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Abstract
Localisationmicroscopy ofmultiple weak, incoherent point sources with possibly different intensities
in one spatial dimension is equivalent to estimating the amplitudes of a classicalmixture of coherent
states of a simple harmonic oscillator. This enables us to bound themulti-parameter covariance
matrix for an unbiased estimator for the locations in terms of the quantumFisher informationmatrix,
whichwe obtained analytically. In the regime of arbitrarily small separations we find it to be nomore
than rank two—implying that nomore than two independent parameters can be estimated
irrespective of the number of point sources.We use the eigenvalues of the classical and quantum
Fisher informationmatrices to compare the performance of spatial-mode demultiplexing and direct
imaging in localisationmicroscopywith respect to the quantum limits.

1. Introduction

Precisely locatingmultiple single emitters is a key challenge influorescencemicroscopy. The process of
estimating these locations depends on the quality of the image obtained by themicroscope. One of themajor
limitations to the image quality, known since Abbe andRayleigh, lies in spatially resolving objects substantially
smaller than half thewavelength of the light involved [1]. Known as the Rayleigh limit or diffraction limit, it is a
consequence of the diffraction of light due to its wave nature.

Over the last couple of decades, ways to circumvent the Rayleigh limit in far-field fluorescencemicroscopy
have been invented [2]. Confocalmethods such as STED, RESOLFT, and SSIM [3–6]use patterned illumination
to spatiallymodulate the fluorescence pattern of emitters within a diffraction-limited region such that not all of
them emit simultaneously, thereby achieving sub-Rayleigh resolution.Other far-fieldmethods such as PALM,
fPALMand STORM [7–9] temporallymodulate thefluorescence pattern of emitters withweak laser pulses
stochastically such that only a lowdensity of emitters are active within theRayleigh limit at one time. Repeating
the processmany times, images with sub-Rayleigh resolution are reconstructed from themeasured positions of
individual emitters. These techniques, with resolution of tens of nanometers, have provided insights into
biological processes at the cellular scale that were hitherto unattainable [10].

Though immensely powerful and impressive, none of thesemethods seek to extract all the information
available in the emitted lightfield. As in conventional fluorescencemicroscopy these techniques use ‘direct
imaging’—intensitymeasurements on the image plane—to extract information from the incident light. That
there is indeedmore information in the lightfield to be extractedwas shownbyTsang et al [11]. Usingmethods
from classical and quantum estimation theory, it was shown theoretically that two arbitrarily close incoherent
point sourcesmay be resolved, and that thismay be achieved in practice using a spatial-mode demultiplexing
(SPADE)measurement. In the few years since, theoretical studies have considered different source
arrangements or parameters of interest [12–17] in one as well as in two and three spatial dimensions [18–21].
Other theoretical studies have explored various detection systems that could achieve the ultimate precision in
imaging or get close to it [22–25]. Several experiments have demonstrated some of the principles underlying
these detection systems [26–33]. Advances in this area have been recently reviewed byTsang [34].

Realistic imaging scenarios typically involvemore than two point sources or even extended objects. It has
been shown that an extended one-dimensional objectmuch smaller than the Rayleigh limit described only in
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terms of its centroid and effective radius can be approximated by a two-level quantum system [15]. Theoretical
optimality of certainmeasurement techniques in estimating this effective radius size has also been established in
one and two spatial dimensions [17, 35, 36]. Order-of-magnitude bounds on the precision of estimating the
normalisedmoments of extended sources smaller the Rayleigh limit have also been obtained [36, 37].

In this paper, we provide an analytical lower bound on an unbiased estimatorʼs covariance (mean square
error)matrix for localisationmicroscopy—simultaneously estimating the locations ofN incoherent, weak point
sources of unequal but known intensities in one spatial dimension. The bound is provided by the the quantum
Fisher informationmatrix (QFIM). For aGaussian point spread function (PSF), we first describe the lightfield
on the image plane as a classicalmixture of coherent states.We use this to derive theQFIManalytically. In the
limit of the point sources approaching a single point, we find its rank to be nomore than two. As the inverse of
theQFIM lower bounds the covariancematrix, our result implies that nomore than two independent
parameters can be estimated in localisationmicroscopy in the limit of arbitrarily small separations. In this limit,
we provide amathematical explanation for our observation in terms of an approximation of the light field
involving only the first twoHermite–Gaussmodes. Finally, we compare performance of conventional direct
imaging and the recently proposed SPADE [11] in localisationmicroscopywith the quantumboundswe obtain.
In the limit of the point sources approaching a single point, wefind the classical Fisher informationmatrices
(CFIMs) for both these detection systems to be rank one. Furthermore, in the sub-Rayleigh limit, SPADEdoes
not attain the quantum limit for localisationmicroscopy. For the subset of parameters where scalingsmay be
optimal, wefind SPADE to be short of the quantum limit in absolute precision.

This paper is organised as follows: in section 2we provide a quantummechanical description of localisation
microscopy. The appropriate framework to study the quantum limits of the localisation problem is quantum
estimation theory, the toolbox of which is described in section 3, leading to the definition of theQFIM. In
section 4we provide an analytic expression of theQFIM for localisationmicroscopy, ourmain technical result.
We then draw conclusions about its rank and its implications for localisationmicroscopy.We end in section 5
with further insights and discussions about the sinc PSF and the potential of detection systems attaining the
quantum limits of localisationmicroscopy.

2.Quantumdescription of localisationmicroscopy

Weconsider localisationmicroscopy—the problemof estimating the locations ofN incoherent point sources
or emitters located in a one-dimensional spatial configuration as infigure 1. Aswe assume them to beweak,
such that on average no photons arrive on the image placewithin a coherence timewith probability (1−ò),
where ò= 1 and one photon arrives with probability ò.We also assume the opticalfield on the image plane to be
quasi-monochromatic and paraxial [11]. The quantum state of this opticalfield is then

r r r» - + 1 , 1opt vac( ) ( )

wherewe have neglected terms of second and higher orders in ò and r = ñávac vacvac ∣ ∣ is the vacuum state and ρ
is the one-photon state.

Figure 1. Illustration of localisationmicroscopywith five point sources, imaged by a diffraction-limited system and the resultant
intensity distribution on the image plane.
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The one-photon densitymatrix on the object plane is an incoherentmixture of position eigenstates
r c c= å ñá= wi

N
i i i1 ∣ ∣, wherewi are the relative intensities with å == w 1i

N
i1 . An imaging systemmaps c ,x̂

† the
creation operator producing one photon in the position x on the object plane, to the corresponding image plane
operator cî

† [13]

ò c= Y -c x x cd , 2i i xPSFˆ ( ) ˆ ( )† †

whereχi is the position on the source on the object plane and y xPSF( ) is the PSF.On the image plane this
becomes

år y y= ñá
=

w , 3
i

N

i i i
1

∣ ∣ ( )

where

òy cñ = Y - ñx x xd , 4i iPSF∣ ( )∣ ( )

as follows from equation (2).
An ideal imaging systemwith dY =x xPSF( ) ( ) is free of anyRayleigh limit as it transmits all spatial

frequencies from the object to the image plane. In practice, aGaussian PSF

y
ps

= s
-x

1

2
e , 5

x

PSF 2 1 4
4

2

2( )
( )

( )

withσ=λ/(2πNA), whereNA is the numerical aperture of the imaging system is a good approximation for
quasimonochromatic paraxial light [11, 38] and also allows us to obtain analytical results. For such a PSF, the
state of equation (3) has an intensity distribution of the form illustrated infigure 1. For aGaussian PSF, the y ñi∣
can be expanded in theHGbasis as (see appendix A)

åy
a

f añ = ñ º ña

=

¥
-

k
e , 6i

k

i
k

k i
0

2i
2∣

!
∣ ∣ ( )

where f ñk∣ are theHGmodes2. This has the samemathematical form as the coherent states, produced by the

displacement operator a = a a+ ei
a ai i*( ) ˆ ˆ† [39] acting on the ground state of the harmonic oscillator with

a c s= Î 2i i the dimensionless positions of the sources. Thus the one-photon state on the image plane is

år r a aº = ñáa
=

w , 7
i

N

i i i
1

∣ ∣ ( )

a classicalmixture of coherent states in theHGbasis.
The above is a quantumoptical rendition of localisationmicroscopy—a classical optics problem. It enables

us to harness themathematical formalism associatedwith coherent states and provides a basis that spans the
space of the quantum state as well as its derivative. The latter is an essential ingredient of deriving theQFIM
analytically in section 4.1.We also hope that this descriptionwill provide insights into the quantum limits to
localisationmicroscopy in the presence of shot noise and assist in designing detection systems that attain these
quantum limits.

3.Quantum estimation theory

Localisation has long been treated as an estimation problemwith the unknown locations of the sources
c cº = ¼i N, 1, ,i{ } being the parameters to be estimated [40, 41]. In our formulation, the limits to the
localisation of the point sources are the same as estimating the amplitudesa aº = ¼i N, 1, ,i{ } of the
coherent states in equation (7). Let these estimates bea aº i˜ { ˜ }. The precision of our estimate is then given by
the covariance (ormean square error)matrix defined as

åa a a a a a= - -p zCov , 8
z

T[ ] ( ∣ )( ˜ ) ( ˜ ) ( )

where ap z( ∣ ) is the probability distribution of the collected data labelled by, for instance, the pixel z on the
image plane. aCov[ ] is a positive symmetricmatrix whose ith diagonal element denotes the variance of an
estimator ofαi given the data collected. The (i, j)th off-diagonal element denote the covariance in the estimation
ofαi andαj.

2
Unlike the conventional quantumoptical coherent states which reside in the phase space of the electromagnetic field, our coherent states

reside in physical space on the image plane. Thismathematical formwas also identified byDutton et al [17] but only used for numerical
calculations.
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Given the data collected, themaximumamount of information that can be extracted from it to obtain the
most precise estimate of the locations is given by theCramér–Rao bound [42]. For an unbiased estimator, this
bound is given by

a r Pa
-




M
Cov

1
, , 9z

1[ ] [ ( )] ( )

whereM is the number of coherence times over which the data is collected,makingMò the total photon count.
This inequality is saturable but generally only in the asymptotic limit ofmany repetitions [43]. r Pa , z( ) is the
CFIMwhose elements are given by [44]

å a
a a

r
a a

P =
¶
¶

¶
¶a mn

m n


p z

p z p z
,

1
. 10z

z

[ ( )]
( ∣ )

( ∣ ) ( ∣ ) ( )

The probability distribution a r= Pap z Tr z( ∣ ) ( ) results fromdetecting the light on the image plane using a
specific detection systemΠz. Fluorescencemicroscopy typically employs intensity detectors P =z

ñá =n n n, 0, 1, ,z{∣ ∣ }  at each pixel z, known as direct imaging. It is then evident that the CFIMdepends on the
detection systemused, and not surprising that it determines the amount of information that can be extracted
from the lightfield at the image plane.

To identify the quantum limit on the precision of localisationmicroscopy, the CFIMmust bemaximised
over all possible physically allowed detection systems. This set is given by positive operator-valuedmeasures
(POVMs) [45] and themaximisation is bounded as [46, 47].

r rPa a
P
 max , , 11z

z

( ) ( ) ( )
{ }

by theQFIM. Itsmatrix elements are given by

r r=
+

a amn

m n n m


L L L L
Tr

2
, 12

⎡
⎣⎢

⎤
⎦⎥[ ( )] ( )

with Lμ being the symmetric logarithmic derivative (SLD) corresponding to the parameterαμ. The SLD is
determined by the Lyapunov equation

r
a

r r
¶
¶

= +a
a a

m

m mL L2 . 13( ) ( )

The quantum limit to localisationmicroscopy is thus given by

a r rPa a
- -

 
  

M M
Cov

1
,

1
. 14z

1 1[ ] [ ( )] [ ( )] ( )

TheQFIMdepends only on the lightfield on the image plane and determines themaximumamount of
information that can be extracted from it using detection systems allowed by quantummechanics. Deriving an
analytical expression for ra( ) for state in equation (7) is ourmain result, whichwe present in the next section.

A practical issue following the identification of the quantum limit is its attainability. For cases where a single
parameter is unknown then ameasurement can be found to satisfy the equality of equation (11), which involves
projecting onto the eigenstates of the SLD [44, 48]. However this strategy does not generalise tomultiple
parameters, as in localisationmicroscopy, in general.

Formulti-parameter estimation the attainability is tantamount to saturating the second inequality in
equation (14). A necessary condition for the saturability of any scalar formof equation (14) is the satisfaction of
weak commutativity [49, 50]

r r= =a a
m n m nL L L LTr , 2 Tr Im 0. 15( [ ]) ( ( )) ( )

Moreover, through the quantum theory of asymptotic normality [51], this condition becomes sufficient with the
application of collectivemeasurements overmultiple copies of ra [49, 50].

Any scalar function of the covariances can be bounded by the inverse ofQFIMwith the lower bound
following from the spectral decomposition ofQFIM. To that end, calculating the eigenvalues of theQFIMand
their scaling is of importance for themulti-parameter estimation. For localisationmicroscopy, ra as in
equation (7) aswell as its derivative are realmatrices. Thereby, Lμ, L ν are also real and the above condition is
always satisfied3. The quantum limit for localisationmicroscopy is therefore attainable, at least in principle,
although collectivemeasurements overmultiple copies [49, 50] of the lightfield on the image planemay be
required.

Alternative parameterisations of the system—where the new parametersa¢ are functions of the old
parametersa—can be dealt with by a transformation of theQFIM.Given the transformationmatrixBwith

3
Since the densitymatrix and its derivatives are real-valued in the orthonormal f ñk{∣ }basis, equation (13) is a systemof equationswith real

coefficients. Hence L νmust be real as well, and so ra m nL L is real-valued.We thank BenWang for bringing this to our attention.
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elements a a= ¶ ¶ ¢Bij i j, theQFIMof the transformed parameters is [44]

¢ = B B , 16T ( )

provided the transformation is non-singular. This can be used to recast our results in terms of, for instance, the
moments of the point source distribution.

4. Results

Wenowpresent ourmain result—the analytical expression of theQFIM for localisationmicroscopy. This
expression allows us to conclude that theQFIM is a rank twomatrix as a  0i . Equation (14) then implies that
the eigenvalues of aCov[ ] remains finite for nomore than two independent parameters. Thus, nomore than
two independent parameters can be estimated from the entire seta asa  0.

We lack a fully satisfactory physical explanation for this restriction on the number of estimable parameters,
but provide an explanation involving only the first twoHGmodes forαi=1.

4.1. Analytical expression ofQFIM
The state in equation (7) can be expressed in the basis of a añ ña,i i{∣ ˆ ∣ }† as

r r= ºa A
D

A A A
0

0 0
, 17w

A
⎜ ⎟⎛
⎝

⎞
⎠ ( )† †

where

a a a a a= ñ ñ ñ ñ ñA a a 18N N1 2 1(∣ ∣ ∣ ˆ ∣ ˆ ∣ ) ( )† † 

and =D w w wdiag , , ,w N1 2( ) denotes a diagonalmatrix. Although the basis used in equation (17) is non-
orthogonal this representation can still be used to evaluate theQFIM [52]. The coherent states a ñi{∣ }are linearly
independent and span the support of the state in equation (7). The support of the derivative is spanned by a ñi{∣ }
and a ña i{ ˆ ∣ }† , which are also linearly independent.

TheGrammianmatrix

¡ = A A, 19( )†

whose elements consist of the scalar products between the basis vectors a aá ñj k∣ , a aá ñaj k∣ ˆ ∣† , a aá ñaj k∣ ˆ∣ , and
a aá ñaaj k∣ ˆ ˆ ∣† is in block form,

¡ =
¡ ¡
¡ ¡
aa a

a
, 20d

d dd

⎛
⎝⎜

⎞
⎠⎟ ( )

where

a a

a a a

a a a a

¡ = á ñ =

¡ = ¡ = á ñ = = ¡

¡ = á ñ = +
= ¡ + ¡

a

a a

aa
a a

a a
a a

aa

a a

aa aa

- -

- -

- -

a D

aa

D D

e ,

e ,

1 e

, 21

ij i j

d ij d ij i j i ij

dd ij i j i j

ij

2

2

2

i j

i j

i j

2

2

2

( ) ∣

( ) ( ) ∣ ˆ ∣ ( )

( ) ∣ ˆ ˆ ∣ ( )
( ) ( )

( )

† † ( )

† ( )

and a a a=aD diag , , , .N1 2( )
Since a a a¶ ñ = - ña a∣ ( ˆ )∣† for realα, the derivative of the quantum state is

r
a

r¶ =
-

º ¶a Aw
E E

E
A A A

2

0
, 22j j

j j j

j

T
j A

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )†

where∂j denotes the derivative with respect toαj and (Ej)kl=δjk δjl . Similarly, the SLD LA
i can bewritten in the

generic form

= = aa a

a

L AL A A
L L

L L
A , 23j

A
j T

j
d

j

d
j

dd
j

T
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

where aaL j corresponds to the elements a aá ñLi
j

j∣ ∣ , aL d
j to a aá ñL aj

j
i∣ ˆ ∣† etc. The Lyapunov equation

equation (13) can be now rewritten as

r r r¶ = ¡ + ¡L L2 , 24j A A A
j

A
j

A ( )

and theQFIM elements from equation (12) as

r r r= ¶ = ¶ ¡ ¡a L LTr Tr . 25jk j
k

j A A
k[ ( )] ( ) ( ) ( )
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Using the Tracy–Singh block kronecker product and the block column ‘vecb’ operator [53] defined as

=

aa

a

a

L

L

L

L

L

vecb , 26A
j

j

d
j

d
j

dd
j

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

∣ )
∣ )

∣ )

∣ )

( )

where =X Xvec∣ ) ( ) is the column vectorisation of amatrix and X( ∣ its transpose. Equation (24) can be
blockwise vectorised to

r r r¶ = ¡ + ¡  L2vecb vecb 27j A A A A
j( ) ( ( ) ( ) ) ( ) ( ) 

with  being the identitymatrix. Using thematrix identity [53]

=A BCD A D B CTr vecb vecb , 28T T T T( ) ( ) ( ) ( ) ( )

theQFIMelements from equation (25) can be re-expressed as

r r a= ¶ ¡ ¡ = -

G

G

G

G

a

aa

a

a

 L w E E Evecb vecb 2 0 , 29ij i A
T

A
j

i i i i i

j

d
j

d
j

dd
j

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
[ ( )] ( ) ( ) ( ) [ ( ∣ ( ∣ ( ∣ ]

∣ )
∣ )

∣ )

∣ )

( )

wherewe have defined

¡ ¡ = G =

G

G

G

G

aa

a

a

Lvecb vecb

,

30A
j j

j

d
j

d
j

dd
j

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( ) ( ) ( )

∣ )
∣ )

∣ )

∣ )

( )

which is the outstanding quantity to be determined.
Wenow recast equations (27) and (29) as

r r r
r r

¶ = ¡ + ¡ ¡ ¡

= ¡ + ¡ G

- -

- -

L2vecb vecb

vecb . 31

i A A A A
i

A A
i

1 1

1 1

( ) ( )( ) ( )
( ) ( ) ( )

  
 

Putting it all together, we obtain

a-

=

G

G

G

G

aa

a

a


w E

w E

w E

4

2

2
0

0
0
0

0 0 0 0

, 32

i i i

i i

i i

j

d
j

d
j

dd
j

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

∣ )
∣ )
∣ )

∣ )
∣ )

∣ )

∣ )

( )

where

u u u u
u u

u u
=

Ä + Ä Ä Ä
Ä Ä
Ä Ä

aa aa a a

a

a


D D D D

D D
D D

0
0

, 33
w w w w

w w

w w

d d

d dd

d dd

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ ( )

and u u u uaa a a, , ,d d dd{ }defines the inverse ofϒ via

u u
u u¡ = aa a

a
- . 34d

d dd
1 ⎡

⎣⎢
⎤
⎦⎥ ( )

Note that the inverse ¡-1 always exists sinceϒ is theGrammianmatrix of linearly independent vectors. The
elements ofϒ−1 can be found using the formula of blockwise inversion (see appendix B).

Noticing that Gdd
j∣ ) does not contribute in equation (29), equation (32) can be reduced to

a-
=

G

G

G

aa

a

a


w E

w E

w E

4

2

2

, 35
i i i

i i

i i

j

d
j

d
j

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
∣ )

∣ )
∣ )

∣ )
∣ )

∣ )

( )

where  is a 3N2×3N2 invertiblematrix unlessαi=αj for some i, j, which is a singular case forwhich the rank
of the densitymatrix reduces. Hence the unique solution to equation (35) is
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aG

G

G

=

-aa

a

a

-
w E

w E

w E

4

2

2

, 36

j

d
j

d
j

j j j

j j

j j

1

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

∣ )
∣ )

∣ )

∣ )
∣ )
∣ )

( )

where the blockmatrices that compose the - 1 can be found by using the formulas for blockwise inversion (see
appendix B).

Substituting equation (36) into (29) gives us theQFIM elements

r a

a d a

= Ä ¡ ¡ + ¡ ¡ Ä - Ä Ä ¡ ¡

+ ¡ ¡ Ä - Ä + + - ¡ ¡ ¡
a a aa a aa aa a

aa a aa a aa a aa

- - - -

- -

     
  

w w E S

E w D D

2 2

2 4 1 , 37

ij i j i d d i d

d j j i ij i ij

1 1 1 1

1 2 1

[ ( )] ( ∣[ ] [
]∣ ) [ ( ) ] ( )

where = ¡ Ä + Ä ¡aa aa
- - - -S D Dw w

1 1 1 1( ) is anN2×N2matrix andϒαα is the inverse of the submatrix ofϒ
which exists, as it is theGrammianmatrix of linearly independent vectors a ñi{∣ }. Equation (37) is an analytic
expression for theQFIM elements for localisationmicroscopy and ourmain result.

Figure 2 shows the elements of theQFIM for the localisationmicroscopy of three point sources.We choose
them to be equidistant, that is, (α1,α2,α3)=(x, 2x, 3x) andw1=w2=w3=1/3 for illustration purposes.
Note the non-zero off-diagonal elements evidencing correlations in the precision around and below the
Rayleigh limit of x∼1.

While the diagonal elements are all non-vanishing,more crucially as x 0 the diagonal and off-diagonal
elements combine tomake theQFIM singular. This is revealed by a closer analysis of theQFIMmatrix as in
figure 3which shows that only two of its eigenvalues remain non-zero as the sources approach each other. This is
in spite of all the diagonals elements of theQFIM remaining non-zero even as x 0, as figure 2 shows.

This behaviour of only two non-zero eigenvalues also holds for other values ofN.We have explicitly checked
this forN=4, ..., 10 as well as when the sources are not equally spaced. Infigure B1 in appendix Bwe plot the
eigenvalues of theQFIM forN=4, 5 as further examples. In the case of different relative intensities the results
are the same except of the limiting case of one extremely bright source ¹w w1, 1j i j  , where the rank of the
QFIM is approximately one (figure B2 in appendix B).

Since theQFIMhas rank two as x 0, its inverse is ill-defined except on a two-dimensional subspace. This
implies that theN×N covariancematrix for localisationmicroscopy, as per equation (14), will also be
unbounded except on a two-dimensional subspace. Thus, nomore than two independent parameters can be
estimated in localisationmicroscopy as the point sources approach each other.

In other words, the rank-deficient nature of theQFIM shows that a formof the Rayleigh limit resurfaces for
anyN>2. This had been suggested by previous works based on order-of-magnitude bounds for the diagonal
elements on theCFIM [36] or uppers bounds on the diagonal elements of theQFIM [37]. Our analytical
expression for the full QFIM—its diagonal and off-diagonal elements for anyN—shows that this rank two
behaviour is truly quantummechanical in origin. Furthermore, knowing the full QFIMmatrix allows us to
uncover the nature inwhichN−2 of the eigenvalues approach zero.We return to the behaviour inwhich this
rank deficiency or Rayleigh limit emerges in section 5.

Figure 2.Diagonal and off diagonal elements of theQFIM for the case of 3 sources with equal intensities. The sources are separating
from each other at equal distances, (α1,α2,α3)=(x, 2x, 3x). The element12 and23 elements are equal, as are the11 and33

elements.
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4.2.Why rank two?
Wenowprovide an explanation for the rank deficiency of theQFIM in the regime of small separationswhich can
be seen as the re-emergence of the Rayleigh limit. To that end, we expresses the state in equation (7) in terms of
the real-valued displacement operator a = a a- ei

c ci i i i( ) ˆ ˆ†
as

år a a= ñá w w0 0 . 38
i

i i i i( )∣ ∣ ( ) ( )†

In the limit of very small separations (a 1i  ), the displacements are approximately

a a a= + - +  a a , 39i i i
2( ) ( ˆ ˆ) ( ) ( )†

where  is the identity operator and the displacementαi is real. Up to the second order inαi, the normalised
quantum state of the lightfield on the image place is then

r =
-

a
 
 

1
, 402 2 1

1 2

⎛
⎝⎜

⎞
⎠⎟ ( )( )

where i are thefirst twomoments

å åa a= =
= =

 w w, . 41
i

N

i i
i

N

i i1
1

2
1

2 ( )

Equation (40) describes the state of two-level quantum system—the two levels being the first twoHGmodes.
A similar approximationwhich described the state relative to a PSF centred at afixed reference point was used in
reference [15] to estimate the centroid and the effective radius of a distribution of incoherent point sources.We
now consider themore general problemof estimating the location ofN point sources.

TheQFIM fora (see appendix C) is

a
a

r º =a


I I1
, 42

T

T
2 Q

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )( )

with

=
M M
M M

, 4311 12

21 22

⎡
⎣⎢

⎤
⎦⎥ ( )

where = - M 111 2 2( ) , = = - M M 1 212 21 1 2( ), = -M 4 122 1
2 , = - +   12 2 1

2( ) , and =I 1 1 ... 1 T( ) .
TheQFIM Q is anN×Nmatrix, which is a product of threematrices of dimensionsN×2, 2×2 and

2×N. Since AB A Brank min rank , rank( ) { ( ) ( )}, and thematrixhas rank 2, theQFIM Q has rank no
more than two. Although a two-level quantum systemhas the potential of estimating three real parameters,
localisationmicroscopy in this limit can estimate only two as the two-level systempossesses a real density
matrix4. This is another way of arguing that as the point sources get closer, the lightfield on the image plane has

Figure 3.The eigenvalues of theQFIMmatrix for 3 sources with equal intensities. The sources are separating from each other at equal
distances, (α1,α2,α3)=(x, 2x, 3x).

4
As the localisation parameters a are real, r s = =a Tr 2 Im 0,y

2
1( ) ( )( ) whereσy is the PauliYmatrix.
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enough information to estimate only two parameters. A physical reason for this observationwould be highly
desirable.

5.Discussion

Our analytical expression for theQFIM for localisationmicroscopy has enabled us to show that as point sources
get closer, nomore than two independent parameters can be estimated. A rank-deficientQFIMoccurs when the
quantum state does not contain enough information to permit the estimation some of the parameters or
combinations thereof. The parameters that can be estimated correspond to the non-zero eigenvalues of the
QFIM.Without additional knowledge of the source distribution this restricts us to estimating functions of the
first twomoments  f ,1 2( ) only deep in the sub-Rayleigh limit. As equation (42) shows, when all {αj} are
unknown as in localisationmicroscopy, there is vanishing information about any singleαi itself. This is in
contrast to the scalarQFI ra ii[ ( )] forαiwhich is non zero, but assumes that all the other {αj} are known.

Themanner inwhich the eigenvalues of theQFIM tend to zero is of interest in the search for optimal
detection systems for localisationmicroscopy. Numerical fitting infigure 4 shows the vanishing eigenvalues of

theQFIMapproach zero polynomially. The degree of the polynomial is given by = m-d 2 1

2
⎢⎣ ⎥⎦, whereμ is the

order the eigenvalue when arranged in descending order and⌊·⌋is thefloor function. These scalings are now
extracted from the elements of the full QFIMof the localisation parametersa—rather than frombounds on
estimating the variousmoments independently as in previous works [36, 37].

Unlike the latter, we can now compare the absolute performance of detection systems for localisation
microscopy relative to its quantum limit. Indeed, while figure 5 shows the 2nth eigenvalue of theQFIM closely
parallel to the nth eigenvalue of theCFIM for SPADE [11], there is a large gap in the absolute terms. This could be
due to the sub-optimality of SPADE for estimating the N 2⌊ ⌋parameters it is sensitive to5. Similar scalingswere
observedwith detection using superpositions of the conventional SPADEbasis [35–37] that are sensitive to the
other half of themoments. For reference over a range of separations, figure E1 in appendix E shows the
eigenvalues of theCFIM for SPADE aswell as direct imaging. Note that for both, the CFIM tends towards a rank
onematrix.

Finally, although our analytical result is derivedwith aGaussian PSF, we expect the rank deficiency of the
QFIM to be present in amore general family of PSFs. To that end,figure 6 shows the numerically obtained
eigenvalues of theQFIM for three equidistant point sources of equal intensities under a sinc PSF (see
appendixD) defined as

Figure 4. Fitting of the eigenvalues of theQFIMmatrix for the case of 9 sources in the limit of small distribution size. The sources are
positioned atαi=ix. The size of the distribution is denoted l=8x. The scale on both axes is logarithmic. The sources are separating
from each other at equal distances, as in the previous plots. The slope of each line corresponding to different eigenvalues appears in the
box in the plot.

5
Conventional SPADE is not sensitive to all the parameters needed to describe the sources’ distribution, only its evenmoments [34, 37, 38].
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s
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=x
x1

sinc . 44PSF ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

This PSF is the exact form for diffraction through a sharp one-dimensional slit which in its principal peak is well-
approximated asGaussian.

An approximation involving thefirst two spherical Besselmodes as in section 4.2 can be performed for a sinc
PSF aswell, leading to similar insights. A proof of this rank deficiency for arbitrary PSFs and a physical
explanation remains an open question.

To conclude, we have obtained several insights into the quantum limits of localisationmicroscopy via an
analytical expression for theQFIM. In particular, the behaviour of the eigenvalues of theQFIMdeep in the sub-
Rayleigh limit revealed that only two parameters are eventually estimable. It also enabled us to compare the
performance of knowndetection systems relative to the quantum limit in absolute terms, a question left open in
the literature [34]. The gap identified by us shouldmotivate the search for detection systems, ideally on a single
copy of the lightfield on the image plane, seeking to reduce or eliminate it.

Figure 5.The eigenvalues of theQFIMandCFIMfor the SPADEwith20HGmodes and9equally bright sources.The sources are positioned
atαi=(i−5)x such that thepeakof f ñ0∣ is at the centroidof thedistribution.Thex axis is the size lof thedistribution,with l=8x. TheQFI
eigenvalues scale as infigure 4.BySPADEwith20modes,wemean thePOVM f f f f f f f fñá ñá ¼ ñá - å ñá=, , , , i i i0 0 1 1 20 20 0

20{∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣}.

Figure 6.The eigenvalues of theQFIMmatrix in the case of 3 sources with equal intensities and a sinc PSF. The sources are separating
from each other at equal distances, i.e.(α1,α2,α3)=(x, 2x, 3x).
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AppendixA. Expressing the densitymatrix in theHGbasis

The densitymatrix is written in terms of the kets y ñi∣ , which are expressed in the position space as in
equation (3).We assume a normalisedGaussian PSF of the form

y
ps

= s
-x

1

2
e , A.1

x

PSF 2 1 4
4

2

2( )
( )

( )

and so

òy y cñ = - ñx x xd . A.2i iPSF∣ ( )∣ ( )

The kets y ñi∣ can be expressed in terms of the completeHGmodes as

åy f y fñ = á ñ ñ
=

¥

, A.3i
q

q i q
0

∣ ∣ ∣ ( )

where f ñq∣ are theHGmodes, which can be expressed in the position space as [11]

òf
ps s

ñ = ñs
-

q
xH

x
x

1
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d

2
e , A.4q q q

x

2 1 4
4

2

2
⎛
⎝⎜

⎞
⎠⎟∣

( ) !
∣ ( )

whereHq(x) are theHermite polynomials. The coefficients of the expansion equation (A.3) are
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Setting a=c
s i2
i we get

åa y
a

fñ º ñ = ña

=

¥
-

q
e A.6i i

q

i
q

q
0

2i
2∣ ∣

!
∣ ( )

which has the samemathematical form as the coherent states with f ñq{∣ } forming the Fock basis [39].

The state in equation (3) can be alsowritten in terms of the displacement operators a = a - ei
a ai( ) ( )†

, with
a = Îc

s
i 2

i

år a a= ñáa  w w0 0 , A.7
i

i i i i( )∣ ∣ ( ) ( )†

where a( ) is the displacement operator.
The derivative of each coherent statewith respect to its real amplitudeα is given by

a
a

a
a

a a

a
a

a
a

a a

¶ ñ
¶

=
¶
¶

ñ = - ñ

¶á
¶

=
¶
¶

á = - ñ

D
a

D
a

0 ,

0 , A.8

∣ ( ) ∣ ( ˆ )∣

∣ ( ) ∣ ( ˆ )∣ ( )

†

†

which yields the formula equation (22).

Appendix B. Analytic results for N sources

TheTracy–Singh product [53, 54] defined formatricesA andB subdivided into blocksAij andBkl is A B
where the (i, j)th block of A B is A Bij  whose (k, l)th block is in turnAij⊗Bkl . That is ifA,B are block
matrices with
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Using the above definition, thematrix of equation (31) is found to be
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where the elements ofϒ−1 can be found using the formula of blockwise inversion:
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The inverse of the blockmatrixϒαα exists, because it is theGramianmatrix of the linear independent
vectors a ñi∣ .

For theQFIM elementswe need to evaluate the inverse of the top left 3N2×3N2 part of thematrix of
equation (B.1)whichwe denote . In order to obtain the inverse of , we need to further partition  as

e J
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The elements of - 1will be given by the formulas
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After calculations and by substituting theϒ−1 elements from equation (B.3), we derive the explicit formof - 1

elements:
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TheQFIMelements are then obtained from equations (36) and(B.8)
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Finally, to complement the discussion in themain text,we present some further examples of theQFIM
eigenvalues forN=4, 5 sources and infigure B2we present the eigenvalues of theQFIM for 3 sources in the case
of unequal weights (relative intensities)figure B2.

Figure B2.The eigenvalues of theQFIMmatrix in the case of 3 sources. The sources are separating from each other at equal distances,
i.e.(α1,α2,α3)=(x, 2x, 3x). It can be noticed that the limiting values of the two non zero eigenvalues are different as theweights
become different. However, the rank 2 of theQFIM remains. In figure (b) the limiting case of one extremely bright sourcewand two
veryweak ones is displayed. The inset shows the two vanishing eigenvalues.

Figure B1.The eigenvalues of theQFIM for 4 (left) and 5 (right) sources with equal intensities. The sources are separating from each
other by equal distances: (α1,α2,α3,α4)=(x, 2x, 3x, 4x) and (α1,α2,α3,α4,α5)=(x, 2x, 3x, 4x, 5x).
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AppendixC. Analytic results for sxi 

The state in the sub-diffraction regime is given by equation (40). The derivative can be calculated immediately
from this formula and it is

a
r a a

a
a

¶
¶

= - ñá + ñá + ñá + ñá =
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2 0 0 0 1 1 0 2 1 1
2 1
1 2
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By solving the SLD equation r r r¶ = +a a aL La i ii
( ), we can determine the SLDs in the ñ ñ0 , 1{∣ ∣ }basis:
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Knowing the SLDs, we can obtain theQFIMof equation (42).
As alreadymentioned in themain text, the rank of theQFIMonly depends on thematrix

M M
M M

C.311 12

21 22

⎡
⎣⎢

⎤
⎦⎥ ( )

of equation (42), with the elements of thismatrix given by equation (43). The eigenvaluesμ1,μ2 of thematrix
equation (C.3) are
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The condition for the eigenvalues to be zero is
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For the second part we have
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Substituting 2 and 1we get
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Sinceαi are strictly positive, except one that can be zero, this sumof positive terms cannot be equal to zero.
Therefore, this statement is always false. Thus, the equation (C.5) becomes    =1 0 1 0 0( ) ( ) , which
means that the two eigenvalues can never be zero and theQFIMwill be rank 2.

AppendixD. Calculation of theQFI for the Sinc PSF

The expansion of the Sinc function on theHGmodes is not ideal for numerical calculations. Insteadwe use the
spherical Bessel function of the 1st kind and express the states onto thosemodes inwhichwe then truncate. If the
PSF is a sinc function, the y ñi∣ are
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Wecan use the identity [55]
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where Jq(x) is the spherical Bessel function of the 1st kind. The spherical Bessel function are orthogonal in all 
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therefore we can define the orthonormal basis
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The set of the spherical Bessel functions is a basis in , but is not complete since it is not a resolution of identity
aswe can see from equation (D.2). Hence, we can expand the sinc function on the bessel function basis, using the
identity equation (D.2):
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Using the identity for the Bessel functions
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we can also have an expression for the derivative of y ñi∣
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We see that both the state ρ and its derivatives are completely expressedwithin the basis ñjq∣ . Thismeans thatwe
can use the definition of the SLD (equation (D.8)) and express the SLD in the same basis.

r
a

r r
¶
¶

= +
m

m mL L2 . D.8( )

In this way the fact that the specific basis is not complete does not affect our calculations.
For the numerical calculations we have to truncate our state in the appropriate amount ofmodes. From

figures 6 andD1, we can see that our conclusions do not changewith the use of a non-Gaussian PSF.

Appendix E. Eigenvalues of theCFIM for SPADE anddirect imaging

Finally, we present the eigenvalues of the CFIM for SPADE and direct imagingfir a large range of separations.

FigureD1.The eigenvalues of theQFIMmatrix in the case of 3 sources with equal intensities for the sinc PSF. The sources are
separating from each other at equal distances, i.e.(α1,α2,α3)=(x, 2x, 3x).
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