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Abstract

Localisation microscopy of multiple weak, incoherent point sources with possibly different intensities
in one spatial dimension is equivalent to estimating the amplitudes of a classical mixture of coherent
states of a simple harmonic oscillator. This enables us to bound the multi-parameter covariance
matrix for an unbiased estimator for the locations in terms of the quantum Fisher information matrix,
which we obtained analytically. In the regime of arbitrarily small separations we find it to be no more
than rank two—implying that no more than two independent parameters can be estimated
irrespective of the number of point sources. We use the eigenvalues of the classical and quantum
Fisher information matrices to compare the performance of spatial-mode demultiplexing and direct
imaging in localisation microscopy with respect to the quantum limits.

1. Introduction

Precisely locating multiple single emitters is a key challenge in fluorescence microscopy. The process of
estimating these locations depends on the quality of the image obtained by the microscope. One of the major
limitations to the image quality, known since Abbe and Rayleigh, lies in spatially resolving objects substantially
smaller than half the wavelength of the light involved [1]. Known as the Rayleigh limit or diffraction limit, itisa
consequence of the diffraction of light due to its wave nature.

Over the last couple of decades, ways to circumvent the Rayleigh limit in far-field fluorescence microscopy
have been invented [2]. Confocal methods such as STED, RESOLFT, and SSIM [3-6] use patterned illumination
to spatially modulate the fluorescence pattern of emitters within a diffraction-limited region such that not all of
them emit simultaneously, thereby achieving sub-Rayleigh resolution. Other far-field methods such as PALM,
fPALM and STORM [7-9] temporally modulate the fluorescence pattern of emitters with weak laser pulses
stochastically such that only a low density of emitters are active within the Rayleigh limit at one time. Repeating
the process many times, images with sub-Rayleigh resolution are reconstructed from the measured positions of
individual emitters. These techniques, with resolution of tens of nanometers, have provided insights into
biological processes at the cellular scale that were hitherto unattainable [10].

Though immensely powerful and impressive, none of these methods seek to extract all the information
available in the emitted light field. As in conventional fluorescence microscopy these techniques use ‘direct
imaging’'—intensity measurements on the image plane—to extract information from the incident light. That
there is indeed more information in the light field to be extracted was shown by Tsang et al [11]. Using methods
from classical and quantum estimation theory, it was shown theoretically that two arbitrarily close incoherent
point sources may be resolved, and that this may be achieved in practice using a spatial-mode demultiplexing
(SPADE) measurement. In the few years since, theoretical studies have considered different source
arrangements or parameters of interest [12—17] in one as well as in two and three spatial dimensions [18-21].
Other theoretical studies have explored various detection systems that could achieve the ultimate precision in
imaging or get close to it [22—25]. Several experiments have demonstrated some of the principles underlying
these detection systems [26—33]. Advances in this area have been recently reviewed by Tsang [34].

Realistic imaging scenarios typically involve more than two point sources or even extended objects. It has
been shown that an extended one-dimensional object much smaller than the Rayleigh limit described only in
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Figure 1. [llustration of localisation microscopy with five point sources, imaged by a diffraction-limited system and the resultant
intensity distribution on the image plane.

terms of its centroid and effective radius can be approximated by a two-level quantum system [ 15]. Theoretical
optimality of certain measurement techniques in estimating this effective radius size has also been established in
one and two spatial dimensions [17, 35, 36]. Order-of-magnitude bounds on the precision of estimating the
normalised moments of extended sources smaller the Rayleigh limit have also been obtained [36, 37].

In this paper, we provide an analytical lower bound on an unbiased estimator’s covariance (mean square
error) matrix for localisation microscopy—simultaneously estimating the locations of N incoherent, weak point
sources of unequal but known intensities in one spatial dimension. The bound is provided by the the quantum
Fisher information matrix (QFIM). For a Gaussian point spread function (PSF), we first describe the light field
on the image plane as a classical mixture of coherent states. We use this to derive the QFIM analytically. In the
limit of the point sources approaching a single point, we find its rank to be no more than two. As the inverse of
the QFIM lower bounds the covariance matrix, our result implies that no more than two independent
parameters can be estimated in localisation microscopy in the limit of arbitrarily small separations. In this limit,
we provide a mathematical explanation for our observation in terms of an approximation of the light field
involving only the first two Hermite—Gauss modes. Finally, we compare performance of conventional direct
imaging and the recently proposed SPADE [11] in localisation microscopy with the quantum bounds we obtain.
In the limit of the point sources approaching a single point, we find the classical Fisher information matrices
(CFIMs) for both these detection systems to be rank one. Furthermore, in the sub-Rayleigh limit, SPADE does
not attain the quantum limit for localisation microscopy. For the subset of parameters where scalings may be
optimal, we find SPADE to be short of the quantum limit in absolute precision.

This paper is organised as follows: in section 2 we provide a quantum mechanical description of localisation
microscopy. The appropriate framework to study the quantum limits of the localisation problem is quantum
estimation theory, the toolbox of which is described in section 3, leading to the definition of the QFIM. In
section 4 we provide an analytic expression of the QFIM for localisation microscopy, our main technical result.
We then draw conclusions about its rank and its implications for localisation microscopy. We end in section 5
with further insights and discussions about the sinc PSF and the potential of detection systems attaining the
quantum limits of localisation microscopy.

2. Quantum description of localisation microscopy

We consider localisation microscopy—the problem of estimating the locations of N incoherent point sources
or emitters located in a one-dimensional spatial configuration as in figure 1. As we assume them to be weak,
such that on average no photons arrive on the image place within a coherence time with probability (1 — ¢),
where € < 1 and one photon arrives with probability e. We also assume the optical field on the image plane to be
quasi-monochromatic and paraxial [11]. The quantum state of this optical field is then

Popt ~ 1 - E)pvac + €ps )

where we have neglected terms of second and higher ordersin eand p,, = |vac) (vac|is the vacuum state and p
is the one-photon state.
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The one-photon density matrix on the object plane is an incoherent mixture of position eigenstates
p =N wix,) (x;|, where w;are the relative intensities with >~ | w; = 1. An imaging system maps ¢;, the
creation operator producing one photon in the position x on the object plane, to the corresponding image plane
operator E: [13]

o = [dxpsix — x)el, @

where x; is the position on the source on the object plane and pgg (x) is the PSE. On the image plane this
becomes

N
p=>_ wili) (til, 3

i=1

where
[¢i) = fdx‘I’PSF(X — x)x), 4

as follows from equation (2).
Anideal imaging system with Wpgp(x) = 6 (x) is free of any Rayleigh limit as it transmits all spatial
frequencies from the object to the image plane. In practice, a Gaussian PSF
1 _x?
X) = ———e 402, 5
V) = 5)
with o = A/(2nNA), where NA is the numerical aperture of the imaging system is a good approximation for
quasimonochromatic paraxial light [11, 38] and also allows us to obtain analytical results. For such a PSF, the
state of equation (3) has an intensity distribution of the form illustrated in figure 1. For a Gaussian PSF, the |;)
can be expanded in the HG basis as (see appendix A)

00 k

o5 2
[i) =Y —=e %/2¢) = |ay), (6
i=o k!
where | ¢, ) are the HG modes”. This has the same mathematical form as the coherent states, produced by the
displacement operator D(a;) = e%4' +274 [39] acting on the ground state of the harmonic oscillator with
a; = x;/20 € R thedimensionless positions of the sources. Thus the one-photon state on the image plane is

N
P = Py =y wilai) (el ()
i=1
a classical mixture of coherent states in the HG basis.

The above is a quantum optical rendition of localisation microscopy—a classical optics problem. It enables
us to harness the mathematical formalism associated with coherent states and provides a basis that spans the
space of the quantum state as well as its derivative. The latter is an essential ingredient of deriving the QFIM
analytically in section 4.1. We also hope that this description will provide insights into the quantum limits to
localisation microscopy in the presence of shot noise and assist in designing detection systems that attain these
quantum limits.

3. Quantum estimation theory

Localisation has long been treated as an estimation problem with the unknown locations of the sources

x = {x;}>» i=1,...,N beingthe parameters to be estimated [40, 41]. In our formulation, the limits to the
localisation of the point sources are the same as estimating the amplitudes o« = {«;}, i = 1,...,N ofthe
coherent states in equation (7). Let these estimates be & = {&;}. The precision of our estimate is then given by
the covariance (or mean square error) matrix defined as

Covla] =) peda)(a — &) (a — &), (8)

where p(z|a) is the probability distribution of the collected data labelled by, for instance, the pixel zon the
image plane. Cov[a]is a positive symmetric matrix whose ith diagonal element denotes the variance of an
estimator of o; given the data collected. The (i, j)th off-diagonal element denote the covariance in the estimation
of a;and ;.

Unlike the conventional quantum optical coherent states which reside in the phase space of the electromagnetic field, our coherent states
reside in physical space on the image plane. This mathematical form was also identified by Dutton et al [17] but only used for numerical
calculations.
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Given the data collected, the maximum amount of information that can be extracted from it to obtain the
most precise estimate of the locations is given by the Cramér—Rao bound [42]. For an unbiased estimator, this
bound is given by

1
= > Hz 71)
Covla] > v [C(p TI)] )

where M is the number of coherence times over which the data is collected, making Me the total photon count.
This inequality is saturable but generally only in the asymptotic limit of many repetitions [43]. C(p,, 11,) is the
CFIM whose elements are given by [44]

9 1 Op(Za) Op(zla)
C 5 Hz v — .
e L, = pEe) da,  Oay

(10)

The probability distribution p(zla) = Tr (g, 11,) results from detecting the light on the image plane using a
specific detection system I1,. Fluorescence microscopy typically employs intensity detectors IT, =

{In)(nl,}, n =0, 1,---,ateach pixel z, known as direct imaging. It is then evident that the CFIM depends on the
detection system used, and not surprising that it determines the amount of information that can be extracted
from the light field at the image plane.

To identify the quantum limit on the precision of localisation microscopy, the CFIM must be maximised
over all possible physically allowed detection systems. This set is given by positive operator-valued measures
(POVMs) [45] and the maximisation is bounded as [46, 47].
rnHa)}( C(Pa: I,) < Q(pa)) (1D

z

by the QFIM. Its matrix elements are given by

LAY 4 L'LV
[Q(p )] = Tr [pa f] (12)
with L, being the symmetric logarithmic derivative (SLD) corresponding to the parameter o,,. The SLD is
determined by the Lyapunov equation
7]
Gl _ (p LV + Lip,). (13)
Oay,
The quantum limit to localisation microscopy is thus given by
1 1
Covla]l > —I[C(p., I > — -1 14
via] Me[ (P 112)] e [Q(p)] (14)

The QFIM depends only on the light field on the image plane and determines the maximum amount of
information that can be extracted from it using detection systems allowed by quantum mechanics. Deriving an
analytical expression for Q(p, ) for state in equation (7) is our main result, which we present in the next section.

A practical issue following the identification of the quantum limit is its attainability. For cases where a single
parameter is unknown then a measurement can be found to satisfy the equality of equation (11), which involves
projecting onto the eigenstates of the SLD [44, 48]. However this strategy does not generalise to multiple
parameters, as in localisation microscopy, in general.

For multi-parameter estimation the attainability is tantamount to saturating the second inequality in
equation (14). A necessary condition for the saturability of any scalar form of equation (14) is the satisfaction of
weak commutativity [49, 50]

Tr(p, [L", I’]) = 2Tr(Im (p,L*L")) = 0. (15)

Moreover, through the quantum theory of asymptotic normality [51], this condition becomes sufficient with the
application of collective measurements over multiple copies of p,, [49, 50].

Any scalar function of the covariances can be bounded by the inverse of QFIM with the lower bound
following from the spectral decomposition of QFIM. To that end, calculating the eigenvalues of the QFIM and
their scaling is of importance for the multi-parameter estimation. For localisation microscopy, g, asin
equation (7) as well as its derivative are real matrices. Thereby, L*, L" are also real and the above condition is
always satisfied’. The quantum limit for localisation microscopy is therefore attainable, at least in principle,
although collective measurements over multiple copies [49, 50] of the light field on the image plane may be
required.

Alternative parameterisations of the system—where the new parameters o’ are functions of the old
parameters —can be dealt with by a transformation of the QFIM. Given the transformation matrix B with

Since the density matrix and its derivatives are real-valued in the orthonormal {|¢, )} basis, equation (13) is a system of equations with real
coefficients. Hence L” must be real as well, and so p, L*L" is real-valued. We thank Ben Wang for bringing this to our attention.

4
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elements B;; = OJa; / 8a the QFIM of the transformed parameters is [44]
Q =B QBH, (16)

provided the transformation is non-singular. This can be used to recast our results in terms of, for instance, the
moments of the point source distribution.

4, Results

We now present our main result—the analytical expression of the QFIM for localisation microscopy. This
expression allows us to conclude that the QFIM is a rank two matrix as a; — 0. Equation (14) then implies that
the eigenvalues of Cov[a] remains finite for no more than two independent parameters. Thus, no more than
two independent parameters can be estimated from the entire set & as a — 0.

We lack a fully satisfactory physical explanation for this restriction on the number of estimable parameters,
but provide an explanation involving only the first two HG modes for o; < 1.

4.1. Analytical expression of QFIM
The state in equation (7) can be expressed in the basis of {|a;), d'|a;) } as

D, 0
o = A( N O)AT = Ap AT, (17)

where
A=(a) lo) - lan) @fla) - a'low)) (18)

and D,, = diag(wy, wy,---,wn) denotes a diagonal matrix. Although the basis used in equation (17) is non-
orthogonal this representation can still be used to evaluate the QFIM [52]. The coherent states {|«;) } are linearly
independent and span the support of the state in equation (7). The support of the derivative is spanned by {|c;) }
and {a%|;) }, which are also linearly independent.

The Grammian matrix

T = ATA, (19)
whose elements consist of the scalar products between the basis vectors (| a), {jld"|o), (yld] k), and

(ajlda’|oy) is in block form,
T = (Taa Tad)’ (20)

Yoo Yaa
where

(Ttm)z] <Oé'|Oéj> = ef(ai*aj)z/z)

Naa)ij = (Th)ij = (ildflaj) = aje™ @2 = (D Tao)ijs
(Tdd)if (ailad’lay) = (aiay + e @mar/?
= (DaTaaDa + Taa)ij) (21)

and D, = diag(cy, ap,--,an).
Since 9,|a) = (a7 — a)|a) for real o, the derivative of the quantum state is
—ZOéjE]' E] T ¥
0ipa = AWw; % 0 Al = A(0jp)aAT, (22)
j

where 0; denotes the derivative with respect to ;and (Ej)i; = 6ji 6;;. Similarly, the SLD LA can be written in the
generic form

i j AT __ L({(Y L(‘ld T
L =ALA" =A j j A, (23)
Lda de

where L/, corresponds to the elements (o;| L'|aj), L J to (aj| Lia|;) etc. The Lyapunov equation

equation (13) can be now rewritten as
20ip, = pa YL, + L{Tpy 24)
and the QFIM elements from equation (12) as
[Qp)li = Tr(@jp L¥) = Tr (9, T LY. (25)
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Using the Tracy—Singh block kronecker product ® and the block column ‘vecb’ operator [53] defined as

ILdo)
. L))
vecb(L}) = | doc (26)
159
ILip)
where |X) = vec(X) is the column vectorisation of a matrix and (X]| its transpose. Equation (24) can be
blockwise vectorised to
2vecb(jp,) = L ® (p, 1) + (p, ) © Dyvecb(L}) (27)

with [ being the identity matrix. Using the matrix identity [53]
Tr (ATBCDT) = vecb(AT)T (D ® B)vecb(C), (28)

the QFIM elements from equation (25) can be re-expressed as

T
. ; IT%)
[Q(p)]ii = vecb(0ip,)" (T © T)vecb(Ly) = wi[—2a; (Ej| (E| (Eil 0] o | (29)
ad
IT%)
where we have defined
IT%0)
i H |Féa)
(T ® T)vecb(L]) = vecb(IV) = : (30)
(10
IVHN
which is the outstanding quantity to be determined.
We now recast equations (27) and (29) as
2vecb(9;p) = (Y1 ® py + py © TH(T © T)vech(L))
=010 py + py © T Hvecb(T). (31)
Putting it all together, we obtain
j
—4w;ai|E;) 0 |F‘?“)
1E: 19)
2wilE) | _ A 0 do) | 32)
2wi|E)) offir)
0 00 0 off !
1¥9)
where
Dy ® Voo + Vaa @ Dy Dy @ UVag Vad @ Dy
A= Dy, ® vja Dy ® via 0 > (33)
Vda @ Dy 0 Vdd @ Dy
and {Unyas Uads Udas Udd) defines the inverse of T via
1 _ | Yaa Uad
1= [% Udd]. (34)
Note that the inverse Y~! always exists since T is the Grammian matrix of linearly independent vectors. The
elements of T can be found using the formula of blockwise inversion (see appendix B).
Noticing that [T} ,) does not contribute in equation (29), equation (32) can be reduced to
74W1‘Oti|E,‘) |F(jwz)
2wi|E;) )

where A isa3N? x 3N? invertible matrix unless or; = «a;for some 1, j, which is a singular case for which the rank
of the density matrix reduces. Hence the unique solution to equation (35) is

6
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Figure 2. Diagonal and off diagonal elements of the QFIM for the case of 3 sources with equal intensities. The sources are separating
from each other at equal distances, («;, ;, 3) = (x, 2x, 3x). The element Q;, and Q,; elements are equal, as are the Q;; and Qs;
elements.

%) —4w;j|E;)
oy | = a7 2wlE) |, (36)
I ) 2w |E))

where the block matrices that compose the A™! can be found by using the formulas for blockwise inversion (see
appendix B).
Substituting equation (36) into (29) gives us the QFIM elements
[Q(p)li = 2wiw (Bl @ TaaT g + Yo Ton ® T = 2051 @ TSI @ Y g Yo

+ TodYoa ® I — 2041 ® TN|E)) + 4w;65[1 + @f — YaaDaYoaDaYua)ils (37)

a

where $™! = (T, ® D,, + D,, ® T,}) lisan N* x N*matrixand T, is the inverse of the submatrix of T
which exists, as it is the Grammian matrix of linearly independent vectors {|«;) }. Equation (37) is an analytic
expression for the QFIM elements for localisation microscopy and our main result.

Figure 2 shows the elements of the QFIM for the localisation microscopy of three point sources. We choose
them to be equidistant, that is, (o, &, a3) = (x, 2x, 3x) and w; = w, = w3 = 1/3 forillustration purposes.
Note the non-zero off-diagonal elements evidencing correlations in the precision around and below the
Rayleigh limit of x ~ 1.

While the diagonal elements are all non-vanishing, more crucially as x — 0 the diagonal and off-diagonal
elements combine to make the QFIM singular. This is revealed by a closer analysis of the QFIM matrix as in
figure 3 which shows that only two of its eigenvalues remain non-zero as the sources approach each other. This is
in spite of all the diagonals elements of the QFIM remaining non-zero even as x — 0, as figure 2 shows.

This behaviour of only two non-zero eigenvalues also holds for other values of N. We have explicitly checked
thisfor N = 4, ..., 10 as well as when the sources are not equally spaced. In figure B1 in appendix B we plot the
eigenvalues of the QFIM for N = 4, 5 as further examples. In the case of different relative intensities the results
are the same except of the limiting case of one extremely bright source w; >> 1, w;.; < 1, where the rank of the
QFIM is approximately one (figure B2 in appendix B).

Since the QFIM has rank two as x — 0, its inverse is ill-defined except on a two-dimensional subspace. This
implies thatthe N x N covariance matrix for localisation microscopy, as per equation (14), will also be
unbounded except on a two-dimensional subspace. Thus, no more than two independent parameters can be
estimated in localisation microscopy as the point sources approach each other.

In other words, the rank-deficient nature of the QFIM shows that a form of the Rayleigh limit resurfaces for
any N > 2. This had been suggested by previous works based on order-of-magnitude bounds for the diagonal
elements on the CFIM [36] or uppers bounds on the diagonal elements of the QFIM [37]. Our analytical
expression for the full QFIM—its diagonal and off-diagonal elements for any N—shows that this rank two
behaviour is truly quantum mechanical in origin. Furthermore, knowing the full QFIM matrix allows us to
uncover the nature in which N — 2 of the eigenvalues approach zero. We return to the behaviour in which this
rank deficiency or Rayleigh limit emerges in section 5.

7
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Figure 3. The eigenvalues of the QFIM matrix for 3 sources with equal intensities. The sources are separating from each other at equal
distances, (o, iy, 3) = (%, 2x, 3x).

4.2. Why rank two?

We now provide an explanation for the rank deficiency of the QFIM in the regime of small separations which can
be seen as the re-emergence of the Rayleigh limit. To that end, we expresses the state in equation (7) in terms of
the real-valued displacement operator D(a;) = e® —ici ag

p =3 JWD(@)0) (0] YWD (@), (38)

In the limit of very small separations (o; < 1), the displacements are approximately
D(a;) = 1 + a;(@" — a) + O(a), (39

where Il is the identity operator and the displacement «; is real. Up to the second order in «;, the normalised
quantum state of the light field on the image place is then

1-C G
@ — bt 40
pa ( Cl Cz)’ ( )
where C; are the first two moments
N N
C] = Z Wi, Cz = Z W,‘Oz%. (41)
i=1 i=1

Equation (40) describes the state of two-level quantum system—the two levels being the first two HG modes.
A similar approximation which described the state relative to a PSF centred at a fixed reference point was used in
reference [15] to estimate the centroid and the effective radius of a distribution of incoherent point sources. We
now consider the more general problem of estimating the location of N point sources.

The QFIM for & (see appendix C) is

Q) = 2= <0 a)M(;TT), (42)
with
| My My,
M= [M21 Mzz]’ )

where My = (C; — 1)Cy, My = My = G(1 — 2C), My, = 4C2 — 1, A = (C, — 1)C, + Cland I = (1 1... 1)T.
The QFIM 2isan N x N matrix, which is a product of three matrices of dimensions N x 2,2 x 2and

2 x N.Since rank(AB) < min {rank(A), rank(B)}, and the matrix M has rank 2, the QFIM 2 has rank no

more than two. Although a two-level quantum system has the potential of estimating three real parameters,

localisation microscopy in this limit can estimate only two as the two-level system possesses a real density

matrix”. This is another way of arguing that as the point sources get closer, the light field on the image plane has

4 .. . . .
Asthelocalisation parameters o arereal, Tr (pg) 0y) = 2Im(C)) = 0, where g, is the Pauli Y matrix.
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Figure 4. Fitting of the eigenvalues of the QFIM matrix for the case of 9 sources in the limit of small distribution size. The sources are
positioned at a; = ix. The size of the distribution is denoted I = 8x. The scale on both axes is logarithmic. The sources are separating
from each other at equal distances, as in the previous plots. The slope of each line corresponding to different eigenvalues appears in the
box in the plot.

enough information to estimate only two parameters. A physical reason for this observation would be highly
desirable.

5. Discussion

Our analytical expression for the QFIM for localisation microscopy has enabled us to show that as point sources
get closer, no more than two independent parameters can be estimated. A rank-deficient QFIM occurs when the
quantum state does not contain enough information to permit the estimation some of the parameters or
combinations thereof. The parameters that can be estimated correspond to the non-zero eigenvalues of the
QFIM. Without additional knowledge of the source distribution this restricts us to estimating functions of the
first two moments f (C, C,) only deep in the sub-Rayleigh limit. As equation (42) shows, when all { a;} are
unknown as in localisation microscopy, there is vanishing information about any single «;itself. This is in
contrast to the scalar QFI [ Q(p,)];i for o; which is non zero, but assumes that all the other { a;} are known.

The manner in which the eigenvalues of the QFIM tend to zero is of interest in the search for optimal

detection systems for localisation microscopy. Numerical fitting in figure 4 shows the vanishing eigenvalues of
=

2
order the eigenvalue when arranged in descending order and | - ] is the floor function. These scalings are now

extracted from the elements of the full QFIM of the localisation parameters av—rather than from bounds on
estimating the various moments independently as in previous works [36, 37].

Unlike the latter, we can now compare the absolute performance of detection systems for localisation
microscopy relative to its quantum limit. Indeed, while figure 5 shows the 2nth eigenvalue of the QFIM closely
parallel to the nth eigenvalue of the CFIM for SPADE [11], there is a large gap in the absolute terms. This could be
due to the sub-optimality of SPADE for estimating the | N /2 | parameters it is sensitive to”. Similar scalings were
observed with detection using superpositions of the conventional SPADE basis [35—37] that are sensitive to the
other half of the moments. For reference over a range of separations, figure E1 in appendix E shows the
eigenvalues of the CFIM for SPADE as well as direct imaging. Note that for both, the CFIM tends towards a rank
one matrix.

Finally, although our analytical result is derived with a Gaussian PSF, we expect the rank deficiency of the
QFIM to be present in a more general family of PSFs. To that end, figure 6 shows the numerically obtained
eigenvalues of the QFIM for three equidistant point sources of equal intensities under a sinc PSF (see
appendix D) defined as

the QFIM approach zero polynomially. The degree of the polynomial is given by d = 2[ 1J, where (1 is the

5 . . .. . e . . .
Conventional SPADE is not sensitive to all the parameters needed to describe the sources’ distribution, only its even moments [34, 37, 38].
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Figure 5. The eigenvalues of the QFIM and CFIM for the SPADE with 20 HG modes and 9 equally bright sources. The sources are positioned
ata; = (i — 5)xsuch that the peak of | ) is at the centroid of the distribution. The x axis is the size | of the distribution, with ] = 8x. The QFI
eigenvalues scale as in figure 4. By SPADE with 20 modes, we mean the POVM {|¢) (|, [8) (B, -+ | ba0) (D20 ls T — 222010 (941}
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Figure 6. The eigenvalues of the QFIM matrix in the case of 3 sources with equal intensities and a sinc PSF. The sources are separating
from each other at equal distances, i.e. (o, ap, a3) = (%, 2x, 3x).

Ypsp(x) = %Sinc(ﬂ—x)- (44)

g g

This PSF is the exact form for diffraction through a sharp one-dimensional slit which in its principal peak is well-
approximated as Gaussian.

An approximation involving the first two spherical Bessel modes as in section 4.2 can be performed for a sinc
PSF as well, leading to similar insights. A proof of this rank deficiency for arbitrary PSFs and a physical
explanation remains an open question.

To conclude, we have obtained several insights into the quantum limits of localisation microscopy via an
analytical expression for the QFIM. In particular, the behaviour of the eigenvalues of the QFIM deep in the sub-
Rayleigh limit revealed that only two parameters are eventually estimable. It also enabled us to compare the
performance of known detection systems relative to the quantum limit in absolute terms, a question left open in
the literature [34]. The gap identified by us should motivate the search for detection systems, ideally on a single
copy of the light field on the image plane, seeking to reduce or eliminate it.

10
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Appendix A. Expressing the density matrix in the HG basis

The density matrix is written in terms of the kets |4/;), which are expressed in the position space as in
equation (3). We assume a normalised Gaussian PSF of the form

x2

Ppsp(x) = 402, (A.1)

1
(2770'2)1/4 ¢

and so
i = [ dx e e = X )- (A2)

The kets |¢;) can be expressed in terms of the complete HG modes as

Z Bl |by) (A.3)

where |¢q) are the HG modes, which can be expressed in the position space as [11]

2

I¢,) = e aolx), (A.4)

(27r02)1/4 4/2’1q f ( )
where H,(x) are the Hermite polynomials. The coefficients of the expansion equation (A.3) are

x2 (x/*Xi)z

)e40e 402 (x|x)

(6,l1) = Wﬁf (fg

efﬁ x —[ L ]2 Xi ae-3()
7”fdxHq(—)e 20 2o :(—’) . (A.5)
N 2mo?24g! V20 20 \/a
Setting ZX—; = o;weget
o o4
low) = 1) = Y jeﬂf/2|¢q> (A.6)
=0 N9

which has the same mathematical form as the coherent states with { |¢q> } forming the Fock basis [39].
The state in equation (3) can be also written in terms of the displacement operators D(«;) = ei(@' =) with
Q; = % eR
Pe = 2 NWiD(@)]0) (0] wi D (i), (A7)

where D(«) is the displacement operator.
The derivative of each coherent state with respect to its real amplitude v is given by

dla) D),
o - 0) = (@" — a)|a),
(al 0D («) R
—G— , A.
o a ——=(0|=(a — ) |) (A.8)

which yields the formula equation (22).

Appendix B. Analytic results for N sources

The Tracy-Singh product [53, 54] defined for matrices A and B subdivided into blocks A;;and Byjis A © B
where the (i, )thblockof A ® Bis Aj; © Bwhose (k, [)th blockisin turn A;; ® By;. That isif A, Bare block
matrices with

11
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A11 A12 (Bll BlZ)
A= , and B = ,
(AZI AZZ BZ] BZ2

then the Tracy-Singh product is

Al ® B A;p ® By,
Ay ©B|Ap © B) _|Au® By A ® By
Ay ©B| Ay ©B Ay ® Bip Ay @ Bpa
Ay ® By Ay ® By

A @ By A ® Bpp
A ® By A ® By
Ay ® Bii Ap ® B
Ay ® By Ay ® By

A@B—(

Using the above definition, the matrix of equation (31) is found to be

Dy @ Voo + Vaa @ Dy Dy ® Uag Uad @ Dy 0
Dw ® Vda Dw & Vad 0

0
T1Op+p, 0T H= , B.1
( Pa T Pa ) Uga @ Dy, 0 Vig @ Dy, 0 (B.1)
0 0 0 0
where the elements of Y~ ' can be found using the formula of blockwise inversion:
—1_ | Yaa Vad
T-1 = [ o Udd] (B.2)
with
Vaa = Tgé + T;(iDaTaa(Tdd - TaaDaT(;(I),DaTaa)ilﬂraaDaTil
Vad = *TgéDaTaa(Tdd - Taa'DaT;(IyDaToa)71
Vda = *(Tdd - Ta(yDaT;(llDarraa)ilTaﬂDaT;(ll
Vg = (Tag — TaaDaT(:(}yDaTaa)il' (B.3)
The inverse of the block matrix T, exists, because it is the Gramian matrix of the linear independent
vectors | ;).
For the QFIM elements we need to evaluate the inverse of the top left 3N* x 3N part of the matrix of
equation (B.1) which we denote A. In order to obtain the inverse of A, we need to further partition A as
_|e @
A= [ o w] (B.4)
with
€ =[Dy ® Vaa + Vaa @ Dyl Y= [Dy ® Vad Vad @ Dyl
Dw ® Uda Dw ® Udd 0
= = . B-S
\ I:Uda ® D, « 0 Vgd @ Dy, (B:5)
The inverse of w is
_[Deva 0
w = . ne (B.6)
0 v © D,

The elements of A~! will be given by the formulas
A= - Vo lpy ' =5"
A D = =S W
(A Ny =~ lpS™!
(A Dy =w '+ o lpS WL (B.7)

After calculations and by substituting the Y~ elements from equation (B.3), we derive the explicit form of A~
elements:

(AN =8"1= (T, ® Dy + Dy @ T)!
(AN = ST @ (Yo Yad) (ToaYoa) © )
I® (TdaT;é)] -
(TaaYoh) @ 1
D,' ® vy 0 I® (TiaYod)
0 vz ® le) [(TdaTl QI

[e7e%

(AN, = (

(A Dy = [ ]sl(ﬂ ® (LodYod) (TodTop) @ D). (B.8)

12
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Figure B1. The eigenvalues of the QFIM for 4 (left) and 5 (right) sources with equal intensities. The sources are separating from each
other by equal distances: (o}, a, i3, ) = (, 2, 3%, 4x) and (o, ap, i3, Oy, 5) = (X, 2, 3, 4x, 5x).
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Figure B2. The eigenvalues of the QFIM matrix in the case of 3 sources. The sources are separating from each other at equal distances,
i.e. (o, , a3) = (x, 2, 3x). It can be noticed that the limiting values of the two non zero eigenvalues are different as the weights
become different. However, the rank 2 of the QFIM remains. In figure (b) the limiting case of one extremely bright source wand two
very weak ones is displayed. The inset shows the two vanishing eigenvalues.

0.4

The QFIM elements are then obtained from equations (36) and (B.8)

Qi = 2wywi[ — 20, (Ei| (B}l (E{1A™

—20[]'|Ej)
|E})
|E;)

=2wiw(El[20; I @ TT @ T T ® IJA™!

—20[]‘]I®]I
I®l
I®l

|E;)

= 2w W (B[l ® YuaToh + YaaLon @ T — 20T @ NISTI @ T 0 Vog + Yo Yoa ® 1
—20j1 @ T|E)) + 2wiwy(EE,," @ vgi + val @ E,'E))
= 2w W (Eilll ® YaaLog + YaaLoa @ I = 20, I @ IISTHI @ YodYod + TodYoa ® I

— 2051 @ I]|E)) + 4w;6;5(v)is

= 2w (Eilll ® YaaLog + YaaLoa @ I = 20, I @ IISTHI @ YodYoa + TodYoa ® I
=201 ® I|E)) + 4w;§;[1 + af — (YaaDa Y aaDaYaa)i]-

(B.9)

Finally, to complement the discussion in the main text,we present some further examples of the QFIM
eigenvalues for N = 4, 5 sources and in figure B2 we present the eigenvalues of the QFIM for 3 sources in the case
of unequal weights (relative intensities) figure B2.
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Appendix C. Analytic results for x; < o

The state in the sub-diffraction regime is given by equation (40). The derivative can be calculated immediately
from this formula and it is

0 720[,‘ 1
p = —2a;]0) (0] + [|0) (1] + |1)(0]] + 2a4|1) (1] = [ ] (C.1)
8ai 1 20[1
By solving the SLD equation 9,0, = (p,Li + Lip,), we can determine the SLDs in the {|0), |1) } basis:
L — 2 CCr + (G — Chay (€= DG+ (G — 2C6) C2)
LG DG+ C(C— DG+ (G — 2CC)a; G — CCy + (2CF + Co — Day | '
Knowing the SLDs, we can obtain the QFIM of equation (42).
As already mentioned in the main text, the rank of the QFIM only depends on the matrix
M M,
C.3
[le Mzz] €3

of equation (42), with the elements of this matrix given by equation (43). The eigenvalues p;, i, of the matrix
equation (C.3) are

= %(cg — J(Co— 1)Cy+ 4C} — 1)2 + 4(C — 1)Cy + C)) — Cy + 4C] — 1),

[y = %(C% + \/(Cz — 1)Cy 4+ 4CF — 1)2 + 4(C, — 1)Cy 4+ CD — Cy + 4CF — 1. (C.4)

The condition for the eigenvalues to be zero is

(o: 3C2—1—4JBCI -1 ANC, = %(1 — 41— 4012)) vV (0=3C—-1
—JBCE -1 NG, = %(1 + 41— 4(312)), (C.5)

Thefirstpart 0 = 3C; — 1 — /(3C? — 1)? isalways true, as it reduces to the identity (3C7 — 1)* = (3C; — 1)%
For the second part we have

1
62:5(1 +J1-4CH) o 0, —1)2=1-4C=Ci-C+Cl=0. (C.6)
Substituting C, and C; we get
N 2 N N 2 N 2 N N N
[Zaf) Zainr(Zai] 0@(20@] S i+ ai+2 Y waj=0
i=1 i=1 i=1 i=1 i=1 i=1 ij=1,i=j

N 2 N
[Zaf) + 2 Z a0 = 0. (C.7)
i=1

ij=1,i=j

Since q; are strictly positive, except one that can be zero, this sum of positive terms cannot be equal to zero.
Therefore, this statement is always false. Thus, the equation (C.5) becomes (1 A 0) V (1 A 0) = 0, which
means that the two eigenvalues can never be zero and the QFIM will be rank 2.

Appendix D. Calculation of the QFI for the Sinc PSF

The expansion of the Sinc function on the HG modes is not ideal for numerical calculations. Instead we use the
spherical Bessel function of the 1st kind and express the states onto those modes in which we then truncate. If the
PSFisa sinc function, the [¢);) are

N 0 T(x — X;)
[y = = LOO s1nc(7J )|x>. (D.1)
We can use the identity [55]
sinc(M) = i(zq + 1)}q(ﬂ)}q(ﬂ_’cl)’ (D.2)
o =0 o o
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Figure D1. The eigenvalues of the QFIM matrix in the case of 3 sources with equal intensities for the sinc PSF. The sources are
separating from each other at equal distances, i.e. (o, @), av3) = (x, 2x, 3x).

where J,(x) is the spherical Bessel function of the st kind. The spherical Bessel function are orthogonal in all R

[ Y dx 00T, () = S (D.3)

2g + 1

therefore we can define the orthonormal basis

. 2 1 s
i = 4 q: j:oo dxlq(%x)|x>. (D.4)

The set of the spherical Bessel functions is a basis in R, but is not complete since it is not a resolution of identity
as we can see from equation (D.2). Hence, we can expand the sinc function on the bessel function basis, using the
identity equation (D.2):

1 00 X X 7X; >
) = — 29 + D[ 2= = 29 + 1 D.5
= [ re () e i1 (0.5)
Using the identity for the Bessel functions
0J(x) +1
R IR SAC) (D-6)
Ox
we can also have an expression for the derivative of ;)
o) ( (wx) q+1 (wx,-))
—— L1l D.7
0X; Ja1 o 2 Ja o 07

We see that both the state p and its derivatives are completely expressed within the basis | jq>. This means that we
can use the definition of the SLD (equation (D.8)) and express the SLD in the same basis.

290

Oday,

= pL" + Lip. (D.8)

In this way the fact that the specific basis is not complete does not affect our calculations.
For the numerical calculations we have to truncate our state in the appropriate amount of modes. From
figures 6 and D1, we can see that our conclusions do not change with the use of a non-Gaussian PSF.

Appendix E. Eigenvalues of the CFIM for SPADE and direct imaging

Finally, we present the eigenvalues of the CFIM for SPADE and direct imaging fir a large range of separations.

15



I0OP Publishing NewJ. Phys. 21 (2019) 123032 E Bisketzi et al

0.25

0.2

= 2

=

= =

O o

2 2015
=2 3

S k3

@ @

E E

) = 01
z z

5 g

h hs

& 5

0.05

Figure E1. The eigenvalues of the CFIMs in the case of 9 sources for SPADE (left) and direct imaging (right). The sources are
positionedata; = (i — 5)x.
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