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Abstract 

 

In Britain, the key source of renewable generation is wind, most abundant on the west coast of 

Scotland, where there is relatively little demand. For this reason, an interconnector, the Western Link, 

was built to take electricity closer to demand. When the Link is operating, payments by National Grid 

to constrain wind farms not to produce will be lower, we may predict, since fewer or less restrictive 

constraints need be imposed. But the Link has not been working consistently. We empirically estimate 

the link’s value. Focusing on the three most recent episodes of outage, starting on 4th May 2018 up 

to 25th September 2019, our essential approach is to treat these outages as a natural experiment using 

hourly data. Our results reveal that the Link had an important role in costs saved and price constrained 

and MWh curtailed reductions. We estimate a cost-saving of almost £30m. However, the saving 

appears to drop over time, so we investigate wind farms’ behavior. We find that wind farms behave 

strategically since the accuracy of wind forecasting depends on the relevant prices impacting their 

earnings. 
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1. Introduction 

 

The recent rapid growth in renewable generation of electricity has led to significant issues for 

traditional electrical grids. One of the problems is geography- commonly, it is windiest, or sunniest, 

in an area of a country that is not near traditional power plants nor major demand. Great Britain is a 

typical example, but other countries such as Germany have similar issues (E. ON-Netz, 2015). As a 

result, Britain’s National Grid (NG) has needed to enhance its network and, after some debate, 

developed the Western Link, a subsea DC interconnector between Scotland and North Wales.  

 

In Britain, the strategic source of renewable generation is wind, which is most productive on the west 

coast of Scotland far from demand and, to a lesser extent, the (west) coast of Wales, as well as offshore 

locations, of which many are off Scotland. Herein lies the problem: traditional interconnection 

between Scotland and the rest of the island is relatively weak, partly as a result of recent history under 

which a slightly different pattern for privatisation was adopted in Scotland, but also because Scottish 

fossil fuel power stations traditionally supplied the populous industrial belt of the country, rather than 

there being much interchange over the difficult and sparsely populated terrain between Scotland and 

England. Overland options for enhanced links were assessed, but were subject to substantial challenge 

on environmental grounds, amongst other things, so the option of strengthening them was abandoned. 

 

The primary purpose of the Link is to move power from west Scotland down nearer to the national 

grid in the North Wales industrial area. Thus, it is designed as a one-way subsea interconnector, with 

DC convertors at each end; its capacity is 2250MW. The working voltage is exceptionally high, at 

600kV. The implied benefits are to reduce constraint payments made to wind operators to cease 

generation in situations of potential excess supply. When it appears that too much electricity will be 

generated locally, National Grid invites bids from wind farms to curtail or cease generation. A natural 

prediction is that when the Link is operating, constraint payments will be lowered, since rather than 

needing to generate power in England due to crowded interconnection links, fewer or less restrictive 

constraints need be imposed. 

 

Unfortunately, the Link has not been working well, for reasons that are not obvious (and may 

eventually result in a legal action once underlying causes are uncovered). As a consequence, it was 



not only late but has had periods when it was working at reduced power and periods where it was not 

working at all.  

Another important aspect to consider is related to wind generators’ revenues. Most existing wind 

generators1 in Britain receive revenue from two sources, selling energy into the market, at market 

prices, and from the Renewables Obligation (RO) (House of Commons Library, 2016). The latter is 

a 20-year requirement on conventional generators to purchase Renewables Obligation Certificates 

(ROCs) from renewable generators. For each MWh generated, an accredited onshore wind generator 

currently receives 0.9 ROCs/MWh generated. To meet their obligations, conventional generators 

need to purchase 0.154 ROCs/MWh. The resulting market price of a ROC was around £43.65 in 

2014/15. Therefore, 0.9 of a ROC was worth approximately £39.29 to an onshore wind generator. 

The effect is roughly to double the achieved revenue per MWh, although the marginal impact is 

greatest at times of low prices. Offshore wind generators receive 1.5 ROCs/MWh and so obtain larger 

subsidies.  

 

Two further significant factors determine the earnings of a wind generator. The first is that having 

declared availability of a certain capacity to National Grid (NG), failure to produce requires an 

operator to buy the shortfall in the short-term market, at a price that creates a significant penalty in 

most instances. There is thus a risk in declaring a capacity too close to your predictions of wind, 

which can significantly impact on revenue. The second significant factor is that, at times of high 

wind, particularly in Scotland, but low consumer demand, NG may constrain a wind farm not to 

produce. The farm must offer a price at which it is willing to leave the turbines idle. The achieved 

prices for curtailing generation are high, on average around the level of the market price plus RO. 

Hence, substantial curtailment can result in significant additional earnings for not operating. 

In sum, we can write the expected revenue function (1) for a wind generator as: 

(1) 
Pr( ). .( ) Pr( ).min( ,0). Pr( 0). .d d w w d d s d cG G G p r G G G G p G G p      

 

Here G is the amount generated, pw is the wholesale price, rw is the renewables obligation certificate 

price, ps is the short-term price that has to be paid by a wind farm that fails to meet its declared 

generation2, Gd, pc is  the price at which wind farms are paid to be constrained off ( 0)G  . Prices 

and probabilities are time-specific; time subscripts have been suppressed in (1). Note that the first 

                                                 
1 Small generators are compensated under a different scheme. The renewables obligation incentive scheme is being 

phased out for new wind generators in favour of feed-in tariffs (FiTs), but existing wind generators will retain their RO 

rights and most existing wind farm capacity is operated under this scheme. 
2 Declarations are made the day before delivery. 



two probabilities sum to 1 assuming the wind farm generates; the third is not determined by the firm 

and is separate, relating to when the wind farm does not generate, due to constraint.  

 

Starting from these considerations, in this paper, we want to investigate two specific phenomena. 

First, we want to measure how much the Western Link is worth in terms of saved constraint payments, 

treating all prices and quantities above as exogenous. When the Link is out of action, other things 

equal, Pr( 0)G   increases. In that circumstance, the benefit of the Link is measured by the foregone 

payments as a result of the foregone higher probability of constraints. Our approach is to examine the 

impact of the Link being available, rather than unavailable, on average price paid to constrained 

farms, the number of MWh constrained, and overall costs of the constraint payments. Second, and 

discussed later, we want to assess whether wind farms may be gaming the system in making their 

declarations. 

 

The novel aspect of the first part of our paper is the approach to calculating the value of that link. We 

focus on the three most recent episodes of outage, starting on 4th May 2018, since when it has had 

periods of outage, full design flow, outage, full flow, outage, and full flow, up to 25th September 

2019. It is common to write that interconnection provides benefits, but much less common to be able 

to put a figure on it. Our essential approach is to treat these outages as a natural experiment. After 

controlling for other obvious factors, what was the cost in terms of constraint payments of the Link 

being out of action? Comparing this with constraint payments when the link was in operation, we 

calculate the costs, prices and MWh foregone as a result of the Link. The frequent sequence of 

operation and outage allows us to obtain estimates far more easily and accurately than a before-and-

after experiment. This is particularly important in the context such as ours, where the stock of wind 

farms is growing over time meaning it would be difficult to maintain the assumption of common 

trends.  

 

Our results reveal that the Link had an important role in costs saved and price and MWh reductions. 

On the basis of the whole period, we estimate a cost-saving of almost £30m. However, the effect 

appears to differ sharply between our three periods, which implies a need to examine whether wind 

farms are reacting to influences other than the amount of wind. It is also modest in comparison with 

construction costs. 

 



Turning to the second element, so far as we can glean,3 National Grid bases its wind generation 

forecasts on Met Office forecasts of wind speeds around the country. This assumes that wind farms 

react passively to the amount of wind, rather than behaving strategically according to the prevailing 

prices, in other words making use of the revenue they will obtain (from equation 1) to determine 

production. Thus our alternative assumption is that an individual firm can determine its Gd, subject 

to weather forecasts. What it will do will depend on the relative values of the prices. Thus if (pw +rw) 

increases relative to ps, the wind farm will have an incentive to produce more, and vice versa. In doing 

this, we assume the wind farm bases its generation decision on the monthly value of wholesale price 

and use the buyback price of ROCs for rw.  In other words, so far as the regular payments to wind 

farms are concerned, they take the expected values of these (assuming in effect that they input at 

times that are undetermined in advance), but in determining Gd they trade off the probabilities of not 

meeting their target (which are determined broadly by the pattern of wind generation as observed) 

along with the likely penalties of performing below target in terms of having to pay ps. All the factors 

determining Gd so far are given by the system. The possibility of being constrained off adds another 

dimension, in which the firm could, if the constrained prices are right, strategically raise Gd to take 

advantage. Our hypothesis is that these price-related factors do indeed influence the divergence 

between the forecasted wind value and actual production, the null being that they do not. 

 

The paper is organised as follows. In section 2 we discuss the relevant literature in the field. In section 

3 we describe the British electricity market, focusing also on the wind farm constraint payment. In 

section 4 we present the data collected and the empirical model used. In section 5 we discuss the 

results of the two elements and in section 6 we provide some conclusions and policy implications. 

 

2. Literature Review 

 

There is a certain amount of relevant literature on the two aspects that our paper aims to analyse: the 

role of the Link for the electricity market and the competitive behaviours of wind farms. There is no 

way of knowing if will be particularly windy or calm more than a few hours out; predictions for the 

next 24 hours have high variance. Thus, interconnectors and alternative mechanisms for bringing 

demand and supply into line can be useful but are not relevant for the long term (Waterson, 2017). 

Increasing electricity interconnection is relevant for closer market integration and facilitating 

renewable generation across Europe (Dutton and Lockwood, 2017). The idea is that if there is a large 

                                                 
3 Source: Private correspondence with NG employees. 



amount of wind in one system, interconnection can be used to balance the variable wind output. These 

interconnections are generally viewed as beneficial for different reasons. Access to lower-cost 

imports, producers export opportunities, a decreased necessity for spare generation capacity and the 

possibility of reducing local market power are some of the benefits. Furthermore, interconnectors 

guarantee a better geographical distribution of variable wind production, reducing variability (Denny 

et al., 2010). Nevertheless, market power exists, and differing assumptions change the estimated 

benefit of coupling and its distribution. Few electricity markets are perfectly competitive and market 

power mitigation is a priority on the agenda of policymakers (Ehrenmann and Neuhoff, 2009). For 

these reasons, performance evaluation of market design is important and any analysis in this field 

must account for farms' strategic behaviour (Hobbs et al., 2005).  

 

Different papers focus on the welfare improvement of electricity interconnection. Several carry out a 

theoretical analysis (Ehrenmann and Neuhoff, 2009; Neuhoff and Newbery, 2005) or use simulation 

techniques (Hobbs et al., 2005; Denny et al., 2010; Valeri, 2009). Others take a descriptive approach 

to the issue (Dutton and Lockwood, 2017; Puka and Szulecki, 2014). Most of them focus on the 

interests of consumers and producers of electricity in the countries to be interconnected. Puka and 

Szulecki (2014) consider also the government, the TSOs, regulators and merchant investors.  

Neuhoff and Newbery (2005), measuring the welfare effect of an integrated electricity market within 

Europe, find that the general integrated market leads to an improvement in social welfare than 

separate markets. There are different reasons why an increase in the number of competing firms might 

lead to higher price-cost margins, and they provide theoretical models to define the conditions under 

which this might happen. Consistently, Hobbs et al. (2005), using a transmission-constrained Cournot 

model, detect an increase in the social surplus due to the interconnection between Belgium and the 

Netherlands. However, the size of the efficiency improvements and their distribution depend on 

companies' pricing behaviour. If the Belgian incumbent behaves as a Cournot competitor, Dutch 

consumers incur higher electricity prices. On the other hand, if the Belgian incumbent is price taker, 

gains in social surplus are smaller but better distributed between the countries. Ehrenmann and 

Neuhoff (2009), using an equilibrium model with equilibrium constraint (EPEC) in which strategic 

generators can anticipate the reaction of fringe generators, confirm that the integrated market reduces 

market power and increases welfare. Furthermore, Valeri (2009), analysing the Irish and English 

electricity market through a static optimal dispatch model, finds that social welfare increases with 

interconnection, although at a decreasing rate. She detects also that if the interconnections increase, 

this generates more competition in the less competitive of the two. The appropriate regulatory 

framework, therefore, appears to be of decisive importance for the success of the project (Battaglini 



et al., 2012). Finally, Denny et al. (2010), using a stochastic unit commitment model, focus on the 

impact of the interconnector for Irish and British markets with their large penetrations of wind 

generation, observing how this link reduces the average prices and the price variability in Ireland.  

 

What is absent from this literature is an empirical analysis of interconnector operation. One of the 

papers closest to examining this is Parail’s (2009) working paper. The question analysed relates to 

price effects, using standard time series techniques, and ultimately on whether the interconnector can 

be operated commercially. Thus the focus is different from ours, since we seek evidence on the worth 

of the interconnector in reducing costs and we are able to examine several different regimes. 

 

There is also a set of papers, including several empirical papers, which focus on the effects of energy 

storage, which is a partial substitute for interconnection. These include Giulietti et al. (2018), 

Sioshansi (2014, also Sioshansi et al., 2009; Sioshansi, 2010; Sioshansi, 2011), Schill and Kemfert, 

(2011), Dai and Qiao, (2015) and Waterson (2017).  

 

In the short term, different models analysing bidding strategies assume that wind farms are price 

takers. Few papers have made alternative assumptions. Dai and Qiao (2015) formulate a bilevel 

optimization problem for a price-maker producer in an electricity market. They show that wind farms 

achieve the highest profit being strategic players both in day-ahead and in real-time markets. The 

day-ahead market has more influence on the wind power producer than the real-time market. 

 

3. The British Electricity Market  

3.1 Electricity Market: an overview 

The British electricity market is constantly developing over time. In 2018 the economic value of the 

sector rose to £32 billion. By 2018, low-carbon generation accounted for 52% of total power 

generation, with renewable sources alone representing 33% (Dukes, 2019). This result has been made 

possible by recent regulations, together with cost reductions. A central role is played by The Climate 

Change Act approved in 2008. This establishes an ambitious target of 80% reduction of greenhouse 

gas (GHG) emissions by 2050 compared to 1990 levels. To further stimulate investment in low carbon 

technologies, the government launched the Electricity Market Reform (EMR) in 2013, composed by 

Contract for Difference (CfD) and the Capacity Market (CM). This has led to a substantial 

transformation in the UK energy industry. In fact, according to the Energy UK Report (2018), 

between 2008 and 2017, England's renewable capacity has grown hugely from 2,618 to 25,801 MW. 



Scotland, with a capacity of over 10,000 MW, had a share of wind energy amounting to 75% of its 

total capacity, followed by hydropower. Wales has seen the largest increase in solar capacity since 

2008, building 960 MW of solar energy.4  

 

It is well known that grid-scale electricity has features that set it apart from any other good. Supply 

and demand for electricity must be matched at all times, otherwise the system fails. But supply and 

demand naturally fluctuate over time. To accomplish this, storage takes place through a switch from 

other forms of energy e.g. by combustion or from chemical energy in batteries (Giulietti et al., 2018). 

Furthermore, solar power is intermittent, wind power is intermittent and has a time-correlated 

variance. By contrast, nuclear power is inflexible. This means that these kinds of energy power 

require additional facilities to be present in the electricity transmission and distribution systems 

(Waterson, 2017). One additional facility is increased energy storage (Denholm et al., 2010; Greve 

and Pollitt, 2016). Most of the storage historically has taken place at the input level, via storage of 

coal, natural gas and fuel oil. This approach to storage is however compromised by the increasing 

contribution of energy from renewable sources in modern energy systems. Thus, alternative 

approaches are considered like compressed air, heat or battery storage (Giulietti et al., 2018). 

 

The British electricity market is structured as follows. For the most part, electricity is considered to 

be generated, transported, delivered and used in half-hour segments called Settlement Periods. For 

each half-hour, the suppliers assess in advance the electricity volume with Generators. In this half-

hour, Generators are expected to produce and deliver their quantity of electricity and Suppliers are 

expected to consume the energy stipulated. But in this market, not everything is predictable. It can 

happen that suppliers have wrongly made their forecasts of necessary energy or that the producers 

are not able to produce the defined quantity (or for transmission-related problems). In this context, 

the role of National Grid Electricity Transmission (NGET), the system operator, becomes very 

important. NGET has overall responsibility as a “residual balancer” of the electricity system and takes 

actions to ensure that electricity supply and demand match on a second-by-second basis, using 

different tools, including the Balancing Mechanism. This mechanism allows NGET to accept offers 

of electricity (generation increases or demand reductions) and bids for electricity (generation 

reductions or demand increases) at very short notice. Specifically, if a Supplier used more electricity 

than the amount communicated, they must buy additional electricity from the grid to meet the amount 

                                                 
4 For details: https://www.energy-

uk.org.uk/files/docs/Research%20and%20reports/Energy_in_the_UK/EnergyintheUK2018finalweb.pdf. We omit 

Northern Ireland since its system operates essentially in conjunction with the rest of Ireland, rather than with Great 

Britain. 

https://www.energy-uk.org.uk/files/docs/Research%20and%20reports/Energy_in_the_UK/EnergyintheUK2018finalweb.pdf
https://www.energy-uk.org.uk/files/docs/Research%20and%20reports/Energy_in_the_UK/EnergyintheUK2018finalweb.pdf


used and vice-versa. On the same lines, where a Generator has produced less than the level contracted 

for, they must buy supplementary electricity from the grid to meet their contracted levels and vice-

versa. These differences generate the so-called imbalances.  

 

Another key aspect of the market concerns price determination. This happens increasingly through 

the EPEX/APX SPOT auction. This is a day ahead auction in which trading takes place on one day 

for the distribution of electricity the next day. Specifically, the system is based on the transactions 

that took place the day before the electricity was delivered, based on anonymous transactions made 

by members registered on the platform. Members are distribution companies, large consumers, 

industrial end-users and traders. The auction operates as a double-sided blind auction. At the end of 

these transactions, the demand is compared with the supply and the price is calculated for every half 

hour of the next day. Individual hourly instruments are traded in pounds/MWh. There are clear aspects 

that seek to protect the pricing process. In fact, it is possible to trade "Spot Block Orders". These 

apply to a consecutive number of hours, where the transactions are subject to a Maximum Payment 

Condition or a Minimum Income Condition. The minimum price of any Day-Ahead Market 

instrument is euro 500/MWh and the maximum euro 3000/MWh5.  

 

3.2 Wind Farm Constraint Payments  

Wind power has important characteristics that provide challenges to the modern electrical power 

system. Of the 33% of electricity produced by renewables, 27.5% was produced by onshore wind and 

24.3% by offshore wind in 2018 (Dukes, 2019). Most UK farms are linked to the low voltage regional 

electricity networks managed by Distribution Network Operators (REF, no-date). Generators may be 

asked to decrease generation even if they are contracted into the market if there is inaccuracy in the 

demand forecast and/or a lower level of electricity is required. But, if wind farms decrease the 

production, for this reason, they lose subsidies like the Renewable Obligation Certificates and (prior 

to 2015) the Climate Change Levy Exemption Certificates. Wind generator participants in the 

Balance Mechanism submit positive bids representing the need to be paid by National Grid to reduce 

output. However, the amount charged by wind farms significantly exceeds the value of the 

predetermined subsidies. For example, as noted by The Renewable Energy Foundation (REF) the 

average price paid to Scottish wind farms to reduce output in 2011 was £220 per MWh, whereas the 

lost subsidy was approximately £55 per MWh. In subsequent periods, following advertising 

campaigns by media and trade associations, the prices were reduced. However, the relevant aspect is 

                                                 
5 For details: https://www.apxgroup.com/trading-clearing/apx-power-uk/ 



that not all constraint payments are in the public domain, something we discuss later. REF observes 

that "for a market to function efficiently and in the consumer interest, all charges made on those 

consumers should be publicly visible to ensure confidence that such charges are reasonable and to 

facilitate competition and drive down costs"6. Furthermore, when a wind farm is required to diminish 

production north of a grid constraint, another producer is required to raise output south of that 

constraint to make up the gap in energy and to correct the level of the reserve offered on the system. 

Thus, this means that in addition to payments made to wind farms to reduce production, additional 

non-constraint payments are made to fossil-fuelled generators making up the loss in energy and 

reserve to increase output.  

 

A significant constraint exists between Scotland and England. Scotland is characterized by high winds 

and low energy demand and this excess could be used for England. In this context, the Western Link 

project takes on considerable importance since bringing renewable energy from Scotland 

(Hunterston) to homes and businesses in England and Wales (Deeside), as illustrated in figure 1. This 

Link involves direct current subsea and underground cables. It incorporates a converter station at each 

end of the link to change the electricity into and from direct current to alternating current to enable it 

to be used within the existing electricity transmission system. The construction required capital 

expenditure of somewhat over £1 billion. Unfortunately, the Link was not only late but has had 

periods when it was working at reduced power and cases where it was not working at all. Table 1 

reports the different activity periods.  

Figure 1. The Western Link (source: Western Link) 

 

                                                 
6 For details: https://www.ref.org.uk/press-releases/249-ref-calls-for-transparency-over-secret-wind-power-constraint-

payments 



Table 1. The Western Link Service History 
  

Start Date End Date Status N. of Days Period 

01/01/2016 07/12/2017 Late (non-operational) 706  

08/12/2017 04/05/2018 Low level operation 146  

05/05/2018 16/10/2018 Outage 164 1 

17/10/2018 19/02/2019 Operating 125 1 

20/02/2019 23/03/2019 Outage 31 2 

24/03/2019 06/04/2019 Operating 13 2 

07/04/2019 02/06/2019 Outage 56 3 

03/06/2019 25/09/2019* Operating 114 3 
Source: Renewables Energy Foundation and Western Link website *Note that the 25th September 2019 

represents the final date of our analysis  

4. Data and Empirical Model  

 

We combine a set of variables stemming from different sources for the period 5th May 2018 to 

25th September 2019, where feasible and justified at the hourly frequency at which they are reported. 

The main variables at a lower frequency are the wholesale price, where we assume firms react instead 

to expected price rather than the hourly price in making their decisions,7 and the Renewables 

Obligation Price, which OFGEM changes annually although there is a shorter-term market (which is 

somewhat opaque). The Number of Wind Farms Constrained, amount of Wind Generation curtailed 

in MWh, the Price per MWh at which wind farms curtail and overall Constraint Costs are collected 

for every hour from the Renewable Energy Foundation (REF). Other variables come from Gridwatch, 

Gridwatch Templar, OFGEM or BMR reports. In Table 2 we summarize the definitions and the data 

sources for the variables in the empirical analysis, while in Table 3 we provide some descriptive 

statistics. 

 

For our analysis, we consider 503 days of observations, split into 251 days when the Link was 

working, and 252 days when it was not working, starting with the first total outage period. However, 

these interruptions were not homogeneous during the period considered. Specifically, as shown in 

Table 1, there were 3 phases of activity and 3 phases of inactivity. For this reason, it is useful to check 

our variables of interest for each period. Table 4 illustrates the summary statistics for each period. 

Note that the relevant variables are not equal across the three different periods. The period in which 

the Link was off where all the average values of variables examined present the highest value is the 

third one (20/02/2019-23/03/2019). The lowest average values are present in the last period 

(03/06/2019-25/09/2019), except for the price variable whose minimum average value is detected in 

                                                 
7 Note that we include a Peak variable, which will take some account of the fact that there is diurnal price variation. 



the penultimate period (when the Link was off). We experiment with examining the three phases 

separately, in addition to examining the whole period. 

 

To gain different perspectives on the impact of the Link, we define three different dependent 

variables, yit, namely the Constraint Costs, the total amount charged in £ per hour for wind power 

output reduction (constraint payments to wind farms via the Balancing Mechanism over the period 

of investigation), the Price constraint value per MWh and the Wind Generation curtailed in MWh. 

Our first baseline specification takes the following form:8 

(2) 𝑦𝑖𝑡 = 𝛼 + 𝛽𝐿𝑖𝑛𝑘 𝑑𝑢𝑚𝑚𝑦𝑖𝑡 + 𝛾𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑡 +

𝛿𝐹𝑖𝑛𝑎𝑙 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑖𝑛𝑑 𝑉𝑎𝑙𝑢𝑒𝑖𝑡 +

+𝜏𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑖𝑛𝑑 𝐹𝑎𝑟𝑚𝑠 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑖𝑡 + 𝜌𝑃𝑒𝑎𝑘 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑡 + 𝜀𝑖𝑡  

 

 

Apart from the Link dummy that takes value 1 if the Link was operating, 0 otherwise, we control for 

Total Demand across all fuels and interconnectors from “Gridwatch.co.uk”. We include the Final 

Forecast Wind Value in MW from “Gridwatch.templar.co.uk” because this indicates any potential 

problem with over-generation. We control also for demand Peak Period effects that take into account 

the time 17.30-19.30 of each day when demand is highest and for the Number of Wind Farms 

Constrained, which is likely to influence costs. All these control variables are collected on an hourly 

basis. Furthermore, we check the Link effect also for each period according to Table 1. There is one 

more consideration, relating to the third period. On Friday 9th August 2019, there was a power cut 

that was unusual in the extent of its effects, and this had some knock-on effects over the following 

weekend. To allow for this unusual abnormality, we experiment with including a dummy for these 

three days in the results for the third period and consequently also for the period as a whole, although 

the impact is uncertain. 

 

Since the Link dummy is a daily variable, we don't know the time variation of this dummy within the 

day. For this reason, we cluster standard errors over hours within a day. In the case of the Wind 

Generation curtailed in MWh dependent variable we include an additional regressor that could have 

an important influence in the estimate- the Wind capacity in MW from Scotland. We limit this to 

Scotland and not to other parts of the Great Britain as the Link transfers energy from Scotland south 

and not vice versa. 

                                                 
8 We do not pursue a standard “diff-in-diff” strategy since significant but lumpy additions to the stock of wind generators 

over the whole period means that the common trends assumption cannot be maintained. 



Regarding the second purpose of our paper, whether prices influence wind farm generation, we 

consider two different indexes relating to the difference between forecast and actual generation: 

 

(3) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑤𝑟𝑜𝑛𝑔 1 =
(𝐹𝑖𝑛𝑎𝑙 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑖𝑛𝑑 𝑉𝑎𝑙𝑢𝑒−𝐴𝑐𝑡𝑢𝑎𝑙 𝑤𝑖𝑛𝑑 𝑉𝑎𝑙𝑢𝑒)

(𝐹𝑖𝑛𝑎𝑙 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑖𝑛𝑑 𝑉𝑎𝑙𝑢𝑒)
 * 100 

 

 

 

(4) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑤𝑟𝑜𝑛𝑔 2 =
[𝐹𝑖𝑛𝑎𝑙 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑖𝑛𝑑 𝑉𝑎𝑙𝑢𝑒−(𝐴𝑐𝑡𝑢𝑎𝑙 𝑤𝑖𝑛𝑑 𝑉𝑎𝑙𝑢𝑒+𝑊𝑖𝑛𝑑 𝐺𝑒𝑛.𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑 𝑖𝑛 𝑀𝑊ℎ)

(𝐹𝑖𝑛𝑎𝑙 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑖𝑛𝑑 𝑉𝑎𝑙𝑢𝑒)
 *100 

 

 

Specifically, using equations 3 and 4, we want to identify whether the wind farms behave strategically 

when declaring their generation plans by examining the differences between the National Grid 

predictions and the actual outcome (wpi1, formula n.3) and predictions with outcome incorporating 

the wind generation curtailed in MWh (wpi2, formula n.4), i.e. thwarted outcome. The idea is to 

understand the extent and direction of the error in wind prediction in the National Grid final forecast. 

In particular, do prices, which affect wind farm revenues, influence the amount wind farms produce? 

But also, if the Link was working or not could have an impact on that. For this reason, we consider 

the following specification: 

 

(5)  𝑤𝑖𝑡 = 𝛼 + 𝛽𝐿𝑖𝑛𝑘 𝑑𝑢𝑚𝑚𝑦𝑖𝑡 + 𝛾 (𝑂𝐹𝐺𝐸𝑀 + 𝑅𝑂𝐶 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒)𝑖𝑡

+ 𝛿𝑆𝑆𝑃 𝑃𝑟𝑖𝑐𝑒 𝐸𝑙𝑒𝑥𝑜𝑛𝑖𝑡 + 𝜏𝑁𝑃𝑟𝑖𝑐𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑝𝑎𝑖𝑑𝑖𝑡 + 𝜀𝑖𝑡 

 

As dependent variable, 𝑤𝑖𝑡, we consider the two indexes previously defined (3 and 4). We clustered 

standard errors for 24 hours. The null hypothesis is that prices and operation of the Link have no 

influence (in the second case, after allowing for curtailed quantities). By contrast, if there is a 

connection, this would suggest that wind farms are reacting to market factors in deciding how to 

produce. For this reason, in addition to the Link dummy variable, we include the Elexon SSP price, 

the Price constraint paid and the OFGEM+ROC Weighted Price. Given that an onshore generator 

receives 0.9 of the ROC price for its output, while an offshore generator receives 1.5 times for every 

MWh, following equation (1), including them additively, we need to generate figures separately for 

onshore and offshore, weighted based on their relative capacities at the time. Therefore, the 

OFGEM+ROC weighted variable is constructed by taking the proportion of plant capacity at that 

time that is onshore and multiply this by (OFGEM + 0.9ROC) and take the proportion that is offshore 

and multiply by (OFGEM + 1.5ROC). Since the onshore and offshore capacity is a quarterly variable, 

for the proportions of capacity we transform that in interpolated values across the quarter. In this case, 

we consider the overall capacity from Scotland, England and Wales. 



Table 2. Variable definition and data sources.  

Variable Description Level Source 

Constraint Costs (Logarithm of) the total amount charged in £ 

per hour for wind power MWh output 

reduction  

 

Hourly Renewable Energy Foundation 

Price constraint 

value (£/MWh) 

 

(Logarithm of) the price constraint payment 

per MWh 

 

Hourly Renewable Energy Foundation 

Link dummy Dummy variable that takes the value of 1 if 

the Link was operating, otherwise 0. 

 

Daily Renewable Energy Foundation 

Peak Dummy variable that takes the value of 1 if 

the time considered is 5.30-7.30 p.m., 

otherwise 0. 

 

Hourly  

Total Demand (Logarithm of) the total demand across all 

fuels. 

 

Hourly Gridwatch.co.uk. 

Final Forecast Wind 

Value 

(Logarithm of) the Final Forecast Wind 

Value in MW. 

 

Hourly Gridwatch.templar.co.uk 

Actual Wind Value Actual Wind value generated by wind farms. Hourly Gridwatch.templar.co.uk 

N. of Wind Farms 

constrained 

 

Number of Wind Farms Constrained. Hourly Renewable Energy Foundation. 

Wind Generation 

curtailed in MWh 

(Logarithm of) the Wind Generation curtailed 

in MWh 

Hourly Renewable Energy Foundation. 

    

Wind Capacity 

Scotland 

(Logarithm of) the Wind Capacity (onshore 

and offshore) for Scotland area in MW. 

Quarterly UK Energy National Statistics 

    

Wind Capacity 

Scotland, England, 

Wales 

Wind Capacity (onshore and offshore) for 

Scotland, England and Wales areas in MW. 

Quarterly UK Energy National Statistics 

    

Wholesale Price 

OFGEM  

The average wholesale electricity price  Monthly Ofgem 

    

SSP Price ELEXON The System Sell Price (SSP) is the 'imbalance 

price' that is used to settle the difference 

between contracted generation or 

consumption and the amount that was 

generated or consumed in each half-hour 

trading period. 

 

Hourly BMReports.com 

 

ROC Price OFGEM Renewables Obligation Certificate (ROC) is 

the amount suppliers will need to pay for each 

ROC they do not present towards compliance 

with their year obligation. 
 

Yearly Ofgem 

Power cut dummy Dummy variable that takes the value of 1 if 

the day considered are August 9th, 10th, 

11th2019 when there was a power cut. 

Daily Ofgem; Renewable Energy 

Foundation. 

 

 



 

Table 3. Descriptive statistics.  

Variable Obs. Mean Std. Dev. Min Max 

Constraint Costs  12203 8161.42 23317.68 0 219637 

Price constraint value 12203 21.4642 36.1417 0 193 

Link dummy 12203 0.5004 0.5000 0 1 

Peak  12203 0.1230 0.3285 0 1 

Total Demand  12203 30784.70 6428.565 0 48230.33 

Final Forecast Wind value 12203 4683.259 2904.187 245 12301 

Number of Wind Farms constrained 12203 14.3481 20.7103 0 86 

Actual Wind Value 12203 4529.782 2948.141 0 12405 

Wind Generation curtailed in MWh 12203 115.0941 331.6289 0 8111 

Wholesale Price OFGEM  12203 52.4087 10.2105 37.32 67.69 

Percent wrong 1 12203 5.5259 19.8564 -129.3863 100 

Percent wrong 2 12203 3.9427 20.2667 -230.0155 100 

Wind Capacity Scotland 12203 8700.299 397.9669 7996.811 9170 

Wind Capacity Scotland, England, Wales 12203 20901.2 1007.004 19570 22524 

Wind Capacity onshore Scotland, England, Wales 12203 12364.81 348.99 11728 12879.55 

Wind Capacity offshore Scotland, England, Wales 12203 8899.162 739.519 7842 10303.5 

SSP Price Elexon 12203 50.6389 24.1125 -71.26 375 

ROC Price OFGEM 12203 47.7645 0.7436 47.22 48.78 

OFGEM-ROC Weighted Price 12203 107.3767 9.1711 94.1487 121.6331 

Power cut dummy 12203 0.0059 0.0765 0 1 

 

5. Analysis and Results  

 

Before engaging in regression analysis, we check the raw data to confirm the predicted Link effect 

of reducing payments. Specifically, we focus on four dimensions to the comparison: (a) Are more 

wind farms constrained, on average, when the link is out of action? (b) How are average prices per 

MWh affected? (c) How is the amount of wind generation curtailed (in MWh) affected? (d) How are 

overall payments per hour affected? We observe that (a) indeed, fewer farms on average are 

constrained when the link is operational; (b) the amount of wind generation curtailed is indeed almost 

50% less when the link is operational , but (c) price per MWh is actually slightly lower when the link 

is operational than when it is not; nevertheless, (d) Overall payments are, as expected, statistically 

significantly lower when the link is operational, almost 50% less. Note on this last point that because 

quantities and prices are clearly not independent, the outcome on payments is not the product of the 

outcomes on prices and quantities. The results are listed in Table 5. 

 

 

 

 



 

5.1 Impact of the link in operation  

 

Having established that the basic effects of the Link are as expected, we proceed to examine whether 

and to what extent this remains true once we control for additional factors that impact the constraint 

framework. Following specification n.2, we examine the role of the Link in cost and price constraint 

savings and on the wind generation curtailed. We adopt a logarithmic form for the regression having 

observed that the variables are more nearly lognormally than normally distributed. The results are 

shown in Table 6, 7 and 8. We carry out estimation both across the whole sample and for the three 

periods we defined. In columns 1 to 3, we observe the impact of the Link dummy for each period and 

in column 4 for the whole period. In the general model, for all three dependent variables, the Link 

dummy is always negative, meaning that the Link has been a significant factor in cost and price 

savings. Regarding the control variables, as expected, we find, for all the models, that a greater Total 

Demand reduces both the cost and price of constraint payments. The Final Forecast Wind Value 

represents an important component to consider; an increase in the wind forecast value increases the 

payments. A positive sign occurs when we consider the Number of Wind Farms Constrained, as the 

number of these constrained farms increases, costs increase as well. Since the Number of Wind Farms 

Constrained variable could be potentially endogenous, we also deployed the same regression using 

the IV methodology, using as an instrument the Lagged Number of Wind Farms Constrained for the 

previous 24 hours. Using the appropriate test, we detect that our variables are exogenous and so we 

rely on the OLS specification9. We consider also the effect of the Peak Time on costs. Finally, we 

note that inclusion of the dummy for the power cut (not reported) significantly increases costs and 

price but has no effect on MWh; it does not materially impact on the other coefficients. 

 

In each general model (Table 6, 7 and 8), both costs, prices and wind generation curtailed are lower 

than at other times.10 A different result is shown in column 3 (Tables 6 and 7), where the Link dummy 

takes a positive value. It appears that, in the last period, the price is very different between when the 

Link was working, and it was not working, in fact higher when it was working. A possible reason for 

                                                 

9 After identifying the best instrument and calculating the residuals, we inserted the residuals in a second stage as an 

additional regressor. This turned out to be not statistically significant, meaning that we have no endogeneity problem. 

Results are available from the authors upon request. 

10 We check also for multicollinearity using the VIF Test. 



that is because wind farms have learned how to make money from declaring output even if the Link 

is working, something we investigate below.  

 

We test for the statistical difference amongst the estimated coefficients comparing the whole period 

and each specific period results. The Link dummy coefficient is statistically different from zero in 

almost all specifications. For this reason, we show the results for each period and the whole period, 

but the different periods exhibit several differences. In sum, if we consider the whole period, when 

the Link is working, the costs, prices and wind generation curtailed are lower.  

 

In order to calculate the magnitude of the Link effect, we exponentially transform the estimated 

coefficient for the logged variable. Consequently, considering the whole period, we quantify this 

effect in cost savings as a 30% reduction, a price reduction of 12% and a wind generation curtailed 

effect of 18%. These effects highlight the importance of the Link for the British Market. 

 

Furthermore, we estimate the costs saved for the whole period, using the following formula: 

 

(6) Costs saved= (Average Cost per Hour * Total Number of Hours) * Link effect (%) 

Where: 

Average Cost per Hour= Average of Cost Constrained in the sample time; 

Total Number of Hours= Total Number of hours in which the Link was on and off; 

Percentage link effect= 30%. 

 

Using formula (6) we estimate a cost-saving of £29,878,105 or in round figures, £30m over our period 

of analysis. This result highlights the importance of evaluating the Link for the market in terms of the 

benefits it creates (when operating). Although these results highlight the positive role of the Link for 

the British system, we also focus on the result obtained in the last period (column 3 of tables 6, 7 and 

8). We believe that this abnormal increase in the last period of costs, prices and wind generation 

curtailed when the Link is operational needs further investigation. It is also pales rather into 

insignificance by comparison with the construction cost, estimated at £1.2 billion.11 Viewed in these 

terms, the Link is not paying its way. Of course, over time as wind capacity grows, the benefits may 

be expected to increase, and we may have underestimated it due to the possible presence of “secret” 

                                                 
11 Source: Iberdrola (Scottish Power, the Scottish partner) https://www.iberdrola.com/about-us/lines-business/flagship-

projects/western-link 

https://www.iberdrola.com/about-us/lines-business/flagship-projects/western-link
https://www.iberdrola.com/about-us/lines-business/flagship-projects/western-link


constraint payments in the form of National Grid making forward energy trades through the market 

in order to balance the system.12  

 

5.2 Do wind farms behave strategically? 

 

Indeed, the results so far propels the analysis towards the second goal of the paper, to detect if the 

wind farms behave strategically. Normally, it is assumed that since wind is a “free” resource, when 

wind farms can produce, they will. In other words, the gap between National Grid’s prediction and 

actual wind production should not be related to prices. However, wind farms may choose to exercise 

caution in declaring production capacity if they are concerned about being unable to meet their target 

and having to pay penalties. More specifically though, they may have incentives to declare generation 

plans then be paid to be constrained off (see equation (1)).  To investigate this, after constructing the 

indexes (3 and 4), we examine the relationship between the identified dependent variables and other 

variables that equation (1) suggests are relevant for the wind farms to have more revenue using 

specification (5). The results are shown in Tables 9 and 10. 

 

Results reveal a relationship between the extent and direction to which predictions are influenced by 

price factors that indicate the farms behave strategically, rather than producing when they can. We 

again split the analysis considering the three different periods (column 1-3) and the period as a whole 

(column 4). Generally, it seems that the gap between prediction and actual generation is lowered if 

the Link was working and OFGEM+ROC weighted price and constrained prices increase. A different 

result is obtained if we consider the 3rd period only, where the Link variable assumes a positive and 

significant value.  

 

Turning to price predictions, if the wholesale price achieved is high then that gives wind farms an 

incentive to produce more and so we can expect lower over-prediction, or under-prediction. For the 

constrained prices, if they constrained off, and the price is high we would expect farms to offer more 

because in the event that they constrained then they will earn more revenue. On the other hand, it is 

to be expected that the gap will increase if the SSP prices increase.13 This is because if they failed to 

produce what they said that would produce then they have to buy the difference in the short-term 

market, and so higher is SSP, the lower would be their revenues. All these expectations are borne out 

                                                 
12 See again https://www.ref.org.uk/press-releases/249-ref-calls-for-transparency-over-secret-wind-power-constraint-

payments 
13 Note that SSP and SBP (system buy price) are now identical and have been so throughout our period of observation. 

https://www.ref.org.uk/press-releases/249-ref-calls-for-transparency-over-secret-wind-power-constraint-payments
https://www.ref.org.uk/press-releases/249-ref-calls-for-transparency-over-secret-wind-power-constraint-payments


when we consider our sample as a whole. The OFGEM+ROC weighted price attracts a negative 

coefficient, meaning generation rises relative to prediction. The higher the SSP price, the lower is 

generation relative to prediction, so a positive coefficient. Finally, the higher is the constrained price, 

the higher are both generation and (generation plus thwarted generation) relative to the predicted 

value. These predictions are largely borne out when we look at the three periods individually, 

although estimate precision varies somewhat. In particular, it is worth highlighting that the coefficient 

on the price constraint value consistently achieves negative significance when we use the second 

alternative dependent variable, which relates more directly to company plans. Again, we include the 

dummy for the power outage days, for completeness. It has a negative and sometimes significant 

impact on the proportion wrong, but does not materially alter the other coefficients, so our 

conclusions remain unchanged. 

 



 

Table 4. Descriptive statistics for different Link operational period 

Variables Obs. Mean Std. Dev. Min Max 

 

Link OFF  

(4/5/2018- 16/10/2018) 

     

Price constraint value (£/MWh) 3960 22.65 36.42 0 189 

Number of wind farms Constrained 3960 17.36 24.39 0 86 

MWh wind generation curtailed 3960 147.02 415.91 0 8111 

Constraint Cost payments (£/hour) 

 
3960 10483.68 28886.58 0 219636 

Link ON  

(17/10/2018- 19/02/2019) 
     

Price constraint value (£/MWh) 3024 19.08 32.55 0 183 

Number of wind farms Constrained 3024 12.45 15.78 0 64 

MWh wind generation curtailed 3024 88.70 256.91 0 1820.50 

Constraint Cost payments (£/hour) 

 
3024 6164 18014.3 0 138741.5 

Link OFF  

(20/02/2019- 23/03/2019) 
     

Price constraint value (£/MWh) 769 36.82 4.2976 0 156 

Number of wind farms Constrained 769 23.90 11.2459 0 76 

MWh wind generation curtailed 769 463.61 21.3387 0 1809.57 

Constraint Cost payments (£/hour) 

 
769 32685.87 32.62 0 132943 

Link ON  

(24/03/2019- 06/04/2019) 
     

Price constraint value (£/MWh) 335 23.98 34.56 0 98.5 

Number of wind farms Constrained 335 13.67 20.11 0 76 

MWh wind generation curtailed 335 79.96 252.97 0 1992.90 

Constraint Cost payments (£/hour) 

 
335 5804.53 18926.20 0 159395 

Link OFF 

(7/04/2019- 02/06/2019) 
     

Price constraint value (£/MWh) 1368 13.37 30.94 0 183 

Number of wind farms Constrained 1368 11.14 19.45 0 74 

MWh wind generation curtailed 1368 83.40 255.51 0 1767.60 

Constraint Cost payments (£/hour) 

 
1368 5871.30 18076.43 0 130337.5 

Link ON  

(3/06/2019-25/09/2019) 
     

Price constraint value (£/MWh) 2747 22.04 40.31 0 192 

Number of wind farms Constrained 2747 10.10 16.98 0 80 

MWh wind generation curtailed 2747 68.61 228.90 0 1884.78 

Constraint Cost payments (£/hour) 2747 5014.77 16837.88 0 160115 

 

 

 

 

 

 

 

 

 



 

Table 5. T-test for the variables of interest if the Interconnector was operating or not 

Variables Link Obs. Mean Std. Dev. Mean difference 

 

Number of wind farms Constrained 

 

 

    

 OFF 6096 17.23 23.75 *** 

 ON 6107 11.47 16.65  

 

Hourly Price Constraint (£/MWh) 

 
    

 OFF 6096 22.23 35.89 ** 

 ON 6107 20.69 36.38  

 

MWh wind generation curtailed 

 
    

 OFF 6096 151.08 397.04 *** 

 ON 6107 79.17 244.62  

 

Constraint Cost payments (£/hour) 

 
    

 OFF 6096 10699.03 27694.51 *** 

 ON 6107 5626.38 17552.12  

 

 

 

 
Table 6. Results explaining Constraint Costs as dependent variable. 

 (Period 1) (Period 2) (Period 3) (Whole period) (Period 3) (Whole period) 

Variables Costs_log Costs_log Costs_log Costs_log Costs_log Costs_log 

Column 1 2 3 4 5 6 

       

Link dummy -0.6225*** 

(0.1279) 

-0.3560*** 

(0.0960) 

0.3180*** 

(0.0663) 

-0.3634*** 

(0.0544) 

 

0.3041*** 

(0.0657) 

 

-0.3703*** 

(0.0538) 

 

Peak Time  

 

-0.2588*** 

(0.0711) 

-0.2387 

(0.2807) 

-0.1781 

(0.1184) 

-0.2474** 

(0.0889) 

 

-0.1790 

(0.1182) 

 

-0.2493*** 

(0.0885) 

 

Total Demand 

(log) 

-0.7271** 

(0.3463) 

-2.1460*** 

(0.4136) 

-0.3066 

(0.1919) 

-0.6434** 

(0.2705) 

-0.2945** 

(0.1872) 

-0.6317** 

(0.267) 

       

Final Forecast 

Wind Value (log) 

1.2875*** 

(0.0796) 

2.1834*** 

(0.1295) 

1.3124*** 

(0.0897) 

1.3219*** 

(0.0790) 

 

1.2841*** 

(0.0964) 

 

1.3133*** 

(0.0804) 

 

N. Wind Farms 

Constrained 

0.1001*** 

(0.0027) 

0.0901*** 

(0.0039) 

0.1119*** 

(0.0025) 

0.1045*** 

(0.0021) 

0.1124*** 

0.0025 

0.1047*** 

0.1047*** 

 

       

Power cut dummy   NO NO YES YES 

Observations 6926 1103 4076 12105 4076 12105 

R-squared 0.45 0.47 0.47 0.47 0.48 0.47 
Clustered Standard Errors by hours in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 



 

 
Table 7. Results explaining Price constraint value as dependent variable. 

 (Period 1) (Period 2) (Period 3) (Whole period) (Period 3) (Whole period) 

Variables Price_log Price_log Price_log Price_log Price_log Price_log 

Column 1 2 3 4 5 6 

       

Link dummy -0.3411*** 

(0.0578) 

-0.0555 

(0.0713) 

0.2678*** 

(0.0327)) 

-0.1308*** 

(0.0268) 

 

0.2527*** 

(0.0329) 

 

-0.1383*** 

(0.0268) 

 

Peak Time  

 

-0.0850** 

(0.0349) 

-0.0238 

(0.1518) 

-0.0896 

(0.0654) 

-0.0765 

(0.0497) 

 

-0.0905 

(0.0652) 

 

-0.785*** 

(0.0493) 

 

Total Demand 

(log) 

-0.2949* 

(0.1470) 

-0.8706*** 

(0.2212) 

-0.1423 

(0.0958) 

-0.2946** 

(0.1296) 

-0.1292 

(0.0908) 

-0.2817** 

(0.1250) 

       

Final Forecast 

Wind Value (log) 

0.6499*** 

(0.0279) 

0.8551*** 

(0.0676) 

0.7036*** 

(0.0437) 

0.6487*** 

(0.0317) 

 

0.6730*** 

(0.0479) 

 

0.6391*** 

(0.0327) 

 

N. Wind Farms 

Constrained 

0.0380*** 

(0.0010) 

0.8551*** 

(0.0020) 

0.0443*** 

(0.0012) 

0.0405*** 

(0.0008) 

0.0448*** 

(0.0013) 

0.0406*** 

(0.0009) 

 

       

Power cut dummy   NO NO YES YES 

Observations 6926 1103 4076 12105 4076 12105 

R-squared 0.36 0.35 0.37 0.37 0.38 0.37 

       
Clustered Standard Errors by hours in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Table 8. Results explaining MWh wind generation curtailed as dependent variable. 

 (Period 1) (Period 2) (Period 3) (Whole period) (Period 3) (Whole period) 

Variables MWh _log MWh _log MWh _log MWh _log MWh _log MWh _log 

Column 1 2 3 4 5 6 

       

Link dummy -0.2233*** 

(0.0810) 

-0.3302*** 

(0.0681) 

-0.2184*** 

(0.0541) 

-0.1929*** 

(0.0445) 

 

-0.2197*** 

(0.0547) 

 

-0.1928*** 

(0.0444) 

 

Wind Capacity 

Scotland (log) 

-1.5222** 

(0.5750) 

0.6323 

(3.4276) 

77.8056*** 

(10.1057) 

-1.0634** 

(0.4401) 

 

78.7453*** 

(10.6796) 

 

-1.0622** 

(0.4378) 

 

Peak Time  

 

-0.1807*** 

(0.0425) 

-0.2444 

(0.1472) 

-0.0820 

(0.0632) 

-0.1694*** 

(0.0429) 

 

-0.0818 

(0.0632) 

-0.1694*** 

(0.0403) 

Total Demand 

(log) 

-0.4304** 

(0.2011) 

-1.310*** 

(0.2297) 

-0.1546 

(0.0930) 

-0.3602** 

(0.1490) 

 

-0.1564 

(0.0935) 

-0.3603** 

(0.1496) 

Final Forecast 

Wind Value (log) 

0.6566*** 

(0.0513) 

1.3285*** 

(0.0671) 

0.6307*** 

(0.0475) 

0.6946*** 

(0.0487) 

 

0.6351*** 

(0.0500) 

 

0.6947*** 

(0.0492) 

 

N. Wind Farms 

Constrained 

0.0623*** 

(0.0017) 

0.0558*** 

(0.0021) 

0.0672*** 

(0.0015) 

0.0639*** 

(0.0012) 

0.0672*** 

(0.0014) 

0.0640*** 

(0.0013) 

 

       

Power cut dummy   NO NO YES YES 

Observations 6926 1103 4076 12105 4076 12105 

R-squared 0.48 0.51 0.51 0.49 0.51 0.49 

       
Clustered Standard Errors by hours in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 9. Results explaining the first percent wrong prediction index (Wpi1) as dependent variable. 

 (Period 1) (Period 2) (Period 3) (Whole period) (Period 3) (Whole period) 

Variables Wpi1 Wpi1 Wpi1 Wpi1 Wpi1 Wpi1 

Column 1 2 3 4 5 6 

       

Link dummy -13.8458*** 

(0.5680) 

-5.2452*** 

(0.5799) 

1.1995** 

(0.3938) 

-8.3929*** 

(0.3800) 

 

1.3401*** 

(0.3929) 

-8.3646*** 

(0.3806) 

OFGEM+ROC 

Weighted Price  

 

-0.6091*** 

(0.0396) 

0.3344 

(0.2075) 

-0.02155 

(0.0939) 

-0.3423*** 

(0.0126) 

 

-0.0220 

(0.0940) 

-0.3446*** 

(0.0127) 

SSP Elexon Price -0.1124** 

(0.007) 

0.0174 

(0.0389) 

0.1226*** 

(0.0102) 

0.1049*** 

(0.0064) 

0.1254*** 

(0.0101) 

0.1053*** 

(0.0064) 

       

Price Constraint 

value 

-0.0134 

(0.0110) 

0.0156 

(0.0099) 

-0.0285*** 

(0.0069) 

-0.0180*** 

(0.0067) 

 

-0.0253*** 

(0.0068) 

-0.0175** 

(0.0066) 

 

Power cut dummy   NO NO YES YES 

Observations 6926 1103 4076 12105 4076 12105 

R-squared 0.15 0.03 0.03 0.07 0.03 0.07 
Clustered Standard Errors by hours in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

 

 

 
Table 10. Results explaining the second percent wrong prediction index (Wpi2) as dependent variable. 

 (Period 1) (Period 2) (Period 3) (Whole period) (Period 3) (Whole period) 

Variables Wpi2 Wpi2 Wpi2 Wpi2 Wpi2 Wpi2 

Column 1 2 3 4 5 6 

       

Link dummy -12.4838*** 

(0.6216) 

-3.9639*** 

(0.6795) 

1.9610*** 

(0.3709) 

-7.2576*** 

(0.4298) 

 

2.0636*** 

(0.3805) 

-7.2565*** 

(0.4311) 

OFGEM+ROC 

Weighted Price  

 

-0.6934*** 

(0.0393) 

0.6862** 

(0.2210) 

0.0601 

(0.0967) 

-0.3990*** 

(0.0098) 

 

0.0598 

(0.0968) 

-0.3991*** 

(0.0097) 

SSP Elexon Price 0.1324*** 

(0.0076) 

0.0613 

(0.0376) 

0.1433*** 

(0.0096) 

0.1268*** 

(0.0058) 

0.1453*** 

(0.0098) 

0.1269*** 

(0.0060) 

       

Price Constraint 

value 

-0.0877*** 

(0.0098) 

-0.0496*** 

(0.0085) 

-0.0596*** 

(0.0054) 

-0.0769*** 

(0.0059) 

 

-0.0573*** 

(0.0055) 

-0.0769*** 

(0.0060) 

 

Power cut dummy   NO NO YES YES 

Observations 6926 1103 4076 12105 4076 12105 

R-squared 0.15 0.04 0.05 0.08 0.05 0.08 
Clustered Standard Errors by hours in parentheses: *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 



 

6. Conclusions and Policy Implications 

 

Our paper contains two important findings concerning the operation of Britain’s changing electrical 

energy system. These concern the benefits of interconnection and the behaviour of wind farms in 

response to financial imperatives.  

 

Interconnectors are increasingly important mechanisms through which electricity can be transferred 

across space, reducing the need for additional generation and the potential for power outages. At the 

same time, ex post evaluation of the benefits they create is unusual. As a result of the intermittent 

operation of the Western Link in Britain, we are able to generate estimates of the current benefits of 

its operation in terms of the money saved in additional payments. These are significant, but by 

comparison with the cost of construction, appear distinctly modest. This highlights the need for more 

investigation of interconnector benefits generally, in order to facilitate interconnectors’ role in 

comparison with other technologies with a similar, and partly complementary, function, such as 

energy storage. The British case constitutes an example, but the concept is clearly applicable more 

broadly; Europe relies heavily on interconnection across countries, for example. 

 

At the same time, our results concerning the variable impact of the interconnector across time lead us 

to question the widely held assumption that wind farms do not behave strategically in response to 

financial factors, but instead act passively, producing where there is wind available. By comparing 

expected wind generation with actual generation, we are able to establish that financial factors indeed 

play a role, and precisely the role that would be expected if they operate according to financial 

imperatives. In establishing this, we wish particularly to highlight their behaviour in relation to 

payments where some of them are constrained not to produce in order to maintain the stability of the 

system. There is a clear link between the higher payments achieved and the gap between predicted 

and actual generation. Indeed, this calls into question whether they are all operating according to the 

condition that requires them in effect not to game the system, the Transmission Constraint Licence 

Condition, introduced in May 2017. Again, this is a matter worthy of further regulatory investigation. 
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