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Abstract

Population structure influences genealogical patterns, however data

pertaining to how populations are structured are often unavailable or

not directly observable. Inference of population structure is highly

important in molecular epidemiology where pathogen phylogenetics is

increasingly used to infer transmission patterns and detect outbreaks.

Discrepancies between observed and idealised genealogies, such as those

generated by the coalescent process, can be quantified, and where

significant differences occur, may reveal the action of natural selection,

host population structure, or other demographic and epidemiological

heterogeneities. We have developed a fast non-parametric statistical test

for detection of cryptic population structure in time-scaled phylogenetic

trees. The test is based on contrasting estimated phylogenies with the

theoretically expected phylodynamic ordering of common ancestors in

two clades within a coalescent framework. These statistical tests have

also motivated the development of algorithms which can be used to

quickly screen a phylogenetic tree for clades which are likely to share a

distinct demographic or epidemiological history. Epidemiological

applications include identification of outbreaks in vulnerable host

populations or rapid expansion of genotypes with a fitness advantage.

To demonstrate the utility of these methods for outbreak detection, we

applied the new methods to large phylogenies reconstructed from

thousands of HIV-1 partial pol sequences. This revealed the presence of

clades which had grown rapidly in the recent past, and was significantly

concentrated in young men, suggesting recent and rapid transmission in

that group. Furthermore, to demonstrate the utility of these methods

for the study of antimicrobial resistance, we applied the new methods to

a large phylogeny reconstructed from whole genome Neisseria

gonorrhoeae sequences. We find that population structure detected

using these methods closely overlaps with the appearance and expansion

of mutations conferring antimicrobial resistance.
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Quantifying the role of population structure in shaping genetic

diversity is a longstanding problem in population genetics. When information

about how lineages are sampled is available, primarily geographic location, a

variety of statistics are available for describing the magnitude and role of

population structure (Hartl et al. 1997). In pathogen phylogenetics, such

geographic ‘meta-data’ has been instrumental in enabling the inference of

transmission rates over space (Dudas et al. 2017), host species (Lam et al.

2015), and even individual hosts (De Maio et al. 2018). Population structure

shapes genetic diversity, but can the existence of structure be inferred directly

from genetic data in the absence of structural covariates associated with each

lineage, such as if the geographic location or host species of a lineage is

unknown?

The problem of detecting and quantifying such ‘cryptic’ population

structure has become a pressing issue in several areas of microbial

phylogenetics. For example, in bacterial population genomics studies, a wide

diversity of methods have been recently developed to classify taxonomic units

based on distributions of genetic relatedness (Mostowy et al. 2017; Tonkin-Hill

et al. 2019, 2018; Beugin et al. 2018). In a different domain, pathogen

sequence data have been used for epidemiological surveillance, and ‘clustering’

patterns of closely related sequences have been used to aid outbreak

investigations and prioritise public health interventions (Eyre et al. 2012;

Dennis et al. 2014; Miller et al. 2014; Ledda et al. 2017). In both population

genomics studies and outbreak investigations, a common thread is the absence

of variables about sampled lineages that can be correlated with phylogenetic

patterns. For example, in outbreak investigations, host risk behaviour and

transmission patterns are not usually observed and must be inferred. It is not

known a priori which clades are more or less likely to expand in the future,
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although there is active research addressing this problem, such as to predict

the emergence of strains of influenza A virus (Klingen et al. 2018) or to

forecast the effect of antibiotic usage policies on the prevalence of resistant

variants (Whittles et al. 2017).

In time-scaled phylogenies, the effects of population structure often

appear as a difference in the distribution of branch lengths in clades

circulating in different populations (Dearlove and Frost 2015). Figure 1 shows

a simulated genealogy from a structured coalescent process (Notohara 1990).

In two clades, the effective population size grows exponentially, and in the

remaining clade, the effective size remains constant. Consequently, the number

of lineages through time show noticeably different patterns of relatedness. For

the clades with growing size, most coalescent events occur in the distant past

when the size was small.

Supposing that the deme from which lineages were sampled was not

observed, it is clear from visual inspection of Figure 1 which lineages were

sampled from a growing population. Nevertheless, there is a paucity of

objective methods readily available to automate the process of identifying

temporally distinct clades. This process cannot be done manually when the

differences in distributions are less obvious, and needs to be based on a

theoretically grounded statistical test. Furthermore, in Figure 1, the red and

yellow clades are distantly related. Their most recent common ancestor

(MRCA) is at the root of the tree, but they have a very similar distribution of

coalescent times suggesting that they were generated by similar demographic

or epidemiological processes. For example, this can happen in infectious

disease epidemics, when lineages independently colonise the same host

population with greater susceptibility or higher risk behaviour (Dearlove et al.

2017). It is therefore also desirable to have an automated method for
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identifying polyphyletic taxonomic groups defined by shared inferred

population histories as opposed to genetic or phenotypic traits.

Here we develop a statistical test for detecting if clades within a

time-scaled genealogy have evidence for unobserved population structure. Our

approach is to develop a statistic based on an unstructured coalescent process.

This allows us to test a null hypothesis that two clades are both generated by

the same coalescent process. In this case, the coalescent model provides a

theoretical prediction of the order of the coalescent times between the two

clades in the absence of population structure. On the basis of this statistical

test, we also develop algorithms for systematically exploring possible partitions

of a genealogy into distinct sets representing evolution within latent

populations with different demographic or epidemic histories. Notably, these

algorithms not only allow us to detect outlying clades with very different

genealogical patterns, but also to find and classify distantly related clades

which likely have similar demographic or epidemic histories.

Materials and Methods

As a starting point for our methodology, we assume a time-scaled phylogeny

has been estimated from genetic data, for example using one of the recently

developed fast methods (To et al. 2016; Volz and Frost 2017; Didelot et al.

2018; Sagulenko et al. 2018; Tamura et al. 2018; Miura et al. 2019).

Alternatively, summary trees obtained from full Bayesian approaches as

implemented in BEAST (Suchard et al. 2018; Bouckaert et al. 2014) or

RevBayes (Höhna et al. 2016) can be used, although these typically

incorporate population genetic models which presume a particular form of

population structure or a lack of population structure. Some precise

terminology and notation is required related to the structure of these
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time
time

Figure 1: A genealogy simulated from a structured coalescent process with two

demes, one of which has constant effective population size (clade highlighted

in blue), and the other having effective population size growing exponentially

(clades highlighted in red and yellow). Migration of lineages occurs at a small

constant rate in one direction from the constant size deme to the growing deme.

The corresponding plots at the right show a caricature of the effective population

size and number of lineages through time in each clade.

http://mc.manuscriptcentral.com/systbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syaa009/5734655 by U

niversity of W
arw

ick user on 05 M
arch 2020



time-scaled trees since the basis of our approach concerns comparisons

between different subsets of the tree.

Notation

The tree has n terminal nodes (nodes with no descendants), is rooted, and is

bifurcating (there are n− 1 internal nodes each with exactly two descendants).

Being rooted implies there is one node with no ancestor. Mathematically we

describe this tree as a node-labelled directed acyclic graph:

G = (N , E , τ)

where N is a set of 2n− 1 nodes, E ⊆ {(u, v)|u, v ∈ N 2} is the set of 2n− 2

edges or ‘lineages’, and τ : N → R≥0 defines the time of each node. With

reference to an edge (u, v) ∈ E we say that u is the ‘direct ancestor’ and v is

the ‘direct descendant’ and we require τ(u) < τ(v). Nodes are further

classified into two sets: ‘tips’ (terminal nodes) denoted T with no descendants

and internal nodes denoted I with exactly two direct descendants. The trees

may be heterochronous, meaning that tips of the tree can represent samples

taken at different time points.

For a node u ∈ N we define the clade Cu to be the set of nodes

descending from u, that is, the node u and all v ∈ N such that there is a

directed path of edges from u to v. We say that nodes v in Cu are ‘descended

from’ u. We will also have occasion to define clades ‘top down’ in terms of a

subset of tips in the tree. For this, we define the most recent common ancestor

MRCA(X) of a set X ⊆ T to be the most recent node u such that X ⊆ Cu,

that is, all other nodes v with X ⊆ Cv have τ(v) < τ(u). Then we let the

top-down clade BX be defined as

http://mc.manuscriptcentral.com/systbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syaa009/5734655 by U

niversity of W
arw

ick user on 05 M
arch 2020



BX = {u ∈ N|Cu ∩X 6= ∅}.

Note that BX includes the tips X as well as some nodes ancestral to

MRCA(X).

In general BX 6= CMRCA(X) since X does not necessarily include all

tips descending from MRCA(X). We will also need to refer to the nodes

corresponding to coalescent events among lineages of the set X only, excluding

those between lineages of X and lineages of the complement of X,

DX = X ∪ {u ∈ BX | ∃(u, v), (u,w) ∈ E , v 6= w,Cv ∩X 6= ∅, Cw ∩X 6= ∅},

Figure 2A illustrates a tree and the sets BX , DX , and CMRCA(X).

Since each node has a time, we can define the set of ‘extant’ lineages

A(t) at a particular time t to be the set of nodes occurring after time t with a

direct ancestor before time t,

A(t) = {v ∈ N | ∃(u, v) ∈ E , τ(u) < t ≤ τ(v)}.

We might also refer to the number of extant lineages at time t, a(t) = |A(t)|,

and if considering the number of extant lineages within a particular clade

ancestral to (and including) X we write

aX(t) = |A(t) ∩BX |.
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Non-parametric test for a given pair of clades

With the above notation, the rank-sum statistic can now be defined which will

form the basis for subsequent statistical tests and can be used to compare any

pair of clades in the tree.

Let X and Y represent disjoint sets of tips as represented in Figure

2B-D. Having sorted the nodes according to time and assigned a corresponding

rank to each internal node, this statistic computes the sum of ranks in a given

clade in comparison to a different clade:

ρ(X|Y ) =
K∑
i=1

i1DX
(wi), (1)

where wi is an element of SX,Y = (w1, w2, . . . , wK) which is the sequence of

internal nodes in DX ∪DY sorted by time (present to past). And, 1A(u) is an

indicator that takes the value 1 if u ∈ A and is zero otherwise. Note that

ρ(X|Y ) is asymmetric in X and Y . Also note that ρ(X|Y ) makes use of DX

and DY , not BX and BY , because we are interested in the relative ordering of

coalescent events among lineages of X and Y . Although the statistic is defined

for all sets disjoint sets X and Y the examples we consider below apply to the

case that the intersection of DX and DY is empty. Only the ordering of the

events matter, the absolute times are immaterial to the test.

Under a neutral coalescent process, the distribution of coalescent

times in two clades ancestral to X and Y will depend on the number of extant

lineages through time in both clades and on the effective population size Ne(t)

(Wakeley 2009). However, the distribution of the relative ordering of

coalescent times only depends on the sizes of the clades. This distribution can

be computed rapidly by Monte-Carlo simulation as shown below, provided
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that we know the probability that the next coalescent will be in X or Y as a

function of the number of lineages ancestral to X and Y , given by aX(t) and

aY (t). We here provide new theoretical results on the distribution of the

relative ordering of coalescence times under the null hypothesis that both BX

and BY are clades within a single tree generated by a neutral unstructured

coalescent process. In the following we consider three different scenarios.

Event E1. Suppose that a clade BX has a MRCA before any tip of X shares

a common ancestor with the clade of another set of tips Y , disjoint to X.

After lineages in X have found a common ancestor, the MRCA of X may or

may not coalesce with lineages in BY before Y has found a common ancestor.

Figure 2B-C illustrates trees that satisfy this condition. Note that in Figure

2B, a lineage in Y coalesces with the MRCA of X before lineages in Y find a

MRCA and in Figure C, both X and Y have a common ancestor before they

find a common ancestor with one another.

Observing a taxonomic pattern such as shown in Figure 2B-C is a

random event in a stochastic unstructured coalescent process, and we denote

this event by E1 (suppressing X and Y for convenience). Wiuf and Donnelly

(Wiuf and Donnelly 1999) showed that the probability of observing E1, given

the state of the tree at a particular time t, only depends on the number of

lineages z = aX(t) and w = aY (t),

Q1(z, w) =
2(z − 1)!w!

(z + w − 1)!(z + 1)
, z, w ≥ 1. (2)

The numbers of extant lineages in BX (or its complement) following

each coalescent event conditional on E1 is a Markov chain. The transition

probabilities of this chain are exactly those needed to simulate the null

distribution of the test statistic ρ(X|Y ). The probability that the next
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Figure 2: Coalescent trees for illustrating taxonomic relationships and notation

used throughout the text. In panel A, the shape and colour of nodes correspond

to variables BX , DX , and CMRCA(X) in relation to the set of tips X =

{x1, x2, x3}. All circles regardless of colour correspond to CMRCA(X). All filled

shapes (red or black, square or circle) correspond to BX . Note that this includes

nodes ancestral to the MRCA of X. All red filled circles correspond to DX . Two

coalescent events occur among nodes in DX at times t1 and t2. Panels B-D show

a coalescent tree and examples of potential taxonomic relationships between two

clades. Prior knowledge of taxonomic relationships between X and Y influences

the probability that the next coalescent event will be observed in clade X.
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coalescent event is among lineages in the clade BX given E1 (starting at a

particular time t) was found by Wiuf and Donnelly (Wiuf and Donnelly 1999):

(z, w) 7→ (z − 1, w) with probability
z + 1

z + w
, (3)

where the ancestral number of lineages of X and Y at time t are respectively z

and w.

Event E2. We further derive analogous probabilities under slightly different

conditions. Suppose we have disjoint sets of tips, X and Y . Let all lineages in

X share a common ancestor before any share a common ancestor with Y and

vice versa, all lineages in Y share a common ancestor before any share a

common ancestor with tips in X. Figure 2C illustrates a tree and two clades

that satisfy this condition, which we denote by E2. As before, the number of

ancestors in BX and BY will form a Markov chain, conditional on E2.

The probability that the next coalescent event is among lineages in

the clade BX given E2 at a particular time t and the current ancestral number

of lineages of X, z = aX(t), and Y , w = aY (t), can be given as:

(z, w) 7→ (z − 1, w) with probability
z − 1

z + w − 2
, z, w ≥ 1. (4)

To see this, note that without conditioning on E2, the probability that

the next coalescent is among ancestral nodes in BX is

z(z − 1)

(z + w)(z + w − 1)
.

This is simply the ratio of the coalescent rate in BX , which is
(
z
2

)
/Ne(t), to the

rate in BX ∪BY , which is
(
z+w
2

)
/Ne(t). The effective population size is
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homogenous through the tree by hypothesis of the statistical test, and it

cancels out in this ratio. The probability that the coalescent event would be

between the clades ancestral to X and Y would be

2zw

(z + w)(z + w − 1)
.

Event E2 has probability Q2(z, w), which must fulfil the recursion

(z + w)(z + w − 1)Q2(z, w)

= z(z − 1)Q2(z − 1, w) + w(w − 1)Q2(z, w − 1), (5)

where z, w ≥ 1. If there is exactly one lineage in both BX and BY , then

Q2(1, 1) = 1. If there is one lineage remaining in BX and w > 1 in BY , then

Q2(1, w) is the probability that the next w − 1 coalescent events only occur

between lineages in BY and do not include the single lineage ancestral to X.

The probability of the next coalescent event being in BY is the probability of

not selecting the BX lineage when sampling two extant lineages without

replacement:

Q2(1, w) =

w∏
j=2

(
j

j + 1

)(
j − 1

j

)
=

2

w(w + 1)
, w ≥ 1. (6)

Similarly, Q2(z, 1) = 2
z(z+1) , z ≥ 1. This recursion can be solved explicitly to

give
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Q2(z, w) =
2z!w!

(z + w)!(z + w − 1)
, z, w ≥ 1. (7)

Now the transition probability (Equation 4) can be defined in terms of the

rate of coalescence in BX and BY and the probability of E2 being satisfied

following the coalescent event:

(z, w) 7→ (z − 1, w) with probability

z(z − 1)Q2(z − 1, w)

z(z − 1)Q2(z − 1, w) + w(w − 1)Q2(z, w − 1)
=

z − 1

z + w − 2
. (8)

Event E3. Finally, we consider an event that is the union of events E1 and

E2. We denote E3 to be the event that all X have a MRCA before sharing a

common ancestor with lineages of Y and/or all lineages in Y have a MRCA

before sharing an ancestor with lineages of X. All trees in Figure 2B-D satisfy

this condition.

The probability of the event E3 can be defined in terms of Q1 and Q2

given previously:

Q3(z, w) = Q1(z, w) +Q1(w, z)−Q2(z, w)

=
2z!w!

(z + w − 1)!

(
1

z(z + 1)
+

1

w(w + 1)
− 1

(z + w)(z + w − 1)

)
, (9)

with z = aX(t) and w = aY (t) being sample sizes at a particular time t, as

before. The function Q3 satisfies the same recursion as above (Equation 5)

with slightly different boundary conditions:

Q3(1, w) = Q3(z, 1) = 1, z, w ≥ 1.
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Transition probabilities can be derived as above by substituting Q3 for Q2 in

Equation 8. The probability that the next coalescent event is among lineages

in DX conditional on E3 is

(z, w) 7→ (z − 1, w) with probability
(z − 1)Rz−1,w

(z − 1)Rz−1,w + (w − 1)Rz,w−1
, (10)

where

Rz,w =
1

z(z + 1)
+

1

w(w + 1)
− 1

(z + w)(z + w − 1)
, z, w ≥ 1. (11)

Algorithms for detecting population structure

The null distribution of the test statistic ρ(X,Y ) can be computed by

Monte-Carlo simulation using Equations 3, 4 or 10 depending on the

taxonomic constraints to be conditioned on. This can be computed given any

pair of disjoint clades X and Y . Algorithm 1 in the Supplementary Material

provides the simulation procedure for computing the two-sided p-values of an

empirical measurement R̂ = ρ(X,Y ), and we denote these p-values ξ(X,Y,R).

The algorithm works by simulating many replicates of the rank-sum statistic

conditional on the sets X, Y , and the taxonomic relationship between these

clades. Furthermore, the order of sampling events and coalescent events is part

of the data within a time-scaled phylogeny. Thus the simulation procedure

does not simulate coalescent trees per se, but rather the number of lineages

through time aX(t) and aY (t) by proceeding from the most recent sample back

to the MRCA of clades X and Y . Upon visiting a node in the ordered

sequence of coalescent events, the algorithm selects at random a clade DX or

DY for this event using the transition probabilities from Equations 3, 4 or 10.

Upon visiting a coalescent event, aX(t) or aY (t) is incremented using the

observed clade membership of the sample at that time. The end result of this
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simulation procedure is a large set of replicate rank-sum statistics which serves

as a null distribution for comparison with the value computed from the

time-scaled phylogeny.

While in principle this test allows comparison of any pair of disjoint

clades, the number of possible comparisons is vast, and deriving a useful

summary of taxonomic structure requires additional heuristic algorithms.

These algorithms are designed to stratify clades into self-similar sets and to do

so in a computationally efficient manner. Algorithm 2 in the Supplementary

Material identifies ‘cladistic outliers’, which are clades that have a coalescent

pattern that is different from the remainder of the tree. It performs a single

pre-order traversal of the tree and greedily adds clades to the partition with

the most outlying values of the test statistic. At each node u visited in

pre-order traversal, Algorithm 2 examines all descendants v in Cu and

compares Cv with to Cu \Cv. If no outliers are found, the algorithm will desist

from searching Cu and the set of tips Cu ∩ T will be added to the partition. If

at least one outlier is found in Cu, a search will begin on the biggest outlier

(smallest p-value computed using Algorithm 1). The final result of this

algorithm is a partition of m non-overlapping clades M = {X1, · · · , Xm}.

In practice, it is often desirable to not compare very small clades

against one another or much larger clades, so additional parameters are

available to desist the pre-order traversal upon reaching a clade with few

descendants. It is also often of practical interest to only compare clades that

overlap in time to a significant extent, so yet another parameter is available to

desist from comparing a pair of clades if few lineages in the pair ever coexist at

any time.

Additional algorithms are required to detect polyphyletic relationships

as depicted in Figure 1 which arise if, for example, distantly related lineages
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colonise the same area and have similar population dynamics or if

near-identical fitness-enhancing mutations occur independently on different

lineages. Figure 1 depicts two distantly related clades (yellow and red) with

similar population dynamics, and it is desirable to classify these as a single

deme based on shared population dynamic history. Algorithm 2 will partition

tips of the tree into distinct clades with monophyletic or paraphyletic

relationships, however an approach based on pre-order traversal of the tree can

not on its own arrive at a polyphyletic partition of the tree. Therefore we can

implement a final hierarchical clustering step in order to group similar clades

as follows:

1. For each distinct pair of clades X and Y in partition M , compute

qXY = ξ(X,Y, R̂XY ).

2. Convert the p-value into a measure of distance between all clades:

dXY = |F−1(qXY )|, where F−1 is the inverse Gaussian cumulative

distribution function (quantile function). Set dXX = 0 for all X.

3. Perform a conventional hierarchical clustering using a threshold distance

F−1(1− α/2) for confidence level α. Various clustering algorithms can

be used at this point, and our software has implemented the ‘complete

linkage’ algorithm (Everitt et al. 2001).

Algorithms 1 and 2 as well as the final hierarchical clustering step are

implemented as an open source R package called treestructure available at

https://github.com/emvolz-phylodynamics/treestructure. The R

package supports parallelisation and includes facilities for tree visualisation

using the ggtree package (Yu et al. 2017). The package provides convenience

functions to output cluster and partition assignment for downstream statistical

analysis in R.
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Simulation studies

To evaluate the potential for treestructure to detect outbreaks we applied the

new method to phylogenies estimated from newly simulated data using a

structured coalescent model as well as previously published simulation data

based on a discrete-event branching process (McCloskey and Poon 2017). We

also simulated trees and sequence data under a Kingman coalescent process to

examine the distribution of the test statistic under the null hypothesis and to

assess how statistical power of the test depends on sample size and the

differences between clades.

The structured coalescent simulation was based on a model with two

demes: a large deme with constant effective population size and a smaller

deme which grows exponentially up to the time of sampling. Migration occurs

at a constant rate in both directions between the growing and constant-size

demes, and equal proportions of these two demes are sampled. Coalescent

simulations were implemented using the phydynR package

http://github.com/emvolz-phylodynamics/phydynR. All genealogies

simulated from this model were comprised of 1000 tips with 200 of these

sampled from the growing deme. Each of 100 simulations were based on

different parameters such that there was a spectrum of difficulty identifying

population structure from the trees. The sample proportion was chosen

uniformly between 5% and 75% and, the growth rate in the growing deme was

chosen uniformly between 5% and 100% per year. Bidirectional migration

between demes was fixed at 5% per year. While most tips were sampled at a

single time point, 50 tips from the constant-size deme were distributed

uniformly through time in order to facilitate molecular clock dating. Multiple

sequence alignments were simulated based on trees using seq-gen (Rambaut

and Grass 1997). Each sequence comprised 1000 nucleotides from a HKY
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model with a substitution rate of 10−3 per site per year, which is a typical

value for RNA viruses. A neighbor joining tree was estimated from each

alignment and dated phylogenies estimated using the treedater R package

(Volz and Frost 2017) with a strict molecular clock. The treestructure

algorithm was applied to each phylogeny using the default α = 1% threshold.

In order to test the specificity of our method, we also simulated 1,000

trees under an unstructured Kingman coalescent process using the rcoal

function in the ape R package version 5.2. These trees each had 50 tips and an

effective population size of 0.025. Sequence data and neighbor joining trees

were generated as described above. The estimate.dates command (Jones and

Poon 2016) in the ape R package version 5.2 was used to estimate time-scaled

trees. The treestructure algorithm was applied to both the coalescent trees and

to the trees estimated based on the simulated sequences. The test statistic was

tabulated for each clade size from 5 to 45 leading to approximately 10,000

observations of the test statistic in total, and about 250 observations for each

clade size.

A further set of Kingman coalescent simulations was carried out to

assess the statistical power of our method. We simulated paired coalescent

trees of different sizes and with different effective population sizes, and each

pair of coalescent trees was then joined at a common root. Branch lengths at

the root node were adjusted to ensure the trees were ultrametric. One tree in

each pair was small with 10, 20 or 40 tips, whereas the other had 200 tips.

The treestructure algorithm was used to compute the normalized test statistic

at the MRCA of the minority clade. The effective population size in the

minority clade was varied to provide differing levels of contrast. Note that

even if the effective population size is the same in the majority and minority

clades, the topology of the combined tree may differ substantially from the
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Kingman model, so that the minority clade may be detected by the

treestructure algorithm. To effectively ‘hide’ the structure caused by the

construction of the combined trees, we can set the effective population size of

the minority clade to be zNe/w where z is the number of tips in the minority

tree, w is the number of tips in the majority tree, and Ne is the effective size

of the majority tree. By doing so, the initial coalescent rate in both trees will

be as expected under the Kingman model for the combined tree. This can be

deduced by equating the transition probability in Equation 4 with the

probability that the next coalescent will be in the minority clade, which is the

ratio of the coalescent rate in the minority tree over the sum of coalescent

rates in both the minority and majority trees.

Simulation of 100 genealogies from a discrete-event birth-death

process has been previously described (McCloskey and Poon 2017; Vaughan

and Drummond 2013). These simulations were based on a process with

heterogeneous classes of individuals with different birth rates. With some

probability, lineages migrate to a class with higher birth rates. This could

represent a generic outbreak scenario such as a set of individuals with higher

risk behaviour or other exposures. In a separate set of simulations, the

outbreak population differs from the main population along multiple

dimensions: the birth rate and the sampling rate are both increased by a

common factor (5×). 100 genealogies were simulated under both scenarios and

the treestructure algorithm was applied to each. To create more challenging

conditions for the method and to evaluate the sensitivity of the method to

sample coverage, we also applied the method to genealogies based on

subsampled lineages with a frequency of 25%. Complete descriptions of

parameters and simulation methods can be found in (McCloskey and Poon

2017).
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Figure 3: The normalised mutual information (NMI) and adjusted Rand index

(ARI) as a function of classifications from several tree-partitioning algorithms

and membership of lineages in outbreaks or a constant-size reservoir. Each point

corresponds to a structured coalescent simulation where 20% of tips are sampled

from an exponentially growing outbreak.

The performance of treestructure was evaluated using the normalised

mutual information (NMI) statistic and adjusted Rand index (ARI) computed

using the aricode R package (Vinh et al. 2010). Both statistics quantify the

strength of association between the estimated and actual structure of the tree,

with larger values corresponding to higher quality reconstructions.

Results

Simulation studies

The treestructure algorithm achieves relatively high fidelity of classifications in

comparison to other methods in the structured coalescent simulations which

included 20% of samples from a rapidly growing outbreak. Figure 3 compares

the values of NMI and ARI for three methods of structure analysis. In these

statistics, the partition of the tree computed by each method is compared to

the true membership of each sampled lineage in outbreak or in the

constant-size reservoir population. Across 100 simulations, treestructure has

mean ARI of 41% (IQR: 20-57%). The FastBAPS method (Tonkin-Hill et al.
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Figure 4: Entropy (H) of classification from several tree partitioning algorithms

applied to the structured coalescent simulations but only counting lineages

sampled from the exponentially growing outbreak.

2019) has mean ARI of 2.3% (IQR:1.2-3.3%) and the CLMP method

(McCloskey and Poon 2017) has mean ARI 5.2% (IQR:-1-7.5%). The NMI

statistic gives similar differences between the methods to ARI (Fig. 3).

The lower performance of CLMP and FastBAPS in these comparisons

is largely a consequence of false-positive partitioning of samples from the

reservoir population, but CLMP and FastBAPS usually correctly identify a

clade that closely corresponds to the outbreak. In contrast, the treestructure

method seldom sub-divides clades from the reservoir. Figure 4 compares the

entropy of partition assignments only within lineages sampled from the

outbreak. This shows that all methods are assigning outbreak lineages to a

small number of partitions and no method is clearly superior by this metric.

The CLMP method has the lowest entropy (mean 0.40) but also several large

outliers. treestructure has higher entropy (mean 0.57) but few outliers.

FastBAPS has even higher entropy (mean 0.68) with a long tail of high values

(Fig. 4).

The performance of all methods depended on the sample density and

growth rate of the outbreak. Fast growing outbreaks are easier to detect by all

methods but the role of sample density is more ambiguous. The Pearson
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Figure 5: The adjusted Rand index for 100 previously published simulations

(McCloskey and Poon 2017). This describes accuracy of classification of tips

into outbreaks using the treestructure method and CLMP. Results on the left

were based on simulations where both transmission and sampling rates varied in

the outbreak cluster, whereas simulations on the right only allowed transmission

rates to vary.

correlation of ARI with growth rate is 53%, 71% and 27%, for treestructure,

FastBAPS, and CLMP respectively. Not all methods are equally sensitive to

these parameters however and FastBAPS is especially sensitive to growth and

sample density. The growth rate and sample density collectively explain 41%,

60%, and 28% of variance of ARI in treestructure, FastBAPS, and CLMP

respectively.

We also performed analyses with Phydelity, a recently proposed

method for transmission cluster identification (Han et al. 2018). This tended

to generate a very large number of clusters, both within and outside of the

outbreak demes, reflecting a different emphasis of this method on finding

closely related clusters rather than addressing differences in macro-level

population structure. Thus, results with Phydelity and other clustering

methods were not easily comparable to treestructure.

Figure 5 shows performance of treestructure on previously published

tree simulations (McCloskey and Poon 2017). These simulations differ from

the structured coalescent simulations presented above because both the
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reservoir and outbreak demes are growing exponentially at different rates. The

birth rate in the outbreak deme is five-fold the birth rate in the reservoir, but

in one set of simulations, both the birth rate and sampling rate in the

outbreak was also increased five-fold. In these simulations, the performance of

treestructure (mean ARI 53%) is slightly lower than the CLMP method

(McCloskey and Poon 2017) (mean ARI 72%) when only the birth rate differs

in the outbreak deme. However treestructure maintains good performance

when death and sampling rates also differ. In that case, treestructure has

mean ARI 42% and CLMP has mean ARI 0%. The results are similar when

using NMI instead of ARI (Supplementary Fig. S1). The difficulty of

detecting outbreaks with different sampling patterns was previously

highlighted as a challenge for CLMP (McCloskey and Poon 2017).

Simulations of unstructured Kingman coalescent trees shows that the

distribution of the standardized test statistic is approximately normal

(Supplementary Fig. S2). The quality of the normal approximation depends

on the extent of phylogenetic error. In estimated phylogenies based on

simulated sequence data, there is substantial skew in the test statistic which is

most pronounced for larger clades that have a more distant MRCA

(Supplementary Fig. S3). The extent of error due to phylogeny estimation will

depend on many variables as well as on the choice of methodology when

estimating time-scaled trees; in this case, effective population size and

substitution rates were chosen to yield a data set with comparable diversity to

a real HIV sequence data set, and there is considerable error in the estimated

date of the TMRCA and tree topology which was estimated using the

neighbor joining method. In the absence of phylogenetic error, the false

positive rate based on a 95% confidence threshold was 5.1%. With

phylogenetic error, the false positive rate increased to 12.2%.
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Analysis of trees simulated with predefined structure showed that

statistical power increases as expected with sampling density and effective

population size contrast between the two clades. Supplementary Figure S4

shows the normalized test statistic for various sample sizes and contrasts of

effective population size in two clades descended from the root of a tree. The

statistic significantly deviates from zero with increasing sample sizes and with

increasing differences in effective population sizes. For example, using a 95%

confidence level, we find a significant difference between clades in 85% of

simulations sampling 40 tips from the minority clade and with a two-fold

difference in the rescaled effective population sizes. This decreases to 40% of

simulations if sampling only 10 tips, but increases to 100% if there is a

five-fold difference in the scaled effective population sizes.

Clonal expansion of drug-resistant N. gonorrhoeae

We examined the role of evolution of antimicrobial resistance in shaping the

phylogenetic structure of N. gonorrhoeae using 1102 previously described

whole genome sequences (Grad et al. 2016). These isolates were collected from

multiple sites in the United States between 2000 and 2013 and featured clonal

expansion of lineages resistant to different classes of antibiotics. We estimated

a maximum likelihood tree using PhyML (Guindon et al. 2010) and corrected

for the distorting effect of recombination using ClonalFrameML (Didelot and

Wilson 2015). We estimated a rooted time-scaled phylogeny using treedater

(Volz and Frost 2017). A relaxed clock model was inferred, with a mean rate

of 4.6× 10−6 substitutions per site per year. BactDating (Didelot et al. 2018)

was also applied for the same purpose and found to give very similar estimates

for the clock rate and dating of clades.

We focus on the origin and expansion of two clades which
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independently developed resistance to cefixime (CFX) by acquiring the mosaic

penA XXXIV allele (Grad et al. 2016). Note, however, that the level of

susceptibility to CFX varies, particularly in the largest of these two clades. In

one lineage within this clade, the mosaic penA XXXIV allele was replaced by

recombination with an allele associated with susceptibility. Other isolates

within this clade gained mutations that further modified the extent of

resistance. The largest of the two clades emerged on a genomic background

that was already resistant to ciprofloxacin (CIP), so that it has reduced

susceptibility to both CIP and CFX. The smallest of the two clades is resistant

to CFX but not CIP. To further analyse the relationship between CFX

resistance and N. gonorrhoeae population structure, we focused our analysis

on a tree with just 576 tips, representing the genomes from these two CFX

resistant clades as well as genomes from the two clades that are most closely

related to the two CFX resistant clades. The output of treestructure is shown

in Figure 6, using unique colours to highlight each of the 11 clusters that were

identified with α = 1%. The clusters reported by treestructure are highly

correlated with CFX resistance. Among all distinct pairs of sampled isolates,

84% share the same resistance profile and cluster membership.

We compared treestructure with a different method for detecting

community structure, FastBAPS (Tonkin-Hill et al. 2019), since BAPS models

are often applied to bacterial pathogens. We applied FastBAPS using the

same time-scaled phylogeny described previously and using a trimmed

sequence alignment consisting of 38830 polymorphic sites and removing sites

with many gaps. This produced a similar partition of the tree (Supplementary

Fig. S5) with a few differences. The FastBAPS clusters overlap exactly with

the clade featuring dual resistance (CIP and CFX), whereas treestructure

classified a small number of deep-splitting lineages into a different cluster.
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Note however that this behaviour is not necessarily problematic, and may

represent a progressive increase in fitness following the acquisition of resistance

through the evolution of compensatory mutations (Didelot et al. 2016).

Indeed, we found a significant difference in the resistance profile of the two

treestructure clusters within the clade resistant to both CIP and CFX: the

smallest cluster had a greater frequency of high resistance to CIP compared to

the largest cluster (100% and 81%, respectively).

FastBAPS did not identify the smaller clade with resistance to CFX

and not CIP and instead grouped that clade with its sensitive sister clade. In

general, treestructure found many more clusters within the two sister clades

and FastBAPS tended to group these together. We also applied the much

more computationally intensive RhierBAPS method (Tonkin-Hill et al. 2018),

and obtained almost identical results to FastBAPS. Overall, BAPS methods

appear to give more weight than treestructure to long internal branches when

identifying clusters.

Epidemiological transmission patterns of HIV-1

We reanalysed a time-scaled phylogeny reconstructed from 2068 partial pol

HIV-1 subtype B sequences collected from Tennessee between 2001 and 2015

(Dennis et al. 2018). Each lineage within this phylogeny corresponds to a

single HIV patient sampled at a single time point, and various clinical and

demographic covariate data concerning these patients can be associated with

each lineage. In the original study, these sequence data were used to show high

rates of transmission among young (age < 26.4 years old) men who have sex

with men (MSM) (Dennis et al. 2018). Clustering by threshold genetic

distance is often used in HIV epidemiology (Dennis et al. 2014) and indicated

that young white MSM had the highest odds of clustering.
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2000 2025

CIP + CFX

CFX

Figure 6: A time-scaled phylogeny based on 576 whole genomes of N.

gonorrhoeae, comprising two clades with reduced susceptibility to cefixime

(CFX) and their two sister clades. The top clade also has resistance to

ciprofloxacin (CIP). Different colours on the tree represent the partition detected

using the treestructure algorithm.
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We applied the treestructure algorithm with default settings to the

time-scaled tree which yielded ten partitions with sizes ranging from 58 to 398.

The tree and partitions are shown in Figure 7 where partitions are labeled

according to the median year of birth among patients in each partition. Many

of these partitions were polyphyletic, suggesting possible multiple importations

of lineages to specific risk groups. We then compared the estimated partition

of the tree with patient covariates. A particular partition stands out along

multiple dimensions: it is the smallest (size 58), polyphyletic, arose in the

recent past, and is characterised by very young MSM. The median year of

birth in this partition is 1987, in stark contrast to the rest of the sample with

year of birth in the 1970s. Clades within this young partition are also nested

paraphyletically under other relatively young partitions (Fig. 7).

We did not find a significant association between the tree partition

and residential postal codes (Tukey analysis of variance, p = 0.097). This is in

agreement with the original study which found minimal impact of geography

on genetic clustering in this sample, however this is largely a consequence of

the highly concentrated nature of the sample around Nashville. The ethnicity

of patients (black, white, and other) was strongly associated with the

estimated partition. Black MSM were strongly concentrated in the 1987

partition in particular (83% in contrast to 26-38% in all other partitions). The

odds ratio of black ethnicity given membership in the 1987 partition was 9.7

(95% CI:5.2-19.8).

Finally, we performed a phylodynamic analysis to investigate if the

partition structure supported the previously published findings that young

MSM were transmitting at a higher rate (Dennis et al. 2018). To estimate the

temporal variations in the effective population size, we used the nonparametric

skygrowth R package (Volz and Didelot 2018). We estimated Ne(t) for each
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Figure 7: A time-scaled phylogeny estimated from HIV-1 pol sequences in

Tennessee (Dennis et al. 2018). The colours correspond to the ten partitions

identified using the treestructure algorithm. Several partitions are annotated

with the median year of birth of HIV patients from whom sequences were

sampled. Unannotated partitions had years of birth 1969-1972.
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partition individually using a range of precision parameters which control the

smoothness (τ) of the estimated trajectories since we lack a priori information

about volatility of these trajectories. Figure 8 shows Ne(t) for each partition

with τ = 10 and Supplementary Figures S6 and S7 show results using different

values of τ . The 1987 partition again stands out as the only group which

shows evidence of recent and rapid population growth. Less dramatic recent

periods of growth are also noticeable for other partitions with young patients.

The current exponential growth in the 1987 partition is not consistent across

all analyses, but when τ < 10 we find Ne(t) drops precipitously in 2014-2015

(Supplementary Fig. S6). However, this could also be an artefact of

non-random sampling and inclusion of transmission pairs within the sample.

This analysis supports the hypothesis that there has been a recent and

rapid increase in HIV transmissions among young MSM in Tennessee and in

particular among young black MSM. This interpretation is mostly in

agreement with the original study (Dennis et al. 2018), but we find that black

MSM are a group at greater risk than young white MSM.

Discussion

Contrasting the distribution of ordering of nodes provides a natural criterion

for distinguishing clades within a time-scaled phylogeny which are shaped by

different evolutionary or demographic processes. The non-parametric nature of

this classification method imposes minimal assumptions on the mechanisms

that generate phylogenetic patterns. Thus, we have found this method

maintains good performance over a diverse range of situations where

phylogenetic structure is produced, including differential transmission rates,

epidemiological outbreaks, evolution of beneficial mutations, and differential

sampling patterns. Our work is related to the research on species delimitation
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Figure 8: Estimated effective population size through time for each partition in

the Tennessee HIV-1 phylogeny. Each panel is annotated with the median year

of birth among HIV patients in each partition. Ne(t) was estimated using the

skygrowth method (Volz and Didelot 2018) with precision parameter τ = 10.
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methods (see for example Zhang et al. 2013) although targeted at

within-species variation, and is also related to recent work on methods for

detecting co-diversification of species (Oaks et al. 2019). This method appears

relatively robust compared to other methods against false-positive

identification of phylogenetic structure, but nevertheless has good sensitivity

for detecting structure in most situations.

There are many immediate applications of this method in the area of

pathogen evolution where time-scaled phylogenetics is increasingly used in

epidemiological investigations (Biek et al. 2015). We have demonstrated the

role of selection in shaping phylogenetic structure of N. gonorrhoeae, and our

method clearly identifies clades which expanded in the recent past due to

acquisition of antimicrobial resistance. We have demonstrated the role of

human demography and transmission patterns in shaping the evolution of

HIV-1, and our method has shown distinct outbreaks of HIV-1 in specific

groups defined by age, race, and behaviour. Furthermore, we have shown how

clades detected by this method can be analysed using phylodynamic methods

that can yield additional insights into recent outbreaks or the mechanisms

which generated phylogenetic structure. For example, we have applied

non-parametric methods to estimate the effective population size through time

in HIV outbreaks detected using treestructure which highlighted particular

groups that appear to be at higher risk of transmission. Such analyses would

be more problematic using other partitioning or clustering algorithms because

phylogenetic clusters can appear by chance in homogeneous populations of

neutrally evolving pathogens, and this can give the false appearance of recent

growth (Dearlove et al. 2017). This application of phylodynamics analysis

methods is possible because the statistical test used in treestructure provides

theoretical justification for treating each partition as a separate unstructured
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population.

Applications of the treestructure algorithms are scalable to relatively

large phylogenies. The main algorithms require only a single pre-order

traversal of the tree and all of the computations presented here required less

than one minute to run. The method is based on a time-scaled phylogeny, and

the computational burden of this preliminary step is typically higher than that

of running treestructure, even though significant progress has been made

recently in this area (Volz and Frost 2017; Didelot et al. 2018; Sagulenko et al.

2018; Tamura et al. 2018; Miura et al. 2019). Future developments of

treestructure and other methods post-processing time-scaled phylogenies (Volz

and Didelot 2018; Didelot et al. 2017) should address the uncertainty in the

input phylogeny, for example by accounting for bootstrap or Bayesian support

values for phylogenetic splits, or by summarising results from multiple trees.
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Pybus, P. C. Sabeti, A. Sall, U. Ströher, I. Wurie, M. A. Suchard, P. Lemey,

http://mc.manuscriptcentral.com/systbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syaa009/5734655 by U

niversity of W
arw

ick user on 05 M
arch 2020



and A. Rambaut. 2017. Virus genomes reveal factors that spread and

sustained the ebola epidemic. Nature 544:309–315.

Everitt, B., S. Landau, and M. Leese. 2001. Cluster Analysis. Wiley New York.

Eyre, D. W., T. Golubchik, N. C. Gordon, R. Bowden, P. Piazza, E. M. Batty,

C. L. C. Ip, D. J. Wilson, X. Didelot, L. O’Connor, R. Lay, D. Buck, A. M.

Kearns, A. Shaw, J. Paul, M. H. Wilcox, P. J. Donnelly, T. E. A. Peto, A. S.

Walker, and D. W. Crook. 2012. A pilot study of rapid benchtop sequencing

of Staphylococcus aureus and Clostridium difficile for outbreak detection

and surveillance. BMJ Open 2:e001124.

Grad, Y. H., S. R. Harris, R. D. Kirkcaldy, A. G. Green, D. S. Marks, S. D.

Bentley, D. Trees, and M. Lipsitch. 2016. Genomic epidemiology of

gonococcal resistance to extended-spectrum cephalosporins, macrolides, and

fluoroquinolones in the united states, 2000–2013. The Journal of Infectious

Diseases 214:1579–1587.

Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and

O. Gascuel. 2010. New algorithms and methods to estimate

maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

Systematic Biology 59:307–21.

Han, A., E. Parker, S. Maurer-Stroh, and C. Russell. 2018. Inferring putative

transmission clusters with phydelity. bioRxiv Page 477653.

Hartl, D. L., A. G. Clark, and A. G. Clark. 1997. Principles of population

genetics vol. 116. Sinauer associates Sunderland, MA.
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Data: 1) Disjoint sets of tips X and Y
2) Empirical value of test statistic R̂
3) Number of simulations nsim
4) Taxonomic condition E (see Equations 3, 4 or 10)
Result: Two-sided p-value denoted q = ξ(X,Y, R̂).
Initialisation;
Form a time-ordered sequence of nodes

U = (u1, · · · , u|DX |+|DY |)|ui ∈ (DX ∪DY ), τ(ui) ≥ τ(ui+1)

Form a corresponding numeric sequence:
Υ = (υ1, · · · , υ|DX |+|DY |) where

υi =


1 if ui ∈ X
−1 if ui ∈ Y
0 if ui ∈ (DX ∪DY ) ∩ I

for k = 1 to nsim do
z ← 0 (simulated lineages through time in clade X) ;
w ← 0 (simulated lineages through time in clade Y ) ;
rsim ← 0 (simulated rank-sum statistic) ;
c← 0 (number of coalescent events simulated) ;
for i = 1 to |DX |+ |DY | do

if υi = 1 then
Account for sample in X: z ← z + 1 ;

if υi = −1 then
Account for sample in Y : w ← w + 1 ;

if Wi = 0 then
Increment coalescent counter: c← c+ 1 ;

Compute probability p̃ = Q̃E(z, w) that next coalescent is in
DX or DY using Equation 3, 4 or 10;

Draw a random uniform variable ω ← Unif(0, 1) ;
if ω < p̃ then

z ← z − 1
rsim ← rsim + c

else
w ← w − 1

end
Record simulated statistic:
Rk ← rsim ;

end
Standardize the statistic:
R̄←

(
R̂− 〈{Rk}〉

)
/σRk

;

Return min(F (R̄), 1− F (R̄)) where F is the standard normal CDF.
Algorithm 1: Algorithm for computing the null distribution and associated
p-value of the test-statistic for cladistic outliers.
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Data: Time-scaled genealogy G
Result: Partition of tips of tree, denoted M .
Initialise ‘active set’ to consist of root node: Ω← {root} ;
Initialise partition: M ← ∅ ;
for u ∈ I (internal nodes) do

Initialise C̃u ← Cu ;
end
while |Ω| > 0 do

Initialise Ω′ ← Ω ;
for u ∈ Ω do

Find biggest outlier descended from u:
v∗ ← argmaxv∈Cu

f(v) = ξ(C̃u \ C̃v, C̃v) (Algorithm 1);

q ← ξ(C̃u, C̃v∗) ;
if q < α then

Ω′ ← Ω′ ∪ v∗ ;

C̃u ← C̃u \ Cv∗ ;

else
No significant outliers, so remove u from active sets:
Ω′ ← Ω′ \ u ;
Add the clade descended from u to the partition:
M ←M ∪ {(T ∩ C̃u)} ;

end
Ω← Ω′.

end
Return M .

Algorithm 2: Algorithm for detecting cladistic outliers.
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Figure S1: The normalised mutual information (NMI) for 100 previously

published simulations (McCloskey and Poon 2017). This describes accuracy of

classification of tips into outbreaks using the treestructure method and CLMP

(McCloskey and Poon 2017). Results on left were based on simulations where

both transmission and sampling rates varied in the outbreak cluster, whereas

simulations on the right only allowed transmission rates to vary.
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Figure S2: The distribution of the test statistic under the null hypothesis with
Kingman coalescent trees simulated with 50 tips. Top: The empirical density of
the standardized test statistic (Z score) across internal nodes in 1,000 Kingman
coalescent trees. Bottom: A quantile-quantile plot of the Z scores from internal
nodes in 1,000 coalescent trees and the standard normal distribution.
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Figure S3: Distribution of the standardized test statistic (Z scores) under the
null hypothesis and tabulated by clade size. Each box shows the range (whisker)
and interquartile range (box) of Z scores across 1,000 simulated coalescent
trees and for a particular clade size (number of tips). The red lines show the
interval corresponding to a 95% confidence region. The left part is based on
Kingman coalescent trees, while the right part is based on estimated time-scaled
phylogenies using simulated sequences as described in the text.
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Figure S4: Power to discriminate between clades as a function of sample size
and difference in effective population size. Each plot shows the absolute value of
the standardized test statistic of the MRCA of a minority clade. The minority
clade has an effective population size selected to provide various levels of contrast
with the majority clade (see text). The x-axis shows (N1

ew)/(N2
e z) where z and

w are the number of tips in the minority and majority clades, and N1
e and

N2
e are the effective population sizes in the minority and majority clades. The

red line corresponds to 1.96 which is the 95% quantile of the standard normal
distribution. The top, middle and bottom panels are each based on simulations
where the minority clade had 10, 20, and 40 tips respectively, whereas the
majority clade always had 200 tips.
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Tree fastbaps

Figure S5: The output of FastBAPS classification applied to 1102 N.

gonorrhoeae isolates described in the main text. Clades indicated in green have

CFX resistance.
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Figure S6: Estimated effective population size through time for each partition

in the Tennessee HIV-1 phylogeny. Ne(t) was estimated using the skygrowth

method (Volz and Didelot 2018) with precision parameter τ = 1.
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Figure S7: Estimated effective population size through time for each partition

in the Tennessee HIV-1 phylogeny. Ne(t) was estimated using the skygrowth

method (Volz and Didelot 2018) with precision parameter τ = 100.
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