
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/133218

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/133218
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS
Style Analysis for Source Code Plagiarism

Detection

by

Olfat Meraj Mirza

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

November 2018

Contents

List of Tables v

List of Figures ix

Acknowledgments xi

Declarations xiv

Abstract xv

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Research Background . 2

1.3 Statement of the Problem and Motivation 3

1.4 Research Questions and Objectives 3

1.5 Research Methodology . 5

1.6 Research Rationale and Contributions 5

1.7 Thesis Structure . 6

Chapter 2 Background and Literature Review 10

2.1 Introduction . 10

i

2.2 Plagiarism Definition . 11

2.2.1 Source Code Modification Techniques 13

2.2.2 Source Code Detection Techniques 17

2.2.2.1 Attribute Counting 17

2.2.2.2 Structure Based . 19

2.3 Coding Style Analysis . 21

2.3.1 Style Metrics . 24

2.4 Conclusion . 35

Chapter 3 Exploratory Analysis and BlackBox 36

3.1 Introduction . 36

3.1.1 An Overview of the Exploratory Study 36

3.2 BlueJ and BlackBox . 39

3.2.1 BlueJ . 39

3.2.2 BlackBox . 40

3.3 Evaluating BlackBox for Plagiarism Detection 43

3.3.1 How Fetcher Handles File IDs in BlackBox 44

3.3.2 Grouping . 45

3.3.2.1 Experimental Methodology 49

3.3.3 The Results of the Evaluation of BlackBox 53

3.3.4 Visualisation . 56

3.3.4.1 Experimental Methodology 57

3.3.4.2 The Results . 58

3.4 Conclusion . 61

Chapter 4 Structure Based Metrics 63

4.1 Introduction . 63

ii

4.2 Existing Style Metrics . 64

4.3 Modified Style Metrics . 67

4.3.1 Modified Layout Metrics (STY) 67

4.3.2 Modified Style Metrics (PRO) 69

4.3.3 Modified Structure Metrics (PSM) 71

4.4 Extended Style Metrics . 75

4.4.1 Extended Layout Metrics (STY) 75

4.4.2 Extended Style Metrics (PRO) 76

4.4.3 Extended Structure Metrics (PSM) 79

4.5 Example . 80

4.5.1 Metrics Calculation . 80

4.6 Conclusion . 90

Chapter 5 A Framework for Developing Plagiarism Detection Tech-

niques 96

5.1 Introduction . 96

5.2 Adapting TDM Analysis for Plagiarism 97

. 97

5.2.1 Cosine Similarity . 101

5.2.2 Performance Evaluation Measures 102

5.3 The MFM Framework for Plagiarism Detection 104

5.3.1 Phase One in the Application of the MFM Framework 104

5.3.2 Phase Two in the Application of the MFM Framework 105

5.4 Illustrating the Application of the MFM Framework 106

5.4.1 The Dataset . 106

5.4.2 Coding Style Metrics . 106

5.4.3 SVD Analysis and Cosine Similarity 109

iii

5.4.4 Evaluation Stage . 113

5.5 Conclusion . 113

Chapter 6 Results and Evaluation 115

6.1 Introduction . 115

6.2 Dataset Description: SOCO . 116

6.2.1 Forum for Information Retrieval Evaluation 116

6.2.2 SOCO . 117

6.2.3 Google Code Jam . 118

6.3 Experimental Results . 119

6.3.1 JPlag Queries: Results of the MFM-Modified and MFM-Extended

Approaches . 120

6.3.2 SOCO Queries: Results of the MFM-Modified and MFM-

Extended Approaches . 127

6.3.2.1 Participation Overview 127

6.4 The Failure Analysis . 135

6.5 Conclusion . 138

Chapter 7 Conclusion 139

7.1 Introduction . 139

7.2 Summary of the Research . 140

7.3 Study Contributions . 141

7.4 Limitations and Future Work . 142

iv

List of Tables

2.1 Layout metrics extracted from the source code of Java programs . . 26

2.2 Style metrics extracted from the source code of Java programs . . . 29

2.3 Structure metrics extracted from the source code of Java programs 34

3.1 Random Sample (1) Results . 54

3.2 Random Sample (2) Results . 54

3.3 Random Sample (3) Results . 54

3.4 Random Sample (4) Results . 54

4.1 Number of Metrics and submetrics: STY, PRO and PSM as in [44] . 65

4.2 Modified Layout metrics extracted from the source code of Java

programs . 67

4.3 Modified Style metrics extracted from the source code of Java pro-

grams . 70

4.4 Modified Structure metrics extracted from the source code of Java

programs . 71

4.5 The differences between the operations in the Modified metrics and

the Extended metrics . 73

4.6 Extended Layout metrics extracted from the source code of Java

programs . 76

v

4.7 Extended Style metrics extracted from the source code of Java pro-

grams . 77

4.8 Extended Structure metrics extracted from the source code of Java

programs . 78

4.9 Layout Metrics Calculation: Modified and Extended for Java Exam-

ple . 83

4.10 Style Metrics Calculation: Modified and Extended for Java Example 85

4.11 Structure Metrics Calculation: Modified and Extended for Java Ex-

ample . 86

5.1 Modified Layout Metrics: F1 and F3 are JPlag queries, F2 and F4

are similar files . 107

5.2 Modified Style Metrics : F1 and F3 are JPlag queries, F2 and F4 are

similar files . 108

5.3 Modified Structure Metrics : F1 and F3 are JPlag queries, F2 and

F4 are similar files . 109

5.4 Query 1 (F1): Number of relevant files and similarity file rank 112

5.5 Query 2 (F3): Number of relevant files and similarity file rank 112

5.6 Evaluation measures for Q1 and Q2 113

6.1 Number of source codes files in SOCO @2014 in groups: A1, A2, B1,

B2, C1 and C2 . 118

6.2 Group A1, with JPlag Queries from the MFM-Modified and MFM-

Extended approaches . 121

6.3 Group A2, with JPlag Queries when applying the MFM-Modified and

MFM-Extended Approaches . 122

vi

6.4 Group B1, with JPlag Queries when applying the MFM-Modified and

MFM-Extended Approaches . 123

6.5 Group B2, with JPlag Queries when applying the MFM-Modified and

MFM-Extended Approaches . 123

6.6 Group C1, with JPlag Queries when applying the MFM-Modified and

MFM-Extended Approaches . 124

6.7 Group C2, with JPlag Queries when applying the MFM-Modified and

MFM-Extended Approaches . 124

6.8 The overall results are drawn from previous tables when applying the

MFM-Modified and MFM-Extended Approaches showing Precision,

Recall and F-measure averages . 125

6.9 Group A1, with SOCO Queries from MFM-Modified and MFM-Extended

Approaches . 129

6.10 Group A2, with SOCO Queries from MFM-Modified and MFM-Extended

Approaches . 130

6.11 Group B1, with SOCO Queries from MFM-Modified and MFM-Extended

Approaches . 131

6.12 Group B2, with SOCO Queries from MFM-Modified and MFM-Extended

Approaches . 131

6.13 Group C2, with SOCO Queries from MFM-Modified and MFM-Extended

Approaches . 132

6.14 Results of the MFM-Modified, MFM-Extended Approaches, and of

methods proposed by participants in the SOCO competition using

the SOCO dataset and Queries . 133

6.15 The average F-measure of all queries across the dataset groups . . . 134

6.16 The overall average of evaluation calculation across the dataset groups 135

vii

6.17 Futile Attack [125] . 136

6.18 Granularity-Sensitive Attacks [125] 136

6.19 Locally Confusing Attacks [125] . 137

6.20 Attacks identified by applying the MFM-Extended approach to the

SOCO dataset which were not identified by JPlag or the Proposed

Modified approach . 137

viii

List of Figures

1.1 Thesis Structure . 7

2.1 Source code plagiarism modification levels. Each level includes the

modifications included in the 2 previous levels [48]. 13

2.2 The use of Style Metrics throughout the years 25

2.3 Types of programming comments: (a) Block Comments, (b) Single

line Comments, (c) Trailing Comments and (d) End-Of-Line Comments 28

2.4 Types of if condition: (a) if Statement, (b) if-else Statement, (c)

if else-if else Statement and (d) Nested if Statement 31

2.5 Types of condition statement: (a) for Statement, (b) while state-

ment, (c) do-while statement and (d) switch statement. 32

3.1 BlackBox Exploratory Study . 38

3.2 BlueJ UML Digram . 40

3.3 BlueJ Java Code Hierarchy . 41

3.4 This is how Random Fetcher works with BlackBox IDs 45

3.5 Example Code of Group 1 . 50

3.6 Example Code of Group 2 . 51

3.7 Example Code of Group 3 . 52

ix

3.8 Initial network display for BlackBox dataset with the Chinese Whis-

pers algorithm . 59

3.9 BlackBox network with performed Chinese whispers algorithm and

30%-97% similarity . 60

3.10 The Sherlock network display for BlackBox dataset 60

4.1 Java example: showing the STY3 metric in Modified Layout metrics 68

5.1 Explanatory Diagrams of SVD . 99

5.2 Explanatory Diagrams of Cosine . 101

5.3 Explanatory Diagram for Precision and Recall 103

5.4 Outline of the main components of MFM Framework 104

5.5 The output results from JPlag for A1 files and relevant files 110

5.6 The A1 files imported to JPlag . 111

6.1 JPlag Queries . 119

6.2 The output results from JPlag for the A1 dataset queries and their

similar files. 126

x

Acknowledgments

Starting my own PhD project, conducting the required work, and finally producing

this thesis would not have been possible without the continuous support, consistent

guidance, and the assistance I have received from various generous individuals.

I would like to express my deep and sincere appreciation to all the people

who have supported me and contributed to the work done in this thesis. I primarily

wish to acknowledge the ongoing support, contributions, and encouragement I have

received from my academic supervisor Prof. Mike Joy, who has accepted me, guided

me, and enlightened my way throughout the years to produce this project. It has

been a privilege to work with him.

I am deeply grateful and thankful to my second supervisor Dr. Georgina

Cosma from Nottingham Trent University for all of the continuous help, the useful

critiques during the planning of the project, and for the valuable, insightful and

constructive suggestions toward the progress of my work.

My special thanks are extended to my advisors Dr. Jane Sinclair from the

University of Warwick, and Prof. Alexandra Cristea from Durham University for

their consistent advice, unlimited support, and for their generous time given during

the development of this research. Additionally, I would like to thank my committee

members Professor Meurig Beynon and Professor Anne James.

The supportive environment of the School of Computer Science at the Univer-

sity of Warwick and particularly the Human Centered Computing Research Group

is greatly appreciated; the assistance I received from my colleagues and members

xi

of the research group, the staff, and from former and current students has been

without any doubts invaluable and indispensable. Also, the wise and clear advices

I have received from other research group members.

I would like to express my sincere gratitude to my lovely friend Ebtesam

Abdulhaleem for her generous time to review the final draft and encouragement

throughout the project.

Last but not least, I would like to express my deep gratitude and gratefulness

for the unconditional love and support from my parents, Meraj and Sanaa and for

all the confidence they had in me; the support from my sisters Israa, Ula, Iman,

Alzahraa and my brother Mohammad; the logical contributions from my brothers

in law Yasser and Majed; and finally for the ongoing and unconditional support of

my husband Mohamed, whom I cherish his advice, time and countless contributions;

and my son Suleiman, who has added the joy to my life to continue working on this

thesis.

xii

To my moon, my star and my son Suleiman

To the place I call home, my city Makkah

xiii

Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor

of Philosophy. It has been composed by myself and has not been submitted in any

previous application for any degree. The work in this thesis has been undertaken

by myself under the supervision of Prof. Mike Joy and Dr. Georgina Cosma. Some

parts of this thesis are written based on previously published papers (as first author).

Detail of all publications are described below.

• Mirza, O. and Joy, M. “Style Analysis for Source Code Plagiarism Detection”

International Conference Plagiarism across Europe and Beyond 2015 Proceed-

ings, Brno, 2015, pp. 53-61.

• Mirza, O., Joy, M. and Cosma, G. “Style Analysis for Source Code Plagia-

rism DetectionAn Analysis of a Dataset of Student Coursework” 2017 IEEE

17th International Conference on Advanced Learning Technologies (ICALT),

Timisoara, 2017, pp. 296-297.

• Mirza, O., Joy, M. and Cosma, G. ‘Suitability of BlackBox dataset for style

analysis in source codece code plagiarism” 2017 Seventh International Con-

ference on Innovative Computing Technology (INTECH), Luton, 2017, pp.

90-94.

xiv

Abstract

The enormous growth in the available online code resources has created new
challenges for detecting plagiarism in source code of programs. Several software ap-
plications can detect source code similarity using different detection methods. How-
ever, few current detection tools detect every kind of detection plagiarism attack.
The aim of this thesis is, therefore, to enhance methods for plagiarism detection in
source code using a style analysis approach that has been used to detect authorship.

There are very few large source-code datasets which are suitable for research
purposes, and two such datasets include the BlackBox dataset and the SOCO (De-
tection of SOurce COde) dataset. SOCO is a benchmark dataset that contains
groups of similar source-code files that can be considered plagiarised and has been
used in authorship and plagiarism detection competitions.

In the first part of the thesis, the suitability of BlackBox as source of datasets
for testing plagiarism detection is explored. The files in BlackBox were analysed and
visualised in order to evaluate its suitability as a dataset that can be used in this
research. The analysis aimed to identify similar source code files, and therefore
to detect groups of Java files within BlackBox that can be used for evaluating the
performance of source-code plagiarism detection methods.

In the second part of the thesis, a plagiarism detection framework (“the
Metric-File Matrix Framework (MFM)” is proposed. The MFM framework is de-
signed to overcome some of the limitations of existing plagiarism detection methods
by 1) proposing a new set of metrics which consider structural and stylistic similar-
ities; and 2) by using Singular Value Decomposition as a technique to remove noise
and to reduce the dimensionality of the data to enhance the similarity detection.

The MFM framework was implemented and its performance was evaluated
using the proposed metrics. For the evaluations, the SOCO dataset was adopted
and the performance of the proposed framework was compared against other state-
of-the-art plagiarism detection tools including JPlag.

xv

Chapter 1

Introduction

1.1 Introduction

Technological advances have changed our lifestyle and the way we seek information,

and we have become more reliant on computers, the Internet and web search engines

to find answers and seek more information about almost everything. This in turn has

made us more dependent and reliant on these facilities. With this accessibility and

ease of finding information online, many users can fall into the trap of plagiarism.

Plagiarism in academic work is when someone fails to acknowledge others’

ideas or words, which can constitute misconduct and a breach of research integrity

[39]. The computer programming community across the world is facing the increas-

ing problem of plagiarism [64]. This widespread problem has motivated efforts to

find an efficient, robust and fast detection procedure, which is difficult to achieve

manually. Therefore, plagiarism detection tools have been developed. These tools

focus mainly on two contexts: text [151] and source code [100]. Most text detection

tools are well defined [62]. However, detection tools for source code still have prob-

lems in defining similarities between source code files [119]. Source code similarity

1

Chapter 1 1.2. Research Background

detection entails identifying “[a] program that has been produced from another pro-

gram with a small number of routine transformations”[118]. The main focus of this

thesis is on source code plagiarism detection.

1.2 Research Background

Source code plagiarism detection in programming languages differs [61] from other

types of plagiarism and the detection process is sophisticated [81]. In the context

of programming files, the task of source code plagiarism detection can use tools

like JPlag [125] and MOSS [18]. There are two main approaches for source code

plagiarism detection: (1) attribute counting and (2) a structure-based approach.

“Attribute Counting” [93] detects general document plagiarism by measuring and

representing textual similarity.

The “Structure Based” approach [77] detects characteristics of the source

code file [118]. For example, Song et al. [135] propose a novel method to compute

how similar two program source codes are by adopting convolution kernel function

as the similarity measure. Tufano et al. [141] used another technique where they

demonstrated how Software Engineering (SE) would benefit from a Deep Learning

(DL) based approach which can effectively replace the manual features and auto-

matically learn code from a different representation. Ajmal et al. [2] and Barbosa et

al. [9] focused on performing string matching using the Euclidean Distance formula

to detect the level of similarity.

Other researchers combined the source code detection approaches. Karnalim

and Sulistiani [83] combined two approaches: Attribute Based Approach (ABA)

and Structure Based Approach (SBA) to identify source code plagiarism similarity,

using a case study including Vector Space Model (VSM) and Cosine similarity as

the ABA approaches and Running Karp-Rabin Matching and Greedy String Tiling

2

Chapter 1 1.3. Statement of the Problem and Motivation

algorithm [148] as the SBA approach.

1.3 Statement of the Problem and Motivation

Much research has studied source code plagiarism detection. However, there is a

lack of research which focuses on “style analysis” source code similarity detection.

The current study addresses this gap in plagiarism detection by implementing new

style analysis metrics in source code plagiarism detection.

The research described in this thesis aims to complement current detection

tools which have only limited functionality for detecting plagiarism. In particular,

the thesis focuses on bridging the gap between coding style analysis in Java pro-

gramming and plagiarism detection. The reason for using style analysis, and not

the other techniques, is that most programmers leave a fingerprint in their written

code. Detecting the style of the source code is very important in identifying simi-

larity between files and suspected plagiarism without identifying the authorship.

1.4 Research Questions and Objectives

This research aims to investigate coding style analysis in source code plagiarism

detection using Singular Value Decomposition (SVD) to find the similarity between

files in a large dataset.

In order to meet this aim, this research answers one overarching question

(RQ0), subdivided into three related ones (RQ1-3), shown below with relevant ob-

jectives (OB1-9) as follows:

3

Chapter 1 1.4. Research Questions and Objectives

RQ0: How can coding style analysis detect plagiarism effectively?

Sub-questions:

• RQ1: Can the BlackBox dataset be used as source of files suitable for testing

source code plagiarism detection techniques?

– OB1) To review the literature in the field of source code plagiarism.

– OB2) To characterise the structure of the BlackBox dataset and the

challenges faced in identifying good samples for further research into pla-

giarism detection.

– OB3) To identify and analyse data using a visual approach for file simi-

larity.

• RQ2: To what extent are style metrics suitable for detecting plagiarism in

source code? What modifications need to be made to style metrics to enhance

their potential for source code plagiarism detection?

– OB4) To re-implement coding style metrics for structure based approaches

to source code analysis.

– OB5) To modify existing coding style metrics to be compatible with the

Java programming language.

– OB6) To propose new modified and extended metrics to enhance the

output from the re-implementation in OB4.

• RQ3: How can we best capture the underlying style similarity between files

using statistical approaches? Is Singular Value Decomposition a suitable tech-

nique to be embedded into a source code plagiarism detection framework?

4

Chapter 1 1.5. Research Methodology

– OB7) To create a source code similarity detection framework which com-

bines style metrics with SVD.

– OB8) To evaluate the proposed framework using a large benchmark

dataset.

– OB9) To compare the performance of the proposed framework against

other plagiarism detection methods.

1.5 Research Methodology

In order to answer the study research questions, the methodology is presented in

the following three stages. (1) selection of the dataset, (2) implementation of coding

style metrics and (3) outcomes analysis and evaluation.

The focus of the first stage is the employment of large datasets to detect

plagiarism in source code. In this thesis, two datasets were used: BlackBox dataset,

which is a collection of BlueJ, and SOCO (source codece COde @FIRE conference

2014). The second stage is to re-implement the structure based approach to source

code similarity detection with modified and extended metrics. Then SVD was used

and merged with the structure-based approach. The results of the study were then

compared with other studies and conclusions drawn, in the light of study limitations.

1.6 Research Rationale and Contributions

In addition to addressing the gap in the literature cited in section 1.3, this study

is significant in its contribution because it has involved new empirical studies of

the BlackBox and SOCO datasets. BlackBox is a collection of submission files in

the online Java programming learning software called BlueJ [22]. SOCO (source

codece COde) is from the Forum for Information Retrieval Evaluation (FIRE) [54].

5

Chapter 1 1.7. Thesis Structure

The first contribution of this research is to demonstrate the limitations of BlackBox

dataset as a source of samples suitable for testing plagiarism detection techniques.

To develop better detection methods for source code files, this study’s second

main contribution is to adapt coding style metrics [44], usually used to identify

authorship [95], to address file similarity and identification of plagiarism in source

code. Accordingly, the study re-implemented existing style metrics devised by Ding

et al [44] in their structure based approach to detecting source code similarity. Due

to the identified limitations in existing style metrics, two new families of coding style

metrics were proposed: the Modified and the Extended families.

The third research contribution is to propose the metric-file matrix (‘MFM’)

framework to enable coding style metrics to be analysed using Singular Value De-

composition (SVD) [13], generalising the well-established term-document matrix

(‘TDM’) approach to document analysis. The merits of the MFM framework are

demonstrated by identifying similarities between files in the SOCO dataset [53] [54].

1.7 Thesis Structure

As shown in Figure 1.1, the three main sections of the thesis reflect the three stages

that were followed in order to answer the research questions.

1. The Research Background (Chapter 2): In this section, the research back-

ground and the literature are reviewed. The focus of this section is on meeting

research objective OB1, to cover relevant existing detection methods, tech-

niques and coding style metrics, and to understand the limitations of existing

methods and how they need to be improved.

2. The Research Problem (Chapters 3, 4, 5 and 6): These sections discuss three

research questions: RQ1, RQ2 and RQ3, as addressed in chapter 3, chapter 4

6

Chapter 1 1.7. Thesis Structure

and chapters 5 and 6, respectively.

3. The Research Outcomes (Chapters 3, 4, 5 and 6): These sections present the

outcomes relating to research objectives OB2-OB6. Chapter 7 presents the

conclusions.

RQ1:
Can the BlackBox dataset
be used as source of files
suitable for testing source
code plagiarism detection
techniques?

RQ0:
How can coding style
analysis detect plagiarism
effectively?

RQ2:
To what extent are style
metrics suitable for
detecting plagiarism in
source code? What
modifications need to be
made to style metrics to
enhance their potential for
source code plagiarism
detection?

RQ3:
How can we best capture
the underlying style
similarity between files
using statistical
approaches? Is Singular
Value Decomposition a
suitable technique to be
embedded into a source
code plagiarism detection
framework?

Chapter 1

Introduction

Chapter 2

Literature Review

Research Background Research Problem Research Outcomes

Chapter 3

Exploratory Analysis
and BlackBox

Chapter 4

Structure Based
Analysis

Chapter 5

 Framework for
Developing Plagiarism
Detection Techniques

Chapter 6

Results & Evaluation

Chapter 7

Conclusion

Figure 1.1: Thesis Structure

7

Chapter 1 1.7. Thesis Structure

This thesis is organised in seven chapters. After this introductory chapter

the remainder of this thesis is structured as follows:

Chapter 2 provides a review of the background of plagiarism definition and

deals with the literature on plagiarism in computer science. In addition, it reviews

the literature in the interdisciplinary research relating to source code plagiarism.

Also, it explores the detection techniques that relate to detecting similarity in source

code and reviews coding style metrics. The chapter identifies the gap within the

existing literature in source code plagiarism.

Chapter 3 provides background on the online software tool “BlueJ” and a

brief description of the dataset “BlackBox”. The BlackBox dataset is analysed to

determine whether can be used as a source of datasets suitable for testing tools for

plagiarism detection. Two principal techniques are used in the exploratory study

of BlackBox: Grouping and Visualisation. Grouping supports statistical analysis of

four random samples from BlackBox that indicates the presence of plausibly similar

files. Visualisation is used to show that this similarity cannot in general be at-

tributed to plagiarism. The chapter concludes with a discussion of RQ1 and OB1-3.

Chapter 4 builds on a re-implementation of the structure based approach to

identify authorship based on coding style metrics. It introduces two new families of

metrics: Modified and Extended. The Modified metrics adapt existing metrics so as

to be more effective with Java code. The Extended metrics aim to detect some spe-

cific plagiarism attacks. The chapter concludes with a discussion of RQ2 and OB4-6.

8

Chapter 1 1.7. Thesis Structure

Chapter 5 describes a framework for enhancing structure based approaches

to source code similarity detection using alternative techniques for statistical analy-

sis. This framework is modelled on a well established approach to document analysis

which applies Singular Value Decomposition to term-document matrices. The new

framework (the ‘MFM Framework’) is based on metric-file matrices. Its application

is illustrated with reference to one of the groups studied in the SOCO dataset.

Chapter 6 presents the results of the application of the MFM framework in

conjunction with the Modified and Extended families of metrics introduced in chap-

ter 4. These results are compared with other techniques for plagiarism detection,

such as JPlag, as applied to the SOCO dataset. These empirical studies address

RQ3 and OB7-9.

Chapter 7 provides an overall conclusion regarding the contributions of the

research conducted in this thesis. The limitations are discussed, as well as recom-

mendations for future research.

9

Chapter 2

Background and Literature

Review

2.1 Introduction

Plagiarism concerns reusing, copying or paraphrasing somebody else’s work without

making proper reference to the original author, or intentionally attempting to make

the plagiarized work appear to be original (as in the case of student plagiarism)

[116] [33]. Source code files can be examined for plagiarism based on their stylistic,

structural and semantic similarities [130] [131].

This chapter is organised as follows: Section 2.2 explores the brief history of

plagiarism detection and several definitions from the literature review. It also covers

source code modification techniques in subsection 2.2.1 and source code detection

techniques in subsection 2.2.2. The last section 2.3 presents the history behind cod-

ing style analysis and existing metrics, and how coding style metrics in authorship

can be used to detect similarity between the files in source code.

Accordingly, this chapter serves as an essential basis for the research, given

10

Chapter 2 2.2. Plagiarism Definition

that it formulates the theoretical background upon which the research is based.

Additionally, the output of this chapter fulfils the OB1 research objective: To

review the literature in the field of source code plagiarism.

2.2 Plagiarism Definition

Plagiarism is a “theft of intellectual property”[105] and could include plagiarism in

music, painting, maps, technical drawings etc. This thesis is solely concerned with

textual plagiarism. Textual aspects have little relevance for musical compositions or

diagrams [98][80]. However, if information of any kind is exploited without giving

appropriate acknowledgement of the owner of the information, it is called plagiarism

[24]. Culwin and Lancaster defined plagiarism in the academic (student) context as

“the presentation of another person’s ideas or materials as if it were one’s own”[34]

[35]. Their definition flags the need for academic institutions to beware of plagiarism

in terms of gaining academic credit for the student [36] [7].

Plagiarism in the student context is when a student decides to submit some-

one else’s work as their own [67]. In a learning context, when a student expresses

information (with the source properly acknowledged) in their own words, it may

indicate that learning is occurring [33]. Many academic institutions have set thresh-

olds regarding the degree of similarity between two works, aiming for students to

take care when they are describing other people’s work [32]. In the academic world,

it is an offence to reproduce the work of another person without proper acknowl-

edgement [80]. Originality is important in the production of new literature [116]

[150] because “If everyone copied each other’s work [it] would in the end produce

no progress” [6] [119] and advances in literature would be limited. Joy and Luck

[79] have their own definition, specifying unacknowledged copying of documents or

programs, which occurs in many contexts including industry and academia. There is

11

Chapter 2 2.2. Plagiarism Definition

also an ongoing study of student perceptions and understanding of plagiarism, and

a spread of awareness and motivation of how to avoid plagiarised work [79] [103]

[123]. Martin [104] clarified plagiarism from an ethical point of view and identified

six plagiarism forms:

1. Word-by-word copying: exact copying of another’s work without any quo-

tation or proper acknowledgement of the original author.

2. Paraphrasing: rewriting the sentences, with close paraphrasing (i.e. chang-

ing some words) without understanding of the concept of paraphrasing and

without citing the original author.

3. Plagiarism of a secondary source: taking, referencing or quoting a work

which has been taken from another work, without looking up the original work.

4. Plagiarism of the form of a source: is when the structure of an argument

is copied from its source without providing acknowledgements.

5. Plagiarism of ideas: using the ideas that appear in the source text without

reference to the original source.

6. Authorship plagiarism: taking someone’s work and referencing it with one’s

own name.

In the rest of the chapter, the term of “style analysis” is being used to refer

to “style analysis” for determining authorship in source code. Also, the definition

of style analysis for this purpose is explained.

12

Chapter 2 2.2. Plagiarism Definition

2.2.1 Source Code Modification Techniques

There have been several attempts to categorise the modifications of source code that

can hide plagiarism [45]. The transformations can range from very simple changes to

very difficult ones in source code, categorised as six levels of program modifications

by Faidhi and Robinson [48] and Whale [147], as shown in Figure 2.1 and listed

below:

Figure 2.1: Source code plagiarism modification levels. Each level includes the
modifications included in the 2 previous levels [48].

1. Level 0 No changes: This level contains no source code modification.

2. Level 1 Changes in comments: Modifying the comments in source code

work, for example by providing explanations of the code or other information

about the code. Comments in source code cannot be executed apart from the

rest of the code and they differ between programming languages, for example

13

Chapter 2 2.2. Plagiarism Definition

the syntax of code written in the Java language is different from that which

was written in the C programming language [57] [63].

3. Level 2 Changes in identifiers: Making changes to identifiers, including

changing names of variables, methods, classes or packages.

4. Level 3 Changes in declarations: These changes include modification in

the way variables are declared. For example, someone could modify a state-

ment which declares two variables at once by making it into two statements.

5. Level 4 Changes in procedure combinations: This includes adding re-

dundant procedures or methods; merging procedures; and changing the order

of procedures.

6. Level 5 Changes in program statements: This includes making changes

to statements that make decisions, such as if statements, conditional expres-

sions, comparison operators, nested if-else, Boolean operators and switch state-

ments.

7. Level 6 Changes in control logic: This includes making changes to control

the order of the program execution, which will affect the decision logic of the

program.

14

Chapter 2 2.2. Plagiarism Definition

The hierarchical system by Faidhi and Robinson [48] and Whale [147] and the

definition of Parker and Hamblen [118] provide an overview of the different types

of plagiarism attacks. Increasing the level of changes increases the complexity of

plagiarism, with higher levels requiring a greater ability to understand the code and

which are suitable changes in the source code. L0 to L2 are the simplest changes

that can be made to source code, whereas the rest of the changes are carried out by

more experienced programmers [119]. Karnalim [82] proposed a method operating

on low level tokens such as those extracted from compiled code from a given source

file, which detected most plagiarism attacks.

Source code changes can be classified into two types: “Lexical changes” or

“Structural changes”. These classification is used by many other authors [78] [79]

[97] [99] [129]. “Lexical changes” involve making simple changes to code such as

comment and line spacing. In particular, there are 8 levels of lexical changes: L1:

Modification of source code formatting, L2: Addition, modification or deletion of

comments, L3: Language translation, L4: Program output reformatted or mod-

ified, L5: Identifiers renaming, L6: Variable declaration can be split or merged,

L7: Modifiers can be added, modified and deleted and L8: Constant value modifica-

tion. Conversely, “Structural changes” involve modifying functions or procedures, or

changing the statement logic, and experienced programmers tend to carry out struc-

tural changes when attempting to disguise plagiarism. Structural changes comprise

11 levels: S1: Reorder variables in statement, S2: Reorder the statement within

code blocks, S3: Reorder the code blocks, S4: Addition of redundant statements

or variables, S5: Control structure modification, S6: Data types changes or data

structure modification, S7: In-lining and re-factoring methods, S8: Redundancy,

S9: Temporary variables and sub-expressions, S10: Source code structure redesign

and S11: Scope modification.

15

Chapter 2 2.2. Plagiarism Definition

Culwin and Naylor [37] identify three different kinds of plagiarisms: Collab-

oration, Collusion and Copying. Collaboration is when students share knowledge

and ideas together; Collusion is when students let others have a look at their work;

and Copying is when students share their work with others electronically. Whether

this kind of behaviour are deemed to be plagiarism depends on the context. For

instance, in this case of copying, it depends whether students are responsible for

their individual work and for preventing others from copying them. On this basis,

Joy and Luck indicated that the borderline between cooperation in work and pla-

giarism is not well defined [79]. Verco and Wise categorised people who plagiarise

into two groups: Novice programmers and Experienced programmers [144]

[145]. Novices are learners, and experienced programmers are more advanced and

professional in writing source code. Decoo [40] assessed academic misconduct and

noted that software plagiarism could be at many levels such as the user interface,

content and source code.

In addition, a review of the current literature on source code plagiarism

revealed that there is limited research on applying coding style analysis to source

code plagiarism. There is a variety of easy ways to copy others’ work because source

code can be obtained from online source code banks and text books [33].

16

Chapter 2 2.2. Plagiarism Definition

2.2.2 Source Code Detection Techniques

There are several techniques to detect source code plagiarism. Prechelt et al. [125]

identify two main categories of automated plagiarism detection for program source

code: Attribute Counting and Structure Based [77].

2.2.2.1 Attribute Counting

Attribute counting is used to detect general document plagiarism by measuring

and representing the textual similarity [93], metrics similarity [92], feature-based

similarity [146] and shared information [26], which all depend on measuring features

of the text in its raw or tokenised form. The information in two files to be compared

for similarity [20] [74] is based on three profiles [77]:

1. Physical Profile: Characterises a program based on its physical attributes,

such as the number of lines, words and characters.

2. Halstead Profile: Characterises a program based on its token types and

frequencies. These relate to the number of token occurrences (N) and the

number of unique tokens (n).

3. Composite Profile: A combination of the physical profile and the Halstead

profile.

Yamamoto et al. [149] used a number of line metrics to detect similarity be-

tween source code files, while Johnson [76] identified redundancy in source code using

fingerprints. A recent work by Tahaei and Noelle [138] utilised attribute counting

in order to count student resubmission patterns for programming exercises, whereas

Jiang and Wang [75] proposed a source code detection method that uses a “frequent

item set” metric to detect similar files. A recent study by Okutan [115] used a

17

Chapter 2 2.2. Plagiarism Definition

token based strategy which was based on two approaches: defect and non-defect

files. They proposed metrics to achieve better performance compared to existing

static metrics. Duracik et al. [47] focused on how to select a proper representa-

tion of source code when searching for plagiarism. They used abstract syntax trees

(ASTs) in their comparison. Bandara and Wijayarathna [8] presented a new source

code author identification system based on unsupervised feature learning techniques.

Their system uses nine source code metrics, each of which is then tokenised, and

an unsupervised neural network technique called Sparse Auto-encoder [12] is used

to extract features which finally train the Logistic Regression supervised learning

algorithm [17]. They evaluated their approach using 5 large datasets written in the

Java programming language. The result of their evaluation failed when there is

more than one author, but succeeded in identifying single authors.

Caliskan-Islam et al. [24] proposed a new method to classify authors’ source

code, using machine learning. Firstly, they started with parsing the source code; sec-

ondly, they define features to represent syntax and structure program code; thirdly,

they explored a random forest classifier [19] for classification. They used code from

Google Code Jam (an international programming competition) and achieved 95.33%

accuracy. There are a number of plagiarism detection tools that use the attribute

counting similarity approach [77]. However, the attribute counting approach merely

compares the number of variables, loops, etc in two files. Although this is a widely

adopted approach to detecting plagiarism, the same number of attributes can occur

among files, but the files may not necessarily have been plagiarised [45].

18

Chapter 2 2.2. Plagiarism Definition

2.2.2.2 Structure Based

Structure based metrics detect similarity in the structure of files. Structure based

methods include character string [145], and parse tree [10] [134] methods. Structure

based approaches are considered as robust to most types of source code modification

[23]. Programs are compared in two stages. First, the code is parsed and the token

sequences are generated. Second, the tokens are compared [77].

Kuo et al. [96] developed an automated structure based system called the

Structure Plagiarism Detection System (SPDS), focusing on cosine similarity and

the Winnowing algorithm, which also showed good results compared with different

approaches. Delev and Gjorgjevkj [41] compared source code files in the C program-

ming language with 13 string matching based methods: Levenshtein, normalized

Levenshtein, weighted Levenshtein, Damerau Levenshtein, Optimal String Align-

ment (OSA), Jaro-Winkler, Longest Common Subsequence (LCS), Metric Longest

Common Subsequence (M-LCS), N-gram, Q-gram, Cosine similarity, Jaccard in-

dex and Sorensen-Dice coefficient. They performed the analysis on three different

datasets and they computed the similarity among potential plagiarism pairs of source

code files.

A large number of existing studies in the broader literature have examined

token based techniques. A recent study by Okutan [115] used a token based strat-

egy and proposed metrics to achieve better performance than existing static met-

rics. Karanalim and Budi [82] employed a human predictive methodology, using

three evaluation mechanisms: think aloud, aspect-oriented and empirical evalua-

tions. They found that the structure based approach was more effective than the

other detection methods. Chilowicz et al. [27] proposed a new similarity detec-

tion based on token sequence matching and factorisation of the function called Call

Graphs. The process of factorisation involved merging factors of the code with in-

19

Chapter 2 2.2. Plagiarism Definition

lining function, where function calls were replaced by their body up to a single level

and outlining functions were moved outside their parent function. The outcomes

of their method revealed that the call graph could detect similarities in the source

code file.

Liu et al. [99] proposed a new tool called GPLAG that uses a program

dependence graph (PDG), which is a graphical representation of data and control

dependences within a procedure. Their experiments showed that GPLAG is effective

and efficient. DeSOCoRe is a tool proposed by Whale [147] that shows plagiarism

results in graphical representations when comparing two source code files at function

levels. Shann et al. [132] proposed a method that converted the source code to the

assembly language and computed the similarity between the files using the Karp and

Rabin (KR) improved algorithm [148]. They analysed 27 programs and the results

showed that the detection analysis between two files has great practical value.

Santanu and Atul [119] presented a framework that detected the “pattern

languages” that detect code features. They implemented the SCRUPLE machine

based tool which extended the source code with pattern matching symbols. The

work in this research was based on the “structure pattern” that shows the proposed

framework to simplify the task of locating the code fragment. By contrast, Chen

et al. [26] designed a system called SID (Software Diagnosis System) which took

the identified metric and used the Heuristic Compression algorithm to compute the

normalized amount of shared information between two programs.

20

Chapter 2 2.3. Coding Style Analysis

2.3 Coding Style Analysis

One kind of source code plagiarism detection attempts to identify the similarity of

the code from the way the code is written - the coding style - which may be derived

from coding conventions (sets of guidelines for a particular programming language,

perhaps defined for use by a particular institution or company). Coding styles are a

way of writing codes so that they are standardised enough to be consistent with the

functions they are supposed to serve [6]. Coding Style is a factor which can be used

to detect source code plagiarism because it relates to programmer personality but

does not affect the logic of a program and can thus be used to differentiate between

coders.

The “style” that is part of the program is occasionally considered as a neb-

ulous attribute that is unmeasurable; it solely depends on the instincts of the pro-

grammer that may be “good” or “bad” and is very similar to the way in which the

artist recognizes any painting as being in the categories of good and bad paintings

[15] [87]. Each programming language has its own code convention, but conventions

typically cover such aspects as the following [28]:

• File organization: includes the introductory comments in the main file and

the packages imported into the file.

• Indentation: which refers to program’s structure and control flow. The main

symbol to differentiate the indent style is bracketing ({}). Line length may

also be significant e.g. line length maybe limited to 80 characters.

• Comments: There are two main type of comments: implementation and doc-

umentation. Implementation comments can be block comments, single line

comments, trailing comments and end-of-line comments.

21

Chapter 2 2.3. Coding Style Analysis

• Declarations: which declare an identifier’s significant characteristics. They are

used in functions, variables, constants and classes.

• Use of white space: includes vertical white space such as blank lines, which

improve the readability of the source code. This can be one or two blank

lines, using the Enter key on the keyboard. On the other hand, horizontal

white space, such as blank spaces, can be after commas, keywords or binary

operators, using the Spacebar or Tab.

• Naming convention: that make the piece of code more readable and gives

more information for each block of the code. The naming convention refers

to identifier types such as packages, classes, interfaces, methods, variables and

constants.

• Programming practices: that involve the rules which are set for developers to

improve software quality. This includes prerequisites for the software like: life

cycle and development structure, the requirements of the software, structure

of the software system, the individual components of the software and the

chosen programming language [106].

Kernighan and Plauger [84] mention that the code should not be written

solely for the compiler or personal use but also for human readability. Coding style

is subjective and can sometimes be difficult to define. In addition, coding style deals

with visual appearance of the source code to be more readable for programmers and

developers.

Oman and Cook [116] covered typographic or layout style, that is, the for-

matting and commenting of source code which does not affect the execution of the

program [117]. Spaord and Weeber [136] explained source code features which might

identify the author of the code and refer to their work as “software forensics”. They

22

Chapter 2 2.3. Coding Style Analysis

divided the analysis of the code into two dierent parts: analysis of the executable

code and analysis of source files.

Ohno and Murao [112] used simple tokenised coding style rules for Java

source code categorised in three token groups: (i) basic point tokens, such as opening

and closing braces; (ii) identification tokens, such as single and double spaces; and

(iii) other tokens, such as reserved words and identifiers. The authors proposed

a new method called Coding Model (CM), based on the Hidden Markov Model

(HMM), that quantifies the features based on students’ coding style [113]. They

conducted an experiment using Java code, which confirmed that the coding models

can distinguish between source code produced by different students. Also, they

proposed a combined method that measures the similarity among programs by SIM

(Similarity measurement), which is a structural method that measures the similarity

between two computer programs by reducing the parse trees of the code to strings,

then applying a string matching algorithm to find common token sequences [60].

The authors expected the combined method to reduce the number of false positives

detected [114] [111].

Arabyarmohamady et al. [5] proposed a coding style plagiarism detection

framework, which performs the detection in two phases. In the first phase, a com-

pact representation of the code is produced, and in the second phase the extracted

attributes are input into three modules to detect plagiarised code and to determine

authorship. The system was evaluated on 120 student assignments in C/C++.

There are three main findings in their paper. First, the system is fast and can work

on large datasets, since the two phase approach creates a feature file for each doc-

ument to reduce the time. Second, the framework provides a method to detect the

original author and the user of the code. Last, the framework is capable of detecting

plagiarised documents which have been copied from the Internet or implanted by a

23

Chapter 2 2.3. Coding Style Analysis

third party.

2.3.1 Style Metrics

According to Conte et al. [31], “Software metrics are used to characterise the es-

sential features for software quantitatively, so that classification, comparison and

mathematical analysis can be applied”. Source code metrics have been researched

to detect authorship [95]. In Figure 2.2, the diagram shows the history of the

metrics collection in four periods: in the 70s, 80s , 90s and after new millennium

(2000).

In 1978 Tassel [139] introduced the first style metrics aimed at improving

style and therefore readability of C programs.

Then Conte et al. [31] in 1986 compiled a fuller list of complex style metrics.

In 1987, Tauer and Ledgard [140] also used C and compiled a full list of rules

for excellent programming; in the same year, Kernighan and Plauger [84], whose

concern was with programming style in order to build good programming practice,

analysed more than seventy rules for programming. In 1987 Oman and Cooke [116]

introduced a list of programming style metrics and identified 236 different styles,

based on typographic characteristics.

In 1993, Ranade and Nash [127] went even further, drawing up style rules

for the programming language C comprising over three hundred pages. In 1997, to

organise these varying lists and compilations, and because of the massive number

of rules and metrics from all previous studies, Krsul and Spafford [95] extracted

fifty style metrics for the programming language C, which they separated into three

categories defined as: Programming Layout Metrics; Programming Style Metrics;

and Programming Structure Metrics.

24

Chapter 2 2.3. Coding Style Analysis

Tassel

1978

1986

1993

1997

C Language

Programing Layout Metrics
Programing Style Metrics
Programing Structure Metrics

1987

1987

1987Count et al. Ledgard Kernighan & Plauger Oman & Cook

Ranade & Nash Krusel & Spafford

Other Languages

2004

Programing Layout Metrics
Programing Style Metrics
Programing Structure Metrics

Ding & Samadezadeh
Java Language

Figure 2.2: The use of Style Metrics throughout the years

Building on the previous work, in 2004, Ding and Samadezadeh [44] used

the same three categories for their Fingerprint implementation which is compatible

with Java code rather than C. Their study revealed significant stylistic differences

between C program and Java program. The purpose of their study was to extract

software metrics from Java language for authorship identification.

A code file consists of many sections that should be separated by lines and

by optional comments identifying each section in the code for readability. Each

Java source file contains a single public class interface and multiple private classes

and interfaces in one file. Most Java files start with comments showing the author

name, the date and the name of the program. Then come the packages and import

statements, followed by class and interfaces declarations.

The three categories for the coding style existing metrics (Layout, Style and

Structure) have their own descriptions and the metrics under each of them address

25

Chapter 2 2.3. Coding Style Analysis

different kinds of source code features. Those features are mostly for the layout

category; the style category concerns the syntax of the code without consideration

of the semantics of the code; and the structure category is concerned with the logic

of the code in the file. The three categories for the existing metrics are described

in detail below. The codes used to refer to metrics in these categories (viz. STY,

PRO and PSM) are introduced by Krsul and Spafford [95].

1. Layout Metrics (STY):

Table 2.1: Layout metrics extracted from the source code of Java programs

Metric Description

STY1 A list of metrics indicating indentation style
STY1a Percentage of open braces ({) that are along a line
STY1b Percentage of open braces ({) that are the first character in a line
STY1c Percentage of open braces ({) that are the last character in a line
STY1d Percentage of close braces (}) that are along a line
STY1e Percentage of close braces (}) that are the first character in a line
STY1f Percentage of close braces (}) that are the last character in a line
STY1g Average indentation in white spaces after open braces ({)
STY1h Average indentation in tabs after open braces ({)
STY2 A vector of metrics specifying comment style
STY2a Percentages of pure comment lines among lines containing comments
STY2b Percentages of “//” style comments among “//” and “/*” style comments

STY3
Percentages of condition lines where the statements are on the same line
as the condition.

STY4 Average white spaces to the left side of operators
STY5 Average white spaces to the right side of operators
STY6 Ratio of blank lines to code lines (including comment lines)
STY7 Ratio of comment lines to non-comment lines
STY8 Ratio of code lines containing comment to code lines without any comments

Table 2.1 shows the layout metrics used in this category, which associate nu-

merical measures with the following:

• Whitespace, which can be single blank lines such as between methods

and local variables, or two lines such as between sections and classes. It

can also be blank space which appears after commas, all binary operators

26

Chapter 2 2.3. Coding Style Analysis

except increment (++) and decrement (--), and the expression in a for

statement.

• Placement and indentation of brackets for blocks of code. For example,

four spaces may be used as the start of indentation.

• Comments with different styles such as are featured in Figure 2.3:

(a) Block comments give a description of files, methods and algorithms

as illustrated in Figure 2.3 (a); such comments start with (/*), have

multiple lines and ends with (*/);

(b) Single line comments appear in a single line with indentation of the

same level of the code as shown in Figure 2.3 (b); the comment starts

in line 3 with (/*) and ends with (*/) as an individual single line;

(c) Trailing comments are usually very short and give a hint of something

in the code as shown in Figure 2.3 (c); the comments start in lines

2 and 4 with (/*) and end with (*/) and run along a line with the

code;

(d) End-of-line comments can be used to comment code out, or appear

at the end of the code line as shown in Figure 2.3 (d); the comment

in line 3 is used as a short comment and the comments in lines 9-14

as a comment about the code.

Altering these metrics is easy for formatters and pretty printers; they can

also be changed by the text editor with which the program is composed; the

editor’s default can be used, or a preferred layout can be set.

27

Chapter 2 2.3. Coding Style Analysis

1 /*

2 * Here is a block comment.

3 */

(a) Block Comments

1 if (condition) {

2

3 /* Hello Olfat :) */

4 ...

5 }

(b) Single line Comments

1 if (A == 10) {

2 return TRUE; /* Happy :) */

3 } else {

4 return Happy(A); /* <3 <3 */

5

6 }

(c) Trailing Comments

1 if (A > 1) {

2

3 // How are you Olfat?

4 ...

5 }

6 else {

7 return false;

8 }

9 //if (bar > 1) {

10 // ...

11 //}

12 //else {

13 // return false;

14 //}

(d) End-Of-Line Comments

Figure 2.3: Types of programming comments: (a) Block Comments, (b) Single line
Comments, (c) Trailing Comments and (d) End-Of-Line Comments

28

Chapter 2 2.3. Coding Style Analysis

2. Style Metrics (PRO):

Table 2.2 shows the style metrics that are listed in this category. They are

connected with Programming Layout metrics, but are harder to change and fall

within a higher level of the modification in the schema of Faidhi and Robinson

[48] and Whale [147].

Table 2.2: Style metrics extracted from the source code of Java programs

Metric Description

PRO1 Mean Program line length in terms of characters
PRO2 A vector of metrics of name lengths
PRO2a Mean variable name length
PRO2b Mean function name length
PRO3 Character preference of uppercase, lowercase, underscore, or dollar sign for

name convention.
PRO3a Percentage of uppercase characters
PRO3b Percentage of lowercase characters
PRO3c Percentage of underscores
PRO3d Percentage of dollar signs
PRO4 Preference of either while, for or do loops
PRO4a Percentage of while in total of while, for and do

PRO4b Percentage of switch in total of while, for and do

PRO4c Percentage of do in total of while, for and do

PRO5 Preference of either if-else or switch-case conditions
PRO5a Percentage of if and else in total of if, else, switch, and case

PRO5b Percentage of switch and case in total of if, else, switch, and case

PRO5c Percentage of if in total of if and else.
PRO5d Percentage of switch in total ofswitch and case.

The metrics in this category include:

• Length of comments that can affect the readability of the code;

• Naming preferences which give a clear understanding of the code;

• Variable lengths;

• Preferences of condition statements as shown in Figure 2.4:

(a) How if statements should look, shown in Figure 2.4(a),

(b) How if-else statements should look, shown in Figure 2.4 (b),

29

Chapter 2 2.3. Coding Style Analysis

(c) How an if else-if else statement is used in a fragment of code,

shown in Figure 2.4 (c);

(d) How nested if statements should look, shown in Figure 2.4 (d).

• Preference for loop statements as shown in Figure 2.5

(a) How for statements should look, shown in Figure 2.5 (a);

(b) How while statements should look, shown in Figure 2.5 (b);

(c) How do-while statements should look, shown in Figure 2.5 (c);

(d) How switch statements should look, shown in Figure 2.5 (d).

30

Chapter 2 2.3. Coding Style Analysis

1 if (condition) {

2 statements;

3 }

(a) if Statement

1 if (condition) {

2 statements;

3 } else {

4 statements;

5 }

(b) if-else Statement

1 if (condition) {

2 statements;

3 } else if (condition) {

4 statements;

5 } else {

6 statements;

7 }

(c) if else-if else Statement

1 if (condition1)

2 {

3 statements;

4 if (condition2)

5 {

6 statements;

7 }

8 }

(d) Nested if Statement

Figure 2.4: Types of if condition: (a) if Statement, (b) if-else Statement, (c)
if else-if else Statement and (d) Nested if Statement

31

Chapter 2 2.3. Coding Style Analysis

1 for (initialization; condition; update) {

2 statements;

(a) for Statement

1 while (condition) {

2 statements;

3 }

(b) while Statement

1 do {

2 statements;

3 } while (condition);

(c) do-while Statement

1 switch (condition) {

2 case ABC:

3 statements;

4 /* falls through */

5 case DEF:

6 statements;

7 break;

8 case XYZ:

9 statements;

10 break;

11 default:

12 statements;

13 break;

14 }

(d) switch Statement

Figure 2.5: Types of condition statement: (a) for Statement, (b) while statement,
(c) do-while statement and (d) switch statement.

32

Chapter 2 2.3. Coding Style Analysis

3. Structure Metrics (PSM): Structure metrics (see Table 2.3) are most ap-

propriately applied to programs written by programmers with higher levels of

ability and experience. A Java program consists of classes, and at least one

of those classes should be “public static void main”. The main aim of using

programming structure metrics in this context is to improve the quality, clar-

ity and the control flow for the program [4], e.g to make the logic of the code

structure being written more efficient and easier to understand and modify.

Most of the metrics are formulated as mean lines of code per function, usage

of data structure, etc.

The structure metrics in Table 2.3 analyse program structure with reference to

keywords. In practice, the structure of a program may be reflected in identifiers

and functions that are introduced by the programmer. It is unclear whether

there is a standard generic code matching algorithm that can be applied in

such situations. Plagiarism detection through the use of a word-matching

algorithm [111] where words are not among a given set of keywords is more

complex. For instance, some word matching will need to be case-sensitive

[117].

33

Chapter 2 2.3. Coding Style Analysis

Table 2.3: Structure metrics extracted from the source code of Java programs

Metric Description

PSM1 Average non-comment lines per class/interface
PSM2 Average number of primitive variables per class/interface
PSM3 Average number of functions per class/interface
PSM4 Ratio of interfaces to classes
PSM5 Ratio of primitive variable count to lines of non-comment code
PSM6 Ratio of function count to lines of non-comment
PSM7 A list of ratios of keywords to lines of non-comment code
PSM7a Ratio of keyword static to lines of non-comment code
PSM7b Ratio of keyword extends to lines of non-comment code
PSM7c Ratio of keyword class to lines of non-comment code
PSM7d Ratio of keyword abstract to lines of non-comment code
PSM7e Ratio of keyword implements to lines of non-comment code
PSM7f Ratio of keyword import to lines of non-comment code
PSM7g Ratio of keyword instanceof to lines of non-comment code
PSM7h Ratio of keyword interface to lines of non-comment code
PSM7i Ratio of keyword native to lines of non-comment code
PSM7j Ratio of keyword new to lines of non-comment code
PSM7k Ratio of keyword package to lines of non-comment code
PSM7l Ratio of keyword privateto lines of non-comment code
PSM7m Ratio of keyword public to lines of non-comment code
PSM7n Ratio of keyword protected to lines of non-comment code
PSM7o Ratio of keyword this to lines of non-comment code
PSM7p Ratio of keyword super to lines of non-comment code
PSM7q Ratio of keyword try to lines of non-comment code
PSM7r Ratio of keyword throw to lines of non-comment code
PSM7s Ratio of keyword catch to lines of non-comment code
PSM7t Ratio of keyword final to lines of non-comment code

34

Chapter 2 2.4. Conclusion

2.4 Conclusion

This chapter provides a review of source code similarity detection in the field of

plagiarism. It identifies the limitations of existing plagiarism detection methods. In

conclusion, there has generally been a lack of techniques for detecting source code

similarity from the style analysis perspective. There is a clear need for research

to consider style analysis directed at program structure. Therefore, the findings of

the literature review in this chapter confirm that further studies are required us-

ing existing approaches [44]. In addition to identify source code similarity using

existing approaches, one of the main contribution of this thesis is to propose an al-

ternative approach to the statistical analysis of coding style metrics that can deliver

better results in plagiarism detection. The literature review has also revealed that

not many benchmark datasets exist for evaluating source code similarity detection

methods. The next chapter, chapter 3, examines the BlackBox dataset in order

to determine whether it is a suitable dataset for evaluating source code similarity

detection methods.

35

Chapter 3

Exploratory Analysis and

BlackBox

3.1 Introduction

This chapter investigates the suitability of a large source code dataset, BlackBox

as a resource to assist developing and evaluating plagiarism detection tools. This

investigation takes the form of an exploratory study aimed at determining whether

BlackBox is a suitable source of datasets for testing plagiarism detection techniques

(‘PD-testing datasets’). The primary motivation for this study is generating suitable

source code datasets to use when building and evaluating the plagiarism detection

framework to be proposed in Chapter 4, where the emphasis is on detecting source

code plagiarism through style analysis.

3.1.1 An Overview of the Exploratory Study

The most direct way in which to try to extract PD-testing datasets from BlackBox

is to select sample groups of files at random. The overall concerns are to determine

36

Chapter 3 3.1. Introduction

• whether the samples contain suspiciously similar files

• whether datasets containing family of suspiciously similar files can be reliably

generated in this way.

The investigation started with choosing the online software “BlueJ” for our

further analysis and then accessing the “BlackBox” dataset. A representative set of

source code files (i.e. a sample) was extracted from the BlackBox dataset to show

the types of source code files in BlackBox. Following the guidelines given by Cohen

[30], four random samples of 250 files were downloaded from BlackBox so as to

ensure that the samples are representative of the content of the BlackBox dataset.

Where identifying suspiciously similar files within each sample is concerned,

certain groups of files can be discounted. These include template files in the form

of skeleton programs and incomplete programs. The remaining files can then be

informally classified into groups of files that might plausibly be similar. A grouping

based on length of files alone was sufficient to produce three groups of files with

broadly similar characteristics: ‘Short’ files (fewer than 40 lines), ‘Intermediate’

files (more than 40 and fewer than 100 lines) and ‘Long’ file (more than 100 lines).

Where reliably generating families of similar files is concerned, empirical

evidence confirmed that all four samples had a similar distribution of files into

Short, Intermediate and Long groups.

At this stage, the exploratory study indicated that randomly generated 250

file samples from BlackBox are likely to contain similar files (e.g. within the as-

sociated Short group of files). To complete the exploratory study, it remained to

determine whether such similar files might indeed be suspiciously similar. To iden-

tify suspicious files, existing plagiarism detection tools were applied to Blackbox

and the results were scrutinised to cluster the suspiciously similar files into groups.

37

Chapter 3 3.1. Introduction

Visualisation of similarity between source code files using Gephi 1 was used for this

purpose.

As shown in Figure 3.1, two principal techniques were used in the exploratory

study.

BlueJ

BlackBox Sample

Experiment Methodology

Grouping

Visualisation

Analysis & Results

Figure 3.1: BlackBox Exploratory Study

Grouping: splitting the dataset into five groups: Template group, Short

group, Intermediate group, Long group and Incomplete/Empty group. This group-

ing was based on the number of lines, code documentation, and number of loops.

Visualisation: the dataset sample was fed into a tool called Gephi that

helps finding similarities and visualises them using the Chinese Whispers clustering

method. This visualisation approach was a collaboration with a PhD student at

Faculty of Organization and Informatics, University of Zagreb, with their dataset

and my pre-processed dataset extracted from BlackBox.

The exploratory study is discussed in detail in the subsections that follow.

1https://gephi.org/

38

Chapter 3 3.2. BlueJ and BlackBox

3.2 BlueJ and BlackBox

3.2.1 BlueJ

BlueJ is a Java Integrated Development Environment (IDE) online tool. Kölling de-

veloped an instructional environment called Blue for his PhD work; he then released

it as BlueJ, which combines Blue and Java, in a collaboration with Rosenberg at

Monash University [90] [88] and in 2009 BlueJ became free and open source soft-

ware [91].

BlueJ has many features that aid the learning experience for the user. For

instance, the main screen shows the structures of required applications that are

characterised by BlueJ using Unified Modelling Language (UML) such as in Figure

3.2. UML was used instead of a standalone text editor or command line environment

to make the dataset easily understandable. In UML, BlueJ gives a simple, visual,

and interactive environment [89]. The primary focus for the development of BlueJ

was to address the issues related to teaching programming languages that are ori-

ented towards objects: moving towards higher level abstraction and more complex

program structures. By way of illustration, Figure 3.3 shows how the hierarchy of

the code is identified.

Some previous experiments have used BlueJ to identify user behaviour in

Java coding, for example, novice use of compilation by students learning object-

oriented programming using BlueJ [71]. The study started with automated obser-

vation of novice compilation as it naturally occurred in classroom tutorial sessions.

Some error types were considered such as missing semicolons, unexpected brackets,

illegal starts of expressions, and unknown classes. Their data included source code

edits, compilation results, and the use of various tools within BlueJ (such as the

debugger). The findings were significant in identifying user behaviour that had a

39

Chapter 3 3.2. BlueJ and BlackBox

Figure 3.2: BlueJ UML Digram

practical impact on the design of the environment and the development of a visual-

ising tool [72][50].

3.2.2 BlackBox

BlackBox is a collection project at Kent university to help other researchers to find

usable data [22]. It contains the results of over 100 million compilation events from

over 1 million users. The number of BlueJ users leads to a huge number of files in

BlackBox, with a wide variety of user programming experience. The motivating idea

behind the BlueJ project is teaching the Java programming language, especially in

classrooms for beginners, as it allows students to concentrate on understanding how

to solve Java homework without the distraction of executing and compiling issues

[143]. The new learner will learn to build the programs using visual objects and

classes. Many levels of programming can be examined in BlackBox. So most of the

files in BlackBox are created by students solving problems from their programming

classes. As Figure 3.3 shows, some of the programs contain common ground code

40

Chapter 3 3.2. BlueJ and BlackBox

Figure 3.3: BlueJ Java Code Hierarchy

which is already written and the student just needs to fill the gaps in the classes to

understand the code hierarchy.

Several studies investigate various mechanisms to describe the BlackBox

dataset properties. In the first instance, Brown et al. [22] faced some technical

challenges with respect to properties such as anonymity. Strong anonymity involves

removing all comments and renaming the variables; some useful information will

then be lost and cannot be used in any analysis. So, they had to remove just the

“header comment” where the user name is usually written and replace it with a

dash “–”. The BlueJ (BlackBox) dataset collection is anonymous for the purpose

of supporting any research experiment or collecting any kind of information at any

level [21]. In addition, another issue discussed in their study is that of data caveat-

ing, where there may be a need to hide which code belongs to which user. There

are some cases that need to be considered when carrying out a dataset analysis that

takes account of user identity. For example, if two users use the same account in

BlueJ, it will appear as if they are a single user. On the other hand, if someone uses

BlueJ on a university machine, laptop and on a home machine, it will appear that

41

Chapter 3 3.2. BlueJ and BlackBox

they are three users. If a user has a BlueJ project file on a USB stick and opens it

on two different machines with the same pathname, it will appear that they are two

projects belonging to two different users. It is possible to track the user, but there

is no evidence about the user history profile [22].

The BlackBox dataset has been also used in research investigating issues

encountered by students learning Java . A recent project by Keuning et al. [85] has

focused on the issues which occur most frequently, and whether students are able

to solve these over time and by the use of code tools. They found that students

usually find it difficult to fix issues related to modularization, and code tools do

not improve solutions. For assessing the behaviour of novice programmers, a study

by Jadud [72] used error quotient (EQ) to score how students deal with correcting

syntax error in their programs. In an investigation involving the BlackBox dataset,

Jadud and Dron [73] applied the general EQ to assess the compilation behaviour of

users from 10 different countries.

42

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

3.3 Evaluating BlackBox for Plagiarism Detection

The purpose of our exploratory study of the BlackBox dataset is to determine

whether it can serve as a source of datasets suitable for evaluating plagiarism de-

tection techniques (‘PD-testing datasets’).

There are around 17 million files in the BlackBox corpus and it is difficult

to choose files randomly without any criterion2. To tackle this, a small program

(‘Fetcher’) that can fetch files randomly from the BlackBox database was developed.

Access to BlackBox was with permission of the administration at Kent University,

and allows researchers to download the files as required. So, the program remotely

accessed the dataset with an SQL connector3.

In the exploratory study, a key issue was to determine an appropriate sample

size for the main study. Sample size influences the detection of significant differences,

and depends on the aim of the study, the population size and the sampling error [70],

the level of confidence and the degree of variability [108]. The confidence level is

selected (usually 95 per cent) so that if the population was sampled multiple times,

the confidence interval would include the true population mean 95 per cent of the

time [94] [110].

The dataset in BlackBox is growing daily and in October 2015 included

around 17 million Java source code files. Predefined tables of sample size by Cohen

et al. [30] suggest that for any population of more than a million items, a random

sample of 250 items would provide a sufficient sample size, therefore, we treated

the files in BlackBox as the population, and in order to meet the requirement of

the sample size, we used the Fetcher implementation four times to download four

random samples, each containing 250 Java files.

2https://bluej.org/blackbox
3https://bluej.org/blackbox/#Access

43

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

3.3.1 How Fetcher Handles File IDs in BlackBox

BlackBox contains a wide variety of code submissions, and BlueJ is open source and

free to use by anyone. The dataset uses three different types of ID:

• User ID (uID);

• Submission ID (sID); and

• BlackBox ID (bID).

The user ID (uID) is for the user when they create an account in BlueJ and

submit a file (no matter how many files), whereas the submission ID (sID) is for

each file submitted by the user with that user ID. The BlackBox ID (bID) is for

each file in BlackBox independent of the user ID and submission ID. For example,

if one user has submitted one file from two different machines, it will appear as

two files with two different sIDs. To avoid duplication for choosing the sample

for our research, the proposed method for choosing the sample was to build an

approach with specific requirements such as choosing one random file from a set of

10 submitted files associated with one user uID. However, if there were two users

using one account, this would appear as one account with two different submission

sIDs and BlackBox bIDs. To download a random sample, there is a need to design

a fetcher from BlackBox in order to reach the target for the random sample.

Figure 3.4 shows an explanation of how our small Java implementation for

fetching the files randomly is designed. The figure shows that BlackBox has 3

different IDs. We took an example of a user uID (uID12), and this user had two

submission files (sID3 and sID9), which could represent the user submitting the

same files twice within a short time if they are in the same block of 10 sID files.

Those two submission sIDs are related to the user uID (as sID3-uID12 and sID9-

uID12). On the other hand, each file in the BlackBox has its own unique bID with

44

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

BlueJ

BlackBox

Random Fetcher

User ID (uID)

BlackBox ID (uID)

Submision ID (sID)
sID1
sID2
sID3
sID4
sID5
sID6
sID7
sID8
sID9
sID10

bID3
bID9

uID12

uID12

sID3-uID12

sID9-uID12

uID:U12

From every one user (uID), choose
1 submission (sID) from a set of 10 file

Figure 3.4: This is how Random Fetcher works with BlackBox IDs

no relation to any uID or sID. Therefore, in order to sample the BlackBox submitted

files while avoiding capturing identical files, Fetcher was constructed to fetch one

uID-sID from every block of 10 sID files.

3.3.2 Grouping

The primary purpose of grouping is to determine whether each 250-file sample can

be considered representative of the types of source code files stored in BlackBox. A

secondary goal for grouping is to determine whether BlackBox is a suitable source

of PD-testing datasets.

45

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

Pre-processing is a part of any dataset analysis in research. In a data mining

study, there may be files that are irrelevant or redundant in the dataset [126] and

it may be important to ensure that the file name and author ID are hidden [22].

Aspects of the task of pre-processing a random sample had to be performed manu-

ally, to validate the suitability of the sample and eliminate outliers. Pre-processing

involved removing blank white lines from the code files in the sample.

The first random sample was downloaded and then processed into groups in

three stages:

• The first stage involved manual inspection of the sample to identify file that

were unsuitable as test files for plagiarism detection. These include files that

take the form of program templates where the programmer is intended to

write code to complement the template. They also include incomplete files

representing unfinished programs.

• The second stage subdivided the remaining files in the sample into three groups

according to their number of lines using a simple Java program. The three

groups of files were Short files with fewer than 40 lines, Intermediate files with

between 40 and 100 lines and Long files with more that 100 lines.

• The third stage analysed the Short, Intermediate and Long files to identify

the characteristics of typical files in each category and to establish that similar

files can be found within each group. The analysis of files at this stage was an

informal process carried out manually.

46

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

In stage three, the files were analysed manually with regard to the following

specific content features:

1. Number of lines;

2. File size;

3. Number of loops:

(a) for;

(b) if and if else;

(c) while.

4. Documentation:

(a) Type one comments: //

(b) Type two comments: */*

(c) Type three comments: /*

The aim of the manual analysis was to identify the relevant characteristics of files

in each category with reference to an indicative set of metrics. In this context,

relevant characteristics relate to potential similarity between files. The choice of

these metrics was informed by previous studies:

• In [95], source code files were split into groups on the basis of an indicative set

of metrics devised by Ding and Samadzadeh [44]. More specifically, the metrics

in the indicative set were in the three categories of layout, style and structure

(as discussed in chapter 2), and the content features were the number of lines,

number of loops and code documentation. Krsul’s study focused on purely

structural issues rather than the semantic issues more relevant to plagiarism

detection research.

47

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

• A study by Fitzgerald et al. [51] dealt with content analysis of a deeper kind

more closely related to the focus of this research. Fitzgerald et al. identified

several strategies to test the understanding of code by students. They pre-

sented a grounded theory-based synthetic analysis which identified 19 strate-

gies used by students. This analysis operates at syntactic and semantic levels.

The syntactic level reports many strategies related to comprehension of the

program components such as: S1 (reading the question), S4 (previewing the

code by identifying control structure), S6 (Pattern recognition), S14 (Elimina-

tion of specific choices of answers). The semantic level reports some semantic

strategies that related to the meaning of the program such as: S5 (Understand-

ing new concepts: semantic). In addition, Dasgupta [38] used 6 strategies from

the above 19 strategies to investigate the relation between program compre-

hension and program authorship. Dasgupta used syntactic level strategies in

their studies to find the authorship of the code.

Taking account of these two studies, metrics associated with two syntactic

level strategies proposed by Fitzgerald et al. were adopted in order to find appro-

priate source files for further analysis:

1. Previewing the code by identifying control structure (as measured by the num-

ber of conditional statements);

2. Pattern recognition: outside knowledge (as measured by the number of loops).

These two metrics were considered to be the most compatible for the grouping study.

48

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

3.3.2.1 Experimental Methodology

This section summarises and illustrates the nature of the identified groups after

pre-processing of all the files in the sample. The files were split into 5 groups as

discussed below:

1. The first group contains files which are template or common ground files

[46]. This means that the files are the same in terms of layout, style and struc-

ture, and that this is provided by the BlueJ IDE. Files such as these are usually

not going to provide help in identifying similarity or detecting plagiarism, and

we propose such files be ignored by plagiarism detection algorithms.

For example, the code in Figure 3.5 shows most of the code lines are comment

lines, which identify this file as a template file because the comments ask

students to fill the gaps and build the code. For instance, line 28 which is

“put your code here” and line 13 asks for a “Constructor for objects of class

s”. We found a substantial number of files from this group (62 out of 250 files

in the first random sample).

2. The second group in our pre-processed sample consisted of Short code files.

“Short” means the length of the code is less than 40 lines. In a Short file,

the level of nesting in loops is typically less than 3. Less than 40 lines was

pre-specified as the cut-off, as most code files with more than 40 lines have

more complex levels of loop nesting. Most files in the sample were assigned to

the Short group; the majority of the files in BlackBox are Short because the

target of BlueJ is to teach students how to program Java. 84 out of 250 files

in the first random sample were assigned to this group.

As an example, Figure 3.6 shows a sample of code from the second group.

Line 6 shows a print statement with request to “Enter a String”. The level of

49

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

1

2 /**

3 * ##### # ########### ## ##### # ####.

4 * @###### (#### ####)

5 * @####### (# ####### ###### ## # ####)

6 */

7 public class s

8 {

9 // instance variables - replace the example below with your own

10 private int x;

11

12 /**

13 * Constructor for objects of class s

14 */

15 public s()

16 {

17 // initialise instance variables

18 x = 0;

19 }

20

21 /**

22 * An example of a method - replace this comment with your own

23 * @param y a sample parameter for a method

24 * @return the sum of x and y

25 */

26 public int sampleMethod(int y)

27 {

28 // put your code here

29 return x + y;

30 }

31 }

Figure 3.5: Example Code of Group 1

the loop in this example has only very simple nesting, as in line 14 the for

loop statement appears with an if-else condition inside the loop. The total

length is 28 lines.

3. The third group in the sample consisted of Intermediate code files. The

definition of Intermediate is that the length of the code is more than 40 lines

and less than 100 lines. Regarding the structure of the code, the level of loops

50

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

1 import java.util.*;

2 public class Kumar

3 {

4 public static void main()

5 {

6 System.out.print("Enter a String: ");

7 String str=new Scanner(System.in).nextLine();

8 str.trim();

9 int l=str.length();

10 String str1="KUMAR";

11 String fin="";

12 fin.trim();

13 int c=0;

14 for(int i=0;i<l;i++)

15 {

16 char ch=str.charAt(i);

17

18 if(ch==’ ’&&c==0)

19 {

20 fin=fin+" "+str1+" ";

21 c++;

22 }

23 else

24 fin=fin+ch;

25 }

26 System.out.print(fin);

27 }

28 }

Figure 3.6: Example Code of Group 2

may be more than 3 loops and include some nested loops and conditions. This

includes all the types of conditions and loops in Java: the conditions are if,

else, if-else and switch-case, and the loops are for and while-do. In the

first random sample, 50 files out of 250 were assigned to this group.

Figure 3.7, shows a fragment of code (starting at line 33) from group three.

The do-loop beginning at line 37 and ending at line 50 uses while. It also

features try and catch from lines 39-41, and if at line 46.

51

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

33

34 public int leaEntero(String txt, int x, int y){

35 boolean valorErroneo;

36 int valor=0;

37 do{

38 valorErroneo=false; //asumo valor que dara el usuario es

correcto

39 try{

40 valor= Integer.parseInt(this.showInputDialog(txt));

41 }catch (NumberFormatException e){

42 valorErroneo=true;

43 this.showMessageDialog(null,"Se espera un valor entero",

44 "VALOR INVALIDO", this.ERROR_MESSAGE);

45 }

46 if ((valor<x)||(valor>y))

47 this.showMessageDialog(null,"Se espera un valor entero "+

48 "entre "+x+" y "+y,

49 "VALOR INVALIDO", this.ERROR_MESSAGE);

50 }while ((valorErroneo)||(valor<x)||(valor>y));

51 return valor;

52 }

Figure 3.7: Example Code of Group 3

4. The fourth group consisted of code files which were Long. “Long” means that

the length of the code is more than 100 lines . In a Long file, the looping and

the level of the nesting in the loops is typically more complex than the third

group. Such files contain rich data, and coding style based detection algo-

rithms are likely to be successful when applied to them. In the first random

sample, 34 files out of 250 were assigned to this group.

5. The fifth group contained files which were incomplete or empty files, and

could thus be safely excluded by detection algorithms. For example, some file

submissions are just test files with one line of code, or blank files without any

line of code. In the first random sample, 20 files out of 250 were assigned to

this group.

52

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

Since the first and the fifth group contain files which a detection algorithm

can safely ignore, they have not been tested statistically in the next section.

3.3.3 The Results of the Evaluation of BlackBox

As discussed in the previous section, grouping of files gives us insight into the nature

of the BlackBox dataset. This section is concerned with testing the hypothesis that:

generating samples from BlackBox is a way of creating datasets with similar files

that are useful as PD-testing datasets. Such similar files would be found within the

Short, Intermediate and Long groups.

Statistical analysis of the grouping techniques applied to the BlackBox sam-

ples is a first step towards testing the above hypothesis Each random sample con-

sisted of a total of 250 files divided into five groups, however the statistical analysis

has been done only for groups two, three and four for the reasons mentioned in the

previous section. Each sample and the main statistical calculations are presented in

Tables 3.1, 3.2, 3.3 and 3.4 below. Each table shows the number of files falling into

each group, and the mean, median, mode, standard deviation, maximum and min-

imum values for the numbers of lines. By definition, the Group 3 range (minimum

to maximum) should be 40 to 100 lines, with Group 2 less and Group 4 more than

these values.

The statistical analysis shows that the distribution of Short, Intermediate

and Long files is consistent across all four samples, taking account of Mean, Median,

Mode and Standard Deviation measures.

This analysis of the BlackBox dataset gives clear indications that some por-

tions of the source code would be usable for coding style analysis studies aimed

at plagiarism detection. Similar files in each random sample in the experimental

study might be found in groups two, three and four; the distribution of files in each

53

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

Table 3.1: Random Sample (1) Results

Group 2 Group 3 Group 4

Num. Files 84 50 34
Mean 24.64 67.50 195.79

Median 24.00 63.00 158.00
Mode 18 57 143

Std. Deviation 10.361 16.180 123.396
Maximum 40 99 673
Minimum 8 45 100

Table 3.2: Random Sample (2) Results

Group 2 Group 3 Group 4

Num. Files 123 60 38
Mean 22.37 66.15 227.92

Median 22.00 62.00 164.50
Mode 13 51 260 accorss

Std. Deviation 8.968 19.741 147.035
Maximum 40 99 587
Minimum 6 41 102

Table 3.3: Random Sample (3) Results

Group 2 Group 3 Group 4

Num. Files 140 41 38
Mean 22.89 65.54 249.45

Median 21.00 61.00 167.50
Mode 15 47 180

Std. Deviation 10.396 14.517 260.824
Maximum 40 99 1323
Minimum 5 46 100

Table 3.4: Random Sample (4) Results

Group 2 Group 3 Group 4

accorss Num. Files 124 61 40
Mean 22.00 63.90 192.65

Median 19.00 61.00 170.50
Mode 19 55 142

Std. Deviation 9.608 14.830 102.966
Maximum 43 100 649
Minimum 7 41 106

54

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

group in each random sample were similar. Furthermore, the mean, the median

and the mode in random samples 1-4 were similar to each other. The analysis also

suggests that the random samples are each representative of the files contained in

the BlackBox dataset.

The maximum and the minimum values in the tables 3.1, 3.2, 3.3 and 3.4

refer to the number of lines in each group. Group 4 contained (by definition) the

highest number of lines, giving more scope for style analysis in this group. The

results show that in the original numbering, groups 2-4 (excluding groups 1 and

5) might offer a rich source to which coding style analysis can be applied for the

purpose of detecting plagiarism.

55

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

3.3.4 Visualisation

To complete the testing of the hypothesis framed in section 3.3.2, it remains to

determine whether BlackBox can serve not only as a source of datasets containing

files with similar characteristics (such as the grouping technique constructs in Groups

2, 3 and 4) but of datasets that contain files that exhibit similarities characteristic of

plagiarism. To this end, the datasets studied in the previous section will be analysed

using alternative methods for source code plagiarism detection.

All of the methods operate by calculating the degree to which two pieces of

work are similar, and end with producing a report. The report will usually show

two sections of code sufficiently similar that plagiarism is a possibility. It is then the

teacher’s task to examine the coding “pairs” to decide whether plagiarism really is

evident. Depending on the system, the report may be a table, a graph, or merely

a simple list. In this research Gephi is the measuring tool that is used to identify

plagiarism by tracking visual clustering.

Gephi is an interactive tool for visualising and exploring complex networks

and systems, providing a visual analysis. Gephi is usable for a variety of applications

including: link analysis; exploration of data analysis; social network analysis; and

biological network analysis. Gephi’s unique feature is its ability to analyse data

using different machine learning algorithms. In this case, data are presented as

graphs depicting collaboration networks based on similarity between source code

sets. Visualisation is today the normal approach, as can be seen in Makuc [102]

where the force-directed graph and co-occurrence matrix provide a visual view of

similarities. For the most part, visualisation is an intuitive process, though some

visualisation requires practice. Freire [56] observes:

“An over-simplification of the interface, however, would be dangerous,

since graders may decide to ‘let the system do the work’ instead of mak-

56

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

ing informed decisions based on the actual submissions.”

As mentioned, this research focuses on visualisation through the use of collabora-

tion networks and employs visualization methods that operate on all submissions.

Examples include: Sherlock [79]; SSID [120]; CoMoTo [107]; and Misic et al.[109].

Luquini and Omar [101] were the first to create social networks of students in a

project. They then carried out plagiarism detection on those students’ assignments

(undertaken at home or in the classroom). What they established was that there

was a greater correlation with a student’s preferred working partner in assignments

carried out at home. It may be that this is informative about relationships on the

basis of pair similarity; it may also be a sign that collusion is more likely between

students who are friends than between those who are merely classmates. The latter

possibility would add force to the arguments for improving plagiarism detection by

analysing networks.

3.3.4.1 Experimental Methodology

To complete the testing of the hypothesis under consideration, the following experi-

mental methodology was adopted. In the exploratory study of the BlackBox dataset,

the files in groups 2, 3 and 4 of the sample were extracted from the dataset as a

CSV file and the nodes and edges imported to Gephi which produces a graphical vi-

sualisation of the results. In this context, Gephi identifies a collaboration network,

from here on referred to only as the network, on which clustering algorithms are

performed. The principle at work here is the one described by Misic et al. [109].

The Sherlock plagiarism detection tool was used to calculate similarity, and pro-

duced some results in the form of paired files, which were then checked manually

for similarity characteristic of plagiarism. Further indications of similarities were

inspected after importing the data into Gephi.

57

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

Gephi's visualisation graphs did not indicate any cluster or similarity. In

this case, Gephi has some algorithms which can be applied, such as the Chinese

Whispers (CW) clustering approach. Most of the previous studies [16] [43] [124] [66]

use CW in Natural Language Processing (NLP). Chinese Whispers is a clustering

method used in network science. This method is capable of very quickly identifying

communities in any network. Therefore, Chinese Whispers is a good method in

analysing community structure in graphs with a very high number of nodes. Random

sample 1 was chosen from the BlackBox for this experiment to find files that had

similarities.

3.3.4.2 The Results

Figure 3.8 shows the result of applying CW to the BlackBox dataset; two main

clusters are observed to display significant similarities. As the two clusters contained

a number of files (14 in the first and 23 in the second), anything with a similarity

below 30% was excluded (Figure 3.9). It then became clear that three clusters

existed, one with four files (blue in the Figures), one with three (red in the Figures)

and one with two (purple in the Figures).

In the first cluster, three files showed a similarity greater than 65%. These

files contained almost identical code, but each named the variables differently. This

difference reduced the percentage similarity. Figure 3.8 shows a relationship between

these files and some others (those found in the original cluster); however, similarity

with those files was 30% and a manual check revealed no plagiarism. There were

four similar files in the second cluster, but the code was different from that in first

clusters files. Similarity for each pair was 85%. This second cluster is illustrated in

Figure 3.9; all of the files were plagiarised. Two files in the third cluster had 80%

similarity; these, too, were plagiarised. Figure 3.9 shows them clearly.

58

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

Figure 3.8: Initial network display for BlackBox dataset with the Chinese Whispers
algorithm

A number of different similarity combinations were explored, but no plagia-

rised cases were found apart from those already mentioned, which also have the

highest similarity percentage. Figure 3.10 shows the same three clusters as visu-

alised in Sherlock. The results given by Sherlock were confirmed using Gephi and

no new areas of interest emerged. The advantage of Gephi is that its representation

is simpler and it has better options for manipulating similarities and combinations

of clustering algorithms.

59

Chapter 3 3.3. Evaluating BlackBox for Plagiarism Detection

Figure 3.9: BlackBox network with performed Chinese whispers algorithm and 30%-
97% similarity

Figure 3.10: The Sherlock network display for BlackBox dataset

60

Chapter 3 3.4. Conclusion

3.4 Conclusion

The main research question was “Can the BlackBox dataset be used as a source

of datasets suitable for testing methods of plagiarism detection?”. The exploratory

study went through different stages, starting from requesting access from Kent Uni-

versity and discovering the nature of the source code that had been submitted.

BlackBox is a large dataset and the process of sample selection was a difficult task.

Sample size determination was the initial step before proceeding to download the

random samples. The size of the random sample from huge number of files was

determined as 250 files. Specific criteria for fetching the files were identified, taking

account of the file IDs, and a small program was implemented for this purpose. The

sample had to be pre-processed to eliminate irrelevant files unsuitable for similarity

detection. A grouping technique was applied to the sample to allocate the remaining

files to groups according to their length. In this way, each of the samples was split

into 5 groups: group 1 is called Template or common ground, group 2 called Short,

group 3 called Intermediate, group 4 called Long and group 5 called Incomplete. As

the result of this process of classification, the files most appropriate for testing for

plagiarism were those in groups 2, 3 and 4, and those in groups 1 and 5 could be

discarded.

At this stage, the exploratory study indicated that the BlackBox dataset

contains many similar files. To complete the study, it remained to determine whether

BlackBox contains files with similarities characteristic of plagiarism. To this end,

the study exploited the visualisation approach to detecting plagiarism using the

Gephi visualisation tool. Gephi was applied to one of the four random samples of

BlackBox to find similar files that might have been plagiarised. Gephi has some

embedded clustering algorithms. The Chinese Whispers (CW) method was used to

61

Chapter 3 3.4. Conclusion

detect relevant similarities between files using clustering.

The results of the study revealed that although some similar files were de-

tected in BlackBox, their similarity was not in general so significant that the files

could be deemed to have been plagiarised. Furthermore, the number of plagia-

rised file pairs/groups were not enough to thoroughly evaluate the performance of

similarity detection methods with a view to detecting plagiarism.

62

Chapter 4

Structure Based Metrics

4.1 Introduction

Coding Style metrics can be used as an effective approach for detecting author-

ship. Ding and Samadzadeh [44] integrated different metrics found in the literature

and proposed a consolidated set of coding style metrics for detecting authorship in

source code files in Java. Detecting similarity in coding style can also be considered

as a technique for detecting plagiarism. This chapter proposes extended variants

of the approach of Ding and Samadzadeh [44], which focused on authorship detec-

tion, in order to make it suitable for plagiarism detection. The chapter addresses

the research objectives OB4-6, including re-implementation of coding style metrics,

modifying metrics to be compatible with Java, and extending the approach with

new metrics to enhance plagiarism detection.

• OB4) To re-implement existing coding style metrics.

• OB5) To modify existing coding style metrics to be compatible with the Java

programming language.

63

Chapter 4 4.2. Existing Style Metrics

• OB6) To propose and extend new metrics to enhance the output from the

implementation.

This chapter is outlined as follows. Section 4.2 introduces Ding et al existing

work [44] and explains how their metrics could be suitable for the task of source-code

plagiarism detection. Section 4.3 introduces the first variant family of metrics, i.e.

Modified Style Metrics, which contains the existing metrics and minor modification

on them in order to be more reliable for detecting plagiarism in Java programming.

Section 4.4 discusses the second proposed family of metrics, i.e. Extended Style

Metrics, which builds upon the Modified Metrics, and adds new metrics based on

the author’s programming experience.

4.2 Existing Style Metrics

The main coding style metrics used in this chapter were derived from Krsul and

Spafford [95]. Krsul and Spafford’s coding style metrics were designed to be used in

the analysis of C programs; Ding and Samadezadeh [44] subsequently transformed

the coding style metrics from C to Java compatibility. The metrics are divided into

three categories [95], each category has main metrics and sub-metrics. In summary:

• Layout metrics: these are utilised to measure the similarity of the layout of

the files. Layout metrics measure similarities in such things as indentation,

type of comments, and white space before and after the brackets.

• Style metrics: these are utilised to measure the similarity of the style of the

files. Style similarities include mean variable length, mean comment length

and preference of condition stems.

• Structure metrics: these are utilised to measure the similarity of the structure

64

Chapter 4 4.2. Existing Style Metrics

of the files. Structure similarities include keywords within the class and the

interfaces and the usage of data structure.

The codes used for the 3 families of metrics (STY for Layout, PRO for Style

and PSM for Structure) are as taken from Krsul and Spafford’s original paper [95].

Those codes refer to the different classes of metric and submetric:

1. Layout Metrics: STY(nm);

2. Style Metrics: PRO(nm);

3. Structure Metrics: PSM(nm).

The number of metrics n and submetrics m in each category are as shown in

Table 4.1 below. There are 8 main metrics in the Layout category, 5 main metrics

in the Style category and 7 main metrics in the Structure category. The Layout

metrics are represented as STY1, STY2, .., STY8; the Style metrics as PRO1,

PRO2,.., PRO5 and the Structure metrics as PSM1, PSM2, .., PSM7.

Table 4.1: Number of Metrics and submetrics: STY, PRO and PSM as in [44]

Metric (n) Submetric(m)

STY 8 10

PRO 5 13

PSM 7 22

In Table 4.1, n represents the number of types of metric in each category and

m represents the number of sub-metrics of each type, to be identified by small letters

a→ z. There are 10 submetrics in the Layout category, 13 in the Style category and

22 in the Structure category. For example, in the Layout metrics, the metrics of

the first type STY1 consist of 8 sub-metrics represented by small letters: STY1a,

STY1b, STY1c, STY1d, STY1e, STY1f, STY1g and STY1h. In addition, each

sub-metric is described by features that relate to the main metric. For example,

65

Chapter 4 4.2. Existing Style Metrics

in the Style category, PRO2 refer to metrics associated with name length, and the

2 sub-metrics under this are PRO2a, which calculates mean variable name length,

and PRO2b, which calculates mean function name length.

The study of coding style metrics for plagiarism detection carried out in this

thesis began with the re-implementation of existing style metrics using the Python

programming language. In the process of re-implementation, there was a need for a

modification for some metrics in each category to reflect the analysis of coding style

that is most appropriate for detecting plagiarism rather than identifying authorship

[44]. The next subsections 4.3.1, 4.3.2 and 4.3.3 explain how the existing approach by

Ding and Samadzadeh [44] was modified to make it suitable for detecting plagiarism

rather than identifying authorship.

66

Chapter 4 4.3. Modified Style Metrics

4.3 Modified Style Metrics

The Modified metrics extend the metrics proposed by Ding and Samadzadeh [44].

Modifications were made to the Layout, Style and Structure metrics as described in

the subsections that follow.

4.3.1 Modified Layout Metrics (STY)

Table 4.2: Modified Layout metrics extracted from the source code of Java pro-
grams

Metric Description

STY1 A list of metrics indicating indentation style
STY1a Percentage of open braces ({) that are along a line
STY1b Percentage of open braces ({) that are the first character in a line
STY1c Percentage of open braces ({) that are the last character in a line
STY1d Percentage of close braces (}) that are along a line
STY1e Percentage of close braces (}) that are the first character in a line
STY1f Percentage of close braces (}) that are the last character in a line
STY1g Average indentation in white spaces after open braces ({)
STY1h Average indentation in tabs after open braces ({)
STY2 A list of metrics specifying comment style
STY2a Percentages of pure comment lines among lines containing comments
STY2b Percentages of “//” style comments among “//” and “/*” style comments

STY3
Percentages of condition lines where the statements are on the same line
as the condition. searching for if, if-else and switch-case

STY4 Average white spaces to the left side of operators
STY5 Average white spaces to the right side of operators
STY6 Ratio of blank lines to code lines (including comment lines)
STY7 Ratio of comment lines to non-comment lines
STY8 Ratio of code lines containing comment to code lines without any comments

These metrics consider the layout of the code. The features described in this

category are important as they can be used as a basis for building the underlying

infrastructure. Table 4.2 shows the layout metrics, denoted STY1-STY8. The STY

metrics category was the first one to be re-implemented as it is the basis of the other

metrics in the second and third categories. There are 8 main metrics and 10 sub

67

Chapter 4 4.3. Modified Style Metrics

1 import java.util.Scanner;

2

3 public class Main{

4 public static void main(String[] args) {

5 Scanner in= new Scanner(System.in);

6 int T= in.nextInt(); int n,t,s,answer=0;

7 for (int i = 0; i < T; i++) {

8 n=in.nextInt(); t=in.nextInt(); s=in.nextInt();

9 for (int j = 0; j < n; j++) {

10 int x=in.nextInt(); int nashti=x%3;

11 if(x==0 && s!=0) continue;

12 if(x/3>=s){ answer++; continue;}

13 if(x/3==(s-1)){

14 if(nashti>0){answer++; continue;}

15 if(t>0){t--; answer++; continue;}

16 }

17 if(x/3==(s-2)){

18 if(nashti>=2 && t>0){t--; answer++; continue;}

19 }

20 }

21 System.out.println("Case #"+(i+1)+": "+answer);

22 answer=0;

23 }

24 }

25 }

Figure 4.1: Java example: showing the STY3 metric in Modified Layout metrics

metrics in this category, focusing on the layout of the code, such as: indentation

style, including open and close braces in different cases, and indentation using white

spaces and tabs in code lines. The red colour in the table 4.2 shows our modified

layout metrics compared to the existing layout metrics which are shown in black.

STY3 calculates the percentage of condition lines with the statement on the

same line as the condition. This involves calculating and checking only condition

lines where the if, if-else and case-switch keywords are on the same line as the

statement. An example is shown in Figure 4.1; there are 7 condition lines which

contain if in (11, 12, 13, 14, 15, 17 and 18); the re-implementation takes this file

and tracks the condition lines (7 lines; expressed as a percentage of the total file

68

Chapter 4 4.3. Modified Style Metrics

lines).

Looking at another example of layout metrics: STY7 calculates the ratio

of comment lines to non-comment lines. This involves calculating and checking the

comment lines based on the metrics STY2 which take a vector of metrics specifying

comment style and the sub metrics STY2a (percentage of pure comment line among

line containing comments) and STY2b (percentage of “//” style comments among

“//” and “/*” style comments). The calculation for STY7 takes the number of lines

containing any kind of comment as a ratio to the non-comment lines. The rest of

the Layout metrics are described in Table 4.2.

4.3.2 Modified Style Metrics (PRO)

The PRO metrics in this category concern the style of the code in terms of many

aspects such as lengths of lines (number of characters), variables and functions.

These metrics are presented in Table 4.3. For example, the metrics look at whether

a character is lowercase or uppercase; whether underscores or dollar signs have been

used; and the conditions (if, else and switch-case) and the loops (while, for

and do) used.

PRO2a is shown in Table 4.3, the variables considered in this category

are only nine common data types in both the existing approach and the modified

approach. However, these types of data are upper and lower case sensitive, the

change here applied to string and boolean data types; the upper case and lower

case character both are checked in this category (see Table 4.8).

PRO5 is about calculating the preference of either if-else or switch-case

conditions, so there are four sub-metrics under PRO5: PRO5a, PRO5b, PRO5c and

PRO5d. There have been small changes in PRO5a and PRO5b.

1. PRO5a calculates the percentage of the if and else out of the total of if,

69

Chapter 4 4.3. Modified Style Metrics

Table 4.3: Modified Style metrics extracted from the source code of Java programs

Metric Description

PRO1 Mean Program line length in terms of characters
PRO2 A vector of metrics of name lengths
PRO2a Mean variable name length Changed string to String and boolean to Boolean
PRO2b Mean function name length
PRO3 Character preference of uppercase, lowercase, underscore, or dollar sign for

name convention.
PRO3a Percentage of uppercase characters
PRO3b Percentage of lowercase characters
PRO3c Percentage of underscores
PRO3d Percentage of dollar signs
PRO4 Preference of either while, for or do loops
PRO4a Percentage of while in total of while, for and do

PRO4b Percentage of switch in total of while, for and do

PRO4c Percentage of do in total of while, for and do

PRO5 Preference of either if-else or switch-case conditions

PRO5a
Percentage of if and else in total of if, else, switch, and case

Percentage of if, if-else in total of if, if-else and switch-case

PRO5b
Percentage of switch and case in total of if, else, switch, and case

Percentage of switch-case in total of if, if-else and switch-case

PRO5c Percentage of if in total of if and else. Discarded.
PRO5d Percentage of switch in total ofswitch and case. Discarded.

if-else and switch-case in the existing approach as shown in the table. The

change here in the modified metrics was to calculate instead the percentage of

if and if-else out of the total of if, if-else and switch-case. This is a

very simple modification but it does affect the percentage extracted.

2. In PRO5b, the total used for the percentage of switch-case was adjusted

to be the total of if, if-else and switch-case.

3. PRO5c and PRO5d have been discarded because they have already been

calculated in the two previous metrics PRO5a and PRO5b (see Table 4.3).

70

Chapter 4 4.3. Modified Style Metrics

4.3.3 Modified Structure Metrics (PSM)

Table 4.4: Modified Structure metrics extracted from the source code of Java
programs

Metric Description

PSM1 Average non-comment lines per class/interface
PSM2 Average number of primitive variables per class/interface Primitive variables

are the ones used in PRO2a
PSM3 Average number of functions per class/interface
PSM4 Ratio of interfaces to classes This metrics divided into 2
PSM4a Percentage of interfaces in total of interfaces and classes
PSM4b Percentage of classes in total of interfaces and classes
PSM5 Ratio of primitive variable count to lines of non-comment code
PSM6 Ratio of function count to lines of non-comment
PSM7 A list of ratios of keywords to lines of non-comment code
PSM7a Ratio of keyword static to lines of non-comment code
PSM7b Ratio of keyword extends to lines of non-comment code
PSM7c Ratio of keyword class to lines of non-comment code
PSM7d Ratio of keyword abstract to lines of non-comment code
PSM7e Ratio of keyword implements to lines of non-comment code
PSM7f Ratio of keyword import to lines of non-comment code
PSM7g Ratio of keyword instanceof to lines of non-comment code
PSM7h Ratio of keyword interface to lines of non-comment code
PSM7i Ratio of keyword native to lines of non-comment code
PSM7j Ratio of keyword new to lines of non-comment code
PSM7k Ratio of keyword package to lines of non-comment code
PSM7l Ratio of keyword privateto lines of non-comment code
PSM7m Ratio of keyword public to lines of non-comment code
PSM7n Ratio of keyword protected to lines of non-comment code
PSM7o Ratio of keyword this to lines of non-comment code
PSM7p Ratio of keyword super to lines of non-comment code
PSM7q Ratio of keyword try to lines of non-comment code
PSM7r Ratio of keyword throw to lines of non-comment code
PSM7s Ratio of keyword catch to lines of non-comment code
PSM7t Ratio of keyword final to lines of non-comment code

The PSM metrics in this category, as presented in Table 4.4, are concerned

with the logic of the code. Modifications in this category were to PSM2 and PSM4.

The metric PSM2 calculates the primitive variables without any specification and

the addition is to tag them as the variables used in PRO2a.

Moreover, PSM4 calculates the ratio of interfaces to classes without any

71

Chapter 4 4.3. Modified Style Metrics

specification in the fingerprint approach, whereas in the modified approach, this

metric has now been divided into 2 new metrics: PSM4a, which calculates the

percentage of interfaces in the total of interfaces and classes, and PSM4b, which

calculate the percentage of classes in the total of interfaces and classes 1.

To extract coding style features from the Java code, additional criteria need

to be considered:

• Comments:

Most of the files have some kind of programming language comments to de-

scribe the code or add some information about the code. In this research,

Java files have two kinds of comments and experts usually write comments

to add more clarification or explain how the code works. In this case, some

words of the code such as any condition, operation, or even white space, may

be repeated in the comments, which would definitely affect the final result of

the metrics. To address this issue, the re-implementation processes the file as

if there were no comments in the code by stripping the comments from the

code when required for some analyses.

For example, when it comes to detecting STY2: A list of metrics specifying

comment style, and STY2a: calculate the percentage of pure comment lines

among lines containing comments and the STY2b: calculate percentage of

“//” style comments among “//” and “/*” style comments: the code remains

as it is without any stripping. However, the comments are stripped from

the code when calculating the other metrics. In contrast, for the purpose of

computing certain metrics, such as STY6-8, removing all comments from the

1The value of the metric PSM4b can be inferred from that of the metric PSM4a, rendering it
redundant as a metric. However, the use of both metrics has a material impact on the matrix using
in the MFM technique to be introduced in Chapter 5. There are other instances of such redundancy
in the variants of metrics introduced in this chapter, cf. the metric STY3a

72

Chapter 4 4.3. Modified Style Metrics

code is not deemed to affect the number of lines in the file. Calculating each

metric uses the same input, apart from removing the comments from the code.

• Operations:

Table 4.5: The differences between the operations in the Modified metrics and the
Extended metrics

Existing Modified-Extended
+ += + ++ +=

- -= - -= ||
* *= * *= |=
/ /= / /= |
% %= % %= &&

= == = == instanceof

>> << >>>
> >= >>=

O
p

e
ra

ti
o
n

s

< <= <<=

! != ^=

a&b a|b aˆb
∼a

Metrics STY4 and STY5 calculate the average amounts of white space to the

left side and right side of the operators. The Existing approach considers just

12 operators based on what Ding and Samadezadeh [44] used in their research,

whereas there are a total of 34 operators available in the Java language ,as

shown in Table 4.5.

• Variables:

Defining the variables in the re-implementation is an essential stage; the vari-

ables were limited in the Existing approach to: short, int, long, float, double,

byte, char, boolean and string. The list was expanded to cover all variables

covered in the Java language. The new list included all the previous variables

and the new variables as follows: Short, Integer, Long, Float, Double, Byte,

Character, Boolean and String.

73

Chapter 4 4.3. Modified Style Metrics

The next section focuses on addressing the research objective OB 6 as set out in the

introduction in this chapter, viz. to propose and extend new metrics to enhance the

output from the implementation. As will be seen the Modified and the Extended

metrics play key role in the formulation of enhanced methods of plagiarism detection.

74

Chapter 4 4.4. Extended Style Metrics

4.4 Extended Style Metrics

One of the functional requirements for the re-implementation is to have better ac-

curacy in terms of plagiarism detection and find similar files in a big dataset. The

Modified Metrics presents the existing metrics with some modest modifications in

addition to Ding’s existing metrics [44]. In this section some metrics in each cate-

gory have been extended if they were not covered in the existing or modified metrics.

Based on my Java programming experience, I proposed and examined several ex-

tensions in the three existing metrics categories: Layout, Style and Structure that

have been used in Ding et. al [44]. The extended metrics in each table are written

in blue. The extended metrics proposed for more enhanced results in detection, are

presented in the next three subsections.

4.4.1 Extended Layout Metrics (STY)

For STY category, most of the metrics remained the same. However, STY3, which

calculates the percentage of the condition line when the statements are on the same

line as the condition, was split into 2 new metrics. The new metric STY3a calculates

the percentage of condition lines of (if, else, if-else and case-switch) where

the statements are on the same line as the condition. On the other hand, STY3b

calculates the percentage of condition lines of (if, else, if-else and case-switch)

where the statements are on a different line from the condition. The value of the

metric STY3b can be inferred from that of the metric STY3a, rendering it redun-

dant as a metric. However, the use of both metrics has a material impact on the

matrix using in the MFM technique to be introduced in Chapter 5. There are other

instances of such redundancy in the variants of metrics introduced in this chapter,

cf. the metric PSM4a.

75

Chapter 4 4.4. Extended Style Metrics

Table 4.6: Extended Layout metrics extracted from the source code of Java pro-
grams

Metric Description

STY1 A list of metrics indicating indentation style
STY1a Percentage of open braces ({) that are along a line
STY1b Percentage of open braces ({) that are the first character in a line
STY1c Percentage of open braces ({) that are the last character in a line
STY1d Percentage of close braces (}) that are along a line
STY1e Percentage of close braces (}) that are the first character in a line
STY1f Percentage of close braces (}) that are the last character in a line
STY1g Average indentation in white spaces after open braces ({)
STY1h Average indentation in tabs after open braces ({)
STY2 A vector of metrics specifying comment style
STY2a Percentages of pure comment lines among lines containing comments
STY2b Percentages of “//” style comments among “//” and “/*” style comments

STY3
Percentages of condition lines where the statements are on the same line
as the condition. searching for if, else, if-else and case-switch.
This metric divided into 2

STY3a Percentage of condition lines where the statement is on the same as the condi-
tion

STY3b Percentage of condition lines where the statement is on a different as the con-
dition

STY4 Average white spaces to the left side of all operators
STY5 Average white spaces to the right side of all operators
STY6 Ratio of blank lines to code lines (including comment lines)
STY7 Ratio of comment lines to non-comment lines
STY8 Ratio of code lines containing comment to code lines without any comments

4.4.2 Extended Style Metrics (PRO)

The PRO category covers the aspect of style of code as discussed in section 4.3.2.

Most of the metrics in the extended style metrics remain the same, however, there

is a slight change in this category in the PRO2 main metric.

The submetric PRO2a now includes datatype names with uppercase and

lowercase characters; they include datatype names with capitalised initial letter

(e.g. byte / Byte) and unabbreviated names (e.g. int / Integer).

The other metric affected in the proposed extended set was PRO3, which cal-

culates character preferences for uppercase, lowercase, underscore, or dollar sign for

76

Chapter 4 4.4. Extended Style Metrics

Table 4.7: Extended Style metrics extracted from the source code of Java pro-
grams

Metric Description

PRO1 Mean Program line length in terms of characters
PRO2 A vector of metrics of name lengths

PRO2a

Mean variable name length
Changed string to String and boolean to Boolean
Add new data types: byte, short, char, int, long, float, boolean, double
Byte, Short, Character, Integer, long, Float, Boolean, Double, String

PRO2b Mean function name length
PRO3 Character preference of uppercase, lowercase, underscore, or dollar sign for

name convention.
PRO3a Percentage of uppercase characters
PRO3b Percentage of lowercase characters
PRO3c Percentage of underscores
PRO3d Percentage of dollar signs
PRO3e Percentage of symbols other than those considered in PROa, PROb, PROc and

PROd
PRO4 Preference of either while, for or do loops
PRO4a Percentage of while in total of while, for and do

PRO4b Percentage of for in total of while, for and do

PRO4c Percentage of do in total of while, for and do

PRO5 Preference of either if-else or switch-case conditions

PRO5a
Percentage of if and else in total of if, else, switch-case
Percentage of if and if-else in total of if, if-else and switch-case

PRO5b
Percentage of switch-case in total of if, else, switch-case
Percentage of switch-case in total of if, if-else and switch-case

PRO5c Percentage of if in total of if and else. Discarded.
PRO5d Percentage of switch in total of switch and case. Discarded.

name convention. PRO3e calculate the percentage of symbols other than those con-

sidered in PRO3a, which calculates the percentage of uppercase characters; PRO3b,

which calculate the percentage of lowercase characters); PRO3c, which calculates

the percentage of underscores or PRO3d, which calculates the percentage of dollar

signs.

77

Chapter 4 4.4. Extended Style Metrics

Table 4.8: Extended Structure metrics extracted from the source code of Java
programs

Metric Description

PSM1 Average non-comment lines per class/interface
PSM2 Average number of primitive variables per class/interface Primitive variables

are the ones used in PRO2a
PSM3 Average number of functions per class/interface
PSM4 Ratio of interfaces to classes This metrics divided into 2
PSM4a Percentage of interfaces in total of interfaces and classes
PSM4b Percentage of classes in total of interfaces and classes
PSM5 Ratio of primitive variable count to lines of non-comment code
PSM6 Ratio of function count to lines of non-comment
PSM7 A list of ratios of keywords to lines of non-comment code
PSM7a Ratio of keyword static to lines of non-comment code
PSM7b Ratio of keyword extends to lines of non-comment code
PSM7c Ratio of keyword class to lines of non-comment code
PSM7d Ratio of keyword abstract to lines of non-comment code
PSM7e Ratio of keyword implements to lines of non-comment code
PSM7f Ratio of keyword import to lines of non-comment code
PSM7g Ratio of keyword instance of to lines of non-comment code
PSM7h Ratio of keyword interface to lines of non-comment code
PSM7i Ratio of keyword native to lines of non-comment code
PSM7j Ratio of keyword new to lines of non-comment code
PSM7k Ratio of keyword package to lines of non-comment code
PSM7l Ratio of keyword private to lines of non-comment code
PSM7m Ratio of keyword public to lines of non-comment code
PSM7n Ratio of keyword protected to lines of non-comment code
PSM7o Ratio of keyword this to lines of non-comment code
PSM7p Ratio of keyword super to lines of non-comment code
PSM7q Ratio of keyword try to lines of non-comment code
PSM7r Ratio of keyword throw to lines of non-comment code
PSM7s Ratio of keyword catch to lines of non-comment code
PSM8 Character preference of uppercase, lowercase, underscore, or dollar sign for

name convention
PSM8a Ratio of uppercase characters for classes and interfaces only
PSM8b Ratio of lowercase characters for classes and interfaces only
PSM8c Ratio of underscores for classes and interfaces only
PSM8d Ratio of dollar signs for classes and interfaces only
PSM8e Anything not covered in PSM8a, PSM8b, PSM8c and PSM8d
PSM9 Preference of either while, for or do loops
PSM9a Ratio of while in total of while, for and do for classes and interfaces only
PSM9b Ratio of for in total of while, for and do for classes and interfaces only
PSM9c Ratio of do in total of while, for and do for classes and interfaces only
PSM10 Preference of either if-else or switch-case conditions
PSM10a Ratio of if and if-else in total of if, if-else and switch-case for classes

and interfaces only
PSM10b Ratio of switch-case in total of if, if-else and switch-case for classes and

interfaces only 78

Chapter 4 4.4. Extended Style Metrics

4.4.3 Extended Structure Metrics (PSM)

The PSM category plays a very important role at this stage, as there were some

new additions which significantly enhance the power of the plagiarism techniques to

be derived from theses metrics in chapter 5 . The extensions are in 3 main metrics:

PSM8, PSM9 and PSM10; each of them is divided into several sub-metrics. All the

extensions are calculated for specific classes and interfaces only, whereas all the rest

of the metrics are calculated in terms of the overall file code.

Firstly, PSM8 is about character preference of uppercase, lowercase, un-

derscore or dollar sign for name convention, and it is divided into 5 sub-metrics:

PSM8a, PSM8b, PSM8c,PSM8d and PSM8e. First, PSM8a calculates the ratio

of uppercase characters for class and interfaces only. Second, PSM8b calculates

the ratio of lowercase characters for classes and interfaces only. Third, PSM8c

calculates the ratio of underscores for classes and interfaces only. Fourth, PSM8d

calculates the ratio of dollar signs for classes and interfaces only. Last, PSM8e

calculates everything not covered in PSM9a, PSM9b, PSM9c or PSM9d.

Secondly, PSM9 is about preferences of either while, for or do loops and it

is divided into 3 sub-metrics: PSM9a, PSM9b and PSM9c. First, PSM9a calculates

the percentage of while loops in the total of while, for and do loops for classes

and interfaces only. Second, PSM9b calculates the percentage of for loops in the

total of while, for and do loops for classes and interfaces only. Third, PSM9c

calculates the percentage of do loops in the total of while, for and do loops for

classes and interfaces only.

Thirdly, PSM10 is about preference of either if-else or switch-case con-

ditions and it is divided into 2 sub-metrics: PSM10a and PSM10b. First, PSM10a

calculates the percentage of if, if-else conditions in the total of if, if-else and

switch-case conditions for classes and interfaces only. Second, PSM10b calcu-

79

Chapter 4 4.5. Example

lates the percentage of switch-case conditions in the total of if, if-else and

switch-case statements for classes and interfaces only.

4.5 Example

The Java example in the Appendix to this chapter shows a sample of Java code

from SOCO dataset from group A1. The example is used to illustrate the results

of calculation simply presented in three categories (Layout, Style and Structure) as

required for each metric. This section shows the output calculation for both the

modified and extended approaches. The differences in the output will be discussed

for each metric where the extended approach picks up something different from the

modified approach.

4.5.1 Metrics Calculation

In each metric in each category, the main calculations are: the percentage, the

average or the ratio of items in the source code file. How these are calculated is

shown below: Table 4.2 shows which metric is used for each subcategory of the

Layout Metrics; Table 4.3 for the Style Metrics and Table 4.4 for the Structure

Metrics.

1. The Average: The most common type of average is the arithmetic mean

(AM). If n numbers are given, each number denoted by ai (where i = 1,2,...,

n), the arithmetic mean is the sum of the a’s divided by n or:

AM =
1

n

n∑
i=1

ai =
1

n
(a1 + a2 + ...+ an) (4.1)

80

Chapter 4 4.5. Example

2. The Percentage: The value of x as a percentage of y is computed as:

P = (x/y) ∗ 100 (4.2)

3. The Ratio: A ratio compares the number of instances of one entity with that

of another.

The next section presents the Modified metrics and the Extended metrics with their

submetrics’s calculation. The calculation of metrics has been implemented using

the Python programming language.

Layout Metrics Calculation

The total number of open braces in the Java example code in the Appendix to this

chapter is 22 open braces (in lines 11, 16, 21, 25, 27, 29, 31, 39, 62, 65, 68, 70, 73,

75, 83, 86, 91, 94, 96, 116, 117 and 122).

Number of open braces (OB)= 22

• STY1a calculates the percentage of open braces ({) which are within a line.

There are 4 such braces (lines 25, 27, 29 and 31), so the result is 4/OB =

18.1818%.

• STY1b calculates the percentage of open braces ({) that are the first character

in a line. There are 0 such braces, so the result is 0/OB = 0% .

• STY1c calculates the percentage of open braces ({) that are the last character

in a line. There are 18 such braces, so the result is 18/OB =81.8181%.

A similar calculation can be performed for close braces to calculate STY1d,

STY1e and STY1f.

81

Chapter 4 4.5. Example

• STY1g calculates the average indentation in white space after open braces ({),

the average is 0.

• STY1h calculates the average indentation tabs after open braces ({), the av-

erage is 0.

STY2 : A vector of metrics specifying comment style.

• STY2a calculates the percentage of pure comment lines among lines containing

comments. There are 7 pure comment lines (23, 87, 110, 111, 112, 113, 114)

and a further 3 in line comments (44, 45, 46), giving a percentage of 70%.

• STY2b calculates the percentage of “//” style comments among “//” and “/*”

style comments. The total number of “//” is 5 and “/*” is 1, so the total num-

ber of both comments is 6, and the calculated percentage is 5/6=83.3333%.

STY3 calculates the percentage of condition lines where the statements are

on the same line as the condition.

• STY3a The number of conditions in the code (CC) = 15, of which 14 are in

the same line, giving 14/CC =93.3333%.

• STY3b calculates the percentage of condition lines(CC) where the statements

are on a different line from the condition, i.e. 1/CC=6.6666%.

STY4 calculates the average of white space to the left side of operators

(WSL)= 84 . The total number of operators (95) in the code gives an average of

0.8842 white spaces per operator.

STY5 calculates the average of white space to the right side of operators

(WSR), and gives the same average figure of 0.8842 white spaces per operator.

82

Chapter 4 4.5. Example

STY6 calculates the ratio of blank lines to code lines (including comments).

The total number of blank lines in this code (BL)= 19, divided by the total number

of code lines (CL)= 109, the result is BL/CL = 0.1743.

STY7 calculates the ratio of comments lines to non-comments lines. The total

number of pure comments lines (7) divided by the total number of non-comments

lines (121) =0.0578 pure comments lines per non-comments line.

STY8 calculates the ratio of code lines containing comment to code lines

without any comments as 0.1010 code lines containing comment per code line with-

out any comments.

Table 4.9: Layout Metrics Calculation: Modified and Extended for Java Example

Modified Extended

STY1a 18.1818% STY1a 18.1818%

STY1b 0% STY1b 0%

STY1c 81.8181% STY1c 81.8181%

STY1d 18.1818% STY1d 18.1818%

STY1e 81.8181% STY1e 81.8181%

STY1f 0% STY1f 0%

STY1g 0 STY1g 0

STY1h 0 STY1h 0

STY2a 70% STY2a 70%

STY2b 83.3333% STY2b 83.3333%

STY3 93.3333% STY3a 93.3333%

STY3b 6.6666%

STY4 0.8842 STY4 0.7851

STY5 0.8842 STY5 0.7851

STY6 0.1743 STY6 0.1743

STY7 0.0578 STY7 0.0578

STY8 0.1010 STY8 0.1010

Style Metrics Calculation

his section will explain the calculation of the style metric in the Java example in the

Appendix to this chapter.

83

Chapter 4 4.5. Example

PRO1 calculates the mean of line length in terms of characters. The total

number of characters in the code (3178) divided by the total number of lines (128)

= 24.8281 characters per line.

PRO2: a vector of metrics of name length

• PRO2a calculates the mean variable name length. The variables length is (87)

/ the total number of variables (26) = 3.4166 characters per variable name.

• PRO2b calculates the mean function name length. The function length is (4)

/ the total number of variables (1) = 4 function length per variable.

PRO3: Character preferences of uppercase, lowercase, underscore, or dollar sign for

name convention.

• PRO3a calculates the percentage of uppercase characters,

• PRO3b calculates the percentage of lowercase characters,

• PRO3c calculates the percentage of underscore and PRO3d calculates the

percentage of dollar signs, among the sum of the lengths of both variables and

functions in the entire code, taken from PRO2a and PRO2b.

PRO4: Preference of either while, for or do loops.

• PRO4a calculates the percentage of while in the total of while, for and do;

there is not any while in this code, so the final value is 0.

• PRO4b calculates the percentage of for in the total of while, for and do.

The number of for is 3, divided by the total number of while, for and do

(3) gives 100%.

• PRO4c calculates the percentage of do in the total of while, for and do; there

is not any do in this code, so the final value is 0.

84

Chapter 4 4.5. Example

PRO5: Preference of either if-else or switch-case condition.

• PRO5a calculates the percentage of if and if-else in the total of if, if-

else and switch-case, giving 11/15=73.3333%.

• PRO5b calculates the percentage of switch-case in the total of if, if-else

and switch-case, giving 4/15=26.6666%.

Table 4.10: Style Metrics Calculation: Modified and Extended for Java Example

Modified Extended

PRO1 24.8281 PRO1 24.8281

PRO2a 3.4166 PRO2a 3.4166

PRO2b 4 PRO2b 4

PRO3a 1.0989% PRO3a 1.0989%

PRO3b 58.2417% PRO3b 58.2417%

PRO3c 0% PRO3c 0%

PRO3d 0% PRO3d 0%

PRO3e 40.6593%

PRO4a 0% PRO4a 0%

PRO4b 100% PRO4b 100%

PRO4c 0% PRO4c 0%

PRO5a 73.3333% PRO5a 73.3333%

PRO5b 26.6666% PRO5b 26.6666%

Structure Metrics Calculation

This section will explain the calculation of the structure metric in the Java example

in the Appendix to this chapter.

-The total number of class /interface (CI) = 1

PSM1 calculates the average non-comment lines per class/interface. The

total number of lines per class and interface is 111 divided by CI = 111 non-comment

lines per class/interface.

85

Chapter 4 4.5. Example

Table 4.11: Structure Metrics Calculation: Modified and Extended for Java Example

Modified Extended

PSM1 111 PSM1 111

PSM2 26 PSM2 26

PSM3 1 PSM3 1

PSM4a 0% PSM4a 0%

PSM4b 100% PSM4b 100%

PSM5 0.25490 PSM5 0.25490

PSM6 0.0098 PSM6 0.0098

PSM7a 0.0098 PSM7a 0.0098

PSM7b 0 PSM7b 0

PSM7c 0.0098 PSM7c 0.0098

PSM7d 0.0098 PSM7d 0.0098

PSM7e 0 PSM7e 0

PSM7f 0.0686 PSM7f 0.0686

PSM7g 0 PSM7g 0

PSM7h 0 PSM7h 0

PSM7i 0 PSM7i 0

PSM7j 0.0686 PSM7j 0.0686

PSM7k 0.0098 PSM7k 0.0098

PSM7l 0.0294 PSM7l 0.0294

PSM7m 0.0392 PSM7m 0.0392

PSM7n 0 PSM7n 0

PSM7o 0 PSM7o 0

PSM7p 0 PSM7p 0

PSM7q 0.0098 PSM7q 0.0098

PSM7r 0 PSM7r 0

PSM7s 0.0098 PSM7s 0.0098

PSM7t 0 PSM7t 0

PSM8a 1.0989

PSM8b 58.2417

PSM8c 0

PSM8d 0

PSM8e 40.6593

PSM9a 0

PSM9b 100

PSM9c 0

PSM10a 73.3333

PSM10b 26.6666

86

Chapter 4 4.5. Example

PSM2 calculates the average number of variables per class/interface. The

total number of variables is 26 divided CI = 26 variables per class/interface.

PSM3 calculates the average number of functions per class/interface. The

total number of functions in the code is 1, divided by CI = 1 function per class/in-

terface.

PSM4 calculates the ratio of interfaces to classes. This metric is divided into

two components:

• PSM4a: the percentage of interfaces in the total of interfaces and classes is

0%.

• PSM4b: the percentage of classes in the total of interfaces and classes is 100%.

- Number of lines of non-comment code (LNCC) = 102

- Total number of lines of code (LC) = 109

PSM5 calculates the ratio of variable count / LNCC= 26/102= 0.2549 prim-

itive variables per line of non-comment code.

PSM6 calculates the ratio of function count / LNCC= 1/102= 0.0098 func-

tions per line of non-comment code.

The calculation of the PSM7* metrics is here shown explicitly:

• PSM7a calculates ratio of the number of instances of keyword static / LNCC=The

total number of keyword static is 1/LNCC= 0.0098 keywords static per line

of non-comment code.

• PSM7b calculates the ratio of keyword extends / LNCC= The total number of

keyword extends is 0/ LNCC = 0 keywords extends per line of non-comment

code.

• PSM7c calculates the ratio of keyword class / LNCC= The total number of

87

Chapter 4 4.5. Example

keyword class is 1/LNCC = 0.0098 keywords class per line of non-comment

code.

• PSM7d calculates the ratio of keyword abstract / LNCC= the total number

of keyword abstract is 0/ LNCC= 0 keywords abstract per line of non-

comment code.

• PSM7e calculates the ratio of keyword implements / LNCC. The total number

of keyword implements is 0/ LNCC = 0 keywords implements per line of non-

comment code.

• PSM7f calculates the ratio of keyword import / LNCC= The total number

of keyword import is 7/ LNCC = 0.0686 keywords import per line of non-

comment code.

• PSM7g calculates the ratio of keyword instance of / LNCC = the total

number of keyword instance of is 0/ LNCC = 0 keywords instance of per

line of non-comment code.

• PSM7h calculates the ratio of keyword interface / LNCC = the total number

of keyword interface is 0/ LNCC = 0 keywords interface per line of non-

comment code.

• PSM7i calculates the ratio of keyword native LNCC= the total number of

keyword native is 0/ LNCC = 0 keywords native per line of non-comment

code.

• PSM7j calculates the ratio of keyword new LNCC= the total number of key-

word new is 7/ LNCC = 0.0686 keywords new per line of non-comment code.

• PSM7k calculates the ratio of keyword package LNCC= the total number of

88

Chapter 4 4.5. Example

keyword package is 0/ LNCC = 0 keywords package per line of non-comment

code.

• PSM7l calculates the ratio of keyword private LNCC= the total number of

keyword private is 0/ LNCC = 0 keywords private per line of non-comment

code.

• PSM7m calculates the ratio of keyword public LNCC= the total number

of keyword public is 3/ LNCC = 0.0294 keywords public per line of non-

comment code.

• PSM7n calculates the ratio of keyword protected LNCC= the total number

of keyword protected is 4/LNCC = 0.0392 keywords protected per line of

non-comment code.

• PSM7o calculates the ratio of keyword this LNCC= the total number of

keyword this is 0/ LNCC = 0 keywords this per line of non-comment code.

• PSM7p calculates the ratio of keyword super LNCC= the total number of

keyword super is 0/ LNCC = 0 keywords super per line of non-comment

code.

• PSM7q calculates the ratio of keyword try LNCC= the total number of

keyword try is 0/ LNCC = 0 keywords try per line of non-comment code.

• PSM7r calculates the ratio of keyword throw LNCC= the total number of

keyword throw is 1/ LNCC = 0.0098 keywords throw per line of non-comment

code.

• PSM7s calculates the ratio of keyword catch LNCC= the total number of

keyword catch is 1/ LNCC = 0.0098 keywords catch per line of non-comment

code.

89

Chapter 4 4.6. Conclusion

PSM8 Character preference of uppercase, lowercase, underscore, or dollar

sign for name convention.

- Total number of upper-case letters used in class and interface names (UC)

= 1

- Total number of lower-case letters used in class and interface names (LC)

= 53.

The calculation of the metrics PSM8, PSM9 and PSM10 follows a similar

pattern. All three metrics take account of the number of classes and interfaces.

4.6 Conclusion

In this chapter, the study used existing style analysis metrics as structure-based

metrics for plagiarism detection purposes. This research is one of few studies that

have investigated coding style analysis in order to identify plagiarism. Additionally,

the metrics have been enhanced by introducing two new families of metrics: the

Modified metrics and the Extended metrics. The two metrics cover these categories:

Layout, Style and Structure. This chapter proposed the Modified and the Extended

metrics to identify possible instances of plagiarism attacks. The Modified metrics

introduced the Modified programming metric STY3 that calculates the percentage

of condition lines where the statements are in the same line as the condition with

the aim of predicting an attack called “modification of control structure” [125]. The

Extended metrics introduced the Extended metrics PSM8, PSM9 and PSM10 [125]

with the aim of detecting an attack called “modification of control structure and

structural redesign of code”. This chapter has addressed research two objectives:

“To re-implement coding style metrics of the fingerprint to identify the plagiarism

cases” and “To modify and extend new style metrics to enrich the ability to detect

new cases of source code plagiarisms”. The calculation of the Modified and Extended

90

Chapter 4 4.6. Conclusion

metrics is illustrated with reference to the Java program in the Appendix to this

chapter. The outputs of the three categories are summarised and the differences

between the Modified and the Extended metrics are presented.

The next chapter will examine the way in which the Modified and the Ex-

tended metrics can be exploited in plagiarism detection. The Modified and the

Extended metrics will be embedded into a framework within which Singular Value

Decomposition analysis can be applied to plagiarism detection.

91

Chapter 4 4.6. Conclusion

Appendix: Java Code Example for Illustrating Metrics

Calculation

Code 4.1: Java Example

1 package Aufgabe2;

2

3 import java.io.FileInputStream;

4 import java.io.FileNotFoundException;

5 import java.io.FileOutputStream;

6 import java.io.InputStream;

7 import java.io.OutputStream;

8 import java.io.PrintWriter;

9 import java.util.Scanner;

10

11 public class Main {

12

13 private Scanner scanner;

14 private PrintWriter writer;

15

16 public Main(InputStream is, OutputStream os) {

17 scanner = new Scanner(is);

18 writer = new PrintWriter(os);

19 }

20

21 public void solve() {

22

23 // Unit Tests:

24 int tmp;

25 int tmp1[] = {15,13,11};

26 if (calculate(1, 5, tmp1)!=3) return;

27 int tmp2[] = {23,22,21};

28 if (calculate(0, 8, tmp2)!=2) return;

29 int tmp3[] = {8,0};

30 if (calculate(1, 1, tmp3)!=1) return;

31 int tmp4[] = {29,20,8,18,18,21};

32 if (calculate(2, 8, tmp4)!=3) return;

33

34 for (int i=0; i<200; i++)

35 System.out.println("");

36

37 int cases = scanner.nextInt();

38

92

Chapter 4 4.6. Conclusion

39 for (int i = 1; i <= cases; i++) {

40 writer.print("Case #");

41 writer.print(i + ": ");

42

43 scanner.nextLine();

44 int n = scanner.nextInt(); // number of Googlers

45 int s = scanner.nextInt(); // number of surprising triplets

46 int p = scanner.nextInt(); // minimum score

47 int t[] = new int[n];

48 for (int j = 0; j < n; j++)

49 t[j] = scanner.nextInt();

50

51 System.out.println(i + ": MinScore=" + p + ", Surprising Triplets="

+ s);

52 int result = calculate(s, p, t);

53

54 writer.println(result);

55 System.out.println(" -> " + result);

56 System.out.println("-------------");

57 }

58 writer.flush();

59 }

60

61 private int calculate(int noSurprisingScores,

62 int minimumScore, int[] scores) {

63 int result = 0;

64

65 for (int score : scores) {

66 int triplet[] = new int[3];

67 System.out.print(score + ": ");

68 switch (score % 3) {

69 case 0:

70 if (score / 3 >= minimumScore) {

71 result++;

72 System.out.println((score / 3) + "," + (score / 3) + "," + (score

/ 3));

73 } else {

74 if (noSurprisingScores > 0)

75 if (score / 3 + 1 >= minimumScore && score / 3 - 1 >= 0) {

76 result++;

77 noSurprisingScores--;

78 System.out.println((score / 3 - 1) + "," + (score / 3) + "," +

(score / 3 + 1) + " *");

79 }

Code 4.1 (Cont.): Java Example

93

Chapter 4 4.6. Conclusion

80 }

81 break;

82 case 1:

83 if ((score-1)/3 + 1 >= minimumScore) {

84 result++;

85 System.out.println((score-1)/3 + "," + ((score-1)/3) + "," +

((score-1)/3 + 1));

86 } else {

87 // Surprising Triplet fhrt nicht zur Erhhung des max Scores

88 }

89 break;

90 case 2:

91 if ((score-2)/3 + 1 >= minimumScore) {

92 result++;

93 System.out.println((score-2)/3 + "," + ((score-2)/3 + 1) + "," +

((score-2)/3 + 1));

94 } else {

95 if (noSurprisingScores > 0)

96 if ((score - 2) / 3 + 2 >= minimumScore) {

97 result++;

98 noSurprisingScores--;

99 System.out.println((score-2)/3 + "," + (score-2)/3 + "," +

((score-2)/3 + 2) + " *");

100 }

101 }

102 break;

103 }

104

105 }

106

107 return result;

108 }

109

110 /*

111 * private boolean exceedsMinumumScore(int[] triplet, int minScore) {

for

112 * (int i=0; i<3; i++) if (triplet[i] >= minScore) return true; return

113 * false; }

114 */

115

116 public static void main(String[] args) {

117 try {

118 InputStream is = new FileInputStream("B-small-attempt.in");

119 OutputStream os = new FileOutputStream("B-small-attempt.out");

Code 4.1 (Cont.): Java Example

94

Chapter 4 4.6. Conclusion

120 Main problem = new Main(is, os);

121 problem.solve();

122 } catch (FileNotFoundException e) {

123 e.printStackTrace();

124 }

125

126 System.out.println("finished");

127 }

128 }

Code 4.1 (Cont.): Java Example

95

Chapter 5

A Framework for Developing

Plagiarism Detection

Techniques

5.1 Introduction

The potential use of coding style metrics for plagiarism detection has been discussed

in the previous chapter. This chapter describes a framework for enhancing such

metrics based approaches using alternative techniques for statistical analysis.

Section 5.2 introduces a new framework for plagiarism detection modelled

on standard techniques for document analysis which are based on applying Sin-

gular Value Decomposition (SVD) to ‘term-document’ matrices (TDMs). These

techniques are generalised to apply to ‘metric-file’ matrices (MFMs). The section

describes background principles and concepts behind SVD. It also introduces the co-

sine similarity measure for detecting similar files in a dataset. Section 5.3 describes

the MFM framework for plagiarism detection in more detail and is followed by an

96

Chapter 5 5.2. Adapting TDM Analysis for Plagiarism

illustration of application of the MFM framework in section 5.4.

5.2 Adapting TDM Analysis for Plagiarism

One of the basic and most important tools for numerical analysis is Singular Value

Decomposition (SVD) which was established by five mathematicians: Eugenio Bel-

trami (1835–1899) and Camille Jordan (1838-1921) [137]; James Joseph Sylvester

(1814–1897), Erhard Schmidt (1876–1959) and Hermann Weyl (1885–1955) [137].

SVD is a technique for expressing a real or complex matrix A as a product

A[m×n] = U[m×r]

∑
[r×r](V[n×r])

T (5.1)

where
∑

is a diagonal matrix of singular values.

SVD has been applied in various scenarios such as for transforming genome-wide

expression data from genes [3] and finding the gene structure pattern and the un-

derlying “characteristic modes” [65]. Also, SVD has appeared in textual database

searching [14], robotics [11], financial mathematics [49] and data computation and

secure encryption [86] [133] [142]. In a medical context, SVD was introduced by

Ikeda et al. [69] for analysing ultrasound signals, to separate tissue flow and cav-

itation signals. Also, SVD has been used for detecting voting similarities between

politicians [122] [121].

In this thesis, we apply SVD to detect similarities between source code

files. For this purpose we adapt a technique for document analysis based on term-

document matrices. A term-document matrix has rows corresponding to documents

and columns corresponding to terms. The entry in row r and column c is the number

97

Chapter 5 5.2. Adapting TDM Analysis for Plagiarism

of times the term in column c occurs in the document in row r.

In its raw form, a term-document matrix is typically too large for mathe-

matical analysis. SVD makes it possible to derive a low-rank matrix approximation

which can be applied in document analysis (e.g for author identification and simi-

larity detection). We shall refer to such an application of SVD in conjunction with

a term-document matrix as a TDM approach to document analysis.

To adapt the TDM approach for detecting source code plagiarism, we sub-

stitute a metric-file matrix for a term-document matrix. In a metric-file matrix,

the rows represent the source code files in the dataset and the columns represent

the source code programming metrics being applied to the files. The entry in row

r and column c is the value of the metric in column c when applied to the source

file in row r. The substitution of metric-file matrices for term-document matrices

motivates us to generalise the TDM approach to a new metric-file matrix (MFM)

approach to plagiarism detection. This approach will now be explained in detail.

Let A = [aij] be an m × n metric-file matrix, where the m rows represent

files, the n columns are coding style metrics, and each cell of matrix A contains the

value of coding style metric i when applied to file j. SVD will be used to reduce the

dimensionality of the input matrix (number of input files by number of extracted

metrics).

SVD supplies a decomposition of the m × n matrix as a product of three

matrices:

A[m×n] = U[m×r]

∑
[r×r](V[n×r])

T (5.2)

where:

• A is the m× n input data matrix.

98

Chapter 5 5.2. Adapting TDM Analysis for Plagiarism

• U is the m× r matrix of left singular vectors.

•
∑

is r × r diagonal matrix of singular values.

• V is n× r matrix of right singular vectors.

n

m

A

∑

U

VT

Figure 5.1: Explanatory Diagrams of SVD

Conceptually, the rows of the matrix A correspond to files and the columns to

coding style metrics. The rows of the matrices U and V also correspond to files and

their columns to ‘concepts’ that characterise files in abstract mathematical terms.

The singular values in
∑

reflect the strength of each concept.

The rank r of matrix A is the number of non-zero diagonal elements of

matrix
∑

. As in the TDM approach, we shall use SVD to give a low-rank matrix

approximation to matrix A. To derive an approximation of rank k, we can select

the k largest singular values from the matrix
∑

, replacing the other singular values

by zero. This renders all but k columns from the matrices U and V redundant,

and the other columns in these matrices can be deleted. This process, described

as dimensionality reduction, means that the three matrices U ,
∑

and V can be

reduced to dimension m× k, k × k and n× k respectively.

The reduced matrices are denoted by Uk,
∑

k and Vk where Uk is a m × k

matrix,
∑

k is a k × k matrix and Vk is a n× k matrix. The rank k approximation

99

Chapter 5 5.2. Adapting TDM Analysis for Plagiarism

to matrix A can be constructed as Ak = Uk
∑

k V
T
k .

In deriving a low-rank matrix approximation, it is very important that k is

significantly smaller than r. Having a low value for the rank k reduces the noise

in the data and makes it easier to identify the relation between the coding style

metrics and the files. It is also helps to reduce the computation time [14] [13].

After SVD is applied to the metric-file matrix and the data is represented in

a reduced dimensional space, a new file (i.e. a query file) can be projected into the

space. The similarity of the query and the rest of the files can then be calculated

using the cosine similarity measure, as described in subsection 5.2.1.

The MFM approach as set out above can be based on many different sets of

coding style metrics. These include for instance the Modified and Extended families

of metrics introduced in chapter 4. On this basis, the MFM approach serves as a

framework for deriving plagiarism detection techniques from families of metrics.

In order to evaluate the performance of plagiarism techniques derived from

families of metrics within the MFM framework, the source code dataset was pro-

cessed in the following way. A number of groups of similar files were identified. One

or more files from each group were selected to be query files. The SVD approxima-

tion technique was applied to the files which were not selected to be the queries.

Once SVD was applied, the queries were projected into the space and their similarity

with the rest of the files was computed using the cosine similarity measure.

The metric-file matrix and queries record the coding-style metric values as

applied to the source code files. As explained in [14], a query vector q can derived

from a query file by applying each of the coding style metrics; the query vector

can then be projected to k-dimensional space. In [14] the roles of terms and docu-

ments are interchanged so that terms correspond to rows and documents to columns.

100

Chapter 5 5.2. Adapting TDM Analysis for Plagiarism

Taking this into account the projection to k-dimensional space is as follows:

Q = qVk
∑−1

k
(5.3)

5.2.1 Cosine Similarity

The query vector is projected by term-file space, and can be compared to all other

files using the cosine similarity measurement. Cosine similarity computes the angles

between a query and each file vector and returns the file IDs most similar to the

query, in ranked order. Hence, the result shows the file IDs in a rank list sorted in

descending order, which means the most similar values to the query have highest

rank.

A

BӨ

|A| cosӨ

Figure 5.2: Explanatory Diagrams of Cosine

The cosine similarity measurement is applied to two vectors, in our case two

k-dimensional vectors representing Java source code files. One of these vectors is

vector Q which is derived by projection as in equation 5.2. The other vector is

selected from the set {t1, t2, ..., tm} of vectors representing source code files in the

original dataset. For the j-th source code file the cosine similarity is then computed

as follows:

101

Chapter 5 5.2. Adapting TDM Analysis for Plagiarism

θj =
tTj q

||tj ||||q||
=

∑k
i=1 tjiqi√∑k

i=1 t
2
ji

√∑k
i=1 q

2
i

(5.4)

The performance of the proposed model is then evaluated using the Precision,

Recall and F-measure [25] [68] evaluation measures.

5.2.2 Performance Evaluation Measures

How well a similarity detection system performs is normally measured by two factors:

Precision and Rcall.

• Precision is the proportion of the retrieved files that are relevant. Precision is

computed as in formula 5.5, where T is the number of files similar to the query

in the dataset that are retrieved and R is the total number of files retrieved.

Precision is 1.00 when all the retrieved files are similar to the query.

P =
T

R
(5.5)

• Recall is the proportion of files similar to the query in the dataset that are

retrieved. Recall is computed as in formula 5.5, where T is the number of

files similar to the query in the dataset that are retrieved and S is the total

number of similar files in the dataset. Recall is 1.00 when every similar file is

retrieved.

R =
T

S
(5.6)

• F-measure or F1 score, is a measure that combines precision and recall and

it is the harmonic mean of precision and recall. The traditional F-measure

102

Chapter 5 5.2. Adapting TDM Analysis for Plagiarism

function is shown in (5.7)

F1 = 2× Precision×Recall
Precision+Recall

(5.7)

Dataset

S
Files similar to the Query

T
Files similar to the query that are retrieved

R
Files that are retrieved

S

T

R

Figure 5.3: Explanatory Diagram for Precision and Recall

Figure 5.3 depicts the relationship between the values R, S and T introduced above.

R is the total number of files retrieved, S is the total number of files similar to the

query in the dataset and T is the number of files similar to the query in the dataset

that are retrieved.

The application of the MFM framework is based on theoretical principles and

concepts described in this section. The following section in this chapter discuss the

practical application of the MFM framework in more detail. The empirical results

of this application, as set out on the rest of the thesis, have been computed using the

MATLAB software package. The implementation of the key techniques described

above makes use of standard procedures for Singular Value Decomposition analysis

built into the MATLAB environment.

103

Chapter 5 5.3. The MFM Framework for Plagiarism Detection

5.3 The MFM Framework for Plagiarism Detection

This section introduces a new framework which takes advantage of analysis of source

code style metrics based on SVD to enhance source code similarity detection.

The proposed framework can exploit the Modified and the Extended families

of metrics introduced in sections 4.3 and 4.4. These respectively provide the basis

for the Modified MFM and Extended MFM approaches to plagiarism detection.

The components of the proposed framework are presented in Figure 5.4,

where each component has a specific computational function to accomplish in the

analysis process.

Stage 1 Stage 2 Stage 3 Stage 4

Dataset Structure Based SVD Evaluation

PHASE 1 PHASE 2

Family of
coding
style

metrics

Figure 5.4: Outline of the main components of MFM Framework

5.3.1 Phase One in the Application of the MFM Framework

As shown in 5.4 there are two stages in the first phase of the application of the

MFM framework:

104

Chapter 5 5.3. The MFM Framework for Plagiarism Detection

1. Stage 1: the source code dataset has been downloaded, and the files in the

dataset are not pre-processed.

2. Stage 2: A family of coding style metrics is used to represent source code files

by metric-file matrices. In this chapter, the Modified and Extended families

of metrics introduced in chapter 4 are chosen for further study.

5.3.2 Phase Two in the Application of the MFM Framework

This phase includes the SVD calculation and analysis. It consists of two main stages:

1. Stage 3: the output from the previous phase - a family of metric-file matri-

ces - is subjected to SVD, which reduces the noise in the data and produces

relationships between the files.

2. Stage 4: present the results of the SVD analysis, measuring the similarity

between files using cosine similarity calculation and evaluating the results with

respect to the Precision, Recall and F-measure.

105

Chapter 5 5.4. Illustrating the Application of the MFM Framework

5.4 Illustrating the Application of the MFM Frame-

work

In order to illustrate the application of the MFM framework, several components

are proposed to fulfill the task of capturing the source code style and identifying

similar files. The components and their detailed implementation are presented in

the subsections that follow.

5.4.1 The Dataset

Experiments were performed using the SOCO dataset. The dataset contains source

code files created by the PAN@FIRE event which was derived from Google Jam

competition 2012. So this research obtained the dataset from PAN@FIRE to be

described in more detail chapter 6 in section 6.2. The dataset contains 6 sub-folders

A1, A2, B1, B2, C1 and C2. The results obtained through application of the MFM

framework are compared with those obtained from the standard JPlag plagiarism

detection tool [125].

5.4.2 Coding Style Metrics

Stage two requires a family of coding style metrics. The application of the MFM

framework is illustrated by using the Modified metrics introduced in chapter 4.

Table 5.1 shows the results from just category one, the modified layout metrics, for

4 files denoted as F1, F2, F3 and F4 which were extracted from a group of files (i.e.

Group A1) found in the SOCO dataset. The coding style metrics are calculated

as discussed in the chapter 4 example. So, for example, STY1c is calculating the

percentage of open braces ({) that are the last character in the line. In the table

the results of F1, F2, F3 and F4 for STY1c are all 100%. The three tables 5.1, 5.2

106

Chapter 5 5.4. Illustrating the Application of the MFM Framework

and 5.3 show calculations for each programming metric with the four files. F1 is

labelled as a query and F2 is the similar file to F1; similarly, F3 is a query and F4

is the similar file to F3.

Table 5.1: Modified Layout Metrics: F1 and F3 are JPlag queries, F2 and F4 are
similar files

File ID F1 F2 F3 F4

STY1a 0% 0% 0% 0%

STY1b 0% 0% 0% 0%

STY1c 100% 100% 100% 100%

STY1d 0% 0% 0% 0%

STY1e 100% 100% 100% 100%

STY1f 0% 0% 0% 0%

STY1g 0 0 0 0

STY1h 0 0 0 0

STY2a 50% 50% 100% 100%

STY2b 100% 100% 100% 100%

STY3 100% 100% 100% 100%

STY4 0.596 0.596 0.069 0.069

STY5 0.557 0.557 0.093 0.093

STY6 0.189 0.189 0.212 0.212

STY7 0.031 0.031 0.021 0.021

STY8 0.077 0.077 0.025 0.025

107

Chapter 5 5.4. Illustrating the Application of the MFM Framework

Table 5.2: Modified Style Metrics : F1 and F3 are JPlag queries, F2 and F4 are
similar files

File ID F1 F2 F3 F4

PRO1 25.083 25.083 15.082 15.082

PRO2a 4.7619 4.7619 4.057 4.057

PRO2b 12.75 12.75 17 17

PRO3a 2.649% 2.649% 4.166% 4.166%

PRO3b 90.728% 90.728% 87.5% 87.5%

PRO3c 0% 0% 0% 0%

PRO3d 0% 0% 0% 0%

PRO4a 12.5% 12.5% 100% 100%

PRO4b 87.5% 87.5% 0% 0%

PRO4c 0% 0% 0% 0%

PRO5a 100% 100% 100% 100%

PRO5b 0% 0% 0% 0%

In order to evaluate the similarity detection performance of the proposed

framework, a set of queries and their relevant files were required. The process for

creating the sets of queries and their similar files was performed using the JPlag

tool.

The dataset was initially passed into the external tool JPlag for identifying

the queries and the similar files. The output consisted of groups of similar source

code files that were detected by JPlag. Each group has a query file, along with its

relevant files that are suspected to be similar to the main file. The queries were

transformed into a vector which means the values of the metrics in the query would

be non-zero elements in the query. The results from JPlag are shown in Figure 5.5:

the main files are on the left hand side, whereas the similar files are on the right

hand side. One main file can have many similar files.

108

Chapter 5 5.4. Illustrating the Application of the MFM Framework

Table 5.3: Modified Structure Metrics : F1 and F3 are JPlag queries, F2 and F4
are similar files

File ID F1 F2 F3 F4

PSM1 188 188 92 92

PSM2 21 21 19 19

PSM3 4 4 1 1

PSM4a 0% 0% 0% 0%

PSM4b 100% 100% 100% 100%

PSM5 0.196 0.196 0.243 0.243

PSM6 0.037 0.037 0.012 0.012

PSM7a 0.009 0.009 0.025 0.025

PSM7b 0 0 0 0

PSM7c 0.009 0.009 0.012 0.012

PSM7d 0 0 0 0

PSM7e 0 0 0 0

PSM7f 0.065 0.065 0.012 0.012

PSM7g 0 0 0 0

PSM7h 0 0 0 0

PSM7i 0 0 0 0

PSM7j 0.102 0.102 0.051 0.051

PSM7k 0.009 0.009 0.012 0.012

PSM7l 0 0 0 0

PSM7m 0.065 0.065 0.038 0.038

PSM7n 0 0 0 0

PSM7o 0 0 0 0

PSM7p 0 0 0 0

PSM7q 0.018 0.018 0.012 0.012

PSM7r 0 0 0 0

PSM7s 0.018 0.018 0.012 0.012

PSM7t 0.009 0.009 0 0

5.4.3 SVD Analysis and Cosine Similarity

SVD was applied to the matrices created after applying the Modified metrics. For

the styling metrics in each category (Layout, Style and Structure), the value of each

metric was calculated and metric-file matrices were created. The metric-file matrices

were subjected to SVD analysis with reference to a list of queries and their relevant

109

Chapter 5 5.4. Illustrating the Application of the MFM Framework

Figure 5.5: The output results from JPlag for A1 files and relevant files

files.

Table 5.4 and 5.5 presents the results of the two queries: Q1(A12531) and

Q2(A12250) for the A1 group. The two tables consist of three columns: the first

column shows how the relevant files are ranked based on the Cosine similarity after

applying SVD analysis, the second column shows the names of relevant file in group

A1, renamed as F1, F2, ... and the third column represents the similarity as assessed

by a human expert.

Table 5.4 presents the results of the query (1: A12531). The results show

110

Chapter 5 5.4. Illustrating the Application of the MFM Framework

Figure 5.6: The A1 files imported to JPlag

Query ID Relevant File Total Relevant Similarity Value

F1 F2 1 100.0%

F3 F4 1 100.0%

the top 10 files returned for Q1. The files are ranked based on the cosine similarity

value. Each file in the ranked list was scrutinised by a human judge, such that all the

returned files were manually checked for similarity with the query in order to identify

the file pairs which contained similarity that could be regarded as suspicious. This

revealed that relevant file F1 is similar to the query 1, whereas file F5 contained

parts similar to the query 1 but the file was not detected by JPlag.

Table 5.5 presents the results of the query (2: A12250). The table shows the

top 10 files returned as potentially most similar to the query as gauged by Cosine

similarity. There are two similar files to the query, and these files were returned

with ranking 1 and ranking 7. The file that is ranked 1 is more similar to the query

file than the file in position 7.

111

Chapter 5 5.4. Illustrating the Application of the MFM Framework

Table 5.4: Query 1 (F1): Number of relevant files and similarity file rank

Rank Relevant Files Similarity

1 F1 1

2 F2 0

3 F3 0

4 F4 0

5 F5 1

6 F6 0

7 F7 0

8 F8 0

9 F9 0

10 F10 0

Table 5.5: Query 2 (F3): Number of relevant files and similarity file rank

Rank Relevant Files Similarity

1 F1 1

2 F2 0

3 F3 0

4 F4 0

5 F5 0

6 F6 0

7 F7 1

8 F8 0

9 F9 0

10 F10 0

112

Chapter 5 5.5. Conclusion

5.4.4 Evaluation Stage

In Phase two, stage 4, the application of the MFM framework to plagiarism detection

was assessed using the evaluation measures Precision, Recall and the F−measure.

The similarity values given to files in the ranked list differentiate between potentially

relevant and non-relevant files for a given query, supplemented by human inspection

as shown in Table 5.6.

Table 5.6: Evaluation measures for Q1 and Q2

Query ID Precision Recall f-measure

Query 1 0.33 1.00 0.50

Query 2 0.20 1.00 0.33

Some files were not detected by JPlag but were detected by our approach,

which improved detection accuracy.

5.5 Conclusion

This chapter has introduced a novel framework for detecting similarity in source

code files. The framework combines style metrics with analysis based on Singular

Value Decomposition. It has been designed to extract informative features, apply

deep text analysis principles and enhanced style analysis for plagiarism detection.

The framework is based on re-implementation and refinement of robust and well

established techniques for code similarity detection based on existing, Modified and

Extended metrics.

The application of proposed framework has been illustrated (in section 5.4)

with an example using a small corpus of source code. The MFM framework provides

a feature extraction technique to shrink the high-dimensional vector space that re-

sults from fingerprint re-implementation. The evaluation of the proposed framework

113

Chapter 5 5.5. Conclusion

is based on Recall, Precision and F−measure calculation.

Chapter 6 presents thorough evaluations using the MFM framework de-

scribed in this chapter. These evaluations were performed using SOCO, a large

benchmark dataset which contains groups of plagiarised files.

114

Chapter 6

Results and Evaluation

6.1 Introduction

This chapter presents the main results of the proposed similarity detection frame-

work presented in Chapter 5. The SOCO dataset is described, along with the sub-

sets of similar files which were used for evaluating the performance of the proposed

method compared to alternative methods.

In Chapter 4, two families of metrics were proposed which can be embedded

in the MFM framework. These were named the Modified and Extended families.

The Modified metrics are explained in section 4.3 and the Extended metrics are

described in 4.4.

The chapter is organised as follows: section 6.2 describes the SOCO dataset,

and 6.3 presents the results of evaluating plagiarism detection techniques derived

using the MFM framework on the SOCO dataset. The performance of the MFM

approach is evaluated using the Precision, Recall and F−measures. Section 6.3.2

compares the results of the evaluation to methods presented in the PAN@FIRE

competition using the SOCO dataset [53]. The last section 6.4 explains the types

115

Chapter 6 6.2. Dataset Description: SOCO

of attacks that the MFM approach can detect and which other approaches it fails

to detect.

6.2 Dataset Description: SOCO

The Internet has provided easy access to information; there are repositories, forums

and blogs, all making source code available so that it can be read, copied, and

modified. Programmers are encouraged to avoid reinventing the wheel and to reuse

available source code. There is such a large volume of resources on the Web, that

manually analysing suspicious code is not feasible, and thus automatic re-use detec-

tion systems are needed. While software companies can be seen to have a special

interest in protecting their intellectual property, more than three quarters of 3,970

developers surveyed admitted to re-using source code they had found elsewhere

without giving appropriate credit to the author of the code [105]. Therefore, it is

important to consider academic environments as well as commercial programming

environments to look for similarities in re-used source code which does not include

appropriate citations (i.e. plagiarism). Since there can be a degree of similarity

between student programming solutions - especially those that have been designed

to solve a specific problem – detecting plagiarism in source code can be a difficult

task.

6.2.1 Forum for Information Retrieval Evaluation

The “Forum for Information Retrieval Evaluation” (FIRE), was established in India

in 2008, under the umbrella of “The Information Retrieval Society of India” (IRSI),

20041. The aim of the society is to provide a common ground for learning, and

exchange of knowledge and ideas between researchers. FIRE was needed as elec-

1http://www.irsi.res.in/

116

Chapter 6 6.2. Dataset Description: SOCO

tronic documents increased 700% between 2000 and 2007. Information Retrieval

(IR) systems were needed to access these data for research. FIRE aims to: provide

a platform for developing and evaluating information access technologies by pro-

viding large scale test collections; provide infrastructure for comparing IR systems;

explore new IR techniques; and explore mono- or cross-lingual document retrieval

methods. The FIRE forum runs every year with the same aims and different tasks

[55]. The tasks concerning detection in recent years were:

1. CL!TR @2011(Cross Language !ndian Text Reuse)

2. CL!NSS @2012-2013 (Cross Language !ndian News Story Search)

3. SOCO @2014 (source codece COde) in two programming languages: C/C++

and Java [54]

4. CL-SOCO @2015 (Cross-Language source codece COde Re-use) [52]

5. PR-SOCO @2016 (Personality Recognition in SOurce COde) [128] Regarding

programming style and personality, Bishop-Clark [17] and Zhara [81] investi-

gated the relation between the cognitive style and personality of the author

and their computer programming style.

6.2.2 SOCO

SOCO is a task which is part of FIRE that involved identifying and distinguishing

the most similar source code pairs in a large source code collection [42]. SOCO

focuses on source code re-use detection. It contains monolingual source code devel-

oped in an academic environment. SOCO is a large source code dataset and contains

code pairs that share great similarity, and hence may be instances of plagiarism. The

files are taken from Google Code Jam 2012.

117

Chapter 6 6.2. Dataset Description: SOCO

A1 A2 B1 B2 C1 C2 Total

Java 3,241 3,093 3,268 2,266 124 88 12,080

Table 6.1: Number of source codes files in SOCO @2014 in groups: A1, A2, B1, B2,
C1 and C2

6.2.3 Google Code Jam

Google hosts and administers Google Code Jam as an international programming

competition2, which comprises algorithmic problems to which the solution (in any

programming language and development environment) must be given within a set

time. It started in 2003 to identify the most talented engineers for Google to employ

[29]. Several rounds are conducted each year, and these are usually called: the

Qualification Round, Rounds 1A, 1B and 1C, Round 2, Round 3, and a Final Round

[29]. The competition requires that participants develop similarity detection tools

for detecting re-used source code pairs from the SOCO dataset. SOCO participants

annotated several blocks of source code to identify cases where source code had

been re-used. SOCO contains two sets of data, Training and Testing. The training

data is a collection of programs written in the C and Java programming languages,

and which were obtained from a previous study [6]. The testing data comprised

source code taken from the 2012 edition of the Google Jam Contest [64] [46]. In

the experiments described in this chapter, the testing data comprised a Java test

collection. Six monolingual scenarios designated A1, A2, B1, B2, C1 and C2 were

used, as detailed in Table 6.1. File names are made up of the name of their scenario

together with an identifier. For example, file B10021 denotes scenario B1 and has

the identifier number 0021. The total number of submitted files in C/C++ group

was 19,895 and the number of Java files was 12,080 [54] [29].

2https://code.google.com/codejam/

118

Chapter 6 6.3. Experimental Results

6.3 Experimental Results

This section presents the results of the proposed framework (which merges the struc-

ture based approach with the SVD approach) using the SOCO dataset in chapter

5. The performance of the proposed framework is evaluated using Precision, Recall

and F-measure, as described in section 5.2.2. The experimental methodology is pre-

sented in Chapter 5 - section 5.3. After SVD, dimensionality reduction was applied

on each of the structure based metrics using 2 dimensions k = 2 3. Comparisons

were performed after the plagiarism methods were applied to SOCO dataset.

• JPlag Queries: JPlag is a well-defined tool for detecting plagiarism and

finding similarities in a set of source code in Java. JPlag works as a tool that

takes different source code files and compares them on a pairwise basis, and

computes the total similarity value. JPlag converts each source code file into a

list of tokens and then applies a Greedy String Styling method to detect similar

substrings of code [148]. JPlag provides the result as an HTML output and

provides the similar source code fragments in similar file pairs. JPlag returns

a main file along with its similar files. Each main file, as shown in (6.1), is

treated as a query file for the experiments which are described in Section 6.3.1

and onward.

Figure 6.1: JPlag Queries

3The value k = 2 was chosen after an empirical study in which the similarity rankings of the
top 10 files with values of k in the range 2 to 60 were compared

119

Chapter 6 6.3. Experimental Results

• SOCO Queries: As described in section 6.2, the SOCO dataset is split into

two datasets: a training and testing dataset, and for each dataset there are

relevance judgement files (i.e. known similar files)4. As can be seen in table

6.1, the number of source code files in the test set are significantly higher that

the number of files in the training set. The files considered in the experiment

as queries are from group A1, A2, B1, B2 and C2 in the test set. The reason

for using the test dataset is because it contained groups of similar files which

enabled the comparison between the proposed and other methods.

6.3.1 JPlag Queries: Results of the MFM-Modified and MFM-

Extended Approaches

Table 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 present the experimental results using the six

groups of similar source code files found in the SOCO dataset (A1, A2, B1, B2,

C1 and C2). The first column shows the Query number. The second and the

fifth column, Precision@mR shows the maximum value of Precision in the top R

retrieved files for each query, where R is the total number of similar files for a

query. The third and sixth column, R@10, show the value of Recall at the 10th

ranked file. The fourth and the seventh column show the F−measure values. The

last row of each table shows the average of each column. In the discussion that

follows, X.M indicates that data X was prepared using the MFM approach with

the Modified metrics. X.E indicates that the data X was prepared using the MFM

approach with the Extended metrics. These two approaches will be refer to as

the ‘MFM-Modified’ and ‘MFM-Extended’ approaches respectively. For example,

A1.M indicates applying the MFM-Modified approach to the A1 dataset, and A1.E

indicates applying the MFM-Extended approach to the A1 dataset.

4http://users.dsic.upv.es/grupos/nle/soco/

120

Chapter 6 6.3. Experimental Results

Table 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 show the results when performing eval-

uations using the queries from the A1, A2, B1, C1, C2 datasets, respectively using

the MFM-Modified and the MFM-Extended approaches.

Table 6.2: Group A1, with JPlag Queries from the MFM-Modified and MFM-
Extended approaches

A1.M A1.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 0.50 1.00 0.67 0.50 1.00 0.67

Q2 1.00 1.00 1.00 1.00 1.00 1.00

Q3 1.00 0.33 0.50 1.00 0.33 0.50

Q4 1.00 1.00 1.00 1.00 1.00 1.00

Q5 1.00 1.00 1.00 1.00 1.00 1.00

Q6 0.50 1.00 0.67 0.50 1.00 0.67

Q7 0.50 1.00 0.67 0.50 1.00 0.67

Q8 0.50 1.00 0.67 0.50 1.00 0.67

Q9 0.50 1.00 0.67 0.50 1.00 0.67

Q10 0.33 1.00 0.50 1.00 1.00 1.00

Q11 0.33 1.00 0.50 1.00 1.00 1.00

Q12 0.50 1.00 0.67 1.00 1.00 1.00

Q13 0.50 1.00 0.67 1.00 1.00 1.00

Average 0.63 0.95 0.71 0.81 0.95 0.83

121

Chapter 6 6.3. Experimental Results

Table 6.3: Group A2, with JPlag Queries when applying the MFM-Modified and
MFM-Extended Approaches

A2.M A2.E

Q1 P@mR R@10 F-measure P@mR R@10 F-measure

Q2 0.50 1.00 0.67 0.50 1.00 0.67

Q3 0.50 0.50 0.50 0.50 0.50 0.50

Q4 0.50 1.00 0.67 0.50 1.00 0.67

Q5 0.50 1.00 0.67 0.50 1.00 0.67

Q6 0.50 1.00 0.67 0.50 1.00 0.67

Q7 0.33 1.00 0.50 0.50 1.00 0.67

Q8 1.00 1.00 1.00 1.00 1.00 0.67

Q9 0.50 1.00 0.67 0.50 1.00 0.67

Q10 0.50 1.00 0.67 1.00 1.00 1.00

Q11 0.50 1.00 0.67 1.00 1.00 1.00

Q12 0.50 0.50 0.50 0.50 0.50 0.50

Q13 0.33 1.00 0.50 1.00 1.00 1.00

Q14 0.33 1.00 0.50 1.00 1.00 1.00

Q15 0.50 0.50 0.50 0.50 0.50 0.50

Q16 0.50 1.00 0.67 1.00 1.00 1.00

Q17 0.50 1.00 0.67 1.00 1.00 1.00

Q18 0.50 1.00 0.67 1.00 1.00 1.00

Average 0.50 0.91 0.63 0.74 0.91 0.77

122

Chapter 6 6.3. Experimental Results

Table 6.4: Group B1, with JPlag Queries when applying the MFM-Modified and
MFM-Extended Approaches

B1.M B1.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 0.20 0.50 0.29 0.50 0.50 0.50

Q2 1.00 1.00 1.00 1.00 1.00 1.00

Q3 0.50 1.00 0.67 1.00 1.00 1.00

Q4 0.33 1.00 0.50 0.50 1.00 0.67

Q5 0.50 1.00 0.67 0.50 1.00 0.67

Q6 0.50 1.00 0.67 0.50 1.00 0.67

Q7 1.00 1.00 1.00 1.00 1.00 1.00

Q8 1.00 1.00 1.00 1.00 1.00 1.00

Q9 0.50 1.00 0.67 1.00 1.00 1.00

Q10 1.00 1.00 1.00 1.00 1.00 1.00

Q11 1.00 1.00 1.00 1.00 1.00 1.00

Q12 0.50 1.00 0.67 1.00 1.00 1.00

Q13 0.50 1.00 0.67 1.00 1.00 1.00

Q14 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.68 0.96 0.77 0.86 0.96 0.89

Table 6.5: Group B2, with JPlag Queries when applying the MFM-Modified and
MFM-Extended Approaches

B2.M B2.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 0.50 1.00 0.67 0.50 1.00 0.67

Q3 0.50 0.50 0.50 1.00 0.50 0.67

Q4 0.33 1.00 0.50 0.33 1.00 0.50

Q5 0.33 1.00 0.50 1.00 1.00 1.00

Q6 0.50 1.00 1.00 1.00 1.00 1.00

Average 0.53 0.92 0.69 0.81 0.92 0.81

123

Chapter 6 6.3. Experimental Results

Table 6.6: Group C1, with JPlag Queries when applying the MFM-Modified and
MFM-Extended Approaches

C1.M C1.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 0.50 1.00 0.67 1.00 1.00 1.00

Q3 0.50 1.00 0.67 0.50 1.00 0.67

Q4 1.00 1.00 1.00 1.00 1.00 1.00

Q5 0.50 1.00 0.67 1.00 1.00 1.00

Average 0.70 1.00 0.80 0.90 1.00 0.93

Table 6.7: Group C2, with JPlag Queries when applying the MFM-Modified and
MFM-Extended Approaches

C2.M C2.E

P@mR R F-measure P@mR R F-measure

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 0.50 1.00 0.67 1.00 1.00 1.00

Q3 1.00 0.50 0.67 1.00 0.50 0.67

Q4 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.83 0.83 0.83 1.00 0.83 0.92

124

C
h

a
p

te
r

6
6
.3

.
E

x
p

e
rim

e
n
ta

l
R

e
su

lts

Table 6.8: The overall results are drawn from previous tables when applying the MFM-Modified and MFM-Extended
Approaches showing Precision, Recall and F-measure averages

X.Modified X.Extended

P R F-measure P R F-measure P (E vs M) R (E vs M) F-measure (E vs M)

A1 0.630 0.950 0.710 0.810 0.950 0.830 +0.180 0.000 +0.120
A2 0.500 0.910 0.630 0.740 0.910 0.770 +0.240 0.000 +0.140
B1 0.680 0.960 0.770 0.860 0.960 0.890 +0.180 0.000 +0.120
B2 0.530 0.920 0.690 0.810 0.920 0.810 +0.280 0.000 +0.120
C1 0.700 1.000 0.800 0.900 1.000 0.930 +0.200 0.000 +0.130
C2 0.830 0.830 0.830 0.830 0.830 0.920 +0.000 0.000 +0.090

Average 0.645 0.928 0.738 0.825 0.928 0.858 +0.180 0.000 +0.120

125

Chapter 6 6.3. Experimental Results

Figure 6.2: The output results from JPlag for the A1 dataset queries and their
similar files.

Table 6.8 shows the average results for each dataset, and the final row of the

table shows the Average performance of the MFM-Modified and MFM-Extended

approaches across all queries. The last column of Table 6.8 shows the difference

in performance when using the MFM-Modified and MFM-Extended approaches.

Figure 6.2 illustrates the results shown in Table 6.8.

The results shown in Table 6.8 reveal that overall, when adopting the MFM-

Extended approach, similarity detection performance was consistently higher in re-

spect of Precision and F-measure. Recall was not affected. In particular, there was

an increase of 0.18 points in average Precision, and 0.12 points in the F-measure

when using the MFM-Extended approach as opposed to the MFM-Modified ap-

proach. The results thus indicate that using the MFM-Extended approach, more

similar files are returned when a user is trying to detect similar source code files.

126

Chapter 6 6.3. Experimental Results

6.3.2 SOCO Queries: Results of the MFM-Modified and MFM-

Extended Approaches

This section provides a description of seven methods which were compared with

plagiarism detection techniques derived from the MFM framework. All seven meth-

ods were applied to SOCO dataset. Five of the methods are described by Flores at

al. [54] and the other two methods are benchmark source code similarity detection

methods. Note that the next section summarises the approaches which are described

by Flores et al. [54]; details of those approaches were limited and the paper did not

publish further background or analysis.

6.3.2.1 Participation Overview

The SOCO competition (see section 6.2) resulted in five solutions each proposed by

a different team. The results of the MFM approach are compared with the results

of each team, since the same datasets were used for the experiments carried out

to evaluate the MFM approach. The details of each team and their solutions are

provided below:

• UAEM [59]: Autonomous University of the State of Mexico. This team

developed a model for source code detection which contained 4 phases: in the

first phase, lexical items and whitespaces are removed. The second phase uses

a similarity measurement to compute the similarity value for each source code

compared to other source codes. The third phase ranks the distances between

the files based on their similarity values to other files. The fourth phase is

the decision phase which returns the files whose distance measure is less than

0.45.

• UAM-C [1]: Universidad Autonoma Metropolitana - Unidad Cuajimalpa

127

Chapter 6 6.3. Experimental Results

analysed the source code with respect to 3 different types of similarity: lex-

ical, structural and stylistic. For lexical analysis, they considered a bag of

3-grams 5, excluding the programming language’s reserved words. The au-

thors proposed techniques for identifying structural similarities. For detecting

stylistic changes, the counts of the style attributes such as number of spaces

and number of upper case characters were considered. For each category (lex-

ical, structural and stylistic) they calculated a similarity value. The authors

also trained a supervised approach for detecting similar source code files in

the corpus.

• DCU [58]: Dublin City University used an information retrieval approach for

detecting plagiarised source code files. They used an Abstract Syntax Tree

(AST) of source code and created a model for source code file indexing.

• Rajat [54]: proposed a method based on a string comparison technique. Their

approach calculates the number of common lines and the total number of lines.

The results obtained are based on the similarity value.

• Apoorv [54]: proposed a method following a string matching technique and

similarity measurement. The selected files that had a high similarity value

were considered to be a similar.

The MFM-Modified and MFM-Extended approaches were also compared with the

following two benchmark methods:

• Baseline 1 [125]: which is a greedy string tiling algorithm to compare the

string in the detected source code file.

• Baseline 2 [53]: which consists of a character 3-gram based model, and com-

putes the cosine similarity value between file pairs.

5An n-gram is a contiguous sequence of n items from a given sample of text or speech.

128

Chapter 6 6.3. Experimental Results

Table 6.9, 6.10, 6.11, 6.12 and 6.13 present the results of the performance of

the MFM detection methods and other algorithms when applied to the SOCO (A1,

A2, B1, B2, C1 and C2) dataset.

Table 6.9: Group A1, with SOCO Queries from MFM-Modified and MFM-Extended
Approaches

A1.M A1.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 0.50 1.00 0.67 1.00 1.00 1.00

Q2 0.50 1.00 0.67 1.00 1.00 1.00

Q3 1.00 1.00 1.00 1.00 1.00 1.00

Q4 0.50 1.00 0.67 0.50 1.00 0.67

Q5 0.50 1.00 0.67 0.50 1.00 0.67

Q6 0.50 1.00 0.67 0.50 1.00 0.67

Q7 1.00 1.00 1.00 0.50 1.00 0.67

Q8 0.50 1.00 0.67 0.50 1.00 0.67

Q9 0.50 1.00 0.67 0.50 1.00 0.67

Q10 1.00 1.00 1.00 0.50 1.00 0.67

Q11 0.50 1.00 0.67 0.50 1.00 0.67

Q12 1.00 1.00 1.00 0.50 1.00 1.00

Q13 0.50 1.00 0.67 1.00 1.00 1.00

Q14 0.50 1.00 0.67 1.00 1.00 1.00

Q15 0.50 1.00 0.67 0.50 1.00 0.67

Q16 0.50 1.00 0.67 0.50 1.00 0.67

Q17 0.50 1.00 0.67 0.50 1.00 0.67

Average 0.62 1.00 0.75 0.65 1.00 0.78

129

Chapter 6 6.3. Experimental Results

Table 6.10: Group A2, with SOCO Queries from MFM-Modified and MFM-
Extended Approaches

A2.M A2.E

P R F-measure P R F-measure

Q1 0.50 1.00 0.67 0.50 1.00 0.67

Q2 0.50 1.00 0.67 0.50 1.00 0.67

Q3 1.00 1.00 1.00 1.00 1.00 1.00

Q4 0.50 1.00 0.67 0.50 1.00 0.67

Q5 1.00 1.00 1.00 1.00 1.00 1.00

Q6 0.50 1.00 0.67 0.50 1.00 0.67

Q7 0.50 1.00 0.67 0.50 1.00 0.67

Q8 0.50 1.00 0.67 0.50 1.00 0.67

Q9 0.50 1.00 0.67 0.50 1.00 0.67

Q10 0.50 1.00 0.67 0.50 1.00 0.67

Q11 0.33 1.00 0.50 1.00 1.00 1.00

Q12 0.50 1.00 0.67 0.50 1.00 0.67

Q13 0.50 1.00 0.67 0.50 1.00 0.67

Average 0.56 1.00 0.71 0.62 1.00 0.74

130

Chapter 6 6.3. Experimental Results

Table 6.11: Group B1, with SOCO Queries from MFM-Modified and MFM-
Extended Approaches

B1.M B1.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 0.20 0.50 0.29 0.33 1.00 0.50

Q2 0.50 1.00 0.67 0.50 1.00 0.67

Q3 0.50 1.00 0.67 0.50 1.00 0.67

Q4 0.50 1.00 0.67 0.50 1.00 0.67

Q5 0.50 1.00 0.67 0.50 1.00 0.67

Q6 1.00 1.00 1.00 0.50 1.00 0.67

Q7 0.33 1.00 0.50 0.50 1.00 0.67

Q8 0.50 1.00 0.67 0.50 1.00 0.67

Q9 0.50 1.00 0.67 0.50 1.00 0.67

Q10 0.50 1.00 0.67 1.00 1.00 1.00

Q11 1.00 1.00 1.00 1.00 1.00 1.00

Q12 0.50 1.00 0.67 0.50 1.00 0.67

Q13 0.50 1.00 0.67 0.50 1.00 0.67

Q14 0.50 1.00 0.67 0.50 1.00 0.67

Q15 0.50 1.00 0.67 0.50 1.00 0.67

Q16 0.50 1.00 0.67 0.50 1.00 0.67

Q17 0.50 1.00 0.67 0.50 1.00 0.67

Q18 0.50 1.00 0.67 1.00 1.00 1.00

Q19 1.00 1.00 1.00 0.50 1.00 0.67

Q20 0.50 1.00 0.67 1.00 1.00 1.00

Average 0.55 0.98 0.69 0.59 1.00 0.73

Table 6.12: Group B2, with SOCO Queries from MFM-Modified and MFM-
Extended Approaches

B2.M B2.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 0.50 1.00 0.67 0.50 1.00 0.67

Q3 0.50 1.00 0.67 0.50 1.00 0.67

Q4 0.33 1.00 0.50 0.50 1.00 0.67

Q5 0.50 1.00 0.67 0.50 1.00 0.67

Q6 0.50 1.00 1.00 0.50 1.00 1.00

Q8 0.50 1.00 0.67 0.50 1.00 0.67

Average 0.55 1.00 0.74 0.57 1.00 0.76

131

Chapter 6 6.3. Experimental Results

Table 6.13: Group C2, with SOCO Queries from MFM-Modified and MFM-
Extended Approaches

C2.M C2.E

P@mR R@10 F-measure P@mR R@10 F-measure

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 0.50 1.00 0.67 1.00 1.00 1.00

Q3 1.00 1.00 1.00 0.50 1.00 0.67

Average 0.83 1.00 0.89 0.83 1.00 0.89

132

C
h

a
p

te
r

6
6
.3

.
E

x
p

e
rim

e
n
ta

l
R

e
su

lts

Table 6.14: Results of the MFM-Modified, MFM-Extended Approaches, and of methods proposed by participants in the
SOCO competition using the SOCO dataset and Queries

A1 A2 B1 B2 C2

F1 P R F1 P R F1 P R F1 P R F1 P R

MFM-M 0.750 0.620 1.00 0.705 0.564 1.00 0.690 0.550 0.980 0.740 0.550 1.00 0.890 0.830 1.00

MFM-E 0.780 0.650 1.00 0.744 0.615 1.00 0.730 0.590 1.00 0.760 0.570 1.00 0.890 0.830 1.00

UAEM 0.25 0.143 1.00 0.234 0.133 1.00 0.234 0.193 1.00 0.248 0.142 1.00 0.5 0.333 1.00

UAM-C 0.755 0.607 1.00 0.058 0.03 0.957 0.021 0.01 0.973 0.027 0.014 1.00 0.111 0.019 0.143

DCU 0.667 0.5 1.00 0.676 0.511 1.00 0.702 0.541 1.00 0.687 0.523 1.00 0.667 0.5 1.00

Baseline 1 0.324 0.6 0.222 0.388 0.65 0.277 0.237 0.55 0.151 0.556 0.75 0.441 0.824 0.7 1.00

Baseline 2 0.529 0.439 0.667 0.737 0.434 0.702 0.559 0.472 0.685 0.568 0.463 0.735 0.667 0.5 1.00

Apoorv 0.025 0.013 0.759 0.021 0.011 0.702 0.038 0.019 0.863 0.25 0.013 0.853 0.275 0.159 1.00

Rajat 0.352 0.241 0.648 0.337 0.232 0.617 0.54 0.425 0.74 0.369 0.275 0.559 0.718 0.56 1.00

133

Chapter 6 6.3. Experimental Results

Table 6.15: The average F-measure of all queries across the dataset groups

Team Name A1 A2 B1 B2 C2

MFM-Modified 0.750 0.705 0.690 0.738 0.889

MFM-Extended 0.780 0.741 0.730 0.762 0.889

UAEM 0.250 0.234 0.234 0.248 0.500

UAM-C 0.755 0.058 0.021 0.027 0.111

DCU 0.667 0.676 0.702 0.687 0.667

Baseline 1 0.324 0.388 0.237 0.556 0.824

Baseline 2 0.529 0.737 0.559 0.568 0.667

Apoorv 0.025 0.021 0.038 0.250 0.275

Rajat 0.352 0.337 0.540 0.369 0.718

Table 6.15 presents the overall results in F-measure across all datasets. Note

that UAM-C team gives relatively poor results For groups A2, B1, B2 and C2; this

can be attributed to their use of machine learning techniques which are effective only

on large datasets. The MFM-Extended approach achieved the highest F-measure

value compared to the other methods. In particular, when applying the MFM-

Extended approach to detect similar files in the A1 dataset, the F-measure value

reached 0.780, which was the highest compared to all other methods. Second place

was the method proposed by the UAM-C group, which achieved an F-measure of

0.755.

Similarly, the F-measures for the MFM-Extended approach were higher than

the competitors for the datasets: A2 (0.741 vs. next highest was Baseline 2 with

0.737); B1 (0.730 vs. next highest was DCU 0.702); B2 (0.762 vs. next highest

was the MFM-Modified approach with 0.738); and C2 (MFM-Extended and MFM-

Modified tied with 0.889, vs. the next highest was Baseline 1 with 0.824).

134

Chapter 6 6.4. The Failure Analysis

Table 6.16: The overall average of evaluation calculation across the dataset groups

Team Name F-measure Average Precision Average Recall Average

MFM-Modified 0.7534 0.6228 1.00

MFM-Extended 0.7807 0.6517 1.00

UAEM 0.2932 0.1888 1.00

UAM-C 0.1944 0.136 0.8146

DCU 0.6798 0.515 1.00

Baseline 1 0.4658 0.65 0.4182

Baseline 2 0.612 0.4616 0.7578

Apoorv 0.1218 0.043 0.8354

Rajat 0.4632 0.3466 0.7128

6.4 The Failure Analysis

There are some drawbacks of JPlag when it comes to detecting similarities in Java

source code. JPlag document [125] analysed some successful and non-successful

plagiarising attacks. JPlag is token based and the authors focus on techniques for

detecting ’local confusion’ in a fragment of code. Local confusion is a strategy for

plagiarism whereby short fragments of the original code are changed in such a way

that the overall functionality of the program is unaffected [125].

There are 3 types of plagiarism attack as discussed in [125], and they are

listed below:

1. Futile Attack: this is the kind of attack (attempt at plagiarism) that is

very unlikely to work (i.e. go undetected) because it does not modify the

tokens that are considered by JPlag. Table 6.17 presents 9 types of futile

attacks which do not affect JPlag’s ability to detect plagiarism. For example,

modifying comments does not disguise plagiarism since JPlag removes the

comments when parsing. Table 6.17 shows the number of programs that had

attempted each type of attack in one study, followed by (after the slash), the

number that were initially undetected; most of the attacks were successfully

135

Chapter 6 6.4. The Failure Analysis

detected.

2. Granularity-Sensitive Attacks: this is the kind of attack that relates to

Java classes which consist of declarations of methods and variables. How

successful this type of attack is will depend on the size of the section that has

been reordered (i.e. its granularity) - reordering large chunks of text is more

likely to be detected than multiple small changes. Table 6.18 presents two

types of attacks and shows that a minority did avoid detection by JPlag.

3. Locally Confusing Attacks: this is the kind of attack that relates to the

logic and the control structure of the code, and it is the type of attack most

likely to be successful (avoid detection). Table 6.19 shows ten types of attacks

which JPlag struggled to detect, especially the last three.

Table 6.17: Futile Attack [125]

Futile Attack

Attack Name # Program

1 Modification of code formatting 48/0

2 Insertion, modification or deletion of comments 30/0

3 Translation from English to German or vice verse 19/0

4 Modification of program output or of its formatting 14/2

5 Change names of variables, methods or class 44/0

6 Split/merge of variables deceleration 6/0

7 Insertion, modification or deletion of modifiers 6/0

8 Modification of constant values 3/0

9 No change at all 4/0

Table 6.18: Granularity-Sensitive Attacks [125]

Granularity-Sensitive Attacks

Attack Name # Program

1 Reordering within blocks of variable declaration 25/6

2 Global reordering of variables and method declarations 30/3

136

Chapter 6 6.4. The Failure Analysis

Table 6.19: Locally Confusing Attacks [125]

Locally Confusing Attacks

Attack Name # Program

1 Modification of control structure 35/35

2 Temporary variables and sub-expressions 28/28

3 Inlining and refactoring 20/16

4 Modification of scope 9/9

5 Statement reordering in absence of data dependencies 8/6

6 Mathematical identities 5/2

7 Introduction of bugs on purpose 5/3
8 Modification of data structure 6/5

9 Redundancy 15/15

10 Structural redesign of code 3/3

Table 6.20: Attacks identified by applying the MFM-Extended approach to the
SOCO dataset which were not identified by JPlag or the Proposed Modified ap-
proach

Group Name of Attack Metrics

A1.M

A1.E Mathematical Identity E.STY4 and E.STY6

A2.M

A2.E

B1.M

B1.E Modification of control structure
STY3a, STY3b,
PRO5a, PRO5b,

PSM9 and PSM10

B2.M

B2.E

C2.M

C2.E

Tables 6.17, 6.18 and 6.19 are taken from Prechelt [125]. A closer inspection

of the results presented in section 6.3 shows that tha MFM-Extended approach

exposes attacks that other tools fail to detect. Table 6.20 lists instances of attacks

that were found in the SOCO dataset using the MFM-Extended approach that were

not detected by other methods. The A1 group has 17 queries, and observing the

137

Chapter 6 6.5. Conclusion

MFM-Extended approach results (A1.E), 4 out of 17 files were detected as having

an attack that relates to Locally Confusing JPlag Attacks [125]. Regarding the

B1 group, which has 20 queries, approach B1.E identified 5 files that also contain

Locally Confusing attacks. The two main types of locally confusing attacks detected

are: 1- Modification of control structure and 2- Mathematical identities.

6.5 Conclusion

The chapter presents the results of evaluating the MFM framework (see Chapter

5 for details) when adopting the Modified and Extended programming metrics.

In order to compare the performance of the framework using each set of metrics,

experiments were conducted using a number of queries. The MFM approach was

also compared to other plagiarism detection methods. The experimental results

demonstrated that the MFM framework was able to detect similar files that JPlag

failed to detect. In addition, the MFM-Extended approach outperformed the MFM-

Modified approach when comparing the results obtained using SOCO queries. The

next chapter discusses the overall thesis including the summary, contributions and

limitations of the research. It also discusses future work.

138

Chapter 7

Conclusion

7.1 Introduction

The thesis investigates the suitability of style metrics for source code plagiarism

detection. New style metrics are proposed which are suitable for source code pla-

giarism detection. The proposed metrics are embedded into a framework which is

evaluated using a large benchmark source code dataset. The performance of the

proposed framework is also compared against other plagiarism detection methods.

This chapter summarises the main contributions of this thesis and emphasises the

significance of the contributions in relation to existing research. Finally, it outlines

some suggestions for future work in this area.

139

Chapter 7 7.2. Summary of the Research

7.2 Summary of the Research

The main aim of this thesis is to examine coding style analysis using a structure

based approach for detecting source code plagiarism. In order to achieve this goal,

the research describe in this thesis has three aspects:

1: Relevant literature and identification of suitable dataset. In

chapter 2, the relevant literature was reviewed and gaps in source code plagiarism

detection were identified. It was found that not many studies exist which have

covered style based source code plagiarism detection techniques. The results of the

current study contribute to the literature in this area. There are also few benchmark

datasets which are suitable for source code similarity detection studies. In chapter

3, the suitability of the BlackBox dataset was investigated via an exploratory study

using two techniques - Grouping and Visualisation.

2: Design and Implementation of new style metrics. Programming

style metrics using a structure based approach were implemented, and these are

described in Chapter 4. Two new families of style metrics were proposed: Modified

and Extended.

3: Design and evaluation of a source code plagiarism detection

framework. In chapter 5, a framework for source code similarity detection frame-

work was proposed. This was modelled on a well established statistical approach to

document analysis and applied Singular Value Decomposition to metric-file matrices

in order to reduce the dimensionality of the data and to reveal the underlying rela-

tions between files. In Chapter 6, the results of the framework were presented and

discussed with reference to standard JPlag and SOCO queries. The results were then

compared to other source code plagiarism detection methods using the benchmark

SOCO dataset, and were evaluated using the Precision, Recall and F −measure

140

Chapter 7 7.3. Study Contributions

evaluation measures typically applied in the context of plagiarism detection.

7.3 Study Contributions

This thesis has three novel contributions.

1. The first contribution is related to BlackBox characteristics. BlackBox is a

massive dataset [22]. In order to identify a valid sample to work with in this

study, the research has followed a specific procedure (see chapter 3). Five

groups were analysed, two of which were found to contain some similar files.

The number of plagiarised file pairs/groups in BlackBox was not enough to

thoroughly evaluate the performance of plagiarism detection methods based

on style analysis. For this reason, BlackBox was not used for evaluating the

plagiarism detection framework proposed in this thesis, but the research did

identify datasets that can be used by other researchers who are working on

source code similarity tasks.

2. Existing programming style metrics (Layout, Style and Structure) are cur-

rently used to detect authorship. The research described in this thesis differs

from these current trends in that existing programming style metrics were

adapted for source code plagiarism detection. In order to adapt these metrics

for this study aim, we have re-implemented existing programming style met-

rics and derived two new structure based approaches based on Modified and

Extended families of metrics (chapter 4). This addresses limitations in exist-

ing coding style analysis to improve the similarity detection between source

code files.

3. The most important contributions of the study is a proposed novel framework

(the ‘metric-file matrix’ framework) for statistical analysis of source code simi-

141

Chapter 7 7.4. Limitations and Future Work

larities based on coding style metrics (chapter 5). In the MFM framework, Sin-

gular Value Decomposition is applied to ‘metric-file matrices’ derived from cod-

ing style metrics. This leads to more effective methods of plagiarism detection

as assessed via the evaluation measures: Precision, Recall and F−measure

(chapter 6). For example, the use of the Extended family of metrics (chapter

4) within MFM framework can identify two plagiarism attacks (Modification

of control structure attack and Mathematical Identity attack) that other tools

such as the JPlag tool could not detect.

To the author’s knowledge, this research is the first attempt to address the

limitations in source code similarity detection using existing programming style

metrics.

7.4 Limitations and Future Work

This study focuses on Java programming language. Therefore, future work includes

adopting the proposed framework and applying it for other programming languages.

In order to do this, the style metrics will need to be edited to be suitable for the

specific programming language. The generic nature of the MFM framework means

that such changes to families of style metrics can be readily applied.

Future work also includes applying the proposed framework to larger source

code datasets which are available online, such as the GitHub repository. Given that

the framework is suitable for SOCO, which is a large dataset, it is expected that it

should be effective in detecting similar source code in other large datasets. Other

studies can also include datasets composed of academic submissions for source code

detection. Every tool needs an interface, and future work also includes creating an

interface which allows the user to view the similar files and code fragments.

142

References

[1] A. Ramırez-de-la Cruz, G. Ramırez-de-la Rosa, C. S.-S. W. A. L.-R. H. J.-S.

C. R.-L. [n.d.], ‘Detection of source code reuse by means of combining different

types of epresentations’, FIRE [4] .

[2] Ajmal, O., Missen, M. S., Hashmat, T., Moosa, M. and Ali, T. [2013], Eplag: A

two layer source code plagiarism detection system, in ‘Digital Information Man-

agement (ICDIM), 2013 Eighth International Conference on’, IEEE, pp. 256–

261.

[3] Alter, O., Brown, P. O. and Botstein, D. [2000], ‘Singular value decomposition

for genome-wide expression data processing and modeling’, Proceedings of the

National Academy of Sciences 97(18), 10101–10106.

[4] Ammann, M. and Cameron, R. D. [1994], Measuring program structure with

inter-module metrics, in ‘Computer Software and Applications Conference,

1994. COMPSAC 94. Proceedings., Eighteenth Annual International’, IEEE,

pp. 139–144.

[5] Arabyarmohamady, S., Moradi, H. and Asadpour, M. [2012], A coding style-

based plagiarism detection, in ‘Interactive Mobile and Computer Aided Learn-

ing (IMCL), 2012 International Conference on’, IEEE, pp. 180–186.

143

[6] Arwin, C. and Tahaghoghi, S. M. [2006], Plagiarism detection across program-

ming languages, in ‘Proceedings of the 29th Australasian Computer Science

Conference-Volume 48’, Australian Computer Society, Inc., pp. 277–286.

[7] Austin, M. J. and Brown, L. D. [1999], ‘Internet plagiarism: Developing strate-

gies to curb student academic dishonesty’, The Internet and Higher Education

2(1), 21–33.

[8] Bandara, U. and Wijayarathna, G. [2013], ‘Source code author identification

with unsupervised feature learning’, Pattern Recognition Letters 34(3), 330–

334.

[9] Barbosa, A. d. A., Costa, E. d. B. and Brito, P. H. [2018], Adaptive clustering

of codes for assessment in introductory programming courses, in ‘International

Conference on Intelligent Tutoring Systems’, Springer, pp. 13–22.

[10] Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M. and Bier, L. [1998], Clone

detection using abstract syntax trees, in ‘Software Maintenance, 1998. Proceed-

ings., International Conference on’, IEEE, pp. 368–377.

[11] Belta, C. and Kumar, V. [2002], ‘An SVD-based projection method for interpo-

lation on se (3)’, IEEE transactions on Robotics and Automation 18(3), 334–

345.

[12] Bengio, Y. et al. [2009], ‘Learning deep architectures for AI’, Foundations and

Trends in Machine Learning 2(1), 1–127.

[13] Berry, M. W. [1992], ‘Large-scale sparse singular value computations’, The

International Journal of Supercomputing Applications 6(1), 13–49.

[14] Berry, M. W., Dumais, S. T. and OBrien, G. W. [1995], ‘Using linear algebra

for intelligent information retrieval’, SIAM Review 37(4), 573–595.

144

[15] Berry, R. E. and Meekings, B. A. [1985], ‘A style analysis of C programs’,

Communications of the ACM 28(1), 80–88.

[16] Biemann, C. and Nygaard, V. [2010], Crowdsourcing wordnet, in ‘The 5th

International Conference of the Global WordNet Association (GWC-2010)’.

[17] Bishop-Clark, C. [1995], ‘Cognitive style, personality, and computer program-

ming’, Computers in Human Behavior 11(2), 241–260.

[18] Bowyer, K. W. and Hall, L. O. [1999], Experience using ”MOSS” to detect

cheating on programming assignments, in ‘Frontiers in Education Conference,

1999. FIE’99. 29th Annual’, Vol. 3, IEEE, pp. 13B3–18.

[19] Breiman, L. [2001], ‘Random forests’, Machine Learning 45(1), 5–32.

[20] Brin, S., Davis, J. and Garcia-Molina, H. [1995], Copy detection mechanisms

for digital documents, in ‘ACM SIGMOD Record’, Vol. 24, ACM, pp. 398–409.

[21] Brown, N. C. and Altadmri, A. [2017], ‘Novice Java programming mistakes:

large-scale data vs. educator beliefs’, ACM Transactions on Computing Edu-

cation (TOCE) 17(2), 7.

[22] Brown, N. C. C., Kölling, M., McCall, D. and Utting, I. [2014], Blackbox:

A large scale repository of novice programmers’ activity, in ‘Proceedings of

the 45th ACM technical symposium on Computer Science Education’, ACM,

pp. 223–228.

[23] Burrows, S., Tahaghoghi, S. M. and Zobel, J. [2007], ‘Efficient plagiarism detec-

tion for large code repositories’, Software: Practice and Experience 37(2), 151–

175.

145

[24] Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi,

F. and Greenstadt, R. [2015], De-anonymizing programmers via code stylom-

etry, in ‘24th USENIX Security Symposium (USENIX Security 15)’, pp. 255–

270.

[25] Cederberg, S. and Widdows, D. [2003], Using LSA and noun coordination in-

formation to improve the precision and recall of automatic hyponymy extrac-

tion, in ‘Proceedings of the Seventh Conference on Natural Language Learning

at HLT-NAACL 2003-Volume 4’, Association for Computational Linguistics,

pp. 111–118.

[26] Chen, X., Francia, B., Li, M., Mckinnon, B. and Seker, A. [2004], ‘Shared infor-

mation and program plagiarism detection’, IEEE Transactions on Information

Theory 50(7), 1545–1551.

[27] Chilowicz, M., Duris, É. and Roussel, G. [2013], ‘Viewing functions as token

sequences to highlight similarities in source code’, Science of Computer Pro-

gramming 78(10), 1871–1891.

[28] Code Conventions for the Java TM Programming Language [1999], http://

www.oracle.com/technetwork/java/codeconvtoc-136057.html. (Accessed

on 20/12/2016).

[29] CodeJam [2012], ‘Qualification round 2012’.

URL: https://code.google.com/codejam/contest/1460488/dashboard

[30] Cohen, L., Manion, L. and Morrison, K. [2013], Research Methods in Education,

Routledge.

[31] Conte, S. D., Dunsmore, H. E. and Shen, V. Y. [1986], Software Engineering

Metrics and Models, Benjamin-Cummings Publishing Co., Inc.

146

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

[32] Cosma, G. and Joy, M. [2006], Source-code plagiarism: A UK academic per-

spective, Technical report, Department of Computer Science, University of

Warwick.

[33] Cosma, G. and Joy, M. [2008], ‘Towards a definition of source-code plagiarism’,

IEEE Transactions on Education 51(2), 195–200.

[34] Culwin, F. and Lancaster, T. [2000a], ‘A descriptive taxonomy of student pla-

giarism’, Awaiting publication, available from South Bank University, London

.

[35] Culwin, F. and Lancaster, T. [2000b], A review of electronic services for plagia-

rism detection in student submissions, in ‘LTSN-ICS 1st Annual Conference’,

Citeseer, pp. 23–25.

[36] Culwin, F. and Lancaster, T. [2001], ‘Plagiarism issues for higher education’,

Vine 31(2), 36–41.

[37] Culwin, F. and Naylor, J. [1995], Pragmatic anti-plagiarism, in ‘Proceedings

3rd All Ireland Conference on the Teaching of Computing, Dublin’.

[38] Dasgupta, C. [2010], That is not my program: investigating the relation be-

tween program comprehension and program authorship, in ‘Proceedings of the

48th Annual Southeast Regional Conference’, ACM, p. 103.

[39] Davies, S. R. [2018], ‘An ethics of the system: Talking to scientists about

research integrity’, Science and Engineering Ethics pp. 1–19.

[40] Decoo, W. [2002], Crisis on Campus: Confronting Academic Misconduct, MIT

Press.

147

[41] Delev, T. and Gjorgjevikj, D. [2017], ‘Comparison of string matching based

algorithms for plagiarism detection of source code’.

[42] Detection of SOurce COde Re-use [2014]. (Accessed on 18/07/2016).

URL: http://users.dsic.upv.es/grupos/nle/soco/

[43] Di Marco, A. and Navigli, R. [2013], ‘Clustering and diversifying web search

results with graph-based word sense induction’, Computational Linguistics

39(3), 709–754.

[44] Ding, H. and Samadzadeh, M. H. [2004], ‘Extraction of java program finger-

prints for software authorship identification’, Journal of Systems and Software

72(1), 49–57.

[45] DJurić, Z. and Gašević, D. [2012], ‘A source code similarity system for plagia-

rism detection’, The Computer Journal 56(1), 70–86.

[46] Domin, C., Pohl, H. and Krause, M. [2016], Improving plagiarism detection in

coding assignments by dynamic removal of common ground, in ‘Proceedings of

the 2016 CHI Conference Extended Abstracts on Human Factors in Computing

Systems’, ACM, pp. 1173–1179.

[47] Ďurač́ık, M., Kršák, E. and Hrkút, P. [2018], Source code representations for

plagiarism detection, in ‘International Workshop on Learning Technology for

Education in Cloud’, Springer, pp. 61–69.

[48] Faidhi, J. A. and Robinson, S. K. [1987], ‘An empirical approach for detecting

program similarity and plagiarism within a university programming environ-

ment’, Computers & Education 11(1), 11–19.

[49] Fenn, D. J., Porter, M. A., Williams, S., McDonald, M., Johnson, N. F. and

148

Jones, N. S. [2011], ‘Temporal evolution of financial-market correlations’, Phys-

ical Review E 84(2), 026109.

[50] Fenwick Jr, J. B., Norris, C., Barry, F. E., Rountree, J., Spicer, C. J. and

Cheek, S. D. [2009], Another look at the behaviors of novice programmers, in

‘ACM SIGCSE Bulletin’, Vol. 41, ACM, pp. 296–300.

[51] Fitzgerald, S., Simon, B. and Thomas, L. [2005], Strategies that students use

to trace code: an analysis based in grounded theory, in ‘Proceedings of the first

international workshop on Computing education research’, ACM, pp. 69–80.

[52] Flores, E., Barrón-Cedeño, A., Moreno, L. and Rosso, P. [2015], ‘Cross-

language source code re-use detection using latent semantic analysis.’, J. UCS

21(13), 1708–1725.

[53] Flores, E., Barrón-Cedeño, A., Rosso, P. and Moreno, L. [2011], Towards the

detection of cross-language source code reuse, in ‘International Conference on

Application of Natural Language to Information Systems’, Springer, pp. 250–

253.

[54] Flores, E., Rosso, P., Moreno, L. and Villatoro-Tello, E. [2014], Pan@fire:

Overview of track on the detection of source code re-use, in ‘Sixth Forum

for Information Retrieval Evaluation (FIRE 2014), Bangalore, India’.

[55] Forum for Information Retrieval Evaluation [2008]. (Accessed on 10/05/2018).

URL: https://www.isical.ac.in/ fire/2008/index.html

[56] Freire, M. [2008], Visualizing program similarity in the AC plagiarism detec-

tion system, in ‘Proceedings of the Working Conference on Advanced Visual

Interfaces’, ACM, pp. 404–407.

[57] Ganguli, M. [2003], Making Use of JSP, John Wiley & Sons.

149

[58] Ganguly, D. and Jones, G. J. [2014], Dcu@ fire-2014: an information retrieval

approach for source code plagiarism detection, in ‘Proceedings of the Forum

for Information Retrieval Evaluation’, ACM, pp. 39–42.

[59] Garcıa-Hernández, R. and Lendeneva, Y. [2014], ‘Identification of similar source

codes based on longest common substrings’, FIRE [4] .

[60] Gitchell, D. and Tran, N. [1999], Sim: a utility for detecting similarity in

computer programs, in ‘ACM SIGCSE Bulletin’, Vol. 31, ACM, pp. 266–270.

[61] Gondaliya, T. P., Joshi, H. D. and Joshi, H. [2014], ‘Source code plagiarism

detection ’SCPDet’: A review’, International Journal of Computer Applications

105(17).

[62] Graven, O. H. and MacKinnon, L. M. [2008], ‘A consideration of the use of

plagiarism tools for automated student assessment’, IEEE Transactions on Ed-

ucation 51(2), 212–219.

[63] Grubb, P. and Takang, A. A. [2003], Software Maintenance: Concepts and

Practice, World Scientific.

[64] Hammond, M. [2002], ‘Cyber-plagiarism: are fe students getting away with

words?’.

[65] Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R. and Fedo-

roff, N. V. [2000], ‘Fundamental patterns underlying gene expression profiles:

simplicity from complexity’, Proceedings of the National Academy of Sciences

97(15), 8409–8414.

[66] Hope, D. and Keller, B. [2013], Maxmax: a graph-based soft clustering algo-

rithm applied to word sense induction, in ‘International Conference on Intelli-

gent Text Processing and Computational Linguistics’, Springer, pp. 368–381.

150

[67] Howard, R. M., Serviss, T. and Rodrigue, T. K. [2010], ‘Writing from sources,

writing from sentences’, Writing and Pedagogy 2(2), 177–192.

[68] Huang, Y. J., Powers, R. and Montelione, G. T. [2005], ‘Protein NMR re-

call, precision, and f-measure scores (rpf scores): structure quality assessment

measures based on information retrieval statistics’, Journal of the American

Chemical Society 127(6), 1665–1674.

[69] Ikeda, H., Nagaoka, R., Lafond, M., Yoshizawa, S., Iwasaki, R., Maeda, M.,

Umemura, S.-i. and Saijo, Y. [2018], ‘Singular value decomposition of re-

ceived ultrasound signal to separate tissue, blood flow, and cavitation signals’,

Japanese Journal of Applied Physics 57(7S1), 07LF04.

[70] Israel, G. D. [1992], Determining sample size, University of Florida Cooperative

Extension Service, Institute of Food and Agriculture Sciences, EDIS.

[71] Jadud, M. C. [2005], ‘A first look at novice compilation behaviour using bluej’,

Computer Science Education 15(1), 25–40.

[72] Jadud, M. C. [2006], An exploration of novice compilation behaviour in BlueJ,

PhD thesis, University of Kent.

[73] Jadud, M. C. and Dorn, B. [2015], Aggregate compilation behavior: Findings

and implications from 27,698 users, in ‘Proceedings of the Eleventh Annual

International Conference on International Computing Education Research’,

ACM, pp. 131–139.

[74] Ji, J.-H., Woo, G. and Cho, H.-G. [2007], A source code linearization technique

for detecting plagiarized programs, in ‘ACM SIGCSE Bulletin’, Vol. 39, ACM,

pp. 73–77.

151

[75] JIANG, J.-h. and Ke, W. [2018], ‘Similarity code file detection model based on

frequent itemsets’, DEStech Transactions on Computer Science and Engineer-

ing (CCNT).

[76] Johnson, J. H. [1993], Identifying redundancy in source code using fingerprints,

in ‘Proceedings of the 1993 Conference of the Centre for Advanced Studies on

Collaborative Research: Software Engineering-Volume 1’, IBM Press, pp. 171–

183.

[77] Jones, E. L. [2001a], ‘Metrics based plagarism monitoring’, Journal of Com-

puting Sciences in Colleges 16(4), 253–261.

[78] Jones, E. L. [2001b], ‘Metrics based plagarism monitoring’, Journal of Comput-

ing Sciences in Colleges 16(4), 253–261.

[79] Joy, M. and Luck, M. [1999], ‘Plagiarism in programming assignments’.

[80] Joy, M., Sinclair, J., Boyatt, R., Yau, J.-K. and Cosma, G. [2013], ‘Student

perspectives on source-code plagiarism’, International Journal for Educational

Integrity 9(1), 13–19.

[81] Karimi, Z., Baraani-Dastjerdi, A., Ghasem-Aghaee, N. and Wagner, S. [2016],

‘Links between the personalities, styles and performance in computer program-

ming’, Journal of Systems and Software 111, 228–241.

[82] Karnalim, O. and Budi, S. [2018], ‘The effectiveness of low-level structure-

based approach toward source code plagiarism level taxonomy’, arXiv preprint

arXiv:1805.11035 .

[83] Karnalim, O. and Sulistiani, L. [2018], ‘Which source code plagiarism detection

approach is more humane?’, arXiv preprint arXiv:1809.08559 .

152

[84] Kernighan, B. W. and Plauger, P. J. [1978], ‘The elements of programming

style’, B, by Kernighan, Brian W.; Plauger, PJ New York: McGraw-Hill,

c1978. 1.

[85] Keuning, H., Heeren, B. and Jeuring, J. [2017], ‘Code quality issues in student

programs. technical report series, no. uu-cs-2017-006. issn 0924-3275’.

[86] Khurana, M. and Singh, H. [2018], ‘Data computation and secure encryption

based on gyrator transform using singular value decomposition and random-

ization’, Procedia Computer Science 132, 1636–1645.

[87] King, P., Naughton, P., DeMoney, M., Kanerva, J., Walrath, K. and Hommel,

S. [1999], ‘Java code conventions’, Sun Microsystems Inc 47.

[88] Kölling, M. [2008], Using BlueJ to introduce programming, in ‘Reflections on

the Teaching of Programming’, Springer, pp. 98–115.

[89] Kölling, M. [2015], ‘Lessons from the design of three educational programming

environments: Blue, BlueJ and Greenfoot’, International Journal of People-

Oriented Programming (IJPOP) 4(1), 5–32.

[90] Kölling, M. and Barnes, D. J. [2017], ‘Objects first with java: A practical

introduction using BlueJ’.

[91] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. [2003], ‘The BlueJ

system and its pedagogy’, Computer Science Education 13(4), 249–268.

[92] Kontogiannis, K. A., DeMori, R., Merlo, E., Galler, M. and Bernstein, M.

[1996], Pattern matching for clone and concept detection, in ‘Reverse Engi-

neering’, Springer, pp. 77–108.

153

[93] Koschke, R. [2007], Survey of research on software clones, in ‘Dagstuhl Seminar

Proceedings’, Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[94] Krejcie, R. V. and Morgan, D. W. [1970], ‘Determining sample size for research

activities’, Educational and Psychological Measurement 30(3), 607–610.

[95] Krsul, I. and Spafford, E. H. [1997], ‘Authorship analysis: Identifying the au-

thor of a program’, Computers & Security 16(3), 233–257.

[96] Kuo, J.-Y., Cheng, H.-K. and Wang, P.-F. [2018], Program plagiarism detec-

tion with dynamic structure, in ‘2018 7th International Symposium on Next

Generation Electronics (ISNE)’, IEEE, pp. 1–3.

[97] Kustanto, C. and Liem, I. [2009], Automatic source code plagiarism detection,

in ‘Software Engineering, Artificial Intelligences, Networking and Parallel/Dis-

tributed Computing, 2009. SNPD’09. 10th ACIS International Conference on’,

IEEE, pp. 481–486.

[98] Lancaster, T. [2003], Effective and Efficient Plagiarism Detection, PhD thesis,

South Bank University.

[99] Liu, C., Chen, C., Han, J. and Yu, P. S. [2006], GPLAG: detection of soft-

ware plagiarism by program dependence graph analysis, in ‘Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data

mining’, ACM, pp. 872–881.

[100] Lukashenko, R., Graudina, V. and Grundspenkis, J. [2007], Computer-based

plagiarism detection methods and tools: an overview, in ‘Proceedings of the

2007 International Conference on Computer Systems and Technologies’, ACM,

p. 40.

154

[101] Luquini, E. and Omar, N. [2011], Programming plagiarism as a social phe-

nomenon, in ‘Global Engineering Education Conference (EDUCON), 2011

IEEE’, IEEE, pp. 895–902.

[102] Makuc, Ž. [2013], Methods to assist plagiarism detection, PhD thesis, Univerza

v Ljubljani.

[103] Marshall, S. and Garry, M. [2005], How well do students really understand pla-

giarism?, in ‘Proceedings of the 22nd annual conference of the Australasian So-

ciety for Computers in Learning in Tertiary Education (ASCILITE)’, pp. 457–

467.

[104] Martin, B. [1994], ‘Plagiarism: a misplaced emphasis’, Journal of Information

Ethics 3(2), 36–47.

[105] Maurer, H. A., Kappe, F. and Zaka, B. [2006], ‘Plagiarism-a survey.’, J. UCS

12(8), 1050–1084.

[106] McConnell, S. [2004], Code Complete, Pearson Education.

[107] Meyer, C., Heeren, C., Shaffer, E. and Tedesco, J. [2011], Comoto: the collab-

oration modeling toolkit, in ‘Proceedings of the 16th Annual SIGCSE Confer-

ence on Innovation and Technology in Computer Science Education, ITiCSE

2011, Darmstadt, Germany, June 27-29, 2011’, ACM, pp. 143–147.

[108] Miaoulis, G. and Michener, R. D. [1976], An Introduction to Sampling,

Kendall.

[109] Misic, M., Sustran, Z. and Protic, J. [2016], ‘A comparison of software tools

for plagiarism detection in programming assignments’, International Journal

of Engineering Education 32(2), 738–748.

155

[110] NIST/SEMATECH [2013], ‘e-handbook of statistical methods’. (Accessed on

26/09/2017).

URL: http://www.itl.nist.gov/div898/handbook/prc/section1/prc14.htm

[111] Ohno, A. [2013], A methodology to teach exemplary coding style consider-

ing students, in ‘2013 IEEE Frontiers in Education Conference (FIE)’, IEEE,

pp. 1908–1910.

[112] Ohno, A. and Murao, H. [2008], A quantification of students coding style

utilizing hmmbased coding models for in-class source code plagiarism detec-

tion, in ‘Innovative Computing Information and Control, 2008. ICICIC’08. 3rd

International Conference on’, IEEE, pp. 553–553.

[113] Ohno, A. and Murao, H. [2009], ‘A new similarity measure for in-class source

code plagiarism detection’, International Journal of Innovative Computing, In-

formation and Control 5(11), 4237–4247.

[114] Ohno, A. and Murao, H. [2011], ‘A two-step in-class source code plagiarism

detection method utilizing improved CM algorithm and SIM’, International

Journal of Innovative Computing, Information, and Control 7(8), 4729–4739.

[115] Okutan, A. [2018], ‘Use of source code similarity metrics in software defect

prediction’, arXiv preprint arXiv:1808.10033 .

[116] Oman, P. W. and Cook, C. R. [1988], ‘A paradigm for programming style

research’, ACM SIGPLAN Notices 23(12), 69–78.

[117] Oman, P. W. and Cook, C. R. [1990], A taxonomy for programming style,

in ‘Proceedings of the 1990 ACM Annual Conference on Cooperation’, ACM,

pp. 244–250.

156

[118] Parker, A. and Hamblen, J. O. [1989], ‘Computer algorithms for plagiarism

detection’, IEEE Transactions on Education 32(2), 94–99.

[119] Paul, S. and Prakash, A. [1994], ‘A framework for source code search using

program patterns’, IEEE Transactions on Software Engineering 20(6), 463–

475.

[120] Poon, J. Y., Sugiyama, K., Tan, Y. F. and Kan, M.-Y. [2012], Instructor-

centric source code plagiarism detection and plagiarism corpus, in ‘Proceed-

ings of the 17th ACM Annual Conference on Innovation and Technology in

Computer Science Education’, ACM, pp. 122–127.

[121] Porter, M. [2006], A network analysis of committees in the United States

House of Representatives, in ‘APS Meeting Abstracts’.

[122] Porter, M. A., Mucha, P. J., Newman, M. and Friend, A. [2007], ‘Community

structure in the united states house of representatives’, Physica A: Statistical

Mechanics and its Applications 386(1), 414 – 438.

[123] Power, L. G. [2009], ‘University students’ perceptions of plagiarism’, The Jour-

nal of Higher Education 80(6), 643–662.

[124] Pratama, M., Kemas, R. and Anisa, H. [2017], Digital News Graph Clustering

using Chinese Whispers Algorithm, in ‘Journal of Physics: Conference Series’,

Vol. 801, IOP Publishing, p. 012062.

[125] Prechelt, L., Malpohl, G. and Philippsen, M. [2002], ‘Finding plagiarisms

among a set of programs with JPlag’, J. UCS 8(11), 1016.

[126] Pyle, D. [1999], Data Preparation for Data Mining, Vol. 1, Morgan Kaufmann

Publishers, Inc.

157

[127] Ranade, J. and Nash, A. [1993], The Elements of C Programming Style,

McGraw-Hill, Inc.

[128] Rangel, F., González, F., Restrepo, F., Montes, M. and Rosso, P. [2016],

Pan@fire: Overview of the pr-soco track on personality recognition in source

code, in ‘Forum for Information Retrieval Evaluation’, Springer, pp. 1–19.

[129] Roy, C. K. and Cordy, J. R. [2007], ‘A Survey on Software Clone Detection’,

Queen’s University, School of Computing .

[130] Sallis, P. [1994], ‘Contemporary computing methods for the authorship charac-

terisation problem in computational linguistics’, New Zealand Journal of Com-

puting 5(1), 85–95.

[131] Sallis, P., Aakjaer, A. and MacDonell, S. [1996], Software forensics: old meth-

ods for a new science, in ‘Software Engineering: Education and Practice, 1996.

Proceedings. International Conference’, IEEE, pp. 481–485.

[132] Shan, S., Guo, F. and Ren, J. [2012], Similarity detection method based on

assembly language and string matching, in ‘Advances in Electronic Commerce,

Web Application and Communication’, Springer, pp. 363–367.

[133] Singh, H. [2018], ‘Watermarking image encryption using deterministic phase

mask and singular value decomposition in fractional mellin transform domain’,

IET Image Processing 12(11), 1994–2001.

[134] Son, J.-W., Park, S.-B. and Park, S.-Y. [2006], Program plagiarism detection

using parse tree kernels, in ‘Pacific Rim International Conference on Artificial

Intelligence’, Springer, pp. 1000–1004.

[135] Song, H.-J., Park, S.-B. and Park, S. Y. [2015], ‘Computation of program

158

source code similarity by composition of parse tree and call graph’, Mathemat-

ical Problems in Engineering 2015.

[136] Spafford, E. H. and Weeber, S. A. [1993], ‘Software forensics: Can we track

code to its authors?’, Computers & Security 12(6), 585–595.

[137] Stewart, G. W. [1993], ‘On the early history of the singular value decomposi-

tion’, SIAM Review 35(4), 551–566.

[138] Tahaei, N. and Noelle, D. C. [2018], Automated plagiarism detection for com-

puter programming exercises based on patterns of resubmission, in ‘Proceedings

of the 2018 ACM Conference on International Computing Education Research’,

ACM, pp. 178–186.

[139] Tassel, D. V. [1978], Program Style, Design, Efficiency, Debugging and Test-

ing, Prentice Hall PTR.

[140] Tauer, J. and Ledgard, H. F. [1987], C With Excellence: Programming

Proverbs, Sams Indianapolis, IN, USA.

[141] Tufano, M., Watson, C., Bavota, G., Di Penta, M., White, M. and Poshyvanyk,

D. [2018], Deep learning similarities from different representations of source

code, in ‘International Conference on Mining Software Repositories’.

[142] Vaish, A. and Kumar, M. [2018], ‘Color image encryption using singular value

decomposition in discrete cosine stockwell transform domain’, Optica Applicata

48(1).

[143] Van Haaster, K. and Hagan, D. [2004], ‘Teaching and learning with bluej: an

evaluation of a pedagogical tool.’, Issues in Informing Science & Information

Technology 1.

159

[144] Verco, K. L. and Wise, M. J. [1996a], ‘Plagiarism à la mode: a comparison of

automated systems for detecting suspected plagiarism’, The Computer Journal

39(9), 741–750.

[145] Verco, K. L. and Wise, M. J. [1996b], ‘Software for detecting suspected pla-

giarism: Comparing structure and attribute-counting systems’, Proceedings of

the 1st Australasian conference on Computer science education 96, 81–88.

[146] Walenstein, A., El-Ramly, M., Cordy, J. R., Evans, W. S., Mahdavi, K., Pizka,

M., Ramalingam, G. and von Gudenberg, J. W. [2007], Similarity in programs,

in ‘Dagstuhl Seminar Proceedings’, Schloss Dagstuhl-Leibniz-Zentrum für In-

formatik.

[147] Whale, G. [1990], ‘Identification of program similarity in large populations’,

The Computer Journal 33(2), 140–146.

[148] Wise, M. J. [1993], ‘String similarity via greedy string tiling and running karp-

rabin matching’, Online Preprint, Dec 119.

[149] Yamamoto, T., Matsushita, M., Kamiya, T. and Inoue, K. [2005], Measur-

ing similarity of large software systems based on source code correspondence,

in F. Bomarius and S. Komi-Sirviö, eds, ‘Product Focused Software Process

Improvement’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 530–544.

[150] Zimerman, M. [2012], ‘Plagiarism and international students in academic li-

braries’, New Library World 113(5/6), 290–299.

[151] Zini, M., Fabbri, M., Moneglia, M. and Panunzi, A. [2006], Plagiarism detec-

tion through multilevel text comparison, in ‘Automated Production of Cross

Media Content for Multi-Channel Distribution, 2006. AXMEDIS’06. Second

International Conference on’, IEEE, pp. 181–185.

160

	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Chapter Introduction
	Introduction
	Research Background
	Statement of the Problem and Motivation
	Research Questions and Objectives
	Research Methodology
	Research Rationale and Contributions
	Thesis Structure

	Chapter Background and Literature Review
	Introduction
	Plagiarism Definition
	Source Code Modification Techniques
	Source Code Detection Techniques
	Attribute Counting
	Structure Based

	Coding Style Analysis
	Style Metrics

	Conclusion

	Chapter Exploratory Analysis and BlackBox
	Introduction
	An Overview of the Exploratory Study

	BlueJ and BlackBox
	BlueJ
	BlackBox

	Evaluating BlackBox for Plagiarism Detection
	How Fetcher Handles File IDs in BlackBox
	Grouping
	Experimental Methodology

	The Results of the Evaluation of BlackBox
	Visualisation
	Experimental Methodology
	The Results

	Conclusion

	Chapter Structure Based Metrics
	Introduction
	Existing Style Metrics
	Modified Style Metrics
	Modified Layout Metrics (STY)
	Modified Style Metrics (PRO)
	Modified Structure Metrics (PSM)

	Extended Style Metrics
	Extended Layout Metrics (STY)
	Extended Style Metrics (PRO)
	Extended Structure Metrics (PSM)

	Example
	Metrics Calculation

	Conclusion

	Chapter A Framework for Developing Plagiarism Detection Techniques
	Introduction
	Adapting TDM Analysis for Plagiarism
	
	Cosine Similarity
	Performance Evaluation Measures

	The MFM Framework for Plagiarism Detection
	Phase One in the Application of the MFM Framework
	Phase Two in the Application of the MFM Framework

	Illustrating the Application of the MFM Framework
	The Dataset
	Coding Style Metrics
	SVD Analysis and Cosine Similarity
	Evaluation Stage

	Conclusion

	Chapter Results and Evaluation
	Introduction
	Dataset Description: SOCO
	 Forum for Information Retrieval Evaluation
	SOCO
	Google Code Jam

	Experimental Results
	JPlag Queries: Results of the MFM-Modified and MFM-Extended Approaches
	SOCO Queries: Results of the MFM-Modified and MFM-Extended Approaches
	Participation Overview

	The Failure Analysis
	Conclusion

	Chapter Conclusion
	Introduction
	Summary of the Research
	Study Contributions
	Limitations and Future Work

