Geographic Information Systems

long longitude

lat latitude

viii



RMSE Root Mean Squared Error

NRMSE Normalised Root Mean Squared Error

MAPE Mean Absolute Percentage Error

r2 the squared Pearson correlation coefficient

GWR geographically weighted regression

OS’s Ordnance Survey’s

OS Ordnance Survey

FW Floyd Warshall

MDS multidimensional scaling

HMLR’s Her Majesty’s Land Registry’s

WGS World Geodetic System

KCV k-fold cross validation

S-KCV spatial k-fold cross validation

RT-KCV road distance and travel time k-fold cross validation

CV cross validation

GPR Gaussian process regression

ix



Symbols

Ω sample space of possible outcomes

F set of possible events

P probability measure over Ω

Z(s) random variable at location s

s spatial data point

D full spatial dataset

T full temporal dataset

R set of real numbers

Q set of rational numbers

N set of natural numbers

s̄ average of all points s

γ semivariance

s vector of points s

di,j distance between points si and sj

r2 goodness of fit between two point sets

ρ deadzone radius

RD road distance

TT travel time

ζ metric space

λi eigenvalue i

δ approximate road distance

τ approximate travel time

x



Contents

Abstract ii

Dedication iv

Acknowledgements v

Declarations vi

Sponsorship and Grants vii

Abbreviations viii

Symbols x

List of Figures xviii

List of Tables xix

1 Introduction 1

1.1 Research Questions and Contributions . . . . . . . . . . . . . . . 6

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background Research 12

2.1 A History of Urban Space Theory . . . . . . . . . . . . . . . . . . 13

2.2 Spatial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 A motivating example . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Spatial stochastic processes . . . . . . . . . . . . . . . . . 17

2.2.3 Types of spatial data . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Spatial autocorrelation (SAC) . . . . . . . . . . . . . . . . 21

2.2.5 Spatial stationarity . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Modelling Random Fields . . . . . . . . . . . . . . . . . . . . . . 24

xi



2.3.1 Semivariogram (γ) / variogram (2γ) . . . . . . . . . . . . 24

2.3.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Distance and Proximity . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Distance functions . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Distance metrics . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Metric or matrix . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Validating models with spatial data . . . . . . . . . . . . . . . . 34

2.5.1 Validation metrics . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Urban Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 House prices . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Traffic flow . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 The Practicalities of Storing, Retrieving and Analysing Spatial

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.1 Referencing data . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Datasets 45

3.1 Distance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Road distance data . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Restricted travel time distance data . . . . . . . . . . . . 49

3.1.3 Combined restricted road distance and travel time dis-

tance data . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4 Why travel time? . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 House Price Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Traffic Flow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Modelling Space in the City; a Real Estate Case Study 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Chapter structure . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



4.3 Background Reading . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 House prices in space . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Non-Euclidean distance based predictors . . . . . . . . . . 61

4.4 Scientific Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Stage 1: collapsing time . . . . . . . . . . . . . . . . . . . 64

4.4.2 Stage 2: distance matrix estimation . . . . . . . . . . . . 64

4.4.3 Stage 3: variogram fitting and spatial interpolation . . . . 66

4.4.4 Stage 4: cross validation and validation metrics . . . . . . 68

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Producing a Valid Urban Spatial Model with Road and Travel

Time Distance Functions 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Chapter structure . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Related Literature and Key Concepts . . . . . . . . . . . . . . . 77

5.2.1 Constructing optimal urban Kriging predictors . . . . . . 77

5.2.2 Overcoming non-metric input spaces . . . . . . . . . . . . 78

5.3 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Calculating a valid variogram . . . . . . . . . . . . . . . . 80

5.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Distance matrix calculation . . . . . . . . . . . . . . . . . 83

5.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.2 Matrix construction . . . . . . . . . . . . . . . . . . . . . 90

5.5.3 Data sampling for cross validation . . . . . . . . . . . . . 90

5.5.4 Variogram construction and Ordinary Kriging . . . . . . . 94

5.5.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.6 Results and analysis . . . . . . . . . . . . . . . . . . . . . 95

xiii



5.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Road Distance and Travel Time Cross-Validation for Urban

Models 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.2 Chapter structure . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Spatial autocorrelation (SAC) . . . . . . . . . . . . . . . . 104

6.3.2 Model generalisation . . . . . . . . . . . . . . . . . . . . . 105

6.4 Road and Travel Time Validation . . . . . . . . . . . . . . . . . . 107

6.5 Urban Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.1 The base Kriging predictor . . . . . . . . . . . . . . . . . 112

6.5.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.3 Case study 1 - automated valuation model . . . . . . . . . 115

6.5.4 Case study 2 - traffic flow prediction . . . . . . . . . . . . 116

6.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Discussion and Applications 123

7.1 Answers to Research Questions (RQ) . . . . . . . . . . . . . . . . 123

7.1.1 Research undertaken in response to RQ1 . . . . . . . . . . 124

7.1.2 Research undertaken in response to RQ2 . . . . . . . . . . 125

7.1.3 Research undertaken in response to RQ3 . . . . . . . . . . 125

7.2 Implications for Urban Science . . . . . . . . . . . . . . . . . . . 126

7.3 Implications for Geostatistics and Other Disciplines . . . . . . . . 127

7.4 Implications for the UK Real Estate Industry . . . . . . . . . . . 128

7.5 Limitations to Generalisation . . . . . . . . . . . . . . . . . . . . 131

8 Conclusions and Further Work 134

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xiv



8.2 Recommendations for Future Research . . . . . . . . . . . . . . . 135

8.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xv



List of Figures

1.1 A visual representation of spatial autocorrelation (SAC); Figure

(a) shows a strong SAC and Figure (b) shows a weak SAC. . . . 3

1.2 Two example plots of second-order and intrinsically stationary

processes across space: a covariogram and semivariogram respec-

tively (see Section 2.3.1 for in-depth description). . . . . . . . . . 4

1.3 A geographical representation of a Euclidean route versus the

route taken along a road network. . . . . . . . . . . . . . . . . . 5

1.4 A visualisation showing the spread of research aims by contribu-

tion, related to publications. The x-axis represents motivation

from practitioner to theorist and the y-axis defines focus from

method to application. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 A comparison of three urban space theories: The Isolated State

[123], Central Place Theory [21] and Bid-Rent Analysis [1]. . . . 14

2.2 The London cholera map produced by Dr John Snow. Accessed

from http://www.ph.ucla.edu/epi/snow/snowmap1.pdf on 06 June

2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 A visual representation of three types of spatial data: geostatis-

tical, lattice and point process. . . . . . . . . . . . . . . . . . . . 20

2.4 Semivariogram kernel examples; exponential/Matern, Gaussian

and spherical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 A visual description of variogram parameters; nugget, range and

sill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 A visual representation of an input geostatistical point set (left)

and a Kriged output (right). . . . . . . . . . . . . . . . . . . . . . 29

2.7 A visual representation of popularly employed distance functions. 31

xvi



2.8 A two-dimensional representation of Euclidean (purple), Minkowski

(green) and Manhatten (red) distances between two points. . . . 32

2.9 Holdout versus k-fold cross validation (KCV) techniques. . . . . 35

2.10 A visual comparison of all GIS data types: vector point, vector

polyline, vector polygon and raster grid. . . . . . . . . . . . . . . 42

2.11 A visual representation of longitudes and latitudes on the earth’s

surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 An isochronal comparison of Euclidean, road and travel time dis-

tances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Ordnance Survey (OS)’s road network dataset plotted on OpenStreetMaps

(OSM)’s background street map. . . . . . . . . . . . . . . . . . . 47

3.3 A visual description of the two methods for snapping observations

and roads: snap points to roads versus snap roads to points. . . . 48

3.4 A visual description of the house price dataset across Coventry,

projected to 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 A visual description of the traffic flow dataset across Birmingham,

projected to 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 A comparison of variances for urban house prices with differ-

ent distances; Euclidean, road distance (“Road”), journey time

(“Time”) and a linear combination of road distance and journey

time (“RDTT”). . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 A visual example of where P3 and P4 are not satisfied. . . . . . . 65

4.3 The ‘goodness of fit’ value for each Minkowski coefficient, tested

against the OSRM’s actual road distance calculations, travel time

calculations and a linear model of both. . . . . . . . . . . . . . . 67

4.4 A streetmap comparing distance functions; road, Euclidean, Man-

hatten and Minkowski distance. . . . . . . . . . . . . . . . . . . . 68

4.5 Spatially aware checkerboard sampling polygons utilised for my

hold out method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xvii



4.6 Results graphs for the best performing experiment. . . . . . . . . 71

5.1 A comparison of the actual road, Euclidean, Minkowski and Man-

hatten distances between two points on a map [101]. . . . . . . . 78

5.2 Illustration of the spatial transformation from road distance (or

travel time) into a Euclidean space. . . . . . . . . . . . . . . . . . 84

5.3 A flow diagram depicting the entire experimental process for the

United Kingdom (UK) real estate valuation case study described

in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 A comparison of all sampling techniques. . . . . . . . . . . . . . . 93

5.5 A graph of the three best kernels for a road distance matrix. . . 94

6.1 An example of road distance versus Euclidean dead-zones. . . . . 108

6.2 A flow diagram of spatial k-fold cross validation (S-KCV), R-

KCV, T-KCV and RT-KCV algorithm. . . . . . . . . . . . . . . . 110

6.3 Blocking KCV with equal test sets. . . . . . . . . . . . . . . . . . 114

6.4 Producing a ground truth train and test set. The orange space

represents the training area, the yellow space represents the ground

truth test area, the blue points are ground truth testing locations

and the white to red points represent the training set where the

white points are the cheaper houses/lower traffic flows and red

points are the more expensive houses/higher traffic flows. . . . . 117

6.5 Results graphs for both case studies: dead-zone size versus Normalised

Root Mean Squared Error (NRMSE) for all KCV methods and

the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Process diagram corresponding to the space-property-economic-

network-time (SPENT) algorithm. . . . . . . . . . . . . . . . . . 130

xviii



List of Tables

3.1 A subset of restrictions utilised in the OSRM’s road network and

travel time calculations from OSM labels. . . . . . . . . . . . . . 50

3.2 Feature name, description and data type in HMLR’s ‘Price Paid’

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Feature name, desctiption and data type in the traffic flow dataset. 55

4.1 Results for 10-fold cross validation. . . . . . . . . . . . . . . . . . 70

4.2 Results for checkerboard holdout. . . . . . . . . . . . . . . . . . . 70

5.1 The r2 values for each distance metric compared with actual road

distance and travel time matrices. . . . . . . . . . . . . . . . . . 91

5.2 Selected hyperparmeters for all experiments (1)-(6) with dead-

zone 10 fold cross validation. . . . . . . . . . . . . . . . . . . . . 94

5.3 Results from four validation techniques: 10-fold cross validation,

spatially stratified 10-fold cross validation, checkerboard holdout

and spatial dead-zone 10-fold cross validation. . . . . . . . . . . . 97

5.4 Maximum likelihood results with dead-zone spatial k -fold cross

validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 A comparison of the results from [35] (Contribution 1) with those

from this contribution using 10-fold cross validation. . . . . . . . 98

6.1 Results: the number of points removed to reach a specific % of

the ground truth NRMSE for each KCV technique. . . . . . . . . 119

7.1 Property, network and economic features considered in my Gaussian

process regression (GPR) automated valuation model (AVM) (en-

titled SPENT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xix



CHAPTER 1
Introduction

By 2030, it is expected that 5 billion people will live in urban spaces, 662 cities

will have at least 1 million residents and there will be a total urban spread of 1.2

million km2 [12, 98, 114]. Hence, cities will continue to accommodate over 50% of

the world’s population. In the United Kingdom (UK) however, the proportional

population is hugely extenuated with over 82% of UK citizens already living in

urban spaces. This population resides in 64 cities and has grown by more than

13% in the past 30 years [18]. Many UK cities suffer from legacy infrastructure -

the City of London, for example, relies on sewage infrastructure originally built

in the 1860s - which impacts on their ability to support projected growth. Such

challenges are well documented: housing supply is not matching demand [62];

commuting times are increasing [54] and there are shortages in services for the

most vulnerable citizens [116]. It is indeed these issues that reflect the very

nature of the growing UK city and the motivation to undertake analysis for

urban sustainability [124].

Annually, digital urban data witnesses a 42% compound growth [52] and

produces more information about the social and physical structures of contem-

porary cities than have ever before been available. In fact, before the new

decade, urban systems were inferred by (relatively) small scale data, which

were sourced from traditional data collection methods such as surveys, ques-

tionnaires, interviews or observations. Although detailed, these methods could

sometimes lack the representativeness and reliability that ‘big data’ boasts.

This aforementioned ‘big data’ is typically (1) crowdsourced voluntarily, such

as OpenStreetMaps (OSM), Wikipedia and Youtube; (2) outsourced to citizens

(albeit, sometimes unknowingly to the user) including mobile data, security
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footage, road sensors, social networks and on-line shopping or (3) sourced from

the government, for example house sale prices, administrative regions, air pol-

lution and land use. Each of these geotagged and/or timestamped data observe

the various aspects of the lives of urban citizens at a higher spatial and temporal

resolution than ever before.

Commonly, the flow within cities is referred to as its metabolism [5] and the

larger a city gets the more interrelated and diverse that metabolism becomes.

A large and complex metabolism of diversity, networks and citizens can hence

become a power in itself [105] which must be managed [9] to be understood and

to ensure that our cities of the future are sustainable, efficient and promoting

of a high quality of life [119]. Consequently, the opportunity that the afore-

mentioned urban data can provide is the potential to rationalise and simplify

the otherwise complex and multivariate processes that form a city, for example

road networks, cultural diversity and citizen wealth [128]. In other words, the

data facilitates the means to answering the question ‘how do cities work?’. The

interdisciplinary area of research interested in addressing this question is Urban

Science, a discipline heavily motivated by data and quantitative urban models.

Contemporary Urban Science is primarily concerned with modelling urban

spaces, of which the purpose is two fold; explanatory and predictive. Urban

models are holistic and unique in the fact that they utilise state-of-the-art tech-

nologies (i.e., machine learning) from the viewpoint of a geographer, policy

maker or economist for example. Modelling cities without these traditional dis-

cipline boundaries helps to maintain the sustainable growth of urban-specific

innovations by domain rather than discipline. Specifically, urban models at-

tempt to obtain the relationship between some target value, for instance the

price of houses, and some other variable(s) such as topography [73], building

footprints [102] or crime [121]. Interestingly, space [37] followed by time [65]

consistently define the largest proportions of most urban models, for example

house prices [36], traffic flow [136] and well-being [64].

Spatial urban models typically perform well given that geographical proxim-

2
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(a) SAC present (b) No SAC present.

Figure 1.1: A visual representation of SAC; Figure (a) shows a strong SAC and
Figure (b) shows a weak SAC.

ity intuitively measures urban processes which are defined as the set of interac-

tions that measure the patterns of flow and networks of relations in a city [10].

As such, observations in our inherently spatial cities can be probabilistically

determined by SAC: the similarity between two observations as a function of

geographical proximity. Figure 1.1 is a visualisation of this concept where each

point represents a spatial location for some simulated observation and each

colour represents a value for each observation from low (blue) to high (red).

Such spatial relationships violate the typical assumption present in non-spatial

statistics; all observations are independent and identically distributed (i.i.d) ran-

dom variables. This violation exploits the spatiotemporal dependency structure

present in cities [58]. However, such dependency structures in urban data may

introduce redundancy and risk an overestimation of statistical effects, it is im-

portant to take account for these redundancies, especially during the validation

stages of statistical modelling.

A similarly complimentary assumption common in spatial modelling and vi-

tal within the contributions of this thesis is stationarity ; a term used to define

the (non-)uniformity of data. The stationarity assumption is used to obtain

replication so that estimates can be understood by the variation of repeated

observations. There are four types of stationarity; first-order, second-order, in-

3
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(a) Second-order stationarity (b) Intrinsic stationarity.

Figure 1.2: Two example plots of second-order and intrinsically stationary pro-
cesses across space: a covariogram and semivariogram respectively (see Section
2.3.1 for in-depth description).

trinsic and quasi. The most common and relevant to this thesis are: (i) second-

order stationarity which implies a consistent covariance (strength of correlation)

between any two pairwise observations at the same distance apart [31] (see Fig-

ure 1.2(a)) and; (ii) intrinsic stationarity which assumes that the (semi)variance

of the differences between any two pairwise distances are the same (see Figure

1.2(b)). A further description of these concepts are put forth in Section 2.2.5.

In assuming stationarity, spatial models require some understanding of dis-

tance and direction. Typically, the distance function used for spatial modelling

is Euclidean (also called ‘as-the-crow-flies’). The Euclidean distance (more de-

tails in Section 2.4) defines a direct line between two points. This is frequently

unrealistic for urban settings containing physical restrictions and social struc-

tures, for example road and path networks, large areas of private land and legal

restrictions such as speed limits and one-way systems. Consequently, the fea-

tures of a Euclidean distance do not take account for spatially dependant urban

processes. For example, a citizen’s perception of space in their own city may in

fact be more related to their perceived accessibility to place, a concept qualita-

tively discussed by Neogeographers [58]. Hence, most urban processes contain

some level of non-Euclidean decision making. For example, the price that an

4



1. Introduction

Figure 1.3: A geographical representation of a Euclidean route versus the route
taken along a road network.

urban citizen is willing to pay for a house or the acceptable distance a person is

happy to travel to work, parkland or shops. This thesis addresses the need for

applying non-Euclidean distance approximations for geostatistical urban models

(i.e., road distance and journey time). Figure 1.3 provides an example of why

the proximity of two observations may differ significantly with road distance

compared to Euclidean measures. At several stages throughout this thesis a

set of ‘motivating examples’ identify the non-trivial challenges of these changes,

most notably, the requirement for distance functions to lay in a metric space; a

feature not apparent in road distance and travel time, see Section 2.4.

The remainder of this chapter will introduce all of the major contributions

that build the scientific novelty and industrial impact of this thesis. Chapter

2 provides a full description of background research inclusive of the themes,

definitions and concepts relevant to this research. Chapter 3 introduces the

datasets and case studies utilised throughout this thesis. Chapter 4 presents

the first major contribution which considers the use of non-Euclidean distances

5
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for geostatistical urban models. Chapter 5 thereafter examines the second ma-

jor contribution whereby the methodological implications of modelling space

with non-Euclidean distances are considered. My third and final contribution

is presented in Chapter 6 in which a new state-of-the-art cross validation (CV)

approach for more appropriately estimating the generalisation performance of

urban-specific models with spatial data is introduced. Thereafter, Chapter 7

puts forth a set of answers to the research questions (RQ) posed in Section 1.1

and discusses the implications of my work on the research area of Urban Science.

Finally, Chapter 8 concludes all of my findings and puts forth a set of research

avenues that are opened up by this thesis.

1.1 Research Questions and Contributions

This section introduces a set of RQs for consideration along with a brief de-

scription of the primary contributions put forth to address and answer each one

individually. Each contribution is associated (and cross-referenced) to at least

one publication presented in Section 1.2.

RQ1: Which distance function best models spatial interactions in an

urban setting?

Urban processes in space result in data which are not i.i.d and as such semi-

variograms [33], Moran’s I [96] or Getis’s G [56] have been put forth to sta-

tistically measure the extent of these dependencies and hence take them into

account. Each of these methods have a notable commonality - distance is

measured with a Euclidean function (defined in Section 2.4.1). Hence, these

distance-based learning methods do not take account for physical properties of

dispersion in a city landscape; for example in real estate, a person’s decision to

buy may consider; (1) their distance or journey time to specific locations (work-

place for example) or; (2) the comparable prices of other sub-markets within

close proximity. As such, I propose that physical barriers such as buildings,

6
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roads, paths and non-accessible open space can be modelled by the distance or

travel time along a (restricted) road network instead.

Contributions to RQ1: Contribution 1 (Chapter 4) considers this issue

by putting forth three approximate restricted road distance, travel time and

combined pairwise distance matrices to predict the value at specific house sale

locations. To ensure a valid distance metric for geostatistical modelling (refer

to Sections 2.3.2 and 2.4 for definitions), I propose that the Minkowski distance

function with a P -value (definition in Section 2.4.1) most correlated to the OSM

road network data is a strong approximation of space and proximity in the city.

The work in this contribution is taken directly from Publication 4 in Section

1.2.

RQ2: When, if ever, are non-Euclidean distance functions valid for

urban spatial models?

For spatial prediction (i.e., Kriging - Section 2.3.2), it is essential to ensure

that existing covariance and (semi)variance functions remain valid; positive def-

inite (PD) and conditionally negative definite (CND) respectively [39] (see full

explanation in Section 2.3.1). Given the extensive work on spatial modelling

with a straight line - Euclidean pairwise distance - there is no guarantee that

any non-Euclidean distance matrix (PD or otherwise) will produce a valid co-

variance or (semi)variance function, a proof of this is provided in Chapter 5.

Contributions to RQ2: My second contribution (Chapter 5) puts forward

a method to approximate restricted road distance, journey time and combined

matrices using an embedded lower-dimensional Euclidean space. This method

ensures that covariance and (semi)variance functions remain valid when using

urban-specific distances. For confirmation, I provide a comparison of six Or-

dinary Kriging predictions (definition in Section 2.3.2), each with a different

distance metric, employed in a real estate case study. The work in this contri-
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bution is taken directly from Publication 5 in Section 1.2.

RQ3: How should one estimate the generalisation performance of

urban models containing spatial data?

CV splits a dataset into two subsets: a training set which a model is fitted

on and a validation test set which the model predicts and is evaluated on

[117]. The main purpose of CV is to detect over fitting and estimate how well

a model will generalise to unseen data i.e., the expected performance of a

ground truth test set (defined in Chapter 6). Furthermore, k-fold cross val-

idation (KCV) repeats the process k times while appropriately validating on

all the disjoint subsets of the dataset. This method assumes that the random

variables in the validation test and training set are i.i.d. However, urban prob-

lems are inherently spatial, which invalidates this assumption. As such, spatial

k-fold cross validation (S-KCV) [106] attempts to remove the SAC between the

training and validation test set. Specifically, S-KCV implements a Euclidean

‘dead-zone’ area around all test points, such that all training points that lay in

these areas are removed. As per contributions 1 and 2, I propose that a non-

Euclidean dead-zone will better infer the interactions contained in urban space.

Contributions to RQ3: In Chapter 6, I introduce a new spatial k-fold

cross validation method, entitled road distance and travel time k-fold cross

validation (RT-KCV). This method constructs road network and travel time

dead-zones to better estimate urban SAC. I show that RT-KCV outperforms

the current state-of-the-art for estimating the generalisation performance of any

geostatistical urban model across the full interpolation-extrapolation range of

application scenarios. The work in this contribution is taken directly from Pub-

lication 6 in Section 1.2.
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Figure 1.4: A visualisation showing the spread of research aims by contribution,
related to publications. The x-axis represents motivation from practitioner to
theorist and the y-axis defines focus from method to application.

1.2 Publications

Chapters 4-7 contain the work undertaken within publications 1-6. Figure 1.4

provides a visual representation of the motivations and focusses of each publi-

cation discussed. This graph shows the variety of work in this thesis.

1. Crosby, H., Davis, P. and Jarvis, S.A., 2015. Exploring New Data Sources

to Improve UK Land Parcel Valuation. In Proceedings of the 1st International

ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. Published.

2. Crosby, H., Davis, P. and Jarvis, S.A., 2016, September. Spatially-Intensive

Decision Tree Prediction of Traffic Flow across the entire UK Road Network.

IEEE/ACM 20th International Symposium on Distributed Simulation and Real

Time Applications (pp. 116-119). Published.
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3. Crosby, H., Davis, P., Damoulas, T. and Jarvis, S.A., 2016, October. A

spatio-temporal, Gaussian process regression, real-estate price predictor. In

Proceedings of the 24th ACM SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems (p. 68). ACM. Published.

4. Crosby, H., Damoulas, T., Porto de Albuquerque J., Caton, A., and Jarvis,

S.A., 2018, May. Road distance and travel time for an improved house price

Kriging predictor, Geo-spatial Information Science (IGIS), 21:3, 185-194, DOI:

10.1080/10095020.2018.1503775.

5. Crosby H., Damoulas T and Jarvis S.A., 2019. Embedding road networks

and travel time into distance metrics for urban modelling, International Journal

of Geographical Information Science, DOI: 10.1080/13658816.2018.1547386

6. Crosby, H., Damoulas, T. and Jarvis, S.A., 2018, November. Road and

Travel Time Validation for Urban Modelling. International Journal of Geo-

graphic Information Sciences (IJGIS). In final draft before submission.

In addition, I have authored a number of other papers in the domain of Ur-

ban Science, which are not discussed in this thesis. These can be seen below

(publications 7-10):

7. Tkachenko, N., Chotvijit, S., Gupta, N., Bradley, E., Gilks, C., Guo, W.,

Crosby, H., Shore, E., Thiarai, M., Procter, R. and Jarvis, S., 2017. Google

trends can improve surveillance of type 2 diabetes. Scientific reports, 7(1),

p.4993. Published.

8. Gupta, N., Crosby, H., Guo, W., Proctor, R., Jarvis, S., ‘Twitter Usage

Across Industry: a Spatiotemporal Analysis’. IEEE International Conference

10



1. Introduction

on Big Data Computing Service and Applications, Germany, Mar 2018. Pub-

lished.

9. Mansour, A., Crosby, H., Perera, S., Jarvis, S. Who Follows Who? A retail

Agglomeration Phenomena. International Journal of Geographic Information

Sciences (IJGIS). Under review.

10. Titis, E., Crosby, H., Proctor, R., Jarvis, S. Finding a golden food desert

measure: examining correlations between obesity and self-derived distance mea-

sures in greater London. Under review.
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CHAPTER 2
Background Research

Urban science regularly takes on new and different perspectives of the city. Each

change reflectively enables a better understanding of the dynamic and multivari-

ate nature of urban processes, as discussed in the introduction. A popular recent

approach (dubbed ‘The New Science of Cities’ [10]) is application-motivated,

however focusses on methodological contributions from multiple disciplines to

process the functions, challenges and solutions of a city. Unlike previous itera-

tions and other versions of Urban Science (Urban Social Geography [71], Urban

Economics [27] and Urban Planning [48] to name a few), the latest wave of urban

scientists (led by [11, 124]) focus on interdisciplinarity: combining quantitative,

behavioural, structural and post-structural perspectives [71]. In the true nature

of contemporary Urban Science, this thesis will promote a set of data-driven

contributions across a combination of disciplines: GIS, Geoscience, Computer

Science, Statistics, Machine Learning and Data Science. As such, Chapter 2

attempts to provide a full description of the history, themes, definitions and

concepts required for each element of this interdisciplinary thesis.

This chapter will begin with a section discussing the (spatial) complexities

of the city including a history of urban space theory. Thereafter, a set of essen-

tial concepts in spatial statistics are introduced. Next, geostatistical modelling

is discussed, specifically semivariograms and Kriging. Then the relevance of

distance functions for spatial models and cross validation (CV) is discussed.

Afterwards, there is a review of the current state-of-the-art with regards to re-

lated urban case studies; house price and traffic flow prediction. Penultimately,

the practicalities of storing, retrieving and analysing spatial data is explored in

detail, before offering some final remarks.
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2.1 A History of Urban Space Theory

Pre-dating central Europe’s industrial revolution, and hence major urbanisation

[59], is the domain of urban space theory, conceived by land economists who

attempted to understand the spatial interactions motivating the design of a

city. Consistently, each theory in this domain describes (1) land rent as being

the key driver for design and (2) space as being the key influencer to rent,

which is a concept grounded by that of Von Thünen’s Isolierte Staat (“Isolated

State”)[123].

Von Thünen’s study examined the patterns of agricultural land surrounding

the 19th century city. He put forth that the primary function pertaining to

agricultural competition was economic rent (i.e., the land’s return on investment

(ROI)), in which transportation costs were the primary factor. This function is

visualised in Figure 2.1(a), where two land uses are considered: land use 1 is

less desirable than land use 2 at all distances greater than Z. These differing

gradients are due to the transportation costs for the specific produce to be

sourced on that land and taken to the city i.e., the produce weight, refrigeration

requirement or the vehicle type needed to transport the produce. Von Thünen’s

work contained a number of assumptions inappropriate for the contemporary

city; (1) a static (non-changeable) space, which (2) fully supplies a single market

centre with (3) no competition. Indeed, urban sprawl and economic competition

in the 21st century are not so simplistic. They can be based on the availability

of land, the adoption of local market centres and complex topographies such as

rivers, extreme elevation and valleys.

In an attempt to address some of these issues, the Central Place The-

ory (CPT) instead describes an urban community as being a system of multiple

central places (towns and cities) whose primary functions are to be mediators

for local commerce [21]. CPT assumes an urban system to be a single large

community spatially contained by a number of smaller ones (towns, villages

and hamlets). The theory puts forth a hierarchy of market centres in which

13
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(a) Relationship of economic rent and dis-
tance from the market centre for two com-
peting land uses [123].

(b) A visual description of urban space us-
ing the Central Place Theory with four or-
ders of magnitude [21].

(c) A visual description of the Bid-Rent
theory for three land use types [1].

(d) The Bid-Rent theory showing non-linear
diminishing returns between the distance
from a CBD and rent [1].

Figure 2.1: A comparison of three urban space theories: The Isolated State
[123], Central Place Theory [21] and Bid-Rent Analysis [1].

the larger ones offer goods and services that are not supported by their smaller

counterparts. In his own study, he notes 7 layers of hierarchy where all centres

are equidistant from one and another; this does however assume that settle-

ment patterns are uniform. Figure 2.1(b) shows an example with five levels of

hierarchy. CPT assumes no boundary, a homogeneous plain of land uses and

no topographical constraints. In his later work, Christaller would more ap-

propriately go on to note the importance of population distributions to urban

centres [21]. Both of the aforementioned models inspect but do not explain the

functions and flows of urban centres [112].
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Another key contribution in the area of traditional urban land theory is

Alonso’s bid-rent model which more appropriately proposes that the value of

land (and hence the design of the community that it is supporting) is multivari-

ate i.e., a function of transportation costs, land use, land intensity, population

and employment [1]. His study introduced two concepts which are now largely

relevant to contemporary urban modelling and my thesis in particular: (1) the

land owner’s settlement location is multivariate; and (2) a city’s design depends

on each sector of urban real estate (retail, manufacturing and residential). Each

sector have significantly different utility functions i.e., each variable determining

a lands rent differs between each individual stakeholder. Figure 2.1(c) visualises

this theory whereby a land owner’s elasticity to space (responsiveness to demand

relative to the land’s distance from the market centre) is much stricter in the

retail sector than in manufacturing and residential [87]. Hence, land use within

cities split into zones such that zone A is primarily retail, zone B is manufac-

turing and zone C is typically residential. Furthermore, Figure 2.1(d) shows

that the granular relationship between distance and rent, in Alonso’s model, is

actually non-linear. This is due to the fact that some features may be more

influential to a land purchaser’s utility than transportation costs, for example

increased land size (more apparent in the suburbs) may be disproportionately

more desirable to a residential land owner than their distance to a market centre.

The use of space in each of these theories ground and motivate the work put

forth within this thesis. Most notably, ‘proximity’ as a driver for urban systems

proves particularly relevant. Contemporary discussions, on the other hand, are

facilitated by a number of formalised concepts in the area of spatial analysis,

specifically stationarity (Section 2.2.5), stochastic processes (Section 2.2.2) and

spatial autocorrelation (SAC) (Section 2.2.4).
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Figure 2.2: The London cholera map produced by Dr John Snow. Accessed
from http://www.ph.ucla.edu/epi/snow/snowmap1.pdf on 06 June 2018.

2.2 Spatial Analysis

Spatial Analysis is the research area which provides a set of methods for analysing

interactions in geographical space. This entire paradigm is centred around the

concept of proximity.

2.2.1 A motivating example

Dr John Snow’s iconic cholera map (see Figure 2.2) motivates some of today’s

most popular urban space analysis theories and models. His map identified

the causes and geographical origins of a cholera epidemic in the Soho district

of London. The 1854 map reported cholera cases as black rectangles, where
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more rectangles represent a higher number of cases. The map shows variation

which identifies spatially dependant variables (stochastic factors - see definition

in Section 2.2.2), such as population density and water supplier. The map also

shows that the number of observations in an area interact with their immediate

neighbours, a concept now grounded in contemporary proximity analysis i.e.,

stationarity (Section 2.2.5) and SAC (Section 2.2.4).

In addition, his map recognised the effect of the built environment on dis-

tance (i.e., the distance of cholera cases along a road network), which is a concept

central to this thesis but rare in contemporary spatial analysis. Incidentally, he

concluded that the source of cholera was a water pump on Broad Street, unlike

popular believe, which assumed cholera to spread through the air. The remain-

der of this section will introduce the aforementioned key concepts in spatial

analysis.

2.2.2 Spatial stochastic processes

Cressie’s book entitled Statistics for Spatial Data comments that “statistics . . .

attempts to model order in disorder”, an apt starting premise for this section

and the remainder of this thesis [31]. In fact, with the right statistical models,

the behaviours of disordered or random variables, despite their name, can be

structured and predictable i.e., random variables are described by probability

spaces.

Definition 2.2.1. Probability spaces and random variables. A probability space

is a random process or experiment with components (Ω, F, P ) where Ω is a sam-

ple space of possible outcomes (O), F is a set of possible events (E) and P is a

probability measure over Ω. Any mapping Z : Ω 7→ F is called a random vari-

able, whereby F is a measurable space of E with respect to P . The probability

measure P : ω 7→ [0,1] assigns probabilities (used as weights) to individual out-

comes ω ∈ Ω and also allows the assessment of the probability of events E ∈ F .

When random variables are referenced over an additional structure, known as
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an index set, a sequence of random outcomes called stochastic processes are

witnessed [28].

Definition 2.2.2. Stochastic processes. Data point s varies over index set

D ⊂ Rd if (1) s ∈ Rd is a generic data location in d-dimensional Euclidean space,

(2) Zs ≡ Z(s) is a potential datum at spatial location s and (3) s is a random

value. As such, a collection of random variables generating a (multivariate)

random field is called a stochastic process, such that

Z = {Z(s) : s ∈ D,Z ∈ Ω}. (2.1)

Typically, D is assumed to be a fixed (non-random) subset of Rd where stochas-

tic processes represent time-series data with T (instead of D) and t (instead of

s) often denoting a time interval [t0, tn] ⊂ R. However, given that D is a subset

of Rd then Equation 2.1 is a spatial stochastic process. For completeness, a

time-series process is

{Z(t) : |t| <∞} (2.2)

and a space-time process is

{Z(s; t) : s ∈ D, t ∈ T} (2.3)

where Z, D and T are all random. If one now assumes that T = R2 is a two-

dimensional real-valued index set and S ⊂ T is a set of spatial units then three

different kinds of spatial processes are obtained [31]: spatial random fields,

lattices and spatial point patterns [31]. Each of these processes produces a

‘type’ of spatial data; geostatistical data, lattice data and point process data

respectively.

2.2.3 Types of spatial data

Section 2.2.2 determined that spatial data can result from observations on the

stochastic process Z = {Z(s) : s ∈ D,Z ∈ Ω}, where D is a random set in Rd.
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This spatial data is likely to be one of three types; geostatistical, lattice or point

patterns.

Definition 2.2.3. Geostatistical data. A collection of random variables Z =

{Z(s) : s ∈ D,Z ∈ Ω} is called a spatial random field if the spatial index set is

continuous and fixed. For example, D is a fixed subset of Rd, Z(s) is a random

vector at location s ∈ D and |s| =∞.

A more descriptive interpretation is that geostatistical data are selected

points within a spatial process containing continuous variation. A commonly

referenced example is a dataset of mineral concentrations (a spatially continu-

ous variant) which are sourced at specific drilling locations. This data is usually

analysed within the domain of Geostatistics [88]; a science which recognises

variation on both large and small scale areas and observes both spatial trends

and spatial correlations.

Definition 2.2.4. Lattice Data. A collection of random variables Z = {Z(s) :

s ∈ D,Z ∈ Ω} are called lattice data if the spatial index set is discrete and

fixed. For example, D is a fixed (regular or irregular) collection of frequently

countable points in Rd (i.e., |s| <∞), D is a graph in Rd and Z(s) is a random

vector of all locations s ∈ D.

Intuitively, lattice data are locations that observe spatial processes at regular

(or irregular) grids. This data is usually sourced from some spatially aggregated

area. Commonly referenced sources of lattice data are satellite surveys report-

ing average weather patterns, land heights or crop distributions across small

aggregated areas. Typically, this data is utilised in the research area of Remote

Sensing where analysis is usually large scale.

Definition 2.2.5. Point Patterns. Spatial units S = {Si ∈ R2 : i ∈ N} are

point processes if they are random variables. For example, D is a point process

in Rd or a subset of Rd and Z(s) is a random vector at location s ∈ D.

By way of explanation, spatial point processes are regularly or irregularly
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Figure 2.3: A visual representation of three types of spatial data: geostatistical,
lattice and point process.

spaced locations of interest which are measured at their exact location. Pop-

ularly discussed examples of point patterns are galaxies in space or trees in a

forest, which may contain no continuous structure, but instead contain other

relationships such as clusters. Figure 2.3 provides a simple visualisation for each

of the discussed data types.

There is a fourth and irregularly referenced type of spatial data named an

‘object’ where D is a point process in Rd and Z(s) is itself a random set. This

data type is not discussed any further in this thesis due to it’s lack of relevance

to my work.

The importance of understanding your data

It is essential to understand an application’s ‘data type’ before making any

conclusions due to the ambiguity of some processes. For example, a dataset

could appear to be a spatial point process however the observations may actually

interact along continuous space (i.e., a random field). My primary case study

(house prices) reflects this exact problem, as the random fields present in house

price prediction (shown in Chapter 4) gives rise to geostatistical analysis, despite

first appearance, where one might assume point process data instead. Hence,

the work from this thesis will focus on utilising, challenging and improving the

methods put forth in the domain of Geostatistics, as will the following sections
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of this Chapter.

2.2.4 Spatial autocorrelation (SAC)

The first law of geography states that “everything is related to everything else,

but near things are more related than distant things” [92]. This violates the

assumption used by non-spatial statistics: that observations are independent

and identically distributed (i.i.d) random variables [43]. Observations as i.i.d

random variables is a reasonable assumption when samples are taken from con-

trolled experiments containing no interactions, however dependency structures

in space explain the effect that geographical proximity has on data points in a

spatial distribution [66, 92]. This concept is defined as SAC. An example of

such SAC could be rainfall or the spread of airborne diseases.

Formally, SAC shows that observed attributes of closer points are more

similar than those that are further from each other [45, 79]. When modelling

random variables, SAC may need to be taken into account for a multitude of

reasons, notably to: test on model misspecifications [24]; measure the strength

of spatial effects on a variable; test for spatial stationarity, heterogeneity or

clustering (see section 2.2.5 for more details on these concepts); detect distance

decay; identify outliers and design spatial samples [2, 50, 55].

There are multiple ways to measure SAC; Moran’s I, Getis-ord’s G∗i and

Matheron’s (semi)variogram are the most popular. The Moran’s I-test mea-

sures the relationship between the lag of pairwise points and the covariance of

observations; this statistic assumes and measures second order stationarity (see

Section 2.2.5). Getis-ord’s G∗i statistic [56] reports the location of observations

that are clustered spatially for extreme values (described as hot or cold-spots).

Finally, Matheron’s (semi)variogram measures the (semi)variance of the differ-

ences between any two pairwise distances; this statistic assumes and measures

intrinsic stationarity and will be discussed in Section 2.2.5).

Definition 2.2.6. Moran’s I-Test. Moran’s I [96] estimates the normalised

spatially-weighted covariances of all random variables. The spatial weights de-
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fine the fixed geographic structure connecting spatial units si ∈ S. The co-

variance matrix is commonly calculated giving a weight of 1 to its k nearest

neighbours and 0 otherwise. Moran’s I takes account of pairwise relationships

between spatial units by using a spatial weights matrix W ). The global form of

Moran’s I, which we consider in this thesis, averages the overall SAC in a region

and is defined as:

I =
N

s0

∑
i

∑
j wij(si − s̄)(sj − s̄)∑

i(si − s̄)2
(2.4)

where si are the observations, wi,j are the distance weightings, N is the num-

ber of observations and s0 =
∑n
i=1

∑n
j=1 wij . If Iobserved >> Iexpected then

the values of s are positively autocorrelated else they are weakly or negatively

correlated [96].

Definition 2.2.7. Getis-Ord’s G∗i -Statistic. G∗i is an extension to the popularly

employed general G-statistic [57]. The test measures for spatial patterns. Unlike

the global Moran’s I-test discussed above, the G∗i statistic assumes that spatial

dependency may vary significantly over a study area (i.e., assumes local non-

stationarity - defined in Section 2.2.5). Specifically, the G∗i -statistic measures

localised extremal values (i.e., hotspot and coldspot clusters).

Formally, the G∗i statistic is

G∗i =

∑n
j=1 wij · sj∑n

j=1 sj
, for j 6= i (2.5)

where wij is a weight value between event i and j that represents their spatial

interrelationship and sj is the magnitude of variable S at incident location j

over all n where j 6= i. Usually, wij is calculated based on the maximum

conceptualized distance of spatial relationships (i.e., a user-specified distance

threshold). G∗i -statistic is commonly used to locate the best place for emergency

services or taxi pick-ups in a city. The primary difference between Moran’s

I and the G∗i statistics is the way that the weightings are calculated. Most
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importantly, the global Moran’s I-test tells you how much clustering and SAC

there is whereas the Getis-Ord’s G∗i -statistic shows you where the clusters are.

2.2.5 Spatial stationarity

The stationarity assumption is used to obtain replication so that estimates can

be understood by the variation of repeated observations. Formally, Z(s) is

stationary if, for any finite number of n points s1, . . . , sn and any distance h,

the joint distribution of Z(s1), . . . , Z(sn) is the same as the joint distribution

of Z(s1 + h), . . . , Z(sn + h) [28]. The three most commonly considered types

of stationarity, each with different degrees of constraint are first-order, second-

order and intrinsic.

First-order stationarity assumes that the data’s mean average (first order

moment) is constant over space and second-order stationarity assumes that

the mean and covariance (first and second-order moments) are constant over

space. In first and second-order stationarity, the covariance is dependent only

on distance and not location i.e., it is a function of lag only. All higher ordered

moments i.e., covariance and kurtosis for first order and kurtosis for second order

contain variation. Intrinsic stationarity assumes that the expected values of the

mean and variance are constant with respect to location (i.e., in all directions).

The models considered in this thesis either assume second-order [26] or intrinsic

[57] stationarity.

Definition 2.2.8. Second-Order Stationarity. Given a finite set (D) of n dis-

crete spatial points s, one can obtain a stochastic process Z = {Z(s) : s ∈

D,Z ∈ Ω} with s, s1, s2 ∈ S and E[Z(s)2] < ∞ for all s. This process is

second-order stationary iff

E[Z(s)] = µ, (2.6)

V ar[Z(s)] = σ2 (2.7)
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and

cov[Z(s1), Z(s2)] = σ2 · C(||s1 − s2||) for all s1, s2 ∈ D. (2.8)

C(||s1 − s2||) is the correlation function and ||s1 − s2|| is the Euclidean norm.

The resulting process contains a covariance reducing to a function of distances.

This process hence provides a consistent SAC for statistical tests.

Definition 2.2.9. Intrinsic Stationarity. Let D be a finite set of n discrete

spatial points s. Further, consider set Z = {Z(s) : s ∈ D,Z ∈ Ω} of spatial

random variables. Then intrinsic stationarity is defined through first order

differences [31]:

E[Z(s+ h)− Z(s)] = 0 (2.9)

and

V ar[Z(s+ h− Z(s))] = 2γ(h) (2.10)

where h is a specific lag and 2γ(h) is a variogram [88] which is defined in Section

2.3.1.

2.3 Modelling Random Fields

As previously discussed in Section 2.2.3, Geostatistics is concerned with mod-

elling geostatistical data from random fields. These are discrete data points that

represent a single location on a continuous plane across a spatial region. This is

achieved through geostatistical modelling which always rely on semivariograms

to obtain the spatial dependency of target data.

2.3.1 Semivariogram (γ) / variogram (2γ)

A (semi)variogram describes the spatial relationships between all observations

measured at a (typically omnidirectional) distance and assumes the input dataset

to be intrinsically stationary, as defined in Section 2.2.5.
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Figure 2.4: Semivariogram kernel examples; exponential/Matern, Gaussian and
spherical.

First, the empirical (semi)variogram is calculated by finding the average

(semi)variance at a set of user-defined lags - the points in Figure 2.4 repre-

sents an empirical semivariogram. Thereafter, a model named the experimental

(semi)variogram (also known as the kernel or covariance matrix) is selected

(empirically or otherwise) based on a (typically parametric) function that best

fits the empirical (semi)variogram, such as; Gaussian, Matern, spherical, expo-

nential and so on. Each of the aforementioned parametric functions have been

designed to best infer (semi)variance based on Euclidean geographical proxim-

ity. Figure 2.4 provides an example of three commonly applied experimental

semivariograms; exponential, Gaussian and spherical.

A set of hyperparameters are selected to calculate the experimental semivari-

ogram; nugget, sill and range. The nugget is the value at which the (semi)variogram

is very close to 0 (i.e., almost intercepts the y-axis). The sill and range are the

variance and distance (respectively) at which the gradient of the variogram (γ)

becomes 0. Each of these concepts are visualised in Figure 2.5. It can be seen

from this figure that (semi)variograms can provide some measure of distance

decay, which has potential to inform non-global spatial models. Importantly, a

small semivariance implies a strong pairwise relationship between observations.

Formally, let the variance between two observed locations si and sj be:

var(Z(si) − Z(sj)) = 2γ(si − sj), for all si, sj ∈ D. The variogram is 2γ(h)
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Figure 2.5: A visual description of variogram parameters; nugget, range and
sill.

(a function of the increment si − sj) and the semivariogram is γ(h) [88]. The

function 2γ(h) (assuming it exists - see Section 5.3) is a parameter of the random

process Z(·) defined as

2γ(h) =
1

N(h)
·
∑
N(h)

(Z(si)− Z(sj))
2, (2.11)

where N(h) ≡ {(i, j) : si−sj = h} and |N(h)| is the number of distinct elements

of N(h).

As with almost any parametric function, variograms contain some con-

straints, notably the requirement to be conditionally negative definite (CND),

i.e.:
m∑
i=1

m∑
j=1

aiaj2γ(si − sj) ≤ 0 (2.12)

for any finite number of spatial location {si : i = 1, . . . ,m}. Where the real

numbers {ai : i = 1, . . . ,m} satisfy
∑

+i = 1mai = 0. As proof, lets suppose for

the moment that Z(·) is an intrinsically stationary process (i.e., it has constant
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mean and possesses a variogram 2γ(h)), then

{
m∑
i=1

aiz(si)}2 = −(
1

2
) ∗ {

m∑
i=1

m∑
j=1

aiaj(Z(si)− Z(sj))}2 (2.13)

because
∑m
i=1 ai = 0. Upon taking expectations, one obtains:

m∑
i=1

m∑
j=1

aiaj2γ(si − sj)} = 2 var{
m∑
i=1

aiz(si)} ≤ 0 (2.14)

hence the function 2γ(h) is CND when the stochastic process is intrinsically sta-

tionary (extensive proof by Cressie, pg. 87 [33]). Given that the data analysed

in this thesis are spatial random fields which are typically assessed by geosta-

tistical research, a variogram will be essential for modelling, the reasons for this

become apparent in the next chapter.

2.3.2 Kriging

Kriging is a geostatistical spatial predictor which accounts for spatial covariance

based on observation distances to understand the spatial structure of a dataset

and hence determine it’s regression parameters. Kriging is used extensively

for interpolation by Ecologists [81], Geographers [19] and Geoscientists [67].

The basis of Kriging is to first model the degree to which distance between

observations is correlated using the experimental variogram and then apply

modelling coefficients to determine interpolation parameters based on the spatial

patterns determined by the variogram.

Formally, Kriging serves to estimate the value Z(s0) at point s0 with a known

variogram conducted by the neighbouring points of s0. The way in which the

interpolation weights are calculated determines the ‘type’ of Kriging undertaken;

Simple, Ordinary or Universal to name the most popular. The selected method

should be based on the stochastic properties of the random field studied and

the type of stationarity assumed.

Simple Kriging assumes first-order stationarity across the whole region with
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a known mean m, i.e., E{Z(s)} = E{Z(s0)} = m. Ordinary Kriging assumes

a constant unknown mean over the variogram-defined neighbourhood for s0.

Finally, Universal Kriging assumes a general trend of any polynomial order.

Throughout this thesis, I exclusively utilise Ordinary Kriging, the reasons for

this are explained at the times of implementation in Chapters 4-6.

Definition 2.3.1. Ordinary Kriging. Ordinary Kriging implicitly evaluates the

mean of a moving neighbourhood. This is only valid when (1) the dataset is

intrinsically and second-order stationary and (2) an experimental semivariogram

γ(h) is calculated and present [125]. Generally, a Kriging estimator of the local

mean is set up, then a simple estimator is taken from the Kriged mean. To

estimate Z(s0) at location s0, the data values Z(si) from n neighbouring sample

points are multiplied by some linear weights λi, such that:

Ẑ(s0) =

n∑
i=1

λiZ(si). (2.15)

Notably,
∑
λi = 1 so that, in the case where all of the Z(si) values are a

single constant, the estimated value Z(s0) must be equal to that same constant.

This guarantees uniform unbiasedness (Equation 2.9). Importantly, the model

assumes the data to be part of a realisation of an intrinsic random function with

γ(h). Given that the expectation of each increment is 0, unbiasedness with unit

sum weights is calculated:

E[Ẑ(s0)− Z(s0)] = E[

n∑
i=1

λiZ(si)− Z(s0) ∗
n∑
i=1

λi]

=

n∑
i=1

λiE[z(si)− z(s0)] = 0.

(2.16)

The optimal Kriging predictor is then calculated by minimising the mean-

squared prediction error (σ2(s0) = E[(Ẑ(s0)− Z(s0))2]) over the class of linear

predictors
∑n
i=1 λi = 1, such that 2γ(h) = var(Z(s + h) − z(s)), h ∈ Rd. By

minimising (i.e., differentiating and equating to 0) Equation 2.17 with respect

to λ1, . . . , λn and the Lagrange multiplier m (ensuring
∑n
i=1 λi = 1) we can
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Figure 2.6: A visual representation of an input geostatistical point set (left) and
a Kriged output (right).

obtain the optimal λ1, . . . , λn from λ0 = Γ−1
0 γ0.

E
(
Z(so)−

n∑
i=1

λiZ(si)
)2 − 2m

( n∑
i=1

λi − 1
)

(2.17)

These optimal values hence allow the provision of an Ordinary Kriging system:



0 γ(h12) γ(h13) . . . γ(h1n) 1

γ(h12) 0 γ(h12) . . . γ(h2n) 1

γ(h32) γ(h32) 0 . . . γ(h3n) 1

. . . . . . . . . . . . . . . 1

γ(hn3) γ(hn2) γ(hn3) . . . 0 1

1 1 1 . . . 1 0





λ1

λ2

λ3

. . .

λn

m


=



γ(h01)

γ(h02)

γ(h03)

. . .

γ(h0n)

1


The weights λi are assigned to Z(si), this calculation shows the disparity be-

tween all data points Z(si, sj):1, . . . , n (LHS) and each data point Z(si) com-

pared with Z(s0) (RHS). Figure 2.6 provides an example of an input dataset

(LHS) and the output Kriging prediction for those observations (RHS). The

red points represent high values and the green points display low values in my

simulated dataset. The same colours apply for the Kriged output on the RHS.
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2.4 Distance and Proximity

It has now been shown on several occasions throughout Chapters 1 and 2 that

attribute values measured on features near to each other are typically more

similar than those measured further apart. Given this, spatial analysis requires

some measure of distance (or closeness) of which there are several ways to do

so. These will be discussed in the following section.

2.4.1 Distance functions

Definition 2.4.1. Distance Function. D is a set of observations with spatial

locations s ∈ D, also d(s1, s2) is a real valued function representing the distance

function on D ×D such that d : D ×D → [0,∞).

The distance function (also known as a distance metric) d(·) ≡ d(s1, s2) ≡

d1,2 measures the closeness of two arbitrary points. The most common distance

functions considered in the area of geostatistics are; Euclidean [36], Manhatten

[39], great arc [6] and Minkowski [35].

The Euclidean distance measures the straight-line distance between two

points. The Manhatten distance measures the sum of the absolute differences

between two points. The great arc distance attempts to estimate the Earth’s sur-

face by measuring the distance along a sphere. Finally, the Minkowski distance

is a generalisation of both the Euclidean and Manhatten distances in a normed

vector space. Figure 2.7 visualises the great arc distance and the unit circles for

Manhatten, Euclidean and Minkowski (P=0.5,1.5,4,∞) distances for compar-

ison. Of these distance functions, this thesis exclusively examines Minkowski

distances, specifically the special cases of Euclidean and Manhatten (p=2, 1

respectively).

Definition 2.4.2. Euclidean Distance. Unless stated otherwise, it is typical to

assume a Euclidean function when referring to distance, this assumption will

remain valid throughout my thesis.
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Figure 2.7: A visual representation of popularly employed distance functions.

Formally, let’s assume two sites as vectors s=(s1, . . . , sd)
T and u=(u1, . . . , ud)

T

in Euclidean space Rd, hence the Euclidean distance is

||s− u|| = {
d∑
i=1

(si − ui)2} 1
2 (2.18)

where d is the number of dimensions (or attributes) and si, ui are the attributes.

Definition 2.4.3. Manhatten Distance. Given the same notation as above, the

Manhatten distance is

||s− u|| = |
d∑
i=1

(si − ui)|. (2.19)

The Manhatten distance is always greater than or equal to a Euclidean distance.

If the locations are in a single dimension then Manhatten is always equal to

Euclidean.

Definition 2.4.4. Minkowksi Distance. Also assuming the same notations as

above, the Minkowski distance is
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Figure 2.8: A two-dimensional representation of Euclidean (purple), Minkowski
(green) and Manhatten (red) distances between two points.

||s− u|| = {
d∑
i=1

||(si − ui)P }
1
P . (2.20)

where P is a user defined parameter. Euclidean and Manhatten are special cases

of Minkowski with values of P=2 and P=1 respectively. Figure 2.8 provides an

intuitive two-dimensional example of these distance functions, where the blue

line represents a Euclidean distance, the red shows a Manhatten distance and

the green line shows a Minkowski distance with 1 < P < 2 between the two red

points.

In addition to these previously discussed distance functions, this thesis measures

less popularly employed distances; road distance, travel time and a combination

of both. Each of these distances will be introduced with the data in Chapter 3.

These distances, however, are not ‘functions’/’metrics’.
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2.4.2 Distance metrics

For the most part, spatial statistics relies on a certain assumption; each set of

distances lay in a metric space (M, d) where M is a set and d is a metric (or

‘function’) on M. For example, d is a function

d : MXM → R+ (2.21)

where R+ ∈ M is a set of non-negative real numbers whose values satisfy re-

quirements P1-P4:

di,j > 0 (P1: non-negativity)

di,j = 0 ⇐⇒ xi = xj (P2: identity of indiscernibles)

di,j = dj,i (P3: symmetry)

di,j < di,k + dk,j (P4: triangle inequality).

A metric space is ordered so that a subset distance can be accurately measured.

Although each property (P1-P4) is necessary, they are not exclusively sufficient.

The ‘non-negativity’ and ‘identity of indiscernibles’ constraints define a positive

definite (PD) function. Non-negativity alone defines a positive semi-definite

(PSD) function. A distance satisfying PD and symmetry is called a ‘semimetric’

and a distance function that is PD only is called a ‘divergence’. An N × N

pairwise table is called a distance matrix if the metric conditions are not satisfied

and a distance metric if they are.

2.4.3 Metric or matrix

It is common knowledge that the Euclidean distance function is indeed a metric.

This section will provide the proof of this fact by means of example.

P1: Non-negativity

i 6= j =⇒ ∃k ∈ [1, . . . , n] : xk 6= yk. Assuming that

dk(xk, yk) > 0, then
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∑
({di(si, ui)2} 1

2 > 0 =⇒ d(s, u) > 0.

P2: Identitiy of indiscernability

d(s, s) = {
∑d
i=1(si − si)2} 1

2 = {
∑d
i=1 02} 1

2 = 0.

P3: Symmetry

d(s, u) = {
∑d
i=1 di(si, ui)

2} 1
2 = {

∑d
i=1 di(ui, si)

2} 1
2 = d(u, s).

P4: Triangle inequality

Let k = (k1, k2, . . . , kn) and di(si, ui) = ρi and di(ui, ki) = τi.

To show that:
∑

({di(si, ui)2} 1
2 +
∑

({di(si, ki)2} 1
2 ≥

∑
({di(si, ki)2} 1

2 ,

we have: d(i,j)+d(j,k)= {
∑
ρ2} 1

2 + {
∑
τ2} 1

2

≥ {
∑

(ρi + τi)
2}) 1

2 ≥ {
∑

(di(si, ki)
2} 1

2 ) = d(s, k).

The same intuition applies for Minkowski in all cases where P ≥ 1, however

it can be quickly shown that any P < 1 violates P4 (the triangle inequality).

For example, if i = (0, 0), j = (1, 1) and k = (0, 1) in R2. Then for p < 1,

d(i, j) = 2
1
P > 2 and d(i,k)=d(j,k)=1. Hence d(i, j) > 2 > d(i, k) + d(j, k) and

therefore P4 is violated.

This same approach can be taken for any distance matrix to confirm whether

or not it is a metric. The purpose for determining whether a distance is a metric

is very important in this thesis and discussed in great detail in Chapters 4 and

5.

2.5 Validating models with spatial data

The primary aim of model validation is to report the performance of a model.

There are two stages to model validation: selecting a cross validation method

and selecting a validation metric.
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(a) Holdout. (b) k-fold.

Figure 2.9: Holdout versus KCV techniques.

Cross validation

Cross validation (CV) splits the dataset into two subsets: a training set where

a model is fitted on and a validation test set where the model predicts and

is evaluated on [117]. The main purpose of CV is to detect over-fitting and

estimate how well a model will generalise to unseen data. The most common

and reliable CV techniques are holdout and k-fold.

Definition 2.5.1. Holdout cross validation. Prior to modelling, holdout CV

partitions input data into two mutually exclusive subsets; training and test

(holdout). For this method, a user-selected split is undertaken to (1) train

the model and (2) test with unseen data. This aims to estimate how well

the model performs on a new dataset. Holdout CV can sometimes provide

pessimistic results because it only trains on a small proportion of data. Figure

2.9(a) provides a description of this method with a 60% training set and a 40%

holdout set.

Definition 2.5.2. k-fold cross validation. KCV, on the other hand, partitions

data into k subsets, performs the analysis on k-1 subsets (known as the train-

ing set) and validates the analysis on the remainder (the ‘holdout’ or ‘test’

set). The process is then repeated k times where the test set is a different sub-

set each time. The validation results are then averaged across all folds to get a

final result. Figure 2.9(b) provides a description of the KCV method with k=10.

Standard CV techniques share a common assumption; the training and test
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set are independent of each other. This however is not appropriate for datasets

containing autocorrelation, most notably; spatial and temporal data.

The prime complication that comes with data containing autocorrelation is

the requirement to measure to what extent the unseen data is dependant upon

the modelled data. For example, spatially autocorrelated data with second-

order or intrinsic stationarity will be less correlated when the modelled data

and the unseen data are further apart, and highly correlated when they are

close together. Given that urban problems are inherently spatial in nature,

Chapter 6 will discuss in great detail the challenges and potential solutions to

dealing with dependencies between training and test sets.

2.5.1 Validation metrics

Model validation metrics provide quantitative measures to characterise the agree-

ment between predictions and observations. In this thesis, I utilise three val-

idation metrics: the squared Pearson correlation coefficient (r2), Root Mean

Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE).

Definition 2.5.3. r2. The r2 statistic measures a model’s ‘goodness of fit’ to

the real data and is defined in Equation 2.22.

r2 = (
n(
∑
xy)− (

∑
x)(
∑
y)√

(n
∑

(x2)− (
∑
x)2)(n

∑
(y2)− (

∑
y)2)

)2 (2.22)

A perfect fit shows an r2 of 1 and a poor fit has an r2 of 0. This statistic provides

a measure of how well the observed outcomes are replicated by the model. The

output measures a relative value, showing whether predicted and observed data

vary similarly i.e., at the same distance apart. The problem with this approach

is that all model predictions can lay far apart from their observed counterparts

but still perform perfectly because their distance apart is consistent. This could

happen if the wrong model parameters are selected, i.e., nugget, sill or range.

To confirm it’s integrity, a second metric providing an absolute measure should

be taken.
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Definition 2.5.4. RMSE. The RMSE measures the differences between the

modelled and observed values of random variables, such that:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (2.23)

The RMSE is the square root of the average of squared errors (residuals) and is

therefore sensitive to outliers. The output RMSE value is always greater than or

equal to 0 where an RMSE of 0 is a perfect fit. This metric provides an absolute

understanding of how large the average error is. It should only be compared

with other experiments using similar or identical data.

Definition 2.5.5. MAPE. The MAPE is a measure of difference between the

predicted and observed data, represented as a percentage. In a scatter-plot,

MAPE presents the average percentage distance along the y-axis between each

modelled and observed point. MAPE is defined as:

MAPE =
100

n
(

n∑
i=1

yi − ŷi
yi

). (2.24)

MAPE is conceptually simpler and more interpretable than RMSE, most no-

tably because MAPE does not require the use of any squares. However it is not

defined where the actual value is 0, and it puts a heavier penalty for negative

errors. Only the second of these shortfalls could affect the results of our thesis.

2.6 Urban Case Studies

This thesis considers two popularly discussed urban case studies: house prices

and traffic flow. The purpose of this is threefold: (1) to examine the success of

any methodological proposals stated in my contributions; (2) to provide an

application used in industry and (3) to contribute to the applied science of

cities. As such, the remainder of this section will review the current literature

relating to both of these case studies, primarily urban house price prediction as
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it features most heavily throughout the thesis.

2.6.1 House prices

The Office for National Statistics (ONS) is the most common supplier of house

price predictions in the United Kingdom (UK). Their method finds the ag-

gregate median price across a government defined ‘output area’ (more details

published at [100]) for the whole of England and Wales. This model simplisti-

cally recognises the effects of proximity, neighbourhoods and spillover on house

prices. The ‘comparable sales’ approach is another popularly employed method,

particularly in industry, where the sale price of the (typically 3) closest prop-

erties are used to determine the value of a new property [40]. A final common

method utilised in industry is ‘spatial interaction’ [49] which assesses a site by

looking at its location from the consumer’s perspective i.e., by identifying clus-

ters of people [4] (target markets) based on their life stage and life style and

then apply these clusters to a land’s surrounding community for comparison.

Hedonic automated valuation models (AVMs)

The aforementioned models are typically small scale or non-granular. Large

scale hedonic AVMs, on the other hand, are mathematical algorithms which

exploit the availability of data to reliably understand the value of many real

estate assets over a large area for a single point in time [37]. Hedonic valuation

assumes that a heterogeneous product is a function of multiple attributes where

each attribute has its own affective price on the good. This means that the sum

of each attribute produces the final hedonic valuation [90].

Most contemporary AVMs are present in the machine learning domain [90,

99]. Such examples consider the effects of topography and natural geography

[73], building footprints [102], school proximity [85], over head pylons [13] and

crime [121] on house prices. Notably, it has been shown that space [37] followed

by time [65] can infer up to 71% of a property’s value, no other known variable

can infer this much.
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A framework central to the area of house price hedonic AVMs is put forth

by [99] who hypothesises that a property’s value (V) is some function of lot

characteristics (L), structural characteristics (S), neighbourhood variables (N),

accessibility variables (A), land use variables, proximity externalities (P) and

data collection time (T). Although useful to inspire features that one may not

have otherwise considered, it does not discuss the importance of appropriate

feature selection to avoid the over fitting of certain statistical effects, for exam-

ple, a hedonic model which assumes two highly correlated variables may overfit

and not be suitable for generalisation to unseen data.

Typically, machine learning for house price prediction witnesses linear and

multivariate regressions, RIPPER, C4.5, Adaboost and Case-Siller [16, 103].

All of these methods have produced indices of an aggregate output area such as

cities, counties or regions. This decision is consistently taken with the argument

that individual residential property sales are irregular and hence non-predictable

in nature.

Spatial AVMs

Spatial models, on the other hand, typically attempt to look at all individual

properties within a specific area. These methods are utilised in my thesis and

assume that house prices can be predicted, irrelevant of the presence of previous

sales data at the exact location of interest.

Contemporary literature recognises a considerable growth in utilising spatial

technologies in real estate [40, 42, 86]. This is because structural, neighbourhood

and accessibility characteristics are all a function of proximity [8, 14, 44]. In

accepting this, researchers are commonly producing rent and price map surfaces

[23], much like the one described in Figure 2.6. The most common methods in

achieving such maps are Kriging and geographically weighted regression (GWR)

[44, 50, 61, 75]. Examples include: mass appraisals [8] and spatial lag house

price indices [113]. Interestingly, [104] did not build a continuous map, but

instead undertook a similar model on lattice data.
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A specific area of spatial AVMs for house prices is geostatistical modelling

which was first motivated by [43] who, in his paper, argued that Kriging could

replace the neighbourhood and accessibility variables typically used for hedonic

house price prediction. His case study predicted the price of houses in locations

where transaction data had not previously occurred in Baltimore. Thereafter

[75] compared the results of several Kriging-based house price predictors ob-

taining a normalised RMSE of 1.019 in some cases; [60] noted that Bayesian

maximum entropy can improve Ordinary Kriging, producing mean absolute er-

rors as little as $7,000 on 2,700 homes in Texas and [20] introduced an Iterative

Residual Kriging (IRK) method in Granada to present a MAPE of 16%. Each

of these show that geostatistical modelling can accurately predict the price of

houses. All of the aforementioned experiments utilise different data which make

their methods hard to compare. Despite this, it seems consistently agreed that

house price residuals are mostly related to space. I further prove this in Chapter

3 with a full analysis of a UK house price dataset.

Unlike some work, the aim of this thesis is not to maximise accuracy with

the correct Kriging model, kernel or covariates, but instead to search for the op-

timal urban distance metric, which in turn supports kernel and hyperparameter

selection.

2.6.2 Traffic flow

Traffic flow predictors are a subset of intelligent traffic systems (ITS). They are

used to: assess potential designs for new road layouts; reduce accident hotspots

and predict short-term traffic congestion [118, 131]. Temporal traffic predictions

are most common and successful, utilising ARIMA [129], Markov chains [132],

Bayesian Belief Networks (BBN) [118] and Artificial Neural Networks (ANN)

[84]. These methods sometimes obtain mean absolute percentage errors opti-

mised at 8.6% [126]. Although strong, all of these prior works make one key

assumption, which may not be valid in several scenario’s - data is present at all

locations of interest.
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Some applications i.e., road design or market analysis require information at

locations with no sensors. This is where spatial analysis becomes useful. Given

a set of sensors at location si, the total daily traffic flow Zsi has potential to

infer the traffic flow for an unknown neighbouring location. The benefits of this

is to minimise the number of sensors required to understand traffic flow fully.

In fact, [38] puts forth that predictive analysis can reduce the computational

overheads of feeding too many sensors for real time applications.

It is typical to use Kriging for the prediction of traffic flow, for example:

[127] utilises Universal Kriging to predict the average daily traffic counts in

Texas, obtaining a prediction error of 31%; [47] models Wake County, North

Carolina using Ordinary Kriging; [69] models St. Louis in the State of Missouri

and a novel spatiotemporal random effects model is implemented in Bellevue,

WA boasting a MAPE of as little as 8% [130].

Finally, non-Euclidean spatial traffic flow models include a spatial moving

average model to integrate the kernel against a white noise process [63]. By

running the kernel upstream from a location, they rather sophisticatedly develop

a valid flow model. Finally, an alternative, yet slightly less granular approach

discussed the use of cost weighted distances between raster grids for urban traffic

flow prediction [74].

2.7 The Practicalities of Storing, Retrieving and

Analysing Spatial Data

Geographic Information Systems (GIS) facilitate many of today’s spatial tech-

nologies by analysing and storing spatial data on a visual and interactive map.

Spatial data can be inputted to a GIS in two types; vector and raster.

Definition 2.7.1. Vector Data. Vector data can be displayed as a point, poly-

line or polygon. Where a point is a precise location s in space, a polyline is a

vertex connecting two or more points and a polygon is an ordered set of poly-
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Figure 2.10: A visual comparison of all GIS data types: vector point, vector
polyline, vector polygon and raster grid.

lines with a closed path. In addition, a feature class is a collection of features

of the same type i.e., a set of house locations in one (.shp) file is called a point

feature class and a set of house footprints in one (.shp) file is called a polygon

feature class. Finally, each feature in vector data is also associated with a vec-

tor of attributes, for example the price of each house. The primary reason for

selecting vector data over raster is it’s geographical precision.

Definition 2.7.2. Raster Data. Raster data are (ir)regularly spaced grid cells,

commonly described as pixels. Each pixel contains some attribute which de-

termines the colour of the pixel in a GIS software. These types of data can

appear pixelated if the attributes are not regular, close, continuous or spatially

autocorrelated.

A satellite image is a typical example of raster data. Raster data types are

usually smaller to store than vector data and quicker to process for calculations

and plotting, however they are ordinarily based on some aggregate area, which

may make these data types less precise compared to vector data.

Figure 2.10 provides a visual comparison between both data types, where the

vector data (graphs 1-3) could be the location of 13 addresses, 3 road networks

and 2 building footprints respectively. The raster data could be a satellite image

showing the topography of an area. My research primarily utilises vector data

for it’s precision, granularity and accuracy, however Publication 3 does utilise a

raster lidar dataset which shows the elevation of land above sea level.
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Figure 2.11: A visual representation of longitudes and latitudes on the earth’s
surface.

2.7.1 Referencing data

In order to analyse spatial data it must be referenced to a single geographic

plane. As such, coordinate systems are structures used to reference spatial

points to the earth’s surface. Given that the earth is not a perfect sphere or

ellipsoid and the fact that its surface is not smooth, precise locations can be

hard to calculate, hence there are hundreds of localised coordinate systems,

most notably, in the UK, the British National Grid. Additionally, the World

Geodetic System (WGS) introduces the most accurate worldwide coordinate

system. Within this thesis the data is all converted to WGS (commonly ref-

erenced as longitude (long) and latitude (lat)). With a consistent coordinate

system, one can summarise distances, directions and paths between locations.

Figure 2.11 provides the visual explanation of how the WGS coordinate system

is calculated.
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2.8 Final Remarks

The contents of this chapter has provided the reader with the necessary material

required to fully understand the remainder of this thesis. Most notably, I have:

(1) put forth a history of urban space theory; (2) introduced important spatial

theory such as stochastic processes, data types, SAC and stationarity/hetero-

geneity; (3) extended discussion into the theory of geostatistical modelling; (4)

discussed the different approaches to validating spatial models; (5) introduced

a number of urban case studies and (6) described the practicalities of storing,

retrieving and analysing spatial data.
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CHAPTER 3
Datasets

In this chapter, I introduce two case studies utilised in my thesis; urban house

prices and urban traffic flow. I also provide a description of all handled data.

This chapter will be broken down into three sections: (1) distance data, (2)

urban house price data and (3) urban traffic flow data.

3.1 Distance Data

A common theme throughout this thesis is the use of distance functions for geo-

statistical modelling and cross validation (CV). As such, this section describes

how each distance is calculated or sourced. For geostatistical spatial modelling,

each pairwise distance between points is represented as a distance matrix. For

example, a distance matrix is a matrix where each row and column represent a

single observation si and sj respectively, the value where row i and column j

meet is the distance between si and sj (defined as di,j). Notably, spatial models

are concerned with the inter-distance between all observations, hence the vec-

tor of rows si for i ∈ 1 . . . n will be the same as the vector of columns sj for

j ∈ 1 . . . n. The pairwise distance matrix will hence have a 0 diagonal.

The pairwise distance matrices formed in this thesis will support six distances

functions: (1) Minkowski, (2) Euclidean, (3) Manhatten, (4) road distance, (5)

travel time and (6) combined road distance and travel time. Distance func-

tions (1)-(3) are defined in Section 2.4.1 and are positive definite (PD) metrics.

Distances (4)-(6) are defined fully in the following sections (Section 3.1.1 and

Section 3.1.2).

Figures 3.1(a)-3.1(c) show Euclidean, road and travel time distance isochrones.

An isochrone is a line on a map connecting points relating to equal distance or
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Figure 3.1: An isochronal comparison of Euclidean, road and travel time dis-
tances.

(a) Euclidean distance from 1
to 4 miles around the centre
of Coventry City.

(b) Travel time distance from
1 to 10 minutes around the
centre of Coventry City.

(c) Road distance from 1 to
4 miles around the centre of
Coventry City.

times. Each isochrone is shown for 0 to 4 miles and 0 to 10 minutes of Coventry

city centre. This figure emphasises the significant differences between distance

measures, and hence the affect that they can have on a spatial model.

3.1.1 Road distance data

Within this thesis, there are two ways that the pairwise road distance matrix is

calculated; road network distance and restricted road distance.

Road network distance data

The road network distance method is the current state-of-the-art for spatial

modelling [136]. In order to get the pairwise distance matrix for all observations

si in a dataset, one should first source the entire road network for their study

area, which in my case is the United Kingdom (UK), sourced from Ordnance

Survey (OS). This dataset is a polyline vector shapefile (as defined in Section

2.7). Figure 3.2 provides a small subset of the data in blue layered over a

backdrop map sourced from OpenStreetMaps (OSM).

Given the entire road network and a set of observations, the road network

distance:

1. Snaps the road network to each point. In my case, I search for the clos-

est polyline in the OS UK road network against each observation then I
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Figure 3.2: OS’s road network dataset plotted on OSM’s background street
map.

add another polyline from that location to the observation. Figure 3.3(a)

provides an example of this where the black lines are the actual road net-

work, the blue lines are the snapped polylines and the green points are

the observations. I then;

2. Find the shortest path between all pairwise distances. The method utilised

for a ‘road network distance’ (in this thesis) is Floyd Warshall (FW),

which is a commonly employed shortest path algorithm. The pseudo-code

for Floyd Warshall can be found in Algorithm 1. Notably FW is one of

the fastest shortest path algorithms and produces a PD pairwise distance

matrix with a zero diagonal. These reasons and the fact that it is deemed

the current state-of-the-art for spatial modelling is why I choose FW.
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(a) Snap points to roads.

(b) Snap roads to points.

Figure 3.3: A visual description of the two methods for snapping observations
and roads: snap points to roads versus snap roads to points.

Algorithm 1 Floyd Warshall.

Require: V , w(u, v)
1: Let: dist be a |V | x |V | array of minimum distances initialised to ∞
2: for each vertex v do
3: dist[v][v] ← 0
4: end for
5: for each edge (u,v) do
6: dist[u][v] ← w(u,v) (weight of the edge (u,v))
7: end for
8: for k from 1:|V | do
9: for i from 1:|V | do

10: for j from 1:|V | do
11: if dist[i][j] > dist[i][k] + dist[k][j]dist[i][j] ← dist[i][k]+dist[k][j]
12: end for
13: END if
14: end for
15: end for
16: Finish

A similar but alternative approach to step 1 would be to snap the points

to their closest polyline i.e., move the point to the polyline. This approach is
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visualised in Figure 3.3(b) where the green points are observations, the black

lines are actual roads and the blue points are the snapped observations. This

approach can move neighbours closer to each other. This is not beneficial for,

say a house price case study, because large properties with large drive ways

typically contain larger house price variations compared to those closer to the

road [109].

Restricted road distance data

Alternatively, restricted road distance data is sourced from the Open Street

Routing Machine (OSRM) and takes the shortest path along the OSM road

network. The data is openly sourced from an API with a reasonable usage

license.

This routing machine considers travel modes such as cars, bicycles and walk-

ing. The OSRM data also takes account for a number of road restrictions which

are labelled by OSM. The most notable restrictions are one-way systems, path

availability and speed limits. Table 3.1.1 provides just some examples of other

restrictions considered. Throughout this thesis, ‘restricted road distance’ is

utilised unless stated otherwise. The reason for undertaking a different ap-

proach will be for the purpose of comparison with other existing methods.

3.1.2 Restricted travel time distance data

OSM labels also consider restricted travel time; the time that is takes to travel

between two points using a specific mode of transport. This routing option

considers all of the same restrictions as road distance, and some more, including

estimated congestion, speed limits, land gradients and the affect of certain road

management systems such as traffic lights and pedestrian crossings. This pro-

vides potential for a newly sophisticated approach to measuring urban spatial

autocorrelation (SAC).
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Table 3.1: A subset of restrictions utilised in the OSRM’s road network and
travel time calculations from OSM labels.

Restriction type Description
Mode Car, walking, cycling, wheelchair access . . .

Barrier (Rising) bollard, cattle grid, border control, checkpoint,
toll booth, sally port, (lift) gate . . .

Restriction Motor vehicle, vehicle, permissive, designated, destination,
private, agricultural, forestry, emergency, parking aisle . . .

Speed profile Motorway, trunk, primary, secondary, tertiary, ferry,
residential, living street, track, unclassified. . .

Surface speeds Concrete, paved, cement, compacted, paving stones, metal,
grass, gravel, unpaved, cobblestone, stone, sand, mud . . .

Tracktype speeds Grade 1-5, intermediate, bad, horrible, impassable . . .
Maxspeed Urban, rural, trunk, motorway, single/dual carriageway

U-Turn Time in seconds
Traffic signal Time in seconds

Oneway Boolean, y/n
Route speed Ferries, piers, movable bridges

3.1.3 Combined restricted road distance and travel time

distance data

The last pairwise distance matrix considers a combination of the restricted road

distance and restricted travel time distance matrices defined above. The purpose

of calculating this is presented in Section 4.2 and Figure 4.1. I put forth two

approaches to calculating this matrix:

1. The matrix is calculated with two user-defined weights (αrd and αtt).

These weights are always positive and sum to 1. They are multiplied

by the road distance and travel time matrices. This approach prioritises

the matrix which is most influential for the application. The formula is

Dcomb=αrdDrd + αttDtt where Drd and Dtt are the road and travel time

pairwise distances. This method is utilised in Chapter 6 because it is

highly practitioner motivated where application knowledge is assumed.

Matrix A provides the format of the combined output distance matrix un-

dertaken in this approach where drdi,j and dtti,j represent the road distance

and travel time distance values between locations i and j.
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Matrix A.: Combined matrix option 1.

αrdd
rd
1,1 + αttd

tt
1,1 αrdd

rd
1,2 + αttd

tt
1,2 αrdd

rd
1,3 + αttd

tt
1,3 . . . αrdd

rd
1,n + αttd

tt
1,n

αrdd
rd
2,1 + αttd

tt
2,1 αrdd

rd
2,2 + αttd

tt
2,2 αrdd

rd
2,3 + αttd

tt
2,3 . . . αrdd

rd
2,n + αttd

tt
2,n

αrdd
rd
3,1 + αttd

tt
3,1 αrdd

rd
3,2 + αttd

tt
3,2 αrdd

rd
3,3 + αttd

tt
3,3 . . . αrdd

rd
3,n + αttd

tt
3,n

. . . . . . . . . . . .

αrdd
rd
n,1 + αttd

tt
n,1 αrdd

rd
n,2 + αttd

tt
n,2 αrdd

rd
n,3 + αttd

tt
n,3 . . . αrdd

rd
n,n + αttd

tt
n,n


2. The second option calculates a matrix using a linear regression of the

road distance and travel time matrices. This is done such that the up-

per and lower triangle of both matrices are considered i.e., the regression

has four features: upper triangle restricted road distance, upper triangle

restricted travel time, lower triangle restricted road distance and lower tri-

angle restricted travel time. This is because the distance matrices are not

symmetric. This method is utilised in Chapters 4 and 5. Unlike method

1, this method assumes that the user has no knowledge of the application,

this is beneficial for this thesis, which attempts to generalise across mul-

tiple urban applications. Matrices B and C are examples of upper and

lower triangles.

Matrix B.: Example of an upper triangle.

d1,1 d1,2 d1,3 d1,4 d1,5 . . . d1,n−1 d1,n

0 d2,2 d2,3 d2,4 d2,5 . . . d2,n−1 d2,n

0 0 d3,3 d3,4 d3,5 . . . d3,n−1 d3,n

0 0 0 d4,4 d4,5 . . . d4,n−1 d4,n

0 0 0 0 d5,5 . . . d5,n−1 d5,n

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . dn−1,n−1 dn−1,n

0 0 0 0 0 . . . 0 dn,n


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Matrix C.: Example of an lower triangle.

d1,1 d1,2 d1,3 d1,4 d1,5 . . . d1,n−1 d1,n

0 d2,2 d2,3 d2,4 d2,5 . . . d2,n−1 d2,n

0 0 d3,3 d3,4 d3,5 . . . d3,n−1 d3,n

0 0 0 d4,4 d4,5 . . . d4,n−1 d4,n

0 0 0 0 d5,5 . . . d5,n−1 d5,n

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . dn−1,n−1 dn−1,n

0 0 0 0 0 . . . 0 dn,n


These calculations, although simple, are effective in my results throughout,

as such I have opened up a further avenue for research in the area of optimising

this calculation - this is discussed further in Chapter 8.

3.1.4 Why travel time?

The intuition behind utilising travel time in addition to road distance is due to

the fact that although road distance and travel time are correlated, some legal,

customary and social restrictions are exclusive to travel time only; traffic flow,

pedestrian crossings, road quality and so forth. These restrictions make travel

time more accountable for human mobility patterns than road distance. In

addition, practitioners can select travel time more dynamically (i.e., at different

times of day) to better inform their own models.

Furthermore, different cities experience different road accessibility. For ex-

ample, it may take 30 minutes to travel 1 mile in London, but only 2 minutes

to travel 1 mile in Coventry; travel time takes this into account.

Finally, the combined road distance and travel time (RDTT) distance matrix

affords the opportunity to take into account the exclusive behaviours of both

matrices.

3.2 House Price Data

The ‘house price’ data is sourced from Her Majesty’s Land Registry’s (HMLR’s)

openly available ‘Price Paid’ database. This data is space and time stamped for
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Table 3.2: Feature name, description and data type in HMLR’s ‘Price Paid’
dataset.

Feature name Description Data type
UID Unique transaction identifier Integer

Property type Flat, terraced, semi-detached, detached String
Tenure Freehold or leasehold Binary

Date of transaction Transaction date for the property Date/Time
Address Full address including postcode String

Build status Is the property newly built Binary

all residential properties that have been sold in England and Wales since 1995.

Table 3.2 provides a list of all the data available.

Throughout this thesis ‘house prices’ refer to the price that a property has

sold for. This price may be different to the ‘asking price’ because sellers and

purchasers typically negotiate. In addition, this thesis only considers the sale

price and not the rental price, this is because these markets can be considerably

different. Furthermore, ‘house prices’ do not refer to all ‘residential properties’

(i.e., any property sold for domestic use), it only refers to ‘houses’, i.e., the

entirety of a detached, semi-detached or terraced property. Flats/apartments

are not included throughout. The reason being that these markets act differently

to each other due to the fact that ‘houses’ are sold as ‘freehold’ and flats are

(typically) sold as ‘leasehold’. A freehold purchase is one which includes both

the sale of the property and the land it stands on, whereas a leasehold sale

essentially rents the land of a property from the freeholder for a period of time

i.e., the leaseholder does not own the land that their property lay on.

For this thesis, I only consider the freehold houses sold between the 01-

January-2016 and the 01-January-2017. Chapters 4-6 utilise a spatial subset

of Coventry, which accounts for 3,669 observations. The nationwide predictor

discussed in Chapter 7 considers 1̃15,000 observations.

The land registry’s ‘Price Paid’ data provides an address, but no exact lon-

gitude and latitude locations. As such, I access the Ordnance Survey’s (OS’s)

educationally available “Addressbase” dataset which contains all the address lo-

cations in the UK. This is done with a string match, pertaining to a 98% match
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Figure 3.4: A visual description of the house price dataset across Coventry,
projected to 2017.

rate. The remaining 2% are ignored in my experiments.

For Coventry, I undertake the standard Moran’s I-test to confirm SAC. As

expected, the houses dataset (containing 3,669 properties) show a strong result

of Iobserved = 0.1559136 >> Iexpected = −0.00267094. In addition, a standard

deviation of 0.001123158 and p-value → 0 is measured. These results allow us

to reject the null hypothesis that there is no SAC present at significance level

α = 0.05. These outputs emphasise the appropriateness of spatial interpolation

with the Coventry house price data.

Finally, Figure 3.4 provides a visualisation of all observations considered

in my experiments contained in Chapters 4-6. The larger and darker points

represent the higher house prices. The smaller and lighter points embody smaller

house prices. The black lines exhibit the road network in Coventry and the thick

grey line serves as the border of the city.
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3.3 Traffic Flow Data

All traffic flow data is openly sourced from the Highways Agency England’s

data portal. Throughout this thesis ‘traffic flow’ refers to the total daily count

of traffic passing a specific sensor. Traffic considers all motorised vehicles and

ignores foot traffic or push bicycles.

Across England, the number of sensors are 16,976, which is a small subset

of the 139,019 miles of England roads [41]. My experimental analysis considers

only 711 of these, which lay in the city of Birmingham. The observations (i.e.,

total number of motorised vehicles to pass the sensor in a day) considered in

this thesis are the averages between 01 -January-2016 and the 01-January-2017’.

Table 3.3: Feature name, desctiption and data type in the traffic flow dataset.

Feature name Description Data type
UID Unique transaction identifier Integer

Collection method Counted or estimated Boolean
Road name Name of the road String

Location Region, long and lat string/numeric
Start and end junctions Lookup to the junction dataset Integer

Link length Length of road between junctions numeric
Small vehicles Count of motorcycles and cars numeric
Large vehicles Count of buses, vans and lorries numeric

All motor vehicles Count of all motorised vehicles numeric

Table 3.3 provides a list of all features from this dataset. Most notably, the

longitude and latitude provides us with the ability to spatially model the data.

Publication 2 utilises the remaining columns, however all of the work in our 3

contributions consider space only.

For this data, I conduct a standard Moran’s I-test to confirm SAC. The re-

sults are Iobserved = 0.1604474 >> Iexpected = 0.0002727025 with a P-value of 0.

These results allow us to reject the null hypothesis that there is no SAC present

at alpha = 0.05. Hence, it is appropriate to engage in spatial interpolation with

this data.

Figure 3.5 provides a visualisation of the points considered in my experi-

ments. The larger and darker points represent the higher daily counts of mo-
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3. Datasets

Figure 3.5: A visual description of the traffic flow dataset across Birmingham,
projected to 2017.

torised vehicles. The smaller and lighter points embody the lower daily counts

of motorised vehicles. The black lines exhibit the road network in Birmingham

and the thick grey line serves as the border of the city.
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CHAPTER 4
Modelling Space in the City; a Real Estate Case Study

In the following sections I describe the experiments undertaken to address RQ1.

Each section contains the information required to populate my first of three

key contribution chapters. The specific content from this chapter shows how I

design an automated valuation model (AVM) to predict the price of residential

property in Coventry, UK. I achieve this by means of geostatistical Kriging.

Unlike traditional applications of distance based learning, this contribution is

the implementation of non-Euclidean distance metrics by approximating road

distance, travel time and a linear combination of both, which I hypothesise to

be more related to urban house prices than straight-line (Euclidean) distance

(rationale provided in Section 4.1). Given that, to undertake Kriging, a valid

variogram must be produced (see section 2.3.1), my experiment exploits the

conforming properties of the Minkowski distance function (with P > 1) to

approximate a road distance and travel time metric. A least squares approach

is put forth for variogram parameter selection and an Ordinary Kriging predictor

is implemented for interpolation. The predictor is then validated with 10-fold

cross validation (CV) and checkerboard hold out against the, almost exclusively

employed, Euclidean metric. Given a comparison of results for each distance

metric, one witnesses an r2 of 0.6901±0.18 SD for real estate price prediction

compared to the traditional (Euclidean) approach obtaining a suboptimal r2

value of 0.66±0.21 SD. The results of this chapter are taken from Publication

4.
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4.1 Introduction

By 2030 investable real estate is expected to have grown by more than 55%;

amounting to a UK residential market value of £9.145tn [93]. Consequently,

leaders of real estate, policy makers and everyday home buyers are looking for

information driven technological solutions to drive sustainable, low risk decisions

in a newly global market [108]. In addition, the complex network structures,

unprecedented urban growth and wealth of available real estate data makes

(inter)national and urban residential markets more interesting and accessible

than ever before. As such, machine learning algorithms, under the name of

automated valuation models (AVMs), exploit this data to reliably understand

the value of real estate over large areas where market behaviour may differ

significantly. One such way to model these market behaviours is to utilise the

vast data sources available to the single most influential variable which in this

case is space (as seen in Section 4.2).

It was shown in Section 2.2.2 that spatial relationships require the removal

of the assumption of independent and identically distributed (i.i.d) random vari-

ables for the purpose of predictive modelling. This is due to interdependencies

between spatial points, known as SAC (as defined in Section 2.2.4). This is be-

cause an occurrence of dependency structures in spatial data introduces redun-

dancy that must be taken into account to avoid an overestimation of statistical

effects. As such, I put forth a spatial interpolation model named Kriging (see

definition in Section 2.3.2) to predict house prices [88]. A prerequisite to Kriging

is a variogram, which computes each pairwise distance h with a Euclidean func-

tion (definition 2.4.2). The Euclidean function is unrealistic for urban settings

which contain complex physical restrictions and social structures for example

road and path networks, large restricted areas of private land and legal road

restrictions such as speed limits and one-way systems. This chapter hence hy-

pothesises that the ‘actual’ space represented in the (Euclidean) semivariogram

is currently ill-informed.
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In this Chapter, I implement three new distance metrics into a set of house

price Kriging predictors; (1) approximate road distance, (2) approximate travel

time, and (3) a combination of both. My application puts forth a set of valid

Minkowski distance metrics which are proven to better approximate restricted

road distance and travel time across Coventry (UK) compared with a Euclidean

distance.

4.1.1 Chapter structure

Section 4.2 provides a motivating example. Then, Section 4.3 reviews the exist-

ing literature related to this contribution. Thereafter, Section 4.4 describes the

four-step method utilised within this chapter; collapsing time, distance matrix

estimation, variogram fitting and spatial interpolation. Afterwards, Section 4.5

validates the method with a case study of 3,669 real-estate transactions across

Coventry. Finally, Section 4.6 concludes the chapter with some discussions re-

garding further work opened up by this research.

4.1.2 Contributions

The key primary contributions within this chapter are: (1) a Minkowski approx-

imation of a pairwise restricted road distance metric utilising OpenStreetMaps

(OSM) data; (2) a Minkowski approximation of a pairwise travel time metric

utilising OSM data; (3) a Minkowski approximation of a pairwise combined

restricted road distance and travel time metric utilising OSM data; (4) a com-

parison study of house price predictors in Coventry with distance metrics (1)-(3)

against a commonly used Euclidean metric. The final contribution shows that

spatial interpolation can be improved with non-Euclidean city-motivated dis-

tance functions.
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Figure 4.1: A comparison of variances for urban house prices with different
distances; Euclidean, road distance (“Road”), journey time (“Time”) and a
linear combination of road distance and journey time (“RDTT”).

4.2 Motivating Example

Figure 4.1 provides an analytical proof of my hypothesis. The figure shows four

variograms with my house price case study; Euclidean, road distance, travel time

and combined (RDTT). The combined matrix simply applies a 50% weighting

to both road distance and travel time. The road distance and travel time es-

timates are normalised and symmetric. This semivariogram is crudely built

using a range normalised distance and an upper triangle symmetry. It can be

seen that the non-Euclidean distance metrics contain lower semivariances for

the price of pairwise urban residential properties compared to Euclidean. This

result provides motivation to undertake a more sophisticated estimation of road

distance, travel time and a combination of both, which is undertaken in this

chapter.
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4.3 Background Reading

4.3.1 House prices in space

Since the early 19th century, space and distance have been theorised as the pri-

mary functions for property valuation. For example; favoured prices are given

to those properties within close proximity to its central market place [123], com-

munity centre [70] or central business district [15]. Most contemporary analysis

mimics this trend, for example predicting property value by using (1) the average

sales price of other properties in the local comparables market, (2) a spatial clus-

tering of properties and demographics [86] and (3) a local demographic ‘trade

area’ analysis [40]. More detail of these methods are discussed in Chapter 2.

Most contemporary machine learning based AVMs are hedonic in nature (a

function of multiple attributes) [90, 99]. Attributes relating to residential prop-

erty price include; topography and natural geography [73], building footprint

[102], school proximity [85], over head pylons [13] and crime [121].

In addition, [102] describes the implementation of a spatiotemporal autore-

gressive model on 70,822 properties in Fairfax county from 1961 to 1991. Their

prediction, with twelve variables, reduced the median absolute error by 37.35%

relative to an indicator-based model. Additionally, [37] used a house price Krig-

ing predictor to produce an r2 of 0.72 on a nationwide United Kingdom (UK)

AVM. Finally, [65] put forth a geographically and temporally weighted regres-

sion (GTWR) for house price prediction, in which an r2 of 0.88 is achieved

on a dataset of residential house sales in Calgary (Canada) between 2002 and

2004. Each of these approaches highlight the importance of space to house

price prediction. Although, these methods consider space and proximity to be

represented by a Euclidean distance only.

4.3.2 Non-Euclidean distance based predictors

Manhatten [51, 122], Geodetic [6] and water-based (shortest path over water)

[97] distances have all been implemented in distance based learning algorithms,
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each showing some minor improvements compared with the Euclidean function.

All of these methods are motivated by some access-restricted environment; city-

based routing, world distances and smooth edges respectively. In addition, I

hypothesises that road distance and travel time are intrinsic to contemporary

house price modelling, and it is these features that I approximate in this chapter.

Without direct access to the above datasets, it cannot be confirmed that the

input metrics (Manhatten, geodetic or water-based) produce a valid variogram.

As such, [39] discusses dimensionality reduction to approximate a Euclidean

metric from a (potentially invalid) non-Euclidean metric input. Using simulated

data with isotropic spatial dependence, their work builds four omnidirectional

variogram estimators, showing that their newly defined “Stream” distances con-

sistently outperform the standard Euclidean function, whilst always remaining

valid.

Similarly, [136] produces a Kriging predictor with a road distance network

using an Isomap algorithm; a variation of isometric embedding. The predictor

estimates traffic flow in Nanchang, China. This method uses the Floyd War-

shall algorithm to build a non-restricted road network. This does not consider

accessibility restrictions such as one way systems or traffic lights.

With regards to the use of Minkowski distances for spatial modelling, [115]

approximates the distance between a set of postcodes and a hospital with a

1×N vector of Minkowski distances. The selected Minkowski p-value was the

one which was most correlated with the shortest path along the Calgary road

network. The results from their paper motivates the experiment in this contri-

bution, however I uniquely introduce an N×N distance matrix with a Minkowski

p-value most correlated to travel time, restricted road distances and a combi-

nation of both.

Finally, a Minkowski distance metric is also put forth with geographically

weighted regression (GWR) [82]. Their work tests GWR with a combination

of Minkowski p-values (1-8, inf) at intervals of 0.25. Their paper puts forward

the interesting point that, for each dataset a new p-value may need to be cal-
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Algorithm 2 Collapsing time - distance matrix selection - variogram parameter
selection - spatial interpolation.

Require: Kord, dp, D, maximum likelihood estimator (MLE)
1: Input: D = {Xs

t ,Y
s
t , } s={1:S}

t={t0:∆t:T}
2: Temporal mapping to time τ :
3: Dτ ← g(D) ∀ t, s ∈ {t0 : ∆t : T}, {1 : S}
4: Stratified sampling: Sample across each LSOA
5: Dτ

σ ∼ σstratified(Dτ )
6: for z in {road distance, travel time, linear combination} do
7: dpz =argmaxp r

2(dp, z)
8: end for
9: for z in {road distance, travel time, linear combination} do

10: for V in 10-folds, Checkerboard do
11: Variogram selection on vs ←MLE(Train(Dτ

σ), dpz)
12: Ordinary Kriging on Prices ← Kord(Train(Dτ

σ), T est(Dτ
σ), vs)

13: return r2,RMSE,MAPE
14: end for
15: end for
16: Finish

culated, which can be time-consuming on large datasets. Notably, both GWR

and Kriging are local-spatial prediction models, however Kriging prediction is

regularly noted as an improvement to GWR [89, 91].

4.4 Scientific Method

In this section I describe the experiment undertaken; the prediction of Coventry

house prices. There are 4 stages of this experiment, each described in Algorithm

2:

1. Collapsing time: converting a discrete, non-uniform, spatiotemporal sold

price dataset D into a uniform time singular sold price output DT utilising

a space-time cube comparison.

2. Distance matrix estimation: calculating a set of Minkowski coefficients to

predict road distance and travel time between all house price points.

3. Spatial prediction: Ordinary Kriging on a sample of 3,669 house price

observations (data described in Section 3.2).
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4. CV and validation metrics: model validation against five distance metrics

(Euclidean, Manhatten, road distance, travel time and a combination of

both) using 10-fold CV and checkerboard hold out.

4.4.1 Stage 1: collapsing time

The ‘Price Paid’ dataset (herein named D) described in Chapter 3 is utilised.

This accounts for 3,669 sales in Coventry. Stage 1 predicts each property’s sale

price based on its value on the 01-January-2017 (for time singularity). This

process involves each property being assigned some percentage price change

based on the date that it was sold and the lower super output area (LSOA) that

the property is contained within to produce a value for all 3,669 properties at

the date 01-January-2017 (DT ). The errors, for the purposes of this experiment,

are minimal or non-existent due to the small temporal and granular spatial areas

being considered. Section 3.2 provides more details about how this dataset is

sourced.

4.4.2 Stage 2: distance matrix estimation

Consider a one way system in a city road network, where one route may be longer

than it’s counterpart route. Hence, a restricted road distance matrix containing

such a restriction will not be symmetric. Figure 4.2 shows an example where

the distance between houses A to B is 0.24 miles along the red dotted line which

takes a route along ‘Brownshill Green Road’. This road is marked as a one way

system, this means that the route B to A must be different (0.44 miles). The

same reasoning applies for a travel time distance matrix.

Given my extensive discussion on distance metrics and variogram validity in

Chapter 2, one must ensure that the road distance and travel time functions are

metric. The example above shows that a road distance and travel time matrix

does not always satisfy P3 and P4, hence a metric estimate is required. A simple

method of making the distance matrix symmetric would be to (1) duplicate the

lower triangle, (2) select the minimum or maximum of the lower/upper triangle
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Figure 4.2: A visual example of where P3 and P4 are not satisfied.

or (3) calculate the average between route A→B and B→A. However, this

doesn’t always overcome the problem of P4 as a shorter non restricted route

could potentially be found. The experiment in this chapter instead considers

Minkowski coefficients (definition in Section 2.4.1). Assuming that there is a

Minkowski p-value that is similar to road distance, travel time or a combination

of both, then this Minkowski value can be used as a valid estimate of road

distance and/or travel time.

Estimation optimisation

For this experiment, three scenarios are attempted:

1. The Minkowski p-value with the highest r2 value to the restricted road

distance matrix described in Section 3.1.1. For my dataset, one finds that

it is p=1.55.

2. The Minkowski p-value with the highest r2 value to the restricted travel
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time matrix described in Section 3.1.1. For my dataset, one finds that it

is p=1.7.

3. The Minkowski p-value with the highest r2 value to the combined road

distance and travel time matrix described in Section 3.1.1. For my dataset,

one finds that it is p=1.6.

Figure 4.3 shows the r2 value for each Minkowski p at 0.05 intervals between

1 (Manhatten) and 2 (Euclidean). It can be seen that a combination of the

two distance matrices has the highest r2 (=0.946) at p = 1.6, which shows

that Minkowski coefficients are strong at predicting a restricted road network

compared with Euclidean or Manhatten distance matrices.

The combined road distance and travel time matrix is calculated as a linear

model with four variables; (1) Road distance A→B; (2) Road distance B→A;

(3) Travel time A→B; (4) Travel time B→A, as described in Section 3.1.3. This

is an approach which to my knowledge has never before been undertaken and

attempts to fully understand the spatial utility function (defined in Section 2.1)

of a house purchaser. Figure 4.4 provides a comparison of each physical distance

(Euclidean, Manhatten, actual road (in both directions) and Minkowski p= 1.6)

between two points.

4.4.3 Stage 3: variogram fitting and spatial interpolation

For comparison, I run a separate experiment for all of the selected Minkowski p-

values (p = [1.55, 1.6, 1.7]) i.e., those most correlated with road distance, travel

time and a combination of both. I also run the experiments with the current

state-of-the-art; Manhatten and Euclidean distances. It is not surprising to find

that the same model (Matern) is optimal in all cases because each distance ma-

trix used to plot the lag are highly correlated to each other, as seen in Figure

4.3. The (hyper)parameters are selected using maximum likelihood estimates

(MLE) for random fields. It are these hyperparameters that affect the output

predictions, see Section 2.3.1 for details on each hyperparameter. In this chap-
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(a) OSRM road distance versus Minkowski p-value goodness
of fit graph.

(b) OSRM travel time versus Minkowski p-value goodness of
fit graph.

(c) OSRM linear combination of road distance and travel time
versus Minkowski p-value goodness of fit graph.

Figure 4.3: The ‘goodness of fit’ value for each Minkowski coefficient, tested
against the OSRM’s actual road distance calculations, travel time calculations
and a linear model of both.
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Figure 4.4: A streetmap comparing distance functions; road, Euclidean, Man-
hatten and Minkowski distance.

ter, I consider Ordinary Kriging only, as defined in Section 2.3.2. The reason

for this is because I am only interested in optimising prediction with appropri-

ate distances functions rather than Kriging models. This provides a potential

further avenue of research.

4.4.4 Stage 4: cross validation and validation metrics

k-fold cross validation (KCV) and checkerboard holdout, as defined in Section

2.5 are the CV methods utilised in this Chapter. The checkerboard method

attempts to take into account over fitting as a result of spatial dependency

between the training and test set. This method provides a training sample

of 1,832 properties and test sample of 1,837 properties. Figure 4.5 shows the

checkerboard polygons used to separate the training and validation test set

68



4. Modelling Space in the City; a Real Estate Case Study

Figure 4.5: Spatially aware checkerboard sampling polygons utilised for my hold
out method.

for each experiment. Chapter 6 argues that this is not the best approach for

validating spatial data because the removal of observations from the training

set can cause a pessimistic estimation of generalisation performance.

The experiment’s success is measured on a number of validation metrics:

(1) the squared Pearson correlation coefficient (r2); (2) Root Mean Squared

Error (RMSE) and (3) Mean Absolute Percentage Error (MAPE). A paired T-

test is also undertaken to state whether the results are statistically significant

enough for the null hypothesis that the price of a house can be predicted by

space only. Each of these metrics and statistical tests are defined in Section

2.5.1.

4.5 Results

In this chapter, I present an approach to estimate restricted road, restricted

travel time and combined distances using the Minkowski distance function. I

then undertake five spatial interpolations, each containing the same observation

data and different Minkowski distance metrics, using Ordinary Kriging. In this
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Table 4.1: Results for 10-fold cross validation.

10-fold cross validation
Distance matrix p=1 p=1.55 p=1.6 p=1.7 p=2

(Manhatten) (Euclidean)
r2 0.683 0.6847 0.6901 0.6843 0.663

RMSE 57,115 57,000 57,013 57,439 58,913
MAPE 17.92% 17.9% 17.895% 18.01% 18.12%

Table 4.2: Results for checkerboard holdout.

Checkerboard stratified validation
Distance matrix p=1 p=1.55 p=1.6 p=1.7 p=2

(Manhatten) (Euclidean)
r2 0.4509 0.4514 0.4558 0.4499 0.4418

RMSE 82,414 82,367 81,940 82,507 82,972
MAPE 24.52% 24.51% 24.40% 24.53 % 24.57%

Section, I provide a set of results for each experiment.

Tables 4.1 and 4.2 provide the validation results for each model showing that

non-Euclidean distance metrics can produce a more appropriate set of parame-

ters for house price prediction in Coventry. Notably, the Minkowski metric which

is most related to a combination of restricted road and travel time distances has

the best performing interpolation with an r2 (0.6901), supporting my hypoth-

esis that urban house prices are more related to road distance and travel time

than the popularly employed Euclidean and Manhatten metrics (Minkowski of 2

and 1 respectively). Figure 4.6(a) visualises the prediction versus actual price

for all properties trained with my best performing distance matrix (p=1.6). In

addition, Figure 4.6(b) shows the uncertainty bounds between folds for all prop-

erties in the ‘Price Paid’ dataset. The t-value and p-value of the best performing

model are 1.312 and 0.1896 respectively, showing that space as a single variate

is weak on its own; some more covariates could really support the model.

In general, the results show that residential valuation contains some spatial

autocorrelation (SAC) which, with the use of appropriate distance metrics,

can be improved. In addition, a student’s t-test between experiments is cal-

culated to show that the best performing (p=1.6) and poorest performing (Eu-

clidean) Kriging outputs provide a statistically significant change with a p-value
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(a) Actual versus predicted graph for p=1.6.

(b) House price prediction graph with uncertainty bound for
p=1.6.

Figure 4.6: Results graphs for the best performing experiment.

of 0.0458. This is an appropriate test because the two populations have very

similar (almost equal) variances (86,555 and 86,657 respectively). If this were

not the case, I would have considered a Welch t-test [135].

4.6 Final Remarks

In this chapter, I have (i) converted a discrete, non-uniform, spatiotemporal

sold price dataset D into a uniform time singular sold price output DT utilising

a space-time comparable process in Coventry; (ii) deployed a novel method

of producing N×N road distance and travel time predictions; (iii) produced a

novel N×N combined road distance and travel time matrix; (iv) calculated 5
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variograms, each with a different distance function; (v) produced a spatially

aware Ordinary Kriging calculation to predict house prices. Each of the models

are tested using MAPE, RMSE and adjusted r2. The optimal experiment with

a combined road distance and travel time approximation yielded an adjusted r2

value of 0.69 compared with the traditional Euclidean approach at 0.66.

Future work is to include: (1) testing the hypothesis with other applica-

tions and spatial interpolation methods; (2) implementing the findings into the

SPENT algorithm from Publication 4 and (3) introducing a set of covariates to

improve the overall accuracy of the model.

In the following chapters, I will introduce: (1) a new approach to better

estimate valid distance functions from invalid matrices such as road distance

and travel time for spatial modelling and (2) a state-of-the-art urban spatial

CV method for estimating the generalisation performance of spatial predictive

models along the range of interpolation to extrapolation scenario’s. Thereafter,

Chapter 7 puts forth a set of answers to the research questions (RQ) posed in

Section 1.1, matches those answers with my results, and discusses the implica-

tions of my work to urban science, geostatistics and real estate. Finally, Chapter

8 concludes all of my findings and puts forth a set of research avenues that are

opened up by this thesis.
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CHAPTER 5
Producing a Valid Urban Spatial Model with Road and

Travel Time Distance Functions

Urban environments are restricted by various physical, regulatory and cus-

tomary barriers such as buildings, one-way systems and pedestrian crossings.

These features create challenges for predictive modelling in urban space, as

most proximity-based models rely on Euclidean (straight line) distance metrics

which, given restrictions within the urban landscape, do not fully capture any

spatial urban processes. In this Chapter, I continue to argue that road distance

and travel time provide an effective measure of city mobility and hence I de-

velop a new low-dimensional Euclidean distance metric based on road distance

and travel time using an isomap approach. This method intends to improve

the results displayed in Chapter 1 and open the research area to further urban

problems above and beyond real estate.

This chapter’s primary methodological contribution is the derivation of two

symmetric dissimilarity matrices (B+ and B2+), with which it is possible to

compute low-dimensional Euclidean metrics for the production of a positive

definite (PD) covariance matrix with commonly utilised kernels and non-valid,

non-Euclidean input spaces. This new method is implemented into a Kriging

predictor and is used to estimate house prices of 3,669 properties in Coventry,

United Kingdom (UK). I find that a metric estimating a combination of road

distance and travel time, in both R2 and R3, produces a superior house price pre-

dictor compared with alternative state-of-the-art methods, that is, a standard

Euclidean metric in RN and a non-restricted road distance metric in R2 and R3.

Finally, I undertake an extensive comparison of cross validation (CV) techniques

and I select the best model for predicting house prices in new locations, based on
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the model’s estimated generalisation performance on unseen data. This chapter

addresses RQ2 fully, and the results are taken from Publication 5.

5.1 Introduction

By 2030, it is expected that 5 billion people will live in urban areas, 662 cities

will have at least 1 million residents and there will be a total urban spread of

1.2 million km2 [12, 98, 114]. Hence, cities will continue to accommodate over

50% of the world’s population. In the UK, over 82% of citizens live in its 64

cities, a figure which has grown by more than 13% in the past 30 years [18].

Many UK cities suffer from legacy infrastructure, such challenges are well doc-

umented: Housing supply is not matching demand [62]; Commuting times are

increasing [54] and there are shortages in services for the most vulnerable citi-

zens [116]. Issues of urban growth and sustainability motivate the development

of mathematical tools and models for explanatory and predictive analysis [124].

Urban models provide insight into the relationship between some chosen

target value, house prices for example, and other potentially related variables,

such as topography [73], building footprints [102] and crime [121]. Space [37]

and time [65] consistently feature in most urban models, for example in house

price prediction [35], traffic flow prediction [136] and in the analysis of green

space and its impact on well-being [64]. A typical approach to understand-

ing spatial characteristics in this way is through geostatistical proximity-based

modelling. An example of this approach is Kriging (defined in Section 2.3.2),

which assumes random variables to be spatially dependent and non-stationary

over space. A common assumption in geostatistical models (including Kriging)

is that proximity is based on Euclidean distance; this is in spite of the fact that

dispersion in a city landscape is unlikely to exhibit such properties.

Traditionally, research in real-estate price modelling has considered distance

to a specific location (e.g., workplace) and/or comparable prices of other sub-

markets within close proximity. A more sophisticated approach to this is to

74



5. Producing a Valid Urban Spatial Model with Road and Travel Time Distance
Functions

include physical barriers such as buildings, road layout and non-accessible open

space to the models, as distance, in practice, is clearly governed by such obsta-

cles. This is evident in recent work on road-distance-based Kriging, which has

been shown to be highly effective for urban house price prediction [35].

This chapter presents a natural extension to this earlier work by including

travel time. In so doing it integrates a number of otherwise difficult to cap-

ture variables such as traffic flow, road layout, junction priority and congestion

caused by on-road parking. The primary purpose is to show the effect that road

distance and travel time have on predictive modelling; note I do not prescribe

reasons for these effects (i.e., I will not be considering any covariates).

The methodological advances are, again, motivated by my work in urban

house price prediction; that is, I attempt to model unexplained variation through

proximity between observations, to underpin and improve on hedonic pricing

models already available in academia and in industry.

As discussed in chapter 4, an essential prerequisite to geostatistical mod-

els is the production of a variogram and covariance function. Covariance and

variogram functions must remain valid - PD and conditionally negative defi-

nite (CND), respectively [39], (see Section 5.4.1 for formal definition).

Given the extensive geostatistical research using Euclidean pairwise dis-

tances, there is no guarantee that any non-Euclidean distance matrix (PD or

otherwise) will produce valid covariance or variogram functions. For this reason,

pairwise road distance and travel time matrices are unlikely to be valid. Hence,

the purpose of this research is to propose an isometric embedding approach with

which one can approximate road distance and travel time in a lower-dimensional

Euclidean space, to allow physical properties of cities to be represented in spatial

prediction whilst still producing mathematically valid approximations.

In order to illustrate the benefits of these new distance metrics, I again,

utilise my Coventry house price data to build a real estate automated valuation

model (AVM). This AVM is used to provide mathematically modelled individual

market values for 3,669 properties. The case study in Section 5.5 shows that
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a combination of road distance and travel time produces a superior Kriging

predictor compared with a Euclidean approach for all assessed validation metrics

with my data.

5.1.1 Contributions

The contributions within this chapter, and above and beyond my previous chap-

ter are as follows:

• First, methodological contributions are made via the derivation of two

symmetric dissimilarity matrices (B+ and B2+), with which it is possible

to compute low-dimensional Euclidean metrics for the production of a

PD covariance matrix with commonly utilised kernels and non-valid, non-

Euclidean, input spaces;

• Second, I demonstrate the application of this new geostatistical approach

to the calculation of (i) approximate restricted road distance, (ii) approxi-

mate travel time and (iii) combined road distance and travel time matrices,

in each case within an embedded lower-dimensional Euclidean space;

• Third, I compare a number of the most popularly employed CV techniques

to assess the ability of each to estimate how well my model generalises to

unseen data.

5.1.2 Chapter structure

The remainder of this chapter is organised as follows: background research is

detailed in Section 5.2; Section 5.3 motivates the need for this research through

two practical examples; new methodological contributions are described in Sec-

tion 5.4 and applications of these methods, to urban house price prediction,

can be found in Section 5.5, utilising the data introduced in Section 3.2. The

chapter concludes in Section 5.6 in which I also document avenues for future

research.
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5.2 Related Literature and Key Concepts

5.2.1 Constructing optimal urban Kriging predictors

Kriging is a geostatistical spatial predictor which accounts for spatial covariance.

The method utilises observation distances to understand the spatial structure

of a dataset and hence determine its own interpolation parameters [33]. Kriging

is used extensively for interpolation by ecologists [81], geographers [19] and geo-

scientists [67]. A full description of this method is put forth in Section 2.3.2.

Notably, parameter optimisation, kernel selection and lag sizes are the primary

strategies used in optimising experimental variograms and Kriging algorithms

[30, 53, 133].

Kriging is commonly used in urban science and examples of its application

include traffic flow prediction [136], travel time prediction [94] and trip planning

[80]. The use of Kriging for urban real estate pricing is motivated by [8, 37, 44]

who together note that space and time are highly influential in house price

prediction. Each of these approaches however use Euclidean distance only and

are discussed in detail in Section 2.6.

A small number of non-Euclidean distance-based approaches have been em-

ployed to Kriging, including those based on Minkowski (see Chapter 4 and

[51, 35, 122]), geodetic [6] and water-based (shortest path over water) [97] dis-

tances. Each offers its own benefits, however it is difficult to assess whether

each produces valid experimental variograms without access to the initial data;

I show in Section 5.3 that relying on the fact that input distances are PD metrics

is no guarantee of valid variograms.

Research which bears similarity to my own can be found in [83], who use

geographically weighted regression (GWR) and a non-Euclidean distance metric

for predicting London house prices. Their research also utilises road distance and

travel time, however is limited to network shape and speed limit; my measures

include a wealth of other data provided by OpenStreetMaps (OSM), see Table

3.1.1.
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Figure 5.1: A comparison of the actual road, Euclidean, Minkowski and Man-
hatten distances between two points on a map [101].

Approaches based on GWR have advantages, in particular because there

is no requirement for the matrix to be Euclidean (the matrix wi of weights is

diagonal, hence there is no need to check for positive definiteness, which is not

the case with the covariance matrix used in Kriging [39]). However, it is noted in

[35] (and Chapter 4) that Kriging typically outperforms GWR in spatial pricing

models; this is especially true when implemented locally, which is the case in

Ordinary Kriging which assumes intrinsic stationarity (i.e., a moving mean but

a stationary variance between any two points).

5.2.2 Overcoming non-metric input spaces

For the most part, geostatistics relies on the assumption that each set of dis-

tances lie in a metric space (M, d), as defined in Section 2.4.1. There are three

known methods which ensure that a distance matrix is valid (that is, that it

produces a PD covariance matrix): The first uses isometric embedding to ensure

a Euclidean input; the second is the use of kernel convolution, so that the kernel
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fits any matrix and the third is to select a matrix which produces a valid co-

variance matrix. Previous research has assumed that the distance matrix must

satisfy P1-P4 to produce a valid spatial interpolation. I do not subscribe to this

view, as the example in Section 5.3 highlights.

With regard to the three methods that ensure matrix validity: Isometric em-

bedding provides a dimensionality reduction technique with which it is possible

to build a low dimensional Euclidean approximation of non-Euclidean inputs for

variogram modelling. Using simulated data with isotropic spatial dependence,

[39] builds four omnidirectional experimental variograms, each representing an

α norm, for α = 1,. . .,4 (α = 2 is Euclidean). When this data is applied with

Kriging, the newly defined ‘stream’ distances outperform Euclidean distances

in all cases; this is therefore my method of choice.

I note that other research proposes similar approaches to approximate road

distance metrics, see [120, 136]. In [136] the Floyd Warshall algorithm is ap-

plied to a road network to estimate the actual road distance between pairwise

locations. I note however that Floyd-Warshall only selects the shortest distance,

irrespective of restrictions such as transport patterns and one way systems.

The use of kernel convolutions, which can be used to express moving aver-

ages, assume that correlated data can be expressed as linear combinations of

uncorrelated data. This method has been successfully applied by [29], however

I note that this method can be difficult to implement on problems with large

datasets and is hence not considered further in this work.

Finally, the selection or creation of a valid covariance function can be un-

dertaken. For example, [39] noted that a set of Manhatten distances produced

non-valid variograms with Gaussian, Matern and spherical kernels, but were

valid for an exponential kernel. I am aware that this approach has several re-

strictions and is also time consuming to compute, and so for this reason isometric

embedding remains my method of choice.
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5.3 Motivating Examples

The contributions within this chapter are based on the following two assertions:

(1) that road distance, travel time and a combination of both are better indica-

tors of urban proximity than the commonly utilised Euclidean function, and (2)

that the only way to guarantee that a covariance matrix and variogram function

are valid in this context is to ensure that a Euclidean distance metric is input for

their calculation. Chapter 4 provides evidence of the first claim and Subsection

5.3.1 explores the second assertion also.

5.3.1 Calculating a valid variogram

To ensure that a variogram is valid, the input must be Euclidean. This implies

that even PD distance functions cannot always produce a valid variogram, a

concept which has potential to invalidate much previous research.

Non-PD inputs

Non-PD matrices produce non-PD kernels (covariance functions) which is usu-

ally as a consequence of the L2 norm; note the next subsection provides other

examples where this is the case. Matrices 1 and 2 below show a set of possible

pairwise distances. These matrices are not symmetric, much like a road net-

work containing one-way systems, and hence they are not PD. To test whether

each matrix always produces a valid variogram, I select a Gaussian covariance

function (C(h) = σ2e(−h/a)2) with σ2=0.5, 0.08 and a=450, 1.5. The output

vectors from this calculation are shown in Vectors 1 and 2 below.
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Matrix 1.: Road Distance (Meter)

1 2 3 4 5 6 7

1 0 266.5 459.4 738.1 602.5 614.3 640.6

2 266.5 0 321.6 600.3 464.8 476.5 502.8

3 459.4 321.6 0 278.7 143.1 154.9 181.2

4 738.1 600.3 278.7 0 346.6 358.4 342.4

5 602.5 464.8 143.1 346.6 0 358.4 342.4

6 614.3 476.5 154.9 358.4 222.8 0 133.8

7 640.6 502.8 181.2 384.7 249.1 133.8 0


Matrix 2.: Travel Time (Minute)

1 2 3 4 5 6 7

1 0 0.81 1.188 1.186 1.71 1.628 1.75

2 0.702 0 0.855 1.523 1.38 1.29 1.42

3 1.133 0.8 0 0.67 0.522 0.44 0.56

4 1.8 1.47 0.67 0 0.96 0.982 1.05

5 1.55 1.212 0.412 0.956 0 0.603 0.723

6 1.681 1.348 0.548 0.98 0.72 0 0.44

7 1.7 1.36 0.56 0.99 0.72 0.44 0


Vector 1.: Road Distance Vector 2.: Travel Time



2.09991

0.74078

0.27006

0.22365

0.13790

0.04218

−0.0145


and



0.38814

0.098924

0.03598

0.018321

0.010134 + 0.00194i

0.010134− 0.00194i

−0.014469



In view of the negative roots in Vectors 1 and 2, it is clear that both co-

variance functions are not CND (
∑n
i=1

∑n
j=1 αiαjC(h) ≥ 0) and hence road

distance and travel time are not valid for variogram modelling.
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PD inputs

Additionally, non-Euclidean PD matrices may also produce non-PD kernels, a

fact that some previous research has been known to overlook. Matrix 3 below

represents the same roads as in Matrix 1 and 2 above, but this time, the road

distance is not restricted (much like the work by [136]); that is to say, one-way

systems are not considered and hence are completely PD. The same covariance

function and hyperparameters are used.

Matrix 3.: Road Distance (Meter)

1 2 3 4 5 6 7

1 0 266.5 459.4 738.1 602.5 614.3 640.6

2 266.5 0 321.6 600.3 464.8 476.5 502.8

3 459.4 321.6 0 278.7 143.1 154.9 181.2

4 738.1 600.3 278.7 0 346.6 358.4 384.7

5 602.5 464.8 143.1 346.6 0 222.8 249.1

6 614.3 476.5 154.9 358.4 222.8 0 133.8

7 640.6 502.8 181.2 384.7 249.1 133.8 0


Vector 3.: PD Road Distances

2.1346

0.74503

0.30465

0.153779

0.12919

0.039961

−0.0072856



Vector 3 shows that the output eigenvector still contains negative roots,

which itself means that the covariance function is not CND, despite the input

matrix being PD.

This motivates my new approach for estimating non-Euclidean, non-PD dis-

tance matrices in a Euclidean space in order to produce valid covariance and

variogram functions.
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5.4 Method

I now describe how current state-of-the-art approaches estimate city-based prox-

imity (i.e., non-Euclidean distance metrics). I also compare these approaches

to my new method. I show how my proposed approach, isometric embedding

with newly defined symmetric dissimilarity matrices (B+ and B2+), produces a

PD covariance matrix. As a result of this, I then show application of this new

technique to the establishment of an urban real estate price predictor.

5.4.1 Distance matrix calculation

To undertake geostatistical modelling, a pairwise distance metric is required.

This pairwise distance metric is populated with distances di,j from a list of

locations {xi, i = 1, . . . , n} in Euclidean space Rn. The matrix provides the

basis for a valid metric if all di,j satisfy P1-P4, see Section 2.4.1.

As I have previously shown, road distance and travel time are not natural

metrics. Given this, I compare four methods for calculating conforming geosta-

tistical distance metrics from these inputs: a Euclidean distance; a Minkowski

approximation of restricted road distance and travel time; an isomap estimate of

road distance and a newly formulated improved isometric embedding approach

to estimating restricted road distance and travel time. Each distance is allocated

a subsection below.

Euclidean distance

Unless otherwise stated, it is typical to assume a Euclidean function when refer-

ring to distance. Assuming two sites as vectors s=(s1, . . . , sd)
T and u=(u1, . . . , ud)

T

in Euclidean space Rd, then the Euclidean distance is defined in Section 2.4.1,

where d is the number of dimensions (or attributes) and si and ui are attributes.
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Figure 5.2: Illustration of the spatial transformation from road distance (or
travel time) into a Euclidean space.

Minkowski distance

Assuming the same notation as above, the Minkowski distance is also defined in

Section 2.4.1, where P is a user defined parameter. Manhatten and Euclidean

distances are special cases of Minkowski, with P={1,2} respectively. In [35] and

Chapter 4, I show that Minkowski distances with P 6= {1,2} can better estimate

road distance and travel time compared with Manhatten or Euclidean distances.

Isometric embedding and isomap

Isometric embedding provides the spatial transformation of a new metric space

ζ ′=(s′, d′) from ζ = (s, d), with point set s = (s1, s2, . . . , sn), distance function

D of ζ and distance function D′ of ζ ′. All associated s and dij values are

intrinsic. If D'D′ then the transformation still preserves topological adjacency

among points in the original space ζ. Dimensionality reduction is a good means

of achieving isometric embedding; multidimensional scaling (MDS) is the most

popular such scheme.

Isomap, in addition to isometric embedding, attempts to detect the intrinsic

characteristics of non-linear data, in which ζ may be a non-metric space. For

example, isometric embedding assumes a Euclidean distance, whereas isomap

supports other spatial features such as non-restricted approximate road [136]

and geodesic [6] distances on a set of discrete points [120]. Figure 5.2 provides

an example of a road distance layout (left) transformed into a low-dimensional

Euclidean space (right) using isomap.
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As stated, MDS is a dimensionality reduction technique used to achieve

isometric embedding or isomap. Given an input metric D (which is for example

Euclidean) in n-dimensional metric space ζ, the first stage of MDS is to calculate

the dissimilarity matrix B

B =
1

2
{aij − ai.− aj .+ a..} (5.1)

where ai. is the average of all aij across j. Formally, each element Bij in matrix

B is calculated by:

B∗ij =
1

2

(
− d2

ij +
1

n

n∑
l=1

d2
il +

1

n

n∑
l=1

d2
lj −

1

n2

n∑
l=1

n∑
m=1

d2
lm

)
(5.2)

where B is a new set of isometric distances which mimics a kernel where B is

doubly centered. Although B is semi-PD, it is not guaranteed to produce a

PD covariance function or a CND variogram (see proof in Section 5.3). B is

definitely valid only when the input distance matrix D={dij}nxn is Euclidean.

Given this, classical MDS requires that the eigenvalues of B are λ1 ≤ λ2 ≤ . . . ≤

λα, where α is a user-selected value based on an optimal κ:

κ =

∑k
i=1 λi∑n
i=1 |λi|

, (5.3)

and λα > 0. The optimal κ provides the smallest value of α given some user-

defined minimum variation threshold. Thereafter, the corresponding eigenvec-

tors (Γ = εi, for i = 1, . . . , α) are calculated. The penultimate step of MDS is to

calculate a new dataset of points in the new α-dimensional subspace ζ ′=(s′, d′),

where s′ = ΓΛ
1
2 and Λ = diag(λ1, λ2, . . . , λk). This new s′ point set is the

isometric subspace which best describes point set D; this process is called eigen-

value decomposition and explains the variance of the data in a lower dimension.

In the final stage of isomap, the new coordinates in s′ are used to calculate a

new approximate distance metric using the Euclidean function.

If some inputs are non-metric, such as may be the case with travel time or
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restricted road distance, the dissimilarity matrix B may not be semi-positive

definite with an L2-norm, a property which is essential for MDS. For this reason,

a new B+ dissimilarity matrix is proposed in which D is forced to be symmetric

within the calculation:

B+
ij =

1

2
(−1

2
(d2
ij−d2

ji)+
1

2n
(

n∑
l=1

d2
il+

n∑
l=1

d2
jl+

n∑
l=1

d2
lj+

n∑
l=1

d2
li)−

1

n2

n∑
l=1

n∑
m=1

d2
lm).

(5.4)

Additionally, B2+
ij takes a combination of both road distance and travel time

matrices (the maximum and minimum distances are normalised between 0 and

1) to produce isometric distances, where δij represents the normalised road

distance and τij represents the normalised travel time distance between each i

and j:

B2+
ij =

1

2
(−1

2
(δ2
ij + τ2

ij − δ2
ji − τ2

ji) +
1

2n
(

n∑
l=1

(δ2
il + τ2

il) +

n∑
l=1

(δ2
jl + τ2

jl)

+

n∑
l=1

(δ2
lj + τ2

lj) +

n∑
l=1

(δ2
li + τ2

li))−
1

n2
(

n∑
l=1

n∑
m=1

δ2
lm + τ2

lm))

(5.5)

Each new B+
ij and B2+

ij solves the problem of non-symmetry for travel time and

restricted road networks, or indeed any non-PD matrix. This ensures that B is

semi-PD, so that the process of MDS and the output distance matrices are also

both valid. B+
ij and B2+

ij are the key contributions of this chapter.

‘Stress’ validates the effectiveness of classical MDS - it tests the goodness of

fit for D′ with the input metric D (the normalised sum of squares), such that:

Stress =

√∑
i

∑
j(dij − d′ij)∑
i

∑
j d

2
ij

. (5.6)

However, when implementing non-metric inputs, Stress should be calculated

differently such that db
+

ij and db
2+

ij are the Euclidean functions on space B+ and

B2+ respectively. The reason for this is because I am no longer reconstructing

elements dij . Rather, I reconstruct the dissimilarity matrix for the new metric

space. A metric space can be confirmed such that:
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d2
ij = (

−→
bi −

−→
bj )T (

−→
bi −

−→
bj ) where (

−→
bi −

−→
bj ) = [bi1 − bj1, . . . , bin − bjn]

hence

d2
ij = (bi1 − bj1)2 + (bi2 − bj2)2 + . . . =

∑n
d=1(bin − bjn)2 (Euclidean).

Given that one can define a Euclidean metric from B, one can be assured that

it is indeed a valid metric space.

5.5 Case Study

Real estate valuation has become a much more data-driven and quantitative

process. This said, the process of estimating the value of a property or land

parcel through market appraisal remains the de rigueur of skilled market pro-

fessionals. Having now worked in this domain for several years, my aim has been

to scale-up and semi-automate the use of big data for real estate valuation.

To this end I build a so-called AVM for a sample of 3,669 residential prop-

erties in the city of Coventry in the UK, using Ordinary Kriging with a target

valuation date of 1 January 2017. I develop a new approximate road distance

and travel time metric for variogram calculations. For the purpose of compar-

ison, and to ensure robust results, I run six experiments where each contain a

different input distance metric:

1. Euclidean (vector norm of 2);

2. Optimal Minkowski (P=1.6)[35] ;

3. Floyd Warshall on a road network (PD road) [136];

4. OSM road distance with restrictions;

5. OSM travel time with restrictions;
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Algorithm 3 Pseudocode for the entire isomap algorithm displayed in the
purple coloured section of Figure 5.3.

Require: D = {dij}, ζ = (s, d)i, x, Floyd Warshall, B+
ij , B

∗
ij , B

2+
ij , κ, S.

1: for Experiment in 3 to 6 do
2: Let: ζ = (s, d)i be a metric space with point set s = (s1, s2, . . . , sn)i and

distance function d and x = xn is the point set of midpoints for each vertex.
3: if {i=3}
4: D = {dij} ← Floyd Warshall
5: Map D to a semi-PD distance metric with Eq. (5.2)
6: elseif {i=4,5}
7: D = {dij} ← OSRM restricted road distance, travel time
8: Map D to a semi-PD distance metric with Eq. (5.4) (r < n)
9: else

10: D = {dij} ← OSRM restricted road distance, travel time
11: Map D to a semi-PD distance metric with Eq. (5.5) (r < n)
12: end if
13: Embed into low-dimensional Euclidean space ζ ′ = (s′, d′)i such that

α < r (Eq. 5.3)
14: Collect new coordinates s′ given S′ in ζ ′

15: Calculate the new Euclidean distances
16: end for

6. A combination of normalised road distance and travel time with restric-

tions.

Each experiment is subsequently referred to using the numerical identifier (1-6).

5.5.1 Data description

Our AVM uses input data regarding all houses that were sold in Coventry in

2016. For each of these 3,669 properties, the percentage change in house price,

between the date sold and 01-01-2017, is calculated using the predicted change

in value in each output area as defined by the UK Office for National Statistics.

This provides a predicted price per property for the data 1 January 2017.

The datasets that I use are all open source and have been obtained from Her

Majesty’s Land Registry and the Ordnance Survey respectively. In addition,

experiment (3) requires road network data, which is also sourced from the Ord-

nance Survey. Experiments (4)-(6) all require distances between points along

a roadway and the time that it takes to travel these distances, this is sourced

from the Open Street Routing Machine (OSRM) powered by OSM. All data is
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described fully in Chapter 3.

5.5.2 Matrix construction

I process five distance matrices for the six experiments. Experiments (1)-(2) re-

quire a Euclidean and a Minkowski distance metric respectively, which are valid

for variogram modelling (see the beige-coloured portion of Figure 5.3). Exper-

iment (2) uses a P -value of 1.6 which was previously reported to perform best

on the same dataset, see [35]. Experiments (3)-(6) require preprocessing using

isomap (see purple-coloured portion of Figure 5.3). Experiment (3) utilises a

road network to calculate a shortest path using the Floyd Warshall (FW) al-

gorithm. Experiment (3) embeds the input distance matrix using dissimilarity

matrix B∗. Experiments (4) and (5) embed the distance matrices sourced from

OSRM and dissimilarity B+. Finally, experiment (6) utilises the same distance

matrices sourced from OSRM but now implementing the B2+ dissimilarity ma-

trix. This entire process is depicted in the Matrix Production column in Figure

5.3, the purple-coloured portion of which is captured in Algorithm 1 and used

in experiments (3)-(6).

Table 5.1 shows how successfully each calculated metric represents OSRM’s

road distance and travel time using a matrix goodness of fit value r2. It can

be seen that my embedded metrics with restrictions (experiments (4)-(6)) are

best at approximating the actual distances. This means that, assuming my

hypothesis that house prices are related to their pairwise proximity along a

restricted road network (measured by travel time), I expect experiments (4)-(6)

to outperform the other experiments in terms of my final Kriging predictor.

5.5.3 Data sampling for cross validation

The most sophisticated validation sampling techniques (hold-out and k-fold)

assume data in both the test and training sets to be independent of each other.

This is an assumption that may be unrealistic with datasets containing spatial

autocorrelation (SAC), especially if the purpose of modelling is for interpolation
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Table 5.1: The r2 values for each distance metric compared with actual road
distance and travel time matrices.

Experiment Distance Actual Road Actual Travel
Metric Distance (r2) Time (r2)

1 DEuc 0.377 0.359
2 DMink 0.379 0.359
3 D′FW 0.374 0.365
4 D′RD 0.621 0.592
5 D′TT 0.606 0.614
6 D′RDTT 0.446 0.419

or close proximity extrapolation [107]. As such, four sampling techniques are

considered, three of which consider spatial dependence for comparison (see ‘Data

Sampling’ in Figure 5.3):

1. 10-fold cross validation on the full dataset of 3,669 properties;

2. Spatially stratified 10-fold cross validation (SS-KCV) on the full dataset

of 3,669 properties;

3. Checkerboard holdout on a training set of 1,832 properties, with a test set

of 1,837 properties;

4. Spatial k-fold cross Validation (spatial k-fold cross validation (S-KCV))

[107] on samples of the entire dataset, with each sample including 3,187

properties ± 135 for each fold [107].

K-fold cross validation (KCV)

K-fold CV randomly partitions a dataset into k equally sized subsets. One

of these subsets is retained for testing, whereas the other k-1 are considered

for training. For each fold, a different subset is retained for testing until all

k subsets are tested. Figures 5.4(e)-5.4(f) show two of the ten folds in my six

experiments. K-fold CV overestimates statistical effects on spatial random vari-

ables and hence produces an optimistic estimate of generalisation performance

for unseen data.
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Checkerboard holdout

Checkerboard holdout trains approximately 50% of the data and tests the re-

maining data based on whether they lay in the black or white grid squares

(see Figure 5.4(a)). The case study uses a training and test set of 1,832 and

1,837 properties respectively. Checkerboard holdout is quick to apply, simple

and removes some SAC. On the other hand, it removes a significant amount of

training data and still contains bias at block borders.

Spatially stratified k-fold cross validation (SS-KCV)

SS-KCV processes data in a similar manner to standard k -fold, however the

data splits are spatial and not random. Two of the ten folds are shown in

Figures 5.4(c)-5.4(d). As can be seen, each test subset is spatially separated

from the training set, which can appropriately remove some bias caused by

SAC. However, the data splits still contain SAC at and near sample borders.

Spatial k-fold (S-KCV)

S-KCV estimates a predictor’s performance by implementing traditional k-fold

cross validation (KCV), whilst at the same time removing all training points

within an empirically designed Euclidean dead-zone from all test points [107].

Figure 5.4(b) demonstrates this method where training points within 20 meters

of each test point are in yellow for a specific fold. This method more efficiently

removes SAC than the other methods. However, it relies on a user-defined dead-

zone with no given heuristic and removes training points which in turn can cause

pessimistic results. For the case study, I apply 20-metre zoning, which removes

approximately 8% of the total training points: This parameter value is selected

as it is at this level that I see the most significant change in results; close

inspection shows that this removes on average 3 to 5 of a properties’ closest

neighbours.
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(a) Checkerboard holdout: Training points
(black grid) and testing points (white grid).

(b) Spatial k -fold with dead-zone radii: Yel-
low points are removed from the training set.

(c) Blue points are the training set and brown
points are the test set, spatial K=1.

(d) Blue points are the training set and brown
points are the test set, spatial K=2.

(e) Blue points are the training set and brown
points are the test set, standard K=1.

(f) Blue points are the training set and brown
points are the test set, standard K=2.

Figure 5.4: A comparison of all sampling techniques.
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Figure 5.5: A graph of the three best kernels for a road distance matrix.

Table 5.2: Selected hyperparmeters for all experiments (1)-(6) with dead-zone
10 fold cross validation.

Euc. Mink. PD Road Road Travel Comb.
Distance Distance [136] Distance Time Matrices
(Exp. 1) (Exp. 2) (Exp. 3) (Exp. 4) (Exp. 5) (Exp. 6)

Nugget 0.03 0.003 0.0035 0.018 0.0015 0.008
Sill 0.07 0.03 0.02 0.03 0.05 0.05
Range 20000 20000 15000 15000 30 30000
Kernel Mat Mat Mat Gaus Sph Sph

5.5.4 Variogram construction and Ordinary Kriging

Let s ∈ Rd be a single location representing a house in a d-dimensional Euclidean

space and, suppose that the house price Z(s) at spatial location s is a random

quantity. Then, let s vary over index set D, which is a subset of Rd (D ⊂ Rd),

so as to generate the random process Z(s) : s ∈ D.

For each experiment (6 in total) and each sampling technique (4 in total), a

new variogram is produced together with a parametric model (kernel); see ‘Var-

iogram Construction’ in Figure 5.3. The maximum distance and lag classes are

empirically selected. The nugget, sill and range are selected by ordinary least

squares (OLS). For each fold in a k-fold sampling technique, a new variogram

is estimated. By means of an example, Figure 5.5 graphically displays the vari-
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ogram for the first fold of experiment (4) (restricted road distance metric) with

its three best performing kernels: Gaussian, spherical and Matern (in improving

order). I undertake two approaches to selecting the best variogram: (1) The

user empirically selects the kernel; (2) A maximum likelihood estimator (MLE)

selects the best kernel [77]. I find that the empirical fitting approach, although

lengthy to undertake, produces in all cases a matching or better predictor re-

sult. Hence, Section 5.5.6 reports the optimal results with empirical fitting for

all sampling techniques as well as MLE for KCV as evidence that I selected the

best approach. Table 5.2 provides the selected parameters and hyperparameters

for each experiment with my most realistic sampling approach - S-KCV. It can

be seen that the kernel used can change between each experiment, this is because

I select the kernel which produces the best Kriging result for each experiment.

The kernels show that different distance matrices can make a significant differ-

ence to the parameters and weightings of an optimal Kriging predictor. Given

that I provide the best result, irrelevant of the kernel, I am providing a more

robust like-for-like comparison than I would if I just selected one kernel for all

experiments. I believe that this avoids overly optimistic results for one or two

experiments and pessimistic results for the remainder.

5.5.5 Validation

Three validation metrics are utilised, (1) r2, (2) Root Mean Squared Error

(RMSE) and (3) Mean Absolute Percentage Error (MAPE) (see Section 2.5.1

for their definitions).

5.5.6 Results and analysis

A summary of all results are recorded in Table 5.3, which provides the vali-

dation results for each experiment (1-6) for all validation techniques (k -fold,

Checkerboard, SS-KCV and S-KCV). All values in bold represent the experi-

ment which provides the best house price predictor for each sampling technique.

If more than one experiment is selected for one sampling technique, then all re-
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sults between are statistically insignificant based on a t-value of 0.05 on a paired

t-test, and hence all are optimal. It can be seen that the prior state-of-the-art

(Euclidean and Minkowski) consistently under-perform compared with the ur-

ban road distance and travel time based models. For example, Euclidean based

Kriging delivers an r2 of 0.23 compared with a combination of road distance

and travel time of r2 of 0.56 (>x2 goodness of fit) on the most pessimistic/re-

alistic sampling technique (S-KCV). In addition, I note that by considering

the shortest path with restrictions (i.e., experiments (4)-(6)), unlike the cur-

rent state-of-the-art in isomap (experiment (3)), I am able to find a statistically

improved house price regression in 3 out of 4 sampling techniques.

Notably, the significance of the improvements between my new approaches

(experiments (4)-(6)) compared to Euclidean distances increase as the sampling

technique becomes more pessimistic. This is intuitive because in S-KCV, a

Euclidean dead-zone is utilised to penalise the over bias caused by SAC. Addi-

tionally, my novel approaches take account of a more sophisticated SAC which

better infers the covariates of an urban environment and hence is less affected

by the assumption of independent and identically distributed (i.i.d) random

variables in KCV.

As previously discussed (Section 5.5.4), Table 5.4 presents the results for all

experiments with a maximum likelihood estimator. These are inferior to the

empirical approach, hence I opted to undertake all experiments with the empir-

ical approach; these results are shown in Table 5.3. Table 5.5 emphasises this

point by reporting that my empirically selected kernels produce improved urban

house price Kriging predictors compared with the MLE approach undertaken in

[35].
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Table 5.3: Results from four validation techniques: 10-fold cross validation, spatially stratified 10-fold cross validation, checkerboard
holdout and spatial dead-zone 10-fold cross validation.

Results Tables

Previously Implemented Techniques Newly Defined Techniques
for Comparison

P=2 P=1.6 No Road Road Travel Combined
(Euclidean) (Minkowski) Restriction Distance Time Matrices

(Exp. 1) (Exp. 2) (Exp. 3) (Exp. 4) (Exp. 5) (Exp. 6)

10-Fold Validation
r2 0.81±0.3 0.8±0.18 0.79±0.03 0.82±0.06 0.81±0.06 0.82±0.04

RMSE 55177±13034 74786±29266 65088±15481 57322±18958 59294±12830 78158±21742
MAPE 17.9±1.1% 24.5±6.9% 20.7±1.74% 21.5±1.6% 18.1±1.9% 25.2±1.7%

Spatial 10-Fold Stratified Validation
r2 0.42±0.21 0.44±0.26 0.47±0.34 0.46±0.24 0.46±0.17 0.44±0.25

RMSE 87081.2±68889 87539±78597 78744±36831 71601±62217 75905±68296 77839±68127
MAPE 32.3±21.2% 30.4±22.5% 26.8±11.5% 25.7±10.02 26.5±12.3 26.6±13.6%

Checkerboard Stratified Validation
r2 0.44 0.46 0.5 0.51 0.51 0.52

RMSE 82972 81940 76850 72770 75226 74816
MAPE 26.7% 26.2% 24.9% 23.8% 26.1% 25.3%

Dead-Zone 10-fold Cross Validation 20 Meters
r2 0.23±0.13 0.29±0.32 0.53±0.16 0.5±0.09 0.4±0.15 0.56±0.05

RMSE 97079±18491 100201±39526 85770±11052 87730±21736 97892±22792 85413±9138
MAPE 31.2±3.4% 34.7±4.6% 28.3±2.5 26.5±3.02 31.3±3.9 27.2±2.9

Optimistic

Pessimistic
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Table 5.4: Maximum likelihood results with dead-zone spatial k -fold cross vali-
dation.

Euclidean Minkowski PD Road Road Travel Combined
Distance Distance [136] Distance Time Matrices
(Exp. 1) (Exp. 2) (Exp. 3) (Exp. 4) (Exp. 5) (Exp. 6)

r2 0.187 0.236 0.431 0.413 0.327 0.457
RMSE 102155.62 108238 91047 94655.37 104157 92051
MAPE 32.60 33.25 36.01 29.62 27.79 28.04

Table 5.5: A comparison of the results from [35] (Contribution 1) with those
from this contribution using 10-fold cross validation.

P=2 P=2 P=1.6 P=1.6
New [35] New [35]

r2 0.801 0.663 0.8 0.6901
RMSE 55177 58913 74786 57013
MAPE 17.9% 18.12% 24.5 17.895%

Overall one can see that my isomap approach can, in some cases, deliver a

goodness of fit which is twice as good as results from an approach using Eu-

clidean distance. This statistically significant outcome highlights the potential

of using restricted road distance, travel time and non-Euclidean distance matri-

ces, in urban studies and in other geostatistical applications such as restricted

stream distances.

Isomap is representative of a network’s global structure, and is theoretically

understood across disciplines. Local isometric embedding on the other hand,

attempts to preserve the local geometry of data, these methods include sparse

matrix computations that speed up calculation and utilize local geometry and

Euclidean distances in a network, which may otherwise be non-Euclidean glob-

ally. Given that I have utilized the commonly understood global approach,

further research would include testing against local isometric embedding, espe-

cially if one were interested in producing real-time applications which require a

low computational complexity.
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5.6 Final Remarks

Through the use of a practical urban modelling case study, I demonstrate that

variogram functions do not always remain valid with non-Euclidean distance

inputs, and therefore establishing the validity of each distance function becomes

essential. Using isomapping - a method for nonlinear dimensionality reduction

- I show that it is possible to produce PD Euclidean distance metrics, and as a

result valid variogram functions.

In contrast to previous research, I demonstrate that shortest path link-based

road distances do not always improve the output of geostatistical models com-

pared with Euclidean-based approaches. However, road networks which consider

real-world restrictions, such as one-way systems, congestion and the presence of

traffic lights can significantly improve modelling accuracy. Two such approaches

presented in this research are travel time and a combination of restricted road

distance and travel time, both of which account for a greater number of factors

than road distance alone.

More specifically, a newly defined isomap approach is presented, which shows

that road distance and travel time can both be more accurately modelled against

a PD approximation of both, compared to Euclidean, Minkowski and link-based

approaches [35, 136]. In some cases this provides a goodness of fit value which

is twice as good as state-of-the-art approaches.

Furthermore, an extensive comparison of spatial CV techniques is conducted,

in which I conclude that KCV does not accurately estimate how well a model

generalises to unseen data in a spatial setting: S-KCV is shown to be a more

appropriate sampling technique for CV.

I highlight that using an inappropriate validation sampling technique can

lead to an incorrect selection of prediction models. In the case study that I

present, the results for my combined road distance and travel time method is

significantly better with SAC removal than with standard KCV. The results

show that restricted road distance and travel time predictions produce a sta-
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tistically improved house price predictor with an r2=0.56; this compares with

a Euclidean-based approach which achieves a result of r2=0.23 in the case of

sampling with a pessimistic/realistic dead-zone KCV technique (S-KCV).

Further avenues of research include the introduction of covariates for an

optimal AVM, the production of a restricted road distance and travel time

kernel for urban variogram modelling and an improved estimate of a combined

road distance and travel time metric.

In the following chapters, I will firstly introduce a state-of-the-art urban

spatial CV method for estimating the generalisation performance of spatial

predictive models along the range of interpolation to extrapolation scenario’s.

Thereafter, Chapter 7 puts forth a set of answers to the research questions (RQ)

posed in Section 1.1, matches those answers with my results, and discusses the

implications of my work to urban science, geostatistics and real estate. Finally,

Chapter 8 concludes all of my findings and puts forth a set of research avenues

that are opened up by this thesis.
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CHAPTER 6
Road Distance and Travel Time Cross-Validation for

Urban Models

Chapters 4 and 5 confirm that physical and social processes in urban systems

are inherently spatial and hence data describing them contain spatial autocorre-

lation (SAC) that need to be accounted for when modelling. Similarly, standard

k-fold cross validation (KCV) techniques that attempt to measure the gener-

alisation performance of machine learning and statistical algorithms also need

to take account for such spatial dependencies. For example, if one were not to

take account of spatial dependencies between training and test sets, then an

overestimation of generalisation performance to unseen data may occur.

The current literature introduces a number of methods to take account for

such dependences between the training and test sets, examples include: blocking

[111] cross validation and spatial k-fold cross validation (S-KCV) [106]. How-

ever, the physical barriers and complex network structures which make up a

city’s landscape means that even these methods can be inappropriate. This

is again due to the assumption that mobility, and hence SAC is Euclidean in

nature, which is not appropriate in cities. To overcome this problem, I propose

a new road distance and travel time k-fold cross validation method and I show

how it outperforms the prior art at providing better estimations of generalisa-

tion performance to unseen data. This chapter addresses RQ3 fully, and the

results are taken from Publication 6.
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6.1 Introduction

As previously dicussed, cities are growing; it is expected that 5 billion people will

live in urban spaces by 2030 [12, 98, 114]. Consequently, models for sustainable

and high quality urban life are being built, notably spatial models e.g., [136]

and [37]. Given the increased reliance on these, sometimes ‘blackbox’ models

[17], it is essential that we understand how well they perform for predictive and

explanatory purposes. As such, it is necessary to correctly estimate how well a

model generalises to unseen locations, especially with applications where data

are spatially inconsistent or sparse. Cross validation is the typical technique

utilised to report such estimates - it is essential that these methods take account

for internal dependencies, most notably - space.

Specialist cross validation techniques have been put forth to estimate such

dependency structures for example, S-KCV [106], blocking [111] and stratified

sampling [37]. Each of these methods attempt to account for the SAC between

test and training points, which traditional cross validation (CV) methods do

not.

Specifically, S-KCV attempts to remove SAC by implementing a Euclidean

‘dead-zone’ area around all test points, such that all training points that lay

in these areas are removed - this method was utilised for CV in Chapter 5.

However, I argue that Euclidean distances may not be appropriate for urban

systems, Chapters 4 and 5 provide such intuition.

6.1.1 Contributions

In this chapter, I introduce a new spatial k-fold cross validation method, termed

road distance and travel time k-fold cross validation (RT-KCV), which con-

structs and utilises road network and travel time dead-zones. The key con-

tributions and benefits of RT-KCV are: (1) state-of-the-art estimates of the

generalisation performance of any spatial urban model across the interpolation-

extrapolation range of application scenarios; (2) significant improvements in
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efficiency of dead-zone training point removal when compared with the current

state-of-the-art (S-KCV [106]) and (3) improved performance in capturing and

removing urban SAC. I demonstrate these contributions across two large-scale

urban datasets and three different scenarios of interpolation-extrapolation. I

also provide an extensive experimental comparison across multiple CV tech-

niques and offer a systematic way to choose the dead-zone distance.

6.1.2 Chapter structure

Section 6.2 provides a full description of why and under what settings SAC

removal is required. Section 6.3 reviews related approaches for SAC detec-

tion and generalisation performance (i.e., a model’s ability to generalise to an

unseen location). Thereafter, Section 6.4 redefines spatial cross validation for

urban spaces, utilising a unique set of restricted road, travel-time and combined

distance dead-zones. Section 6.5 then introduces two urban datasets over three

(interpolation - extrapolation) modelling settings with the purpose of compar-

ing the estimated generalisation performance of several validation methods -

KCV, S-KCV, R-KCV, T-KCV, RT-KCV and blocking KCV. Finally, Section

6.6 offers some final remarks about the findings in this chapter.

6.2 Problem Definition

Cross-validation splits a dataset into two subsets - a training set with which

a model is established and a validation test set against which the resulting

model is evaluated [117]. The main purpose of cross validation is to detect

overfitting and estimate how well a model will generalise to unseen data - some-

times referred to as a ground truth test set. Specifically, KCV repeats the

process k times, validating on all the disjoint subsets of the dataset. Since ur-

ban problems are inherently spatial in nature, a chosen cross-validation method

should be able to accommodate and mimic different spatial scenarios such as

interpolation, extrapolation or some combination of the two.
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For example, if the aspiration is to interpolate (estimate an unknown value

from within a known domain), then traditional cross validation is satisfactory.

The reason for this is that all unknown values in the ground truth test set will

contain the same (or similar) spatial autocorrelation with the training set as the

points that have been held-out by cross-validation in the validation test set. If

this is the case, the cross-validation estimate of how well the model will perform

(model generalisation) will be accurate.

However, if the purpose is extrapolation (to estimate an unknown value

outside of a known domain), then the cross validation method must produce

a validation test set which contains less or no SAC with the training set, in

order to simulate the unknown out-of-range value. In all settings, other than

pure interpolation, traditional CV, which assumes independent and identically

distributed (i.i.d) random variables, is over-optimistic i.e., overestimates the

generalisation performance of the model.

In this thesis, SACtrain and SACtest refer to the SAC within the training

and validation test sets respectively. SACtraintest defines the SAC between the

training and validation test sets [26]. Removing SACtraintest to improve the

estimate of a model’s generalisation performance requires an understanding of

how dependencies are structured and unfold in geographic space. Typically it

is assumed that spatial dependence is Euclidean in nature, but in most urban

settings natural or man-made restrictions (e.g., one-way road systems) violate

this assumption. As such, I hypothesise that road distance, travel time and a

combination of both are better able to infer urban SAC.

6.3 Related Literature

6.3.1 Spatial autocorrelation (SAC)

SAC describes the correlation of all observed variables to each other in a spatial

dataset. This correlation can be explained solely by geographical proximity [66].

SAC was first influenced by the central place theory [21], which in itself was
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inspired by theories of proximity and nearness [123]. Later, SAC and Moran’s I

were developed by [25, 96], and gave rise to a series of measures, such as Getis

and Ord’s Gi statistic [57] and Matheron’s 1/γ (inverse of the semivariogram)

[88].

Commonly, SAC is measured to (i) test model mis-specifications [24], (ii)

measure the strength of spatial effects on a variable, (iii) test for spatial sta-

tionarity, heterogeneity or clustering, (iv) detect distance decay and (v) identify

outliers and design spatial samples [2, 50, 55]. In this work, I remove SAC

between training and validation test sets in order to better estimate the gener-

alisation of my models in different settings. With the exception of research by

[68, 134], little research has considered and utilised the different sources of SAC

(SACtrain, SACtest and SACtraintest). No prior works have considered SAC

using non-Euclidean distances for the purpose of estimating a model’s ability to

generalise to unseen data.

6.3.2 Model generalisation

The primary methods utilised to estimate the generalisation performance of a

model to unseen data are holdout cross validation and k-fold cross validation.

Hold out

Holdout cross validation simply partitions input data into two (mutually ex-

clusive) subsets; training and test/holdout. Typically, holdout cross validation

assumes the input data to be i.i.d random variables, which is inappropriate in

applications of data containing spatial, temporal, grouping and hierarchical au-

tocorrelation [111]. As such, ‘blocking’ holds out autocorrelated strata’s, one

such example is checkerboard holdout, which splits the input dataset based on

a user-defined spatial chess-board [37] to reduce SAC. Blocking holdout cross

validation (1) only trains on a proportion of the available data, (2) is agnostic

to the specific task at hand (interpolation vs extrapolation) and (3) contains

SAC at each strata border.
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K-fold Cross Validation

K-fold cross validation partitions data into k subsets, performs analysis on k-1

(training) subsets, and validates the analysis on the remainder. The process is

repeated k times, where the test set is different each time. The validation re-

sults between each fold is averaged to reduce outlier bias [72]. The most typical

cases of k-fold cross validation are k=10 and k=n (Leave One Out), where the

latter model trains on the largest set of data possible, but is time-consuming

on large datasets [46]. Traditional KCV withholds the central independence as-

sumption which, as discussed, can provide optimistic estimates of generalisation

performance [76, 111].

As such, Geostatisticians are critical of cross validation for confirmatory

data analysis with dependent data [32]. Spatially aware cross validation meth-

ods have hence been proposed to break the dependence between the training

and testing set. The most notable of these methods is S-KCV, which estimates

a predictor’s performance by first implementing traditional k-fold cross valida-

tion and second, removing all training points within an empirically designed

Euclidean dead-zone from all test points [106]. Additionally, [78] proposes a

special case of S-KCV termed spatial leave one out (SLOO), which computes a

threshold distance equal to the range of residual spatial autocorrelation in order

to promote spatial independence between all points. As a method for estimating

how well a model will generalise to unseen data, key drawbacks of this approach

are (1) the removal of valuable training points in each dead-zone, (2) the lack

of an established (or even an ad-hoc) approach to choosing the dead-zone radii,

(3) the disregard toward the specific nature of the task in hand (interpolation

to extrapolation) and (4) the assumption that a Euclidean distance is the most

appropriate function for dead-zones. As I will show, my RT-KCV method ad-

dresses all of these drawbacks.

Finally, blocking k-fold cross validation is an alternative, non-random sam-

pling technique for validation, where the held out data lays inside some spa-

tially defined strata [95]. The benefits of this approach over other k-fold cross
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validation techniques is it’s ability to simulate unseen values in unseen areas.

However, a strong understanding of the spatial processes in a dataset are re-

quired. For example, some datasets contain a mixture of dense and sparse areas

which can result in overfitting to one geographic area. Approaches to overcome

this problem include equal frequency spatial strata’s [35] or irregularly arranged

regular or irregular blocks [111]. Further challenges with this method include:

(1) the time-consuming and ad-hoc nature of setting up cross validation for new

datasets; (2) the poor fit to problems involving interpolation and extrapolation;

(3) the SAC present at block borders and (4) ad-hoc choices for the shape,

size, placement and regularity of the blocks. As I demonstrate, my proposed

RT-KCV method overcomes all of these issues.

6.4 Road and Travel Time Validation

RT-KCV is a spatial dead-zone technique which, in a similar way to S-KCV,

constructs an area around each test point from which all training points are re-

moved. Unlike S-KCV, RT-KCV produces contiguous, non-convex dead-zones

from a combination of restricted road distance and travel time matrices. The

purpose of this method is to better capture spatial autocorrelation in access-

restricted areas such as cities. Figure 6.4(a) visualises these differences where

road (in green) and Euclidean (in red) dead-zones are compared. The main idea

behind RT-KCV is that road distance and travel time dead-zones contain more

SAC than Euclidean ones. Hence, RT-KCV dead-zones are more efficient by de-

sign - that is, more SAC can be removed while removing fewer training points.

Figure 6.4(b) illustrates this with a real example where the road distance (yel-

low) dead-zone is larger than the Euclidean (red) dead-zone, but removes fewer

(and different) points. The points that have been removed by road distance are

physically more accessible to the test point being considered, which for many

urban applications implies higher SAC removal. I show that this is the case in

two real world urban datasets and conjecture that this generalises to a plethora
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(a) A subset of test points with Euclidean (in red) and road distance (in green) dead-
zones.

(b) A single test point with a road distance (in yellow) and Euclidean (in Red) dead-zone,
showing that road distance points based on accessibility.

Figure 6.1: An example of road distance versus Euclidean dead-zones.

108



6. Road Distance and Travel Time Cross-Validation for Urban Models

of urban applications driven by human behaviour such as evaluating impact

of green space, designing algorithms for car sharing, predicting house prices

and designing methods to improve traffic flow. The definition below and Algo-

rithm 4 describes the entire process of the combined road distance and travel

time RT-KCV method, which is complemented by comparison with the existing

state-of-the-art (S-KCV, blocking and KCV) and additional variants; R-KCV

that only considers road distance, and T-KCV that only considers travel time.

Figure 6.2 provides a flow diagram of the entire experimental validation process

for all spatial k-fold methods — S-KCV, R-KCV, T-KCV and RT-KCV. The

resulting model is Kriging-based and the validation metric is Normalised Root

Mean Squared Error (NRMSE).

Algorithm 4 The RT-KCV algorithm.

Require: ν, S, A, ρ, M
1: RT ← α1 ∗R+ α2 ∗ T . Create RT Matrix
2: for RT do . Set up CV with RT distance
3: for i ← 1 to K do
4: H ← ∪sk∈νi{sj ∈ S|e(cj , ck) ≤ ρ} . Remove data
5: F ← A(S\H) . Build model
6: for sk ∈ νi do
7: ŷ[k]← F(xk, ck) . Prediction
8: end for
9: end for

10: return ŷ, NRMSE . Validation results
11: end for

Definition. Assume a data point si = (xi, yi, ci) where xi ∈ RD is a feature

vector, yi ∈ R is the response/target and ci ∈ R2 is the geographical coordinate

vector of the ith data point in dataset S={s1, s2, . . . , sn}. Additionally, consider

a set of distance matrices M = {Road Distance (RD), Travel Time (TT)}. I

define ρ ∈ R+ to be the dead-zone radius and ν = {ν1, . . . , νk} to be the set

of KCV folds. Vector ŷ ∈ Rnis the predicted response values from model F

(in my case - Kriging). Additionally, α1,2 are some user defined weightings to

calculate to what extent road distance and travel time form a basis of my RT

matrix. Finally, a validation metric (in this case ‘NRMSE’) is selected.
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Figure 6.2: A flow diagram of S-KCV, R-KCV, T-KCV and RT-KCV algorithm.
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Determining the Optimal Dead-Zone. RT-KCV and variants have a free

parameter - the dead-zone distance. The dead-zone radius is typically user de-

fined. However this directly defines the amount of SAC that will be removed

and hence implicitly defines the setting (interpolation-extrapolation) a model

is expected to be in and hence how accurate the estimated generalisation per-

formance will be. In this research I propose a dead-zone heuristic in order to

provide a single dead-zone distance for any KCV method which will approach

the ground truth value. The heuristic calculates the average pairwise distances

between all points in the training and ground-truth test sets (termed the simi-

larity matrix ). The second step of the heuristic finds the ‘maximum separation

distance’ (dmax) taken from the training set’s semivariogram to provide an up-

per bound of distances. All training/test points which have a distance greater

than dmax are removed from the train/test distance matrix to produce a new

‘SAC only’ distance matrix (µtt). This provides a set of train and test points

which are assumed to be correlated. Thereafter, one would select the dead-zone

distance based on the following heuristic that was found to perform well across

settings and datasets

Distance =


0, if µtt

µtr
≤ 1.

µtt, if µtt

µtr
> 1 and µtt < dmax

dmax, otherwise.

(6.1)

where µtt, µtr, µte are the average distances in the validation train/test, train

and validation test sets respectively. Once the distance is selected, one would

find how many points are removed and then use this value to determine the dead-

zone area for any method (R-KCV, T-KCV, RT-KCV, S-KCV). The output of

this heuristic I term the ‘mean operating point’.
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6.5 Urban Case Studies

Given that (non-Euclidean) distance is shown to be the single most influential

variable in urban house price predictions [35, 37], my first case study builds a

valuation model with no covariates on a set of 3,413 residential sold house prices

in Coventry, United Kingdom (UK) projected to 2017. My second case study

utilises historic traffic flow information on 711 sensor locations in Birmingham,

UK.

6.5.1 The base Kriging predictor

For both case studies, I consider Ordinary Kriging — a spatial predictor which

accounts for spatial covariance based on observed pairwise distances. I use

Ordinary Kriging as a simple and widely utilised spatial statistical model in

order to demonstrate the benefits of RT-KCV. The method of interpolation

with Ordinary Kriging is defined in Section 2.3.2.

Defining Non-Euclidean Dead-Zones

The Open Street Routing Machine (OSRM) provides the distance and time

it takes to travel from one location to another by car through a simple to

use API. Their link-based algorithm utilises a set of restrictions defined in

OpenStreetMaps (OSM) (see Table 3.1.1). From their API, one is able to calcu-

late an nxn distance matrix for all points. My combined RT-KCV approach is

calculated such that travel time and road distance are both normalised between

0 and 1 and then summed with a weighting (0.5 for both case studies). This

weighting is empirically selected given that both road distance and travel time

perform better at different stages of the variogram. More details on this method

are discussed in Section 3.1.1. I speculate that a future avenue of research is to

build a heuristic/metric which can optimise these weightings in In Section 6.6.
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6.5.2 Validation

I describe the comparison and evaluation of the proposed KCV methods against

the state-of-the-art. The primary purpose of any (cross-)validation procedure

is to estimate as best as possible a model’s generalisation performance to un-

seen data. As such I propose three settings (interpolation, extrapolation and

inbetween) over two case studies (house price and traffic flow prediction), each

with a number of KCV methods (KCV, S-KCV, R-KCV, T-KCV, RT-KCV

and blocking KCV). In order to evaluate the validation techniques, I compare

each of these against a ‘ground truth’ value - performance on the unseen data

(the ground truth test set). This is repeated across a set of six simulated real-

world scenarios that are visualised in Figures 6.4(a)-6.4(f). The cross validation

method which performs closest to my ground truth is the best performing. For

robustness, I keep the same ground truth test in all experiments within a case

study and the same validation test sets for all cross validation approaches.

I also compare my method against the most popular competitor approach -

blocking cross validation [111]. The blocking approach uses 10 folds and is set up

such that, for each fold, 10 random points within the training area are selected

and a square block grows out so that all blocks have the same number of points

in them (± 1). All of the blocks in a fold then sum up to the same validation

test set size. This provides a fair comparison for all cross validation methods.

The test sets are 256 and 72 for house prices and traffic flow respectively. See

Figure 6.3 for a visualisation of blocking on a subset of 3 folds.

In order to account for any variability due to the choice of the ground truth

test set I re-sample multiple ground truth test sets for my non-interpolation set-

tings (settings B and C; defined in Sections 6.5.3 and 6.5.4 for each case study).

This does not require re-running any of the validation procedures as it only

provides us with the stability of the ground truth test performance. Below I

present three approaches to validate my KCV methods against the ground truth.

Model Validation: the Kriging model is validated against the NRMSE which
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Figure 6.3: Blocking KCV with equal test sets.

intuitively takes the square root of the sum of the mean squared errors and is

then normalised by the difference of the y values:

NRMSE =

√
1
n

∑n
i=1 (yi − ŷi)2

ymax − ymin
. (6.2)

Convergence to the Ground Truth: this method tests how many points must

be removed from a training set to achieve 50, 80 and 100% of the ground truth’s

NRMSE from cross validation. The purpose of this is to find out which method

can obtain a ‘true’ NRMSE with the fewest training points removed by dead-

zones. I state that the method with the largest training set at the ground truth

threshold is the most effective.

Distance from Ground Truth to Estimated Dead-Zone: Section 6.4 describes

a method to determine the dead-zone area. This validation measure simply

calculates the difference between the NRMSE at the optimal dead-zone (‘mean

operating point’) with the ground truth. The KCV method which has the

smallest distance is deemed the most effective.
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6.5.3 Case study 1 - automated valuation model

The house price data is described in Chapter 3 and considers 3,669 properties

in Coventry. I consider 3 settings - pure extrapolation, mixed interpolation/ex-

trapolation and pure interpolation - to test my newly defined methods across a

range of experiments (see Figures 6.4 (a)-(c)).

Setting A - Pure Extrapolation: I train on all data that sit within the Of-

fice of National Statistic’s (ONS) classified Built Up Area (BUA), accounting

for 3,413 houses. The remainder are removed for testing in my ground truth

test sets which account for 256 points. To simulate extrapolation fully, I con-

firm that my train and hold out sets are not correlated (i.e. SACtraintest ∼ 0).

Again, a standard Moran’s I test is conducted between both datasets showing

a weak spatial relation such that Iobserved = 0.020206 and Iexpected = 0.019014.

As such, I confirm that my method can be tested against the split data for

extrapolation generalisability. All KCV approaches utilise the same test spaces

which are also the same size as the ground truth and blocking KCV method.

Setting B - A Mixture of Interpolation and Extrapolation: I train on data that

sit within the Coventry BUA only. For my ground truth scenario, half the test

set sits within the BUA and half sits outside, thus the training set consists of

3,291 houses.

Setting C - Interpolation: I train on data that sit within the Coventry BUA. For

my ground truth scenario, all the test points lay within the BUA, accounting

for a training set of 3,163 houses.

Results

All methods in all settings have a test set of 256 points for comparison. In

addition, each CV method contain the same test points for each setting. Fig-

ures 6.5(a)-(c) show the NRMSE value for each cross validation method (KCV,
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S-KCV, R-KCV, T-KCV and RT-KCV). In addition, each graph shows an

equal training set random removal KCV approach, blocking KCV and a ground

truth NRMSE. Each KCV method is run over 10 folds and repeated 10 times

(100 folds in total), showing that RT-KCV consistently outperforms all other

approaches in all settings (that is it approaches the ground truth with fewer

points removed). Notably, RT-KCV requires only 8 points to be removed to

ensure the same SAC removal as 201 points for S-KCV in my interpolation set-

ting. In addition, Table 6.1 shows that RT-KCV consistently generalises 50%,

80% and 100% of the ground truth with fewer points removed than any other

method. Finally, my dead-zone radius heuristic estimates that 3,170, 2,003 and

0 points need to be removed to obtain an estimate of generalisation performance

for extrapolation, mixed and interpolation respectively. Once implemented, I

determine the difference in the estimated NRMSE values (0.11162 ,0.128 and

0.104) and the ground truth values (0.1125, 0.1225974 and 0.1135) which are

relatively small compared to S-KCV and blocking. A t-test shows that for

all settings, the number of points that are removed from the training set are

significantly less with my new RT-KCV approach compared with the previous

state-of-the-art, with a t-value of 0.01.

6.5.4 Case study 2 - traffic flow prediction

My predictor considers the total average daily traffic flow between 01−01−2016

and 01−06−2017’ for Birmingham, UK accounting for 711 sensors as described

in Chapter 3.

Setting A - Extrapolation: I train all data that sits within Birmingham’s BUA,

accounting for 711 sensors. The remainder are removed for ground truth test-

ing. To fully simulate extrapolation, I confirm that my training and hold out

sets are not correlated (i.e. SACtraintest ∼ 0). A standard Moran’s I test is
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(a) A holdout method to simulate extrapola-
tion.

(b) A holdout method to simulate a mixture of
extrapolation.

(c) A holdout method to simulate interpola-
tion.

(d) A holdout method to simulate extrapola-
tion.

(e) A holdout method to simulate a mixture of
extrapolation and interpolation.

(f) A holdout method to simulate interpola-
tion.

Figure 6.4: Producing a ground truth train and test set. The orange space represents the training area, the yellow space represents the
ground truth test area, the blue points are ground truth testing locations and the white to red points represent the training set where the
white points are the cheaper houses/lower traffic flows and red points are the more expensive houses/higher traffic flows.

117



6
.
R
o
a
d
D
ista

n
ce

a
n
d
T
rav

el
T
im

e
C
ro
ss-V

a
lid

a
tio

n
fo
r
U
rb
a
n
M
o
d
els

(a) NRMSE for Ordinary Kriging on Coventry
House Price with all KCV Methods Compared
with Extrapolation.

(b) NRMSE for Ordinary Kriging on Coventry
House Price with all KCV Methods Compared
with a Mix of Interpolation and Extrapolation.

(c) NRMSE for Ordinary Kriging on Coventry
House Price with all KCV Methods Compared
with Interpolation.

(d) NRMSE for Ordinary Kriging on Coven-
try House Price with the Winning KCV versus
Random KCV with Standard Error Bars.

(e) NRMSE for Ordinary Kriging on Coven-
try House Price with the Winning KCV versus
Random KCV with Standard Error Bars.

(f) NRMSE for Ordinary Kriging on Coven-
try House Price with the Winning KCV versus
Random KCV with Standard Error Bars.

Figure 6.5: Results graphs for both case studies: dead-zone size versus NRMSE for all KCV methods and the ground truth.
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Table 6.1: Results: the number of points removed to reach a specific % of the ground truth NRMSE for each KCV technique.

Results Table

Real Estate Case Study Traffic Flow Case Study
Random Previous My Work Random Previous My Work

Work [106] Work [106]
KCV S-KCV R-KCV T-KCV RT-KCV KCV S-KCV R-KCV T-KCV RT-KCV

Case A : Extrapolation (Train: 3412 - Test: 256) Case A : Extrapolation (Train: 711 - Test: 72)

100% 3298+ 3298+ 3254 3298+ 3274 579+ 579+ 579+ 579+ 578
80% 3298+ 3298+ 3105 3156 3112 579+ 578 578 578 577
50% 2850 2628 2489 2201 2112 576 573 573 573 566

Case B : (Train: 3163 - Test: 256) Case B : Mixed (Train: 675 - Test: 72)

100% 2183 1931 1420 1391 1401 498 487 487 478 442
80% 2108 2006 1270 1308 1295 458 309 298 276 276
50% 1940 178 9 8 8 62 57 68 71 73

Case C : Interpolation (Train: 3290 - Test: 256) Case C : Interpolation (Train: 639 - Test: 72)

100% 1489 201 10 8 8 84 72 52 57 55
80% 1417 199 8 6 6 67 60 42 52 46
50% 201 164 4 4 4 42 31 30 29 30
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conducted between both datasets showing a weak spatial relation such that

Iobserved = −0.008960041 and Iexpected = 0.000201. As such, I confirm that my

method can be tested against the split data for extrapolation generalisability,

see Figure 6.4(d) for a visual representation.

Setting B - Interpolation: I train on some of the data that sits within Birming-

ham’s BUA, accounting for 675 sensors.

Setting C - A Mixture of Interpolation and Extrapolation: I train on some of

the data that sit within Birmingham’s BUA, accounting for 639 sensors.

A Competitor Case for Comparison - Blocking : My blocking approach uses

10 folds and is set up such that, for each fold, 10 random points within the

training area are selected and a square block grows out so that all blocks have

equal frequency (± 1) and also sums to the same sized test set as all other

experiments (72 points). I only apply this in settings B and C because setting

A contains no test points within the training set.

Results

All methods in all settings have a test set of 72 points for comparison. In

addition, each KCV method contains the same test points for each setting. Fig-

ures 6.5(d)-(f) show the NRMSE value for each cross validation method (KCV,

S-KCV, R-KCV, T-KCV and RT-KCV). Additionally, the graphs show equal

training set random removal, blocking and each settings ground truth NRMSE.

Each KCV method is run 10 times and over 10 folds, showing that RT-KCV

consistently outperforms all other approaches in all settings. Notably, the ben-

efits of RT-KCV to my case study, although strong, is less significant for this

case study compared with my house price case study, this can be explained by

the weaker spatial correlation as seen by my Moran’s I value in Section 3.3. Fi-

nally, my dead-zone radius heuristic estimates that 577, 458 and 87 points need
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to be removed for extrapolation, mixed and interpolation respectively. Once

implemented, I determine that the difference in the estimated NRMSE values

(0.184, 0.172, and 0.1635) compared with the ground truth values (0.193265,

0.170, 0.158) are relatively small compared to S-KCV and blocking (with the

exception of interpolation which is negligible). A t-test shows that for two out

of three experiments (extrapolation and mixed), the number of points that are

removed from the training set are significantly less with my new RT-KCV ap-

proach compared with the previous state-of-the-art, with a t-value of 0.01. In

addition, Figure 6.5 empirically demonstrates a significant estimation of gen-

eralisation improvement, because one can see that the ‘mean operating point’

(my newly defined measure of generalisation performance) is significantly closer

to the ground truth in all scenarios of extrapolation to interpolation, compared

with S-KCV and blocking (the current state-of-the-art) for both case studies.

6.6 Final Remarks

The purpose of cross validation is to estimate how well a model will generalise

to unseen data and unlabelled locations in spatial settings. However, standard

KCV assumes all data to be i.i.d random variables and hence does not take into

account the dependencies between the training and test set, which causes bias

and optimistic estimates of generalisation. SAC is always present with spatial

data and as such needs to be accounted for. Traditional validation approaches

such as KCV omit the effect of SAC in performance estimations to unseen

locations with urban datasets. To account for SAC in urban data I demonstrate

that my new approach, termed RT-KCV, can be used to better estimate the

generalisation ability and predictive performance of spatial models than existing

state-of-the-art approaches (S-KCV). I also show that road distance and travel

time can decrease the required ‘dead-zone’ data removal for capturing SAC

in urban spaces, leading to a more efficient use of labelled datasets. Finally, I

confirm that RT-KCV is a superior approach for estimating model generalisation
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compared with all other CV methods.

I recommend that RT-KCV be used wherever dependence structures exist in

a dataset with restricted space (such as cities), even if no structure is visible in

the fitted model residuals, or if the fitted models account for such correlations

(for example in Kriging). I note that standard KCV is only appropriate for pure

interpolation where the internal dependence structure is present in the unknown

values. Notably, I show that, for urban data, a combination of road distance

and travel time capture SAC better than Euclidean distances.

Further avenues for research include: (1) developing techniques to better

map SAC in other dependent datasets, such as ‘stream’ distances (along a river

or canal); (2) optimising the operating point on the RT-KCV curve to better

match the ground truth performance and (3) learning the convex combination

parameters for the combined RDTT distance i.e., remove the requirement to

manually select some weighting of road distance and travel time.

In the remaining two chapters, I will (1) put forth a set of answers to the

research questions (RQ) posed in Section 1.1, match those answers with my

results, and discusses the implications of my work to urban science, geostatistics

and real estate and (2) conclude all of my findings and put forth a set of research

avenues that are opened up by this thesis.
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CHAPTER 7
Discussion and Applications

“The only true voyage. . . would be not to visit strange lands but to possess

other eyes, to see the universe through the eyes of another, of a hundred

others, to see the hundred universes that each of them sees”

Marcel Proust (1923), La Prisonnière from the Remembrance of Things Past.

Cities are inherently spatial ; urban proximity is related to mobility and restricted

road networks can measure urban space: three statements which the findings

in Chapters 4-6 confirm. Additionally, non-Euclidean distances can improve

(1) geostatistical urban models and (2) the estimation of the generalisation

performance of a (spatial or otherwise) model for all interpolation-extrapolation

scenarios.

The above summary of findings is examined in detail throughout this Chap-

ter. Section 7.1 outlines the thesis contributions in response to the research

questions put forward in Chapter 1. Thereafter, the implications of this thesis

research on urban science, geostatistics and the real estate industry are consid-

ered in Sections 7.2-7.4. Finally, the potential limitations to the generalisation

of this research are introduced in Section 7.5.

7.1 Answers to Research Questions (RQ)

At the start of this thesis three research questions were put forth:

1. RQ1: Which distance function best models spatial interactions in an urban

setting?

2. RQ2: When, if ever, are non-Euclidean distance functions valid for urban

spatial models?
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3. RQ3: How should one estimate the generalisation performance of urban

spatial models?

Each research questions (RQ) motivates the contributions throughout this thesis

and we explore these contributions below.

7.1.1 Research undertaken in response to RQ1

RQ1 is fully answered in Chapter 4, and the results are taken from

Publication 4.

Urban processes in space result in data which are not independent and identi-

cally distributed (i.i.d) random variables. Semi-variograms [33], Moran’s I [96]

or Getis’s G [56] are just some examples of statistical measures that describe

the extent of these dependencies to better allow them to be taken into account.

Each of these methods have a notable commonality - distance is measured with

a Euclidean function. Hence, these distance-based learning methods do not take

account of the physical properties of dispersion in a city landscape, as discussed

on several occasions in this thesis.

Additionally, for geostatistical interpolation (i.e., Kriging - Section 2.3.2),

it is essential to ensure that existing covariance and (semi)variance functions

remain valid, positive definite (PD) and conditionally negative definite (CND)

respectively [39].

The work in Chapter 4 overcomes both of these issues by finding a dis-

tance function which can better measure urban space, whilst still producing

a valid covariance and variogram function. This chapter shows that (1) nor-

malised road distance, travel time and combined distances can better model

urban spatial autocorrelation (SAC) in a semivariogram and (2) that the valid

Minkowski distance which measures the highest similarity with non-conforming

road distance, travel time and combined functions also produce the best spatial

interpolation. The distance function produces an improved set of parameters

and hyperparameters in the semivariogram which, in turn, causes the Ordinary
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Kriging interpolation presented here to outperform the state-of-the-art (Eu-

clidean) distance function on a real world house price case study in Coventry.

As such, I have shown that there are some non-Euclidean functions which can

better model urban mobility.

7.1.2 Research undertaken in response to RQ2

RQ2 is addressed in Chapter 5, and the results are taken from Pub-

lication 5.

Spatial models do not assume data to be i.i.d random variables. Minkowski

pairwise distances may not be the best estimation of road distance, travel time

and a combination of both. Additionally, spatial modelling has been extensively

studied with a straight line, Euclidean, pairwise distance. Given these facts,

there is no guarantee that any other improved non-Euclidean distance matrix

(PD or otherwise) will produce a valid covariance or (semi)variance function.

Hence, Chapter 5 presents a method to approximate restricted road distance,

journey time and combined matrices into an embedded lower-dimensional Eu-

clidean space to ensure that covariance and (semi)variance functions remain

valid when using urban-specific distances. For confirmation of an improved spa-

tial interpolation, I provide a comparison of six Ordinary Kriging predictions,

each with a different distance metric, employed in a real estate case study.

The distance matrices utilised were neither originally Euclidean or PD, as such

Chapter 5 shows, for the first time, that any non-Euclidean distance function

can be mapped into a valid Euclidean function for the purpose of proximity

based modelling.

7.1.3 Research undertaken in response to RQ3

RQ3 is addressed in Chapter 6, and the results are taken from Pub-

lication 6.
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The main purpose of k-fold cross validation (KCV) is to detect over fitting

and estimate how well a model will generalise to unseen data i.e., the expected

performance of a ‘ground truth’ test set (defined in Chapter 6). This method

assumes that the random variables in the validation test and training sets are

i.i.d. However, urban problems are inherently spatial, which invalidates this

assumption due to the presence of SAC. As such, spatial k-fold cross valida-

tion (S-KCV) [106] has been proposed to remove the SAC between the training

and validation test set. Specifically, S-KCV implements a Euclidean ‘dead-zone’

area around all test points, such that all training points that lay in these areas

are removed, see full definition in Chapter 6.

In Chapter 6, I put forward a newly improved road distance and travel time

k-fold cross validation (RT-KCV) approach which proposes that non-Euclidean

dead-zones better infer the spatial interactions of urban space. RT-KCV con-

structs road network and travel time dead-zones. The intuition for this method

comes from both previous chapters 4 and 5. I show that RT-KCV outper-

forms the current state-of-the-art for estimating the generalisation performance

of any geostatistical urban model across the interpolation-extrapolation range

of application scenarios. As such, Chapter 6 presents a new method that can

significantly improve the estimation of a model’s generalisation performance in

an urban setting.

7.2 Implications for Urban Science

The flow within cities is referred to as its metabolism [5] and the larger a city

gets the more interrelated and diverse that metabolism becomes. A large and

complex metabolism of diversity, networks and citizens can hence become a

power in itself [105] which must be managed [9] to be understood and to ensure

that our cities of the future are sustainable, efficient and promote a high quality

of life [119].

Consequently, the research in this thesis provides a wealth of opportunities
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for most, if not all, urban challenges. Such challenges could include houses price

prediction, traffic flow estimation, understanding noise pollution intensity, plan-

ning emergency services, identifying the causes of traffic incidents, predicting

the distribution of crime, optimising public transport routes, planning green

space or modelling the density of air pollution.

The solutions put forth for each of these challenges are: (1) an improved spa-

tial modelling procedure, compared with the current (Euclidean-based) state-of-

the-art; (2) the opportunity to improve space as a feature of any urban hedonic

model and (3) the ability to better estimate a model’s generalisation perfor-

mance compared with traditional KCV or S-KCV methods.

7.3 Implications for Geostatistics and Other Dis-

ciplines

The basic concept of Geostatistics is that variables of a specific geographic region

tend to have a predictable structure. This domain is mostly discussed with

respect to geology and mining [88]. Interpolation is the main tool within this

subject area (i.e., Kriging) and uses Euclidean distance between observations to

do so.

Despite this, random fields typically contain edges, breaks and other con-

straints and this applies to most environments, not just those which are urban.

For example smog is blocked by hills and skyscrapers; animal migration can be

restricted by lakes, mountains or settlements and contaminants can follow along

a coastline or river. In addition, temperatures and precipitation can follow non-

Euclidean patterns as well as magna records, gravel content, soil type and land

use.

The solutions considered for each of these challenges are: (1) a newly defined

procedure for mapping non-Euclidean and non-PD distances to a valid Euclidean

metric for spatial modelling; (2) the opportunity to improve the measure of

space as a feature of any hedonic model and (3) the ability to better estimate a
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model’s generalisation performance compared with traditional KCV or S-KCV

methods.

These solutions are particularly important in the research areas of Geology

and mining, where specialists typically already understand the interactions per-

taining to a geological problem, and they simply use models to provide large

scale estimates where manual data collection and expertise cannot be sustained.

Hence, it may be common that the distance matrices that affect the interactions

in, say mining or animal migrations, can be accurately defined and mapped to a

valid metric. This is unlike urban systems where road distance and travel time

are just assumed to measure mobility and there may be distances which can

better measure this.

The same solutions and reasoning apply to other disciplines which rarely

consider space, and even more rarely consider non-Euclidean distance to mea-

sure space. Such disciplines may include Statistics, Data Science and Machine

Learning.

7.4 Implications for the UK Real Estate Indus-

try

By 2030 investable real estate is expected to have grown by more than 55%;

amounting to a UK residential market value of £9.145tn [93]. Consequently,

owners of real estate, policy makers and everyday home buyers are reaching for

technological innovations to drive sustainable, low-risk decisions in a now less

local market [108]. As such, industry are looking for machine learning algorithms

(similar to my automated valuation models (AVMs)) to reliably understand real

estate trends over a large area where market behaviour may differ significantly.

The research presented in Publications 1 and 3 provide the (1) motivation

and (2) application of a real estate valuation model for the whole of England

and Wales. This model focusses on house prices at an individual level and is

currently considered the state-of-the-art in the United Kingdom (UK) real estate
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industry. A summary of the method is discussed below. A more comprehensive

description is found in Publication 3.

The method, entitled ‘SPENT’, contains four-stages, as seen in figure 7.1

where the top left images represent stage 1, the middle images represent stage

2, the bottom represent stage 3 and the far right hand figure represents the

fourth and final stage. The data utilised in this method is described fully in

Section 3.2. Stage 1 produces a time singular dataset DT from dataset D using

the same approach taken in Chapters 4-6, that is, a space-time reduction using

government defined output areas. Stage 2 undertakes a simple Euclidean-based

Kriging interpolation on dataset DT , obtaining an r2 of 0.839 with 10-fold

cross validation (CV). Stage 3 then introduces a set of property, network and

economic features defined in Table 7.1. Finally, stage 4 puts all of the outputs

from stages 1-3 into a single Gaussian process regression (GPR) [110], which

produces an unprecedented r2 of 0.966 and 0.920 with 10-fold and checkerboard

CV respectively.

A market leading real estate tool named ‘NimbusMaps’, developed by As-

sured Property Group, embeds this technique. The interactive on-line tool

allows a customer to select any property in England and Wales and in response,

title ownership information, property size, flood risk and estimated residen-

tial value are provided. Consumers typically use this tool for site searching,

site suitability analysis and market analysis.

This method is the current state-of-the-art in the industry, however we pro-

pose improvements with additional research from this thesis by: (1) introducing

an estimated combined road distance and travel time metric in stage 2, such

that the k -fold results of 0.839 can be improved and (2) providing an improved

CV method. The primary benefit of this will be increased integrity, trust and

confidence in the product. The new RT-KCV method allows a more accurate

estimate of generalisation performance.
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Figure 7.1: Process diagram corresponding to the space-property-economic-network-time (SPENT) algorithm.
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Table 7.1: Property, network and economic features considered in my GPR
AVM (entitled SPENT).

Category Feature name Description
Property Footprints Area of buildings

Height Average height of main building
Size Area of entire title
Type Detached, terraced, apartment etc.

Tenure Freehold or leasehold
Status New or old build

Network Primary schools Proximity and performance of closest
Secondary schools Proximity and performance of closest

Train station Proximity and usage
Traffic flow Passing the property
Population Postcode, 250, 500 and 1,000 meters.

Economic Interest Variable mortgage interest rate
Sales rate Total number of houses sold each month
Inflation Percentage value

USD exchange rate Ratio
. . . . . . . . .

7.5 Limitations to Generalisation

“What is the city but the people?”

William Shakespeare, The tragedy of Coriolanus.

In urban space, there will be observations whose SAC are not affected by road

distance and travel time, for example, the height of citizens. In geostatistics

and other disciplines, there will be applications where Euclidean distance does

represent the best fit for models for example, the flight path of birds. Socially,

there will be periods where trends cause interactions to act differently, for exam-

ple the effect that political unrest can have on house prices. These limitations

are discussed in more detail below.

Limitation 1. Mobility across cities. Residents of London, New York, Tokyo

and other major international cities typically rely on public transport to move

around, including trains and the underground. These modes of transportation

are likely to partially determine a resident’s perception of space around the city.

This is compared with, say Birmingham or Coventry, where driving is the norm

131



7. Discussion and Applications

[7]. This limitation provides a potential avenue for research, whereby one could

consider the route and journey time on public transport. Interestingly, some

city centres are becoming car-free, such as Birmingham, Chester, Oxford and

Cambridge, all in the UK. This is likely to make a citizen’s perception of space

more complex again, especially given that these are new trends which could

make historic data redundant or less relevant.

Limitation 2. House anomolies. There are some features in a property which

may affect the price of a house (above and beyond its neighbours), for example

the quality of the interior of the property, the foundations of the property, or

whether the property sits at the bottom of a hill, where there may be a flood

zone. In fact, in the latter example, a Euclidean distance may be more appro-

priate. Publication 3 includes land height and flood zones in its AVM, which

does address this particular problem. It does however highlight that spatial

interpolation alone is not appropriate.

Limitation 3. Spatial generalisability. All experiments in this thesis are tested

on Coventry and the West Midlands. Other cities around the UK may in fact

interact differently. For example, urban residents in one city may consider a

2 hour commute to work acceptable, whereas residents from another city may

only accept a 30 minute commute. As such, the resident’s perception of mobility

can considerably differ from city to city [34]. This promotes the requirement for

non-global Kriging methods to be modelled across multiple cities.

Limitation 4. The trends of urban citizens. Over time, the demographics

of citizens change, for example, some UK cities are witnessing a large growth

of older people [22], whilst other cities are attracting affluent young families [3].

These changes in the city bring different interactions, which alter a citizen’s per-

ception of the city, and hence the way observations, such as house prices relate

spatially. For example, walking with a pushchair to the park versus catching
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a bus to the local community centre. This thesis assumes that road distance

and travel time are always the most appropriate measures of distance in a city,

however demographics may dictate that other distance matrices are more ap-

propriate for specific cities i.e., public transport, walking, the safest route etc.
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CHAPTER 8
Conclusions and Further Work

8.1 Conclusions

This thesis has explored a number of issues arising from the requirement to

sustainably manage elements of urban growth. Specifically, it answered three

key questions that identify how to improve spatial models in urban areas. These

were: (1) which distance function best models real world spatial interactions

in an urban setting? (2) when, if ever, are non-Euclidean distance functions

valid for urban spatial models? and (3) what is the best way to estimate the

generalisation performance of urban spatial models? Each question was studied

by means of three contributions.

Contribution 1 considered RQ1 by proposing three approximate restricted

road distance, travel time and combined pairwise distance matrices to inform

spatial autocorrelation (SAC). The estimated value was the Minkowski distance

function most correlated to the OpenStreetMaps (OSM) road network data.

This provided valid distance metrics for spatial interpolation. The work in this

contribution was taken from Publication 4 in Section 1.2.

the second contribution addressed RQ2 by proposing a method to approx-

imate restricted road distance, journey time and combined matrices using an

embedded lower-dimensional Euclidean space. This method ensured that covari-

ance and (semi)variance functions remained valid for spatial interpolation when

using urban-specific non-Euclidean distances. The work in this contribution was

taken from Publication 5 in Section 1.2.

In Chapter 6, RQ3 is addressed by introducing a new spatial k -fold cross vali-

dation method; road distance and travel time k-fold cross validation (RT-KCV).
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This method constructed road network and travel time dead-zones to better es-

timate and remove urban SAC. I showed that RT-KCV outperforms the current

state-of-the-art for estimating the generalisation performance of any geostatis-

tical urban model across the interpolation-extrapolation range of application

scenarios. The work in this contribution was taken from Publication 6 in Sec-

tion 1.2.

In Chapter 7, I discuss the implications of my research for urban science,

geostatistics and the UK real estate industry. This chapter also considered the

impact that my work will have on an existing nationwide house price predictor,

which is discussed in publications 1 and 3 and is considered the current state-

of-the-art in the industry.

Throughout, all experiments utilised real-world datasets in England and

Wales, most notably: restricted roads, travel times, house sales and traffic

counts. With these datasets, I displayed a set of case studies which showed

the potential to improve model accuracy by 2 times against Euclidean distances

and, in some cases, a 90% improvement for the estimation of generalisation

performance.

Combined, the contributions improved the way that proximity-based urban

models perform and also provided a more accurate estimate of generalisation

performance for predictive models in urban space.

8.2 Recommendations for Future Research

The opportunities that have been opened up by the research in this thesis are

substantial. Contributions 1 and 2 prove that techniques from disciplines out-

side of spatial statistics can massively improve real world applications of spatial

models in restricted space and Contribution 3 shows that the generalisation

performance of geographically-dependant extrapolation techniques have been

misinformed for years. As such, the following suggestions provide a set of po-

tential routes that could be taken to further improve an abundance of scientific
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applications as a result of the work in this thesis. The suggestions also offers

a recommended direction for making significant theoretical improvements to

spatial data analysis, machine learning (ML) and artificial intelligence (AI).

1. One could use the techniques presented in this thesis for other urban sci-

ence problems i.e., estimating the intensity of noise or air pollution, the

causes of traffic incidents, the distribution of crime or the optimal loca-

tion of urban green space. These applications could benefit from using

road distance and travel time to inform (1) spatial models and (2) the ap-

proximation of generalisation performance to any model containing spatial

data.

2. In addition, one could administer each experiment with alternative models

such as Universal Kriging or geographically weighted regression (GWR).

In testing these models, it may be possible to further improve my results.

It is important to note that the findings in Contribution 3 do not rely on

spatial models, but instead data that contain SAC only.

3. One could also lead an experiment to test my isometric embedding ap-

proach on other non-urban, non-Euclidean, non-positive definite (PD) dis-

tance matrices for non-urban problems. For example, animal migration,

rainfall, soil type and land use.

4. Furthermore, one could conduct an experiment to better understand how

to combine road distance and travel time for Kriging optimisation. This

could allow for a more confident estimation of a person’s perception of

space.

5. Finally, one could coordinate an experiment to optimise the metric used to

predict the operating point for my RT-KCV estimate in Contribution 3.

The operating point determines the success of a cross validation technique

at estimating the generalisation performance of a model, and hence if the

operating point is improved, the RT-KCV technique can too be enhanced.
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