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Abstract

Electronic nose systems have been in existence for around 20 years or more. The 
ability to mimic the function of the mammalian olfactory system is a very tempting 
goal. Such devices would offer the possibility of rapid chemical screening of samples. 
To gain a detailed insight into the operation of such systems it is proposed to carry 
out a systems modelling analysis. This thesis reports such an analysis using black box 
and mechanistic models.

The nature and construction of electronic nose systems are discussed. The chal­
lenges presented by these systems in order to produce a truly electronic nose are anal­
ysed as a prelude to systems modelling. These may be summarised as time and envi­
ronmental dependent behaviour, information extraction and computer data handling.

Model building in general is investigated. It is recognised that robust parameter 
estimation is necessary to build good models of electronic nose systems. A number 
of optimisation algorithms for parameter estimation are proposed and investigated, 
these being gradient search, genetic algorithms and the support vector method. It 
is concluded that the support vector method is most robust, although the genetic 
algorithm approach shows promise for initial parameter value estimation.

A series of investigations are reported that involve the analysis of biomedical sam­
ples. These samples are of blood, urine and bacterial cultures. The findings demon­
strate that the nature of such samples, such as bacterial content and type, may be 
accurately identified using an electronic nose system by careful modelling of the sys­
tem. These findings also highlight the advantages of data set reduction and feature 
extraction.

A mechanistic model embodying the operating principles of carbon black-polymer 
sensors is developed. This is validated experimentally and is used to investigate the 
environmental dependencies of electronic nose systems. These findings demonstrate a 
clear influence of environmental conditions on the behaviour of carbon black-polymer 
sensors and these should be considered when designing future electronic nose systems.

The findings in this thesis demonstrate that careful systems modelling and analysis 
of electronic nose systems allows a greater understanding of such systems.
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Chapter 1

Thesis Introduction

In spite of its ubiquity in the human experience, the sense of smell has never attracted 
the same fascination that some of the other senses have. It is possible that this is due 
to the lucid picture that sight and sound alone provide. However the chemical nature 
of the air, delivered to our minds via the sense of smell, can tell a great deal about 
that which cannot be detected by sight and sound. Take, for example, the sense of 
taste; smell is inherent to this aspect of experience as the tongue can only detect such 
coarse concepts as saltiness, sweetness, sourness, and bitterness; in comparison there 
are thought to be of the order of a thousand types of nasal receptors [6].

These chemical signals that are called smell play a major role in nutrition, territo­
rial recognition and orientation, sexual behaviour and the detection of hazards such as 
fire or noxious fumes. In higher organisms, such as humans, a highly specialised and 
sensitive olfactory system has evolved. Here a distinction is made between the odour 
sensation and the volatile molecule that caused it. Odorant refers to a molecule that 
bears an odour, the odour is the resulting perception. In the human olfactory system it 
has been found experimentally that the olfactory receptors in the nasal cavity are typ­
ically sensitive to concentrations of the order of parts per billion of odorant molecules. 
However, our olfactory experience is largely due to mixtures; it has been found that 
the human nose is poor at identifying individual compounds in a mixture. This is not 
surprising as an arbitrary mixture of odorant molecules may not necessarily exist in 
nature.

20
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It can be seen how much the olfactory experience has infiltrated modern human 
thought by the number of adjectives relating to odours: for example sulphurous, fruity, 
earthy, and minty  [7]. These classifications have been extended and have now been 
used and evolved over the past century or more by olfactory specialists. These include 
those in the cosmetic trade, such as perfumers, who have now an extensive vocabulary 
to describe the sensations that are caused by the odorants they work with. This is also 
true of wine connoisseurs. The rich language used to describe the ‘bouquet’ of a wine 
is well known and often parodied for its hyperbole.

The thesis of the above is: without really realising it, the chemical make up of the 
atmosphere is extremely important to our perception of the world around us. It will 
be seen later that a sense of smell is necessary to industry as well as the individual.

1.1 Motivation

Why is it necessary to develop a system that can smell? Quite simply an artificial nose 
would be sensitive to the volatile chemistry of a sample; it would never tire or fall ill 
in the way that humans do. This would be extremely useful if it was hypothesised 
that there is a difference in this chemistry between two types of samples; it will be 
demonstrated later that this approach can be used to detect pathogens in biological 
samples. Another reason is that chemically reactive sensors may detect compounds 
that we ourselves are not sensitive to, and this will become evident later in the thesis. 
Finally, it will be demonstrated that these systems provide diagnostic tools that are 
significantly quicker than existing methods.

Systems have been developed which respond to gases. These devices are commonly 
known as ‘electronic noses’ due to their obvious emulation of organic systems. The 
outputs of the sensors in an electronic system axe usually of the form of some voltage 
or current change. This output needs to be interpreted in some way so that it may 
be made useful. This may be an interpretation of the nature of the sample producing 
the vapour, or for a greater understanding of the internal mechanisms of the sensor. 
This method of interpretation must be an algorithm of some sort which maps the 
system output to some target classification. This then requires some data processing
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or modelling of the system.
The characterisation of a system by a mathematical abstraction, a model, has long 

been an integral part of scientific investigation. The aim is often to predict the input- 
output behaviour of a system in order to test theories about its internal structure.

Another reason for developing a model is to analyse the output of the system. This 
is usually in a pattern recognition context where the output is known, but the input is 
not; this unknown input is the identity of the sample. This is a second type of problem 
because it is an inversion of the system input-output behaviour. The input needs to 
be predicted retroactively given the output. As with all inverse problems the questions 
are: is there a solution to this problem; if there is a solution, then is it unique?

There are two major methods of modelling. The first is to assume a standard form 
for the input-output behaviour of the model; this is the black box model approach. The 
alternative approach is to build a model based upon the assumed internal mechanisms 
of the system. These internal effects may well be experimentally unobservable and 
only a culminative effect may be measured. This second approach has the potential 
to determine knowledge, indirectly, about the internal states of the system; or at least 
with respect to the artifacts within the abstracted model of the real system.

This abstraction of modelling and its reconciliation with experimental data will 
be a recurring theme. The consequences of model complexity and the necessity to 
recondition data sets will also be explored.

1.2 Aims and Objectives

The aim of this thesis is to apply systems modelling techniques to electronic nose 
systems. This will be done in order to gain a greater understanding of the dynamics of 
such devices. To achieve this it will be necessary to develop modelling methodologies 
for electronic nose systems. Therefore the objectives of this thesis are to:

• Examine the current techniques for black box and mechanistic modelling.

• Analyse the relationship between model complexity and data quantity and qual­
ity.
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• Develop data processing techniques for electronic nose systems.

• Investigate parameter identification algorithms.

• Apply these methods to output data from real electronic nose systems.

• Develop a mechanistic model of a specific electronic nose system.

• Develop experiments to validate this model.

• Investigate the environmental dependencies of electronic nose systems.

1.3 Thesis Outline

In this thesis the investigation will concentrate upon the application of modelling tech­
niques to electronic noses; devices which mimic the function of mammalian olfaction. 
This is in order to characterise better the behaviour of gas sensors, but it has also been 
decided upon in an attempt to improve the discriminant power of the systems when 
applied to real world applications. This means taking into account noise and any time 
dependent characteristics of the system..

These are reasonably complex, modular systems and are composed of a number 
of specific functioning subsystems. The design of electronic nose systems is, for the 
purpose of this thesis, based upon that of the mammalian olfactory system. This is 
examined and current sensor technology is discussed. Sensor based electronic nose sys­
tems have, with respect to input-output behaviour, a number of interesting features. 
These are: time dependency due to changing characteristics of the sensors; concentra­
tion dependence, rather than just composition; and cross-sensitivity between sensors 
which yields redundant data.

A number of different modelling techniques are examined; their advantages and 
pitfalls are discussed. These techniques are applied in order to model the input-output 
behaviour of a system. The aim is three-fold: to predict the system behaviour; to 
understand the internal mechanism of the system; and to account for factors external
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to the system ideal such as temperature fluctuations. Of interest then will be the 
models’ ability to provide this information.

The typical design of an electronic nose system is discussed in Chapter 2. First 
the organic mammalian system is described, and this allows an analogy to be drawn 
which provides a means of creating an artificial olfactory system. The various means 
of detecting vapour are surveyed and their particular characteristics axe discussed.

The problems with the designs of these sensory systems are identified, often with 
respect to the organic system, and the extent to which they affect the discriminatory 
power of electronic noses is considered. These problems range from environmental noise 
through to the characteristics of sensor responses being time dependent. The ways in 
which the work detailed in this thesis approaches these challenges is discussed.

The particular methods for modelling the systems are of course very important'. In 
Chapter 3 various modelling techniques are discussed; specifically those that will be 
applied to real systems analysing biomedical samples later in the thesis. As the thesis 
title suggests both black box' models and mechanistic models, based upon physical 
knowledge of the system, are discussed. The merits of both approaches are investigated.

The necessity of applying and validating these hypothesised models is recognised. . 
In Chapters 4 and 5 the interactions between data sets of different sizes and models of 
varying complexity are examined. This is also done with respect to various parameter 
estimation techniques to judge how robustly they estimate the unknown system param­
eters. Robustness is taken in the sense of the best candidate model being identified. 
The results of these investigations are applied later in the work to yield more practical 
model building.

There are three aspects to parameter estimation: identifiability, estimability and the 
ability of an optimisation method to locate the feasible neighbourhood of the unknown 
parameter vector. These criteria are chosen because the reason for modelling is so as to 
analyse the data by model fits. It is found that greater robustness is obtained if model 
complexity is controlled by the model input dimension and methods are developed for 
realising this.

The practical applications of these techniques are then examined in Chapters 6 
and 7. Specifically biomedical data are analysed in order to examine rapid laboratory
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screening of urine and blood samples. Two electronic nose type devices are investigated. 
The first device is an Agilent 4440 which is a mass spectrometry device. The second 
is a C320 unit, produced by Smith Detection (Pasadena, USA), and comprises of 32 
cross-sensitive sensor elements. These two devices are inherently different in the data 
that they generate.

The emphasis of the work changes in the second half of the thesis. A mechanis­
tic model of a particular type of gas sensor is developed. This is done in order to 
characterise the way that the polymer sensors respond to volatile molecules.

The mechanistic approach is taken in the hope that a priori knowledge of the 
system will enable more faithful modelling. It is shown by making informed simplifying 
assumptions that the complexity of the resulting model may be minimised. Prom this, 
system characteristics are identified to yield a better portrait of the electronic nose 
system’s behaviour.

In Chapter 8 the chemical mechanism within the body of a polymer interacting 
with a solvent are reviewed. A nonlinear PDE model is derived and is simplified to 
a linear case so that it may be solved analytically. It will be seen that from this an 
algebraic expression for the current passing through the sensor may be derived. The 
model’s unknown parameters are also analysed in order to examine the information 
that may be extracted from them.

It is necessary to validate this model and to this end a series of experiments are 
detailed in Chapter 9. An experimental rig is designed to characterise the response 
of gas sensors. Environmental variables are recorded as well in order to understand 
the effect they have upon the sensor’s response: this will be observed in the variation 
of the free parameters of the model. These parameters are estimated in Chapter 10. 
The relationship between model parameters and environmental factors is examined 
empirically.

This is followed in Chapter 11 by conclusions on the work performed.



Chapter 2

Odour, the human nose and its 
electronic analogue

The chemistry of smell can be extremely complex. The majority of volatile organic 
compounds (VOCs) are either alcohols or aldehydes [8]. Odorant molecules can range 
from ethylacetate [9], which indicates bad wine, to 2,3-diethyl-5-methylpyrazine [10], 
which is one of 30 identified constituents of roasted coffee bean odour. It should be . 
noted that the chemical constituents of the headspace of something such as a foodstuff 
may contain in the region of 100 chemically distinct VOCs. This is made more complex 
by the fact that not only do we as humans perceive odour intensity, we also perceive 
valance [11]; this being the quality of the odour. An odorant can trigger the perception 
of a pleasant or unpleasant odour. For example, Citric acid is perceived to be “lemony” 
and “pleasant” , whereas valeric acid gives the impression of smelling “rancid” ; however, 
structurally they are similar.

How may this organic system be mimicked effectively? How may it be put to 
good use? To answer these questions, and to introduce the concept of an electronic 
nose system, the human olfactory system must be examined; then an analogy may be 
drawn, to act as a ‘blueprint’ for an artificial system.

The aim of this chapter is to describe the concept of an electronic nose. Here an 
electronic nose system will be formally defined as ...an instrument, which comprises 
of an array of electronic-chemical sensors with partial specificity and an appropriate

26
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pattern recognition system, capable of recognising simple or complex odours[ 12]. Further 
headspace analysis is defined as the analysis of the chemical composition of volatile 
compounds by such a device.

2.1 Anatomy and Physiology of the Human Nose

The nasal passage is lined with soft tissue known as the epithelium: the nasal epithelium 
which lines the majority of the passage and the olfactory epithelium which contains the 
olfactory receptors. In humans the olfactory epithelium is about 6.5 cm2 in area and 
is difficult to distinguish from surrounding tissue due to its similar colour. Odorants 
reach these receptors in one of two ways (Figure 2.1). The first is by orthonasal 
transport through the nares by sniffing or breathing, and the second being retronasal 
transport from the oral cavity. In orthonasal transport a series of bones called the 
turbinates direct odorants to olfactory receptors at the top of the nasal cavity. This 
mechanism has been shown to be instrumental in the discriminatory function of the 
mammalian model [13]. How the olfactory receptors respond to odorants is still not 
fully understood. Anatomically a receptor cell is a long structure capped by cilia and . 
has neural connections from its base to afford communication with the olfactory bulb 
(Figure 2.2). This structure is supported on all sides by supporting cells, and basal 
cells at the base; the site for new cell production. This bulb provides the first tier in 
processing the signals received from the receptors before they are relayed to the anterior 
olfactory nucleus, the olfactory tubercle, the prepyriform cortex, the amygdala and on 
to higher brain centres.

Knowledge of the mechanism by which olfactory receptors react to odorants is still 
sparse, and this is mainly due to the the large number of receptors and odorants. 
Importantly there are very little data available relating molecular structure with per­
ception qualities such as threshold detection level and type; these being commonly 
referred to as potency and quality. The mechanism appears to be a ‘lock and key’ 
mechanism whereby an odorant molecule binds onto the cilia of a particular type of 
receptor causing a change in electrical potential across the receptor. About 300 olfac­
tory binding proteins have been identified to date, this is accounts for around 3% of
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Figure 2.1: Slice through the human skull showing the nasal passages [1]
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the human genome.
It seems that combinations of odorants are more common than single species. This 

is probably as a consequence of evolution. It has also been noted that very volatile 
substances have much higher threshold detection levels than those that evaporate less 
readily. Thus odour analysis in the human olfactory system involves the processing of 
signals from receptors sensitive to different molecules. To complicate matters further, it 
has been suggested [6] that a specific receptor may respond to several different odorants 
and more than this that a single odorant type will bind to different receptor types.

Various types of receptors, sensitive to various airborne compounds are expressed 
in four different regions of the epithelium, and there are estimated to be a total of 
between 106 and 108 of these in humans [14]. These olfactory nerves have an average 
lifespan of thirty days and are then replaced. In the context of the pattern recognition 
problems discussed below, this neurogenesis, which is driven from below by the basal 
cells, poses interesting challenges for the identification of odorants. The characteristics 
of the detection system change with time and therefore processing has to adapt as well. 
This important aspect of the mammalian olfactory system is very difficult to emulate 
with artificial systems.

2.2 Mass Spectrometry and Gas Chromatography

One method of analysing the molecular composition of vapour is to separate the 
molecules in a sample by mass, which is the method used in mass spectrometry. The 
most common form of mass spectrometer is the quadrapole mass spectrometer.

This type of device uses varying potential differences to differentiate between dif­
ferent masses of molecule. The sample gas is ionised into a plasma by use of a beam of 
electrons. The flow of plasma is focused and made to run between four rods, parallel 
to their major axis. The rods are arranged in pairs of opposing rods. These pairs have 
an applied A.C. potential which is 7r out of phase between the pairs. This potential 
affects the flight of the charged particles and so only those of a certain mass to charge 
ratio may pass through an aperture and be detected by some ion detector. Different 
masses are allowed through by altering the potential between the rods. In this way
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Figure 2.3: Schematic of a Quadrapole lens unit [3].

molecules with different mass to charge ratios may be differentiated. This process is 
illustrated in Figure 2.3.

There have been a number of studies seeking to mimic the human nose by using 
a mass spectrometer. Examples include foodstuff [15] and beverage [16] analysis as 
well as the detection of bacterial infection [17]. The systems can suffer from aliasing of 
molecular masses when presented by complex mixtures; the behaviour of such systems 
will be observed in later chapters.

Data processing is intrinsically the same for each channel of these devices. Each 
channel output is an intensity count for either time since sample introduction (gas 
chromatography) or a specific molecular mass (mass spectrometry). Thus this positive 
intensity number may be used as inputs of a model for discriminant analysis.

Gas chromatography is a variant of molecular separation in that it relies on dif­
fusion and flow rates which will largely be dependent on molecular structure. A gas
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Figure 2.4: Schematic of the Gas Chromatograph Principle [4].

chromatograph consists of a long capillary tube which is packed or coated with a porous 
medium that forms the stationary phase of the capillary; the mobile phase being the 
carrier gas (Figure 2.4). Some, usually inert, gas such as helium or nitrogen flows along 
the tube and this carrier gas is the mobile phase.

Gas chromatography relies on three effects to separate different species of molecule: 
the rate that each species passes along the column, which is driven by a carrier gas 
flow, secondly the fact that there are paths of different lengths through the porous 
packing material which are available to different molecules, finally that the molecules 
move between the stationary and mobile phases at different rates. This arrangement 
affords remarkable resolution due to the varying rates that these above processes take 
for different molecular species [18].

The food industry is also interested in analysing foodstuffs via the volatiles they 
emit. As mentioned above, specific molecules are markers for rancidity etc. The quality 
of dried herbs [19] in relation to the method of drying has been investigated using gas 
chromatography. This allowed the researchers to draw positive conclusions about new 
methods of herb preservation. Alcoholic beverages [20] [21] have also been analysed in 
order to ascertain their perceived quality.

Another application for gas chromatographs has been the monitoring of environmen­
tal toxins. In [22], the presence of volatile organic compounds (VOCs) was monitored 
in a factory environment. There have also been a number of novel applications in ani­
mal behaviour such as [23], whereby the technology was used to isolate a scent which
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Figure 2.5: Schematic of a typical electronic nose system.

mice use to determine another’s age. The paper industry [24] has seen applications to 
production quality.

There are numerous examples of gas chromatography used in a headspace analy­
sis role. Many are medical in nature, from noninvasive heart monitoring via patient 
breath [25] to identifying bacteria [26] [27]. These underline the amount of investigation 
that has been performed with respect to medical applications of headspace analysis.

Gas chromatographs have also been incorporated with mass spectrometers to pro­
duce GC-MS. These units produce a time series of mass spectra for more detailed 
analysis. These have been used for food quality [28] and environmental safety [29].

2.3 Artificial Olfaction: The Electronic Nose.

Over the years there have been a number of attempts to mimic the human olfactory 
system. In fact the structure of the organic nose at a modular level has been used as a 
direct analogy to artificial endeavours(Figure 2.5). Thus the olfactory system is broken 
down into the following components: an odour delivery system to replace the nasal 
passages and lungs; a sensory array to meet the requirements set by the function of 
olfactory receptors; electrical measurement and transmission to convert and preprocess 
the sensor signals into electrical signals; data processing to extract information about 
odorants which the array has encountered to replace the brain.
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2.3.1 Sensors

To construct a device to mimic the human nose, the common approach [30] is to have 
an array of sensors that are sensitive to odorants. The requirements are that they 
should be sensitive to levels of concentration of the order of parts per million down to 
parts per billion and that there should be some cross-sensitivity built into the array. 
Such sensitivity is required in order for the system to compare favourably with its 
biological counterpart. Cross-sensitivity is vital to the design of such systems and is a 
slight departure from the organic model, though, as discussed above, cross-sensitivity 
is manifested in the epithelium as well. If an array was designed that was faithful to the 
human epithelium it would require thousands of different, chemically specific sensors. 
This would generate both a manufacturing problem and, in the data analysis stage, a 
computational one. The consequences of cross-sensitivity will be addressed in a later 
chapter.

It is desirable that an array of similar devices may be constructed such that each 
individual sensor is sensitive to a different range of odorants. The reaction by which 
the particular sensor works should be reversible and reproducible; this is so that robust 
models may be built using the data. With present technology it would be unnecessarily 
difficult to construct an array with a comparable number of different receptors(l x 107) 
as the human nose due to both power consumption [30] and the physical size of the 
array.

Electronic Nose sensors work on a similar principle to their biological analogue. 
Their function as a sensor can be roughly divided into two: a chemically reactive sur­
face that has some property altered when it comes into contact with an odorant; and 
a method of measuring this change, be it conductance, a field effect transistor (FET) 
device, which utilises changing work functions, or a surface acoustic wave (SAW) mi­
crobalance. A linear relationship between concentration and sensor response is thought 
desirable and up until the advent of SAW devices this was not considered feasible [30]. 
Linearising circuits or preprocessing techniques [31] have been used in the past to 
modify the output in such circumstances.

Absorption of an odorant into a sensor may be divided into four heat dependent
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processes [32], Physisorption, that of non-chemical bonding like water in a sponge, is 
a low temperature energy process. This type of reaction normally results in a change 
of mass or dielectric constant which is reversible when chemisorption is not possible. 
Chemisorption (chemical bonding) is also a low temperature, energy driven process. 
Here a change may also be observed in electrical or optical properties.

Entropy driven, high temperature effects are categorised as surface defects and bulk 
effects. The most intrinsic of these being donor-type oxygen vacancies in oxides, for 
example tin oxide sensors. These result from lattice defects on the surface of the oxide 
sensor. Bulk effects can play an essential part in sensor operation. However, at low 
temperatures they are undesirable as they can result in nonreversible reactions that 
ultimately lead to sensor drift.

The scale of devices is important, both for power consumption and for reaction 
times. Practicalities dictate a response time of a few seconds, so it is desirable to 
produce these sensors on a small scale. It is also essential that the sensor quickly 
‘recovers’ its baseline after the exposure halts [30].

Tin Oxide Sensors have been commercially available for many years. The surface 
of the oxide is oxygen deficient [33]. Electrons are removed from the conduction band 
by the absorption of oxygen molecules. The concentration of oxygen species on the 
surface of the oxide body is related to the reducing or oxidising properties of the gas 
detected. Taguchi sensors, being the most common commercially available sensors, 
consist of sintered tin oxide films containing a precious metal such as palladium or 
platinum. These tin oxide/catalyst sensors have been found to react more readily with 
combustible gases, although the mechanism is still not fully understood. There has 
been some investigation into this mechanism [34] [35], but the results of these studies 
have yet to be conclusive.

One disadvantage with tin oxide sensors is the high running temperature, which is in 
the region of 300 to 600°C. Alternatively, conducting polymers (electroconducting con­
jugated polymers) have intrinsic electrical conduction at room temperature. This is due 
to the polymer backbone comprising of alternate single and double bonds which result 
in charge mobility. Such materials as poly (acetylene), poly (pyrrole), poly(thiophene), 
and poly(aniline) exhibit these properties [36] and as such are candidate polymers for
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gas sensors. In their pure state these materials are only semiconducting: conductance 
changes of several magnitudes are achieved by doping.

Deposition of polymer onto a recipient surface is normally brought about through 
an electrochemical reaction. This electropolymerisation is an extremely attractive tech­
nique as it allows controlled deposition of thick films [36]. As would be expected the 
particular polymer used [37], dopant [38] and resulting geometry [39] [40] all affect the 
dynamic response of a sensor when challenged with some vapour. Due to this it is 
possible to a priori dictate the sensitivity and selectivity of the sensors by controlling 
the fabrication process [41].

Nonconducting polymers may be used as gas sensors as well. There are two ap­
proaches, either to make the polymer conduct or to detect mass uptake as a solvent 
diffuses into the bulk of the polymer. Such materials are used as the coatings found in 
gas chromatographs described earlier.

The first method uses fine carbon or metal powders mixed in with a polymer in 
solution. If there is sufficient conductant by volume, when the polymer dries the 
composite material will conduct. The minimum volume fraction required is defined as 
the threshold percolation fraction. The resulting composite is deposited onto electrodes 
by spraying a microdot. The resulting composite material changes its conductance 
in response to some vapours; these diffuse into the body of the polymer and cause a 
swelling effect which causes the volume fraction of the conductant to fall.

The advantage of this type of sensor is that a much larger number of polymers 
become available in comparison with conducting polymers. Typical materials that are 
used include poly(4-vinylphenol), poly (vinyl-acetate), and poly (ethylene oxide). For 
a list of other polymers see [42]. As above, the approach is to construct an array of 
these sensors so that, through the chemical diversity present, a sensor array capable 
of discerning between a number of different odorants is produced. A full survey of the 
chemical mechanism of this class of sensors can be found in a later chapter where an 
analytical model is discussed.

Surface acoustic wave devices may be used in conjunction with polymers as well. 
In these devices a surface wave is transmitted along the sensor from transmitter to 
receiver. When the surface absorbs molecules from the environment it increases the
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density of the medium transmitting the wave: altering the time it takes the wave to 
travel. This time delay is very small and so the sensor actually outputs a frequency 
change which may be measured with an accuracy of 0.0001% [43]. These devices 
become more sensitive the higher their resonant frequency [44] and so these types of 
devices typically operate at around 50MHz [45].

The exact chemical mechanism taking place in any of the above sensors is important. 
The rapidity of the reaction of interest is dictated by the binding energies involved, 
which can lead to undesirable properties if not correctly balanced. If the binding energy 
is very low then the reaction is very slow. However, if the binding energy is too high 
then the reaction becomes irreversible. Dynamic studies of these reactions will reveal 
their nature, and whether they might be used in this type of application.

2.3.2 Data processing

For the above sensors to be integrated within some system in a useful way the response 
of the sensor or array of sensors must be measured. It is reasonable that, first, the 
response should be logged in real time; this may be the resistance of the sensor or 
frequency of the output, depending upon the type of sensor. The sample rate might be 
of the order seconds or even tenths of seconds, for example, depending upon the time 
scale on which the sensors respond: moving from baseline to some steady state for the 
perturbed system.

The responses of these sensors as a time series of values are of very little obvious use 
if an input-output relationship is required. The organic nose analogy is thus continued 
to ‘the brain’. A method for processing the dynamic response is sought with a number 

of desirable properties, the main being that the resulting data are manageable for 
pattern recognition and that maximum use is made of the information in the response 
regarding the sample.

The data resulting from logging the dynamic response from an array of sensors can 
be large, a computer file of tens of megabytes may result and will contain, as will be 
noted in a later chapter, redundancy, together with information on the chemistry that 
maybe of no interest as far as the application is concerned. Methods are therefore
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necessary to look for features of the responses that distinguish between different types 
of samples. This is difficult without prior knowledge of how the sensors respond. 
Therefore a number of ad hoc methods are used for the processing of the response data 
ready for the application.

sensor after sample introduction. More specifically there is the absolute change and 
relative (or fractional) [42] [46] change which may be defined respectively as follows:

where Ro is the baseline and Rmax is the steady-state value of the resistive sensor; 
these are illustrated in Figure 2.6 which is a generic sensor response. This method 
is popular due to the fact that the static response of many sensors is proportional to 
the concentration of the analyte and it reduces sensor drift (see Section 2.5). However 
proportionality will be different for different analytes.

The other main data processing approach is to analyse the response time series. It 
is reasonable to suppose that dynamic analysis will yield as much information as the 
static measures above because static response can be retrieved from the dynamic; the 
converse is not true.

There have been attempts using black box modelling and mechanistic models (see 
below and next chapter for full definitions) to analyse time series.

2.4 Applications of Electronic Noses

These devices have a great potential for odour analysis in many different industries. 
This is because they are machines. In many case, especially the food industry, analysis 
is carried out using a human panel. The fundamental flaw with this type of method 
is that the panel is subject to the normal human frailties such as fatigue, sickness 
and subjective perception. The statistical design of such panel studies is such as to 
eliminate subjectivity, but at a great financial cost. Thus an automatic system is very

The most common technique for data analysis is to use the steady-state of the

(2.1)

(2.2)

attractive.
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Figure 2.6: Illustration of the concepts used in steady state measure of responses.
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To put into context the sensitivity and reproducibility required of the devices de­
scribed above, a survey follows of the applications of headspace analysis. There are 
two major areas which require rapid, non destructive analysis: the food industry and 
the medical profession. Reproducibility will be seen to be a major factor in the context 
of medical applications. Electronic nose systems need to be robust in order to make 
consistently good diagnoses.

2.4.1 Food Industry

Since taste and food perception are largely driven by a human’s sense of smell, the food 
industry is very interested in standardised measurements of this sense. Traditionally, 
companies have employed panels of testers for product development. These groups 
grade the smell and taste of foodstuffs against a number of categories that represent 
different aspects of perception. These may be such things as ‘fruity’ , ‘floral’ , ‘oily’ , 
‘musty’ , and ‘sour’ [47]. This process can be costly or impractical when there are a 
large number of samples to be surveyed.

The challenges inherent for electronic noses in this particular area of olfaction re­
sult from the fact that all of these applications are based upon human perception [48], 
which is subjective. Attempts have beèn made to assess the ability of electronic nose 
systems to predict human percepts (the impression in the mind given by a sensory 
perception) [47], the conclusion being that while existing technology is effective for sin­
gle compound samples, even binary mixtures are beyond the scope of current systems. 
The problem is that two chemically similar compounds may be perceived completely 
differently by humans, besides the consequences of genetic variety on perception.

Nevertheless some attempts have been made to emulate human perception in such 
diverse areas as milk [49], fish freshness [50], and olive oil [51]. The encouraging and 
positive conclusions of these studies demonstrate that there is an ever-increasing range 
of applications and potential applications of electronic noses in the food industry.
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2.4.2 Medical

The importance of odours in medicine has been recognised since ancient Chinese 
medicine. Modern research into the medical applications of electronic noses has concen­
trated on rapid diagnosis via biological samples: samples such as eye swabs, blood and 
urine have all been considered. This has been the case due to the observation that, 
traditionally, a diagnosis is obtained several days after the production of a sample. 
This is due to the time it takes for laboratories to culture any pathogens that might 
be present. The situation may be improved by using some form of artificial olfaction 
unit, that can analyse a sample in a matter of minutes.

In [52] a report is made of a study to detect human skin odour. It has been 
noted that certain ailments such as diabetes and some hepatic diseases result in an 
unpleasant odour. The study investigated the possibility of developing non-invasive 
diagnosis techniques based upon gas sensor technology. It was concluded that current 
sensor technology could detect odour changes in the test subjects’ skins.

The type and metabolic state of bacteria have been successfully detected as demon­
strated in [53] [54]. These results are extremely important given that pathogen drug 
resistance and toxin release are often cycle dependent. What is more astonishing is 
the sensitivity of the equipment necessary given the background chemical noise in such 
situations.

2.5 Challenges for Electronic noses

The above has demonstrated the technologies and applications associated with elec­
tronic noses. However there are still a great number of challenges for chemical analysis 
using electronic nose systems, especially those using resistive sensors. By examining 
these challenges the context of this thesis may be seen.

2.5.1 Sensor degradation

Electronic noses use chemical sensors and as such they react with whatever they are

challenged. This results in two problems for the necessary repeatability of the equip-
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ment; the first is degradation of the sensor structure; the second is sensor drift due to 
‘poisoning’. It is this drift due to odorant molecules becoming trapped in the body 
of a sensor that causes problems for the long term stable use of electronic noses and 
consistent reproduction of measurements. Any molecules that are not desorbed will 
alter the baseline and have the result of such static processing as discussed above.

The sensor output is required to be repeatable so that pattern recognition and 
modelling techniques may be applied as a way of analysing and elucidating impor­
tant information about a substance being sampled. Any drift will result in previously 
constructed models becoming less valid as the sensors are exposed to more samples. 
These partially irreversible reactions are due to high binding energies for certain sub­
stances [44] which also create highly specific sensors. Thus there is a balance to be 
struck.

The challenge here is how can the sensors or data processing algorithm be designed 
in such a way as to eliminate the drift problem.

2.5.2 Empirical Nature of Black Box Modelling

The modelling and pattern recognition techniques discussed in this thesis are inherently 
empirical, they require data from real experiments; the models are optimised with 
respect to these data. As mentioned above these data may be time dependent, but 
there is also noise and its interaction with parameter estimation to be considered.

Electronic nose systems have two sources of noise. They are typically electrical 
systems and will be subject to electrical noise resulting from the mains and equipment 
around them. More importantly from a modelling point of view is the variation in 
the signal created by ‘chemical noise’ . The information content of the chemistry of a 
sample has been alluded to, but not quantified; this is a very difficult thing to assess. 
However, there may be compounds in samples that vary in some way, but which are 
not interlinked with the processes that are required to be observed. To illustrate this 
it will be seen that a bodily fluid sample will contain compounds relating to diet, 
illness elsewhere in the body, medication, sex and hormonal state, besides, perhaps, 
the presence or not of bacteria. The problem arises when this superfluous information
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has a much stronger signal than that which is of interest. Hence ways of avoiding this 
situation must be investigated.

The problem with the multiarray paradigm is the large output dimension of the 
system which requires a great deal of data to fit even a linear model to the system’s 
input/output behaviour. These data are often very difficult to obtain. This is partic­
ularly so in the case of biological samples where the ‘training’ set of samples must be 
classified by labourious laboratory techniques in order to carry out supervised pattern 
recognition. The challenge is thus to identify as simple a model type as possible that 
will successfully, according to some criteria, mimic the behaviour of the system.

2.5.3 Physical Constraints

The final set of challenges relates to the effects of the environment on the system. 
The systems in question reside in and interact with the environment. This makes the 
production of an all encompassing model extremely difficult. The first problem is that 
it is very difficult to manufacture a group of sensors that have identical characteristics. 
The geometric, and quite often chemical, properties of the sensors will vary. Thus a 
model will have to be tuned to each sensor. This is a problem similar to the problem 
of neurogenesis; the model has to be retuned each time that a sensor is replaced. This 
is an extreme example of sensor degradation.

The second problem is the variation of characteristics due to temperature and hu­
midity changes. These both affect the chemical mechanisms within the active compo­
nents of the sensor. A greater understanding of this would result in better predictive 
and discriminative models.

The final effect will be observed later in the thesis; the effect of gas flow rate 
upon the response. This effects the rapidity and the intensity of the resistive sensor’s
response.
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2.6 Conclusion

The title of this thesis refers to the analysis of data from electronic noses. Therefore the 
discourse will be concerned almost exclusively with model, rather than sensor, design. 
It will be investigated how careful modelling techniques can improve and build upon 
the previous work discussed above. Data used in the studies will be of a biological 
nature: this is due to a long running collaboration between the School of Engineering 
and the Department of Biological Sciences, at the University of Warwick. Two types of 
electronic nose will be investigated. These are the mass spectrometer based headspace 
analysers and those systems based upon the resistive polymer sensors.

The two basic approaches of modelling will be considered, compared, and con­
trasted: black box modelling via assuming some standard input/output structure and 
white box modelling, often known as mechanistic modelling, whereby some previous 
knowledge or assumed internal mechanisms are ‘built’ into a model of the system. These 
methods are examined as a way of analysing the system’s time series and predicting 
future input/output behaviour and classifying unknown samples.

Parameter estimation (model identification) is also considered. Ways of reducing 
model complexity are investigated in order to make parameter estimation a robust and 
well-posed problem. Methods include dimension reduction of data sets, model order 
reduction, assumptions of the smoothness of the model being sought and modelling 
using physical knowledge of the system.

Although the data analysed are of biological origin from electronic nose systems the 
approach taken in this thesis investigates the interaction between theory and experi­
ment. This process is intrinsic within the training epochs of a neural network as it is 
with mechanistic modelling and validation of a category of gas sensor. A recognition 
is made of the fact that theoretical models are only as powerful as their experimental 
verification and in fact the converse is true: data do not become informative until some 
decision is made as to how to analyse them.

There are a number of challenges for these systems as discussed above. Black box 
and mechanistic modelling techniques need to be investigated in order to improve our 
understanding of these systems. The time and environmental dependencies of such
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systems need to be identified.
In summary: information extraction from electronic nose data has been discussed. 

By information extraction is meant constructing a model whereby a data set may be 
divided along some predetermined classifications. The aims of this thesis are therefore:

• Investigate ways of gaining the full potential in terms of information extraction 
from electronic nose data.

• Investigate black box and mechanistic modelling techniques and thereby gain a 
greater understanding of the behaviour of electronic nose systems.

• Investigate the environmental dependencies of electronic nose systems.



Chapter 3

Black Box and Mechanistic Models.

The rationale behind the use of gas sensors is to ascertain the nature of some sample 
via its ‘odour’. It is apparent that some form of pattern recognition is necessary for 
this task. The intrinsic assumption here is that the data with which the algorithm is 
provided have some difference, or pattern from which the ‘type’ of each datum may be 
identified.

A data set is a set of experimental measurements. Each datum is a particular 
sample. Consider the binary classification problem. In supervised learning a training 
set of samples will be supplied with a classification label for each sample (quite often 
1 and -1). The algorithm will then attempt to find a model amongst a candidate set 
which best predicts each sample’s class.

Models, as a method of information extraction, as well as knowledge validation, 
have featured highly in electronic nose research. There are a number of different ar­
eas of emphasis: sensor response characterisation, sample analysis and identification, 
information transfer.

Sensor characterisation is the non-parametric study of the analyte and environ­
mentally dependent response of the sensor, usually the steady state response. Analyte 
dependence normally concerns the relationship between the same analyte at different 
concentrations and the resulting sensor response. It has been observed that resistive 
sensors, such as metal oxide sensors [55] [56] [30], have a nonlinear concentration depen­
dence. This makes analysis difficult because data sets are often dominated by needless

46
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concentration information.
Environmental factors that have been investigated include ambient temperature 

and that of the sensor body and humidity of the air. These have been demonstrated in 
several studies to have an appreciable effect upon the response of polymer type sensors. 
These investigations have tended to take a more nonparameteric approach [57]; general 
trend analysis has been carried out without any reference to mechanism; this being the 
philosophy of black box modelling. The bearing this has on electronic nose applications 
will be discussed in Chapters 7 and 8 .

In the context of this thesis these data will be used for model building. This 
process is called system identification, That is, a particular model from a candidate set 
is identified from the experimental data. The model is chosen using some criteria of 
‘fitness’ . The aim of the generation of this model will be pattern recognition and, in 
Chapter 8 and onwards, to gain an understanding of the sensor dynamics.

In pattern recognition it is hoped that some features of the data may be elicited 
that help distinguish between two or more different types of data. These features can 
be very difficult to ascertain. In the case of data from Electronic Noses, there are a 
great number of processes that take place between a sample introduced as the input to 
a system and the recording of data in a form that a computer can manipulate. Briefly 
there is:

• Odour production [58].

• Delivery to the sensors [59] [60].

• Electrical/chemical reactions with these sensors [61].

• Observation of these responses by analogue and digital electronics.

• A treatment of the data ready for pattern recognition*.

Black box models used in pattern recognition assume two things; firstly that there 
is a detectable difference between the different classes of data, and secondly, a good

*This cannot be defined any further without losing generality. It may be that some kind o f ‘Static 
data’ such as the change in conductivity are required, but this is really a preprocessing issue that is 
discussed in several parts o f this thesis.
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approximation of the indicator function is realisable within the class of the candidate 
black box models. That is that the phenomenon is such that it can be modelled and 
the form of model necessary is assumed to be known.

The first assumption is necessary as otherwise there is no way to continue with the 
modelling process. Of course, it is the primary hypothesis that needs to be tested, 
but stopping there will yield nothing more. The second type of assumption allows 
the search for a pattern to begin. Essentially it is a case of an assumed form of the 
pattern; the order of the polynomial in regression, whether two data clusters are linearly 
separable, etc. It is this assumption that allows pattern recognition techniques to exist, 
in particular artificial Neural Networks.

Let us define a system. A system is a dynamic object which has some input-output 
behaviour. The system behaves in some predetermined way (here only deterministic 
systems are considered) to an input stimulus. The system may be viewed as in a 
black-box scheme:

• An input which may be some control, stimulus or initial conditions.

• The dynamics represented by equations or some algorithm

• The output which is a real time measurement of a subset of the internal dynamics.

The mathematical modelling of a system may be divided into two distinct stages: 
modelling, where a tentative family of models is produced, in which it is hypothesised 
the behaviour of the system may be predicted; identification follows in which the 
particular model is identified, normally via parameter estimation. Modelling is the 
treatment of the problem of representing a priori structure information based on facts, 
assumptions, and hypotheses [62].

The identification stage involves the minimisation of the differences between the 
model and the observed behaviour of the system. This optimisation normally includes 
some iterative process which converges to a ‘best’ solution. There are a number of ways 
of approaching this. It is usual to derive some penalty function which combines the 
need for the model to fit the experimental data with some sense of ‘least complex is
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best’. This rephrasing of ‘Occam’s Razor4 is an important part of modelling, as shall 
be seen in the next two chapters, especially when dealing with relatively small data 
sets.

There are a number of criteria for the ‘best’ model of a system. ‘Best’ might be 
the smallest error, least complex model or one which is arrived at in the shortest time. 
The standard definition is that model with the largest expected success rate; this will 
be the model that balances complexity with error. It shall seen below that these ideas 
are incorporated into penalty functions for parameter estimation.

It is apparent that during the parameter estimation phase there is an optimisation 
process taking place against some form of error function. There are two parts embod­
ied in the above three paragraphs, namely model and system identification. Model 
identification involves the production of some class of models and the actual system is 
identified by parameter estimation.

3.1 Forward and Inverse Models

In a standard model, the experimental input-output behaviour would be compared 
with a hypothesised family of models,, usually this family is a parameterised set of 
functions. This is the forward model concept (Figure 3.1(a)); given a particular input 
the output may be predicted. Pattern recognition normally requires the converse; 
given the output, what was the input? This is the inverse model (Figure 3.1(b)). The 
advantages of using inverse models are discussed in a number of papers including [63]. 
These models are black box because the model tells us very little about the internal 
processes of the system.

Looking at mechanistic models, such as differential equation systems, the input to 
the system is often embedded within the model solution in the form of parameters 
that need to be identified. Due to their implicit nature there is no standard way to 
invert the equation, gaining the input in terms of the predicted output. The only way

t Attributed to William of Ockham (cl285-1349), mediaeval philosopher: ‘one should not increase, 
beyond what is necessary, the number o f entities required to explain anything’ . Known more recently 
as the principle o f parsimony.
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to ‘invert’ the model would be to identify the parameters of the forward model with 
respect to some dynamic response and to use these parameters as a way of representing 
the input. This is reasonable enough if there is some prior knowledge of the input, e.g. 
an impulse of a certain magnitude, sinusoidal or polynomial.

It is apparent, however, that the use of black box models allows this problem to 
be avoided. A black box model can be chosen such that the inverted input-output 
behaviour of the system may be modelled and identified in the experimental data. The 
resulting parameterised model may then be used to retrospectively predict the input.

3.2 Standard Forms of Black Box Models

Here, black box models are considered from a pattern recognition point of view. By this 
it is specifically meant that there is some data set with some classification label from 
a finite set of labels attributed to each datum. Hence, the inverse model problem is 
considered; this is because, in the original experiment, the sample classification was the 
input and the sensor response was the output. For pattern classification it is required 
that the output of the model is the classification of the sample.

Before discussing design and implementation, it is necessary to lay down some basic 
notation and terminology. For the sake of clarity, consider a dichotomy problem, as the 
principles laid down here can be extended to any finite number of classes; the majority 
of the problems in this study will be of this type.

Here the discrimination problem is formalised in such terms that black box model 
theory can be applied to it. Given a set of data {x*, where the x* are measure­
ment vectors (electronic nose system output for example) and the d* are the required 
responses (category of sample introduced to electronic nose); use this training set to 
categorise new measurements. This problem can be stated in terms of the Interpolation 
problem^4] :

Definition 3.2.1 Interpolation Problem for a dichotomy: Given a data set {x*, di}fLlt 
find a function F  : $tN i— ► { —1, +1} such that

F(xi) =  di (3.1)
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There are a number of different models that may be used in this context, each 
with their own set of inbuilt assumptions. In this thesis a number of different forms 
of deterministic models will be considered. Deterministic models are used under the 
assumption that the output is uniquely determined by the system input, stochastic 
models will not be considered.

3.2.1 Auto-Regressive, exogenous input models

A typical type of black box model is one which employs the shift operator [65]. This 
type may take into account previous inputs and outputs. Due to this they are often 
written as transfer function models.

An important class of black box predictive models are linear systems of the general 
form

y(t) =  $ T(t)6. (3 .2)

Here

m  =

M t )
(3.3)

is the input vector, y(t) is the output and 9 is the parameter vector representing the 
parameterisation of the system.

As with any proposed model it is normal to identify the parameters by fitting 
experimental data to a model of the form

y(t) =  $ T(t)§ +  e(t) (3.4)

where 9 is the parameter giving the best fit to the experimental data and e(t) is the 
error.

This fit is normally obtained by optimising a least squares cost function. This is

optimisation by setting

e(t) =  y(t) -  $ T(t)9 (3.5)
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and

e =  [e(l),e(2),...,e (ra )]

for some m. The cost function

V{0) =  ||e||2.

(3.6)

(3.7)

is minimised to find a solution.
In the case of a linear system the parameters are estimated using Least Squares 

Regression

0 =  ($ T$ ) -1 $ Ty (3.8)

A particular linear model defining the input (U)-output(Y) relationship in a black 
box model is an ARX (Auto Regressive eXtra input) model.

Q r
ARX(<7, r) : Y[n] =  ^  aiY[n -  i] +  7kU[n -  fc] +  e[n] (3.9)

i= 1 fc= 0

or in matrix notation

A(z)Y[n] =  B(z)U[n] +  e[n) (3 .10)

where A(z) and B(z)  are polynomial matrices,

A{z) =  1 -  c*iz~x -  . . .  -  aqz~q (3.11)

B(z) =  l  +  7 i^_1 +  --- +  7r^_r (3.12)

the orders of which are defined by q and r in Equation 3.9 above and the dimensions 
are dependent on the number of inputs and outputs. The ct* and 7* are coefficients 
whose values are to be determined. The variable 2 represents the time series of inputs 
and outputs; the indice denotes the position in the time series. Here the autoregressive 
part is defined by the matrix A, and the exogenous part is defined by the matrix B. 
Due to this, Finite Impulse Response (FIR) models are considered by setting the order 
of A  to one.
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This form of model is particularly attractive to work with because it defines a 
linear regressive scheme. As such the minimisation of least squares is a well studied 
problem [66]. There are a number of ways of identifying parameters, such as gradient 
search and genetic algorithms.

The model assumes a number of things. Firstly that the system is linear in be­
haviour. Secondly, that the system is deterministic and is only determined by a finite 
history of input-output responses, i.e the system is finite and causal. Finally that the 
noise is zero biased and white in nature. This last assumption is necessary for least 
squares fitting to be an unbiased estimate of the maximum likelihood error.

3.2.2 Radial Basis Function Neural Networks

Not all systems exhibit a linear input-output behaviour. It is apparent that often the 
relationship between input and output, or the ‘boundaries’ between different data sets, 
will be nonlinear, especially given the reactive nature of some chemical substances. 
A generic, nonlinear, black box model is required to account for such systems. A 
good candidate is a model using Radial Basis Functions (RBFs); these incorporate 
nonlinearity but are linear in the free parameters, thus retaining many of the advantages 
of ARX models.

Radial Basis Function neural networks use a weighted sum system for interneural 
connections, but here the hidden layer is composed of a number of nonlinear functions 
with some interesting properties. These relate to parameter estimation, functional 
smoothness and separation of patterns.

To understand the definitions of objects related to RBFs, it is necessary to under­
stand their origins. A justification for them results from Cover’s Theorem [67]:

Theorem  3.2.1 Cover’s Theorem A complex pattern-classification problem cast in a 
high-dimensional space nonlinearly is more likely to be linearly separable than in a 
low-dimensional space.

To illustrate this, let the input space be of dimension n0 and let the target space
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be of dimension n\ where n\ uq. Then a non-linear map is denoted as follows:

(3.13)

$ (X )  =  [ $ ! ( X ) ..........< M X ) ] T (3.14)

where

R (3.15)

The $jS are referred to as hidden functions, the reason for which will become apparent 
shortly, is that these do not need to be known explicitly. Following Cover’s theorem, 
define separability as follows:

Definition 3.2.2 ^-separability [68]

A dichotomy S\, S2 of a set S C Rn° is said to be $ -separable if there exists a vector 
w  € R™1 such that

Figure 3.2 shows this as a network where w =  (wi, w2, .. - ,wni) is manifested as 
the output weights of the network, or as a function:

Essentially there are two ‘ingredients’ to Theorem 3.2.1:

• A nonlinear mapping of the input space by hidden functions.

• A ‘hidden’ space of much higher dimensionality than the input space.

In reality, arbitrary families of functions cannot be used for the following reasons. 
The evaluation of the weight vector w  may become computationally difficult. The 
functions may amplify noise or disregard important variations in the data. Some a

w T$(x) >  0 

w t <F (x ) <  0

x  G Si 

X G S2

(3.16)

(3.17)

(3.18)



CHAPTER 3. BLACK BOX AND MECHANISTIC MODELS. 56

Figure 3.2: Diagram of network produced by ^-separability

priori conditions have to be assumed about the solution. The most common assump­
tions are smoothness of the ^¿’s which controls the complexity of the resulting function 

F(x).
The weights are chosen to minimise an error function with a penalty on the curva­

tine of the resulting function F ; this will yield what is called a regularised model. In 
terms of the above, we define a regularised risk functional, weighted by A, thus:

JW F ] =  J W  + ¿ l l ^ l l 2 = JfZlAnxi),*)  + j i f f ’ll2 (3.19)

Here c ( ., .) is a cost functional that measures the the function F ’s deviation from 
the observed response y*; that is the empirical error, or Remp. Typically, the error 
squared would be used. P is a linear differential operator and embodies the smoothness 
constraints on the curvature. Effectively, RBFs, and their networks, are solutions to 
this constrained optimisation problem [69]:

Definition 3.2.3 Radial Basis Function. A function, which minimises the régularisa­

tion constraint (3.19), G : •— ► 9Î of the form:

G(x) =  $(||x -  Xi||) (3.20)
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is called a radial basis function.

Further:

Definition 3.2.4 Centre. The vector x* in equation (3.20) is called a centre.

The solution is identified in terms of its weight parameters, w. There is a wide 
range of functions that meet these criteria.

- a 2
• M ultivariate Gaussian functions e ^ 1

• M ultiquadratics x TQx

• M ultipolynom ials £  a(i, j, n, m)xr)x™-

Gaussian functions are used in this thesis for two reasons. The first is the proba­
bilistic shape of the function which can be used to isolate clusters. The second reason 
is that they are easy to visualise. This will become important in Chapter 4 when 
parameter estimation is considered.

3.2.3 Some considerations

The problem of estimating parameters in practice is that the estimation problem may 
be over-determined. Having a basis member for every data point is not very efficient. 
Given a set of input-outputs {x*, di}f=1, the parameters required are found by inverting 
the matrix with entries {$(||xj—Xj||)}^=1. Computationally this grows proportionally 
to iV3. It is possible that N  =  500 but no=10, resulting in a grossly over-fitted curve 
that takes a significant amount of time to evaluate.

Secondly, by using every data point, no consideration is given to the quality of the 
data. Even with smoothness constraints, outliers will have an effect. Finally it would 
be very difficult to extract any rules from the result. A far better approach is to either:

• Pick centres that are not necessarily data points. Use an algorithm that 
chooses where best to place centres to express the distribution of the data.

• Use data points that define boundaries o f  classes. As the ultimate aim is 
to construct hypersurfaces between the dichotomy classes, use points from both 
classes that are “close” to this surface.
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3.2.4 Support Vectors

The Support Vector algorithm selects a relatively small set of data points as centres, 
based on a complexity criterion. In the case of a linearly separable dichotomy,{7^!, 7f2}, 
the algorithm attempts to fit a hyperplane of the form:

IVTx + b = 0 (3.21)

between the two classes.

Definition 3.2.5 Support Vector. A vector Xj, in the data set, satisfying:

IVTXi +  b =  1 (3 .22)

where W T =  (w%, W2> • • •, ̂ 3), or,

tVTXj +  6 =  —1 (3.23)

is called a support vector.

Hence, data may be classified by which ‘side’ of the hyperplane each point lies. This 
is well defined once an orientation for the normal to the plane has been chosen. This 
produces a binary classification machine, the extension to a general number of classes 
is left for discussion in Section 3.5. The practicalities of finding such a hyperplane 
are now examined. Further, as applying Cover’s theorem is of interest, this theory is 
extended to include a nonlinear mapping in Section 3.3.

Firstly place a cost on the size of the weighting vector in an attempt to reduce 
the complexity of the resulting hyperplane. This follows the theory presented in [70] 
where it is derived that the complexity of a linear neural network is proportional to 
the size of the node weights. It is also required, at the very least, that the hyperplane 
categorises correctly as many of the training data as possible. Therefore the problem 
of finding a hyperplane is formulated in terms of a quadratic programming problem. 

Let the training set be { x , , * } « -  Here *  e  H -  '1 and 13 re<i™red that

d,(WTx + 6) = l - i i (3.24)
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The variables {&}£Li are referred to as slack variables. They measure the deviation of 
the data point from ideal conditions for separability. Hence the weights and the bias 
of the required hyperplane are the solutions to:

arg(mhw(<ii>(W, $))) =  ¿ W T W  +  C E* (3.25)

such that condition (3.24) is satisfied, with & > 0, for all 1 <  i <  N. C  is a weighting 
on the penalty incurred by the slack variables. To obtain the solution, the Lagrange 
multiplier technique is used to convert the system to a dual problem.

3.2.5 A  short excursion: dual problems

Definition 3.2.6 Dual problem The dual problem, to a min/max problem is the max/min 
problem of the Lagrangian, considering it as a function o f the Lagrange multipliers.

By taking taking the conditions for a local (or hopefully global) stationary point of the 
Lagrangian function the following optimisation problem is obtained:

Consider

Q(a) =  E^iat -  ¡LiQiajdidjxJxj (3.26)
subject to the constraints

E fe tid i — 0 (3.27)

(3.28)0 < c t i < C

where {«¿}£Li are the Lagrange multipliers.
The following relationship is also obtained:

W  =  E i=latidiXi (3.29)

By using the constraint (3.27) this can be reduced to an N-l dimensional problem and 
solve it using an appropriate numerical method, such as the QUADPROG routine in 
MATLAB.
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The consequence of this * is that many of the «¿’s become zero. The data points 
corresponding to the non-zero a.i s are thus the support vectors, that is the correspond­
ing slack variable in (3.24) is zero. Hence this technique is called the Support Vector 
Machine (SVM).

3.3 Applying Nonlinear Maps to Support Vector 
Machines

So far pattern recognition has been considered in the original input space. However, 
following Cover’s theorem it would be interesting to use a nonlinear transformation 
into a feature space. Consider a general map <j>: 5Rno i— ► 3ini. That is, our input space 
is of dimension n0 and our feature space is of dimension m. To solve the hyperplane 
problem in the feature space, simply replace all the ‘x*’ vectors by ’</>(xj)’ in Equation 
(3.26). This yields:

Q(a) =  E ^ a , -  ^E ^lEf=laiaj didj (l){xi)T<j>(xj) (3.30)

subject to the constraints

E^acidi =  0 (3.31)

0 < < C (3.32)

The relation

W  =  E ̂ Q idi^Xi) (3.33)

is also obtained.
It still is difficult, in practice, to apply this to families of RBFs when using the 

mappings </>. It is desirable to use RBFs because they have ‘nice’ properties such as 
smoothness and rotational symmetry. Looking closely at the expressions above, it can

tThis is due to the solution to a constrained optimisation problem always lying on a boundary 
representing one or more of the constraints.
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be seen that we only require the inner product of the functions (j>, which from now on 
is written using the (,) notation. To develop this further, the concept of a kernel [71] 
is introduced.

3.3.1 Kernels

Definition 3.3.1 Inner-Product Kernel. A function K  : $Rno x $Rn° i— ► 3? is an inner 
product kernel if it can be written in the form.

^ (x .X i) =  (0 (x),</>(Xi)) (3 .34)

where </>: 5Rno ■— ► 3J" 1

Thus, it can be seen that inner-product kernels can be used in SVMs as (3 .33) 
implies

W T<f){x) +  b0 =  E £L1a idi<£(xi)T(/>(x) +  b0 (3.35)

where bo is a parameter called the bias. This can then be evaluated for x  € Kn°.
RBFs are such kernels [69] and so can replace the inner product <t>{xi)T(¡>(xj) in 

(3.30) to give the Lagrangian:

Q(a) =  E ^ ia, -  -  x^l) (3.36)

Thus with the set of minimising Lagrangian multipliers, ( a j ^ ,  the neural network, 
expressed as a function, becomes.

(IP, 0(x)) +  6o =  X^aiC^O Ixj -  x||) +  60 (3.37)

RBF networks encompass a number of assumptions, chief amongst them being prox­
imity implies similarity and the system is nonlinear. They also assume that smoothness, 
manifesting low complexity, is good. This is controlled by the width parameter; setting 
this parameter is of the utmost importance when implementing this family of models 
(see Chapters 4 and 5).

It has been suggested in [63] that RBFs might prove useful for time series analysis. 
A model that encompasses the history of the system, such as ARX type models do 
while allowing nonlinear behaviour would be very useful.
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3.3.2 Non-linear A R X  type model using Gaussian Kernels.

The theory for nonlinear black box models may also be found in articles such as [72] 
and [73]. The acronym NARMAX was coined for use with a generic nonlinear form 
of ARMAX model. Here a novel way of combining the concept of the ARX type 
model with RBFs, which was developed by the author, is demonstrated. This results 
in a model whose parameters may be identified using the Support Vector Method, the 
NARX, the advantage being that a model is generated that is endowed with robust 
parameter estimation.

If the form of Equation (3.9) is considered then it may be thought of in the Many- 
In-Many-Out (MISO) case as being

cny(n) +  a2y(n -  1) +  . . .  +  aq+iy(n - q )  =  71 .u(n) +  72.u(n -  1) +  . . .

. . .  +  7r+i .u (n - r )  +  e(n) (3.38)

Here the input as a vector of the form

F «1(0
«(•) =

u 2 ( . )

M - )

(3.39)

By rearranging (3.38) the following is obtained:

c*iy(n) =  71 .u(n) +  72.u(n -  1) +  . . .

. . .  +  7r+i.« («  -  r) -  a2y(n -  1) -  . . .  -  aq+ly(n -  q) +  e(n) (3.40)

u(n) 
u(n — 1)

Oíiy(n) =  [7l) • • • )7r+l) —<*2) . . . ,  —c*9+l] . u(n — r) 
y(n -  1)

+  e(n) (3.41)

y(n -  q)
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This allows us to place the model in the context of a Support Vector Machine using 
Gaussian kernels. The dot products above can be replaced with kernel products of the 
form

llx — t/lP
< x , y > =  exp ( -  ^  ) (3.42)

Where x  and y are two vectors of the same dimension and a is commonly referred to 
as the width parameter.

Hence what is obtained is an RBF network whose input is the column vector on 
the right hand side of equation (3.41) and the target output is y(t). The parameters 
cti and are found using the SVM algorithm provided in the previous section.

3.4 Multi-Layer Perceptron

This class of neural network uses linear weights and a smooth activation function for 
its nodes [68]. The typical architecture is of an input layer, one or more hidden layers, 
and an output layer (see Figure 3.3). Neural connections are again defined by weighted 
sums. Training is via the error back-propagation algorithm [74]. During each iteration 
of the algorithm there are two passes through the network. In the first forward pass 
the weights are fixed and an activation pattern is passed to the input layer. The signal 
propagates through the network, resulting in some output. This output generates an 
error due to there being a target output. In the back pass the error is used, along with 
some learning rule, to adjust the weights so that the network output comes to resemble 
the target output.

The error generated for the back pass is commonly the mean squared error. A 
gradient descent method is derived from this error and used to adjust the weights. 
Adjustment may occur after each training example or after all of the training set has 
been used; this is called an epoch.



CHAPTER 3. BLACK BOX AND MECHANISTIC MODELS. 64

Figure 3.3: Schematic of a fully connected Multilayer Perceptron Architecture with a 
processing layer.

3.5 Applicability to Electronic Noses

Sample analysis and identification are two of the prime aims of electronic nose re­
search. Here models are used in a pattern recognition context, and so are commonly 
parametric. However a survey of the literature reveals that only a minority of papers 
are concerned with the parametric mode of modelling of electronic noses. Usually the 
statistical/black box model analysis is concerned with the static, steady state response 
of sensors. Mainly it is statistical analysis in the form of PCA for data visualisation [75] 
which only demonstrates the potential for classification. However, as PCA results in a 
linear projection, it only demonstrates whether a linear model might be successful in 
separating the various classes.

A number of applications of fuzzy logic to discriminant analysis have been re­
ported [54] [76] though it is often unclear what kind of fuzzy system has been used. 
These methods do perform better than their linear counterparts in the presence of 
curvilinear clusters, these being common with nonlinear sensor responses.

Multiclass Radial Basis Neural Networks may be implemented in a number of ways, 
such as: real number tags; binary output; dedicated class identifiers. In the first method
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each class is attributed a number, for example 1,2 3, and 4. A single RBF NN is then 
trained to give the correct output for each training sample. However it would seem 
better to use the SVM theory discussed above to ensure robust parameter estimation. 
A binary output might be used where N =  log2 M  networks are implemented for M  
data classes. Each class is then given a binary string label and the networks are trained 
to each output a bit of this sequence. This is a plausible as it has been shown [77] 
that any data set is separable using the SVM algorithm. The final method which 
tends to be found in the literature is to have N =  M  neural networks: each of which 
identify a separate class positively. The last methods two are examples of committee 
machines [68].

As for processing the input of the model, in [78] a number of interesting trends 
are reported. The first is the extraction of parameters from the dynamic response of 
a sensor. Sorption (maximum rate of change), desorption (maximum negative rate of 
change), divergence (total step change) and area under the response curve were used as 
outputs for each sensor. This was a move forward in data processing. More than this 
is the use of genetic algorithms (see Chapter 5) for 2 processing layer multiperceptron 
neural network parameters.

Another use of modelling is for ‘information transfer’. The problem of information 
transfer between electronic nose devices has existed as long as the devices; however 
it is only recently that the problem has been approached. The basis of the problem 
is very similar to that of drift and sensor poisoning. The problem, as alluded to in 
the previous chapter, is that the manufacture of devices is not consistent enough for 
reproducible responses between different sensors of the same original design. Several 
approaches have been applied, using standard odours to compare sensor responses. 
One method [79] uses the sensor responses to construct a transformation to apply to 
data resulting from one array of sensors to another of the same design. Several different 
maps have been considered though all are empirical. Hence there is plenty of scope for 
new map applications.
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3.6 Mechanistic Models

A mechanistic model is one which embodies some ‘physical’ knowledge of the system 
considered, such as chemical reactions. This is most commonly achieved by an appro­
priate system of differential equations: a common assumption being time and space 
invariance of the evolution of the model leading to specification of the derivatives only. 
By their nature these types of models often result from the necessity to test some 
scientific theory in order to understand a system more fully.

Mechanistic models have an advantage over black-box models in that the initial 
modelling assumptions may help to reduce the complexity of the model, with regard 
to the number of free parameters that require estimation; the model is ‘tailored’ to 
a specific set of systems which the assumptions characterise. A black-box model, 
including the transfer function types considered in Section 3.2.1, have to be flexible 
enough to describe a large number of different systems’ behaviours. This may lead to 
such problems as over-fitting (see next chapter).

Another advantage of mechanistic models is the ‘meaning’ of the system parameters. 
The parameters in a mechanistic model have some abstract significance attached to 
them as they denote the previous knowledge gathered at the model building stage. 
This allows the complexity of model to be reduced. Various aspects of the model 
may be ordered with respect to the contribution they make to the phenomenological 
behaviour of the system. Knowledge of the parameters’ significance may allow bounds 
to be placed upon the possible values they may take; this has been demonstrated to 
influence the complexity of a model [80]. The physical meaning of parameters also 
allows validation of the model against previously experimentally observed values.

Mechanistic models still require validation and this is normally achieved by param­
eter identification from experimental data. The validation test is normally of the form 
that the model can be made to ‘fit’ the system’s response to some input. A compari­
son is made of the model’s responses to the observed system behaviour. Requirements 
are normally made about repeatability of the parameter estimation. The requirement 
that a specific behaviour should be represented by a unique set of parameters. These 
criteria will become important in Chapter 10 when a mechanistic model is validated.
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3.6.1 Application to Electronic Noses

There are still few studies of the physical mechanisms of electronic noses or the time- 
dependent sensor outputs from mass spectrometers. The justification for this kind of 
investigation is the increased information content of the sensor transients. There is 
evidence [81] [82] that this is the case. Importantly [81], a dynamic model allows the 
output of the system to be modified to account for short term drift factors such as sensor 
temperature, if parameters were shown to be time or environmentally dependent.

The dynamics of tin oxide resistive sensors have been modelled using reaction- 
diffusion equations [83]. It was assumed that the bonding reaction occurred much 
quicker than diffusion. This adsorption model was coupled with a conductance model 
for common electrode configurations to provide a prediction for the observed conduc­
tance transients. Simulations were provided and an analytical approximation was de­
rived which corresponded well with the simulations. The bonding aspect of the model 
was extended to a nonlinear model [61] to allow for the nonlinear phenomena which 
had been observed experimentally. It was noted that the transients of a gas sensor 
could be classified by the relative rates of reaction and diffusion. In both cases, though 
simulations predicted a general trend that agreed with experimental observations, there 
was no validation via parameter estimation.

The class of conducting polymer resistive sensors has also been investigated [84]. 
This too was a reaction-diffusion model coupled with a proposed conduction expression. 
Again an extension to account for nonlinear isotherms was made [85].

Parameter estimation to identify these types of models requires modification to 
the original expression [86]. A time delay is incorporated to allow for a delay be­
tween sample introduction and a response in the transient conduction. However there 
was some simplification as, instead of the full tin oxide expression that had been de­
rived previously, a two exponential approximation was applied. This particular article 
contains two points of extreme interest which resulted from the analysis of model pa­
rameters,via neural network models, to identify samples. The first is the removal of 
correlating sensor data; the second is that the most important parameters in the model 
were identified, with respect to the amount of information they contained about the
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nature of a sample. These were the exponential time constants. This was measured via 
the success rate of the neural network models identified using the parameter values.

It can be concluded that there is evidence that an analysis of the transients of gas 
sensors will yield more detail on the nature of a sample to which they have reacted. 
There is an opportunity to understand more fully the environmental effects on gas 
sensors and the way that repeated exposures affect the response of sensors.

3.7 Parameter Estimation Needs

To couple the theoretical model types discussed above with experimental data requires 
parameter estimation. Usually this is referred to as ‘curve fitting’ where some pre­
scribed error function is minimised.

If an algebraic expression which predicts the output, given a certain input, is avail­
able then quite often it is a case of adjusting the parameters in this expression so that 
the model curve is as close to that prescribed by the data set as possible. Error is often 
measured as a sum of the square errors: often a penalty clause is added for constraints 
on parameter size.

If the model output is in some implicit form, such as a system of differential equa­
tions, then other methods are necessary. Numerical integrators are one method of 
producing model responses based upon a given parameter set. Parameter estimation 
in these cases is an iterative process starting from some reasonable start values. A 
number of parameters are varied and the model resimulated with these values; the best 
variants, those that reduce the fitted error, are chosen to be new parameter values. 
This process is continued until some stopping condition is reached, such as a maximum 
number of iterations, or a desirable error measurement is reached, or minimised.

All of these methods rely upon the data provided and the complexity of the models. 
Factors such as noise, sparseness or otherwise of the data set, and whether the package 
can handle that particular type of model all affect the validity of the identification. 
These factors will be investigated in the next two chapters.
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3.8 Conclusion

In the above the various approaches to modelling that are available to analyse elec­
tronic nose systems have been examined. It must be noted that there are two ways of 
approaching the problem of modelling a system’s behaviour: black box and mechanis­
tic modelling. Each have their advantages and disadvantages, as discussed, and these 
should be borne in mind when at the model building stage.

Of particular importance is the reason for building a model, is it predictive, is it 
discriminatory, is it to test a hypothesis about the internal structure of the system? 
The assumptions made for a particular model need to be examined. This is especially 
so if the model fails validation; the assumptions may be re-evaluated, modified and the 
model redesigned.

It is noted that there are two aspects to building a model; the production of a 
tentative, usually parameterised, model class and the identification of the particular 
model by parameter estimation. If a third stage model building is taken to be validation 
with a previously unseen data set, then it can be seen that these three stages are very 
much interlinked. These ideas will be developed further in the next chapter.

There is also the fundamental question of choosing which particular input-output 
behaviour it is desirable to model. There may be a whole plethora of factors affecting a 
system, but which are necessary for an understanding of the system? The application 
of electronic noses is mainly in categorising a sample from its odour and so it is asked 
what aspects of a system it is necessary to understand in order to bring this about.

These ideas will be explored in the course of the rest of the thesis.



Chapter 4

Model Identification I: Parameter 
Estimation and Sparse Data Sets.

Black box models, in particular neural networks, are trained, or tuned, using finite 
data sets. The aim is to find an algorithmic representation of the system considered. 
Numeric schemes are normally used and these algorithms can be seen as inductive 
techniques [87]. A number of observations of the phenomena of interest are made and 
the algorithm produces a prediction, or hypothesis. They are inductive for the main 
part because of the iterative schemes they normally employ. A first guess is produced, 
its fitness as a model is assessed and it is adjusted accordingly.

Neural Networks represent a parameterised family of functions. It is these pa­
rameters that need to be estimated using some optimisation algorithm, coupled with 
experimentally observed data. The problem is that the estimates are made using a 
finite data set. These data provide empirical information for a hypothesised model 
which links input and output behaviour of the system. This can result in two problems 
that come under the broad umbrella of over-fitting; the first is that any function that 
interpolates the points will appear to be a ‘good’ estimation of the function; secondly 
a large amount of what is ‘learned’ might be noise. It is because of this finite sampling 
that the process is considered as a probabilistic one.

For this reason the aspects of model building regarding how stable the training algo­
rithm and the resulting Neural Network are with respect to the probability structure of

70
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the systems output are analysed. In other words; how much does the identified model 
change with respect to perturbations of the training data; how is the discriminant ac­
curacy of the model affected by overlap of the data classes; how must the complexity 
of the model change to deal with this overlap?

The last point is important in as much as it has been demonstrated [5] [88] that the 
data needed to find a good approximation model increases rapidly with the complexity 
of the chosen model family; by complexity it is meant the number of free parameters. 
It is fairly evident that a more sophisticated model is necessary to approximate highly 
convoluted class boundaries. For example, some nonlinear model using splines may be 
considered instead of a linear model. It is to this end that parent distribution bounds 
on the complexity of the model are investigated to assess how parameter estimation 
algorithms are affected by data class overlap.

Electronic nose systems output data which are often of a high dimension, sparse 
and noisy. It is for these reasons that the effects of noise and complexity are analysed. 
An understanding of these effects will aid the interpretation of the results in Chapters 6 

and 7 where black box techniques are used to analyse experimental data from electronic 
nose systems.

In the previous chapter the use of nonlinear black box models was examined, specif­
ically RBFs. It is with the application of these functions, and the resulting networks, 
that this chapter concentrates on. Here a type of RBF, which are rotationally in­
variant nonlinear functions, and so normally incorporate some width parameter a, are 
considered:

*(«„.,)-ff(J!2£2l!) (4.1)
It will be observed in Chapters 6 and 7 that real medical applications produce data 

with a great deal of noise (both as interference and ‘chemical noise’ as was described in 
Chapter 2), presenting significant challenges for discriminant model design. If electronic 
noses are to prove successful under such conditions, the effects of noise on discriminant 
models must be understood.

In this Chapter, these effects will be investigated via statistical modelling and nu­
meric experiments carried out by the author. As in all good experiments the noise will
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be controlled. The effects of controlled noise need to be observed so that, when a par­
ticular model fails to fulfil the criteria set it with respect to a real system, model failure 
may be understood. The extremes of model building need to be understood so that 
modelling techniques are used to analyse systems that they are capable of synthesising.

It will be noted how the data requirements for parameter estimation grow with the 
complexity of the model. Complexity grows with the input dimension of the model. 
Thus methods will be examined for reducing the dimension of the input data. This is 
justified in terms of the robustness of parameter estimation and correlating signals.

4.1 Accuracy of a classifier

The empirical accuracy of an artificial neural network is well known, it is the number 
of correct classifications over the total number of data points presented. However this 
is empirical and so this is extended to a definition that includes the expected accuracy 
(that is if an infinite number of tests were carried out) of the network:

Definition 4.1.1 Accuracy of a Classifier The accuracy of a binary classifier neural 
network f ( x )  :  X  i— ► Y on a subset of X x Y  where Y  =  { — 1, 1} , such that the ordered 
pair (x, y) represents the input and target outputs ,is defined as follows.

Accuracy[f ] =  1 -  ^E[||/(x) -  y\\] (4.2)

Note (that by the law of large numbers, and assuming an ergodic source), the empirical 
accuracy will converge to (4.2) point wise on the function space as the empirical data 
set grows in size [77].

This measure of accuracy of a model can be extended to a weighted error dependent 
upon the application. Note the factor of a half is included as a misclassification results 
in an error of 2. This is presented in the probabilistic models of this chapter.

4.2 Bounds on Performance

Of primary interest is the interaction between the empirical data, the training algorithm 
and the model family. That is, of interest is the information provided by the data to
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Figure 4.1: Schematic of the model building process. Here the experiments on the real 
system, model building and model validation are represented.

the model design process, the stability of the system identification algorithm and the 
generalisation ability of the model. The model building process is shown in Figure 4 .1. 
By resolving power of the data it is meant the amount of information the data provide 
to discriminate between two or more classes. This is not readily measurable, but it 
is obvious that what is measured and how many samples of these measurements are 
taken both contribute to the ‘quality’ or resolving power of the data set. These include 
such things as the amount of noise, outliers and the amount of information that has 
‘filtered’ through the system from the original sample. In the context of electronic 
noses it is taken to mean that, initially, the classification of a sample is absolute, it is 
either one thing or another. However, this classification is abstracted by sampling the 
headspace via gas sensors and data logging equipment.

There are theoretical, as well as practical, considerations for the resolving power of
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the data. In this section the interaction between the complexity of the network and 
the size of the training set is considered. The ‘learning problem’ is formalised and ways
that the accuracy may be theoretically bounded are reviewed.

The object of training a neural network using a sample of ‘typical’ data is to estimate 
the underlying discriminatory function that it is hypothesised lies inside our concept 
class. A concept class is a parameterised class of functions considered for identification. 
In [5], and elsewhere, the required discriminant function is referred to as the target 
function. It is the hypothetical indicator that discriminates perfectly between samples. 
However, as it shall be seen, this is not a well defined function in general and hence 
is not attainable. Normally the concept class can only be assumed to be a very large 
class of indicators.

In using a neural network the search for a model is restricted to a particular family 
of parameterised functions, which is defined to be the Hypothesis Class. This is a 
matter of convenience as the list of free parameters uniquely determines the function. 
This bijection between real vectors and the hypothesis class allows us to train, store 
and analyse neural networks in an efficient manner. It also allows the complexity of 
the neural network that is sought to be adjusted [77].

Consider a nesting of parameterised families, sorted by complexity. This nesting is 
denoted by H„, where the number of free parameters is proportional to n: for example, 
in a neural network n might denote the number of hidden nodes. The nesting might 
be denoted by:

By considering a general training regime using least squares, the error, /[.], may be 
written [5]

Hi ç H2 ç . .. ç Hn ç . .. (4.3)

/ [ / ]  =  E[(y -  / ( x ) )2] =  E[(/„(x) -  / ( x ) )2] +  E[(y -  / 0(x))2] (4.4)

where fo(x) is called the regression function, defined by

(4.5)
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Figure 4.2: Representation of the learning problem. The boundaries represent the 
nested classes of functions. The outer-most is F, the concept class. Reproduced from [5]

where P (y|x) is the conditional probability of a sample having label y given the mea­
surement x.

From (4.4) it is obvious that the regression function minimises the expected error; it 
is the well defined function which resembles the input-output behaviour of the system 
the closest. However it can also be seen that the resulting error will be equal to 
E[(y — / 0(x))2]. This is the variance of the response, whereas the first term in (4.4) is 
the bias of the function. The variance, as will be seen, is a result of additive noise in 
the system.

Two properties are desirable: firstly that as n is increased, and so the potential 
complexity of the network, it is hoped that the hypothesis class will come ‘close’ to 
/ 0(.). Secondly, it would be desirable that as the number of training points is increased, 
m, in a fixed hypothesis class, then the empirical minimiser will converge to the best 
approximation in the class. If we call the empirical minimiser / n>m € H„ then these 
concepts are illustrated in Figure 4.2.

In [5] the three errors shown on this diagram were formalised in the following way: 

Definition 4.2.1 Generalisation Error The error between the learner hypothesis and
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the target function, found by minimising the empirical error, is called the G enerali­

sa tion  Error.

Definition 4.2.2 Approximation Error The error between the best hypothesis hn and 
the target function is called the A pproxim ation Error.

Definition 4.2.3 Estimation Error The error between the learner and the best hypoth­
esis is called the E stim ation Error.

Hence the estimation error is due to the finiteness of the training set, and the 
approximation error is due to the assumptions built into the neural network topology.

Definition 4.2.4 Sample Complexity The amount of data needed to minimise the 
estimation error is defined to be the Sample Com plexity; there is no exact measure 
of this except that the number of data samples required to minimise the error will grow 
with the complexity of the model.

It would be expected, as the training set is enlarged, that the estimation error is 
reduced. However, it is only known that the empirical risk is ‘close’ to the expected 
risk for each given function. In other words, the convergence is not necessarily uniform. 
Thus the fact that the empirical risk converges, by the law of large numbers, to the 
expected risk does not guarantee that the minimiser of the empirical risk converges to 
that of the expected risk. However it is shown in [5] that under certain conditions, 
that is by controlling the complexity of the model class with respect to the amount of 
empirical data available, this convergence is guaranteed.

An immediate consequence of this is that the size of the training set must grow more 
quickly than the complexity of the hypothesis class. There is a relationship between 
these two quantities which provides an upper bound on the generalisation error. It is 
thought that the complexity of model necessary is greatly affected by ‘overlap’ of the 
two classes being considered-the greater the overlap, the more refined the model needs 
to be. This will be observed when considering algorithm independent performance with 
regard to parameter estimation.

The difficulty of building a classifier stems from the fact that the training regime is 
an ill-posed interpolation problem. Any functions that interpolate the training points
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will have an empirical risk of zero, for example in [89] it is shown that Gaussian kernels 
are universal approximators. Hence, as the size of the training set is increased, an ever 
more convoluted function may be produced that fails to encompass the probabilistic 
structure of the parent distribution. This is due to the ill-determined nature of the 
problem. There is an equivalence relation on the space of real functions, where two 
functions are equivalent if they axe equal in value at each of the training points. To avoid 
this an assumption about the class of functions considered is made. This also provides 
the framework for producing a training algorithm and ensuring unique parameter values 
for the network.

For RBF Neural Networks the assumptions are mainly concerned with smooth­
ness [69] and complexity (see previous chapter), via the number of tunable parameters. 
Built into this is the implicit assumption that the regression function is realisable in 
this class of functions. Of course, with kernels any function is realisable, but it can 
only be estimated empirically.

The width parameters and the weights interact to set the smoothness. What is of 
great importance for the complexity of such neural networks is the size of the weights 
as demonstrated in [80].

4.3 Noise and Drift

It is necessary to consider how various pattern recognition techniques are affected 
by noise and sensor drift. By noise is meant the part of the signal that is due to 
environmental factors or information in the sample that is of no interest with respect 
to the system model design. This is assumed to result in some distribution mixture 
model.

From (4.4) it is apparent that the minimum error achievable is that when the 
regression function is used. How is the accuracy of this function affected? From its 
definition in (4.5), error occurs in regions where the distribution functions of the two 
classes overlap.

There is a specific measure of overlap already in existence- the signal to noise ratio. 
The relationship between this and the regression function’s theoretical accuracy will
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now be examined.

4.3.1 Mutual Subset-hood

The probability distributions of the classes, P(xjy), can be thought of as membership 
functions as in fuzzy logic. Here, how much these membership functions overlap is 
considered.

A membership measure is a fuzzy measure of ‘how much’ an element belongs to a 
fuzzy set. A fuzzy set is a set with such a measure upon it.

In the cases considered here, P(x\y) is the probability measure of how likely (‘how 
much’) it is that the measurement x  would occur given that it resulted from a sample 
of class y.

First some measures on membership functions are introduced:

Definition 4.3.1 Cardinality of A Fuzzy Set. The cardinality, c(A), of a fuzzy set A 
with membership function a(x) is defined as.

Definition 4.3.2 Intersection The intersection of two fuzzy sets is defined by the mem­
bership function:

Definition 4.3.3 Union The union of two fuzzy sets is defined by the membership 
function:

Conceptually a measure is desired which measures the similarity of the two sets, 
this is the mutual subsethood and is denoted E(A,B).  That is to say the mutual 
subsethood should measure:

(4.6)

(A fl B){x) =  min{a(x), 6(x)} (4.7)

(A U B)(x) =  max{a(x), 6(1 ) } (4.8)

E(A, B) =  Degree(.4 =  B) =  Degree)4  C BandB C A) (4.9)
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where Degree(.) is a conceptual measure of the similarity of two sets.
The derivation of E(. , .) is omitted but the mutual subset-hood measure is defined 

as:

Definition 4.3.4 Mutual subset-hood The Mutual subset-hood of two fuzzy sets A and 
B is defined as

E(A,B) c(A n B) 
c(A U B) (4.10)

Consider now a mixture model of two normal distributions. In Figure 4.3 a mixture 
of Pci =  N (—5,2), which is labelled (Ci), and Pq, =  N(3,3), labelled (C2) is shown. 
These distributions are defined as:

P{x\x €  C i) =  PCl(x) (4 .11)

P(x\x € C2) =  P<q, (x )

It is assumed that these two distributions are known, and so the regression function is 
known. It is also assume that the two classes are labelled using binary labels { —1,1}. 
In area A, members of Ci will be classified correctly. This is also true for C2 in Region 
D. However in region B, elements of C2 will yield a squared error of 4, as will elements 
of Ci in region C. Hence it can be seen from 4.4 that the total squared error of the 
regression function will be

E[(y - /o(x))2] =

Hence we also find that

Accuracy [/o(x)

Thus an upper bound on the accuracy of the regression function, and so the max­
imum discriminant accuracy that can be obtained when discriminating between two

4 f  dPQ,(x) +  4 f  dPCl(x) (4.12)
Jb Jc

4c{A fl B). (4.13)

-  i - f c J o M Q  (414)

i c(Ci n c 2)
-  1 4 c(Ci U C2) (4‘15)

=  l - i p ( C ! , C 2). (4.16)
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set, is set by the mutual subsethood of the two classes. The larger the subsethood, the 
lower the accuracy of the regression function.

It is with this observation that the mutual subsethoods of two different distributions 
are considered.

4.3.2 Informal Concepts

In the case where the membership functions are probability distributions then c{A) 
c(B)  =  1. Hence the mutual subset-hood measure reduces to

E(A, B ) c(A D B) 
2 ( l - c ( A n B ) ) (4.17)

Considering the case of unimodal distributions, it is apparent that c(Ai)B)  is a manifes­
tation of the signal to noise ratio of the mixture model. Hence the mutual subset-hood 
is as well. This will be examined in the next section.
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Figure 4.4: Mutual Subsethood for different dimension n and class separation A.

4.3.3 Two examples of Mutual Subset-hood

To illustrate the above points consider two mixture models- two uniform distributions 
and two normal distributions. The extent to which overlap can bound the theoretical 
accuracy of any pattern recognition algorithm is demonstrated.

In an n-dimensional uniform distribution, points are distributed with equal proba­
bility on the set [0, l]n. Consider the case where n =  32. Two classes are mixed; one 
distributed on [0, l]n and the other on [i/, 1 +  u]n. The parameter v is referred to as the 
separation parameter. The mutual subsethood is thus

^ ' b) = 2̂ t€ f  <«*>
A plot showing the influence of v and the dimension, n, is shown in Figure 4.4. 

The first thing to note is that this is a monotonically decreasing function of v  on the 
interval [0,1]. The second is that it is also a monotonically decreasing function of the 
dimension n. This alludes to Cover’s theorem of separability in higher dimensions 

For a discussion of the effect on a normal mixture model the dimension is restricted 
to one in order to produce an intelligible expression. The classes are again labelled 
Ci ~  N(£i,a) and C2 ~  N(&, <?)■ It is assumed that the variance of the two classes is 
equal, and is of value a. Further, it is assumed that for the means, <  f 2. This is so
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as to make the resulting expression clear enough to glean some insight into the effect 
noise has on the overlap of two classes. A similar derivation is to be found in [90], but 
there the bell shaped Gaussian distributions have not been normalised to have area 
under the curve equal to 1.

Clearly the boundary of regions B and C in Figure 4.3, where one class becomes 
more probable than the other, is at x =  |(£i 4- &)• Hence it is deduced that

where

E(A,B) (4.19)

2 f x
erf[.z] =  — /  e~r*dr (4.20)7T Jo

It is noted that is half the signal-to-noise ratio, so that the mutual subset-hood
is a function of the signal to noise ratio. This is possibly due to the fact that a decrease 
in the signal-to-noise ratio will result in the two distributions overlapping each other, 
the result being misclassifications in both classes.

Two things are observed: the first is a manifestation of Cover’s theorem which states 
that a data set becomes ‘more separable’ in higher dimensions. This may be observed 
in Figure 4.4. The second is that the modelling task is dictated by the probabilistic 
nature of the classification problem. The mutual subsethood measure demonstrates 
that total separation of two data classes may be impossible depending upon the signal 
to noise ratio. It has also been demonstrated that the theoretical ability of a model to 
discriminate between two classes, and so the discriminate power of the data themselves, 
is dictated by the additive noise within the system. It should also be noted that, looking 
at the intersection of the two data classes in Figure 4.3, the regression function will 
become less smooth as the signal-to-noise ratio increases. This means that the target 
function within a given hypothesis class will be consequently less smooth, consequently 
more complex and so consequently more data is required to identify the model.

It is apparent that there will be some optimal model that may be identified as 
above, within any parameterised class the target function will be found, given total 
information of the data distribution. Empirically identified models will converge to this
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target in the limit as the data set size tends to infinity (if chosen using the probability 
distribution of the system).

This empirical identification is carried out using some computer based algorithms.

4.4 Tuning Methods

As discussed above, Neural Network parameter tuning is an optimisation problem. The 
parameters in the model are optimised against the empirical error.

A kernel map, for instance a Gaussian curve, is of the form

G" (x ' c) =  G ( f e 2^ !!- ) '  <4'21)

We call a the width parameter, and in a Gaussian curve it corresponds to the standard 
deviation. The parameter c is the centre of the function, and it can be seen in the 
Gaussian case that this corresponds to the mean vector. As is the convention, the 
parameters that describe the connections between nodes in the network are simply 
weights. An RBF Neural Network may be represented by:

M
f(x )  =  S ig n (^  WiGat(x, c *)). (4.22)

i= 1

One of the methods in the literature is the Support Vector Method, as discussed in 
the previous chapter. This uses a least squares error, with a penalty on large weights. 
However, both the width parameter and the maximum number of centres are fixed 
before optimisation. This represents a restriction on the class of functions that is 
allowed. The centres are chosen from the training data. The width parameter is 
identical for each node.

It is obvious though, from Section 4.2 that if the other parameters are made tunable 
then a larger family of functions will be realizable. It must be remembered that this will 
increase the sample complexity of the problem. At the moment there is no estimate of 
how data demands grow if the width parameter and centres are allowed to be adjustable. 
The different tuning methods are compared with respect to accuracy, data needs and 
speed in the next chapter.
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4.4.1 Back-propagation and Support Vector Machines

The Back-propagation algorithm was initially developed to tune Multilayer Perceptrons 
type neural networks. The term back-propagation first appeared in the mid 1980s. It 
is based upon the gradient descent method to minimise the empirical error on the 
training set. Each example is presented in turn and the parameter adjusted according 
to the error. To maximise the use of the training data, it is recycled through ‘epochs’ 
of training [68].

It has been noted [91], that the width parameter is very difficult to set with re­
spect to the SVM algorithm and greatly affects the accuracy of the resulting network. 
Figure 4.5 demonstrates this. Here the empirical accuracy of an SVM trained neural 
network is shown with relation to the width parameter.

In some cases the width parameter is set for each individual neuron. However, this 
complicates the problem computationally and so in this section only the case where 
all the width parameters are set to be equal is considered. There are several suggested 
methods for estimating the ‘correct’ value. One of the most compelling uses cluster 
analysis, as this takes into account the class of each point. It must be pointed out that 
there is a no water-tight definition of what constitutes a cluster. In [91] it is noted that 
at a fine level each data point is a cluster, and at a coarse level the entire data set is a 
single cluster.

Other methods gain their estimate from the distances between the points of the 
training set. For instance the average distance between points or the distance between 
the mean points of classes. These ad hoc methods are explored to see how they can be 
utilised to produce a computationally efficient method of setting the width parameter. 
The results are placed in context by finding the best value by systematically estimating 
the accuracy of networks for a range of values of a.

As finite data sets are dealt with here, the accuracy of the resulting network is 
always estimated. Figure 4.5 illustrates how the estimated accuracy of a SVM trained 
neural network changes with the width parameter a. First, what is meant by the 
‘accuracy’ of a neural network must be defined.

Definition 4.4.1 Empirical Accuracy of a Classifier The accuracy of a neural network,



CHAPTER 4. MODEL IDENTIFICATION I 85

Figure 4.5: Plot of Accuracy against a for the SVM algorithm.
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f(x), based upon a finite data set (x,, picked at random is defined as

Accuracy emp(f )  =
Number of Correct Classifications

(4.23)
N

It is hope that the empirical accuracy will converge to the true accuracy as the size of 
the data set grows to infinity.

Using this, what is meant by the optimum value of a may be defined.

Definition 4.4.2 Optimal a

where f a is the function representation of the network trained using the support vector 
method with width parameter a. The accuracy is the probabilistic expected value, but 
it is usually estimated using the empirical accuracy over a finite validation set. The 
law of large numbers dictates that this converges to the true accuracy as the data set 
grows in size; this empirical optimal cr is defined as follows:

Definition 4.4.3 Empirically Optimal a Is defined

There are only empirical means available at the current time to optimise a. However 
purely data driven methods do not offer any justification. It may be reasonable to use

to other RBF families such as splines. What is required is a model driven technique 
based on the distribution of the data. This can be applied by estimating the distribution 
from the training data.

4.4.2 A d  hoc methods

An ad hoc method is to use the average distance between points. There are two 
definitions of average distance:

cr0 =  arg maxa&i+\Q[Accuracy[fa]] (4.24)

oemp =  arg rnaxa€R+\0{Accuracyemp[fc}) (4.25)

the spread of training points for Gaussian kernels, this is not so intuitive when applied

N (4.26)



CHAPTER 4. MODEL IDENTIFICATION I 87

or

&emp — ¡ N ( N - 1) (4.27)

Consider a simple classification problem-a binary classification problem, which can 
be considered as a binary mixture of two distributions. Now, assume further that these 
two distributions come from the same two-parameter family. Denote the two classes 
Ci and C2 and let their respective distributions be represented by (Ci,cri) and ((2-^2)■ 
Let the probability distributions be as in (4.12) and further assume that

P ( x e C l) = p (4.28)

This gives

P(x)  =  pPCl (x) +  (1 -  p)PCt (x) (4.29)

Using this, it is necessary to derive the expected square distance between points.
Now

Efllx -  y||2|x,y G Ci] =  f [  Ilx -  y||2dPci(X)dPCl (Y ) (4.30)
L" Jr* J RN

<  [  f  llx  — Ci||2 +  IICi — y|i2dPci (XJdPc! (Y)(4.31)
J R N  J ^ N

=  2Var(PCl) (4.32)

Furthermore,

E[||x-y||2|xG C i,y  G C 2] =  f  H x -y lp d F c^ x ^ P ^ iy ) (4.33)
111 " JRNxR”

=  IICi - 6 ||2 + o-i + ct2 (4.34)

Again notice that the variance is of prime importance. It is apparent then that 
the distribution of two classes dictates the maximum possible accuracy of a model It 
may be concluded that data whose parent distribution exhibits convoluted boundaries 
between classes, or a great deal of overlapping of classes, represent more complex sys­
tems with regard to model building. This complexity results in more parameters to
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identify, requiring a greater amount of data than is available. This has been demon­
strated in Sections 4.3 and 4.4 to be algorithm independent, and dictated by the real 
system. Examining the models presented in Chapter 3, it is apparent that a method 
of controlling the number of free parameters would be to minimise the dimension of 
the input to the system model. The effects of these ad hoc methods will be seen in the 
next chapter. In the context of this thesis, this means reducing the number of sensor 
responses in the modelled system.

4.5 Data Set Reduction

The problems of high dimensional data, and the need to reduce the dimension of a 
data set, have been investigated for some time. Much of the work has come from 
the ‘intrinsic dimension’ point of view. This arises from the assumption of some co­
dependence between, or constraints on, the observed outputs of a system. This means 
the hypothesised probability distribution, and so sampled data, lies in some hyper­
surface within the output space. Thus a commonly used definition is that the intrinsic 
dimension of a data set is the number of free parameters in the minimal model that 
describes the set. However this model is not effectively known. There is also some 
confusion over this definition, for example in [92] this is taken to mean the subspace 
that the data lie in. Considering the case of data sitting on the surface of a sphere 
shows this to be untrue. The dimension of the surface, that is the number of parameters 
necessary to describe it, will be one less than the dimension of the vector space in which 
it sits, but the vector subspace in which it sits is the entire space. Thus for generality 
the data must be considered to reside in a surface and so a subspace is one particular, 
linear case.

The approach has therefore been to use tools that attempt to approximate this 
minimal model by making certain assumptions. The approach is to identify a mapping 
that lowers the dimension of the data set, inline with an assumed form for the sur­
face. For example, Principal Components Analysis (PCA) [93], the Summon map or 
some hierarchical cluster analysis [94] have been used for this purpose. PCA looks for 
directions along which the sampled data are varying. This commonly used algorithm
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outputs any number of these directions, or principle components, up to the number 
of dimensions, or the number of samples, whichever is lower. It is quite common to 
find that the first three or four principle components describe approximately 95% of 
the variance in the data [95]. So, for example, assuming linearity, using these new 
coordinates should encompass the majority of the behaviour of the system modelled.

A number of other techniques have been considered that avoid the need to identify 
the specific form of the surface m which the data sit and instead attempt to measure 
some concept of dimension directly. In [92] and [96] a fractal box dimension [97] method 
is considered that relates the resulting fractal dimension to correlation between the 
components of the data vector. Another related technique is proposed in [98] and [99] 
where the covering number of the set is measured in terms of kt/l nearest neighbour 
spheres.

In [100] the topological aspects of the problem are explicitly analysed, lower bounds 
are given for dimension reduction, based upon the assumption of the parent distribu­
tion lying in a smooth manifold. It is also explicitly stated that a preservation of 
topological properties is desirable. The most basic property is that inherent to most 
pattern recognition(PARC) techniques, which is that close neighbours should remain 
close under mapping, and remote points shouldn’t be mapped onto each other. Thus 
a continuous map is required.

There have also been studies of sensor selection using genetic algorithms, these 
being ideal due to the discrete nature of the optimisation problem. The chromosomes 
are binary coded to represent the presence or absence of a specific sensor. The sensor 
subset is optimised against some discriminant map. Quite commonly this is the linear 
discriminant map [101]. Another approach is to use a trial and error algorithm [102] 
Each sensor’s response is removed in turn from the full array, the one whose removal 
allows the greatest improvement in discrimination is permanently removed- the process 
is repeated on the subset until a degradation in the discrimination rate stops the cycle.

However, these genetic algorithms can take some time to run; the individual model 
identifications for each sensor’s removal takes a great deal of computer time. Studies 
report sensor reduction by about 60% which, for say 32 sensors, represents a great deal 
of computation. It is argued that the aims of rapid medical diagnosis dictate a stand
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alone unit for hospitals; certainly the processors demands should be limited as much as 
possible. We seek as simple an algorithm as possible to reduce the data set dimension, 
and to increase the accuracy of the discriminate models.

The Sammon map is a metric preserving map [103]. In fact the algorithm searches 
for coordinates in a specified lower dimensional space that preserve the inter-point 
distances. It can be seen that this technique will be most effective in reducing the 
dimension if the ‘intrinsic dimension’ of the data is much lower than the space in which 
they sit. For example data sampled from a system with a four dimensional output may 
all lie in a three dimensional subspace, hence the Sammon map can find 3D coordinates 
that retain the inherent metric information.

New variations of these two techniques will be considered. Dimension reduction will 
be performed before applying four different black box models: two linear, the other two 
nonlinear. It is apparent in this context that dimension reduction will be beneficial 
as any interdependence will mean there is not a unique solution for the set o f free 
parameters.

Besides normalisation, two approaches are taken, and both result in a linear projec­
tion. However we make a distinction in the following way. One approach is to analyse 
the information provided by each individual sensor channel of the electronic nose, rela­
tive to the rest. Due to this leading to a selection of the most informative channels this 
is referred to as Sensor Selection. The second approach is a more general deferral to the 
assumption of channel interdependence. A mapping which produces new coordinates 
in a lower dimensional space, which are a function of the original channels will fit with 
this assumption. This is referred to as feature extraction.

4.5.1 New set reduction methods

As a consequence of the discussion above, two novel data reduction techniques are dis­
cussed. It is assumed that not all sensors supply data containing information relevant 
to the discriminate task. There may be noise from the environment such as temperature 
effects etc. There may be information about other aspects of the sample. It is necessary 
to have a way of selecting some sensors, or functions of sensors, that reduce the dimen­
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sion of the input of the discriminant map such that the data set is sufficiently large 
enough to estimate the free parameters of the resulting reduced dimensional model. 
Here two different approaches are taken. The first is based upon the observation that 
any sensor, whose output is dependent upon, or correlated with, another sensor is re­
dundant to some extent. Indeed, if there is a mutual dependence between two sensors 
then the uncertainty of the output of one will reduce with knowledge of the output of 
the other. Hence it will have a smaller information content than if it stood alone; the 
greater the dependence, the less information supplied. An extreme case to consider is 
that where one sensor output is a function of another sensor. In this case, knowledge 
of one sensor will allow us to know the output of the other; it does not need to be 
measured directly. It can then be seen from this that there will not necessarily be a 
unique parameterisation. Thus, removing a sensor whose output is dependent upon 
others’ outputs will result in a better posed parameter estimation problem where a 
‘majority’ of the information content of the full output has been retained.

The first approach considered uses cross-correlation. This approach seeks to identify 
a sensor that correlates highly with a number of other sensors, this sensor being used 
alone to represent the group of correlating sensors. A few such sensors are sought to 
make the reduced input for the discriminant black box models.

The cross correlation technique, works as follows. The full correlation coefficient 
matrix is calculated. A corresponding matrix containing the sign of each of the coef­
ficient entries is produced. The sign is encoded as a one for a positive value, a minus 
one for a negative value and a zero for zero. The columns are then summed and sorted 
- giving a list of sensors in the order in which they appear to be correlating with other 
sensors. Sensors then are selected from this list.

The second approach adopts the Sammon map. As it is presented in the majority 
of the literature the Sammon map is not a map in the traditional sense. It is primarily 
used as a data visualisation tool, where the algorithm searches for coordinates that 
preserve interpoint distances in a much lower dimensional space. However, here this 
algorithm is extended and the algorithm output is used to estimate a linear projection 
to apply to a previously unseen data set so that the resulting model may be applied to 
data that were not used to identify the parameters.
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A projection is produced from the Sammon map by first applying the algorithm to 
a subset of the data. This results in a new set of coordinates in a lower dimension 
A projection is sought that produces these coordinates, which is a solution to a set 
of linear simultaneous equations. This projection can then be applied to new data to 
reduce the dimension whilst preserving metric information.

Formally, define D  to be the original data set and Dp to be the coordinates in a 
lower dimension that result from the Sammon map algorithm (we use the convention 
that samples are in rows and the outputs are in columns), then we seek a projection 
P  such that

P D r  =  D j. (4.35)

Hence by applying the Penrose-Moore pseudoinverse [104] of D T, D T+, then we obtain 
an approximation, Pq for the projection:

Po =  D jD T+ (4.36)

This projection Pq, it was observed in practise, produces results very similar to the 
Sammon mapping. However, unlike the Sammon algorithm, it may be applied to new 
data to reduce the dimension of the set. The only assumption being that the new data 
have the same distribution as the set used to produce the projection. This is justifiable 
as we assume this in applying the black box models.

4.6 Conclusion

A number of phenomena have been observed in the system identification stage of mod­
elling, where data and an assumed model interact to give a specific system model It 
has been noted that the complexity of a system, the required system model and the 
observed data are intimately linked; more complex systems require more data to iden­
tify them. This is a potential modelling problem due to this characteristic often not 
being known prior to data collection.

Previous research has pointed to there being an intrinsic bound on the complexity 
of a model that may be identified with any given quantity of data. Providing a measure
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of complexity is difficult and so the concept is defined relative to the application, often 
being manifested as a penalty term in the error function used for model identification. 
This phenomenon will be investigated in the next chapter.

Assuming discrete differences between the samples from which the observed data 
result, it has been concluded that not only does the additive noise in the real system 
limit the potential for discriminating between classes; it also increases the size of the 
data set necessary to successfully identify the system. Indeed, increasing overlap of 
membership functions requires less smooth maps; hence, a family of maps of greater 
complexity is required to realize the system’s behaviour. This phenomenon will be 
observed in Chapters 6 and 7, where actual reduction of input dimension of the model 
system, reducing the complexity, yields a greater successful classification rate. Hence 
the potential effects of noise should be considered early in the modelling process.

Therefore the following is noted. The input dimension to the system is an important 
factor in the complexity of a model as is the additive noise present in the system. 
Interdependence between variables has the potential to simplify a system that looks 
complex at first examination.

It is finally noted that model reduction, either by temporal order, or input dimen­
sion, may serve to increase the long term robustness of the resulting model. New 
techniques have been suggested and the above theory will be analysed in the next 
three chapters when they are applied to real world applications such as the screening 
of biomedical samples.



Chapter 5

Model Identification II: 
Optimisation algorithms for 
parameter estimation.

In the previous chapter, some theoretical observations were made on the data needs 
of system identification, that is the effect of the complexity of a given model. The 
most important observation was the large amount of data required to estimate the 
free parameters for a complex system; this complexity increases with the noise in the 
system.

How parameter estimation algorithms react in practice to noise in the data is of 
distinct interest. This is especially so when considering the data analysis results that 
are presented in Chapters 6 and 7. The practical implications of noise and model 
complexity are considered.

Parameter estimation is normally realised using some form of numerical algorithm. 
It would be preferable if it was known which algorithms found the best approximation 
of the theoretical optimal system under consideration. The way that these algorithms 
react to different data sets is also important.

All system identification in practice is inherently an optimisation process. By re­
quiring a model that ‘best fits’ the observed data implies the minimisation of such 
criteria as error between observed and simulated systems and complexity. Hence in

94
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practice, the algorithms used are based on generic minimisation techniques such as 
gradient search, Nelder-Meade simplex type searches and genetic algorithms.

In this chapter two novel applications of optimisation techniques to RBF network 
parameter estimation are prescribed. The performance of these algorithms is compared 
and contrasted with the support vector method discussed in Chapter 3 which makes 
use of standard quadratic programming procedures.

5.1 Parameter Estimation Algorithms

There are a number of different methods for finding minima of functions [105]. These 
may be characterised into three main types: those based upon the gradient of an an­
alytic function such as steepest descent [106], those based upon exploratory searches 
such as the Nelder-Meads simplex method; genetic algorithms occupies its own class, 
that of stochastic methods. The first two methods are based upon well analysed ratio­
nales. Their advantages as well as their limitations are well known. Primary amongst 
these limitations is the necessity of a good ‘first guess’ for the system parameters, that 
is the starting point for the respective algorithms to iteratively refine. The genetic 
algorithm is investigated as an alternative: it investigates all reaches of the allowed 
parameter space and so may identify many alternative solutions.

An RBF neural network of the form in Equation 4.22 is considered in these tuning 
experiments.

Each method is introduced below and a series of computer experiments are car­
ried out to assess the characteristics of the model optimisation techniques. The aim 
is to compare these three broad types of optimisation technique in terms of speed 
robustness, stability and the accuracy of the resulting tuned model.

5.1.1 Stochastic Gradient

A well established method of finding stationary points is the gradient descent (or ascent) 
method. This is an iterative algorithm. The cost function is written in terms of the 
tunable, or free, parameters. The gradient is calculated in terms of these parameters.
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At each step parameters are adjusted in the direction of the gradient in the parameter 
space. The rationale behind this is that the gradient vector is the direction of steepest 
ascent/descent.

In [107] this technique is applied to time series analysis. Gradient descent is used 
to minimise the squared error of the predictor. This is estimated, as discussed above, 
using the empirical error. The empirical error is a random variable for each function 
within the parameterised family considered, as the estimate is based upon a finite 
sample from the parent distribution. Hence the method is called a stochastic gradient 
learning method. The technique reported used a sequential training regime, whereby the 
parameters were adjusted using the error on one training point at a time. The training 

data were ‘recycled’ in epochs. The advantage of this technique, over, for example, the 
support vector method, is that no a priori parameter selection is required. The only 
selections left are the algorithm’s step parameters. These dictate by how much the 
model’s parameters are adjusted in proportion to the gradient.

However it was felt that when estimating a discriminant function it was necessary 
to consider the entire training set using a batch algorithm, so that one point can not 
have an adverse effect on parameter estimation. Thus the algorithm was extended to 
implement this.

The stochastic gradient method was easily modified by writing down an error func­
tion that measured the error over the entire training set. The error function needs to 
be continuous in the model parameters. Therefore the continuous error function of the 
form in (4.4) is considered. The empirical error function is written as

N

Iemp =  ~  f ( Xi))2 (5.1)
i=l

This is written as a function of the model parameters

lemp =  -femp(^l> ^2» • • • t ^m> ^li <72, • • ■ , <7m, Cj, C2 , . . . , Cm) (5-2)

where wt are the network weights, cq are the standard deviations of the Gaussian curves 
and Cj are the centres.
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From this and using the fact that
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where Hi are the step parameters, is obtained
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Here E  is the vector of N elements that represent the square error for each training 
point.

Thus the algorithm may be written as an iterative scheme
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There axe two more details to be considered. Firstly the choice of network pa.ra.m- 
eters, has been swapped for that of tuning parameters //¿. Secondly a rule is required 
to decide when to stop this iterative optimisation process.
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The first consideration consists, in itself, of two distinct problems; the step parame­
ters Hi and the seeding of the initial parameter values. The problem with the stepping 
parameters is that if too small a value is chosen then the convergence will be very slow 
with respect to the number of iterations, too large and the algorithm will over-shoot 
any (local/global) minima it approaches. These problems are likely to be sensitive to 
an order of magnitude of the Hi- However, the algorithm may be modified to reduce 
the stepping parameters if there is over-shoot. This may be detected by an increase in 
the empirical error. The training data may be used to seed the initial network centre 
vectors.

Stopping criteria for an optimisation algorithm are difficult to set. It is suggested to 
allow a sufficient number of iterations such that the empirical error reaches a stationary 
point, in other words a minimum. Another possibility would be to set a minimum error 
change between iterations, as is the case in many commercial packages.

It is now apparent why this algorithm is referred to as a stochastic gradient search. 
The cost function being minimised is empirical and so, as discussed above, is a random 
variable on the family of function HIra. Hence, minimisation yields a good discriminant 
function only in a probabilistic sense.

5.1.2 Genetic Algorithms

Gradient search is only an example of an algorithm for numerical optimisation. Gradi­
ent descent suffers from the possibility of converging to a suboptimal solution. In [108] 
it is suggested that some type of Genetic Algorithm might provide an improved method 
for tuning neural network parameters. Genetic Algorithms attempt to avoid the local 
minima problem by tuning a population of parameterised discriminant functions in 
parallel. The population is modified subject to a set of rules based upon Darwinian 
evolution.

Conceptually the algorithm implements a ‘survival of the fittest’ paradigm. The 
main aspects of biological evolution are represented within the algorithm. Firstly there 
is a ‘genetic’ code, which, in this case, is a binary string representing the model pa­
rameters to be estimated. Secondly a method of interpreting the genetic code genotype
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Figure 5.1: A one ‘Gene’ section of the Chromosome design.

to the model phenotype is necessary so that the fitness of the individual may be eval­
uated. In this case the fitness is based upon usual criteria for a model to be a good 
representation of a system’s input-output behaviour. Finally there must be a method 
for the mixing together of the characteristics of good individual models, that is, to 
breed the next generation of individuals from the previous generation.

For the algorithm design, the optimisation problem needs to be coded into what 
are called chromosomes. A chromosome represents particular values of all the param­
eters,and so represents a particular tuning of the model. Two main techniques are 
favoured: In [109] the parameters are coded as binary variables, whereas in [110] the 
genes are real numbers. The binary technique is appealing because when two chromo­
somes are mated by gene crossover there is no concern about mixing like with like. In 
the decimal case, due to representation there is this concern with the order of magni­
tude that each digit represents. This binary code is developed here and it is thought 
preferable to use the crossover technique as in [108], where transfer of genes is only 
allowed between corresponding parameters.

The approach taken here is the common one, to set the fitness function to be the 
reciprocal of the error.

A 20 bit binary encoding is proposed for each parameter. The conversion algorithm 
converts the 20 bit binary string to a decimal integer. This is divided through by a 
factor, dependent upon the number of bits in the representation, to give a real number 
in the range [0,10]. Further to this, the weights and centre components are off-set 
by -5 to give values in the range [-5,5], this is because negative weights are required 
to reproduce the data class labels and centres may need negative components This 
particular encoding is designed specifically for the artificial data test considered later 
on. A section of the chromosome is illustrated in Figure 5.1.
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In the design phase the mutation probability and the crossover algorithm have to 
be considered. Initially the mutation probability was set to a low value of around one 
in a million to one in ten million. However, it was found experimentally that one in 
one thousand was more realistic. This is because the effect of a mutation is sensitive 
to the position in the chromosome in which it occurs.

This parameter is very much like the step parameters in the stochastic gradient al­
gorithm: too low and there will not be sufficient variation in the gene pool to find the 
optimal solution; too high and the genetic information will be constantly corrupted. 
The high mutation rate is required because the binary coding is bit position sensitive. 
Dependent upon a bit’s position in the chromosome, a mutation can have a varying ef­
fect upon a particular parameter’s value. Also the model may have a varying sensitivity 
to perturbations of different parameters.

The crossover algorithm has similar subtleties. An early idea in this investigation 
was to randomly choose a start and stop position on the chromosome for crossover 
to take place. However it became clear in the course of the investigation that this 
‘scrambled’ the genotypes too much. It was therefore decided to limit the amount of 
crossover. The algorithm choose a section that is of the same magnitude of size as the 
bit length of the real parameter encoding. In this case a start position is chosen and a 
finish point is chosen no more than twenty bits away, this controls the amount that an 
individuals chromosome is ‘jumbled up’ .

Hence the design of a genetic algorithm for estimating RBF neural network param­
eters was developed. This was tested and compared with the stochastic gradient and 
SVM training algorithms.

5.2 Testing Regime

A testing regime was designed to examine the following points.

• The relationship between training data size, network complexity and final empir­
ical error.

• The robustness of the three optimisation techniques discussed above.
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• For the SVM, the relationship between a training set’s size and parent distribution 
and the optimal width parameter and number of centres.

The test data are from an artificial set constructed in 32 dimensions. It consists of 
a mixture of two uniform distributions with some degree of overlap. The amount of 
training data available and the maximum number of hidden neurons is varied. The aim 
is to illustrate the first point above. At the same time we will observe the robustness 
of the techniques via rate of convergence, premature convergence* and repeat runs to 
observe stability. Note that the theory above does predict potential for separating the 
two classes.

The overlap is set at A =  0.05 as in Section 4.3.3, which results in a set of extreme 
overlap. The test is purposefully hard, in fact harder than that posed by the ‘real’ 
data examined in later chapters. The reason is that here the aim is to examine data 
complexity issues and posing a problem that may be eloquently solved with minimal 

data and model complexity will not illustrate this satisfactorily.
It may be observed in the PCA plot of Figure 5.2 that there is a great deal of 

overlap in these test data. It is clear that there is no obvious discriminatory line that 
can be drawn between the clusters.

5.3 Implementation

The tests were designed to compare the stochastic gradient, genetic algorithm and 
SVM tuning algorithm, all of which are implemented in Mathworks MATLAB v5. The 
SVM algorithm was implemented by solving the weighted error function (3.30) using the 
inbuilt QUADPROG quadratic programming optimiser which uses a reflective Newton- 
Raphson Method [111] to optimise the network parameters. All that was required was 
to vary the width parameter and the bound on the size of the weights. This algorithm 
solves a constrained optimisation problem. The two other algorithms were implemented 
using MATLAB scripts written by the Author.

The stochastic gradient algorithm had its initial step size set by the user. However 

‘ When a numerical technique converges to a suboptimal, or local minima, solution
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Figure 5.2: PCA plot of a 200 point computer generated test set. Notice the large 
amount of overlap.
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it was found best to ‘step out’ along the direction of the gradient in increments of 
one tenth of a step size and judge from the resulting errors which fraction of the step 
size gave the largest reduction in model error. If there is in fact no improvement in 
the error then the step size is reduced by one half. This means that as a minimum is 
approached the step sizes are reduced to prevent overshooting as much as possible.

The genetic algorithm was implemented using MATLAB’s standard uniform ran­
dom number generator. Fitness was based upon the accuracy of the phenotype. MAT­
LAB’s standard random number routines were used for the stochastic aspects of the 
algorithm.

The chromosome crossing algorithm was modified to be slightly more complex than 
that introduced above. It was observed that, with the gene encoding implemented, 
there is an inherent symmetry resulting in the genotype to phenotype mapping not 
being one-to-one. This is because a reordering of the nodes in the hidden layer of the 
network architecture results in the same model; thus reordering genes results in the 
same network. This phenotype aliasing becomes a problem because two ‘fit’ chromo­
somes in the population may be converging to the same phenotype minima but have 
different gene orderings. If they are selected to be crossed then the result is that like 
is not crossed with like. This almost inevitably leads to a degradation in the quality 
o f the offspring.

It was therefore decided to use a selection algorithm based on the Hamming dis­
tance between two chromosomes [112]. Using the Hamming distance ensures that two 
‘close’ chromosomes do actually represent converging phenotypes with the same nodal 
ordering. Thus two individuals were selected and if their Hamming distance was less 
than 25% of the length of the chromosome string then they were paired off.

The rest of the algorithm was implemented as above. The user provided varying 
amounts of training data, set the number of nodes, the number of individuals, and the 
number of generations.



5.4 Results

CHAPTER 5. MODEL IDENTIFICATION II 104

In this section the results 8ie presented in t&bulsr form, detailing accuracy against the 
amount of data provided and the complexity of the model, measured via the number of 
nodes in the hidden layer. The SVM algorithm sets its own complexity so the resulting 
number of nodes is reported; along with ad hoc suggestions from section 4.4.2 for the 
width parameter and the actual optimal value for this parameter.

5.4.1 Stochastic Gradient

The test data used were those defined by the uniform distribution mixture discussed 
in Section 4.3.3 with A =  0.05. This represents considerable overlap. Training sets of 
varying sizes were produced, and the accuracy was estimated using a separate set of 
one thousand points.

Several observations were made when implementing the algorithm without variable 
step size. The most immediate being the difficulty of setting the step parameters 
Poor choices lead to phenomena like those illustrated (using real output) in Figure 5 3 
Here the algorithm heads for some local minimum and seems to orbit about it. This 
suggests two problems-either the step parameters are too large causing the search 
algorithm to overshoot, or the gradient of the error function is such that the minimum 
is unstable. This might suggest a saddle point. Unfortunately reducing the step size 
often resulted in no convergence at all.

Premature convergence was also observed. This was verified by re-running the 
algorithm, which generated new start conditions and converged to another solution. 
In fact in some cases divergence was observed for exactly the same training data and 
step sizes that also yielded good results. It is obvious then that the algorithm is quite 
sensitive to the start values of the training points.

By adjusting the algorithm to incorporate a variable step size, it was found that the 
algorithm became considerably more stable. An initial step size of 1% of the gradient 
was found to be effective.

The relationship between complexity and training data set size was investigated. 
The results are shown in Table 5.1. Note that some results are omitted as the algorithm
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(a) Example o f oscillation around a min­
imum.

(b) A second example o f an unstable min­
imum.

Figure 5.3: Error against iteration plots for the Stochastic Gradient algorithm. Here 
the step parameters were badly chosen, so overshoot and oscillation around a local 
minimum are observed.

took the training data as initial points for the centres. It was found that the choice of 
starting point, which was randomly generated by the algorithm, was very important 
to the consequent success of the algorithm.

The algorithm was extremely computer intensive. Some of the more complex runs 
took up to 5 days to run on a Sun Microsystems server. This length of time offsets the 
rather good results obtained using this method.

5.4.2 Genetic Algorithm

The behaviour of the implemented genetic algorithm was tracked generation by gen­
eration using the individual fitness as a characteristic measure; the accuracy of the 
best and worst individual in the population and the average. A number of interesting 
phenomena were observed; destruction of good genotypes; non-emergence of good can­
didates. These are similar to the cases of oscillation and premature convergence found 
in the analytic gradient search method.

As mentioned above, destruction of good genotypes was partly due to a symmetry
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Number of Hidden Nodes
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10 20 30 40 50 60
20 23% 50% - - - -
50 50% 50% 63% 67% 50% -
100 66% 67% 69% 69% 69% 69%
200 50% 50% 68% 67% 68% 66%
300 50% 53% 67% 65% 69% 69%
400 50% 50% 67% 70% 70% 69%

Table 5.1: Percentage accuracy of models obtained using the Stochastic Gradient search 
with respect to training data and complexity of network.

problem inherent to the chromosome implementation. However, there was another 
problem that was observed-poor fitness functions. It was found that putting the entire 
population forward for breeding resulted in a fairly large chance that poor genotypes 
were chosen for the crossover stage. It was therefore decided to put the top 50% of the 
population forward to this stage.

Non-emergence of good candidates, that is that the evolutionary algorithm fails to 
find good solutions, is due to two reasons. The first, which cannot be eradicated, is 
that the initial population contains few chromosome fragments of any value. However 
it would be hoped that, due to successive generations, something would emerge. This 
does not always happen. The main factor in the improvement of a base population 
is the mutation rate. There was found to be a significant problem in setting this 
parameter, too high and there was a succession of rise and falls in the quality of the 
population; too low and the population may never progress. It was thus a question 
of trial and error, but across network models of all complexities it was found to be 
optimal to use a probability of 0.05 mutations per bit per generation as the mutation 
rate. This appears to be very high, but this is due to the way the mutation algorithm 
operates by choosing a handful of bits and randomly choosing to transpose them, this 
being done to speed up the algorithm. This approximation would result in the actual 
mutation rate to be much lower.
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Number of Hidden Nodes
10 20 30 40 50 60

w
"S 20 60% 56% 50% 50% 50% 64%
oPh 50 50% 58% 53% 56% 57% 56%
bOA•g 100 57% 58% 54% 61% 60% 60%
• pHcG 200 50% 56% 55% 62% 61% 64%
t-*
6 300 60% 65% 65% 61% 60% 60%
& 400 63% 65% 64% 65% 63% 64%

Table 5.2: Percentage accuracy of models obtained using the Genetic Algorithm 
Method with respect to training data and network complexity.

The results for the complexity/empirical data comparison is shown in Table 5.2. 
The algorithm took up to two days to optimise parameters for one model. The com- 
plexity/data relationship is clear to see.

It can be observed that the genetic algorithm is not as successful as the gradient 
search, except, notably, on lower order models. It appears that this algorithm has 
difficulty coping with more complex optimisation problems. However it was much 
quicker than the gradient search code; the genetic algorithm proves useful in Chapter 10 
for finding good start values for ‘more traditional’ optimisation methods.

5.4 .3  Support Vector Machine

The SVM algorithm was tested in a similar manner to the two algorithms above. 
Training sets of varying size, and a test set of 1000 points was set up to investigate the 
behaviour of MATLAB’s QUADPROG routine.

The ad hoc distances between points were recorded, as was the optimum width 
parameter and the number of centres. Besides this the test was the same as above 

There are a number of things that can be noted from the results displayed in 
Tables 5.3(a) and 5.3(b). The first is that the larger bound (C in Equation (3.28))results 
in some over generalisation. This is because the network will tend to use less, but larger 
weights. This results in certain data points being picked as being ‘overly typical’ which
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Data set 
size

Accuracy No. Centres Triangular
Distance

Square
Distance

Best cr SD

20 63% 20 2.36 2.24 4.6 1.67
50 64% 50 2.32 2.28 3.7 1.64
100 65% 100 2.28 2.26 4.9 1.63
200 56% 190 2.32 2.31 2.6 1.64
300 59% 285 2.30 2.29 1.5 1.66
400 58% 356 2.30 2.29 1.4 1.64

(a) Support Vector Machine results. The bound on the weights has been set to C=  10

Data set 
size

Accuracy No. Centres Triangular
Distance

Square
Distance

Best a SD

20 57% 20 2.36 2.24 9.4 1.67
50 56% 48 2.32 2.28 4.2 1.64
100 62% 99 2.28 2.26 3.3 1.63
200 68% 183 2.32 2.31 3.4 1.64
300 55% 283 2.30 2.29 2.6 1.66
400 62% 356 2.30 2.29 3.0 1.64

(b) Support Vector Machine results. The bound on the weights has been set to C=100

Table 5.3: Support Vector Machine Results.
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A Accuracy Number of centres Optimal o
0.05 61% 188 3.5
0.10 74% 174 3.7
0.15 76.3% 127 4.2
0.20 92.3% 78 5.1
0.25 96.3% 67 5.2
0.30 96% 65 4.4
0.35 96.2% 58 5.4
0.40 98.5% 55 6.3
0.45 99% 46 6.4

Table 5.4: Results of a complexity study on the SVM algorithm.

may be observed in the size of the optimal width parameter. The second is that the 
routine seems to struggle with data sets which have more than 200 points in them. 
This is a numerical problem, as was observed in the above methods. It is hypothesised 
that, as the training set grows, in the limit a will tend to 0. This is because a large 
data set allows a more complex model.

A second test was to observe how the SVM algorithm adjusts the complexity of the 
resulting model when the ‘overlap’ of the data set parent distribution is varied. The 
results are shown in Table 5.4. The complexity of the network model is proportional 
to the number of nodes and inversely proportional to a [69].

It can be seen that the complexity of the model reduces as the parent distribution 
overlap reduces. Most importantly, a  reduces which means the resulting discriminant 
function implemented by the model becomes smoother.

Hence the behaviour predicted in the previous chapter has been confirmed:

• As the size of the training data set increases so does the model builder’s success. 
This is because more complex models may be robustly identified. •

• As the parent distribution becomes more simple the model becomes smoother 
as manifested in the increase in a.
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5.4.4 Discussion

It can be observed that complex models, though giving greater scope to fitting to 
experimental input/output data, can be extremely costly in terms of computer time 
and the amount of data required to ensure robustly estimated parameters.

This can be problematic for two reasons: the input to the pattern recognition 
algorithm may be of high dimension; the amount of data available may be limited. 
These are characteristics, as shall be seen, of electronic nose experiments, especially 
for biomedical or microbiological experiments.

It is becoming apparent that fixing the centres a priori to training is a good tech­
nique. This is for two reasons. Firstly the reduction in computational complexity, 
and secondly changing the position of a centre, but not the associated width or weight 
parameters, makes very little sense as far as probability distribution estimation is con­
cerned. This pragmatic approach will be seen to be beneficial in the next two chapters. 
Certainly it has been suggested in [77] that the Kuhn-Tucker conditions for optimisa­
tion imply that the centres should be taken from the training set.

It is apparent from the preliminary results that the error function is not very 
smooth, and may have a large gradient, even in a small neighbourhood of an opti­
mal point.

The Stochastic Gradient algorithm is not very sophisticated in its current imple­
mentation. The algorithm appears to try to interpolate all the data points and so yields 
very large width parameters. This increases the generalisation error when the resulting 
estimated function is tested against a novel set of data. It might be preferable to add 
some smoothness constraints that can be enforced by penalising large weight and width 
parameters. An improvement may be brought about by some analysis of the complexity 
of the model by using the Minimum Description Length principle [113] [114].

The genetic algorithm shows some promise, in that it runs much quicker than the 
stochastic gradient algorithm. However it obviously requires some modifications for it 
to be sophisticated enough to tackle complex parameter estimation problems such as 
those detailed here.

As a final thought on analysing the SVM algorithm, it is noted in [77] that sample
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complexity is influenced heavily by the radius of the image of the training set under the 
kernel map. It is conjectured that this is why the SVM algorithm can produce ‘worse 
than guessing results’ on sets with large overlaps between classes. In these cases a 
small value of width parameter is preferable, but this reduces the generalisation ability 
of the network; that is the complexity of the model increases as was observed above.

The results above in Section 5.4 demonstrate that Radial Basis Function Neural 
Networks can still be sensitive to noise in the data. It has also been demonstrated 
that large amounts of data are required to gain reasonable classification results. It ap­
pears that, with correct a priori parameter setting, SVM trained RBF ANNs are the 
most robust, and seems the favourite for parameter estimation. In the next two chap­
ters the insight gained from these computer experiments will be used to find optimal 
discriminant models from laboratory produced data.



Chapter 6

Bacterial Strain and Life Phase 
Identification.

In this chapter, volatile analysis using a quadrapole mass spectrometer, specifically an 
Agilent 4440*, is examined. The data processing techniques discussed and developed 
in Chapters 4 and 5 are utilised to good effect. The Agilent determines the abundance 
of molecules in the headspace of a biological sample over the mass range 46 to 550 Dal­
tons. It is investigated whether it is possible to distinguish between different samples 
by detecting only the volatiles that evaporate from each sample. To this end, three 
different laboratory experiments are carried out. The data are analysed using the black 
box models examined in Chapter 3. This is in order to measure the discriminant power 
of the laboratory data to identify the nature of the samples. Different aspects of the 
samples were recorded, these being the specific strain and life phase of the bacteria in 
the sample.

As discussed in the first chapter, headspace analysis has the potential to realise rapid 
medical diagnosis, cutting the time for diagnosis from days to minutes. This type of 
analysis does present certain challenges. The mixtures analysed are extremely complex 
and the accuracy and repeatability required for medical applications are extremely 
strict.

Here, three different types of data set are considered. This is done to demonstrate 

‘ Kindly donated by Agilent Technologies Inc., Delaware, USA.
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Figure 6.1: S. Aureus.

that the techniques outlined can be used to detect both structural and metabolic 
changes in a colony of bacteria without knowledge of the chemical constituents of 
the sample. These would be difficult to identify using a mass spectrometer given the 
complex mixture present in such biological samples. Instead of the mass spectrometer 
being viewed as producing a mass spectrograph signature of molecules it is viewed 
as producing a static response, like that of the relative change (2.2)of an array of 
gas sensors. From this view point it does not matter which output corresponds to 
which mass because the molecules which produced these responses cannot be deduced. 
Therefore black box models are suitable for this application.

All data were collected in the Department of Biological Sciences. The first data set 
consists of samples of two strains of Staphyloccocus aureus (Figure 6.1). One strain 
is antibiotic resistant, the other is not. These are referred to as MRSA (Methicillin 
Resistant Staphylococcus Aureus) and MSSA (Methicillin Susceptible Staphylococcus 
Aureus.), respectively. Cultures of the above two strains were grown in laboratory 
nutrient media. The second data type consists of E.coli (Figure 6.2) cultures measured 
at different growth stages. This is used to show how binary classifiers can be easily
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Figure 6.2: E. coli under the microscope.
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extended to multi-class cases. The final set is related to bacteria cultured in blood. 
This is to demonstrate that headspace analysis is successful in detecting pathogenic 
organisms within a biological sample, in this case, blood. It will also be noted that 
there is a great deal of information in the headspace of a sample, some of which is 
useful for discriminant analysis, and some of which is not.

6.1 The Problems of Antibiotic Resistance

Due to the emergence of antibiotic resistant micro-organisms, the rapid screening of 
microbial pathogens has become a crucial issue in clinical care. Staphyloccocus Aureus 
is a serious human pathogen responsible for many cases of septicemia and toxic shock 
syndrome [115]. Methicillin Resistant Staphylococcus aureus (referred to as MRSA) 
was first reported in 1961, soon after the antibiotic methicillin entered clinical use, and 
the pathogen is now becoming a major problem in hospitals. This pathogen is also 
responsible for mastitis in cows and sheep, with severe economic repercussions [116].

Not only has it become apparent that identification of the strain of the organism is 
important, but it is also necessary to be able to identify its metabolic state. This 
relates to the viability of a microbe and hence its response when challenged with 
antibiotics. Moreover, micro-organisms, including certain strains of Escherichia coli, 
display temporal expression of particular genes [117]. In the case of E. coli 0157, 
responsible for many cases of food poisoning, verocytotoxin gene expression is enhanced 
in dormant cells, i.e. a low growth rate stage.

Standard microbiological laboratory techniques require long incubation periods for 
bacteria that may be present within a sample. Presence and scale of infection are 
measured by the number of colonies in the growth medium. Species identification is 
normally through the use of staining agents, though this does not necessarily pick out 
a particular species. Identification is also possible by using modern PCR DNA ampli­
fication techniques. However, these techniques can be slow and expensive. Qualified 
and trained personnel are required to run the hospital laboratories. As a result, a full 
diagnosis may take up to three days to perform.

Blood screening is also very important. It is one of the major diagnostic tech­
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niques [118] [119] for infection and so, as above, rapid processing of samples would 
have major benefits. Quite often the practitioner is seeking evidence or not of bacterial 
infection. Hence, one of the studies detailed here attempts to simulate infection in the 
blood by culturing known species isolates in blood.

6.2 Experimental Method

It is therefore essential to be able to quickly identify metabolic and structural charac­
teristics of such biological material. A series of investigations were set up to enquire 
fully into the biomedical application of headspace analysis.

Three experiments were set up to test the hypothesis that there is a relationship 
between the headspace of a sample and the presence of bacterial organisms; the rela­
tionship with the metabolic state of cultures was also investigated. Integration of the 
Agilent 4440 into such an experiment is very simple. Samples for analysis are prepared 
in the laboratory and, in the case of the experiments detailed below, are in a liquid 
state. To introduce the samples to the Agilent 4440, 10 ml of each sample is placed in 
a 25 ml crimp sealed vial. The analysis process is automated by means o f a motorised 
hopper and a robotic arm which moves the sample vials between processes.

The aim of the experiments was to mimic closely hospital clinical conditions. Thus 
samples either were clinical (that is from real hospital patients), or were produced in 
such a way to be like those samples processed by a hospital laboratory. This procedure 
enabled the techniques to be validated in a reasonable way.

6.2.1 The Agilent 4440 Chemical Sensor

The 4440 chemical sensor (See Chapter 7, Figure 7.1) is produced by Agilent tech­
nologies but is marketed by Gerstel (Berlin) in Europe. It consists of two standard 
manufactured subunits, these being separately available. The first is an Automatic 
Headspace Sampler (AHS, parts number 7694). This device processes the samples in 
10 ml crimped vials. An oven elevates the temperature for 4 minutes, this being set 
by the operator, to allow equilibrium between the gas and liquid phases to be reached.
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The atmosphere within the vial is then drawn off, by puncturing a septa seal in the 
vial’s lid with a needle, and it is then passed on to a mass spectrometer.

The Agilent 5973N mass spectrometer is a quadrapole type unit. Molecular mass is 
detected using the selected ion monitoring technique. This means that only a particular 
mass range is recorded. The output of the device is a mass spectrum consisting of a 
total count for each molecular weight in the specified range. It should be noted that 
this count is only proportional to the total number of molecules harvested, it is not an 
absolute measure.

The advantage of using a mass spectrometer is that it will not be affected by en­
vironmental conditions such as temperature and humidity. The mass range monitored 
may also be set, rather than the entire spectrum being recorded. This particular unit, 
also maximises the number of volatiles driven out of the liquid phase. The range of 
46 to 550 Daltons was selected as it had been shown previously [117] that this range 
provided relevant information on bacterial activity.

6.2.2 Data Collection

The data were collected in the Department of Biological Sciences at the University of 
Warwick and were used for a previous study [117]. Headspace samples were formed 
by the injection of pure helium gas into a 25 ml vial containing 10 ml of culture, 
followed by robotic transfer of the sample vial into a heated stage and its stabilisation 
at a temperature of 80(±0.1)°C. The headspace was then injected into a quadrapole 
mass spectrometer. The headspace autosampler had a repeatability of about 0.25% 
by volume. The mass spectrometer analysed the mass content of the headspace with 
the range set to 46 to 550 Daltons and a resolution of 0.1 Daltons. The spectrometer 
can record individual masses but the abundance was typically 1,000s of mass units. 
The unit also contained a series of internal diagnostics to check ion gauge currents and 
vacuum levels. Figure 6.3 illustrates the experimental set up. The AHS settings are 
shown in Table 6.1.

The samples were introduced, at each time point, to the mass spectrometer. The 
Agilent 4440 heats the sample vial up to 80° for 4 minutes, and then draws off the
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Parameter Value
Zone Temperatures
Oven 80°C
Loop 90°C
Transfer Line 100°C
Event Times
HS Cycle Time 4 minutes
Vial Eq. Time 12 minutes
Pressurisation time 0.30 minutes
Loop Fill Time 0.15 minutes
Loop Equalisation Time 0.02 minutes
Injection Time 0.3 minutes
Pressure
Carrier Pressure 4.5PSI
Vial Pressure 14PSI

Table 6.1: Agilent Automatic Headspace Sampler 7694 settings.
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Classification

resulting saturated static headspace. This vapour is then passed to the quadrapole 
mass spectrometer for analysis. The whole process takes approximately 5 minutes. For 
more information see [117].

The data output is in the form of a mass distribution (called abundance) in the 
range here o f 46 to 550 Daltons. The abundance of each mass is the count of particles 
of that mass in the sample. The output data are logged on a PC running software 
provided by the manufacturers of the Agilent 4440 and analysed to see whether it is 
possible to discriminate between the different classes of samples. Each data point is 
labelled using the classification achieved following the methods detailed below.

The samples were classified in the laboratory using established methods. The meth­
ods were based upon samples being cultured in agar type dishes, classification being 
based upon number, size and colour of colonies if they are present.

6.2.3 Plated S. A u reu s

For the S. aureus data this was a case of checking whether a sample consisted of the 
required strain. This was easily checked as separate cultures of the two strains were 
taken from the Department of Biological Sciences isolates collection. The samples were 
taken at hourly intervals, so the data also contained information about the growth
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state of the culture. Two sets of experiments were carried out yielding two data sets 
with 68 samples in total.

6.2.4 S. A u reu s  Inoculated Blood

The experiments were carried out in the Department of Biological Sciences at the 
University of Warwick. The procedure breaks down as follows:

Preparation of Frozen Samples

In order to obtain a culture of a known value of colony forming units per ml, frozen 
aliquots of the various species considered were created. For each strain three universals 
were prepared using 10 ml-brain heart infusion (BHI) and one colony inoculated into 
each. These inoculated bottles were incubated overnight at 37°C and shaken at 75rpm. 
Following incubation one bottle containing each culture was removed, vortexed and 
pippeted in 1 ml aliquots into 1.5 ml Eppendorfs. The aliqouts were then centrifuged 
into a pellet (13000 rpm, 2 minutes) and the supernatant removed. The second culture 
bottle was then aliquoted in a similar manner into the Eppendorfs containing the pellets 
and the above steps repeated. The third bottle was processed similarly. Finally 1 ml 
BHI with 15% Glycerol was added to the Eppendorf containing the pellet and vortexed 
to create a suspension which was quick frozen to -80 C.

Inoculation of Blood Culture Bottles

All experiments were conducted in BacT/Alert SA (aerobic) (Biomerieux UK Ltd) ster­
ile culture bottles. The bottles contain 40 ml media plus an internal sensor that detects 
carbon dioxide dissolved in the culture medium. The media formulation consists of pan­
creatic digest of casein (1.7% w/v), papaic digest of soybean meal (0.3% w /v), sodium 
polyaneatholesulfonate (0.035% w/v), pyidoxine HC1 (0.001% w/v) and other complex 
amino acids and carbohydrate substrates in purified water.

Microorganism presence and the consequential production of carbon dioxide results 
in a colour change in the gas permeable sensor at the bottom of the tube.
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The culture bottles were injected with 10 ml blood immediately prior to use to 
recreate a clinical situation of adding a patient blood sample. 10 ml of blood is rec­
ommended, although lower blood volumes can be used, recovery may not be as great. 
Dining the investigation experiments were conducted using defibrinated horse blood 
(no preservative)(Oxoid Ltd).

The bottles were inoculated using the above prepared microorganism pellets and 
incubated at 37°C and shook at 75 rpm to recreate the incubator used in a Hospital.

Preparation of Samples for the Automatic Headspace Sampler

The samples to be processed in the chemical sensor were transferred as 1.5ml aliquots 
in 10ml sterile fiat bottomed headspace vials (Agilent Technologies, Inc). Blanks of 
BacT/Alert SA and blood were run alongside inoculated samples in addition to BHI 
broth as standards to confirm the accuracy of the equipment.

A raw mass spectrometer output is shown in Figure 6.4. These data are from the 
screening of blood samples, though the same form of data was recorded for the other 
experiments considered in this chapter. Notice that there appears to be very little 
difference between the two classes of data, this can be observed in the normalised 
cumulative plot. This shows the cumulative abundance of the spectra, normalised 
against the total molecular count.

6.2.5 Growth Phase Analysis of E . coli

For the E. coli data, growth phases were identified via cell count and size [117]. The 
actual data are displayed in Figure 6.5. These were measured using a CellFactst I 
instrument, which measures the size distribution of particles in a liquid sample. For 
further background information on this system see [120].

Escherichia coli NCTC 10538 (a K-12 strain) was used throughout this part of the 
investigation. Cultures of E. coli were incubated aerobically in Luria Bertoni broth 
(LB) at 37°C whilst been shaken at 200RPM. E. coli were incubated in LB overnight 
and a final concentration of 106 cells ml-1 was obtained. The flasks were then incubated

tA  commercial cell counting and sizing device manufactured by Microbial Systems Ltd., UK.
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Figure 6.4: Typical mass spectra for positive and negative samples for the blood data. 
The bottom plot is a normalised cumulative plot which compares the two spectra.
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Figure 6.5: CellFacts data showing the change in cell and population size.

and shaken as before and samples drawn off at regular intervals to monitor the growth 
of the bacteria.

Samples were drawn from the culture at hourly intervals for the first 8 hours of the 
experiment and then at 24, 48 and 72 hours, respectively.

6 .3  D ata  Processing and Pattern R ecognition

As discussed in the previous two chapters, it is necessary to analyse the resulting 
experimental data with respect to some model in order to interpret the results The 
data were logged in the form of tab delimited text files which were read into MATLAB 
v5.3 for processing.

6.3.1 Principal Components Analysis for Data Visualisation
Principal Components Analysis (PCA) of the data sets collected was performed using 
MATLAB version 5.3 software. This was in order to visualise the data prior to pro­
cessing with neural networks. Figure 6.6 shows a PCA plot obtained from one of the
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S. aureus data sets, here ‘x’ represents a MRS A sample and ‘o’ represents an NCTC 
sample. It can be seen that the classes are not linearly separable. This is illustrated 
with a plot where the principal components have been selected using cluster separating 
criteria derived from the statistical, or Mahalanobis, distance [121], which is a metric 
based upon the variance within the data set. Two obvious outliers are also observed. 
These were not removed from the data set, on the grounds that the data sets were 
small.

Attempting to separate data clusters with a plot of the first three principal com­
ponents is made on the implicit hypothesis that the only variance present is due to 
the differences between data classes [122]. In reality there are a number of reasons for 
variation in the data, for example the measuring equipment may have some built-in 
error. In addition, samples that are used to estimate the parent distribution will not be 
perfect, for example in the case of binary classification, as they may have alternative 
features that are not of interest to this study. For example, when looking for struc­
tural differences in bacteria, there may be variation due to metabolic processes. These 
factors may result in the within-class variation being greater than that between-classes.

It was therefore necessary to find an algorithm to detect which principal components 
describe the greatest separation between two classes. In [122], it is shown that the 
Mahalanobis distance between two classes, based upon the kth. principal component, 
is a monotonic increasing function of the expression given in (6.1),

rv k (mi -  m2)]2Ait. (6.i)

Here /¿i and ¿i2 are the within class average vectors, Vk is the A;th principal component 
and Afc is the variance described in the direction of Vk.

Notice that if principal components are selected which describe a small proportion 
of the total variance it does not mean that noise has a bigger effect. The components 
are selected based upon statistically significant separation of classes and this will not 
be effected unduly by noise.

This suggests a very useful criterion for selecting the ‘best’ principal components to 
plot. Equation (6.1) is maximised over all principal components. A three component 
plot can be achieved by choosing the components which yield the highest values of
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Strain Symbol
MRSA o
NCTC +

S. Epidermis *
S. Warneri o
S. Simularis □

S. Haemalyticus ★
S. Lugdenensis $

Growth Medium .

Table 6.2: Key to Data plots 6.8(a) and 6.8(b).

(6.1)(as in Figure 6.6(b)). In this way the distance is maximised between classes 
observed in the plot.

Looking again at the 3D principal components plots, it is evident that a multilayer 
perceptron neural network, using a linear hidden layer, would not accurately discrim­
inate between the two strains. In fact there are only sufficient data to train a very 
simple network. This is because a linear method estimates hyperplanes separating the 
two classes and it is apparent that here no such hyperplanes exist.

An examination of a PCA plot for the E. coli data in Figure 6.7 shows that these 
data exhibit stronger clustering. However there is still some overlap of classes. The 
arrows are overlaid to illustrate how the data are changing with time. There is obviously 
a relationship between the growth phase and headspace of a culture.

An examination of the PCA plots for the S. aureus inoculated blood shows a good 
degree of separation between the different species.

The result of the correlation technique of section 4.5.1 may be observed by compar­
ing Figures 6.8(a) and 6.8(b): note that separation has not been affected but the data 
may now be analysed using a less complex model form.
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(a) First three principal components (percentage variance ex­
pressed is also shown). The data used were the raw output 
from the Agilent 4440.

(b) Selected principal components.

Figure 6.6: Principal Components plots for S. aureus data file, ‘x ’ represents antibiotic

resistant cultures, ‘o ’ represent susceptible colonies.
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Figure 6.7: PCA plot of E. coli data, la—Lag, lo—Log, st=Stationary. Other points 
are labelled with their time key, so 24h=24 hours, 48h=48 hours and 72h=72 hours. 
The arrows have been overlaid to illustrate the change with time.
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(b) PCA plot of blood data from reduced mass range, using 
three separate data sets and a correlation technique.

Figure 6.8: PCA plots of blood data. Refer to Table 6.2 for key.
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6.3.2 Radial Basis Function Neural Networks

The RBF networks considered here are binary prediction classifiers. One class is as­
signed the label T ,  and the other the label ‘-1’ . As the output of a network is a real 
number, this was achieved by using a three stage activation function. Thresholds for 
classification were set such that an output between -0.5 and 0.5 would be classified as 
‘Unknown’ . This activation function is given in Equation (6.2).

-1  t <  -0 .5
0(t) =  < 0 -0 .5  < t <  0.5 (6.2)

1 t >  0.5

It was felt this is a much better test of the accuracy of the network because it does 
not force the solution into two states; an unknown bacterial species needs identifying 
and the identification must be correct. The unknown region allows for the possibility 
that:

a) The sample is of an unknown species of bacteria.

b) The sample is of a known bacteria, but is sufficiently different for it to be incompa­
rable with the training set.

The networks discussed below employing Gaussian RBFs were implemented in 
MATLAB. The scripts were custom written as MATLAB has no standard tool box 
to implement the SVM training method described in 3.2.4. Also the decision to use 
our own code was based upon the control this gave, and the ease with which the data 
could be explored.

6.3.3 Model Parameter Estimation and Validation

The two S. aureus experiments yielded two sets of data files. These two data sets are 
denoted A and B to aid exposition. Set A contains 28 samples and set B contains 40 
In each set there were equal numbers of MRSA and NCTC samples. Networks used 
here were trained using the support vector method. This is a batch training regime.
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The E. coli data set consists of 32 data points. They were organised in duplicate 
pairs, in the sense that each sample was split into two, and placed in separate vials for 
sampling. The data were split up into 4 classes; the three main phases discussed above 
and a fourth phase called ‘Later’ . The ‘Later’ class consists of the samples taken at 
24, 48 and 72 hours. This fourth stage was introduced because these samples represent 
bacteria much further along the time scale than the other samples.

The E. coli data set consisted of 6 Lag points, 6 Log points, 14 Stationary points and 
6 ‘Later’ points. Hence it was necessary to extend the binary classifier. The simplest 
solution was to train a network for each class, each network recognising one class as 
being ‘positive’ and the others as ‘negative’. This therefore required four networks in 
total, but only a single element output. It also permitted independent training and so 
gave better performance of unsealed abundance data.

The four network outputs were combined into a four dimensional vector. The target 
output for each class was a positive value in the corresponding component of the output 
and a negative result in the other components.

Here a classification is ‘forced’, using the sign of the output, rather than setting 
thresholds. In the event of a zero output, we classify this as ‘unknown’. Hence the 
predicted result is the most positive component of the output vector. This was felt to 
be acceptable as the four classes are separated temporally and the classifications are 
based on ‘eye’ inspection of the CellFacts output.

The blood screening experiments yielded 78 data points. Instead of splitting the 
data into two sets, the leave-one-out algorithm was used.

6.3.4 Selection of Training and Validation data

The S. aureus data were collected over a full growth cycle so the data sets not only 
contained information on structural differences but also metabolic information [117]. 
To illustrate this the data sets are split into two halves, one containing early growth 
stage samples and the other containing later stages of growth. It must be emphasised 
that training and validating with two separate sets of samples produced on different 
days, the accuracy and the robustness of the resulting networks can truly be estimated.
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The E. coli growth phase part of the work only yielded one data set. However, as 
discussed above, the points are paired in duplicate samples. Hence two data sets were 
produced by splitting up the duplicate samples. These two sets will be referred to as 
X  and Y.

6.3.5 Setting the W idth Parameter

A problem yet to be satisfactorily solved with RBF networks trained using the SVM 
method is the setting of the width parameter, cr, of the radial basis functions, as was 
mentioned in Chapter 5. A balance must be met where the parameter is sufficiently 
large to represent the distribution of the class, but also small enough so that points 
from another class are not included.

Many techniques have been suggested for choosing <j (see [123] and [124]) such 
as the average distance between training points: as demonstrated in Chapter 4. In 
this chapter the accuracy of the networks was optimised by trial and error after using 
the average distance between points as a rough estimate. The width parameter was 
increased in increments, using the average distance as a guide, until the accuracy began 
to drop, then the interval defined by the last two values was explored using finer steps. 
Though simple, this procedure was surprisingly quick, requiring very few iterations and 
in doing this the computational time was kept to a minimum.

6.4 Results

The classification results of the models applied to the data from the three experiments 
are presented below.

6.4.1 Plated S. A ureus

For the S. aureus classification problem, all of the training vectors were selected as 
centres, suggesting an inherently nonlinear problem.

First, a network was produced using the first half of data set A, and validated with 
the second half. The results are shown in Table 6.3(a).
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Predicted

True Classification

M R SA (7) N C T C (7)

M R S A (l) 0 1

N CTC(O ) 0 0

Unknown(13) 7 6

(a) Results o f training with first half of 
data set A  and validating with second half. 
The accuracy is 0.

Predicted

True Classification

M RSA(IO) N CTC(10)

M R SA (10) 10 0

N C T C (10) 0 10

Unknown(O) 0 0

(c) Results o f training with first half of data 
set B and validating with first half o f the 
data set A. The accuracy is 1.

Predicted

True Classification

M RSA(10) N C T C (10)

M R SA (7) 7 0

N C T C (8) 0 8

Unknown(5) 3 2

(b) Results of training with first half o f data 
set A  and validating with first half o f data 
set B. The accuracy is 0.75.

Predicted
True Classification

M R SA (14) N C T C (14)
M R SA (14) 14 0
N C T C (14) 0 14

Unknown(O) 0 0

(d) Results of training with data set B (40 
examples) and validating with first set A  (28 
examples). The accuracy is 1.

Table 6.3: RBF Network Confusion Matrices for S. aureus Strain Identification. Ac­
curacy is defined as the number of correct classifications divided by the total number 
of test samples.

The prediction rate is very poor, and similar results were obtained from data set 
B. However, as discussed above, the data vary with growth phase. This means the 
network was trained to recognise early phase data, and so could not cope with later 
phase data.

To explore the growth phase information contained in the data the next regime 
employed involved training with the first half of data set A and validating with the 
corresponding portion of set B and vice versa. The results are shown in Tables 6.3(b) 
and 6.3(c). These results are much improved, especially when it can be seen that good 
validation was achieved against a different data set.
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Finally, the approach was extended to train over an entire set. Data set B was used 
for this test as it had the most training vectors. The result is shown in Table 6.3(d). 
Here a 100% accuracy was estimated.

6.4.2 S. A u reu s  Inoculated Blood

The blood data were recorded using the mass spectrometer. Due to instability in the 
measurement of the first two samples it has been found to be a useful data preparation 
technique to remove the first two measurements of each data file.

Applying an ARX model to the full data set was not suitable due to this being a 
very poorly determined problem, so data reduction methods were applied. By using 
the top 200 positively correlating masses, identified using the method described in 
Section 4.5.1 a cross validated accuracy of 94% was achieved.

Applying the hybrid model gave results of 80% accuracy. However, the best results 
were achieved by using the a projection obtained using the Sammon map and training a 
standard RBF network. This resulted in an accuracy of 100% success, cross-validated.

The results are summarised in Table 6.4 and are compared with a standard Multi­
layer Perceptron artificial neural network with 8 hidden nodes and one output.

6.4.3 Growth Phase Analysis of E . coli

For the E. coli data sets 65-70% of the data were incorporated as centres in an RBF 
neural network. Tables 6.5(a) and 6.5(b) detail the results using the two data sets. Here 
the result is not 100% accuracy; in fact accuracies of 68.75% and 81.25% respectively 
were obtained. It is evident that more data are required for accurate classification of 
this kind of multiclass problem.

It should be noted that, on the occasions when the prediction was incorrect, it was 
only shifted by one growth stage with respect to time. As the CellFacts classifications 
were (to a certain extent) subjective, the boundaries of each stage are undefined, i.e 
transition between growth phases is not completely determined.
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Blood
ARX Not feasible
-Corr ARX 50%
+Corr ARX 94%
RBF 71
Sammon RBF 100%
Norm RBF 75
Nonlinear Model 80%
MLP 50%
MLP+Corr 72%
MLP Sammon 65%
MLP Norm 50%

Table 6.4: Summary of Results for the blood screening as percentage accuracy. Note 
that the ARX model cannot be applied to blood data because there are too few data 
points to estimate the required number of weights.

6.5 Conclusions

Data have been gathered from three biomedical experiments using the Agilent 4440 
chemical sensor. The data were analysed using black box models in an attempt to 
‘separate’ data points from different classes. The models produced were validated 
using data sets separate to those used for parameter estimation. Classification rates 
were high- a demonstration of the combination of the above hardware and software.

The modelling process included data set reduction to keep model complexity to 
a minimum. It was found that this approach was very successful, though there was 
clear interaction between dimension reduction method and the various families of black 
box models. These observations have consequences for the computational analysis of 
electronic nose data.

The potential use of the Agilent 4440 in biomedical applications has been demon­
strated. It is apparent that there is information about bacterial presence within the 
headspace of biomedical samples. It is clear that in certain circumstances the combina-
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Predicted True classification

Lag(3) Log(3) Stationary(7) Later(3)

Lag(3) 1 2 0 0

Log(3) 2 1 0 0

Stationary(7) 0 0 7 1

Later(2) 0 0 0 2

(a) Results of training with set X  and validating with set Y. Ac- 
curacy=68.75%

Predicted True classification

Lag(3) Log(3) Stationary(7) Later(3)

Lag 2 2 0 0

Log 1 1 0 0

Stationary 0 0 7 0

Later 0 0 0 3

(b) Results o f training with set Y  and validating with set X. 
Accuracy=0.8125

Table 6.5: RBF Network Confusion Matrices for E. coli Growth Phase Identification

tion of techniques such as the Sammon mapping and SVM trained radial basis neural 
networks are capable of analysing the headspace of samples, so as to produce useful 
data.

The use of the particular black box models considered in Chapter 3 has been vali­
dated. They can cope well with nonlinear separation problems, the type that have been 
considered here. It has, however, been noted that some preparatory model reduction 
techniques are necessary; firstly to gain robust parameter estimation, given the amount 
of data available; secondly, to avoid the model incorporating noise from sensor outputs 
irrelevant to the problem at hand.

The content of information, relating to different aspects of a sample, within the 
headspace of that sample, has been demonstrated. It has also been demonstrated that
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the SVM model identification method, coupled with Gaussian RBFs, is capable of 
dealing with parameter estimation using small data sets. However, despite parame­
ter estimation appearing to have been robust, the accuracies of the models are only 
estimates due to the small size of validation data sets.

It may be possible, in the future, to consider strain and growth phase together. As 
discussed at the beginning of this chapter, this would be very useful, in particular, for 
the determination of the correct range of dosage of the appropriate antibiotics. This, 
of course, would require larger data sets for robust and safe applications.

In the next chapter a study for which a greater number of samples were available 
will be considered-screening for urinary tract infections. Conclusions drawn from that 
study will be considered and compared to those above.



Chapter 7

Urine Screening Using an 
Electronic Nose.

In this chapter the progress made during a large scale project to carry out headspace 
analysis of urine samples is discussed. It was decided to carry out a much larger 
exercise after the promising results gained from the relatively small data sets discussed 
in the previous chapter. A C320 electronic nose produced by Cyranosciences was 
also incorporated in the experimental set-up to test the use of cross-sensitive carbon 
black-polymer sensors. This unit is produced commercially by Cyranosciences. It is 
a self contained unit that incorporates pump, fluidics, valves, sensors and controlling 
circuitry. The unit is hand held and designed to be used in a variety of different 
applications.

The aim of the study was to ascertain whether it is possible to identify Urinary Tract 
Infections (UTIs) from the headspace of patient urine samples. UTI is a generic term 
for infection through the urethra and bladder, and as far as the kidneys. The terms UTI 
and bacteriuria, the presence of bacteria in the urine, and thus an important symptom, 
are intermixed in the literature [125]. In this study the definition of a positive sample 
is based upon evidence of an infection, not just bacterial presence, but also leukocytes 
(white blood cells) and erythrocytes (red blood cells). This is because leukocytes are 
an indication of an immune system response. Erythrocytes are indicative of internal 
bleeding and so are also an indication of infection to some extent.

137
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The reason for ‘in-house’ screening of the samples is due to them being delivered 
undiagnosed, which results in all diagnostic tests being carried out in parallel with 
headspace analysis.

Urinary Tract Infections are presently a widespread and commonly occurring med­
ical problem accounting for some 8.3 million visits to general practitioners in the UK 
every year (NHS statistics). This may be judged by the amount of literature published 
on the subject every year. It is estimated that in the year 2002-2003 some 400* or 
so papers were published on the subject. The literature covers a wide range of cases, 
investigations and uses of scanning for UTIs. It has also been suggested [126] that UTI 
screening may be useful for tracking other infections in intensive care units, such as 
antibiotic resistant bacteria.

7.1 Urinary Tract Infections

Urinary tract infections are caused by a number of micro-organisms [127]. For example 
E. coli, Klebsiella pTieuinoTiiae and Efiterobactev cloacae. There axe a number of specific 
complaints that fall under the UTI umbrella, these being dependent upon where in the 
urinary tract the infection lies. This form of infection is common and is responsible for 
a large proportion of visits to doctors’ clinics. These may also be caused in hospital by 
the insertion of catheter tubes.

Due to their nature, UTIs are difficult to identify conclusively. The only manner 
which has been proven effective is to carry out laboratory cultures, which can take 
several days. During the interim period [128] empirical treatment with antibiotics is 
normally prescribed. This is problematic as it can lead to antibiotic resistant pathogens 
(see last chapter). The problem is exacerbated by the fact that different organisms 
require different treatment protocols ranging from 3 to 14 days of drug therapy [129] 
This again may yield drug resistance if the course of drugs does not last long enough.

The cost in terms of time and money has not been fully estimated, except in the 
USA [130]. Here it is estimated it costs Si billion a year for health funding for treat­
ment. It is also estimated that a great deal of time is consequently lost from the

’ Estimated by a search on the Web of Science: www.mimas.ac.uk

http://www.mimas.ac.uk
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work place [131]. It can be assumed that the rest of the developed world has similar 
statistics. Thus the importance of such infections is demonstrable.

It was thus decided to carry out a study to see if headspace analysis could detect 
generic bacterial presence, this being rather different to the studies of the previous 
chapter which knew a priori of the existence but not the identity of the bacteria. 
Urine presents a complex variable mix of chemicals that relates to compounds that the 
patient has metabolised. Thus within this mixture will be superimposed compounds 
relating to bacterial metabolisation. The background constituents of urine include urea, 
glucose, protein and common salt. The problem then is trying to find the bacterial 
information in a sample when the size of chemical noise in relation to this is not known.

It was found early on that the Agilent 4440 was, in this case, not capable of pro­
ducing useful data in terms of discriminant model analysis, therefore only the C320 
data are considered here as a contrast to the mass spectrometry data of the previous 
chapter.

In what follows, experimental procedures, the nature of the data recorded and 
the discriminant problem are detailed. Further to this such techniques as Data Pre­
processing, Neural Networks and System Identification are considered in an attempt 
to provide systematic classification of the samples obtained. It is concluded that the 
analysis of the headspace of urine samples is a complex problem, but can be successfully 
solved.

7.2 Urine Sample Classification

Urine contains a wealth of information about the health of the body. In particular, a 
great deal can be inferred about the state of health of the bladder, kidneys and the 
urinary tract itself. To enable this, three key indicators in the urine are considered.

• W h ite  b lood  cell count - leukocyte (w b) White blood cells are a good 
indicator of an immune system response to infection. •

• R ed  b lood  cell count - erythrocyte (rb ) Red blood cells in urine indicate 
internal bleeding. This may be as a result of cancer.
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• Bacteria count The presence of bacteria suggests infection in the lower urinary 
tract.

These were measured using the CellFacts I (Cellfacts Ltd, UK) machine, as in 
the previous chapter. Further to this traditional plating methods were utilised. These 
methods identified the presence of bacteria, the proliferation via the number of colonies, 
and staining placed the species into one of two groups. These were yellow-orange and 
blue-green type staining. These presented themselves as potential labels for pattern 
recognition.

7.3 Connection of the Cyrano C320 in line with the 
Agilent 4440

A technique for connecting a modified C320 to the Agilent 4440 has been developed by 
Cyrano Sciences. An overview of this method is presented here. The Agilent 4440 is 
split into two submodules: the AHS and the Mass Spectrometer (MS). The automation 
o f the AHS is used to integrate the C320 into the existing set up. Figure 7.1 outlines the 
method of connection. The internal pump in the C320 has been bypassed, it is therefore 
important that the pump is set to low speed ( 40 cc min-1). Part of the headspace 
sample is diverted to the C320 by incorporating a 1:30 splitter (top of Figure 7.1) in 
the transfer line of the AHS, whereby the C320 received 30 parts of the sample for 
every part the mass spectrometer relieved. The pressure produced by the AHS will 
drive the sample through the sensor chamber. The baseline is provided by the AHS’s 
helium supply, as the purge inlet is connected to the splitter line as well.

The whole assembly is synchronised by the addition of new signal cables (bottom of 
Figure 7.1). The Agilent 4440 and C320 are both connected to the remote control port 
of the AHS unit. Tables 7.1(a) and 7.1(b) display settings suggested as guide-lines. 
These required adjustment once the C320 had been installed to ensure the units were 
synchronised.
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Figure 7.1: Schematic of integration of C320™ with Agilent 4440. Reproduced from 
Cyrano Sciences: Instructions for Special Use of Cyranose C320 with Agilent 4440 
Chemical Sensor.
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HS Cycle 60 seconds
Vial EQ 60 seconds
Pressurisation 20 seconds
Loop fill 9 seconds
Loop EQ 1.2 seconds min
Injection 20 seconds

Baseline purge 42 seconds
Sample draw 30 seconds
Sample purge 0 seconds

(b) C320 settings

(a) HP4440 settings

7.4 Experimental Method

The Department of Biological Sciences processed twenty five different patient samples 
in duplicate, three days a week. Headspace analysis was performed using the Agilent 
4440 mass spectrometer. Data logging was also automatic.

For a rigorous experimental design to be implemented, the following issues were 
considered.

7.4.1 Sample and baseline preparation

The samples as they were provided would not necessarily yield the greatest potential 
headspace, nor would purging from ambient laboratory air yield the most discrim­
inatory power. It was entirely possible that the sensors would respond strongly to 
substances that were to be found in all samples. This response may mask the presence 
of an infection. It is preferable to offset the baseline by treatment of the purge supply 
in such a way that there will not be a response to ‘background’ substances. Match­
ing purge and sample temperature is very important, especially as use is made of the 
AHS’s oven. If the sensors are too cool with respect to the oven then there is the risk 
of the sample condensing, thus possibly damaging the sensor array. Here methods are 
considered to control and amplify the sensitivity of the sensors via careful preparation 
o f the samples. These are standard aspects of electronic nose experiments
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(a) Sparging. (b) Humidifying without sparging.

Figure 7.2: Methods of humidifying the carrier gas.

7.4.2 Humidifying

A  great deal of the content of urine is water and the sensors of the C320 respond to this. 
Hence it was necessary to investigate if this had a great effect upon the device’s ability 
to react to important features of the sample headspace. In some circumstances it is 
necessary to humidify the purge supply to match that of the sample headspace. It may 
be tested whether this is necessary or not by comparing humidified with non-humidified 
measurements. If humidification is needed then an improvement in sensor response and 
the separation of data classes, as viewed with PCA, will be observed. Figure 7.2 shows 
two methods of humidifying the C320 purge air supply using ‘bubblers’.

The first method, (a), is very simple, however this will produce water in aerosol 
form, which can be detrimental to sensor performance. This can be avoided by using 
a 0.2/j.m polycarbonate or PTFE filter. This would reduce flow rate by a few percent, 
but will protect the sensors.

The second method, (b), will not be as effective, and to counteract this two units in 
series are needed. Also it would be preferable to use vials with a large cross sectional 
area to aid evaporation.
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7.4.3 Additives

It was debated whether to use additives to increase the volatiles driven out of the liquid 
phase of the sample. One simple method is to raise or lower the pH of the sample. 
However, as noted above, the chemical constituents of each sample are widely varying. 
This means that the pH of each sample would have to be ‘tuned’, to some preset level, 
by hand. Hence it was decided that this method would be to no advantage at all, as it 
would slow the experimental procedure down.

7.4 .4  Data Logging

Due to the proposed connection of a C320 unit to the HP4440, the data logging should 
be kept as automated as possible. The save routine in the PCNose software provided 
with the C320 allows adjustment of sample time and maximum duration. The routine 
also logs the status flags of the unit.

Dynamic data were required in order to assess the advantage of using the dynamic 
information to discriminate between samples at a later date. It was therefore decided to 
log continuously over the entire day’s run. The individual samples were then separated 
in the MATLAB environment using the cycle flags also saved by the data logging 
software. The only consideration then is how frequently to sample and how long the 
total run will take. The sensor responses were observed to be on a scale of ten seconds, 
and therefore a one second sample regime was chosen. This sample rate resulted in 9000 
entries for a 40 sample run, for which the available computer resources were sufficient.

7.4.5 Experimental Procedure and Sub Experiments

The following procedure was followed.

Checks before Commencing Each Experimental Run.

Before each run the level of water in the humidifiers, if used, should be checked. Periodic

replacement of the filter was required, and this was carried out as per the manufacturer’s
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instructions. It would also be sensible at this point to check that outlets are above liquid 
level so as to avoid introducing water into the C320 device.

As the unit will have been sat dormant for up twenty four hours, the sensors will 
have equalised with the environmental humidity. During the first purge cycle this 
moisture will desorb from the sensor surface, and so affect the signal output. This is 
what is described as the ’first sniff’ issue [132]. It is recommended in [132] to use the 
manual test option to run the pump continuously for five minutes. This is the ‘wake 
up’ cycle. As the motor was disabled it was simply a case of running the C320 for a 
few minutes before commencing the sampling run. The AHS device undergoes its own 
warm up cycle, so the ‘wake up’ cycle was easily implemented.

Data Logging

As in section 7.4.4 it was proposed to log continuously for the HP4440’s run. Therefore, 
all that was required of the operator was to set the sample rate and length, and to 
specify a filename for the data to be stored under. A desktop PC was set up with the 
logging software

7.5 The Effects of Humidity

Besides the standards used by the Agilent 4440 (J3-ionone and n-tetradecane) it was 
decided to use pure water and a boric acid solution as standards for the C320. The 
purpose of this was two-fold; firstly to monitor for sensor poisoning and secondly to 
investigate the response of the C320 device to humidity with a bubbler humidifying 
the carrier gas. Water and boric acid were chosen as they are both present in the urine 
sample but represented no use as far as discriminant power was concerned.

To assess the efficiency of the humidifier, and whether it was needed for the urine 
screening process, a series of tests was carried out. A single run of standards consisted 
o f six water samples and six boric acid solutions. Two runs were performed: in the first 
the bubbler was active whereas in the second it was removed from the experimental set 
up For the dry helium run a fresh micro-pore filter was used to ensure zero humidity
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and an air flow comparable to that with an active bubbler.
Data logging was carried out as standard with the sample rate set at once per 

second. Responses for all thirty-two sensors were recorded so that sensor selection 
could be performed at the data processing stage.

The dynamic data were then processed using the relative change measure (2.2). It 
was hoped to assess whether discrimination was aided by humidifying the purge supply.

Standard Principal Components Analysis plots were produced for the two sets of 
data and are shown in Figure 7.3. The top plot (Figure 7.3(a)) shows that, without the 
bubbler, discrimination is poor, there is no clear separation between classes. However 
the results gained by using the humidifier are no better with respect to discriminatory 
power. Figure 7.3(b) actually appears to possess less cohesion between points of the 
same class than in the previous plot.

Examining the C320 results for water and boric acid, Figure 7.4, demonstrates that 
the humidifier is not working to any advantage. There is substantial variation in both 
the water and the boric acid signals. It was hoped that the water data points would be 
tightly clustered, because humidifying the purge should reduce the sensors’ response to 
water. However, using the Mahalanobis distance, the derived selection of components 
does demonstrate that:

• Other components of urine other than water are detectable. In particular the 
C320’s sensors respond to boric acid.

• These two ‘standards’ are linearly separable.

The results of the urine screening experiment, which are shown in Figure 7.5 are 
now considered. Here screening with and without the humidifier are compared.

If these results are compared with the mass spectrometer data for the same sample 
set, it seems that the C320 was providing information on the nature of the samples. 
These plots are shown in Figure 7.6, and it can be observed that the two classes are 
quite heavily overlapped. Hence the HP4440 was not considered in this study.

Examining the actual time series plots the result of adding humidification can be 
seen. The response from sensor five was used because an examination of the Principal 
Components coefficients yielded this sensor to have the most varying response. This

I
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(a) PCA plot of data without Bubbler

(b) PCA plot of data with Bubbler 

Figure 7.3: PCA plots of water and boric acid standards
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(a) First three PCs (percentage variance (b) First 3 PCs from a different angle.
variance along the components is also
shown).

Figure 7.4: PCA plot of water and boric acid samples.

(a) First three principal components 
(percentage variance along the compo­
nents is also shown).
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(b) Plot using principal components se­
lected using Mahalanobis distance.

Figure 7.5: PCA results using the bubbler humidifier.
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(a) First three principal components 
(percentage variance expressed is also 
shown).
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(b) Plot using principal components se­
lected using Mahalanobis distance.

Figure 7.6: Plot of mass spectrometer data from humidifier test.

(a) Time series plot o f response to water. (b) Time series plot of response to boric 
acid.

Figure 7.7: Time series plot of C320 sensor 5 response. On each plot the upper curve 
is for the case when the bubbler was not used.
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(a) Response for water. (b) Response for boric acid.

Figure 7.8: Long term time series demonstrating return to baseline. On each plot the 
upper curve is for when the bubbler was not used.

was true for both data sets. Each plot shows the response of this sensor with and 
without humidification, where the response has been normalised by dividing through 
by the baseline resistance. The responses in Figure 7.7 show baseline on the left and 
the response when the sample inlet is opened. The first thing that must be noted is 
that in both cases of humidification the response actually drops below the baseline 
after twelve seconds of sample introduction. A corresponding drop is shown in the 
non-humidified responses. This is due to the headspace being exhausted, resulting in 
dry helium being swept across the sensors. Secondly the response with humidification 
is very small in comparison to the dry purge response. Hence in 7.7(a) the ‘dry to wet’ 
and ‘wet to dry’ response of the sensors may be observed.

Figure 7.8 is included to demonstrate that baseline is re-achieved after sample 
introduction and that humidification of the purge supply is not having an adverse 
effect on the sensors. However, it was apparent that it was not required.
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7.6 Data Preparation

The raw C320 dynamic data were read into MATLAB v5.3. The C320 data were 
preprocessed using the standard fractional change measurement (2.2). The first 4 
samples of each data file were removed as it appeared from PCA plots that these were 
commonly outliers (see also discussion of instability of the measurement of the first 
few samples in Section 6.4.2). CellFacts and plating information were provided by the 
Department of Biological Sciences in the form of a Microsoft Excel spreadsheet. This 
file detailed the following:

1. Sample Num ber. This is coded by run number and the position of the sample 
within that rim.

2. Cellfacts screen classification. This detailed whether, based on medical stan­
dards, the CellFacts hardware and software decided it had detected an infection. 
This column contained the values ‘Positive’ or ‘empty ’ .

3. Bacteria. This contained the CellFacts assessment of the bacterial content of 
the sample. The allowed values were ‘- ’ ,‘+ ’ and ‘4-+’ . These denote the absence 
of bacteria, the presence of bacteria and a very strong presence respectively.

4. R ed  B lood  Cell content. This detailed the number of red blood cells per ¡A.

5. W hite  B lood  Cell count. This detailed the number of white blood cells per
/xl.

6. Com m ents. Comments on the CellFacts run.

7. P lating + / - .  Stated whether plating had indicated the existence of bacteria in 
the sample.

8. C olour. Colour of the colonies, if any grew.

9. Com m ents. Comments on the plating results.
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Bacteria W B C + R B C Species C ellfacts+Plating
From To From To From To From To

- -1 >n n Orange -1 Negative -1
+ 1 <n n Blue 1 Positive 1

+ + 2 n n None 0

Table 7.1: Rules for converting text labels into numeric labels

Columns 1,6 and 9 were removed as they were not pertinent to automatic processing of 
the data. Columns 2,3,5 and 7 were filtered so that they contained classification in a nu­
meral form by the rules shown in Table 7.1. This was necessary for the implementation 
o f the neural networks for data analysis.

Further to this, a second labelling was applied to the white blood count information. 
It was decided to split the samples into three classes of low, medium and high white 
blood cell count. The boundaries were set at 50 and 300 counts per ¡A as these are 
national medical thresholds for urinary tract infection.

7.7 Preprocessing Of Data

The data contained a large number of different types of information. The aim of 
preprocessing should be to remove or minimise unwanted effects such as interference 
and noise. This noise could take many forms, for example:

• Equipment error.

• What the patients have consumed in the previous 12-24 hours.

• Illness elsewhere in the body.

A great deal of variability could also be due to the water content of the mine 
samples which dilutes the detectable masses and could alter the overall abundance of 
detected molecules.

Taking these effects into account, filters were designed to preprocess the data. The 
static data from the C320 were viewed as being points in a vector space. It was then
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assumed that this vector space could be decomposed into a subspace in which all 
the unwanted variation and noise lies, and an orthogonal subspace where our desired 
‘information’ resides. This is not entirely justifiable because the effects of noise sources 
1 to 3 above are not fully understood. However, it was necessary to investigate noise 
reduction techniques to maximise the quality of the processed data.

Henceforth in this chapter the term ‘noise’ is used to include all unwanted variance, 
from systematic, random and/or other errors.

7.7.1 Principal Components Analysis

The reason for performing PCA analysis here was to demonstrate that data classes 
were separable. PCA is considered here as a data visualisation tool.

7.7.2 Removing variation in Negatives

By the argument at the start of Section 7.7, negative samples provide reasonable es­
timators of the background noise. In theory, if there was no information in the urine 
besides that of the presence of a UTI, then all the negative samples should coincide; 
that is they would be ‘close’ chemically, and collectively represent a pseudo-standard 
urine mixture.

A mapping is sought that will remove most, if not all, of the variation in the negative 
samples. Two candidates are suggested:

1. A  Linear Translation: The mapping removes the component that is most 
typical of negative variation from the abundance vector.

2. A  Linear Contraction: A contraction in the directions most typical of negative 
variation.

In both cases PCA is used to identify the directions in which the negatives vary.
The former mapping is of the form T(v) =  v -  P(v), where P(v)  is a projection 

of the sample measurement v into a subspace that is spanned by the negative sample 
vectors. This is the subspace representing the noise. P(v) is calculated by transforming
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into PCA space and then back to the sample space, reconstructing using the PC’s as a 
basis of the ‘noise’ subspace. Hence the estimation of noise is influenced by the number 
o f ‘negative’ samples available.

This mapping is expressed as

T(v) =  v — LLr v (7 1 )

where L is the load matrix with the principal components for the negative samples in 
its columns.

The second mapping is a contraction, and works in very much the same way

where

S(v) =  LDLr v

D =

0 •••
o à o

V o ...

.. o \ 

.. o

JL / /

(7.2)

(7.3)

and the \ 's  are the eigenvalues associated with the principal components. This means 
that all the original principal components calculated for the negatively labelled samples 
are normalised to have unit variance. When principal components analysis is performed 
again on the full data set then this will not be true, but the variation in the negative 
samples will have been reduced relative to the positive samples.

7.8 Black Box Model Identification and Validation

The objective of this investigation was to see if it is possible to detect urinary tract in­
fections using the relatively fast technique of headspace analysis. The model reduction 
techniques previously discussed are used in order to obtain robust black box model 
parameter estimates.
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Output Classification
< -0 .5 No Infection
—0.5 <  x  < 0.5 Not sure
> 0.5 Infection

Table 7.2: Classification thresholds used for urine data

For the RBF neural networks the SVM technique was used to select the number of 
nodes in the nonlinear layer and the weights in the single node output layer.

The training responses were set to negative for ‘no infection’ and a positive output 
for ‘infection’. Classification thresholds for test data are shown in Table 7.2. These are 
the same as those used in the previous chapter.

A common value of <r, the width parameter, for the Gaussian kernels to use on 
all data sets was required. Thus code was written that tried a range of values and 
outputted the cross-validated accuracy for each value. These results are not presented 
here as in a typical execution of the algorithm 100 different values of a were tested. 
For an illustration of typical results see Figure 4.5.

ARX type models as well as Multilayer perceptrons were also implemented so that 
again linear and nonlinear models may be compared.

A data set of 183 points was generated by the experiments and the leave-one-out 
algorithm was used for identification and validation. Some experimental data were 
missed due the time set for the length of the experiment in the software for the C320 
device. This is not crucial however as it has no effect upon the data that were logged.

7.9 Implementation of the models

The data analysis models considered below in this chapter were implemented using the 
MATLAB System Identification toolbox. An M-Script was written that automatically 
considered a range of different order models.

A  number of pre-processing algorithms were considered. The first was an attempt to 
reduce the dimension of the input. Correlation analysis was performed to seek groups
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of sensors that were closely correlated. The ARX model is linear in the inputs and 
outputs, hence the sensors were ordered with respect to the absolute correlation with 
the output, that is the absolute value of the correlation coefficient. Starting with the 
highest scoring sensor, the correlation matrix is examined to see which other sensors 
correlate highly with it, these were then removed.

Secondly linear projections derived from the Sammon map are used. The Euclidean 
normalisation of data is also considered here.

7.10 Results of Data Analysis

The results of analysis of the C320 data output were as follows. Both fractional and 
absolute change are considered as static measures of sensor response.

7.10.1 Principal Components Analysis

A  principal components analysis plot is shown in Figure 7.9(a) using fractional change. 
Figure 7.9(b) shows the results of using the absolute change in sensor response. The 
nutrient medium plating techniques discussed above were used as the label. There is a 
great deal of overlap. Therefore pre-processing techniques are considered.

Figures 7.10(a) and 7.10(b) show the results of applying normalisation to the same 
preprocessed data set.

The translational and contraction type maps were applied to the C320 data. Fig­
ures 7.11(a) and 7.11(b) show the results of applying the translational mapping. It is 
clear that this has not aided the separation of the classes. The same is true for the 
contraction mapping, the results of which are shown in Figures 7.12(a) and 7.12(b)

7.10.2 Black Box Model Results

For the following, all classification success rates are measured by using the leave-one- 
out algorithm. That is the model parameters are estimated using all but one of the 
data points, this remaining sample is then used to test the resulting model. The process
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X10-1

(a) PC A plot of C320 data after using fractional change 
preprocessing.

x IO"*

(b) PCA plot of C320 data after using absolute change 
preprocessing.

Figure 7.9: P C A  plot of C320 data where x = ‘infection’ and o = ‘no infection’ .
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(a) PCA plot of C320 data after applying Euclidean nor­
malisation to the fractional change.

(b) PCA plot of C320 data after applying Euclidean nor­
malisation to the absolute change.

Figure 7.10: P C A  plot of C320 data where x=positive and o=negative. Here normali­

sation has been applied.
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(a) PCA plot of C320 data after applying a translation 
mapping to the relative change data.

(b) PCA plot of C320 data after applying a translation 
mapping to the absolute change data.

Figure 7.11: P C A  plots of data after translational mapping has been applied.
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(a) PCA plot of C320 data after applying a contraction 
mapping to the fractional change data.
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(b) PCA plot of C320 data after applying a contraction 
mapping to the absolute change data.

Figure 7.12: P C A  plots of C 320 data after applying a contraction mapping.
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Figure 7.13: Order against accuracy plot for 32 sensors

is carried out with each data point left out in turn. The classification rate is then the 
average rate over the entire set.

The urine screening experiment resulted in a set of 183 sensor responses from the 
C320. By using data from all of the sensors an accuracy of 65% successful classifications 
was attained using ARX as defined in (3.9). The number of sensors was reduced 
from 32 to 19 by using the most negatively correlating sensors, giving 67% successful 
classifications. The plots in Figures 7.13 and 7.14 show the relationship between order 
and accuracy, the crosses represent the positions of peak accuracies. The former is for 
the full array of 32 sensors and the latter is for the reduced 19 sensor set. Note that once 
sensor reduction has been performed, lower order models are preferred. This suggests 
that the sensors that have been discarded contained no information as regards the 
discriminant task and so only provided some false ‘trends’ that the model attempted to 
fit to. Here can be seen the manifestation of an overly complex model. Normalisation 
gave 60% successful classifications but when coupled with correlation (most negative) 
technique a rate of 71% was achieved.
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Figure 7.14: Order against accuracy plot for 19 sensors

RBF results on these data were 50% accuracy. Applying these correlation results 
to RBF networks it was found that a maximum accuracy of 65% was possible.

The hybrid NARX type model was considered and, setting q=3 and r=4 in (3.41), 
80% was the maximum successful classification rate achieved. Reducing the number of 
sensors reduced the successful classification rate to 73%. This was possibly because the 
hybrid model relies on distance between points, which the extra dimensions increase. 
Further, it should be noted that Radial Basis Functions have a regularising, smoothing­
like property which allows them to avoid over fitting.

The most impressive result was achieved by combining the Sammon map projection 
with a standard RBF network. A classification rate of 100% successful classifications 
was achieved. The results are summarised in Table 7.3.

7 .1 1  Conclusion

This chapter is closed with observations on the results obtained above with those of 
the previous chapter.

Two different types of data sets have been analysed using dimension reduction
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Urine
ARX 60%
-Corr ARX 67%
-|-Corr ARX 45%
RBF 65%
Sammon R B F 100%
Norm RBF 50%
Nonlinear Model 80%
MLP 38%
MLP+Corr 40%
MLP Sammon 10%
MLP Norm 63%

Table 7.3: Summary of Results for analysis of UTI data in terms of successful classifi­
cations.

techniques and black box models. A marked change (of the order of 30%) has been 
observed in the predictive power of the models after judicious pruning of dimensions.

The complexity and variability of the urine samples have been demonstrated. It can 
be seen that it is difficult to estimate the background chemical noise of the samples. 
The plots (Figures 7.11 and 7.12) for the negative variation reduction demonstrate this. 
However the model validation results suggest that it is unnecessary to perform such 
estimation.

The high order of ARX models necessary for the modelling of the original urine 
data suggests that the history of experiments needs to be taken into account, this is 
evidence of a time dependent system. This could mean anything from sensor drift to 
environmental factors affecting the sampling equipment, and also the samples them­
selves possibly changing over time in some sense. Why this is so for the urine data and 
not the blood data considered in the previous chapter could be due to the different 
sampling equipment used for the two experiments. The mine sample headspace was 
analysed using a C320 which uses chemical sensors which react with volatile molecules.
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The blood data analysed in Chapter 6 were produced using an Agilent 4440, which 
simply measures the distribution of molecular masses using a quadrapole mass spec­
trometer. Thus it may be that the C320’s response is dependent upon what samples 
it has interacted with previously.

It appears that correlation techniques work most successfully with linear models, 
such as ARX, whereas the Sammon map works best with the nonlinear models. This 
may be due to the nonlinear models using Radial Basis Function neural networks. 
These functions are spherically symmetric, hence distance information is important. 
With a linear model, using linear combinations of sensor outputs, correlation between 
sensors implies redundancy. However, it is unclear why negative correlation is most 
effective in the case of the blood data and positive correlation is effective in the case 
o f the urine data.

It is possible that the Sammon map works well as it is biased to conserve the 
distance between mutually remote points rather than neighbouring points, which would 
be hypothesised to belong to the same data class. Correlation is effective as it ‘prunes 
away’ redundant, correlating sensors.

The results for the various models suggest that separation between classes is in­
herently nonlinear; RBF based techniques faired much better than the linear MLP. 
In addition the SVM method is designed to avoid over fitting, whereas the MATLAB 
ARX algorithms are not.

The variation in the success of modelling techniques between this chapter and the 
last is due to two different systems being considered. The C320 electronic nose and 
the 4440 mass spectrometer operate on inherently different principles and so it is not 
surprising that the system behaviour is best represented by different black box model 
types.

These techniques still beg some questions. The first is that of the optimal dimension 
of the input into the black box model. As discussed above, lower dimensions result in 
a much more robust estimate of the parameters (an experimental problem). However, 
Cover’s theorem dictates that a high dimensional feature space is desirable! for maximal

tThe basis o f the proof o f this is the greater degree o f freedom afforded models on such spaces- 
assuming complete knowledge of the system being modelled.
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discriminant power. Hence an optimal dimension is a trade off between experimental 
ability (possibly due to physical constraints upon the observer) and the complexity 
necessary of a model to explain the input-output behaviour of the physical system 
‘sufficiently well’.

For the urine data, the least squares error of the Sammon map algorithm can be 
used to estimate how well the data fits into a given number of dimensions. In this way 
the ‘intrinsic dimension’, as discussed in Chapter 4, of the data may be estimated by 
looking at how much of the topological structure is preserved. The result of this may be 
compared with how much variance is described by each principal component resulting 
from PC A. Figure 7.15 shows this comparison for urine data, the same analysis not was 
performed for the blood data as it was too computationally demanding; the eigenvalues 
of each principal component are used to denote the variance. It may be seen that both 
suggest that the mine data may be reduced to just 3 or 4 dimensions.

The Sammon mapping technique focuses on using a family of projections for can­
didate maps. Thus it was assumed that the relationship between variables was linear. 
However it is conjectured that a family of nonlinear maps, perhaps RBF type maps, 
may result in a more efficient reduction in dimension in the case of nonlinear relation­
ships.

It should be noted that the definition of intrinsic dimension given above requires that 
the form of co-dependence of channels be known. At the very least some assumptions 
about the form of these relationships have to be made in order to estimate the intrinsic 
dimension. It seems then that this is another aspect of black box modelling, and 
requires the same in-depth analysis and investigation that has been afforded input- 
output models.

The work above suggests that data set reduction can improve the robustness of a 
model for discriminant analysis and that the specific method used is dependent upon 
both the data type and the black box model considered. It also demonstrates the 
success in applying headspace analysis to a biomedical problem.
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Figure 7.15: The two graphs demonstrate different ways of measuring the intrinsic 
dimension of the urine data.



Chapter 8

Mechanistic Modelling: The 
Response of Carbon Black-Polymer 
Composite Gas Sensors

In the previous chapters it was demonstrated that the response of gas sensors may be 
analysed in a static mode using black box models. These techniques have proven to 
be effective in predicting and classifying the form of the input, that is a sample, to the 
system given the output using inverse model identification. However, it has become 
evident that the systems under consideration are time dependent and nonlinear with 
respect to sample concentration. This may be observed in the PCA plots of the last 
chapter. Much of this dynamical information is lost when processing the response using 
static measures such as relative or absolute change. It may be possible to retain this 
important information if the system is analysed in a dynamic manner, the hope being 
that the discriminant power of the data, in conjunction with some dynamic model, 
would be greatly increased.

It has been suggested that the dynamic response of a gas sensor contains a great deal 
more information than the static response. To a large extent this is a vacuous statement 
as a static response, such as fractional change, may be extracted from dynamics, but 
the converse is, in general, not true. One way of extracting the dynamic information is 
to curve fit to experimental data using a mathematical model of the system. Thus in

167
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this chapter, a model is developed that can be experimentally validated. It represents 
the response of a carbon black-polymer sensor when it is exposed to a constant single 
species concentration.

First a novel model is derived based upon thermodynamic changes in the system. 
Having found that it agrees broadly with experimental observations, this is simplified to 
produce a model that may be used to analyse experimental data. These simplifications 
are shown to be sensible and be consistent with what is known about the system.

8.1 Physical Knowledge of the Process

It has been noted for many years [133] that when a polymer matrix mixes with a 
compatible solvent it increases in volume. This is often referred to as a ‘swelling effect’ . 
Advantage may be taken of this phenomenon by mixing a polymer with small carbon 
nanospheres (30nm diameter approximately). If the volume fraction of the carbon is 
sufficiently large (threshold percentage volume) then the result is that the composite 
material becomes a good conductor. Swelling, upon mixing with a solvent, will increase 
the average distance between the nanospheres, and so reduce the conductivity of the 
material.

Composite materials are interesting substances to model, not least because they 
exhibit physical properties that are unlike their components. Carbon Black-Polymer 
materials are polymers which have been mixed with small grains of carbon. If the 
volume fraction of the carbon is sufficiently large (approximately 25% [134]) then the 
material is electrically conductive. This watershed in the electrical properties of the 
material is called the threshold volume and is denoted pc.

The polymer component of the material can react and mix with other substances. 
These can be in a liquid or gas stage and, as this reaction is technically the polymer 
dissolving into the analyte, shall be referred to henceforth as a solvent. Absorption 
of the solvent causes physical changes to the composite material. In the case below a 
change in conductivity can be observed. This makes such materials attractive candi­
dates for gas sensor devices, mainly due to the vast range of polymers available with 
different specifities.
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Electrode

Carbon

Electric Field

Figure 8.1: Cross sectional view of conduction in Carbon-Polymer material.

Polymers frequently used include Polypyrrole, Polyethylene and Polyvinylchloride [135],
[136] and [137]. Blends as well as pure single polymer sensors have been considered 
experimentally [138] and [139].

Given the wide range of polymers used in such sensors, any dynamic model must en­
compass the important mechanisms which are common to a broad spectrum of different 
polymers. In this way the output of electronic noses may analysed and categorised.

The process breaks down into the two stages of solvent uptake and the resulting 
conductivity change. The conductivity of the polymer sensor is calculable, as demon­
strated later, by an integral of the electric flux between the two electrodes and the 
conductivity as a function of space, see Figure 8.1. The model is inherently one di­
mensional due to a number of assumed symmetries, these being that the concentration 
of the solvent is constant across the surface of the sensor and the electric field (see 
Section 8.6) is constant in the direction parallel to the sensor electrodes. These as­
sumptions greatly simplify this electro-magnetic calculations.

8.1.1 Mass transport in polymers

Early work on solvent solubility in polymers did not consider mass transport, but in the

main only considered steady state effects. One of the main, experimentally validated
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models is the boiling point model, which will be examined later in this chapter. This 
type of model predicts the steady state sorption of the composite material using the 
solubility of a given solvent in the polymer from which the composite is made. In [140] 
a survey is given of this model as well as an expression relating steady state volume 
fraction of solvent to boiling point temperature, actual temperature and mixing energy. 
In that study and also in [141] this model is shown to agree with experimental evidence.

There has been a great deal more experimental work on diffusion in polymers than 
theoretical studies. With the advent of such devices as Quartz Crystal Micro balances 
(QCM) there have been detailed studies of transport phenomena. In [142] a study 
was made comparing the validity of various sorption models, concluding that a Flory- 
Huggins type model agreed well with experimental evidence. Attempts have been also 
made to correlate mass transport with the physical geometry of the polymer [143] [144],

Experimental observations have suggested that diffusion is not driven entirely by 
the concentration gradient. Evidence includes a sharp diffusion front followed by a 
constant concentration [145], [146]. This rules out the possibility of a Fickian type 
flow. The major problem with diffusion equations adapted from heat transport is 
that it is assumed that all concentrations are equally likely, that is, that the medium 
allows concentrations that can tend to infinity. However, the swelling effect described 
above, along with associated thermodynamic changes, rules out this possibility. It is 
clear that these results suggest a variable diffusion rate that is dependent upon solvent 
concentration.

There have been some previous attempts to model diffusion, such as the steady state 
models found in [133]. Also there are a number of models considered in [147]. Some 
work has been carried out to predict the diffusion constant for given solvent-polymer 
interactions, for example [148] [149]. However these models still have deficiencies [150] 
and do not explain all experimental data.

For the mass transport of the solvent there are a number of considerations. The 
first is the cross linking of the matrix, which can introduce nonlinearity into the system 
via entropy changes. Briefly the solvent mixing necessitates a polymer conformation 
change, resulting in a volume change. The cross links result in a constraint on this.
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Hence it can be demonstrated* that as the cross link density increases, the volume 
change necessary to reach nonlinear swelling responses lowers. It is therefore assumed, 
for the moment, that the polymer matrix has no cross links. As a result for small 
concentrations the response will be linear.

A second problem is the ‘non addibility’ of volumes in real solutions [151]. By this 
it is meant that while mass is always conserved in a mixture, volumes are not. The 
resulting volume is difficult to calculate a priori and is due to the polymer’s non-ideal 
nature. Again it is assumed that at small concentrations, and so volumes, the solvent 
approaches ideality.

In previous models [152] [149], it was assumed that the polymer body did not expand 
significantly, so that there could be well defined boundary conditions. However, it is 
apparent that swelling, that has been reported to be in the region of five to six percent, 
would change the geometry of the polymer film. This should be taken into account as 
this again will have an effect upon concentration, and so mass transport.

8.1.2 Conduction Models for Carbon Black-Polymer 
Materials

The electrical properties of carbon black-polymer sensors have been investigated for 
the last two decades. A number of models have been suggested and these are discussed 
to justify the particular choice made for the model development.

Initially the interest centred upon the use of carbon black-polymer materials as an 
anti-static material until their vapour sensitivity was noted [153]. In this paper two 
conduction effects were considered to coexist: conductivity due the proximity of the 
carbon granules and electron hopping.

The first effect is achieved by considering the carbon granules forming an RC net­
work. At a low volume ratio of carbon, the conductivity is essentially that of the 
polymer. By increasing this ratio, a point is reached where the composite material 
becomes a good conductor. This is referred to as the percolation threshold, vp, and 
corresponds to the formation of continuous filaments of carbon granules through the

*In the Flory-Huggins equation the elastic term becomes more dominant over the mixing term
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polymer.
Percolation theory [154] is used to describe the distribution of these filaments based 

on a statistical model of the individual granules’ distribution. It is a macroscopic model 
which is most accurate near the percolation threshold. It also predicts the change in 
conductivity once the composite material contains a greater volume fraction of carbon 
black than the threshold value. Hence the conductivity is a function of the volume 
fraction of the carbon black granules.

Electron hopping, or tunnelling, is a quantum mechanical effect which can take 
place in the absence of physical contact between the granules. Here an electrical po­
tential difference exists between the granules. Thus this model considers microscopic 
phenomena and extends it to a macroscopic level by appealing to Effective Medium 
Theory [155]. Considering a statistical model that covers the whole of the composite 
material’s body it may be seen that the conductivity is again a function of the volume 
fraction of the carbon granules. The advantage of this model is that it is valid over a 
much wider range of carbon granule volume fractions than the percolation model.

In [42] it is stated that the primary effect is the percolation effect, however it was 
pointed out in [153] that this is only true when the volume fraction of the carbon is 
much higher than the threshold value.

To date much of the work investigating the conductivity of carbon-black polymer 
sensors has been experimental. The main aim of these experiments has been to charac­
terise the sensitivity, selectivity, and environmental effects of these composite materials 
as chemoresistors. In [156] the response of CB-PVC to chlorinated hydrocarbons was 
investigated. The vapour concentration was varied and it was concluded that these 
materials could be used as gas sensors.

In [42] and [136] this was extended by considering an array of different polymers. 
Again the vapour concentration was varied, but temperature was kept constant. It was 
concluded that, up to certain concentrations, the sensors responded linearly.

In [153] [157] it was noted that the temperature effects associated with these mate­
rials make composite materials good thermistors. Swelling is a function of temperature 
also. In [158] it was demonstrated that the material becomes especially sensitive to 
temperature changes near the polymer melting point. It was also demonstrated that
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the volume fraction of carbon dopant was critical in this matter. Near threshold volume 
fractions, the composite material was sensitive over a larger temperature range.

There has also been work investigating long term effects of the use of this type 
of gas sensor on the conductivity. Experiments reported in [135] studied the sta­
bility of the composite material’s conductivity under a temperature cycling. It was 
concluded that conductivity increased when the material was cycled from ambient 
temperature, up to near melting point, and down again. However it seems that the 
temperature/conductivity relationship is stable for lower temperatures.

8.2 Overview of the Model Dynamics

Consider the reaction between a polymer and a single chemical species. It is desirable 
to ascertain the rate at which a solvent absorbs into a polymer and hence a diffusion 
model seems sensible. In polymers there are two main effects to consider. The first is 
the major driving force behind any diffusion effect, that is the flux due to variation in 
solvent concentration from point to point. The second is a reluctance of the polymer 
to absorb due to cross linking between polymer strands. Put simply, there is a limit to 
how much solvent can be absorbed due the strands being ‘stretched apart’ .

It is expected that the same dynamics come into play when the sensor is ’cleansed’ 
by a purge supply.

The change in conduction is a result of this solvent absorption. The carbon grains 
will become correspondingly further apart and this will reduce the conductivity. A 
model will have to be developed that relates this change in conductivity to the ’swell’ 
of the polymer. An electron hopping model is chosen over the percolation model due 
to its larger domain of validity.

8.2.1 Some assumptions

As with all models, some assumptions have to be made. It is argued that they are both 
necessary and reasonable assumptions to make; necessary, as they provide a grounding 
point for our model; reasonable as any variation between the real situation and the
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assumptions below would produce small scale local effects. As the more global effects of 
conductivity axe observed only, such small scale phenomena will hopefully be irrelevant. 
The model described below will therefore assume the following:

A ssum ption I The composite material is homogeneous. This means that diffusion 
will progress in the same manner throughout the polymer. It also means that 
cross-linking is homogeneous in all directions.

Assum ption II Diffusion is a reversible process in the sense that the purge stage will 
leach all solvent molecules from the polymer. This implies there is no bonding 
process, only an absorption process.

A ssum ption  III The carbon content is above the threshold volume. The content is 
assumed initially to be sufficiently high so that the absorption effect never takes 
it below pc. This will avoid discontinuities in the observed electrical conductivity.

Assum ption IV  Only one chemical species is present in the solvent.

Assum ption V  The solvent molecules are taken to be spherical. This is because we 
would like a generic model and it simplifies the modelling process.

The effect observed is a body effect, so that any local inhomogeneities will will 
difficult to discern from experimental data (see Chapter 9). Assumption II has been 
observed experimentally many times and is illustrated in the timeseries of Figure 7.8, 
where the sensor returns to its baseline after ‘purging’. Assumption III will be assured 
during manufacture of the sensors by adjusting the volume fraction of carbon granules. 
Assumption IV can also be assured during the experimental validation of the model. 
Assumption V is an implicit assumption as no account is made in the model of inter­
action at the molecular level. Implicitly, the polymer and the solvent are assumed to 
be continua.

It is felt that these assumptions simplify the physical system without being too 
restrictive. It will be shown that they enable an analytical model of conductivity 
change to be derived.

A schematic of the processes involved within the sensor is shown in Figure 8.2.
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Figure 8.2: Illustration of diffusion in a polymer. Empty circles are solvent molecules 
and filled circles are carbon granules.

8.3 A  Nonlinear Diffusion Model I

Using the assumptions above a nonlinear diffusion model was derived by the author 
using the thermodynamic concept of chemical potential to drive the solvent flux. A 
derivation of such a model is given in Appendix A. If c(x, t) is the time and space 
dependent concentration of the solvent in the body of the sensor and N  is the swelling 
scaling factor then the resulting expression is:

Nc , AT- Ö C+  N-—  
ox ‘ - § 0 Ne)'

dx2 V2 (8.1)

which is immensely complex. To simplify this highly complex equation we assume an 
approximation to small concentrations of the solvent and use (1 -  x)£ «  (1 — ex) for
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small x. This yields

dc
di (8.2)

for some D. The derivation of this is also provided in Appendix A.
This is an extremely complex model for which as yet no analytical has been found. 

However (8.2) may be rewritten in the form

dc
dt

d_
dx (8.3)

to give

dc
dt

d_
dx

T^e ( d ' +  n
.1^0. V L

(1 -  Ac)5 1 - N c \  AT 
— ) + 3 (1

\ — 2 N ]Nc) 3 +  _ dc
dx_

(8.4)

for some D'.
The value of this D(c) is shown in Figure 8.3 for small concentrations. The concen­

tration is nondimensionalised as is shown for a random selection of parameter values. 
Notice that this model predicts the experimentally observed increased diffusion rate in 
regions of higher solvent concentration.

Boundary value problems with D{c) =  a +  be are extremely difficult to solve in 
general analytically. This would mean that any experimental validation would require 
some form of computer simulation, possibly using a finite elements numeric solution. 
Such simulation would be very time consuming, even on a ‘fast’ computer. It is there­
fore proposed to use as an approximation a stepwise constant function for D(c), which 
provides an analytical solution.

8.4 A  Nonlinear Diffusion Model II

Experimental evidence confirms the predictions of the above model, that diffusion in 
a polymer increases in solvent saturated regions. Further, such sharp diffusion fronts 
have been reported that a discontinuous relationship is implied. The diffusion rate at
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Figure 8.3: Concentration dependent diffusion rate derived from thermodynamic 
model.
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very low concentrations must be very close to zero to produce such a phenomenon. 
This assumed system behaviour may be analysed analytically, to produce a model that 
may be validated using experimental data.

8.4.1 Concentration dependent diffusion with one discontinu­

ity

A first approximation to the nonlinear diffusion process would be to set up a linear 
diffusion model with two region of high and low concentrations of solvent molecules. 
These two regions, delineated by concentration Cx , could then have two different 
diffusion rates, Di and D2 associated with them. That is, the diffusion is modelled as

where

dc d2c
m “  D (c)§ ?

D(c)
f  D\ if c { x , t )< C x , 

\  D2 if c (x ,t )> C x -

(8.5)

(8.6)

Further, at x — 0 there is a constant concentration of C\. In the sensor case, this is 
related to the solvent concentration in the sensor chamber. This form of diffusion is 
well studied and a good review may be found in [159]. Here the point of discontinuity 
of the diffusion rate in the polymer body, c(®, t) =  Cx , is denoted x =  X p(t) (this will 
be shown to be so below in this section). Figure 8.4 shows a schematic of this; the 
diffusion rate alters as solvent molecules diffuse through the surface of the polymer. 
The thickness of the polymer is marked as being ‘infinity’ as initially solutions to a 
semi-infinite domain problem are discussed.

Analysis of this problem is reasonably simple via a solution originally proposed by 
Neumann and first used in [160]. The proposed solution is

c^ x .i) C1 +  Xe rfV (D i< ) , (8.7)

c2(x ,i) -  Ct +  Berfv ( 0 j t ) . (8.8)
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Figure 8.4: Discontinuous diffusion coefficient X (t) represents the position of the dif­
fusion front.

For constants A, B, C i,C 2. Here Ci(x,t) is the concentration profile in the high con­
centration region (between air-polymer interface and boundary X v(t)) and c2(x ,t ) is 
the concentration profile in the corresponding low concentration region.

From this we have

Cj! = c 1(Xp(t)tt) =  C1 +  A e r i ~ 0 L .  (8.9)

For this to hold we must have

XP(t) = kpti (8.10)

and the constants A, B, Ci, C2 and k are determined by the boundary conditions and 
the two diffusion constants. This will be shown formally later in this section.

The assumption here is that the sorption and swelling of the polymer is much quicker 
than the diffusion process. Further it is assumed that the actual domain, the polymer 
film, does not change shape. However it is apparent from experimental evidence that 
this is not so. A model is therefore also considered where the domain changes.

8.4.2 The General Moving Boundary Problem in a Semi-infinite 
Medium

A more general moving boundary model may be formulated to take into account the 
moving interface due to swelling. The case found in [159] is presented, where the
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movement of this interface is proportional to the amount of substance transferred across 
the interface. It is necessary to introduce two coordinate systems that are stationary 
with respect to the two mediums.

Consider the polymer and the atmosphere, initially separated by the planes aq =  
x 2 =  0, to be separated at time t by the planes aq =  X 1(t),x2 =  X 2(t) (illustrated in 
Figure 8.5). There are three further conditions for this model:

• Equilibrium at the interface;

ci(X i) =  Qc2{X2) +  R

for parameters Q and R.

• Conservation of the solvent the interface;

• Constant of proportionality of movement,

-  n

(8.1 1 )

( 8 . 1 2 )

X 2 =  P X l (8.13)

In the full model developed below it will be seen that by setting R =  0 in Equation 
(8.11), Henry’s law is obtained, where Q  is the solubility of the gas. Further it will 
be seen that the assumption embodied in Equation (8.13) is superfluous as P  =  0- the 
atmosphere coordinate system remains stationary.

Using the particular solutions (8.7) and (8.8) and considering initially that the 
interfaces X\ and X 2 are fixed it is deduced that:

Ci(oo) -  Cl
=  1 — erf x x

Ci(oo) -  C i(0 )

c2(-o o ) - c 2 =  1 +  erfCi(-oo) -  c2(0) 2 {D2t)h

(8.14)

(8.15)

These are solutions for semi-infinite media, though it will become apparent that they

also will satisfy (8.11), (8.12) and (8.13).
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Figure 8.5: The general moving boundary problem. The two bold vertical lines repre­
sent the air-polymer interface X 2 and the diffusion rate discontinuity X±.

Now the case is considered where the movement of the media relative to the bound­
ary is caused by the transfer of diffusing substance across the interface. This is referred 
to as the Case A situation in [159]. It is only necessary to specify two out of five 
boundary conditions: Ci(oo), cfyO), c^Ax), c2(—oo), c2(0) [159]. In accordance with the 
assumption that the interface moves due to the influx of substance, this movement is 
expressed as

dX  i 
dt

dX2
dt S p i # !

dc2
dx2 X2=X2

+  c2{X2)
dX2 
dt

(8.16)

(8.17)

Here in both equations the first term in the bracket represents the flux across the in­
terface due to the concentration gradient and the second represents flux due to the 
interface moving relative to the diffusing substance. S is a constant that relates con­
centration to volume.
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Combining these with (8.12) and (8.13) gives,

T r { !  " * < * ) }  “  -  Cl(° )}  ( ^ )  * exp [ - ^ 1  (8.18)

where the rightmost two terms of (8.18) represent the derivative of the error function 
with respect to t. Also by setting x x =  X lt ci =  ci(X i) in (8.14) the following is

It is apparent that Equations (8.18), (8.19) and (8.20) are satisfied, if and only if 
X\ is of the form

Of course, here diffusion in the polymer is constant at a constant rate D x. It is

process of diffusion in polymers.

8.4.3 Model with Discontinuous Diffusion Constant and Ex­

panding Domain

In the following medium 1 (all with subscripts 1) is taken to be to be the swollen 
polymer and medium 2 (all with subscripts 2) denotes the atmosphere. Subcripts p 
represent unswollen polymer regions in medium p. Note X i does not change as the 
atmosphere does not deform. The time dependent interface between the atmosphere 
and the polymer is denoted X x (t) and the concentration front in the polymer by X p(t).

Note that the concentration profile in the atmosphere is of little interest, but it is 
present to provide boundary conditions and the moving interface.

obtained

(8.20)

X , =  2a(D,i)a. (8 .2 1 )

therefore necessary to combine the two models above in a novel way to simulate the
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The boundary problem is specified thus:

dc\ n d2Cl
dt Dl dx* ’ (8.22)
dc2 n d2°2
dt dx2 ’ (8.23)
dcp
dt -  D, d\

p dx2 (8.24)

Here £>i, Dp are the diffusion constants in the polymer for high and low concentrations 
respectively. That is, in the polymer

D =
Dp if d (x i) < Cx , 

Dx if ci(xi) > Cx .

The boundary conditions are set as 

and initial conditions are specified to be:

+  CqQ
dX i 
dt

dcp
dt

0

0
3-1 —2Cp

(8.25)

(8.26)

(8.27)

c2(0, t) =  co 

C2(X2, t) =  Co 

c2( -o o ,i )  =  0

c i(* i ,t )  =  cb<2 (8.28)

Cp(oo,t) = 0  

ci(Xp, t) =  Cx -

where X p represents the position of the diffusion front within the polymer.
Note that these are point initial conditions at the interface. It would be preferable 

to set more realistic conditions such as a constant concentration in the atmosphere
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(assuming good mixing). The following form for the particular solution is considered

c i(x ,t) =  Ci +  A I erf 

C2{x ,t) =  C2 +  -Serf 

Cp(x, t) =  Cp +  Cerfc

Xi
2 (D it)l 

x2
2 {D2t)h 

Xl
2 (Dp/) 2

— erf
2(Dii)2

(8.29)

(8.30)

(8.31)

where A , D, C, Ci, C2, C3 are parameters whose values have to be deduced.

8.5 Analysis of the Model

A series of analyses for different boundary conditions and assumptions of semi-infinite 
or finite media are presented below.

8.5.1 Semi infinite media

Given the candidate solutions (8.29), (8.30), and (8.31) the conditions under which 
they satisfy the boundary value problem above are analysed. Note first that Equations 
(8.22), (8.23) and (8.24) are satisfied as the error function is a standard solution of 
the diffusion equation for point initial conditions. Applying the boundary conditions 
(8.28) yields:

ci (X u t) =  CoQ

ci(X p,t) — Cx

C\ +  A erf

C! +  A[0]
2(Dit)\

Giving Ci =  Cx

— erf
2{Dit)h

(8.32)

(8.33)

(8.34)

c2( -o o , t) =  0 =  C2 -  B (8.35)

c2(0 ,/)  =  co =  C2 (8.36)

Giving C2 =  c0 (8 .37)

and B =  c0 (8 .33)
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Cp(-oo, t) =  0 =  Cp +  2C 

Giving Cp =  - 2 C

X n
2 {Dpt)\

Cp{Xp, t) =  Cx  =  -C p ^1 +  erf

For Equations (8.33) and (8.41) to hold is necessary that 

X ! =  2 a(Dxt)l>

, Vi >  0.

(8.39)

(8.40)

(8.41)

Xp = 2/J(At)J = >  4 - = 7 -̂erf
D fß

D.2 J

(8.42)

(8.43)

Applying the flux condition (8.26) and comparing with Equation (8.16) gives

A (Ei
\ 7ri

5 (  x l \  r^dX!
expi - i Drt)-B{rt) +q,Q-df (8.44)

S dt B \ n t )  ~  °-

Comparing (8.45) with (8.42) gives

" ( k ) x

Applying the flux condition (8.27) and substituting to equation (8.43) gives

(8.45)

/ D A 5 (  Xv \ ^ r < ( D^
U )  en - 3 t t ) + c ’

, x p
* t j  e x p { ~ m (8.46)

=  A D U M - P 2) + CpD l e x p ( - 0 ^  =  0.

Finally substituting (8.42), (8.43) and (8.45) into Equation (8.32)

coQ  — C x  =  A  e r f ( ( ^ ^  ^ ) - e r f ( / 3 ) (8.47)
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Thus from (8.41) and (8.47) one can obtain

_  ________ coQ ~  Ox_______

a !  ( ( % y  -  erfW

and

(8.48)

Cp (8.49)

Therefore all parameters, except ¡3, have been expressed in terms of the initial condi­
tions and the diffusion constants. However, by substituting (8.48) and (8.49) into the 
flux condition (8.27) this yields

cqQ — Cx

-((ft) ») eri(ß)
y  A 3 exp ( - ß 2) + Cx

erfP ( % )

-Dp exp

(8.50)
which is an equation in (3 alone. It is apparent however that this equation will have to 
be solved numerically for (3 due to the presence of error functions making this equation 
transcendental.

Prom here the case of a polymer film of finite thickness is considered and it is shown 
how ¡3 may be ascertained in another manner.

8.5.2 Finite medium with sharp diffusion front

The polymer film is assumed to be of finite thickness, y0, so that initially the domain 
of the polymer is the interval [~y0, 0]. Hence to move to a consideration of a finite 
medium the following condition in ( 8.28 )is changed to

Cp(~yo,t) =  0. (8.51)

The following is also assumed so as to allow an analytical solution to the finite medium 
problem

Dp =  0. (8.52)
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This stops rapid transport of the solvent past the base of the polymer film. Hence the 
flux condition at the X p boundary becomes [159]

- A ■DA’
V t )  6XP

3 ,
4 D^t = C;

dXp
dt (8.53)

Assuming the same form for the boundary, Xp, as in 8.43 then the following is deduced,

¿•si
Ö  "  ßexP [ß2] (8.54)

and in the notation above (Equation (8.31))

Cp =  —Cerf -y o
[2(Dptÿî\ (8.55)

That is that Cp(x, t) =  0 is the only possible solution of the form (8.31), which is to be 
expected given the diffusion rate is zero in this region.

Figure 8.6 shows the time evolution of solvent concentration throughout the polymer 
film as it expands into the atmosphere. The film/ air boundary is set at zero in the 
space coordinates, the film is represented by the interval [-10,0] and the air by [0,2]. 
It can be seen how the film expands into the air domain as the diffusion front moves 
through the film.

8.5.3 Steady state solutions in the swollen polymer

One simplification that will prove beneficial when calculating the current between the 
electrodes of the sensor (discussed in Section 8.6) is that of quasi-steady state in the 
swollen region of the polymer. Taking the initial and boundary conditions (8.28) as 
before, an approximate solution is proposed to be

ci(x, t) =  [(cqQ - C x
X p ~ x

X p ~ X  1 +  Cx- (8.56)

in the swollen region of the polymer.

It is immediately obvious that this expression satisfies equation (8.22) and the initial 
conditions (8.28). The flux conditions at X x and Xp need to be satisfied and so (8.26)
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Solution

_§LL

Time Coordinates Film Coordinates

Figure 8.G: Plot of solution to finite media problem. Here c0Q =  1, Cx  =  0.5 and a =  
q l fl =  — 1. The axes are nondimensional as the simulation is for random parameter 
values.
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implies that

~ D i M  ( S )  ‘  ( - $ ) - »  (8-57)

which is entirely consistent using our expressions for Xi and X p given in (8.42) and 
(8.43).

To ascertain the value of ¡3 one has to take into account the boundary conditions 
and the steady state solution (8.56). Let Ec(t) be the total amount of solvent in the 
polymer body as predicted by (8.56)

/ . \  _  _  y , .

(8.58)Sc(t) =  \[Qco +  CxMXrit) -  X M -

Then the amount of solvent absorbed at the boundary X\ must be gained be Ec(t). 
That is:

■¿[Qcq +  Cx ]
f dXj dXp

dt dt Qcq
dX i 
dt

By substituting (8.42) and (8.43) we get

a 1 Qco
ß = ~ 2 c ; a -

(8.59)

(8.60)

The constant a is known from conditions at the polymer/atmosphere interface and so 
¡3 can be determined from (8.60).

In Figure 8.7 a plot of the time evolution of the steady state solution is shown using 
the same parameter values as used in Figure 8.6. It can be observed that the solution 
is qualitatively and quantitatively similar to the analytical solution.

8.5 .4  Notes on the quasi-steady state solution

The linear expression (in x) in Equation (8.56) is only an approximation: it does not 
satisfy the diffusion equation itself. However the quasi-steady state has been used in a 
number of studies to great effect [161] [162). In [163] the error involved was investigated. 
Let F  be the concentration of free sites for the diffusing substance within the polymer, 
and let Cb be the concentration at the boundary (within the polymer). The errors 
which were calculated using numerical methods are summarised in Table 8 1
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Approximation

Time Coordinates
Film Coordinates

2

Figure 8.7: Plot of steady state solution to finite media problem. Here c0Q = 1, Cx =  

0.5 and a =  0.1,/? =  -1 . The axis are nondimensional as the simulation is for random 
parameter values.

F
O , Relative error
> 10 < 1%
= 10 S3 1%
= 5 ä: 5%

Table 8.1: Error values for the quasi-steadv state solution.
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It can be seen that, if there is an abundance of free sites, then the error is relatively 
small. For a solvent diffusing through a polymer the concentration of the solvent will 
be much smaller in relation to the polymer body, thus one would expect the error to be 
small. The percentage error of the steady state solution with respect to the analytical 
solution is shown in Figure 8.8, using the same parameter values as for Figures 8.6 
and 8.7. It can be seen that there is a peak error of 2.5% (excess with respect to the 
analytical solution predicted by the steady state solution) which propagates into the 
film. This is not a very large error, but its effect will be seen when fitting the model to 
real data in Chapter 10. This steady state approximation will be used to express the 
time dependent concentration profile of the solvent in the polymer.

8.6 Conduction within the Composite Material

An expression for the time and space dependent concentration of the solvent has been 
derived using the steady state approximation (8.56), it can now be used to derive an 
expression for the change in resistance of the polymer composite material. Consider 
a single electron hopping type model for the relationship between local concentration 
and conductivity. This is of the form

<T =  <T0exp(—Xs) (8.61)

where cr is the conductivity of the polymer, cr0 is the conductivity of the virgin polymer 
and Xs is a function of the local swelling factor. By assuming small concentrations 
(Xs ~  0), (8.61) may be linearised to obtain

a «  <r0(l -  Xs) (8.62)

In this model it is assumed that Xs is proportional to the volume change, NVP, which 
is proportional to the local solvent concentration, c.

Xs oc A Vp

oc c
(8.63)

(8.64)
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Percentage error

Film Coordinates

Figure 8.8: Plot of error of steady state solution. Here c0Q — 1, Cx  — 0.5 and a. 

01, /? =  —1
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Figure 8.9: The electric field in the polymer. 

Thus Xa may be written as

Xs =  Nc (8.65)

which is essentially Henry’s Law.
To calculate the current, i, flowing between the two electrodes of the sensor, it is 

necessary to integrate the conductivity against the electric field, E, over the surface 
L, bisecting the electrodes as follows

L
crEdL. (8.66)

In [164] an expression for the electric field, E, between two semi-infinite plane 
coplanar electrodes at a depth y0 in some medium (Figure 8.9) was derived. Over the 
plane x =  0 the x  component of the electric field is given by

E(0,y) =  -
7T

2 ur
y -------y 4

In the geometry of a finite film this must be adapted to

E(0,V) = ~7r (:y +  vo)2 - ^

(8.67)

(8.68)

because in the reference frame of the diffusion model, the surface of the film is (initially) 
at x  =  0 and the electrodes are at x =  — yo-
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Parameter Label Physical Characteristic

D i Diffusion rate in virgin polymer

d 2 Diffusion rate in chamber atmosphere

V Potential across electrode

vo Initial conductivity of sensor

co Initial solvent concentration in the atmosphere

Q Solubility of solvent in polymer

C x Threshold concentration for diffusion rate switch.

N Constant of proportionality between concentration and volume change

yo Initial film thickness

Table 8.2: Summary of Parameters in Model Output

Thus the corresponding current is given by

V  [ f Xp 
=  — v0

7T J - y o
(:V +  VO? -

2 i-è
dy +

rX i

f  (1 -  Nci)a0
JXr,

w4
(y +  ito) -  ~r

+ f  (1 -  Nd)cr0 
Jo

Assuming steady state, as in Equation (8.56)

(V +  Vo? -
w

dy

dy

(8.69)

i =
Vcr0 N  (CoQ -  Cx ) v  1 y - [XP [cosh 1(X l +  y0) -  cosh l (Xp +  y0)]Ai — Ap

[exp(cosh_1(Xi +  Vo)) ~  exp(cosh~1{XP +  y0)) -  y0 [cosh-1 (Xi +  y0) 

-  cosh_1(Ap +  yo)]}} ~  log2yQ -  NCX cosh_1(Ap +  y0) +  1 (8.70)

The parameters involved in this model are summarised in Table 8.2. A typical plot 
of the solution defined by (8.70) is shown in Figure 8.10.
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Figure 8.10: Plot of time line defined by Equation (8.70).
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8.7 Estimation of Parameters from Experimental 
Data

It has been shown above that the parameters in the diffusion model are uniquely 
determined by the initial conditions. The next question is which of these may be ex­
perimentally estimated by observing the current flow. Equation (8.70) has parameters 
representing several physical characteristics, and these are summarised in Table 8.2. 
However,they appear in such a way that they may not be uniquely determined, for 
example the product N cq occurs in several places, but the two parameters involved do 
not appear separately. The analysis is from the perspective of a single polymer-solvent 
interaction.

First, set

X\ =  h  f i  (8.71)

X P =  kpt* (8.72)

as per Equations (8.42) and (8.43)
As a further simplifying assumption, set

Cx  =  7 coQ (8.73)

because it is assumed that the threshold for the diffusion coefficient discontinuity will 
be set by the boundary condition.

It is assumed that 7 , relating Cx as a fraction of cqQ, is set prior to the experiment. 
For the parameters N , Q, and cq it may be seen by inspection that only the product 

N Q cq appears, and thus only Q and so only this product may possibly be estimated.
The same argument holds for Va0 in (8.70) and the fact that y0 may be estimated. 

Giving a total of six groups of parameters that may be estimated.
The parameters that are most ‘important’ are those that characterise the interaction 

of a given solvent with a given polymer: these being the diffusion rates, the solubility 
and swelling parameters. These parameters may be considered important as they are 
dependent only upon the material’s properties and not the specific physical set up,
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such as film thickness. This means they have use as far as the identity of an unknown 
solvent, use in a modified model, and validation of the model theory.

Prom the analysis above it seems that if a sensor is considered in isolation only, 
then the swelling parameter cannot be uniquely identified. In the next Chapter an 
array of sensors is used to validate the model in order to reduce the number of degrees 
of freedom in the free parameters.

8.8 Dependency of Parameters on Temperature and 
Humidity

In the above model it has been implicitly assumed that the system operates at a fixed 
temperature and humidity. To allow experimental work to investigate the validity of 
the model over a range of conditions the effects that these environmental conditions 
will hypothetically have on the parameter values are considered. It is assumed that 
variation of these parameters is over a much larger time scale than each experimental 
cycle so that the correlation of model parameters with temperature, etc., may be 
investigated.

8.8.1 Temperature

The conduction model (8.61) may be expanded to give

a =  a0 exp(—k(So +  As)) (8.74)

where So is the ‘normal’ gap in the virgin polymer. It has been observed in [135] that 
there is a good linear relationship between temperature and conduction. Therefore 
a dependence of So with the temperature in the form of a linear expansion model is 
incorporated:

So =  Soo [1 +  8(T — T0)] (8.75)

where Sqq and 8 are constants of proportionality and Tq is the baseline temperature.
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In [144] the correlation between a number of different parameters within polymer 
solvent-polymer transport was considered. It was found experimentally that the rate 
of diffusion, and so a and /?, increased with temperature.

The prevalent model for the relationship between temperature, T, and the partition 
coefficient, Q, is the boiling point model and takes into account certain properties of 
the two interacting substances. The exposition given in [141] is followed, amending 
where necessary to maintain consistent notation.

Let pi and Mi be the density and molecular weight respectively of the the stationary 
phase. Let p2 be the saturation vapour pressure of the solute vapour, 72 is the vapour 
activity coefficient (= 1  for an ideal solution). The following relationship holds

PiRT
0 = ^ -  (8-76>

Using Trouton’s rule and the Clausius-Clapeyron equation, the following expression 
relating p2 to Tb the vapour boiling point results [165]

logP2SS7- 7 - T‘ ( l 3 4 i r )  (8-77)

where t is the Trouton coefficient for the vapour. Thus, by taking natural logarithms 
of both sides of Equation (8.76) and combining with Equation (8.77) the following 
expression is obtained:

log<? = C' + 2 1 ( ^ 4 ^ )  (8 .78)

where C' is a constant. This was found to fit well with experimental findings [141]. 
Thus this would be the relationship one would expect to see between Q for the polymer 
and a similar relationship would be observed for the atmospheric solvent concentration, 
as the liquid phase in the sample jar has fixed concentration.

8.8.2 Humidity

The effects of humidity, water vapour etc, represent the interaction of a solvent with 
the polymer body. It is assumed that the variation of concentration, that is humidity, 
is such a long term trend that a steady state has been reached within the polymer.
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It has been found [166] that there is a linear to sigmoidal relationship between rel­
ative humidity at the surface and the steady state concentration of water within the 
polymer body up 80% of relative humidity. Furthermore in-plane mechanical strain 
was measured against concentration and, more importantly, surface relative humidity. 
It was found that that the relationship was linear to slightly concave, this concav­
ity perhaps resulting from nonlinearities in expansion near saturation concentrations. 
Thus humidity is introduced as another linear effect on swelling and modifying (8.75) 
accordingly gives:

So =  Soo[l +  0r ( r - r o )  +  0tf$] (8.79)

where $  is the relative humidity.
Thus, if the model is correct, the above relationships between parameters and en­

vironmental conditions should be observed.

8.8.3 Processing Techniques

A review of relevant literature shows that the processing techniques, such as curing 
time and temperature, affect the response of the polymer to environmental factors. 
The sensors used experimentally were made under the same conditions, so it is hoped 
that environmental parameters such as Sqo and 6t will be constant for each type of 
sensor. Other processing influences will not be detectable as all sensors will be made 
under the same conditions.

8.9 Discussion

A more mechanistic approach has been taken to build a theory of how a given sensor 
should react to a solvent, given the initial conditions; these initial conditions being 
concentration at the boundary, the constant of swelling, and the mixing parameter. 
Though the model did give general, experimentally verified, predictions, the resulting 
PDE was highly nonlinear. It was necessary then to simplify it.

A simplified model for diffusion of a solvent in a polymer (composite) was then 
derived. A steady state version has been coupled with a conduction model to give a time
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dependent expression for the current flowing between the electrodes of a chemoresistor 
type sensor. It has been demonstrated that the parameters of the diffusion model 
solution are all functions of the initial conditions and the diffusion coefficients.

There are a number of aspects of the physical system that have not been incor­
porated into the model. The first that the models take no account for cross links 

in the polymer structure, this allows for unlimited swelling which does not occur in 
reality [142]. The second is accounting properly for a finite medium with a nonzero 
diffusion coefficient in the unswollen state. A solution for this case has not yet been 
found. However, the analysis has resulted in a number of testable predictions and offers 
an analytical solution that may be handled by numeric optimisation algorithms.

As demonstrated, it is necessary to estimate the threshold at which the diffusion 
coefficient should change value, and the values of these different coefficients. There are a 
number of ways of approaching this. There are experimentally obtained values provided 
in the literature. For example [144], which contains values for various polymers at 
different temperatures and in swollen and unswollen states. The values given do confirm 
the hypothesis of the above models as the diffusion rates differ by up to an order of 
magnitude between unswollen and swollen states.

In the next chapter, the design of the validating experiments will be considered. 
This will include the construction of an automated rig for gathering data and parameter 
estimation methods for data analysis.



Chapter 9

Experimental Validation of the 
Mechanistic Sensor Model

In this chapter the methods available to validate the mechanistic sensor model devel­
oped in Chapter 8 are examined. A model is a mathematical abstraction; that is an 
attempt to embody any knowledge of the ‘actual’ system. The aims of such a model are 
many: to give a greater depth of knowledge of the system; to estimate quantities which 
cannot be detected directly; to predict the behaviour of the system. For the model of a 
carbon black-polymer sensor, these criteria are of prime interest. For a model of such 
a system one needs to be sure that the proposed model is capable of satisfying these 
criteria.

Carbon black-polymer sensors transduce chemical information into an electrical 
signal. A model coupling solvent transport with a conduction model for polymer com­
posite materials has been developed in the previous chapter. The result has been an 
analytical expression relating the current flowing through a sensor to various parame­
ters which characterise the physical and chemical aspects of a specific solvent/polymer 
interaction.

In such a phenomenological model the parameters relate to certain characteristics of 
the system. Due to the abstraction of the parameters in such models it is very difficult 
to elicit the validity of such concepts as ‘knowledge’ or physical constants, unless, of 
course, some prior information is known. What is a surer test is the demand that the

201
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system matches future behaviour of the system. In this case, it is considered that the 
model ‘fits’ the input-output behaviour of the system.

In order to validate this model, and its underlying assumptions, it is necessary to 
test it against experimentally obtained data. To this end, the sensor model must be 
incorporated into a model of a specific electronic nose system model. In this way, 
experimental data may be produced to validate the model and actual behaviour may 
be compared with that which is predicted by the model.

Hence, by ‘fitting’ two issues are covered:

1. For a given output there is a response resulting from the model which approxi­
mates ‘closely’, relative to some error function, the output. That is to say that 
the model accurately predicts the real system’s behaviour with respect to some 
criteria.

2. The parameters estimated from this response have some dependence on the initial 
conditions of the experiment. By this it is meant that some dependence may be 
observed between model parameter values and such factors as temperature of the 
samples and the humidity of the air.

Good experimental design is required in order to validate the model. If, at all 
possible, the experiment must work within the constraints under which the model was 
developed. The model should be validated on its ‘own terms’. In that way results are 
meaningful within the context of the theory, that is to say that certain measurements 
and parameters obtained from the experiment have some ‘physical meaning’ within 
the theory and can be thought to characterise the system’s mathematical abstraction. 
Otherwise, the perceived failure of the theory is nonsense as this failure was outside 
the context of the model; it only failed to be general enough.

9.1 Overview of the Theoretical System

The full electronic nose system can be broken down into four basic processes [167]: 
odour production, odour transport, sensor response, and the electronic interface. The
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latter part has been chiefly dealt with in the sensor model. The first part of this chapter 
is concerned with how the odour production and transport result in initial conditions 
at the surface of the sensor.

Odour production is a thermodynamic process whereby the solvent exists in two 
different phases: liquid and as a vapour in the carrier gas. The solvent will move 
between these two phases in order to achieve equilibrium. When the carrier gas is 
pumped through the odour production vessel, taking the solvent vapour away, the 
system will be constantly adjusting itself in an attempt to obtain equilibrium.

Odom: transport is a combination of fluid flow and diffusion of the odour in a carrier 
gas. In this respect it is analogous to the process of gas chromatography in a packed 
column. If in this case the odour is a mixture of several chemical species then they 
will all diffuse at different rates. For this reason a single species mixing with air will 
be considered.

9.2 Odour Production

It is assumed that the odour concentration in the sample vessel will tend towards 
equilibrium over the time scale of the experiment. This equilibrium will be dictated 
by a number of conditions: the flow rate through the fluidics, the temperature of both 
the solvent sample and the ambient environment; the size of the sample vessel. With 
a continuous flow rate the equilibrium will be reached in some finite time. However, 
with the type of experimental rig that is considered in this chapter, this is not the case. 
Flow through the sample vessel only exists when introducing the sample to the sensors. 
Hence in this situation there is a constant cycle of concentration lying between static 
equilibrium and that for carrier gas flow.

It is necessary, therefore, to calculate the concentration of solvent vapour that finds 
its way into the atmosphere of the production vessel. This is in order to provide 
boundary conditions for the sensors. The concentration cannot be measured directly 
in the sample vessel, but can only be observed indirectly in the sensor response.

Two aspects of the evaporation process need to be understood. Firstly, one needs to 
determine the equilibrium concentration in the atmosphere of the sample vessel when
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there is no flow in that part of the fluidics. Secondly, one needs to determine the rate of 
evaporation when the concentration is perturbed from equilibrium by carrier gas flow. 
As the main aim of this thesis is the modelling of electronic nose systems, and primarily 
the sensors, a radical new model of evaporation will not be presented. Instead, in order 
to understand the effects of environmental parameters on the system’s input-output 
behaviour, a first order kinetic model will be considered.

Figure 9.1 displays a linear one compartment model of solvent vapour generation 
and elimination. Generation is through evaporation and elimination through condensa­
tion and fluidics transport. This system could be written with a second compartment 
for the liquid phase of the solvent to replace elimination via condensation, but, as­
suming limited volume changes, the evaporation rate will be constant. The system 
equation is thus given by

%A — ^ l a x <l  — { k Ai  +  k A f ) x a  (9-1)

where

kiF = M
V  (9-2)

is the rate of elimination due to the fluidics flow and V  is the volume of the gas 
phase,M  is the flow rate in the fluidics, in Ls-1 , and k L A , k AL are, respectively, the 
rates of evaporation and condensation. Here xA and x°L are the concentrations of the 
solvent in the atmosphere and liquid phase respectively. The initial conditions for this 
system are derived by considering the system equilibrium with no flow. Thus the initial 
condition is that

kLA .. . . . .  , x
(9.3)2U(0) =  ~ - x \  =  Q sX°l

kAL

where Qa is the partition coefficient and as such is subject to the boiling point law 
which predicts a variation with temperature. The solution to this model is

xA{t) =  k± AXl -  (1 -  c- (^ + W )t )  +  e~(kAL+kAF)t' 
k A L  " b  k A F  *■  *  '•AL

(9.4)
Note that the asymptotic equilibrium will be

kLAxeq _
kAL +  k A F

X , (9.5)
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Condensation

Figure 9.1: One compartment model representing odour production

and so the the concentration that the sensors will ‘see’ varies with time, as predicted 
by Equation (9.4). Thus, as the mechanistic sensor model assumes a constant solvent 
concentration in one of its boundary conditions, the model parameter corresponding 
to concentration will be some form of time average. Thus it can be seen that the 
estimated concentration parameter will be a function of temperature, flow rate and 
sampling time.

9.3 Fluidics

The transport of the solvent vapour to the sensor surface involves an array of pipe-work 
and valves, Figure 9.4. It is necessary to find a relationship between the concentration 
o f vapour in the sample vessel and that in the sensor chamber. This is so any influence 
that the flow rate, fluidic design and environment have on the system response can be 
understood.

9.3.1 Odour Transport

The transport of the vapour involves the flow of fluid within a pipe of a certain diameter 
and length. This will incorporate a time lag between the impulsive input at the start 
of the sampling and the solvent reaching the sensor surface. The question is how this 
is related to the instantaneous concentration in the production vessel.

Fluid flow within a pipe is still very much an experimental area of research. Usually 
theoretical work deals with the flow at a ‘large’ distance down the pipe. This is the 
concept of fully developed flow [168]. Here there is a continuous variation in flow
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Figure 9.2: Developed laminar flow. An initial inlet profile, to the left, develops into a 
parabolic velocity profile to the right.

from the tube wall to the centre, where the flow rate is at a maximum. However, the 
behaviour at the entry to the tube is very different where it is more of a ‘plug like’ 
flow, that is a constant velocity profile. In [168] and [169] the length required for a 
fully developed velocity profile is given by

~7p~ =  0.59 +  0.0056i?e (9.6)

where Dh is the hydrodynamic diameter in metres, LHy is the length before developed 
flow occurs and Re is Reynolds number. Figure 9.2 illustrates this process.

Under fully developed flow the radial velocity profile is parabolic in nature and it 
is derived in [168] that the average velocity of the fluid is half that at the centre of the 
pipe. All of this is under the assumption that Re <  1000. The tubing used in the rig 
discussed in this thesis has a diameter of 3 mm and the flow rate is of the order of 100 
mm per minute. This gives Re «  100 so there will be developed laminar flow after 2 
or 3 millimetres of the entry into the tubing.

There is a problem if diffusion is significant in comparison with the flow rate in the 
fluidics, if so then plug flow will not be present. The initial plug profile will spread out 
due to diffusion. The extent of this effect is reliant upon the flow rate as this dictates 
the time it takes for the sample to travel along the pipe. Thus again the observed 
concentration at the surface of the sensors will be a function of flow rate.

Secondly, different solvents will diffuse at different rates and so there will be different 
time delays present in the initial conditions.



CHAPTER 9. EXPERIMENTAL VALIDATION 207

A final consideration is the delay produced by the length of piping and the pressure 
necessary to drive the fluid along it. The delay will be a linear function of the pipe 
length and will also have an inverse relation to the flow rate. The tubing will affect 
the flow rate via the pressure drop along its length. The pressure drop is expressed as

A P  «  J a (9-7)

where P  is pressure, l is the length and d is the diameter of the pipe in metres. Hence 
pressure drop is linearly proportional to length and thus delay can be expressed as the 
square of the length of the pipe.

9.3.2 Mixing in the sensor chamber

The final consideration is how the solvent vapour mixes with the ‘clean’ atmosphere 
in the sensor chamber. The sensor chamber may be considered to be part of the 
fluidic system and contribute towards the time delay discussed above, assuming good 
mixing in the sensor chamber. The rate of mixing will depend upon the structure 
of the flow. An ideal chamber would be one that preserves the fluid flow, allowing 
the structured parabolic flow to continue. This will help to produce a step change in 
solvent concentration at the sensor surface.

9.4 Sensor response

The response of the sensors, given certain initial conditions at the surface of the poly­
mer, has already been modelled in Chapter 8. The expression derived needs to be 
integrated into the above lumped system model. The response is monitored by mea­
suring the change in resistance using interface electronics.

It is thought best to design a rig which reproduces the necessary constant boundary 
conditions used in the derivation of the model. In this way the model may be validated 
and used to analyse the data. In practice the best that can be attained is a system 
with pure time delay, however it is more likely to achieve a system where the sample 
concentration variation with time has a ramp profile with a steep slope, see Figure 9 3 
This is possible with careful sample production and transport criteria.
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Perfect plug flow profile

Figure 9-3: Time dependence of solvent vapour concentration in the sensor chamber. 
The graphs are for illustration only and consequently have no units. The time frame 

is of the order of seconds.

9.5 The Experimental Test bed

The test bed is a simple electronic nose rig and its basic design has been tested a 
number of times [170], [171] with success. As discussed in the introduction to this 
chapter, the main aim of the test bed is to characterise the response of gas sensors and 
in order to do this it imitates the basic function of a mammalian nose. Conceptually 
this process includes the production of some odour external to the nose and transport 
(nasal passage) to the sensor where the odour is detected (olfactory sensors). The 
response is observed via the nervous system and processed by the brain.

In an experimental set up these processes are mimicked by an electro-mechanical 
system under the control of a microcomputer. The external odour production is that 
o f solvent vapours, transport is by use of an electric pump and the fluidic system 
and odour detection is performed by the sensors. The response of the sensor is then 
compared with simulated responses from the mathematical model developed in the 

previous chapter.
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The modular design may be summarised as follows:

• Sample jars containing solvents

• Fluidics and pump

• Selector Valves

• Sensor chamber and sensors

• Environmental sensors

• Interface cards

• Datalogging.

9.5.1 Odour Production

The odours are intended to be single species vapours from certain solvents. Each liquid 
sample and its headspace is contained within a glass jar. The lid of each jar has two 
holes drilled into it and then are fitted an inlet with an inline check valve and an outlet 
connecting to the fluidics of the electronic nose system, leading to the gas sensors. 
Leakage of solvent into the environment is avoided by using one way slip valves on the 
intake. To increase odour production the inlet is fitted with a sparge (see Chapter 7).

A number of choices presented themselves: how many different odour samples, what 
substances to sample, what volume of headspace is required, and at what temperature 
should these samples be kept at? A constant headspace concentration was required as 
a constant boundary condition is a an assumption of the model (Equations 8.28).

The vapour pressure of a substance is the pressure at which the liquid and vapour 
phases exist at equilibrium and an approximation is readily calculable using Trouton’s 
law. Vapour increases with temperature. Boiling occurs when the vapour pressure 
reaches the atmospheric pressure so it can be seen that the concentration of the solvent 
in the atmosphere above the liquid phase should increase as well.

It was decided to compare two solvent vapours. The two sample vessels (Figure 9.4) 
were heated by the environment. To monitor this a temperature sensor was set to
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measure air temperature near the jars. Two solvents were proposed: Ethanol and 
Acetone. These are known to interact very differently with the polymers discussed 
below in Section 9.5.5 and so some variation should be observed in the estimated 
parameter values from sensor responses to these two substances.

The requirement of a constant vapour concentration in the neighbourhood of each 
sensor dictates that a good headspace reserve is required. Thus 120ml jars were used 
as sample vessels. These produce around 100ml of headspace.

9.5.2 Fluidics: Odour Transport

The sample vessels were connected to the sensor chamber via 3mm diameter piping. 
Sample selection is facilitated by solenoid valves mounted in a PTFE block. A small 
scale diaphragm pump (NP 904 from KNF UK) was used to create fluid flow. This 
pump was oiless in order to avoid contamination of the sample of the headspace. 

There are two things to consider for the transport of the sample vapour:

• Flow rate

• Sampling Cycle

Taken in the context of a requirement of an instantaneous interface concentration 
the following was suggested. The sensor chamber is of a much smaller volume than the 
sample vessels. This will ensure a constant sample concentration at the sensor surface. 

The following sampling cycle was chosen:

1. Sample vapour in jar 1 (10 seconds).

2. Flush sensors with air (600 seconds).

3. Sample vapour in jar 2 (10 seconds).

4. Flush sensors with air (600 seconds).
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9.5.3 Solenoid Valves

The solenoid block consists of a PTFE block, drilled to accept three valves. This block 
has three inlets, two were connected to the outlets of the sample jars and one took in 
air, as well as one outlet, which passed the selected sample on to the sensor chamber. 
The valves were controlled by the computer via an interface card.

9.5 .4  Sensor Chamber

For the mounting of the sensors it was decided to use a new ‘smart nose’ design (Fig­
ure 9.5). This sensor chamber uses a narrow channel with the sensors set to be flush 
with the one side. The resulting flow, for velocities in the range used in the experiments 
described in this chapter, is laminar with a parabolic profile. The exact dimensions (see 
Figure 9.5) of the channel were arrived at after a number of prototypes were tested. 
The aim of this device is to produce a plug type flow in order to eliminate mixing 
dynamics.

9.5.5 Sensors

The rig, as designed, is capable of housing and performing measurements on six resistive 
sensors at a time. It is thus proposed to use three polymers in sets of two sensors. These 
polymers are: Poly(caprolactone); Poly(styrene-co-butadine); Poly(vinyl acetate). The 
reasons for using two of each polymer are the following:

• Built in redundancy means that the experiment does not have to stop if one of 
the polymer devices fails.

• The differences in parameter values within the group of the same type of sensors 
can be compared to see which are characteristic of the solvent-polymer reaction, 
and those which are dependent upon the precise geometry of the sensor. It is 
expected that due to fabrication techniques there will be some variation in the 
thickness of the polymer films.

The carbon black-polymer sensors used in this experiment are produced in-house

by the Sensors Research Laboratory. Temperature and humidity sensors were mounted
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Figure 9.5: Schematic of the smart nose sensor chamber. The Aluminium block was 
150mm long, 60mm wide and 15mm deep. The fluidic channel was 5mm in width and 
depth .
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Figure 9.6: Schematic of sensor response measurement. V^t is measured by the test 
bed.

near the sensor chamber in order to measure environmental conditions. This enabled 
an investigation into the effect of these conditions on the parameters within the sensor 
response model.

The polymer sensors were monitored using a previously constructed interface card 
which uses potential divider and instrumentation amplifier to output a voltage propor­
tional to the resistance of the sensor that it is monitoring (See Figure 9.6).

9.5.6 Interface Electronics

The interface electronics for the sensors comprise one card, capable of interfacing with 
six sensors. It can also interface with a temperature sensor to monitor the sensor 
chamber temperature.

These interface cards have to be balanced to monitor the sensors produced. During 
manufacture the sensors were produced to have a baseline resistance of approximately 1 
ld2. Trimming variable resistors are integrated within the cards to balance the potential 
divider.
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Given Vouti the trimmer resistance, Rtrim and the gain, K , the current through the 
sensor may be recovered. First:

\ r _ Vont

p ~  K (9.8)

where K  is the gain of the instrumentation amplifier. Considering the potential divider.

J L
1.25

giving Rsens +1000

Rsens + 1000 
Rsens + Rtrim + 2000 
Vp{Rtrim + 1000)

1.25 -  Vp (9.9)

where R sens is the unknown sensor resistance. Finally:

< =  D
Rsens + 1000

1-25 -  Vp 
Rtrim + 1000
1.25 -

Rtrim + 1000 (9.10)

The temperature sensor in the chamber was a back up for an integrated humidity 
and temperature sensor. This device interfaced on a card that also interfaced with the 
flow meter. The flow rate was monitored through a meter placed in the fluidic system. 
Data for this did not flow into the PC data acquisition card, but into the serial port 
of the computer.

The solenoid valves used to control fluid flow were controlled from a separate card. 
The motor for the diaphragm pump was controlled from another card which will mon­
itor the current drawn and the voltage across the pump, as a form of diagnostic.

9.5.7 Data Logging

The data were recorded at a sample rate of 20Hz and stored using a standard Windows 
PC. The responses to one acetone and one ethanol exposure were stored along with 
the environmental conditions in one file. Each file stored one experiment run each.
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Phase Time Pump Valve
Baseline 1800s On 3
Sample 4s On 1 or 2

Table 9.1: Valve timing information for experimental data gathering.

9.6 Proposed Experimental Regime

The mathematical model is based upon a linear PDE. The model requires that the 
boundary concentration is constant and instantaneous. It also implicitly assumes that 
the ambient humidity, temperature, and the temperature of the polymer body are all 
constant. This is implicit due to the hypothesised dependence of the parameter values 
upon these conditions. It is also desirable so that the dependence of the sensor response 
upon these environmental factors may be investigated via parameters estimated from 
experimental data.

9.7 Discussion

A test rig was designed to test the sensor response model produced in Chapter 8. It 
was based upon a standard modular electronic nose design. The constraints of the 
model were considered and thus an experimental regime was designed to satisfy these 
constraints.

Such issues as evaporation have been considered and their effects upon the theo­
retical sensor response have been analysed. Thus there are hypothetical relationships 
between environmental conditions and the model’s free parameter values.

The system was designed to measure environmental variables as well as the sensor 
responses. In this way, not only may the model be validated by reconciling it with the 
experimental data, in addition the parameters may be validated by observing how the 
estimated values vary with temperature and humidity.

A representative plot of experimental data collected is shown in Figure 9.7. The two 
graphs show the data for an acetone and ethanol exposure, thus it is representative 
of one experimental cycle. The V^t data that were recorded by the test rig have



CHAPTER 9. EXPERIMENTAL VALIDATION 217

been converted to the current shown in the plots using Equation 9.10. The data 
are presented as change of current as the range of baseline currents is of an order of 
magnitude greater than the typical changes; a plot of actual current would leave the 
reader unable to appreciate the data properly.

The responses exhibit a time delay as discussed in Section 9.4. It may be observed 
that the response to ethanol is of an order of magnitude lower than the response to 
acetone. The time series exhibit some low level noise and fluctuations which make the 
response non-monotonic. The frequency of these fluctuations is too low to be electrical 
and could possibly be due to slight variations in the flow of the carrier gas. Notice the 
correlation of the l-2Hz oscillations between time series.

Once the data have been gathered then the parameters must be estimated. In 
the next chapter methods for parameter estimation will be explored and the results 
analysed.
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Chapter 10

Carbon Black-Polymer Sensor 
Model Parameter Estimation and 
Analysis

A model for Carbon Black-Polymer composite material sensors has been developed. 
Further to this a series of experiments, as detailed in the previous chapter, have been 
carried out. These data were gathered in order to validate the proposed model.

The conclusion of the previous two chapters is that validation and analysis of the 
mechanistic model may be carried out by estimating the parameter values for each 
experiment. The variation of the parameters with respect to environmental factors may 
then be investigated. Thus ways of optimising model fits against experimental data 
need to be considered, as well as a strategy for performing this for all experiments.

The model produced gives algebraic expressions for one sensor output (8.70). The 
full experimental system can be simulated by considering six models of the same form, 
but not necessarily with the same parameter values, in parallel. The expression (8.70) is 
highly non-linear in time as well as in the parameters. Rough ‘ball park* estimates of the 
parameter values were not initially known and these were needed to start optimisation 
based upon each experiment. These initial values were sought first and then a batch 
process was implemented to consider all experimental data collected simultaneously.

The polymers used in the sensor will be abbreviated to PCL for Poly(caprolactone);

219
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PSB for Poly(styrene-co-butadine); PVA Poly (vinyl acetate)

10.1 Parameter Estimation

Given the model structure, as developed in Chapter 8, it is necessary to identify the 
model most closely characterising the system’s behaviour. The experiments involved a 
series of stimulations (solvent introduction) and from this a candidate model may be 
chosen to represent the system’s response (system identification). It should be noted 
that input to the system is only partially controlled, as shown in Table 10.1. However, 
the uncontrolled conditions have been recorded. As discussed in the last chapter, 
knowledge of environmental factors will help to characterise the system; the model 
identified will only be valid for the environment present at the time. This will enable 
a characterisation of the environmental dependencies of the system via the estimated 
parameter values.

The model chosen gave predicted outputs for the six sensors in the experiment 
simultaneously. The specific model identified for each experiment was chosen with re­
spect to certain criteria. These may be dichotomised into parameter values and output 
error. For computer simulation the single sensor response model is parameterised as 
follows:

In (8.70) it can be seen that a constant voltage V  across the sensor is assumed. 
However (9.8) shows this to be untrue. Hence V =  1 is set in the model and so the 
result of applying (9.10) to the experimental data was divided through by Vp -  lOOOi 
to give an idealised response for unit voltage, where % is the current in (8.70). Also set

X\ (t) =  kit^ 

X p(t) =  kpt3
(10.1)
(10.2)
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Input Controlled?
Solvent Yes
Flow rate Partially
Temperature No
Humidity No

Table 10.1: Inputs to the gas sensor system

then from (8.70):

• =
7r

N (cqQ -  Cx ) ^  - i [kptl [cosh +  yo) -  cosh l (kptl +  y0)]

[exp(cosh_1(M * +  yo)) ~ exp(cosh_1(/cpP  +  y0)) -  y0 [cosh-1 (fcii* +  y0)

■ cosh 1 (kpt* +  y0) -  log2y0 -  NCX cosh l {kpU + y 0) + (10.3)

It is obvious from the physical interpretation of each of the parameter values that all 
should be positive except for kp. Secondly, as pairs of sensors share the same chemical 
characteristics, they should also share all parameters representing these characteristics. 
This is easily implemented within the computer simulation code. In order to keep the 
number of free parameters to a minimum, the assignment Cx  =  ¿Qco was made. The 
constant \ was arrived at after trial and error model fits.

A pure time delay is incorporated into the response of each sensor to allow for the 
delay inherent in the fluidics.

Output error is simply a measure of how well the model prediction corresponds to 
the system output. For the case in hand it is desirable for the selected model to be a 
good predictor of the system output. For this reason the sum of the squared error is 
imposed as an error function. The model selected then will minimise the squared error 
against the parameter constraints discussed above.

Optimisation techniques are required to tune the parameter values in the model to 
fit the observed behaviour (Figure 10.1). There are a number of different methods for 
numerical optimisation. They are all iterative in nature, as discussed in Chapter 4.
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Figure 10.1: Schematic of the optimisation process inherent when estimating parameter 
values for an observed experimental response.

These methods all require a ‘starting’ parameter vector on which to begin the iterative 
process. A  good start value was not known so this had to be identified. A good method 
for this was the genetic algorithm approach, since this algorithm can simultaneously 
search different areas of the solution space. For final parameter estimation it was 
proposed to use the Levenberg-Marquardt method. This method was chosen as it is 
successful at handling nonlinear expressions [105].

10.2 Batch Processing of Experimental Data

The outline of the technique to process the experimental data was as follows:

1. Sort files into the order that the experiments were performed. This was done in 
order to detect any sensor drift.

2. The earliest file is processed using the best guess found using the genetic algorithm 
as start values for the Levenberg-Marquardt algorithm.

3. The resulting estimated parameters are recorded in a table, along with the 
recorded environmental data.

4. The estimated parameter results were then used for the second experiment’s start
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values; this process of using the final values of the last experiment as the start 
values for the next was continued until the model had been fitted to all the data.

This strategy was decided upon as it represented an efficient way to process the data. 
There might be concern about propagation of error because of point 4 above, however 
the results demonstrate that this is not the case. It was assumed that the environment 
in the laboratory would vary continuously with time and that the model parameters 
would vary continuously with the environment. Hence it was assumed that the pa­
rameters would vary continuously with time; using the results of the last experiment 
parameter values supplied a best start parameter vector for the next experiment. In 
this way it was hoped to minimise the number of iterations of the Levenberg-Marquardt 
algorithm necessary to complete the task.

10.3 Computer Implementation

Model optimisation was carried out within the MATLAB V5.3 environment. Code 
was adapted from that used previously in Chapter 5 to create a genetic algorithm to 
search for candidate optimal models. The Levenberg-Marquardt algorithm has already 
been implemented in MATLAB as the LSQNONLIN routine. This routine requires the 
start values of the parameters, the function to minimise and stopping criteria as input 
arguments. It outputs the fitted parameters, the fitting error and whether successful 
convergence has occurred.

Common to both of these optimisation stages was the simulation script which pro­
duced, based upon specific parameters values, a simulation of two sets of six sensors 
representing the six experimental sensors reacting to the two solvents. The two sets of 
six responses for each experiment are interrelated. These relationships are that pairs 
of sensors share the same chemical characteristics and that between two exposures a 
sensor retains the same physical characteristics. These relationships were manifested 
in the simulation by common parameters representing common characteristics.

The script then compared the simulation with the provided single set of experi­
mental data and calculated the squared error. The squared error was weighted using
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the range of each time series in order to obtain a uniform fit over the various sensor 
responses. If Wj represents the range of sensor response i, 2/irea](i), then:

Wi =  max{yi Teal(t)) ~  mm(y. real(i))

and so the error for a given parameter vector p is

£(P) = 1 2  12
¿«Sensorst€time

(^)t.real Vh p(0)2
Wi

(10.4)

(10.5)

where Vi,p(t) is the model simulation for parameter vector p.
To identify a good ‘start’ value for the Levenberg-Marquardt algorithm the genetic 

algorithm was run with 100 individuals in the population for 1000 generations. Abso­
lute convergence was not sought, rather, variation in the neighbourhood of solutions was 
preferable in order to fully explore possible start values for the Levenberg-Marquardt 
optimisation. The algorithm output all 100 individuals from the final population. Each 
of these was investigated using the Levenberg-Marquardt algorithm. The optimal result 
was used as the start value for the main optimisation algorithm.

A batch processing algorithm was written to execute as described above in Sec­
tion 10.2. A limit on the number of iterations of the Levenberg-Marquardt algorithm 
was imposed for two reasons. The first is that on a few occasions, due to experiments be­
ing unsupervised, fluctuations in the equipment produced non-typical responses. These 
included the pump becoming overheated and the solvent vessels running empty. It was 
difficult to identify these amongst the hundreds of experiments carried out. Instead 
the final error of each fit was recorded along with the other data for the experiment 
and suspect values were identified before final analysis.

10.4 The Identified Model

The model fitted to data with a good degree of accuracy. Figure 10.2 shows an example 
of the model fit compared to the real data, the change in current is plotted so that all 
the responses may be viewed on the same scale. The experimental and simulated data 
are plotted in the same colour for each sensor. This fit has a weighted sum of squared
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errors (10.5) of 1.944. The error was measured with respect to magnitude of response 
and so an average point wise error of 4.5% was estimated. This is considered to be 
very good given that:

• The constraints on the parameters and the model to fit all 12 responses simulta­
neously.

• The difference in magnitude of response to acetone and ethanol.

• The data were noisy.

• The experiment was ‘uncontrolled’ .

Table 10.2 details the estimated parameter values for this fit, as well as the standard 
deviations (SD). It can be seen that the parameters do give an insight into the speed 
and magnitude of the sensors’ responses to the two solvents. PCL, it appears produces 
the fastest response to acetone, whereas PVA reacts quickest to ethanol. For magnitude 
of response it appears that PSB has the greatest (judging by values of parameter N). 
Notice that the all the parameters have standard deviations of an order of magnitude 
lower than their respective values, thus giving a high confidence level in the values 
estimated

Table 10.3 details the estimated correlation matrix for the parameters for the PCL 
sensor pair for both acetone and ethanol exposures. Notice the correlation is much 
higher between corresponding terms of the product NQcq than for other pairs of pa­
rameters. This correlation is to be expected as only the product may be estimated 
from the model fits.

The parameter standard deviations and correlation coefficients were calculated us­
ing the Hessian matrix method detailed in [172]. If H (p) is the Hessian matrix of 
the model error E(p) (10.5) with respect to the parameters at p, then the parameter 
covariance matrix, Cov(p), may be written as

Cov(p) =
2E(p) 
M — npH( P)’ 1.

Here M  =  960 experimental data points and np =  50 free parameters.

(10.6)
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Parameter Units Value SD Parameter Units Value SD
kpn

1ms 2 2.5 X 1 0 -3 3.2 X 10--5 k ln ms 2 2.1 X 1 0 -4 2.7 X 10--13

kp2i
1ms 5 2.1 X 1 0 -3 2.4 X 10--10 kl2i 1

7725 2 8.0 X 1 0 -5 4.5 X 10--23

kpn
1ms 2 4.3 X 1 0 -4 1.4 X 10--7 kin

l
7725 2 3.1 X 1 0 -4 3.8 X 10--12

kp22
1ms 2 1.2 X 1 0 -4 2.7 X 10--8 kl22

17725 2 2.5 X 1 0 -4 2.3 X 10--15

kpi3
1

7725 2 3.0 X 1 0 -3 3.2 X 10--5 klu
l7725 2 1.2 X 1 0 -4 1 .0 X 10--28

kp23
1

7725 2 3.1 X h-
1

0
1 IO 3.8 X 10--9 k l23

1ms 2 7.0 X 1 0 -3 1.2 X 10--19

Nn A T 1 2.7 X 10° 1.2 X 10--4 Qn none 4.7 X 10° 4.1 X 10--8

N21 M~l 7.5 X 10-1 2.0 X 10--5 Q21 none 2.3 X 10-1 1.8 X 10--6

N 12 M ~l 1.5 X 10° 3.7 X 10--6 Q 12 none 3.6 X 10° 3.4 X 10--6

N22 M ~l 1.47 x 10° 1.1 X 10--4 Q22 none 5.7 X 1 0 -1 3.5 X 10--6

n 13 M -1 4.7 X 1 0 -3 2.1 X 10--5 Q 13 none 6.9 X 10~4 1.3 X 10--9

N23 M ~l 5.4 X 1 0 -1 2.5 X 10--6 Q23 none 1 .0 X 1 0 -1 1.1 X 10--7

yi m 1.4 X IO"4 1.7 X 10--5 eq AV~lm~-1 1.4 X 10° 2.2 X 10--16

V2 m 1.0 X IO“5 7.1 X 10--5 < 12 AV^m "-1 3.1 X 10~2 9.1 X 10--15

ys m 2.1 X IO"4 5.7 X 10--6 0 3 A V ^m '-1 2.3 X 10° 5.5 X 10--14

y\ m 1.4 X IO"4 2.5 X 10--8 <74 AV~lm~-1 1.4 X 10° 3.6 X 10--16

ys m 1.5 X IO'4 7.3 X 10--5 o5 1 1-1 1.5 X

OO

1.2 X 10--14

ye m 2.5 X IO"4 7.1 X 10--6 o6 AV 1m"-1 2.5 X 10° 1.6 X 10--13

Cl M 1.1 X 1 0 -1 1.6 X 10--7 C2 M 1.2 X 1 0 '1 9.3 X 10--6

Table 10.2: Estimated parameter values, where SD stands for standard deviation. 
Parameters are labelled Solvent .sensor or ^sensor- For sensors; 1=PCL, 2=PSB, 
3=PVA. For solvents; l=Acetone, 2=Ethanol. Parameters are as in equation 10.3. For 
example C\ represents the concentration of acetone
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Nn N2i Qn Q21 Cl C2
Nn 1.0 x 10° 1.3 x 10"01 -7 .2  x 10"01 2.7 x 10"01 9.7 x 10~01 1.4 x 10“ 01
N21 1.3 x 1 0 '1 1.0 x 10° 2.2 x 10_1 -2 .5  x 10-1 4.9 x 10“ 3 1.0 x 10°
Qu -7 .2  x 1 0 '1 2.2 x 10"1 1.0 x 10° 2.7 x 10"1 -7 .4  x 10-1 2.2 x 10"1
<?21 2.7 x 1 0 '1 -2 .5  x 10“ 1 2.7 x lO“ 1 1.0 x 10° 3.0 x 10"1 -2 .5  x 10-1
Cl 9.7 x 1 0 '1 4.9 x 10~3 -7 .4  x lO’ 1 3.0 x 10-1 1.0 x 10° -1 .3  x 10“ 3
C2 1.4 x 10"1 1.0 x 10° 2.2 x 10-1 -2 .5  x 10"1 -1 .3  x 10~3 1.0 x 10°

Table 10.3: Correlation matrix for a selection of parameters for one sensor type. Pa­
rameters are as in Equation (10.3)

The Hessian matrix of the error was calculated using a finite differences method 
with perturbations in the parameters being analysed to avoid numerical errors [172].

Figure 10.3 shows a histogram of the errors over all experiments. It can be seen 
that a good fit was achieved for the majority of the experimental data.

10.5 Analysis of Parameter Results

The resulting estimated parameter values will now be analysed with respect to the 
changing environmental conditions. The aims of the analysis were to understand how 
the dynamics of the system change with the environmental conditions.

10.5.1 Flow Rate and Time Delay

The simplest relationship that exists within the system is the inverse relationship be­
tween the model pure time delay and the flow rate. Figure 10.4 shows this relationship.

There is reasonable correlation. Error will originate from the sampling rate of the 
test rig, as well as the fact that the progress of the solvent vapour is observed indirectly 
via the sensor response. These results demonstrate that the parameter identification 
process was performed robustly and real variations in the system have been detected.
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Response to Acetone Vapour

x 10
-6 Response to Ethanol Vapour
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10 15 20 25 30
Average percentage pointwise error

Figure 10.3: Model pointwise error distribution for fits to all experimental data.
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10.5.2 Rate Constants

The rate constants in the model relate to the progress of the solvent diffusion front 
through the polymer films. It would be expected that there would be a strong environ­
mental relationship due to mass action and the fact that temperature dependence of 
sensor responses has been observed before [57]. It is these environmental dependencies 
that need to be understood in order to widen the range of electronic nose applica­
tions. Figures 10.5, 10.6 and 10.7 show the results. These graphs are scatter plots of 
kp, the solvent diffusion front rate constant, as defined in (10.2) against the ambient 
temperature during the experiment.

It can be seen that there is a much stronger temperature relationship with the 
acetone responses (Figures 10.5(a), 10.6(a) and 10.7(a)) than there is with the ethanol 
responses (Figures 10.5(b), 10.6(b) and 10.7(b)). This is probably due to the much 
stronger acetone responses. The dependences are either linear or slightly sigmoidal.

The acetone responses are also affected by the humidity of the atmosphere. This is 
shown in Figures 10.8,10.9 and 10.10. The rate of reaction reduces with humidity. Note 
the discrepancy in the trend of Figure 10.10. This may be due to other factors effecting 
the rate of response or the sensor characteristics changing with time. The temperature 
effects were accounted for by fitting a 4th order polynomial to the temperature/fcp data 
in order to incorporate sigmoidal type dependency.

The final effect observed is that of the flow rate dependence of the rate of diffusion, 
as shown in Figures 10.11, 10.12 and 10.13. There again appear to be several modes 
of behaviour, however there are very definite relationships between the rate of diffusion 
and the environment in which the electronic nose sits. The behaviour is very similar 
for the three different types of sensors.

10.5.3 Swelling, Solvent Concentration and Partition coeffi­

cient

In the proposed model, only the product NQco is estimable. This is proportional to 
the total change in current, as can be seen by inspecting (10.3).

Figures 10.14,10.15 and 10.16 show the dependence of the product NQc0 on temper-
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(b) Sensor 6

Figure 10.4: Relationship between time delay and flow rate. The expression relating 
the flow rate and the inverse of the time delay is written in the form y =  mx +  c as 
delay is inversely proportional to the flow rate.
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(a) Acetone exposures (b) Ethanol exposures

igure 10.5: PSB based sensor diffusion front rate temperature dependence.
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F igure 10.6: P V A  based sensor d iffusion front rate tem perature  depen den ce .
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(a) Acetone exposures (b) Ethanol exposures

Figure 10.7: PCL based sensor diffusion front rate temperature dependence.

Figure 10.8 : P S B  based sensor diffusion front rate tem perature and hum idity depen­

dence.
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(a) Acetone exposures (b) Ethanol exposures

Figure 10.11: PSB based sensor diffusion front rate flow dependence.
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Figure 10.12 : P V A  based sensor diffusion front rate flow dependence.
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Figure 10.13: PCL based sensor diffusion front rate flow dependence.
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Figure 10.14 : PSB based sensor tem perature dependence o f NQc0.
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(a) Acetone exposures (b) Ethanol exposures

Figure 10.15: PVA based sensor temperature dependence of N Q cq.
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35 40
Relative Humidity%

Figure 10.17: PSB based sensor pair humidity dependence of NQ cq.

ature. It can be seen that there is a consistent growth or reduction with temperature. 
Previously only a reduction has been observed.

However, it must be remembered that in previous studies[57], only the sensor tem­
perature was varied and the solvent concentration was static. In the case of the system 
considered here, solvent concentration is a function of temperature as well, due to the 
temperatine dependence of partition coefficients. This is a more realistic finding as ‘ in 
the field’ electronic noses sample at ambient temperature.

Thus there are two partitions interacting: that for the sample chamber liquid/vapour 
partition and that for the sensor/vapour partition. By Trouton’s law (8.78) we have

Ql =  ALeBlT (10.7)

Qs =  AseBsT (10.8)

where Ql ,Q s are the partition coefficients for the sample and sensor chambers re­
spectively. Therefore QsCq, the concentration at the atmospheric boundary is given
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Relative Humidity%

Figure 10.18: PVA based sensor pair humidity dependence of NQcq.

by

Qs^o
Q sCl

Ql
-As

CLT s e
(■BS-B l )T

(10.9)

( 10.10)

where cL is the sample chamber liquid concentration (which is assumed to be constant).
It can be seen that an increase or decrease with temperature of the boundary 

condition Qcq is dependent upon the relative sizes of Bs and BL.

It cannot be ascertained whether the swelling coefficient alters with temperature or 
not.

Figures 10.17, 10.18 and 10.19 show the dependence of N Q cq on humidity. Again 
a variety of different behaviours can be seen between the sensors. The decrease shown 
in Figure 10.17 seems to suggest that PSB is the most porous to water; the low N Q cq 

means that the response of the sensor has been lowered due to water adsorption.
These results in particular demonstrate the complex interaction of an electronic
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Figure 10.19: PCL based sensor pair humidity dependence of NQcq. 

nose with its environment.

10.5.4 Conductance

The temperature dependence of the conductance of composite sensors is well known 
and has already been discussed. The estimated parameter dependencies are shown 
in Figures 10.20, 10.21 and 10.22. Notice the consistency in the behaviour of the 
conductance for each pair of sensors.

The PSB sensors display the previously observed reduction with temperature of the 
baseline conductivity[135] as discussed in Chapter 8. The other two sensor types display 
a two stage behaviour. However for higher temperatures a reduction with temperature 
can be seen. This suggests that the sensors are expanding with temperature.
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Figure 10.20: PSB based sensor pair temperature dependence of baseline conductance.

10.5.5 Film Thickness

There are no obvious dependencies of the film thickness upon the temperature. This 
might be because the film thickness interacts with the initial conductivity to give the 
baseline current. However the plots (Figures 10.23, 10.24 and 10.25) do show that the 
film thickness changes by a relatively small amount.

10.6 Discussion

A novel model proposed in this thesis has been fitted to a large number of experimental 
data sets. The resulting estimated parameter values have then been analysed for their 
environmental dependencies. The object of this analysis is to understand more clearly 
how the dynamics of an electronic nose system are affected by the environment in which 
it is operating. The model was successfully fitted to data obtained over a wide range 
of environmental conditions.
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Chamber temperature in °C

Figure 10.21: PVA based sensor pair temperature dependence of baseline conductance.

The rate at which the sensors react is clearly environmentally dependent. The 
increase in diffusion rate is very much temperature dependent. There are two possible 
effects contributing to this. The first is that mass action is temperature dependent and 
so reactions will tend to equilibrium more quickly at a higher temperature. Secondly it 
was demonstrated in Chapter 8 that diffusion in a polymer is concentration dependent. 
It is also known that the sample concentration might increase with temperature, so 
this could also explain the observed behaviour.

The flow dependence is extremely interesting with regard to the design of electronic 
nose systems. Previous work has suggested that increasing the flow rate greatly in­
creases the rate at which the sensor reacts. However, the observed behaviour here 
suggests that the situation is more complex. The ‘dead zone’ for intermediate flow rate 
might be explained by the interaction of several conflicting processes:

• High flow exhausts initial sample headspace more quickly.

• High flow generates headspace more rapidly via sparging
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Chamber temperature in "c

Figure 10.22: PCL based sensor pair temperature dependence of baseline conductance.

• High flow rate generates a greater response, possibly due to the changing fluid 
flow boundary layer at the sensor surface.

As shown in Chapter 9, the sample concentration will move between equilibrium 
with and without fluid flow, the equilibrium with flow being lower. At lower flow rates 
the difference will be very small, so the observed concentration will be high. With a 
higher flow rate (exhausting the headspace in 1 or 2 seconds) the concentration will 
drop by a much larger amount and so the ‘time average’ concentration will be lower.

This effect is counteracted partly by sparging, which ‘bubbles’ the carrier air through 
the solvent liquid driving off more volatiles into the atmosphere of the sample chamber. 
The greater the flow rate, the greater the number of solvent molecules driven into the 
gas phase and so the initial concentration is increased, as well as the ongoing flux of 
molecules into the gas phase.

The flow rate will also affect the concentration of molecules reaching the sensor film 
skin. This may be because of the interaction of fluid flow and diffusion of the solvent
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Figure 10.23: PSB based sensor pair temperature dependence of initial film thickness.

in the carrier gas. As noted in the last chapter, the velocity profile in the smart nose is 
parabolic. The flow rate is at a maximum at the centre of the channel and is, in theory, 
static at the surface of sensor. This means that diffusion across the profile will play 
a part in delivery of the solvent vapour to the sensor. At low velocities, the width of 
the ‘stagnant’ area near the sensor surface will be wider than at high velocities. This 
means that diffusion will be the main transport effect. The result of this might be a 
lower observed concentration at the sensor.

There is some weak humidity dependence. One might have expected a greater 
dependence given that diffusion is concentration dependent. This possibly means that 
water and the solvents interact in a nonideal manner; there is no linear superposition 
of the effects of the water and the solvent.

The effects of temperature on NQcq are very interesting and have served to high­
light the interaction of processes on the periphery of the electronic nose system. It can 
be seen that a solvent-polymer interaction can be characterised by the temperature
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Chamber temperature in °C

Figure 10.24: PVA based sensor pair temperature dependence of initial film thickness.

dependence of the current change. This gives possible design strategies for new elec­
tronic nose systems. This has already been investigated in part in [173]. This approach 
could be broadened to flow aspects [13] and humidity variations. This work has found 
fruition already in temperature modulated devices [174].

These results also point to the problem of an ‘optimal’ sensor array temperature, 
which, it would appear, is solvent and polymer dependent. The boiling point law (8.78) 
was not observed directly as Q could not be identified uniquely in the model.

Conductance results were roughly in line with what was thought to happen in the 
physical system, the film swelling as it becomes warm. There was some anomalous be­
haviour at lower temperatures, though this may be to due to the way that conductance 
and film thickness naturally interact to give the initial current. A relationship between 
these two variables means that there are not necessarily unique parameters for each. 
The anomalies may be as a result of the optimisation routine converging more easily 
to a different set of solutions to those preferred for higher temperature responses.
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Figure 10.25: PCL based sensor pair temperature dependence of initial film thickness.

Broadly speaking, the observations made were consistent with previous studies. 
This means that a great deal of confidence can be placed on these results.

These experimental data do make full environmental analysis difficult, that is the 
uncontrolled environmental conditions. The result of this was a rather uneven grid of 
test conditions. However, the uncontrolled nature of the experiments was a major aim 
of the research. The distributions of the various environmental conditions are shown 
in Figures 10.26, 10.27 and 10.28.

It can be seen in Figure 10.26 that the majority of experiments were performed at 
17°C and above. This would suggest that the relatively small number of experiments 
performed at temperatures lower than this are not to be held in much confidence. 
This is upheld in the observations above, with a different low temperature mode for 
10 -  15°C than that for the larger range 15 -  30°C. On the whole the distributions of 
flow rates and humidity are good.

This uncontrolled grid of experiments has meant that it is difficult to analyse the
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Figure 10.26: Distribution of Temperature at time of experiment.

separate effects provided by the environment. However the investigation has high­
lighted the complex nature of the temperature dependence of the observed concentra­
tion Qco. The model has shown itself to be valid over a wide range of conditions and 
to display the previously empirically observed behaviour.

It has been observed as well that the environmental dependencies characterise the 
sensor/solvent interaction. The degree of dependence varies from sensor to sensor. It 
can be seen that the rate constants of PSB and PCL type sensors are highly linear 
in their temperature dependence (Figures 10.5 and 10.7) whereas the relationship for 
PVA is not as well defined (Figure 10.6). The dependencies of the product NQ cq 
are also interesting; the sign of the relationship slope alone provides a dichotomy of 
temperature limited and enhanced detection.

There are some disparities between the model and experimental responses. The 
model predicts more rapid initial dynamics than are actually observed. The reason 
for this is probably the nature of the error in the steady state approximation, which



CHAPTER 10. PARAMETER ESTIMATION AND ANALYSIS 248

9 0 1---------1---------}---------i i---------1---------1---------1 " i  i

Relative Humidity

Figure 10.27: Distribution of Humidity at time of experiment.

naturally assumes rapid dynamics. The error plot shown in Figure 8.8 shows an error 
in the form of a surplus concentration diffusing into the polymer film. This would 
account for this rapid change in current at the beginning of the simulation.

Eradicating this means eradicating the steady-state assumption. Using the Neum- 
man solution of the form (8.29)(8.30) and (8.31) would result in great difficulties in 
obtaining an analytical solution. However it could be simulated numerically. The 
ultimate goal would be to simulate the original nonlinear PDE (8.1). However, this 
would necessitate some Finite Element or Finite Difference approach which would be 
extremely computationally expensive with regard to parameter estimation.

The current changes observed in the experimental data are not monotonic with 
respect to time; there appears to be some superimposed oscillation. This may be due 
to the pump supplying an intermittent flow. However, it was placed half way between 
the sample and sensor chambers, 300mm from each, which should have eradicated this 
The oscillation, however, demonstrates the rapid reversible dynamics of these sensors



CHAPTER 10. PARAMETER ESTIMATION AND ANALYSIS 249

Figure 10.28: Distribution of Flow rate at time of experiment.

There are other sources of error. There is still some variation in parameter values 
for a fixed temperature and humidity. Air pressure was not monitored, but this will 
have an effect on the dynamics of the system [175]. The partition coefficients will vary 
with air pressure, and this may have an effect on the estimates for the rate constants 
and the product NQc0, as discussed above. There will also be a change in the volume 
of the headspace in the sample chamber over time, due to the slow evaporation of 
the liquid solvent. This will alter the amount of solvent vapour available at static 
equilibrium concentration, thus changing the ‘time averaged’ concentration observed.

It is also suspected that the pump characteristics changed with time. The pump 
ran for 336 hours of testing, plus the several weeks it took to calibrate the experimental 
rig. In this time it came into contact with a great deal of solvent vapour that may have 
changed the characteristics of the pump’s rubber diaphragm.

It is possible that, after so many exposures, the properties of the sensors themselves 
may have changed. This, however, is difficult to judge due to all the other factors
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involved in the sensor responses.
To reiterate: the model fit in Figure 10.2 demonstrates the model predicts the 

behaviour of the real system well; the fitting error over all experiments, Figure 10.3, 
demonstrates good fitting over the time span of the experiments; the environmental 
dependencies of the model parameters appear, on the whole, to be coherent and cor­
roborated by previous work. The model also demonstrates how physical fabrication 
dependent characteristics can be separated from the chemical, polymer /solvent depen­
dent, characteristics by using mechanistic modelling. This will help to reduce •

• Inconsistency of sensor response between sensor arrays due to fabrication varia­
tions.

• The effects of long term sensor drift.

It can thus be concluded that generally the model is a valid approximation of the real 
system and has successfully analysed the experimental data produced.



Chapter 11 

Conclusion

Black box and mechanistic modelling of electronic nose systems has been investigated. 
The motivation for this work was to bring about a greater understanding of these 
systems. The exposition was illustrated with examples using both synthesised and real 
data obtained in the laboratory.

The aims of this thesis were threefold:

• To analyse the behaviour/output of electronic nose systems.

• To model the internal mechanisms of carbon black-polymer sensors.

• To investigate the effects of environmental conditions on the input-output be­
haviour of an electronic nose system.

11.1 The Empirical Nature of Black Box Modelling

A number o f different models were proposed to analyse real electronic nose data. The 
problems of small data sets and tuning complex models have been highlighted. An 
investigation was made into the relationship between model complexity, the amount 
of data available and model parameter tuning. It was concluded that the number 
of model parameters as well as the smoothness of the target function are important. 
The smoothness of the target function is largely influenced by the scale of separation

251
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between two data classes. This therefore dictates the amount of data needed to robustly 
identify a good approximation of the target discriminate model. Therefore the pitfalls 
of the empirical data driven modelling technique were investigated.

The focus of the investigation then turned to resolving this problem by data set 
reduction. The interaction between different black box model types and two data 
reduction techniques were investigated. It was concluded that the choice of the two 
was very important. A judicious choice of preprocessing method can lead to an increase 
in model accuracy of some 20-30% from that obtained from the raw data.

Novel methods of parameter identification were investigated; namely genetic algo­
rithms and a batch gradient search method. Various methods of implementing these 
algorithms were compared to the Support Vector Method for the tuning of Radial Basis 
Function Neural Networks. It was concluded that the gradient search method was too 
sensitive to the error curve in the solution space and was prone to oscillation, while the 
genetic algorithm was much better for the generation of ‘initial guesses’ for parameter 
estimation algorithms. The SVM overall was far more robust for this application.

These new methods were then applied to several data sets of biomedical processes. 
They were all challenging in nature as they attempted to detect signals with a large 
amount of background noise present. The conclusions of this work were that electronic 
nose systems show great promise in a medical diagnosis context.

11.2 Mechanistic Modelling

In the second half of the thesis a different approach was taken; mechanistic modelling 
of a particular type of gas sensor. Carbon black-polymer sensors were modelled using 
a nonlinear diffusion model. This was coupled with an electron hopping conduction 
model to give an analytic solution for the time dependent change of current through 
a sensor. This assumed a steady state solution and rapid dynamics were assumed. A 
model for six such sensors in three pairs responding to two different solvent samples 
was produced by using the single sensor solution twelve times with common parameters 
representing the relationships between sensors of the same type and the same sensor 
responding to two different solvent samples.
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The model fits demonstrate that the assumptions made on the model are sufficient 
to generate the real system behaviour, except for the steady state solution adopting ini­
tial dynamics that were too rapid. This still only resulted in an error of approximately 
5% in most cases.

The model was fitted to a series of experimental sensor exposures, where environ­
mental conditions were recorded. The data were produced using a newly constructed 
test rig designed specifically for the task. The resulting dependence of estimated model 
parameter values on these conditions was then investigated. The dependence of pa­
rameter values largely agreed with previous empirical observations. Most interesting 
were the temperature dependencies of the product of parameters NQc0 which had pre­
viously been observed to reduce with temperature. Here, however, it was observed to 
increase in some cases. This is because the temperature also dictates the gas phase 
concentration. Thus it was concluded that the temperature dependence of the interac­
tion between solvent liquid phase evaporation and condensation into the sensor was a 
particular characteristic of a particular sol vent/polymer pair.

It is concluded that the models give us a greater understanding of the behaviour 
of electronic nose systems. They also allow us to investigate the time dependence 
present within the system, how environmental factors affect the behaviour and which 
characteristics are important when solving the inverse model problem.

The results of this work indicate that electronic noses may become important tools, 
especially if more of a dynamical systems, rather than a statistical, modelling approach 
is taken. This will allow us to make important decisions at the design stage of the 
physical system and to analyse the resulting data more efficiently.

11.3 Future Work

The directions of future work have been discussed implicitly throughout this thesis. 
These may be summarised as:

• Further data set reduction techniques

• Larger data sets
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• Development of more sophisticated genetic algorithms

• Numerical simulation of solvent transport models

• Sample analysis and identification by analysis of the electronic nose system dy­
namics

11.3.1 Data set reduction

It is apparent from the findings that more sophisticated data preprocessing techniques 
lead to more rigorous model building. The essential aim of the work documented in 
this thesis was to understand how the modelling of electronic nose systems may be 
improved.

It is therefore suggested that a more in-depth analysis o f pre-processing and infor­
mation extraction from electronic nose data is carried out. More general, possibly ad 
hoc, techniques are required that can be incorporated into the data processing modules 
o f electronic nose systems in order to extract information from gas sensor signals.

Feature extraction is the most promising technique especially when considering the 
cross-sensitivity of an array of gas sensors. The sensor output to feature mapping might 
lead to some novel system design, for example a set of the same type of sensor but with 
different film thicknesses.

It is apparent that more sophisticated data gathering is required. Data sets need 
to be as large as possible so that outliers can be identified and eliminated and so that 
models may be identified as robustly as possible.

11.3.2 Larger data sets

The investigations reported here resulted in a few hundred samples using the Automatic 
Headspace Sampler of a mass spectrometer. It would be interesting to investigate more 
extreme systems modelling where there are several thousand samples to analyse. It 
would be expected that a number of issues, including computer speed, would then be 

manifested.
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These data would have to be collected as part of a much larger scale project. It 
would be preferable to source the samples from a hospital or clinic as these, for example 
the urine samples of Chapter 7, provide a much more challenging classification problem 
than laboratory produced samples.

11.3.3 Development of more sophisticated genetic algorithms

The genetic algorithms discussed in this thesis have proven themselves useful for black 
box and mechanistic model identification. This is not electronic nose system specific. 
The major advantage of this algorithm has been the selection of good start values for 
more conventional minima search algorithms.

It is apparent though from the results in Chapters 4 and 5 that the algorithms 
need to be more sophisticated. The oscillations and loss of good solutions exhibited 
suggest that emphasis should be placed upon the crossover, or mating, aspects of the 
algorithm. A number of issues need to be addressed, all coming under the umbrella of 
‘symmetry of solutions’.

It became apparent in Chapter 5 that the parameters representing a neural network 
model may be permuted to give the same input-output response. For a mechanistic 
model it is possible that there are several sets of parameter vector solutions. The 
consequence of this is that the genetic algorithm will attempt to cross chromosomes 
that represent points close to two different minima; resulting in offspring that represent 
poorer solutions.

It seems necessary then to investigate ways of checking whether a pairing of indi­
viduals is ‘good’ or not. A definition of ‘good’ might be based upon some broad idea 
of the individuals being part of convergence to the same minimum.

11.3.4 Numerical simulation of solvent transport models

The mechanistic model presented in this thesis was an approximation of a nonlinear 
model that was developed based upon established properties of solvent polymer in­
teractions. The model that was produced gave more insight into the dynamics of an 
electronic nose system.
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However a simulation of the original model could provide more important informa­
tion. This would probably mean a finite element based simulation to numerically solve 
the nonlinear PDE (8.2). Coupling this with a conductance model such as in (8.61) 
to give the observed current change dynamics would be extremely costly computation­
ally. This could rule out parameter estimation because of the large number of repeat 
simulations that such a process would require.

11.3.5 Sample analysis and identification by analysis of the 
electronic nose system dynamics

Further dynamic analyses involving parameter estimation are still required. The first 
recommendation would be to carry out a second environmental dependency study using 
a more controlled environment. This would mean that different conditions, such as 
humidity and temperature, could be altered separately.

A second recommendation would be to investigate whether the estimated parame­
ters might be used to give more accurate discrimination between odours. A secondary 
aim would be to see whether a greater understanding of the environmental dependen­
cies might allow the building of system models that accurately model the real system 
under different environmental conditions.

11.4 Concluding Remarks

A systems modelling approach has been applied to electronic nose systems. Techniques 
have been proposed and tested for robust data analysis using black box models. Data 
set reduction and novel optimisation algorithms have proved advantageous for model 
building. This has been done with the aim of extending the biomedical applications of 
such systems. It has been demonstrated how mechanistic modelling may be used in the 
future to characterise electronic nose systems by the environmental dependencies of its 
outputs. The models and modelling techniques presented in this thesis demonstrate 
the advantage of applying rigorous systems modelling techniques to electronic nose 
systems in order to gain a greater understanding of these systems.



Appendix A

Derivation of Thermodynamic 
Model

A .l  Diffusion into Polymer

The standard partial differential equation for diffusion, as given in [176], is

where c is the concentration of particles, and p is the number injected into the system 
per unit volume per unit time. The variables t and r correspond to time and space 
respectively. D  is the diffusion constant with dimension [L2T~1], using assumption (i) 
of Chapter 8 . Of course here, in theory, each unit volume can contain any arbitarily 
large amount of solvent.

Diffusion of a substance can be discussed in terms of the flux of transport J It is 
often called the diffusion current density. Hence equation A .l can be written

L c = ( | - C v ! } c ( r , i )  =  ^ ( r ) (A.l)

(A.2)
Equations (A .l) and (A.2) imply Fick’s law

J =  -D V c
(A .3)

257
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Due to this, however, the model proposed is unfaithful to the true situation. Solu­
tions to (A .l) allow for an arbitrarily large capacity in all volume elements. Indeed, the 
larger the concentration gradient, the greater the magnitude of the flux of transport. 
However, in polymers there is ‘reluctance’ to accommodate more solvent. This can be 
illustrated by considering the related processes in Gas Chromatography. A gas chro­
matograph is essentially a long narrow hollow column packed with fine particles. As a 
sample, initially in its mobile vapour state, is introduced it goes through a continuous 
sorption-desorption cycle between the mobile phase and a stationary phase within the 
column material. This set up results in a diffusion rate that varies across chemical 
species. Three different diffusion processes are present:

1. Ordinary Diffusion. This is the process driven by a concentration gradient.

2. E ddy Diffusion. There is a variation in the size of particle sizes in the column. 
Therefore each molecule ‘sees’ a different path, resulting in a variation in the 
speed of individual molecules.

3. Local Nonequilibrium As a ‘plug’ travels along the column it spreads out 
due to varying diffusion constants. Hence, at every point the stationary phase 
tries to reach equilibrium with a time dependent mobile phase. This makes the 
sorption-desorption process time dependent.

This two phase diffusion is relevant to polymer diffusion. It would be expected 
to be a pure concentration gradient driven flux. However, as has been noted above 
and in [177] the process is non-Fickian. Homogeneity is assumed, so Eddy Diffusion 
is neglected. However the local non-equilibrium effect will be the major factor in the 
reluctance to absorb. The stationary phase will cause the thermodynamic changes 
discussed below.

A . 1.1 Modelling using Chemical Potential

First, consider the pore model which is a standard diffusion model for polymers [147]. 
Consider a pore of length 2L »  Rp where Rp is the pore radius, and assume the
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solid phase is immobile. The pore can then be considered as a line segment oriented 
along the z  axis. Keeping faithful to assumption (iv) in Chapter 8, consider a single 
component bulk fluid. The flux can then be expressed as

nfDfm dfJ>f 
kf,T dz (A.4)

Then for the situation where the bulk external phase is in equilibrium with the pore 
fluid we have that

Vf ~  VfB =  Vo (T) +  kBT  loge Çb (A.5)

where Cb is the chemical activity of the bulk fluid. It is assumed that the pore fluid is 
whatever the sensor was purged with, and the bulk external fluid is the solvent.

The chemical activity should be defined at this point. In [175] the chemical activity 
is defined in terms of an equation similar to (A.5). It is then deduced that the activity 
has units of pressure. For an ideal gas the assumption is made that ( B — ► nfB as 
n jB — > 0. Hence, equations (A.5) and (A.4) together give

din (B dnfB
Jf — —D fmK f

or, for an ideal gas, in the limit as UfB -

Jf =  - D f m K f

d In n/B dz 

0

dnfB
dz

Here K f  is the partition coefficient of the fluid / ,  defined by

K f =  2 L
nfB

(A.6)

(A.7)

(A.8)

Note that (A.7) together with (A.2) yields (A .l) in one dimension.

A . 1.2 Polymer Cross-Linking

To calculate the chemical potential it is neccesary to calculate the energy changes in the 
polymer body as it dissolves into a solvent. Most polymers exhibit an elastic behaviour 
due to two effects;
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• Polymer chains, in an undisturbed state, rest in a minimum energy configuration. 
When this configuration is altered there is an increase in potential and thus there 
is a force produced in reaction to this.

• There is an interaction between chains, often referred to as cross-linking.

A .2 Thermodynamic modelling of solvent sorbtion

An expression is now derived for the chemical activity of a polymer dissolving in a 
polymer with terms representing osmotic pressure and the elasticity of the polymer 
chains. By osmotic pressure is meant the self-diffusion due to a concentration gradient. 
As above an expression is sought for the chemical potential as a function of space. To 
achieve this the definition of chemical potential is first given [178],

Here G is the molar energy and n is the number of moles. A modified version is 
considered which replaces this measure with total energy and number of molecules.

polymer as a whole. However it may be extended to a dynamic model as the expressions 
are in terms of volume fractions and the number of solvent molecules.

The internal energy is decomposed into two independent terms,

where Gmix is the free energy of mixing and the elastic free energy due to expansion of 
the polymer network is denoted by Gei.

A .2 .1  Free energy of mixing

It is assumed that the entropie contribution is due to change of configuration For a 
solvent-polymer mix, the change in entropy is

(A.9)

Here we follow the working of [133], which is actually a static model considering the

AG  — A GmiX +  AGei (A.10)

ASmix = ~ k(ni intfi + «2 lnu2) (A .11)
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and the heat of mixing (enthalpy) is

AH  =  x\kTniv2

The mixing term is first derived; for an ideal mix,

AG mix =  AHmix — T ASmi. 

=  AHmix -  TASV

m ix

mix (A.13)

(A .12)

where H mix is the enthalpy due to mixing and S mix is the entropy of mixing. It is 
assumed that the entropie contribution is due to the change of configuration of the 
polymer links. For a solvent-polymer mix, the change in entropy is:

Here nt is the number of molecules and is the volume fraction of substance i. 
In the case of a single component solvent, the solvent is set to be substance 1 and 
the polymer is substance 2. The constant xi is a constant which characterises the 
solvent-polymer interaction

By substituting Equations (A .ll) and (A.12) into (A.13) then the Flory-Huggins 
expression for the free energy of mixing are obtained:

In the case of solvent sorption in a polymer n2 =  0 as it is assumed that there are no 
individual polymer molecules in the network structure.

A .2.2 Free energy due to elastic deformation

The free energy due to elastic deformation is now considered. Similar to Equation A 13 
the free energy change due to elastic deformation is expressed as

(A. 14)
and the enthalphy is given by

AH  =  xi kTniv2 (A.15)

AGmix — kT(ni In v\ +  n2 In v2 -f- x niv2) (A.16)

A Gel =  AHel -  TASel
(A .17)
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It is assumed that the change in enthalpy is zero, i.e. that is there is no change in 
the internal energy of the system. A change in free energy occurs because the polymer 
chains are perturbed from their preferred state of lowest energy. The expression put 
forward in [133] is

AGe/ =  (3 a2s ~  3 -  lno£) (A.18)

where as is the linear factor of deformation and ve is the density of crosslinks.
In calculating the change in entropy a statistical model of the polymer chain config­

uration must be considered. Below the configuration of chains is represented as being 
normally distributed. This is adequate for small extensions of the polymer chains [133], 
however at large extensions other alternative distributions, such as the inverse Langevin 
function should be considered.

A network of v chains is considered.
The end-to-end vectors of the polymer chains are considered to be distributed as

w, ( ï . ï . * ) =  ( 4 j  (A.19)

where r2 =  x2 +  y2 +  z2 and (5 =  Let the network now be subjected to a 
homogeneous strain described by the factor as in the x, y and z directions. Hence 
the mean position of a cross link relative to another must change by the same factor. 
Hence, any chain characterised by the vector r* =  (x,-, yu Zi) after extension must have 
had components (^> ^ )-  Thus the number of chains having their end-to-end vector
components changing from to Xi +  Ax, etc. after deformation is given by:

Vi(xi, yu =  vW (  £i m 
l j )

Zi \ AxN yAz  
otsJ a? (A.20)

where vt is for the i-th configuration. The configuration entropy change involved in the 
formation of a network structure in a deformed state specified by aa is now calculated.

The probability ÎÏ that the unlinked polymer occurs in a configuration that is consis­
tent with that of a deformed network with chains having end-to-end vector (xit Vi, Zi) 
as required by the deformation factor as needs to be calculated. Let us suppose that
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u of the units of the polymer molecules have been designated to participate in cross- 
linking. For these chains to be acceptable in the formation of the network specified 
by the deformation factor, the configuration of the u  chains must fulfil the following 
conditions:

1. The chains must occur in the correct distribution specified by the vt.

2. The units designated for crosslinking must occur in the correct juxtaposition.

The probabilities that these conditions are fulfilled are designated fti and f22 respec­
tively. Hence we have Î2 =  ÎI1ÎI2, as it is assumed these are independent events. For 
convenience we denote the probability that a given chain has components within Ax, 
A y, A z  of (xi, yi, Zi)

Ui  =  W { x u  yu  Z i ) A x A y A z (A.21)

Thus the probability that each chain in the network complies with condition 1 is the 
product of all such terms. Since which particular chain takes up which configuration is 
o f no importance, by multiplying by the number of possible permutations we arrive at

«•=“'11$  (A.22)t 1

On taking logs and introducing Stirling’s approximation for the factorials,

i n n , - 5 > i « a s  (A23)

After substituting (A.19) into (A.20), we obtain

ln ( ? )  =  ^  "  0  +  »? +  2.?1 +  (A.24)

Substituting (A.24) into (A.23) and replacing the summation by an integration over 
R 3 the following is obtained

lni2i =  —u (A .25)
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The second probability factor, ii2, is now considered. Condition 2 specifies that 
all the designated polymer units must be paired up (hence we assume that v is even). 
The probability that one of the u units has another such unit neighbouring it in the 
required volume SV is (u -  1 )^ . Hence, by requiring that all the units to be paired 
up, the probability is

{}2 = ( u - l ) ( u - 3 ) . . . ( l ) ( f ) f

= (Dim* (A.26)

Replacing V  with a3aVu where Vu is the volume of the undeformed sample, the result

lnD2 =  — In a3 +  const (A.27)

is obtained. The constant term in Equation (A.27) is independent of the deformation 
and so it will soon become clear it is unimportant. Substituting (A.25) and (A.27) into 
(A .17) results in (A .18).

A .2.3 The final PDE

The above thermodynamic model is used to derive a diffusion PDE. A one dimensional 
case is considered, given the inherent symmetries of a solvent diffusing into a polymer 
surface.

It is desirable to write a PDE in terms of the concentration of the solvent. This is so 
that the initial conditions may be written in terms of the concentration at the surface 
of the polymer (here it is assumed that the sensor is in a sufficiently large chamber, 
so that there is no drop in concentration as the solvent vapour is absorbed into the 
polymer.

Using the definition in (A.9)

Vl —
dO mix dGel

dn dn (A.28)

The result for the mixing component is assumed to be as in Section A. 1.1. The elastic 
term is therefore analysed and it is assumed that flux due to osmotic pressure and 
deformation combine linearly.
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In [133] the following expression was derived:

m\i — Mei — K Tv i (A.29)

where the variables have been previously defined. Note this equation is entirely in 
terms of volume fractions and the density of the polymer chain network. To introduce 
the density function u(x, t) it is noted that u2 +  Wi — 1 and the following assumption

If a one dimensional medium is considered then equations (A.2) and (A.4) imply 
that the second derivative with respect to space will give the rate of change of density 
with respect to time.

This expression is immensly complex and would defy any analysis. Therefore, assume 
small concentrations of the solvent and use (1 -  x)e «  (1 -  ex) for small x. This yields

is made:

A ssum ption  vi The volume occupied by x  solvent molecules is given by:

v =  Nx (A.30)

The following is obtained

(A.31)

dc
dt (A.33)

for some D.
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