
The Library
Reverse spatial visual top-k query
Tools
Zhu, Lei, Song, Jiayu, Yu, Weiren, Zhang, Chengyuan, Yu, Hao and Zhang, Zuping (2020) Reverse spatial visual top-k query. IEEE Access, 8 (1). pp. 21770-21787. doi:10.1109/ACCESS.2020.2968982 ISSN 2169-3536.
|
PDF
WRAP-reverse-spatial-visual-top-k-query-Yu-2020.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (4Mb) | Preview |
Official URL: http://dx.doi.org/10.1109/ACCESS.2020.2968982
Abstract
With the wide application of mobile Internet techniques an location-based services (LBS), massive multimedia data with geo-tags has been generated and collected. In this paper, we investigate a novel type of spatial query problem, named reverse spatial visual top- $k$ query (RSVQ k ) that aims to retrieve a set of geo-images that have the query as one of the most relevant geo-images in both geographical proximity and visual similarity. Existing approaches for reverse top- $k$ queries are not suitable to address this problem because they cannot effectively process unstructured data, such as image. To this end, firstly we propose the definition of RSVQ k problem and introduce the similarity measurement. A novel hybrid index, named VR 2 -Tree is designed, which is a combination of visual representation of geo-image and R-Tree. Besides, an extension of VR 2 -Tree, called CVR 2 -Tree is introduced and then we discuss the calculation of lower/upper bound, and then propose the optimization technique via CVR 2 -Tree for further pruning. In addition, a search algorithm named RSVQ k algorithm is developed to support the efficient RSVQ k query. Comprehensive experiments are conducted on four geo-image datasets, and the results illustrate that our approach can address the RSVQ k problem effectively and efficiently.
Item Type: | Journal Article | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | G Geography. Anthropology. Recreation > G Geography (General) Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software |
|||||||||||||||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Computer Science | |||||||||||||||||||||||||||
Library of Congress Subject Headings (LCSH): | Geographic information systems , Geospatial data , Spatial data mining , Geospatial data -- Computer processing | |||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Access | |||||||||||||||||||||||||||
Publisher: | IEEE | |||||||||||||||||||||||||||
ISSN: | 2169-3536 | |||||||||||||||||||||||||||
Official Date: | 23 January 2020 | |||||||||||||||||||||||||||
Dates: |
|
|||||||||||||||||||||||||||
Volume: | 8 | |||||||||||||||||||||||||||
Number: | 1 | |||||||||||||||||||||||||||
Page Range: | pp. 21770-21787 | |||||||||||||||||||||||||||
DOI: | 10.1109/ACCESS.2020.2968982 | |||||||||||||||||||||||||||
Status: | Peer Reviewed | |||||||||||||||||||||||||||
Publication Status: | Published | |||||||||||||||||||||||||||
Access rights to Published version: | Restricted or Subscription Access | |||||||||||||||||||||||||||
Date of first compliant deposit: | 11 February 2020 | |||||||||||||||||||||||||||
Date of first compliant Open Access: | 21 February 2020 | |||||||||||||||||||||||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year