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Abstract—This paper proposes the real-time Kalman filter 

based observer for Lithium-ion concentration estimation for the 

electrochemical battery model. Since the computation limitation 

of real-time battery management system (BMS) micro-

processor, the battery model which is utilized in observer has 

been further simplified. In this paper, the Kalman filter based 

observer is applied on a reduced order model of single particle 

model to reduce computational burden for real-time 

applications. Both solid phase surface lithium concentration and 

battery state of charge (SoC) can be estimated with real-time 

capability. Software simulation results and the availability 

comparison of observers in different Hardware-in-the-loop 

simulation setups demonstrate the performance of the proposed 

method in state estimation and real-time application. 

Keywords— Battery Model, Battery Management Systems, 

Hardware-in-the-loop Simulation, State of Charge Estimation  

I. INTRODUCTION 

Nowadays, due to the climate warming and environmental 
degradation, the global automotive industry has been 
significantly accelerating the vehicle electrification process. 
Therefore, there is a growth in electric vehicles (EVs) 
designed and manufactured by many major automotive 
manufacturers. Due to the excellent performance of energy 
density and safety concern, the lithium-ion battery has been 
commonly utilized in EVs as energy storage system [1]. In 
general, only a lithium-ion battery’s output current, voltage 
and surface temperature can be measured in an actual EV 
battery management system. Hence, in order to monitor the 
complex electrochemical dynamic processes inside batteries 
and estimate unmeasurable variables for practical application,  
advanced battery models and state estimation methods in 
battery management system (BMS) are imperative for the 
Electric Vehicles industry. Newman and his colleagues 
developed pseudo-two-dimension (P2D) model which is 
widely applied in academic research in 1993. The P2D model 
relies on five key partial differential equations to express 
kinetics (electrochemical), transport, and thermodynamic 
processes along with the geometry of the lithium-ion battery 
system [2][3]. However, the P2D model still faces obstacles 
to be utilized in the real-time industrial applications. Because 
of the computational limitation of BMS microprocessors, the 
relevant models which are used in the BMS should be 
appropriately simplified to satisfy the real-time application. In  
electric vehicles, the higher resolution is extremely vital for 
real-time application, since lots of instantaneous acceleration 
and braking dynamics take place within a very short time. 
Moreover, for safety concerns, the timely response is 
necessary for the BMS to protect drivers and vehicles as well. 
For example, in the case of dSPACE hardware-in-the-loop 
(HIL) simulation platform which is widely applied in real-
world automotive industrial testing, each iterative operation 

step must be strictly computed within the specific simulation 
period. If the system model is too complicated or contains too 
many computations, the dSPACE device will overrun and fail 
consequently.  

In order to be used for real-time and control-oriented 
application, the P2D model has been further simplified by 
assuming the solid-phase Li concentration in each electrode is 
constant in spatial coordinate, uniformly in time, named single 
particle model (SPM) [4][5][6][7]. And then, several state 
estimators/observers were designed based on the SPM to 
estimate the state-of-charge (SoC) for further vehicle’s energy 
management strategy [4][7][8]. For instance, the simplified 
electrochemical model, e.g. Single Particle Model with 
electrolyte (SPMe), has been proposed by Moura et al [7]. In 
addition, the relevant PDE observer, named backstepping 
observer, has been also applied on SPMe in the same 
literature. 

However, the abovementioned models haven’t been 
applied in a real-time hardware-in-the-loop simulation 
platform yet. On the other hand, some tests showed that, even 
though the computational burden has been reduced by SPM 
and the corresponding observer, for high resolution in real-
time hardware-in-the-loop simulation, these models are still 
too complicated to be processed by actual microprocessor. In 
this paper, the SPMe was further simplified by order reduction 
method to the Reduced Order Model with Nonlinear (ROM-
NL), the Kalman filter was designed for this reduced 
concentration dynamic subsystem as the optimal observer for 
solid phase surface lithium concentration and SoC estimation. 
In addition, the proposed models were applied in a dSPACE 
device for real-time HIL simulation. 

In Section 2, the single particle model with electrolyte and 
reduced order model of Li-ion battery in this paper are 
discussed. General overview of the proposed state estimation 
method is presented with equations and block diagrams in 
Section 3. Furthermore, the principles of output function 
inversion and Kalman filter are reviewed in Section 3 as well. 
Conducted simulation tests can be found in Section 4 together 
with discussion on the results, while the conclusion and future 
work on paper are given in Section 5. 

II. BATTERY MODELS 

In this paper, the single particle model with electrolyte 
(SPMe) has been utilized as battery plant cell, and the 
Reduced Order Model with Nonlinear (ROM-NL) was the 
model in the Kalman filter based observer for concentration 
dynamic subsystem estimation. 

A. Single Particle Model with Electrolyte (SPMe) 

To reduce the model complexity, Moura et al [7] proposed 
the SPMe model after introducing a few simplifications to the 



 

 

P2D model. Each electrode is idealized as a single spherical  

particle, and the molar ion flux j is assumed constant in the x-

direction in Fig. 1. This leads to a linear relationship between 
j  and the input current I as follows (1), 
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Note that here positive current stands for discharging, and 
negative current for charging.  

Then the PDEs in the P2D model become decoupled, as 
shown in Fig. 1. The dynamics of lithium concentration in the 
solid and electrolyte phases in Fig. 1 are given below. Note 

that { , , }sep   stand for the positive electrode (PE), separator, 

and negative electrode (NE) domain, respectively [7].  

The evolution of lithium concentration in the solid phase 
follows (2), 
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with boundary conditions in (3), 
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 The evolution of lithium concentration in the electrolyte 
phase follows (4)(5)(6), 
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with boundary conditions in (7), 
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Fig.1.  The block diagram of the SPMe [9] 

       Finally, the terminal voltage output is a nonlinear 

function of the PE and NE surface lithium concentrations (

( )ssc t  and ( )ssc t ), the electrolyte lithium concentrations at 

the positive and negative current collectors ( (0 , )ec t  and 

(0 , )ec t , respectively), and the input current ( )I t , as in (8): 
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where 
0i
  represents the exchange current density, and  
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The readers can refer to for [7] more details of the derivation 

of the SPMe equations. 

B. SPMe numerical solution 

 To solve the SPMe equations, the same procedure in [7] is 
followed here. The evolution of lithium concentration in the 
electrode and electrolyte domains are solved separately. 

1) Electrode concentration dynamics 
The average lithium concentration in the electrode, or bulk 

concentration , is an integration of the current [9], 
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where the ( )sC s
 is the Laplace transformation of ( )sc t

, and 

( )I s is the Laplace transformation of the current. Similar 

notations will apply hereinafter.  

Define the difference between the electrode surface 

concentration and bulk concentration as ( ) ( ) ( )s ss sc t c t c t    

. Then according to the transcendental transfer function 
proposed in,  
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where /s sR s D    . Equation (11) can be reformulated 

into the partial fraction expansion, neglecting the high 
frequency dynamics above a cut-off frequency (here 10 Hz),  
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The readers can refer to [9] for more details. Next, 
Equation (12) can be readily put into state-space form as  
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Where ( )sx t  is a vector representing the concentration 

( , )sc x t  at the discrete nodes. 



 

 

2) Electrolyte concentration dynamics 
The electrolyte concentration dynamics in (4)(5)(6) is 

discretized by finite element method, yielding  

 
( ) ( ) ( )

(0 , ) ( ), (0 , ) ( )

e e e e

e e e e e e

x t A x t B I t

c t C x t c t C x t   

 

 
  (14) 

where ( )ex t  is a vector representing the concentration ( , )ec x t  

at the discrete nodes. Equation (14) can be further simplified 
by removing the pole/zero cancellation at the origin, as shown 
in [9].  

C. Reduced Order Model with Nonlinear (ROM-NL) 

As a comparison with the ECM, the ROM-NL is derived 
from the SPMe. The ideas here is to approximate the linear 
concentrations dynamics in (12) and (14) with low order 
models, while maintaining the nonlinear voltage output 
equation. Equation (12) and (14) are simplified to (15) and 
(16), respectively, using the balanced truncation method in 
[9]. Again, the truncated Hankel values should account for no 
more than 0.5% of the sum of all system Hankel values. 
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The voltage output is calculated using the concentration 
outputs of the ROMs, 
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III. STATE ESTIMATION METHOD 

 This paper expanded the strategy inspired by [7] to the 
further simplified observer for real-time application. In this 
study, Kalman filter which is applied on ROM-NL has been 
utilized as the basis of the proposed observer, such that it’s 
able to achieve the goal of decreasing the amount of 
computation for real-time application.  

A. Observer Design 

 This observer comprises two subsystems: Output Function 
inversion and the solid phase concentration Kalman Filter. In 
this paper, the observer schematic is shown in Fig. 2.  

The observer process is listed as follow, 

1) Once the voltage error is calculated from battery cell 

voltage ( )V t  and observer estimated voltage ˆ( )V t , the 

output function inversion can calculate the inversion cathode 

surface concentration ( )ssc t . Consequently, with the 

assumption conservation of mass, the inversion estimated 

anode surface concentration ( )ssc t  can be resulted.  

2) With the inversion estimated concentrations and input 

current, the standard Kalman filters based on ROM-NL for 

both electrode concentration dynamic subsystems can be 

implemented. Next, the both electrodes estimated surface 

concentrations ( )ssc t  and bulk concentrations ( )sc t  can be 

observed by each Kalman filter.  

3) Finally, the estimated solid phase surface 

concentrations and electrolyte concentrations are fed into 

observer nonlinear output function subsystem which is same 

as the function in SPMe to produce the observer estimated 

output voltage ˆ( )V t .  

 
Fig.2. The Schematic of observer design 

B. Output Function Inversion 

This section is about a nonlinear gradient algorithm to 
calculate cathode concentration from measurements 𝐼(𝑡) and 
𝑉(𝑡) by inverting the nonlinear output function of the SPMe. 
Note that this method assumes the output function only 
depends on cathode concentration and time 𝑡 as 

( ) ( ( ), )ssV t g c t t          (18)  

The inversion result from output function can be 

represented as ( )ssc t . And then, expand the output function by 

Taylor series with respect to the difference between ( )ssc t  and 

( )ssc t  about equals to zero. Finally, rewrite the nonlinear 

output function in ‘Gradient Method’ [10] form and the 

gradient update law for ˆ ( )ssc t  to minimizes 
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where the gain 𝜆  is to compromise between accuracy and 
speed. 

C. Backstepping Observer 

The backstepping observer is a Luenberger-type observer 
which can be applied on original partial differential equations 
(PDEs) directly before discretization and the physical 



 

 

significance of the PDEs is still retained. Furthermore, this 
observer has been utilized in SPMe in [7] to estimate the 
distribution of solid phase lithium ion concentration. The 
readers can refer to [7] for more details. 

D. Kalman Filter  

Kalman filter utilizes a system’s input and output data to 
seek for the optimal state of linear systems under process and 
measurement white noise. The discrete-time system can be 
represented as follow: 

1 1 1k k k kX AX BU w       (20) 

k k kY CX v      (21) 

Where 𝑋  represents the states of system, 𝑌  denotes the 
output of estimation,  𝑢  is the model input and here is the 
current, 𝐴  represents the state transition matrix, 𝐵  denotes 
control-input matrix, 𝐶  denotes measurement matrix, and 
index 𝑘, 𝑘 − 1  denote time steps of system, while 𝑤𝑘 
represents the system process noise and 𝑣𝑘  represents 
measurement noise, respectively. These two variables are 
defined as white noise and with Gaussian probability 
distributions: 

( ) ~ (0, )kp w N Q     (22) 

( ) ~ (0, )kp V N R     (23) 

Where Q and R represents process noise and measurement 
noise covariance matrices. 

Then the estimation of the state vector 𝑋̂𝑘 and output 𝑌̂𝑘 
by Kalman filter algorithm could be mathematically expressed 
as ‘Prediction Time Update’ and ‘Measurement Update’. In 
addition, the symbol ‘ˉ’ means the priori variables in each time 
step. 

Prediction Time Update: 
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Measurement Update: 
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The Kalman filter can provide the optimal state 
estimations, and its error elimination ability is suitable for 
practical real-time application. The readers can refer to [11] 
for more details. 

IV. SIMULATION RESULTS 

In this section, the simulation platform and initial 
conditions are presented. The battery model SPMe and 
Kalman filter based observer are implemented in 
‘MATLAB/Simulink 2017b’, and then, these models are 
downloaded in the hardware device ‘SCALEXIO’ from 

‘dSPACE’ for hardware-in-the-loop simulation in real-time 
application.  

Since both the battery plant and observer are to start from 
equilibrium states, the solid phase surface concentration was 
equal to bulk concentration. Therefore, the initial conditions 
along the radius were same in battery plant each electrode. As 
for the observer, only two bulk concentration states need to be 
the initial condition, and the other states should be set as zero. 
In order to display the observer’s ability of the error reduction, 
the initial conditions have been set as different values as Table 
I. 

Table I. Initial Conditions of System Model Variable 

 
Electrodes Initial Concentration  (𝒎𝒐𝒍

𝒎𝟑⁄ ) 

Positive Electrode Negative Electrode 

Battery 

Plant 
3000 30000 

Kalman 
Filter 

3900 21000 

Output 

Inversion 
2700 / 

  

Note that the total moles of lithium in the electrolyte in the 
battery and observer are known beforehand and might be 
provided by the manufacturer [7]. 

In this paper, the reference current profile of the 
simulations were the city drive cycle ‘FTP-75’ (EPA Federal 
Test Procedure), with capped current magnitude at 1.5C, as 
Fig. 3. 

 

Fig.3. the FTP-75 Current Profile 

A. Software Simulation results 

From Fig. 4 and Fig. 5, the output voltage of the observer 
has been presented and compared with battery plant’s voltage. 
Even the initial voltage output of the observer was different 
from battery plant, the observer can still closely converge to 
plant’s output. The reason of the fluctuation in the end should 
be from the model reduction error and the anode surface 
concentration conversion process. But the voltage error is still 
acceptable with a maximum error of less than 10mV [1] for 
the real-time electric vehicle application. 



 

 

 
Fig.4. Battery Plant and Observer Voltage Profiles 

 
Fig.5. Battery Plant and Observer Voltage Error Profiles 

The Fig. 6 and Fig. 7 show the performance of the observer 

estimated solid phase surface Lithium-ion concentration. 

Even though the initial conditions were set differently, the 

observer can promptly track to the actual surface 

concentration state and roughly fit the plant’s concentration 

profile. 

 

Fig.6. Battery Plant and Observer Surface Concentration Profiles 

 
Fig.7. Battery Plant and Observer Surface Concentration Error Profiles 

In Fig.7, the surface concentration mole errors between the 
plant and observer were indicated, and after the beginning of 
observer tracking process, the cathode error could retain less 
than 1% in the all discharge regime. Furthermore, in practice, 
in order to improve battery life, batteries should be designed 
not to discharge to ultimate state. Therefore, the proposed 
observer can be acceptable for the solid phase surface 
concentration estimation.  

 
Fig.8. Battery Plant and Observer SOC Profiles 

 
Fig.9. Battery Plant and Observer SOC Error Profile 

Additionally, in Fig. 8 and Fig. 9, the other objective of the 
proposed observer SOC estimation in both electrodes is 
shown. Since in the ROM-NL, the electrode bulk lithium 
concentration state is designed. And the change of SOC is 
directly related to the change of Lithium ion bulk 



 

 

concentration in the electrodes [8]. According to the bulk 
concentration, the SOC can be estimated for each electrode by 
following SOC definition equations: 
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After short tracking process, both electrodes SOC were 
almost overlapped in the whole operational process. And the 
SOC error between these two electrode observers were less 
than 0.5% as Fig. 9. 

B. Hardware-in-the-loop Simulation Setup 

In this paper, both the proposed Kalman filter based 
observer (KF) and the Backstepping observer (BO) in [7] have 
been implemented in hardware-in-the-loop simulation device 
‘SCALEXIO’ from dSPACE Ltd. In the dSPACE platform, 
the Run-Time Behaviour ‘Period’ controls the period of a 
periodic task or the period constraint of a runnable function. 
On the other hand, in Simulink, the step size specifies the 
fundamental sample time used by the selected fixed-step 
solver. These two setups control the resolution performance of 
the proposed model in HIL simulation. Compared by the 
availability of two observers in different setups Run-Time 
Behaviour ‘Period’ (in SCALEXIO) and Step Size (in 
Simulink) as Table II, the proposed observer has higher 
resolution in the real-time platform application, the Kalman 
filter based observer is able to be utilized in a shorter sample 
period to provide as many as information data. 

In the real-time electric vehicle applications, the BMS 
should have the higher resolution to promptly respond to 
emergencies and record batteries operating behaviours. With 
the same Simulink Step-size, the 0.1s period resolution of the 
Kalman filter based observer can be more suitable for most of 
practical applications in real-time.  

Table II.  Availability of KF and BO for Different HIL Platform Setups 

     

Step Size 

HIL Platform ‘Period’ 

0.01s 0.1s 1s 

0.01s None KF KF & BO 

0.1s None KF KF & BO 

1s None KF KF & BO 

V. CONCLUSION 

As the above results, the Reduced Order Model with 
Nonlinear (ROM-NL) and the corresponding Kalman filter 
based observer in this paper were successfully applied in the 
real-time Hardware-in-the-loop simulation platform. In 
addition, compared with literature’s model performance in a 

same HIL simulation platform, the available dSPACE 
simulation period has been improved to 0.1s from 1s. In 
addition, the Kalman filter based model shows the ability to 
simultaneously estimate solid phase surface concentration and 
SoC, so that it can be applied as the basis for the real-time 
BMS and relevant battery status monitoring applications, e.g. 
ageing degradation or fast charging control. In the future, once 
a commercial battery’s parameters are measured accurately, 
the battery plant will be able to be replaced by the actual 
battery, and then, this Kalman filter model can be utilized in 
the vehicle’s battery management system for applications.  
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