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Abstract

How, and how well, do people switch between exploration and exploitation to search for and
accumulate resources? We study the decision processes underlying such exploration/exploitation
tradeoffs by using a novel card selection task that captures the common situation of searching
among multiple resources (e.g., jobs) that can be exploited without depleting. With experience,
participants learn to switch appropriately between exploration and exploitation and approach
optimal performance. We model participants’ behavior on this task with random, threshold, and
sampling strategies, and find that a linear decreasing threshold rule best fits participants’ results.
Further evidence that participants use decreasing threshold-based strategies comes from reaction
time differences between exploration and exploitation; however, participants themselves report
non-decreasing thresholds. Decreasing threshold strategies that “front-load” exploration and
switch quickly to exploitation are particularly effective in resource accumulation tasks, in

contrast to optimal stopping problems like the Secretary Problem requiring longer exploration.
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1. Introduction

Search is a ubiquitous requirement of everyday life. Applicants look for the best job to
match their skills; scientists search for information to help their research; and web surfers use
search engines like Google to obtain information and products from the internet. In many
situations, whether to search (i.e., explore for better options) or to stop searching (and exploit the
fruits of search already done) is a key issue for making good decisions. Because of its
importance, strategies for balancing between exploration and exploitation have been widely
studied across many fields, including animal behavior, psychology, management, and computer
science (Todd, Hills, & Robbins, 2012; Hills, Todd, Lazer, Redish, Couzin, & the Cognitive
Search Research Group, 2015; Christian & Griffiths, 2016). The kinds of strategies that humans
and other organisms can use to deploy exploration and exploitation effectively depend on the
details of the search tasks they face. In this paper, we investigate a common type of search task
to study how, and how well, people regulate and adjust their use of these two components of
search.

Many common search tasks involve exploring a sequence of options and deciding
whether and how long to exploit (i.e., stick with) each one, with the searcher getting payoff from
each selected option at each point of the search. For instance, a person’s career can be thought of
as a search process over a sequence of jobs—the searcher explores and finds a new job and
accepts it, receiving a payoff for as long as they exploit that opportunity; but at any point they
can decide to explore again to find a new job. In some of these cases, the rewards from
exploiting an option can decrease over time—this happens when the option is actually consumed

or used up, as in patches of food eaten by foraging animals (Charnov, 1976; Hills, Kalff, &
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Wiener, 2013; Hutchinson, Wilke, & Todd, 2008) or clusters of webpages found and read by an
individual online (Pirolli, 2005, 2007) or when the challenges from a particular job become
routine and uninteresting. These situations require an ongoing switch back and forth between
exploring for a new bountiful option, exploiting that option and extracting its benefit for some
time, and then exploring again once the option is sufficiently used up. The searcher here decides
how long to exploit the diminishing option before leaving to explore and find a better one.

In other cases, the resources do not deplete, but rather stay constant over time (e.g., a job
with a salary that tracks inflation), or go up (e.g., a job with substantial raises, or a romantic
relationship that deepens with time), or even alternate (as in a cyclically rising and falling stock,
or the Leapfrog task of Knox, Otto, Stone, and Love, 2012, where the value of two resource
options switch rank over time). Even for these situations of ongoing benefit, there can still be a
reason to leave a current option and explore for possibly better ones (e.g., if one’s current salary
is insufficient); sit-and-wait foragers such as web-building spiders and some ocean-dwelling
filter feeders also face this kind of search as they leave a currently stable feeding site to seek a
better one (Beachly, Stephens, & Toyer, 1995). Here the searcher must tradeoff between
exploiting their current option and thereby getting some sure return, versus exploring more to
find a better option but possibly obtaining a lower payoff until then.

This is the frequently-encountered search task we explore in this paper—deciding when
to explore more and when to stop (or stay) and exploit what is available, in a situation where
both exploring and exploiting provide rewards, and where there are multiple non-depleting
options with known rewards to choose among, but there could be better options still to be found.
Consequently, along two important dimensions of search (among several), exploitation with

depleting versus non-depleting resources and exploration with ongoing reward versus without,
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we focus on one commonly occurring combination: search over non-depleting resources with
ongoing rewards during exploration. Other dimensions, such as fixed versus open-ended time
horizon and known versus unknown reward distributions, are not explored here; we use a known
and fixed horizon and inform participants of the reward distribution in these studies. While there
has been a fair amount of research (described in the next section) on how people search for non-
depleting resources and what the optimal strategies are in cases like the Secretary Problem where
exploration has no direct reward, less is known about the common cases we investigate here
where both exploration and exploitation provide rewards (see Mehlhorn et al., 2015, for a
review). Do people use the same strategies for these two types of search and are the optimal
strategies similar? To find out, we devise a task to study the strategies that people use to make
the explore/exploit tradeoff in situations where both are rewarding, and we assess how well
people perform in comparison to random baseline and optimal strategies. We also compare the
strategies people use with those previously reported for the Secretary Problem, to assess how
sensitive the strategies are to the presence of rewards during exploration. Finally, given that
people can learn to improve their performance without rewards while exploring (Seale &
Rapoport, 1997) we look at the extent of learning when rewards are present (for both exploration
and exploitation). We begin in the next section with a consideration of possible strategies for
search with and without rewarding exploration, before turning to our experimental design and

empirical and simulation results.

2. Search strategies for non-depleting resources

2.1. Exploration without reward: The Secretary Problem
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To provide a point of comparison for our novel task, where the searcher can switch back
and forth between exploration and exploitation, it is useful to first introduce a form of search that
has been well-studied by mathematicians, economists, and psychologists: optimal stopping
problems, in which the task is to make a one-time decision about when to stop exploration and
switch to exploiting the current discovered option (Ferguson, n.d.). In many optimal stopping
problems, individuals must first explore through some of the available options without accruing
any reward, until they find the one option they want to choose and exploit for its payoff
thereafter. For example, employers may consider many job applicants over an extended period
without employing anyone until they finally decide to hire a particular person and start
benefitting from having their position filled. This type of search task is embodied in the classic
Secretary Problem (Ferguson, 1989), in which a searcher (employer) sees one secretarial
candidate at a time and aims to hire the single best applicant in the population, without knowing
the overall distribution of abilities in the population and without being able to return to any
previously-interviewed candidate (e.g., because those people were hired elsewhere in the
meantime). The employer must decide when they think they have found the best candidate and
then stop their exploration and make the hire to get the benefit from “exploiting” the worker. In
this case, the searcher must trade off exploring more and possibly finding a better candidate but
also possibly passing over the best candidate, against exploiting sooner with the best candidate
seen so far who may not be the best overall. Similar search tasks also appear in domains
including selecting a mate (Todd & Miller, 1999), finding a parking space (Hutchinson,
Fanselow, & Todd, 2012), and buying a house or other unique items (though in these cases, there

can be both search costs and also benefits from stopping search sooner and exploiting a chosen
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option for longer, aspects that are absent in the generic Secretary Problem).

In the Secretary Problem, the solution for optimizing the probability of selecting the very
best applicant involves two stages: First, the searcher must explore (and pass by) an initial set of
applicants, the size of this set approaching N/e for large numbers of applicants N (where e is the
base of the natural logarithm, ~2.71828); second, the searcher must stop and accept the first
applicant after the initial set who is better than all other applicants seen so far (Ferguson, 1989).
The first stage can be thought of as gathering information about the range of possible values and
setting a threshold (the highest value seen so far) for the second stage. This optimal strategy
gives the searcher a 37% probability of selecting the best applicant.

To see how and how well people actually solve this problem, Seale and Rapoport (1997)
presented participants with fixed-length sequences of values (using ranks rather than actual
values so that distributions could not be learned) and had participants stop the search whenever
they thought they were on the highest value. Participants most often appeared to use a cutoff
rule having the same form as the optimal strategy—passing over an initial number of options and
then taking the first subsequent option seen that exceeds all the preceding options. Across 100
searches with N=40 options each, participants achieved a 30% mean proportion of success in
selecting the single best option. This was lower than the optimal performance of 37% in part
because participants did not search long enough. Participants did show quite effective learning,
improving their mean rate of success from 26% in the first 50 trials to 35% in the second 50
trials, largely by searching longer. Participants thus could learn to perform rather well in this
sequential search task by increasing the amount of exploration they did, even though there was

no direct payoff during exploration.
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2.2. A search task with rewarding exploration and exploitation

Optimal stopping problems like the Secretary Problem involve exploring some number of
sequential options with no payoff other than gathering information to determine when to stop
exploring and make the single switch to the final exploitation phase. Other paradigms allow for
transitions back and forth between information-gathering exploration (which is again non-
rewarding) and reward-accumulating exploitation (Navarro, Newell, & Schulze, 2016).
However, many common search domains provide payoff during exploration and exploitation
(which may serve to increase the amount of exploration done) and also allow switching back and
forth between periods of exploring, exploiting the found resources, and exploring again for
something better. Such search can occur, for example, when checking out and selecting
restaurants, genres of books to read, movies to watch, music to listen to, specific products to buy,
and relationships to engage in (Cohen & Todd, 2018). It is commonly studied in the form of
bandit problems with multiple rewarding options (arms) to explore and select among; in some
such experimental settings people have been found to switch once from exploration to
exploitation, as in optimal stopping problems (Lee, Zhang, Munro, & Steyvers, 2011). We are
interested here in the effective strategies for this widespread type of search, the actual strategies
that people apply, and how they differ from optimal strategies and from strategies people use in
stopping problems without ongoing rewards such as the Secretary Problem.

To study the exploration/exploitation tradeoff strategies that people employ when
exploration (as well as exploitation) can provide a payoff, we developed a search task game in
which participants must accrue resources over a sequence of 20 turns (Sang, Todd, & Goldstone,

2011). The resources are represented as points on cards, which individual participants search
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through on a computer screen. The participant begins with a deck of 20 cards all face-down in
the lower left corner of their screen; they are told (accurately) that each card has a number from 1
to 99 on it, that the card values are uniformly distributed in the decks (with repetitions of
particular values possible in each deck) so the expected value of each new card is 50, that they
have 20 turns in a game, and that their task is to accrue as many points as they can during the 20
turns in each game. (We also occasionally refer to games as trials.) There are two distinct
actions possible on each turn in the game, corresponding to exploration and exploitation, and
participants get points from each action as follows: A participant can either explore by flipping
over a card from the deck and getting the points revealed on that card, at which point the card is
displayed face-up across the top of the screen (see Fig. 1); or they can exploit a card they have
previously found by clicking on it in the display, and getting the points shown on that card added
to their total score. (In this way our task differs from a standard bandit problem, as here
exploring creates new options that can be exploited again on subsequent turns, and which never
change their value.) Thus a participant’s total score for a game is the sum of all of the points
accrued by their explorations (choosing cards from the deck) and their exploitations (choosing

cards already on the screen) over all 20 turns.

This search problem differs from optimal stopping problems like the Secretary Problem
in a number of ways. As described earlier, the key difference is that individuals in our card task
do not decide when to stop their search, but rather decide how to allocate their actions as they see

fit between exploration and exploitation across the duration of the task. They also receive payoff
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during both types of search actions, in contrast to the Secretary Problem where payoff is solely
determined by what value the searcher chooses to stop on and exploit. Reflecting many real-
world situations, searchers in the card task have knowledge of the possible outcomes they face,
they can return to previously seen options, and they can switch back and forth repeatedly
between bouts of exploration and exploitation—aspects missing from the Secretary Problem.
The card task and Secretary Problem do, though, both share a known fixed time horizon and a
lack of explicit search costs®.

To provide an upper bound on participants’ performance on this task and determine a
possible approach that they might use to solve it, we determined the optimal strategy using
backward mathematical induction (see Supplemental Materials file). The optimal strategy for the
card task with rewarding exploration and exploitation is to begin by exploring and then switch
once from exploration to exploiting the best card found so far (i.e., one displayed on the screen)
for all remaining turns whenever that best card’s value exceeds a predetermined threshold level
that falls with increasing turns. This decreasing threshold curve is influenced by the range of
possible card values (highest and lowest) and the number of turns remaining at each point in the
search game. For the settings here, with card values ranging from 1 to 99 and 20 total turns in the
game, the optimal threshold curve is shown in Fig. 2. This function is based not only on
comparing the results of exploiting the value of the current highest card versus the expected value
of exploring again once, but also on the expected value of exploring further and then exploiting a
better card value found later in the search. While this optimal strategy does not call for switching

back and forth between multiple phases of exploration and exploitation, its time-varying threshold

! For an interesting hybrid search task that involves payoff from all items seen, but without
knowing their values, only their ranks, see Richard Feynman’s restaurant problem:
http://www.feynmanlectures.info/solutions/restaurant_problem_sol_1.html


http://www.feynmanlectures.info/solutions/restaurant_problem_sol_1.html
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is also quite different from the optimal 37% rule for the Secretary Problem. One striking
consequence is that searchers could pass by a value early in their search that they should accept
(i.e., return to and exploit) later in their search—this happens in about 9% of card sequences in

the current setting, but cannot occur in the optimal Secretary Problem solution.

3. Methods

To find out how people search in settings when both exploration and exploitation are
rewarding, we conducted a search experiment to study participants’ decisions, and compared
their behavior to a range of strategies including optimal and random baselines, decreasing
threshold rules based on the optimal strategy, and sample-based rules like the cutoff rule found
for the Secretary Problem. We investigated participants’ strategies both through model fitting
and by explicitly asking them what thresholds they may have been using across their search. We
recruited 191 participants from the Indiana University Bloomington psychology student
participant pool in exchange for credit for their courses. They were told that their goal was to
accumulate as many points as possible in each search game, by flipping over cards from the deck
to get their points or clicking on cards already found and displayed on the screen and getting the
points shown on those cards. Participants were also informed about the distribution of card

values as indicated earlier. The general framework of the experiment is shown in Fig. 3.
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In the experiment, a turn refers to one exploration or exploitation decision, and every
game consists of 20 turns. On the first turn, the participant had to explore, flipping over the top
card on the deck, and thereafter the participant decided at each turn whether to explore from the
deck or exploit a displayed card value. Participants’ choices and response times between choices
were recorded. After completing each game by playing 20 turns, the screen was cleared and the
next game began (with a new deck with the same parameters); participants played 30 games so
we could evaluate their change in strategy and performance over time.

For example, in Fig. 1, four cards have been taken from the card deck so far, with the first
three values shown in a small font and the highest (and most recently found) card value, 91, in a
larger, red font. The screen shows that the number of turns taken thus far is 15, there are 5 turns
left, and the point total so far for this game is 1245. The number of points received by the
participant on each turn in this game is shown in the list beside the deck. On this 16th turn, the
participant must decide whether to exploit the highest value 91 again, as has been done for the
previous 12 turns (and which the optimal strategy dictates), or explore the deck further, hoping
for an even higher card value.

After each of the 30 independent games, participants were told the points they received
on that game, the points that the optimal strategy would have earned, and (redundantly) whether
the participant did better, worse, or the same as the optimal strategy. After finishing all 30
games, participants were asked to state explicitly what card-value thresholds they may have had

in mind while searching. For turns 2, 5, 9, 13, 17, and 20, participants indicated the minimum
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card value that they would have been satisfied with at that point, and hence would have made
them stop exploring and start exploiting this card for the rest of the turns in the game. (Whether
or not they were actually using a threshold rule to make their decisions, they could still have a
sense of what card values would be good enough to make them switch to exploitation at each
turn, and this potential knowledge should be stronger after 30 games of practice and
improvement toward an effective strategy.) Participants were asked to report explicitly this

threshold value with the following instructions:

Post-experiment Questionnaire: We would like to ask you about your general strategy
for doing this task. At different points in the game, you may have felt that if you had a
large enough card value showing on the table, then you would be satisfied with it, and
would pick it instead of drawing a new card from the deck. For example, on the first
round, if you happened to draw a 99, then you may have been satisfied enough with it to
pick it for the rest of the game. For each of the rounds listed below, what was the
LOWEST value for a card that would be enough for you to pick it for the rest of the

game? When you are finished, click the <space bar> to submit your numbers.

For the 2nd [5th, etc.] round out of 20, the lowest card that would be enough was

4. Decision behavior
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Across all of the turns taken by all participants (191-:30-20 = 114600 turns), there was
73.3% exploitation and 26.7% exploration. The optimal strategy calls for more exploitation,
81%, across the same games that participants saw? (t(190) = 6.31, p < 0.001; pairwise t-test). In
other words, participants explored too much. Participants’ mean total points per 20-turn game
was 1528 (SD 266), lower than that achieved by the optimal strategy applied to the same values

that participants saw, 1595 (SD 224) (t(190) = 16.07, p < 0.001; pairwise t-test).

4.1. Switches and final exploitation patterns

The optimal strategy for this search task dictates that there will be at most one switch
from exploration to exploitation per 20-turn game—only when the highest card seen so far
exceeds the current optimal threshold. There should never be a switch from exploitation back to
exploration—all exploration should be “front loaded” to the first portion of a game because this
maximizes the opportunities to subsequently take advantage of (i.e., exploit) high values that are
found during explorations. Participants behaving non-optimally, by contrast, might switch back
from exploitation to exploration for many reasons, including intrinsic stochasticity, boredom,
employing particular strategies, and/or changing strategies over time. Subsequently, as the end
of the game approaches, any participants who have switched from exploiting to exploring may
well switch to exploitation again to take advantage of previously-found high values.

Participants switched between exploration and exploitation a mean of 1.83 times per

game. In most cases, after some number of turns (during which they have explored and possibly

2 Conceptually, 30 sequences of 20 values were generated for each participant, and the optimal
strategy was applied to those same values, which could mean that the optimal strategy “saw” fewer
or more values than a participant did in any particular game sequence if it specified switching to
exploitation at an earlier or later turn than the participant selected.
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exploited over one or more stretches), participants made a final switch to exploitation for the rest
of the turns until the end of the game (and hence ended up exploiting on the last turn in 94.9% of
all games). The turn on which this final run of persistent exploitation begins will vary depending
on the search strategy used. For example, a strategy with a constant exploitation threshold of 90
would lead to a later mean switch point than the optimal strategy does, because cards exceeding
this high threshold are less common than cards exceeding the decreasing optimal threshold. The
mean position of the initial turn for this persistent exploitation (that is, the first exploitation turn
of a game that has no later exploration turns after it) is 7.64 across all participants. The optimal
strategy, when applied to all of the same data that participants saw, switched to persistent
exploitation at (mean) turn 5.14. This indicates that people continue exploring for longer than
optimal by about two turns. Fig. 4 shows the frequency distributions of these initial turns of
persistent exploitation for both participants and the optimal strategy. Compared to the optimal
strategy, the distribution of participants’ behavior has a fatter tail, with an appreciable proportion
of participants exploring even until the very end of some games. (See Section 6 for how these

results change with learning across games.)

4.2. Response times

How long participants took to decide whether to switch between exploring and exploiting

or to continue doing what they were doing can give insight into the decision strategies they use.
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Table 1 shows descriptive statistics for response times (RTs)—that is, times leading up to the
click on a certain action (since the last click)—for deciding to continue to explore or exploit (i.e.,
the previous action and current action are the same) and deciding to switch to explore or exploit
(i.e., the previous and current actions are different; all switches to exploit are included, not just
the final switch). These response times are calculated as follows.

When a participant switches from exploration to exploitation (or vice versa), part of the
RT comes from the motoric behavior of moving the mouse from the deck to a card displayed on
the screen (or verse versa). This movement time should not be included in the RT for the
psychological decision process. To account for this motoric effect, we built a linear regression
model for each participant to predict the log(RT) values associated with each action based solely
on whether that action is a switch or not; the residuals from this model then should reflect only
the decision process involved (Knox, Otto, Stone, & Love, 2012). To show the mean RTs in
seconds in Table 1, we convert the residuals from the log(RT) predictions back into RTs by
exponentiation; but because the RTs are not normally distributed, we analyze them further in

their log(RT) form.

We next compared categories of residual RTs in the log scale to see whether some types
of search decisions took longer than others. Deciding to continue to explore takes longer than
deciding to switch to exploit (t(380) = 4.84, p < 0.001; two-sample t-test at the individual level),
which takes longer than deciding to continue to exploit (t(380) = 29.21, p < 0.001; two-sample t-

test). A second analysis of this data that explicitly seeks to remove motor response time found
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the same ordering for these three key decision times: continue to explore > switch to exploit >
continue to exploit—see Supplemental Materials file. This fits with the cognitive steps involved
in following a decreasing threshold rule (like the optimal strategy introduced above and others
discussed in section 5): Once the searcher decides to exploit, she should continue to exploit
without having to consider any further information, making this a quick decision. But to decide
to continue to explore (after any turn of exploration) takes longer, because the searcher needs to
verify (1) that the card just found is not above the current exploitation threshold, and also verify
(2) that the best card found previously is not now better than the current threshold (which may be
lower than the threshold when that card was first seen). If either of those verification steps fail,
then the searcher would decide to switch to exploitation. Since this fail and switch could happen
after one or two verification steps, on average we would expect the switch-to-exploit decision to
take less time than the continue-to-explore decision which requires passing both verification
steps, but take longer than the continue-to-exploit decision which involves no verification
steps—and this is the pattern we see in the RT data. (A fixed-threshold rule would only require
the first verification step, making the switch-to-exploit and continue-to-explore decisions take
similar amounts of time, which goes against the pattern seen in these data.)

The intermediate duration of the rarer decisions to switch back from exploitation to
exploration may suggest a different strategy (or strategy component) for this decision. It could
involve one or more computational comparisons, as for the switch-to-exploit decision, or could
just involve an internal threshold that does not require checking any card values, such as an

“impatience” to return to exploring.

4.3. Explicitly reported versus modeled thresholds
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Given that the optimal strategy takes the form of a threshold rule, we next analyzed what
thresholds participants may have been using, both by asking them explicitly to report their
thresholds and by modeling their best-fitting thresholds. Participants’ reported thresholds for
exploiting are plotted in Fig. 5, first averaged across all participants for each of the 6 specific
turns for which participants were asked to give thresholds and then linearly interpolated between
those mean values for the 6 turns. The general trend of the mean reported threshold is flat over
turns (the 95% confidence interval for a regression coefficient of reported threshold values on
turns is [-.0004, .3684], including 0), in contrast to the optimal threshold also shown which
decreases over turns. This flat aggregated pattern reflects wide variance in individuals’ reported
thresholds, some of which even increase across turns (see Fig. S1 in the Supplemental Materials

file).

In addition to participants’ explicitly reported thresholds, we also attempted to infer the
thresholds that may underlie their decisions in the experiment. We first looked at whether
participants were adjusting the range of card values that they would exploit at different turns in
each game. Fig. 6 plots the participants’ probabilities at each turn of exploiting the highest-
available card if its value fell within a certain range (starting with turn 2, the first turn where

exploitation is possible), calculated across all exploitations in all games for all participants.
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(Participants only rarely exploit a card value that is not the highest one available, in just 1.6% of
all exploitation decisions.) For example, the top curve shows the probability at each turn that a
participant would choose exploitation, given that the highest card value available to exploit on
the screen at that turn was between 90 and 992, All of the curves generally increase over turns,
with the lower highest-value curves increasing more rapidly. For turns toward the end of a
game, the exploitation probability nears 1.0 for all card values, indicating that participants will
exploit whatever highest card value they have once they get to the end of their search. These
results indicate that people are taking the turns into account by gradually shifting their
exploitation tendency for all card values upward, which is consistent with a gradually decreasing
threshold, applied with noise. It is not compatible with a fixed or increasing threshold. (If
everyone used exactly the deterministic decreasing threshold of the optimal strategy of Fig. 2,
this plot would show abrupt changes in acceptance probabilities for each bin across turns: For
example, for highest-value cards in the 70-74 bin, a searcher following the optimal strategy
would have a 0% probability of exploiting for turns 2-8 and then would quickly rise to a 100%
probability of exploiting for turns 12-20. Mixtures of participants using something close to the
optimal strategy could however produce this pattern in aggregate.)

To estimate the underlying thresholds that participants may have been using (which could
differ from what they reported using), we treated the thresholds at different turns as model
parameters and used maximum likelihood estimation (MLE) to find values that best fit

participants’ decisions. We built a model that uses a stepwise threshold to decide when to switch

3Bins over ranges of highest card value available are used because plotting probabilities for
single card values would result in considerable noise in the graph. There is still some noise at the
end of the trial for some lower highest-value bins, because, for example, there are very few trials
in which a participant gets to turn 18 and still has not uncovered a card with a value greater than
60.
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from exploration to exploitation. To allow easy comparison with the participants’ reported
thresholds, the model’s stepwise thresholds are estimated for the same 6 turns that we asked
participants about (turns 2, 5, 9, 13, 17, and 20). Given that this model is focused on estimating
thresholds rather than reflecting the psychological choice process, it may not capture the details
of participants’ turn-by-turn behavior well; we compare it to other plausible models in the next
section.

This six-threshold model has 7 parameters: T1-Te represent the thresholds, from 1-99, that
apply across turns 2, 3-5, 6-9, 10-13, 14-17 and 18-20 respectively, and the strength parameter s
is a positive value that reflects how strongly and consistently the participant follows the
threshold rule—if s is large, then participants usually make a choice that is consistent with the
current threshold T(t) that holds at turn t, and if s is small, then the model shows considerable
randomness in determining whether to explore or exploit on a given game. The model specifies

the probability of exploring at each turn t with respect to the current threshold as follows:

1

Pregioret) = 1= wta

(1)
where s is the strength parameter, Max is the highest card value seen (i.e., on the table) before
turn t, and T(t) is the threshold (T1-Te) that holds at turn t. When the model indicates exploitation
rather than exploring, it exploits the highest available card.

We used MLE to estimate parameter values for each individual. The average best-fitting
model threshold function is plotted in Fig. 5, interpolating between the medians of the 6
threshold parameters across participants (using medians because the parameter distributions are

skewed). This modeled threshold falls across turns, though relatively evenly and not as steeply
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as the optimal threshold at the end of each game®. There is also an evident mismatch between
the flat reported threshold and the falling modeled threshold, which could be a consequence of
participants using thresholds but reporting them incorrectly (e.g., not knowing or remembering
them), or of participants making their decisions in some way other than just using thresholds (see
next section). However, as discussed in Section 5.2, these differences in threshold patterns do
not have a very large effect on the performance achieved by using them with threshold rules in
the card search task—even if participants are not describing closely what they may be doing,
what they do describe would perform well if it were used. Finally, the median of the strength
parameter s is 0.13, indicating substantial randomness in choices—that is, there are many
situations in which the model chooses to exploit even though the highest card on the table is
below the current estimated threshold, and chooses to explore even though the highest card is

above the threshold. This randomness reflects the stochasticity of participants’ choices.

5. Comparison of decision strategies

Of course, a multi-stage changing-threshold mechanism may not be what people are
actually using to make their decisions. We therefore tested a variety of further strategies in terms
of both their fit to participants’ data, and their performance compared to the optimal threshold
rule. We assessed three types of strategies: random baseline models, threshold models, and

sampling models that, like the cutoff rule for the Secretary Problem, decide when to stop based

4 This falling threshold was also found when modeling subsets of participants with different
patterns of reported thresholds, including increasing—see Fig. S2 in the Supplemental Materials
file.
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on an initial sample of values. We first describe the models and then report their performance on

the card search task and their fit to participants’ data.

5.1. Strategies compared

For all of the strategies below we describe a stochastic model used to find the parameters
that best fit the model to participants’ data. We also report the performance on the card search

task of the corresponding deterministic form of each model (except the epsilon-greedy baseline).

5.1.1. Random baseline models

A standard type of random model for exploration/exploitation tasks is the epsilon-greedy
model (Sutton & Barto, 1998), which uses a single parameter ¢ to control the probability of
exploration (selecting a new card) on each turn, versus exploitation (taking the value of the
highest card seen so far). A model more specific for this card search task is the random switch
model (also with one parameter), which randomly picks a turn k at which to switch from
exploration to exploitation, with k chosen from the range [2, 20] using the distribution of switch
turns from participants shown in Fig. 4 (left). The model then has a tendency to explore for k-1
turns and to exploit on subsequent turns in that game, with the probability influenced by the

strength parameter s:

1

Prexplore(t) = T
—s(k—1)
l1+e )

where Prexpiore(t) i the probability of exploration on turn t, s is the strength parameter, and k is
the randomly-chosen switch turn (not a fitted parameter). This equation results in higher

likelihood of exploring at the beginning of the game and higher likelihood of exploiting at the
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end, with equal probability of both at the switch turn (when t = k).

5.1.2. Threshold models

Given the prevalence of simple threshold rules in human bounded rationality (e.g.,
satisficing rules—Simon, 1990) and the fact that optimal behavior in the card search task follows
such a strategy, we also tested three forms of threshold models. The simplest one-threshold
model (two parameters) has a single fixed threshold T that applies across all turns and a strength
parameter s controlling the probability of exploring on a given turn based on how far the highest
card seen so far is from the threshold T (above or below), according to Equation 1. The linear
decreasing threshold model (three parameters) uses Equation 1 with a falling threshold T(t) = b +
m(t—2) where b is the initial threshold at turn 2 and m is the (negative) slope, along with strength
parameter s. The two-threshold model (four parameters) has two threshold values T1 and T2 and
a “jump turn” parameter K in the range [2, 20] that determines how long each threshold is used:
T1 for turns 2 to k, and T for turns k+1 to 20. It also uses a strength parameter s and determines
the probability of exploring by Equation 1. Finally, the six-threshold model (with seven
parameters) described earlier has six threshold values T1-Ts that are used for turns 2, 3-5, 6-9, 10-

13, 14-17, and 18-20, respectively, and a strength parameter s combined via Equation 1.

5.1.3. Sampling models

Another class of simple search rules base their stopping decisions on information gained
from an initial sample of options. Each of these models has two parameters: one parameter that
controls the size of the sample used, and another, h (for “trembling hand”—see Selten, 1975),

that introduces stochasticity by setting the probability of the model’s deterministically-selected
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action (exploring or exploiting) to 1—h and the probability of the other action to h (so larger h
indicates more stochasticity, while larger s in the previous models indicates less stochasticity).
The fixed-sample model first assesses a sample of fixed size by exploring for k turns and then
exploits the highest value card seen in that sample starting on turn k+1 (and for all remaining
turns)®. (This is very similar to the epsilon-first strategy in multi-armed bandit problems—see
Lee, Zhang, Munro, & Steyvers, 2011, where it is also called n-first.) The cutoff model similarly
explores for k turns, determines the highest value seen in that initial sample and sets it as the
cutoff threshold (rather than exploiting it), and then continues exploring until it finds a card that
is above that cutoff threshold, which it exploits for the rest of the turns. Use of this rule has been
studied particularly for situations where the distribution of available values is not known, as for
the Secretary Problem discussed earlier. The successive non-candidate count model, also studied
as a potential strategy to solve the Secretary Problem (Seale & Rapoport, 1997), is defined in
terms of “candidates,” which are those cards that have the highest values seen so far in the
current game (and hence are candidates for exploitation), and “non-candidates,” which are all
other cards (i.e., those not the highest seen so far, hence not appropriate to exploit). The model
starts with the necessary exploration on turn 1; that first card is by definition a candidate (as it is
the highest-value card seen so far). It continues exploring, assessing whether each new card is a
candidate or a non-candidate and counting up how many non-candidates in a row it encounters.
If the number of successive non-candidates seen in a row reaches a threshold value j, then the
model will exploit (for all remaining turns) the next candidate it encounters. This model can thus

be interpreted as being based on impatience—if it has been too long since finding the previous

5 Note that the size of the initial sample will be reduced if any of the first k turns individually
“tremble” into unintended exploitation, decreasing the number of cards explored; but the intended
ongoing exploitation will still start at turn k+1.
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exploitable candidate option, then the searcher “gets impatient” and takes the next option that is

higher than all those encountered previously.

5.2. Model performance

How well do these different models perform on the search task, balancing exploration
and exploitation? To find out, we used grid search to find the best performing parameter values
for the deterministic version of each model when applied to a set of 50,000 randomly generated
sequences of 20 card values (different from the sequences seen by participants). The mean
scores of the best performing models over the 50,000 simulated runs are shown in Table 2. The
optimal strategy scored 1601.8; participants scored 1528 on average. The threshold strategies all
scored very close to the optimal (around 1600), while the two random strategies both performed
more poorly (around 1300). The sample-based strategies fell in between, with the cutoff strategy
from the Secretary Problem doing worst of these (at 1391). Thus for this problem, a simple
threshold rule—even one that uses a single fixed threshold, set at 79—can perform about as well

as the optimal decreasing threshold strategy.

One potential drawback of the threshold rules is that they need to have their thresholds
and any switch points for changing the thresholds predetermined based on knowledge of the
distribution of values that will be encountered. In contrast, the sampling rules learn their
stopping thresholds through the initial sample of values they collect as they are used, making

them robust across differences in underlying distributions. For example, the sample-based cutoff
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rule scored 87% of the optimal score in the original 1-100 card value range with its sample size
parameter set at 2, and it actually improves its performance to 94% of optimal when applied with
the same sample size to an expanded card value range of 500-1000. In contrast, the one-
threshold rule does not show this robustness to changing inputs: With its threshold set at the best-
performing value of 79 for card value range 1-100, it scored 99.8% of optimal, but its
performance with that threshold falls to 83% when applied to cards in the range 500-1000.
However, the threshold rules make up for their lower input-based robustness by being
very robust with respect to changes in their parameters, specifically the threshold level, given a
particular card value distribution. The one-threshold rule applied to card values 1-100 for
instance scores above 1500 (94% of optimal) for thresholds from 58 to 90, and even with the
mid-distribution threshold of 50 it still performs well above the best score of the cutoff rule for
(reaching 1442, vs. 1391 for the cutoff rule). We can also see this robustness of the threshold
rules in the performance comparison of participants’ average self-reported threshold versus the
optimal and modeled thresholds shown in Fig. 5: When applied to the actual card value data each
participant saw, the optimal threshold strategy scored 1595, the average reported threshold
(which looks quite different) came very close at 1589, and the modeled threshold scored in
between with 1591. In contrast, the sample-based rules are not robust with respect to their
sample size parameter—the performance of the cutoff rule for instance quickly falls as the
sample size increases, to a score of 1302 (81% of optimal) at sample size 5 (cf. Todd & Miller,

1999).6

5.3. Model fits to participant data

¢ Note that the best sample size for the cutoff rule in the original version of the Secretary Problem
with 20 options is 7, much larger than the best sample size in our current card search problem.
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Simple threshold rules do very well on this task, but is that how people actually navigate
it themselves? To compare how well the different models describe participants’ choices, we
used the Bayesian Information Criterion (BIC = -2 LL + k log(N), where LL is the maximized
value of the log likelihood function of the model, k is the number of free parameters in the
model, and N is the number of observations of each participant). The BIC value was computed
for each participant, and the mean over all participants is shown in Table 2. Models with smaller
BIC values are preferred. For this fitting comparison, the stochastic version of each model was
assessed, as described in Section 5.1 (along with a stochastic version of the optimal threshold
model, using a strength parameter s and Equation 1). The best-fitting parameter values for each
stochastic model were determined for each participant’s data (using the exact sequences of
values that each participant saw), and then the medians of these values were calculated and
reported in Table 2.

As seen in the right-most column of Table 2, the threshold strategies (other than the
optimal threshold) also achieved the best fit to participant data, with the linear decreasing
threshold strategy having the lowest BIC score, followed closely by the two-threshold strategy.
The best-fitting linear decreasing threshold strategy begins with a threshold of 80, and then
lowers the threshold by nearly 1.8 on each successive turn. This strategy (along with the rapidly
decreasing best-fitting six-threshold strategy, shown in Fig. 5) supports the idea that participants
generally may have been lowering a threshold quickly as turns progressed, enabling them to
begin long-term exploitation early (around turn 7, as shown in the row for participant
performance), though not as early as the optimal strategy (around turn 5). These two best-fitting

strategies both end with thresholds below 50 (which is always inappropriate), but this would
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have little effect on overall performance because very few explore choices are made in the last
few turns.

Surprisingly, the cutoff strategy, which performs comparatively poorly on this type of
search, fit participants’ data well, close to the BIC fit of the threshold strategies’. To explore the
possible distribution of strategies used in more depth, we analyzed which strategy best fit the
data of each participant at the individual level (in terms of lowest BIC). As seen in Table 3, the
model which achieves the best fit for all the participant data together, the linear decreasing
threshold strategy, also fits the most individual participants best. But the cutoff strategy fits the
second largest group of participants individually. The other threshold rules best describe a few
more participants, while the other sample-based rules and the random rules fit almost nobody
best. Thus, there appears to be variation in strategy use across individuals, with the majority
following a decreasing threshold strategy that performs very well on this type of search problem
(and enables them to achieve a mean performance of 1545 points), and others using a cutoff
strategy more appropriate to optimal stopping problems like the Secretary Problem (which yields

1491 points in this task).

" To examine the role of noise in models for these results, we also tested how well a version of
the cutoff rule with stochasticity from the logistic function in Equation 1 could fit the
participants’ choices, using a threshold of 100 for the first k—1 steps and after that using a
threshold of the highest value seen in the first k—1 steps. This model fit the data very poorly
(BIC=599.6, k=1, s=.05; all values are medians), suggesting that the lower relative performance
of the sampling models is not due solely to a trembling hand version of noise. Similarly poor fits
to human data by this kind of probabilistic cutoff rule in an optimal stopping Secretary Problem
were found by Baumann et al. (2019).
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6. Learning effects

Although participants do not know or exactly follow the optimal strategy, their
performance comes quite close. How does this happen—do participants start the task with a
good strategy and use it consistently across the 30 games, or do they start with lower
performance and learn and improve over time, perhaps based on the feedback they are given
after each game?

To find out, we divided participants’ data into three parts according to games. Data from
games 1 to 10 form the first part; from games 11-20 are the second (middle) part; and from
games 21-30 are the third (last) part. For each part, we analyzed the number of switches per
game, the initial turn of persistent exploitation (i.e. the first exploitation turn that was not
followed by an exploration turn within the game), and task performance. The means for each
measure are shown in Table 4, along with the means of the measures for the optimal rule applied
to the last 10 games of card value sequences that participants saw (as in section 4). The three
sections of games were treated as three different levels of the independent variable in a repeated-
measure one-way ANOVA for each of these three measures. As shown in Table 5, all of the
measures—mean switching, start of exploitation, and performance—improved appreciably from
the first to the last 10 games, more closely approximating the optimal strategy over time. The
frequency distributions of the initial turn of persistent exploitation for the three parts are shown
in Fig. 7, along with the optimal threshold’s distribution. Over games, the participants’
distributions become more similar to the optimal one. These results support the presence of
learning in terms of reduced switching between exploring and exploiting, and exploiting high-

valued cards earlier, yielding improved performance as well.
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Finally, the best-fitting linear decreasing threshold model was found for each of the three
parts of the results to determine how participants’ thresholds change over games. The median
fitted parameter values for the linear decreasing threshold models that best fit the first 10, middle
10, and last 10 games for all 191 participants are shown in Table 6 and the corresponding

decreasing thresholds are plotted in Fig. 8.

These parameter values show that participants on average acted as though they used a high
threshold for card values at the beginning of each game (being as choosy as the optimal strategy,
with intercept b around 83), and lowered their threshold as the game continued (negative slope
m; both aspects are also seen in the best-fitting six-threshold model in Fig. 5). Participants also
changed their behavior over the course of the experiment, lowering their threshold more quickly

in later games (lower values of m). Further, they applied their changing thresholds more
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consistently, more than doubling their strength parameter s from the first to the last games.
Hence, overall these results show support for participants learning to adjust their behavior across
games in this search task in a way that improves their performance to become closer to optimal
levels. The 38 participants best fit by the cutoff model also showed considerable learning across
games with respect to improving parameters and fit of the cutoff model—see Table S6 in the

Supplemental Materials file.

7. Discussion

When people face the common search problem of needing to choose among a succession
of reward-providing options in a given period of time, the best approach is to start off being quite
selective, passing by any options that are not among the best until a good-enough one is found to
stick with, gradually becoming less choosy if no satisfactory option is found, and more rapidly
decreasing in choosiness near the end of the time period. Many people appear to adopt a simple
linear decreasing threshold (choosiness) strategy in our laboratory version of this problem, and
learn to improve their threshold strategy with experience, even if they report doing something
different. Starting off choosy and dropping one’s threshold once after some time has passed (or
even maintaining the single choosy threshold) can do almost as well. People are thus able to
search effectively in this setting by selecting between exploring for possibly better new resource
options and exploiting a good-enough option that has already been found.

Why do these simple rules work well for this task? The most important component of an

effective strategy for this kind of search problem seems to be to start exploiting a relatively good



Threshold rules for exploration/exploitation 32

(high-value) option early; most of the time (i.e., turns) can then be spent repeatedly accruing that
good (exploited) value rather than collecting random returns from exploring. Thus, this type of
search calls for a faster transition to exploitation than for many optimal stopping problems,
because of the importance of accumulated payoffs here versus the one-time reward from a single
chosen value as in the Secretary Problem. (For instance, the mean point at which the optimal
strategy for the card search task switches to exploitation is within 6 turns, while for the
equivalent Secretary Problem with 20 options the optimal cutoff strategy leads to stopping and
exploiting after around 14 turns.) Accordingly, even a simple fixed one-threshold rule does very
well on this task, typically leading to an effective early switch to exploiting. Only if a searcher
gets to the rare case of still exploring in the last few turns should they rapidly lower their
threshold for what values to exploit. Such cases of extended exploration become increasingly
unlikely, though, for longer search lengths—as the task gets longer, there are more chances along
the way for a good option to have appeared—so the possible advantage of decreasing one’s
threshold at the end of the search shrinks, again supporting the appropriateness of a fixed
threshold. In contrast to this “get out quick” approach, the optimal exploration time for the
Secretary Problem grows essentially linearly with the overall length of the search task.

This difference in best strategies arises from the distinct natures of the
exploration/exploitation tradeoff for the two types of search: In the resource-accumulating search
of this card task, more exploration slowly increases the highest value that could be exploited but
also rapidly decreases the total amount achievable by exploitation, while in the optimal stopping
Secretary Problem, more exploration rapidly increases the chance of setting an aspiration level
that could select the highest value to exploit, but slowly decreases the likelihood of being able to

exploit that value because it may have been passed by already (e.g., Todd & Miller, 1999, Fig.
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13-1). A threshold rule that quickly switches to exploitation makes the appropriate tradeoff for
the former accumulative search problems, while a cutoff rule that explores more extensively
balances better against exploitation in the latter type of optimal stopping problems.

In line with the performance advantages of simple threshold rules in this resource-
accumulating type of search problem, the behavior of a majority of participants in our
experiment (60%) was best fit by the linear decreasing threshold strategy. This type of
decreasing threshold strategy is also supported by the pattern of response times found for
continuing, and switching between, exploration and exploitation. Furthermore, a decreasing
threshold implies some rate of returning to exploit previously-explored values, which we saw in
the data: Participants exploit earlier values on 27% of games. (In comparison, the optimal
strategy goes back to exploit an earlier card rather less often, on 531 out of the 5730 games, or
about 9% of the time; out of these “returning” games, participants also went back to the same
card in 88 cases, or 1.5% of all games, but they missed the optimal point to return to a previous
card in the other 443 cases.) The fact that most participants were best fit by a decreasing
threshold rule rather than the simpler and nearly equally performing one-threshold rule may
indicate a general expectation that one should get less choosy as a deadline approaches, as
suggested for various search contexts including mate choice (e.g. Cohen et al., 2015.) In another
version of this task with a known variable game length of 5-10 turns, Song, Bnaya, and Ma
(2019) also found that participants’ exploitation decisions were fit well by a linear decreasing
threshold rule, and showed that in this case the thresholds declined in proportion to the length of
the game (slower for longer games) in a reasonable way.

Somewhat surprisingly, though, the second-largest group of participants (20%) was best

fit by the cutoff rule, better suited to the optimal stopping Secretary Problem (though in this case
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the initial sample period was very short, just 2 turns, leading to a relatively early switch from
exploration to exploitation). Perhaps these participants do not recognize or appreciate the
differences between the current search task setting and that of an optimal stopping problem like
the Secretary Problem and so they apply a type of rule that is appropriate and commonly used for
the latter problem here as well (without suffering too much in performance in the current task).
In contrast, Baumann and colleagues (Baumann, Gershman, Singmann, & von Helversen, 2019)
found that a linear threshold rule also best fit participants’ behavior in a version of the Secretary
Problem with well learned distributions of actual-value rewards, while a cutoff model failed to fit
anyone well. This points to the possible importance of knowledge of the distribution of rewards
for what rules people use. Testing what rules best fit the behavior of people facing other types of
search tasks will help to clarify these issues.

One of the most marked differences between our participants’ behavior and the optimal
rule was that participants explored more than was optimal in two senses: They too often chose an
unknown card from the deck rather than a known card from the table, and they switched back
and forth between exploration and exploitation too often (i.e., more than once). Both of these
behaviors could be accounted for by participants treating our static environment paradigm as a
dynamic environment, in which the distribution of card values might change over time, and
consequently exploring more (Navarro et al., 2016; Tversky & Edwards, 1966; Zhang & Yu,
2013). In a dynamic environment, expected values for actions change over time. Greater
exploration is predicted and observed (Speekenbrink & Konstantinidis, 2015) for dynamic
environments because decision makers need to make periodic checks on uncertain resources to
assess whether their value has changed. In fact, people are highly sensitive to the informational

requirements of dynamic environments, approaching optimal behavior in some settings (Brown
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& Steyvers, 2009). The possibility that our participants initially had the wrong assumption about
the static versus dynamic nature of the experimental paradigm is consistent with their gradually
improving performance with experience (including fewer switches from exploitation back to
exploration—Table 4), and with similar improvements found in other related experiments
(Navarro et al., 2016; Rakow, Newell, & Zougkou, 2010).

Indeed, we found that people can perform better (closer to optimal) over time via learning
based on minimal feedback. Notably, people did not get any feedback about whether particular
choices followed the optimal strategy, only whether they had done better, worse, or the same as
the optimal strategy at the end of each 20-turn game. Participants’ mean total points per game,
number of switches between exploring and exploiting, and number of turns before initiating
persistent exploitation became closer to those of the optimal strategy as they completed more
games of searching. (Interestingly, they appeared to improve by learning to explore less, while
in the Secretary Problem studies of Seale and Rapoport, 1997, participants improved by learning
to search more—again pointing to a fundamental difference between these two tasks.) The best-
fitting linear decreasing threshold model of participants’ behavior also moved toward the optimal
solution across games by becoming less choosy sooner, and more deterministic and consistent
with respect to the specified thresholds. This learning leads to a final model that achieved a
cumulative score quite close to that attained by the optimal strategy (linear decreasing threshold
model performance = 1588 over the last 10 games seen by participants, while optimal model
performance = 1595 for the same last 10 games)—even though that final, best-fitting model has a
simple linear decreasing shape, different from the accelerating fall-off seen in the optimal
threshold. It could be that the participants employ a learning process that is more adept at

constructing a simple rule of this linear form, involving few parameters, than what optimal
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performance calls for; however, in this setting at least, performance hardly suffers as a
consequence. Whether or not participants are actually using a threshold to determine their
choices, we can at least say that the threshold rule does an increasingly good job of predicting
participants’ choices as they gain experience with the card search task.

Participants themselves mostly did not report that they thought they were using a
threshold that decreased over turns within a search game. When asked to explicitly state their
thresholds, the majority reported that they changed in the opposite direction of the modeled and
optimal thresholds, rising (slightly) across turns. This mismatch between reported and modeled
thresholds may have arisen because participants were not using a threshold-based mechanism to
make their decisions (though the linear decreasing threshold model did best fit most participants’
behavior). The mismatch could also be a consequence of participants not remembering or
incorrectly reporting whatever thresholds they might be using, or of reporting what value they
expect to be able to obtain after a particular number of turns. Or participants may have
introspected little and just reported that their threshold should increase as the turns increase.
Such use of a linguistic frame in participants’ responses, in which one variable (e.g., threshold)
increases as another variable (e.g., turns) increases, could potentially be alleviated in future work
by rewording the threshold-reporting question and asking it repeatedly between games. In any
case, participants probably do not explicitly know what is optimal nor what they may actually be
doing, as is often found in decision-making tasks (Nisbett & Wilson, 1977), but they still

improve, getting closer to optimal, over the course of learning.

8. Conclusion
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In this paper we have investigated situations in which people searching for resources that
they accumulate over time must decide how to allocate their effort between exploring for high-
value resources and exploiting those resources once they have been discovered. We found
evidence for people using a simple linear threshold mechanism to determine when to switch
between exploration and exploitation in a card search task incorporating such accumulating
resources. With experience, our participants improved their search behavior and approached the
performance of the optimal strategy, apparently by adjusting their linear threshold strategy
appropriately.

Previous work on search has typically focused on only one aspect of the explore/exploit
tradeoff or a single transition between exploration and exploitation. For example, studies of
optimal stopping problems including the Secretary Problem have mainly looked at how long to
explore before stopping (and making the single switch to exploitation). In the field of decision
making, the bandit problem (e.g., Steyvers, Lee, & Wagenmakers, 2009; Lee, Zhang, Munro, &
Steyvers, 2011) and the repeated-choice paradigm for studying decisions from experience
(Gonzalez & Dutt, 2011) have been argued to rely on related cognitive processes that make a
transition from an exploration to an exploitation phase. Future research using a search task that
instead calls for repeated transitions between exploration and exploitation (as in foraging among
patches) may present a different picture of the search mechanisms people typically use. Such a
task involving multiple explore/exploit tradeoff decisions over time could also make individual
differences in search behavior easier to observe, along with their correlations with other
measures such as working memory and impulsivity.

In the current card search task, participants made relatively few transitions from
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exploitation back to exploration in part because the exploited card values were non-depleting—
once participants found a sufficiently high card value, they could have been sufficiently satisfied
with that value to exploit it until the end of that game (which is also the pattern of behavior that
the optimal strategy dictates). To induce more exploit-to-explore transitions in this task, we can
make the card values depleting so that every time a particular card gets exploited, its value will
decrease by a certain amount. Moreover, changing the number of turns in each game from a
known fixed length to a random length may have a similar effect of increasing participants’
switches back and forth between both phases of search (see Sang, 2017, for examples of both of
these manipulations of the card search task). New search models may be needed to predict these
switches, including mechanisms combining stochasticity with inertia or momentum, which can
lead to alternating stretches of exploration and exploitation.

Open questions beckon regarding how individual differences in the tendency to explore
versus exploit play out across different search settings, including social search and information
search on the Web, as well as measuring priming effects between settings (Hills et al., 2015;
Hills, Todd, & Goldstone, 2008). Finally, different clinical populations may make the
explore/exploit tradeoff in different ways, emphasizing one aspect of search over the other (Hills,
2006), and fMRI could also be useful in exploring these differences and providing insights into
the neural mechanisms used in search across different domains. By stripping search down to a
setting where exploration and exploitation are most prominent, the card search task and its
possible variations may help us elucidate the decision strategies underlying search more

effectively.
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Figure captions

Figure 1. A screen shot of the card search experiment. In the lower-left corner is the deck of
face-down cards that can be explored, while the previously found cards (here, four so far out of
up to 20 possible) that can be further exploited for their points are displayed in the upper portion
of the screen. The highest score face-up card is highlighted in red. Also displayed near the
bottom of the screen are the number of cards left in the deck, number of turns taken and left, total
points accrued so far, and the values of all cards already selected at each turn (in brackets)—

here, the value 91 has been exploited several times.

Figure 2. Threshold curve for the optimal strategy: For any turn (on x-axis), if the highest card
value found so far exceeds the optimal threshold for that turn, then that card should be exploited

for all remaining turns in the game.

Figure 3. General framework of the experiment, showing a single game (trial) consisting of 20

turns of exploring or exploiting, with 30 games overall, followed by a strategy questionnaire

regarding the thresholds that participants used.

Figure 4. Frequency distributions of initial turns for final persistent exploitation phase, for

participants (left) and the optimal strategy applied to the same data participants saw (right).

Figure 5. Mean reported and modeled thresholds (interpolated between the 6 indicated turns)
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along with optimal thresholds for switching from exploration to exploitation, across turns. Error

bars are 1 SEM.

Figure 6. Mean probability at each turn that participants would exploit the highest-available card
if its value fell in various ranges (indicated by different lines). Error bars omitted for clarity;

values for later turns are based on fewer data points.

Figure 7. Frequency distributions of initial turns for final persistent exploitation phase, divided
into first, middle, and last 10 games for participants, along with the distribution for the optimal
strategy applied to the same data participants saw across all games (i.e., the same distribution as
in Fig. 4, here plotted with one third of the data so that the y-axis matches the other graphs).
Participants’ persistent exploitation commences earlier as they complete more games, and

approaches the optimal distribution.

Figure 8. Best-fitting modeled threshold curves found for the first, middle, and last 10 games

from the linear decreasing threshold model applied to all 191 participants.
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Tables

Table 1

Mean and Standard Deviation for Response Times of Different Decision Types

Type of decision (and number) Mean residual response time, s SD

Continue to explore (22,335) 141 2.35
Continue to exploit (76,021) 0.59 041
Switch to explore (2,538) 1.14 1.34

Switch to exploit (7,976) 1.24 0.88
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Table 2

Comparison of Parameters for Best Performing and Best Fitting Models Across Strategies

Best performing model Best fitting model to data
Strategy Score Best Switch turn | Exploited Best fit Best fit Number of | BIC
per parameter (and % card parameter error parameters
game values switching) value values parameter
Participant 1528.0 NA 7.64 (94.9%) 86.12 NA NA NA NA
performance
Optimal 1601.8 NA 5.51 (100%) 88.86 NA s=0.12 1 4315
Epsilon-greedy | 1312.0 | £=0.34 NA 74.84 £=021 NA 1 596.5
Random switch | 1318.9 NA 7.62 (95.3%) 73.84 NA s=0.21 1 454.8
One-threshold | 1599.0 T=79 5.50 (99.0%) 89.03 T=68.3 s=0.132 2 378.3
Linear 1601.7 | m=-0.58 | 5.47 (99.9%) 88.80 m=-178 | s=0.12 3 326.4
decreasing b=81 b =80.65
threshold
Two-threshold | 1601.1 | T:=80 5.44 (99.7%) 88.81 T1=77.1 | s=0.126 4 335.7
T2=75 T2=57.7
k=8 k=7
Six-threshold | 1601.7 | T1=82 5.55 (100%) 88.86 T1=82.0 s=0.13 7 346.8
T2=81 T2=77.7
T3=79 T3=69.9
Ta=76 T4=625
Ts=71 Ts=54.1
Te =58 Te=44.1
Fixed sample | 1495.7 k=6 7.0 (100%) 85.41 k=4 h=0.42 2 445.6
Cutoff 1391.6 k=2 6.60 (90.4%) 80.07 k=2 h =0.095 2 389.5
Successive 1469.9 j=3 7.29 84.29 j=1 h=0.46 2 592.7
non-candidate (99.99%)
count

Notes: See text for explanation of all parameters. All values for the best performing models are
means calculated over 50,000 random games. Switch turn shows the mean turn on which the

model switched to final persistent exploitation as in Fig. 4 (followed by the percent of games in
which a switch to exploitation was made). For the best fitting models, the parameter values are
medians over the best fitting values for each participant using the same sequence of card values
that each participant saw. Larger h (trembling hand) indicates more stochasticity, while larger s
(strength) indicates less stochasticity. BIC values for best fitting models are means; the linear

decreasing threshold model has the lowest BIC (shown in bold).
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Table 3

Number of Participants Whose Choices are Best Fit by Each Strategy

Number of | Participants’ mean

Strategy participants score
Linear decreasing threshold 117 1545
Cutoff 38 1486
Two-threshold 24 1531
One-threshold 9 1532
Random switch 2 1415
Fixed sample 1 1306
Six-threshold 0 NA
Epsilon-greedy 0 NA
Successive non-candidate count 0 NA
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Table 4

Mean Switching, Start of Exploitation, and Performance Across Games (with SD)

Games Number of switches Initial turn of persistent exploitation Performance
First10  2.57 (1.96) 8.77 (3.63) 1492 (112.3)
Middle 10 1.54 (1.20) 6.90 (2.80) 1539 (102.6)
Last10  1.39 (1.00) 6.39 (2.13) 1553 (91.5)

Optimal 1.0 (0.0) 5.08 (1.04) 1595 (70.6)?

4These values differ from those in Table 2 because here they are calculated over the last 10
games of card value sequences that participants saw, while in Table 2 they are calculated over

50,000 random sequences.
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Table 5

Repeated-measure One-way ANOVA of Mean Switching, Start of Exploitation, and Performance

Across Games

df F p n
Number of switches (2,380) | 78.78 <0.001 0.29
Initial turn of persistent (2,380) |84.14 <0.001 0.31
exploitation
Performance (2,380) |2244 <0.001 0.11
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Table 6

Median Fitted Parameter and BIC Values (with 95% Confidence Intervals) for Best-fitting

Linear Decreasing Threshold Model Across Games

Games Slope m Intercept b Strength s BIC

First 10 -1.29 82.75 0.11 133.36
[-1.59,-1.00] | [79.31,84.71] | [0.09, 0.13] [120.36, 147.82]

Middle 10 —-1.68 82.65 0.25 68.53
[-1.96,—-1.22] | [81.02,84.29] | [0.21, 0.28] [60.31, 79.82]

Last 10 -1.93 83.10 0.28 55.56
[-2.27,-1.54] | [81.29, 84.84] | [0.23,0.34] [49.56, 64.16]
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