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Abstract

Estimated impulse responses of investment and hiring typically peak well after

the impact of a shock. Standard models with adjustment costs in capital and labor

do not exhibit such delayed adjustment, but we argue that it arises naturally when

we relax the assumption that the production technology is separable over time.

This result holds for both non-convex and convex cost functions, and for reasonable

parameter values the effect is strong enough to match the persistence observed in

the data. We discuss some evidence for our explanation and ways to test the model.
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1 Introduction

A typical impulse response function for investment estimated from aggregate data (e.g.

Altig, Christiano, Eichenbaum, and Linde (2011)) to a technology or monetary policy

shock, has a hump shape. Investment jumps up in response to the shock, and then

continues to increase before gradually falling back to zero. Most macroeconomic models

since the first contributions to real business cycle theory correctly predict the sign and

size of this response (King and Rebelo (1999a)), but have trouble explaining why there

is a lag before investment peaks after a shock.

A similar puzzle arises for investments in labor input. In frictional labor market

models as in Diamond (1982), Mortensen (1982) and Pissarides (1985), employment is

a state variable, in which firms may invest through costly hiring. Estimates show a

clear hump shape not only in the response of employment (Christiano, Eichenbaum,

and Evans (1999)), but also in that of the job finding rate (as a measure of hiring), to

technology (Canova, Lopez-Salido, and Michelacci (2010), Canova, Lopez-Salido, and

Michelacci (2013)) and monetary policy shocks (White (2018)).1

In this paper, we propose a small and plausible modification to standard models that

generates the type of hump-shaped impulse responses for investment and hiring observed

in the data. We relax the assumption, implicit in almost all macroeconomic models, that

the production technology is intertemporally separable. In combination with standard

adjustment costs in capital and labor, a non-separable production technology gives rise

to delayed adjustment: the peak of hiring and investment takes place a while after a

shock has hit the economy. We show that delayed adjustment arises for both non-

convex and convex adjustment cost functions, and that for reasonable parameter values

the effect is strong enough to match the persistence observed in the data.

Modern theories of investment are micro-founded versions of Lucas (1967)’s “flexible

accelerator” model: investment is increasing in the distance between the actual and

the desired stock of capital or labor. Depending on the specifics of the model, capital

adjusts gradually (with convex adjustment costs) or instantaneously (with fixed adjust-

ment costs or irreversible investments) to its target. While intuitively attractive, these

models have the counterfactual implication that investment is highest immediately after

a change in demand or productivity, when the capital stock is furthest away from its tar-

get. In reality, firms slowly increase their investments, with most investment happening

as much as 18 months after a shock.

We are not the first to notice that macroeconomic models do not seem to match the

persistence in macroeconomic aggregates. The lack of propagation in these models is

a long standing puzzle (Cogley and Nason (1995); Rotemberg and Woodford (1996)),

although the literature seems to have focused more on the lack of amplification, perhaps

1 In fact, the puzzle is even starker for hiring than it is for investment. While the autocorrelation of
capital is quite a bit higher than that of investment, the same is not true for employment compared to
hiring, and almost all of the persistence in employment seems to be driven by persistence in hiring. A
time series for the steady state unemployment rate corresponding to the current job finding rate looks
almost indistinguishable from the actual unemployment rate (Shimer (2012)).
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because adjustment costs provide a straightforward way to increase the autocorrelation

in the model. As opposed to the early contributions on propagation, we draw a sharp

distinction between the persistence in stock and flow variables, arguing that adjustment

costs may explain persistence and hump-shaped responses in the stocks (capital and em-

ployment), but they cannot by themselves account for persistence in the flows (invest-

ment and hiring). Many researchers are aware of this problem (Christiano, Eichenbaum,

and Trabandt (2018), Fiori (2012)), and often resort to cost-of-change adjustment costs,

as in Christiano, Eichenbaum, and Evans (2005)). We show that the dynamics of our

model with a non-separable production function are very similar to the dynamics of

models with cost-of-change adjustment costs, even though we use standard adjustment

costs in the levels of investment and hiring.

We model non-separabilities in the production technology by introducing an ad-

ditional state variable, which we label organizational capital, that acts as a storage

technology for capital and labor input. This is the simplest way to relax the extreme as-

sumption that all current capital and labor input immediately contributes to production,

and that current capital and labor are the only inputs in production. Organizational

capital is the accumulation of organizational investment, infrequent activities that are

crucial to the firm in the long run, but do not immediately benefit production in the

short run. The infrequent nature of these activities generates a margin of adjustment

for production. When faced with higher demand or productivity, firms can temporarily

expand production without investing in more capital or hiring more workers. Eventually,

further depleting the stock of organizational capital becomes costly, and investment and

hiring increase slowly, as they do in the data.

A good example of an organizational investment from our own production technol-

ogy as academics is giving a research seminar. Giving a seminar does not immediately

contribute to the production of research papers. In fact, it takes time away from directly

productive activities like analyzing data or writing text. However, the comments we re-

ceive from colleagues and potential referees at the seminar do affect the quality of our

paper, and may influence the direction of our work for many months or even years after-

wards. More generic examples of organizational investments are machine maintenance,

employee training and staff meetings to coordinate team work.

Probably the most direct evidence for the mechanism we have in mind comes from

a, now somewhat dated, survey of plant managers by Fay and Medoff (1985). In this

survey, managers recalled how many workers they let go in the last recession, and were

then asked how many they could have let go while still meeting demand. The difference,

which on average amounted to 6% less workers fired than would have been feasible, was

interpreted as labor hoarding. More importantly for our purposes, a follow-up ques-

tion about what happened to the “hoarded”workers revealed that half of the 6% were

assigned to “other work”, including (in order of importance): cleaning, painting, main-

tenance of equipment, equipment overhaul and training, all of which are examples of

what we would call investments in organizational capital. Since the Fay and Medoff
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(1985) survey provides only a shapshot, we also consider capacity utilization as a proxy

measure for lack of organizational investments, and we show that the dynamics of ca-

pacity utilization in the data (Fernald (2012)) are consistent with the predictions of our

model, even though we do not target this variable in the calibration.

The interpretation of non-separabilities in production as organizational investment

relates this paper to the literature on organizational and intangible capital. A number

of papers show that organizational capital and other intangible assets are important

part of the productivity and stock market value of firms (Prescott and Visscher (1980),

Blanchard and Kremer (1997), Brynjolfsson and Hitt (2000), Lev, Radhakrishnan, and

Zhang (2009), Hall (2000b), Eisfeldt and Papanikolaou (2013), McGrattan and Prescott

(2012), Conesa and Domínguez (2013)). We contribute to this literature by analyzing

the effect of organizational capital on business cycle dynamics. We also explore further

ways to test our model using an empirical literature aiming to measure organizational

capital (Atkeson and Kehoe (2005), Black and Lynch (2005), Corrado, Hulten, and

Sichel (2009), Squicciarini and Mouel (2012)).

As an application of our framework, we analyze the emergence of the jobless recov-

eries after the recession of 1991. In some past recessions in the US, employment have

remained low for a few months after the trough date, but after recent recessions, ending

in March 1991 and November 2001, employment has been particularly slow to recover,

taking 14 and 29 months respectively for employment to return to the level it was at

the NBER trough date (Schreft and Singh (2003), Aaronson, Rissman, and Sullivan

(2004)).2 We argue that this change in business cycle dynamics is consistent with our

model, since there has been an increase in the importance of organizational capital for

production over the same time period (Corrado, Hulten, and Sichel (2009)), which is

quantitatively consistent with the increase in persistence under our model. While hardly

a “smoking gun”, this observation provides some further evidence for the mechanism

proposed in this paper.

The remainder of this paper is organized as follows. To set the stage, in section 2

we first analyze a simplified business cycle model with adjustment cost in employment

and use it to document the persistence puzzle for hiring. We continue working with

this simple model in section 3, but add a non-separable production technology to show

that the model then gives rise to delayed adjustment, both for non-convex (fixed) and

for convex (quadratic) adjustment costs. Section 4 simply shows that the argument for

hiring in the previous two sections goes through for investment as well. In section 5,

we add a bit of realism to the model, which now features a non-separable production

function in both labor and capital, calibrate it, and show that the delay in adjustment is

quantitatively important and matches the persistence in hiring and investment observed

2Galí, Smets, and Wouters (2012) have argued that recent recoveries are not so much jobless, but
overall slow, in terms of output as well as employment. Other studies find evidence for a change in the
comovement of output and employment as well (Bachmann (2012), Berger (2012), Jaimovich and Siu
(2018)). Since our model can generate an increase in persistence in investment as well as hiring, the
distinction is not important for the purposes of this paper.
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in the data. Section 6 aims to provide some evidence for the mechanism by documenting

the dynamics for proxies of organizational investment and analyzing the implications of

the model for differences across industries and changes over time (the emergence of the

jobless recoveries). Section 7 concludes.

2 The dynamics of employment and hiring

In this section, we set up a model environment that allows us to illustrate the lack of

propagation in standard business cycle models. A lack of persistence is present both in

investment and in hiring, but the puzzle is more pronounced for hiring. Therefore, we

focus on hiring and simplify the model by assuming the capital stock is fixed (we revisit

the lack of propagation in investment in section 4). Our starting point is a business

cycle model with adjustment costs. For reasons of exposition, we keep the model as

simple as possible.

2.1 A simple model of employment adjustment

Our economy produces Yt goods in each period t, according to a production technology

that requires only labor Nt,

Yt = AtN
1−α
t (1)

where At is the state of technology, which is normalized to have mean 1, and diminishing

returns to labor in production are measured by the parameter α ∈ (0, 1). We analyze the

response of the model to a one-time, unexpected and permanent change in technology

At. The deterministic case allows us to formally describe the model dynamics under a

range of specifications for the adjustment costs function. In the quantitative analysis in

section 5, we will allow At to follow a stochastic Markov process.

Employment Nt increases or decreases through hiring ht > 0 or firing ht < 0 accord-

ing to the following law of motion,

Nt = Nt−1 + ht (2)

where we assumed that employment does not depreciate, i.e. there are no exogenous

separations.

We assume that both the goods market and the labor market are perfectly com-

petitive, so that the equilibrium is effi cient and we can consider the social planner’s

problem. Furthermore, we assume the utility function is linear in consumption and

leisure, so that the intertemporal consumption allocation is irrelevant and the social

planner’s optimization problem is equivalent to maximizing profits,

max
{ht}∞t=0

∞∑
t=0

(
1

1 + r

)t
[Yt − γNt − g (ht)] (3)
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subject to (2), where r is the discount rate, γ is the disutility from working (and the

wage) and g (.) is an adjustment costs function. The optimal hiring policy depends on

the form of this function.

2.2 Optimal hiring policy

We analyze two cases for the adjustment costs function, which are both prevalent in

the literature: fixed adjustment costs and quadratic adjustment costs. These two cases,

which are in some sense opposite extremes, convey the intuition for the model dynamics

under non-convex and convex adjustment costs more generally.

As a benchmark, first consider the frictionless optimal allocation. In the absence of

adjustment costs, the planner sets hiring to achieve the optimal level of employment, so

that we obtain the frictionless optimal level of employment N∗t simply by maximizing

(3), with g (ht) = 0, over Nt.

N∗t =

(
(1− α)At

γ

)1/α
(4)

In a model with adjustment costs, we can think of the frictionless optimal level as

the desired level of employment. The optimal hiring policy aims to achieve a balance

between bringing employment close to its desired level while keeping adjustment costs

low.

2.2.1 Fixed adjustment costs

Fixed adjustment costs are represented by the cost function g (h) = ψ for h 6= 0 and

g (0) = 0. This cost function is non-convex around zero employment adjustment, which

introduces a discontinuity in the optimal hiring policy. The idea is that making any

changes to the number of workers in the firm implies costly adjustments, but once

adjustments are being made, the number of workers that are being hired or fired is

irrelevant.

With fixed adjustment costs, the optimal hiring policy is a “bang bang”adjustment,

as described in lemma 1. In response to small shocks, no adjustment takes place, whereas

in response to larger shocks employment is adjusted all the way to its frictionless optimal

level. The proof of lemma 1 is a straightforward application of the theory of irreversible

investment (see Dixit and Pindyck (1994), Caballero (1999)) and is given in appendix

A.1.

Lemma 1 With fixed adjustment costs, the optimal hiring policy in response to a change
in technology in the employment adjustment problem described by equations (3), (1) and

(2) depends on the distance of employment Nt−1 from its frictionless optimal level N∗t ,

as in equation (4), and can be characterized as follows:

1. It is optimal to neither hire nor fire if N∗t −Nt−1 is suffi ciently close to zero;
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2. It is optimal to hire N∗t − Nt−1 workers if N∗t − Nt−1 is suffi ciently positive and

to fire Nt−1 −N∗t workers if N∗t −Nt−1 is suffi ciently negative.

The optimal policy described in lemma 1 is approximately symmetric around N∗t −
Nt = 0 and may be summarized as,

ht =


N∗t −Nt−1 (hiring) if N∗t −Nt−1 > b (N∗t )

0 (inertia) if − b (N∗t ) < N∗t −Nt−1 < b (N∗t )

N∗t −Nt−1 (firing) if N∗t −Nt−1 < −b (N∗t )

(5)

where the width of the region of inertia b (N∗t ) '
√

2rψN∗t /αγ > 0 is increasing in the

adjustment costs ψ and the discount rate r, see appendix A.1.

The response of hiring to a change in technology under this policy is either zero, or

a spike in hiring that immediately brings employment to its desired level, which is the

frictionless optimal level. Whether hiring responds or not depends on the size of the

shock, expressed as the distance between employment and its desired level relative to the

adjustment costs. The intuition for this policy is that the planner adjusts employment

if and only if the increase in the net present value of profits from having the optimal

level of employment instead of the current level exceeds the adjustment costs.

The dynamics of hiring and employment under fixed adjustment costs are represen-

tative for the dynamics under any non-convex adjustment cost function. If adjustment

costs increase proportionally in the size of the adjustment in addition to, or instead of,

a fixed costs component, or if changes in productivity are not permanent, then it will

no longer be optimal to adjust employment to the frictionless optimal level. However,

the optimal hiring policy will still be characterized by a hiring region, a region of inertia

and a firing region, which depend on the distance of employment from its desired level,

see Caballero (1999). The intuition is that with non-convex adjustment cost functions,

adjustments to employment lead to a loss in profits that is irreversible, i.e. that is not

made good if the adjustment is reversed, so that by adjusting firms lose the option value

of waiting for a shock to be reversed over time.

2.2.2 Quadratic adjustment costs

Convex adjustment costs give rise to qualitatively different dynamics than non-convex

adjustment costs. We analyze the case of quadratic costs, g (h) = 1
2ψh

2, which we can

think of as an approximation of any convex adjustment costs function. A convex cost

function implies that adjustment costs get very small for small amounts of hiring, so

that infinitesimal adjustment in employment are costless and therefore reversible. This

provides an incentive to smooth out adjustment over time, and the optimal response

to a change in technology under quadratic adjustment costs is to hire (or fire) a small

number of workers in each period over a long time, as described in lemma 2.

Lemma 2 With quadratic adjustment costs, the optimal hiring policy in response to a
change in technology in the employment adjustment problem described by equations (3),

7



(1) and (2) can be described by Euler equation (6) for hiring, and has the following

properties:

1. Hiring (or firing) starts immediately and continues for all periods after the shock,

eventually approaching zero as employment Nt approaches its desired level N∗t as

in (4); and

2. Hiring monotonically declines over time as employment Nt adjusts to close the gap

from its desired level N∗t −Nt.

The proof of lemma 2 is immediate from the Euler equation for hiring (6), which is

derived from a straightforward dynamic programming problem in appendix A.2,

ht =
γ

ψ

((
N∗t
Nt

)α
− 1

)
+

1

1 + r
Etht+1 '

αγ

ψ

(
N∗t −Nt

N∗t

)
+

1

1 + r
Etht+1 (6)

where the second equality follows from a first-order Taylor approximation. For compa-

rability with the optimal policy under non-convex costs, we express the Euler equation

in terms of Nt and N∗t , the current and desired levels of employment respectively.

As in the case of fixed adjustment costs, the optimal policy under quadratic costs de-

pends on the distance of employment Nt from its frictionless optimal level N∗t . However,

under convex costs, this dependence is continuous rather than “bang bang”.

2.3 The dynamics of hiring in the model

The dynamics of hiring predicted by the model are quite different depending on the

specification of adjustment costs, as illustrated above. A large strand of literature

debates what adjustment cost specification is most appropriate for aggregate dynamics.

Whereas there is good evidence for lumpiness in investment (Doms and Dunne (1998),

Haltiwanger, Cooper, and Power (1999)) and hiring (Cooper, Haltiwanger, and Willis

(2015)) at the plant level, these non-convexities may be less relevant in the aggregate

level due to general equilibrium effects (Thomas (2002), Khan and Thomas (2008)),

although they may still affect the propagation of shocks (Gourio and Kashyap (2007),

Bachmann, Caballero, and Engel (2013)).

Here, we focus on a feature of the dynamics of hiring that is common across differ-

ent specifications for adjustment costs. As shown above, for both fixed and quadratic

adjustment costs, hiring ht is (weakly) monotonic in the distance of employment from

its desired level, and zero when that distance equals zero. We might label this feature

of the optimal hiring policy the “flexible accelerator”property, following Clark (1917),

Samuelson (1939) and Lucas (1967).

An implication of the flexible accelerator property is that hiring (or firing) is highest

immediately after a shock hits the economy, when the distance between the desired

and actual levels of employment is largest. This prediction seems inconsistent with the

hump-shaped impulse responses that are typically estimated using structural VARs, as

discussed in the introduction.
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While we derived the flexible accelerator property and its corollary that hiring peaks

on impact of a shock in a very specific and simple environment, these predictions are a

good deal more general than the assumptions of our model. If the cost function includes

elements of both non-convex and convex costs, i.e. functions that are in between the

“extremes”of fixed and quadratic costs, if employment depreciates or if shocks are mean-

reverting, then it is generally not optimal to adjust to the frictionless optimal level of

employment. However, in all of these cases, hiring is still monotonic in the distance

between the current level and some “desired” level of employment, and these models

still predict that hiring peaks immediately after a shock.

2.4 A calibration target for persistence

In order to compare the dynamics of hiring in the model to those in the data, we would

ideally want to know the response of hiring to the distance between the current and

desired levels of employment. In general, it is not possible to estimate this response,

because the desired level of employment N∗t is not observed. However, in the context

of our simple benchmark model, we can obtain an observable proxy. Using production

function (1) to eliminate technology At from expression (4), we see that in our model the

distance of employment from its desired level is log-proportional to labor productivity.

N∗t
Nt

=

(
1− α
γ

Yt
Nt

)1/α
(7)

Thus, under the assumptions of our model, we can measure the response of hiring ht to

a change in technology by regressing the hiring rate on lags of labor productivity Yt/Nt.

A moving-average (MA) regression of the hiring rate on labor productivity provides

a simple and intuitive way to summarize the comovement of hiring with other macroeco-

nomic aggregates and is likely to be informative about the response of hiring to shocks.

The advantage of this regression over estimated impulse responses from a structural

VAR is that we do not have to take a stance on the type of shocks that drive changes

in the desired level of employment, which makes it a useful calibration target. An even

simpler target, like the autocorrelation of the hiring rate, would not be able to dis-

tinguish between persistence in hiring due to progation of the model and persistence

that is due to persistence in the shocks that drive business cycles. As a final advantage

of our calibration target for the dynamics in hiring, we note that the logic of the ap-

proach extends to other variables, and in particular that the dynamics of investment can

be meaningfully summarized by a moving-average regression of investment on capital

productivity, see section 4.

It is important to note that the MA regression we propose does not recover the

impulse response function of hiring. Even in the context of our simple model, labor

productivity is endogenous, and we make no claim of causality in the regression. There

are two reasons for this. First, while many structural shocks will affect the labor market

through labor productivity (technology shocks, but also monetary policy shocks and
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other consumption demand shocks), other shocks will not. In particular, to the extent

that the response of hiring to exogenous changes in labor supply is different from its

response to other shocks, this will not be captured by our regression. Second, exten-

sions to our simple model may break the link between the desired level of employment

and labor productivity. For example, if wages strongly comove with productivity, for

instance because workers have strong bargaining power in wage negotiations, then the

γ in expression (7) will be a function of labor productivity, partially offsetting the effect

of productivity on the desired level of employment. Our claim is that while our moving-

average regression does not equal any impulse response function, it will be informative

about it, and we support this claim by showing below that the regression inherits many

of the properties of the response of hiring to identified structural shocks to technol-

ogy and monetary policy. In particular, the estimates show a clear hump shape in the

dynamics of hiring.

In the next subsection, we use our moving-average measure to compare the dynamics

of hiring implied by the model with those in the data.

2.5 The persistence puzzle

Figure 1 shows the dynamics of hiring (job finding rate), as measured by a moving-

average regression of the hiring rate ht on labor productivity Yt/Nt in the model with

adjustment costs in employment and in the data.3 Our measure for the dynamics of

hiring in the model closely mirrors the impulse response of hiring to a technology shock,

and in particular inherits its property that hiring is largest upon impact of the shock.

With quadratic adjustment costs, hiring peaks when productivity changes and then

slowly reverts to zero.

In the data, hiring peaks more than two years after the distance between the desired

and current levels of employment is largest. This is consistent with the hump-shaped

impulse responses for hiring found in structural VAR models with identified technology

(Canova, Lopez-Salido, and Michelacci (2010), Canova, Lopez-Salido, and Michelacci

(2013)) or monetary policy shocks (White (2018)). Our benchmark models with adjust-

ment costs cannot replicate this property.

The failure of standard models with adjustment costs to replicate the delayed re-

sponse in hiring observed in the data is what we call the persistence puzzle. In the next

section, we show how the model is able to match the observed dynamics in hiring if we

allow for a non-separable production technology, and that this result does not depend

on the specific form of adjustment costs.

3For the hiring rate, we use the job finding probability from Shimer (2012), and labor productivity
is output per worker from the BLS Labor Productivity and Costs program.
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3 Delayed adjustment

In this section, we introduce the main idea of this paper: with a non-separable production

function, the model predicts that hiring peaks not when a shock hits, but several periods

after. We label this property of the model delayed adjustment. Below, we first examine

delayed adjustment in the context of the simple model from the previous section. In

section 5, we explore the quantitative importance of delayed hiring to match the data

with an extended version of that model.

3.1 Non-separable production technology

Standard production functions, like (1), are separable over time. Labor input in period t

contributes to production in the same period, and current-period labor is the only labor

input in production. This is an extreme assumption that is unlikely to be satisfied. In

reality, many tasks that workers perform do not immediately generate production, e.g.

cleaning, maintenance, training or participating team meetings. Of course these tasks are

productive; surely productivity would decrease if the offi ce was never cleaned, machines

were not maintained, workers never learned anything new and no meetings were held

to coordinate between workers. However, the effect of these tasks on production realize

in future periods and may last for a long time, so that they need to be performed only

infrequently.

We model the effect of infrequent tasks on production by introducing an additional

state variable, which we label organizational capital. When workers perform organi-

zational, or infrequent, tasks their labor does not directly enter into the production

function but is used to accumulate organizational capital. Organizational capital en-

ters into the production function and depreciates when no workers invest into it by

performing organizational tasks. This gives rise to the production function,

Yt = φAt (etNt)
1−α + (1− φ)BtL

ρ
t (8)

where Lt is the stock of organizational capital, which evolves according to,

Lt = (1− λ)Lt−1 + λ̃ ((1− et)Nt)
1−α
ρ (9)

where et is the fraction of total labor input that is used for regular productive activi-

ties, which is a new choice variable, φ is a parameter governing the relative importance

of current production versus organizational tasks, Bt represents shocks to the produc-

tivity of labor in producing organizational capital and -like At- is normalized to have

mean 1. As in the simple model, we will analyze the response of hiring to a one-time,

unexpected and permanent change in At, keeping Bt = 1 fixed for most of the analy-

sis. The parameter λ denotes the rate of depreciation or organizational capital and

λ̃ =
[
(r + λ) /

(
(1 + r)λ1−ρ

)]1/ρ is a correction factor to undo the effect of λ on the rel-
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ative importance of organizational tasks versus current productive activities.4 Finally, ρ

is a parameter measuring diminishing returns to organizational tasks in the production

versus the use of organizational capital. We would expect ρ to lie between 1 − α, in
which case the diminishing returns to organizational capital in production are the same

as for regular labor but there are no diminishing returns in the production of organiza-

tional capital, and 1, which implies diminishing returns to organizational tasks in the

production of organizational capital but no diminishing returns to organizational capital

in the production of output.

The production technology described by equations (8) and (9) stays as close as possi-

ble to a standard production function while allowing for intertemporal non-separability

in production. We assume that the only difference between regular productive tasks and

organizational tasks is that the effect of organizational tasks on production is spread out

over a long time period. How long this period is, is determined by the depreciation rate

of organizational capital λ. Production function (8) reduces to (1) not only for φ = 1

(no role for organizational capital in production), but also for λ = 1 (“organizational”

tasks, like regular productive activities, affect production in the current period only),

up to a normalization of the productivity shock.5 In the frictionless optimal steady

state, the two types of labor enter into the production function symmetrically, and the

only difference is their relative productivity φAt/ (1− φ)Bt, see equation (11) below.

Our final assumption on the production function, and the only one that is not justified

by symmetry, is additive separability, implying that output produced using regular la-

bor is perfectly substitutable with output produced using organizational capital. This

assumption is for simplicity, and we will show in section 5 that it is not qualitatively

important for our results.

The non-separable production technology provides firms with a storage technology

for labor, in the form of organizational capital. This storage technology allows them to

intertemporally smooth labor input and adds an additional margin of labor adjustment:

by postponing organizational tasks and reallocating labor to daily productive activities

firms can temporarily increase output without increasing labor input. Below, we explore

how this additional margin of adjustment changes the dynamics of hiring.

3.2 Optimal hiring policy

As before, the optimal hiring policy depends on the specification for adjustment costs,

and we analyze the same two cases as in section 2 above: fixed and quadratic costs.

We show that a non-separable production technology introduces delay in the optimal

4Notice that λ̃ = 1 if λ = 1 and λ̃ → λ for r → 0. The reason that λ̃ 6= λ in general is due to the
difference between the steady state and the static optimum allocation.

5With λ = 1 production is given by Yt = φAt (etNt)
1−α + (1− φ)Bt ((1− et)Nt)1−α. Since

the production function is now separable over time, the fraction of workers allocated to each type
of labor et will be chosen statically to maximize production in each period, so that et satisfies
φAte

−α
t = (1− φ)Bt (1− et)−α. Substituting the optimal et into the production function gives

Yt = φAte
−α
t N1−α

t = ÃtN
1−α
t , where Ãt =

[
(φAt)

1/α + ((1− φ)Bt)1/α
]α
.
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response of hiring, and that this happens for both specifications for adjustment costs.

The planner still maximizes the expected net present value of profits, as in (3), but

she now has an additional choice variable et, the fraction of labor to allocate to regular

productive versus organizational tasks.

max
{et,ht}∞t=0

∞∑
t=0

(
1

1 + r

)t
[Yt − γNt − g (ht)] (10)

where Yt is given by production function (8), subject to the laws of motion for employ-

ment (2) and organizational capital (9).

It is again useful as a benchmark to solve for the frictionless allocation. Setting

g (ht) = 0, maximizing (10) over et and Nt, and assuming that the organizational capital

was in steady state before technology changed, we find that the frictionless optimal level

of employment N∗t = N∗ is constant over time and given by,

N∗ =

(
(1− α)φA

γ

)1/α
+

(
(1− α) (1− φ)B

γ

)1/α
(11)

with e∗N∗ = ((1− α)φA/γ)1/α workers are allocated to regular productive activities

and the remaining (1− e∗)N∗ working on organizational tasks, see appendix B.1 for
the derivation.

3.2.1 Fixed adjustment costs

With fixed adjustment costs, g (h) = ψ for h 6= 0 and g (0) = 0, and a standard

separable production function, firms either adjust employment (hire or fire some workers)

in response to a change in technology or they do not, depending on the size of the shock,

see lemma 1. With a non-separable production function, a third option arises: firms may

choose not to adjust employment immediately, but to do so after a delay. Delaying is

optimal in response to shocks of intermediate size, as described in proposition 3.

Proposition 3 With fixed adjustment costs, the optimal hiring policy in response to an
improvement in technology in the employment adjustment problem described by equations

(3) and (2) and a non-separable production technology described by (8) and (9) depends

on the distance of employment Nt−1 from its frictionless optimal level N∗t , as in equation

(11), as well as on time, and can be characterized as follows:

1. It is optimal to neither hire nor fire if N∗t −Nt−1 is suffi ciently close to zero;

2. It is optimal to hire N∗t − Nt−1 workers if N∗t − Nt−1 is suffi ciently positive and

to fire Nt−1 −N∗t workers if N∗t −Nt−1 is suffi ciently negative;

3. It is optimal to hire N∗t − Nt−1 workers or Nt−1 − N∗t workers after a delay if
N∗t −Nt−1 is in an intermediate range.
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The proof of proposition 3 is given in appendix B.2. In broad strokes, the argument

runs as follows. If the planner does not immediately adjust employment in response to

a shock to technology, then she will reallocate some workers from organizational tasks

to current production to make up for the shortfall in labor input. Over time, this will

deplete the organizational capital stock and reduce production and profits, so that the

value of the planner’s program falls over time. Therefore, if N∗t −Nt−1 is initially small

enough so that it is optimal not to hire workers immediately, but not too small, the

planner would eventually regret her decision not to hire. In this case, the policy to hire

N∗t −Nt−1 after a delay dominates both the policy to immediately hire these workers and

the policy to never hire. The intuition is that by delaying hiring, the planner also delays

the payment of the hiring costs ψ, which because of discounting has a first-order positive

effect increasing profits by rψ. Since the organizational capital stock was initially at its

optimal level, the fall in Lt has only a second-order effect on profits, so that the benefits

exceed the costs of delaying.

The length of the delay increases with adjustment costs ψ and decreases with the

size of the shock. For very large shocks it is still optimal to immediately adjust employ-

ment whereas for very small shocks it is still optimal to never adjust, as in the case of

a separable production technology described in lemma 1. The length of the delay also

increases with the discount rate, which increases the incentive for delaying the adjust-

ment costs, and decreases with the depreciation rate of organizational capital, which

determines how fast the organizational capital stock depletes when the planner starts

underinvesting in it. This last parameter will be important as a lever to match the data,

see section 5 below.

3.2.2 Quadratic adjustment costs

With convex adjustment costs, g (h) = 1
2ψh

2, and a standard separable production

function, hiring jumps in response to a change in technology, and then slowly and

monotonically declines to zero as employment approaches its frictionless optimal level,

see lemma 2. With a non-separable production technology, hiring still only jumps on

impact of the shock, and eventually declines to zero as employment approaches the

frictionless optimal. However, the decline in hiring need not be monotonic. For a

relevant range of parameter values, hiring first increases after the shock before starting

to decrease and declining to zero, as described in proposition 4. Thus, peak hiring

happens after a delay.

Proposition 4 With quadratic adjustment costs, the optimal hiring policy in response
to a change in technology in the employment adjustment problem described by equations

(3) and (2) and a non-separable production technology described by (8) and (9) has the

following properties:

1. Hiring (or firing) starts immediately and continues for all periods after the shock,

eventually approaching zero as employment Nt approaches its desired level N∗t as
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in (11); and

2. Hiring (firing) is delayed, in the sense that it first increases after its initial jump,

then peaks, and finally declines over time, if the discount rate r > 0, adjustment

costs ψ > 0, the relative importance of organizational capital in production 1−φ ∈
[0, 1] are suffi ciently high, and the depreciation rate of organizational capital λ ∈
[0, 1] and diminishing returns in organizational capital ρ ∈ [1− α, 1] are suffi ciently

low.

3. If the parameter conditions for delayed adjustment are satisified, then the amount

and length of delay (the difference between peak hiring and initial hiring) increases

with the discount rate r > 0, adjustment costs ψ > 0 and the relative importance

of organizational capital 1− φ ∈ [0, 1], and decreases with the depreciation rate of

organizational capital λ ∈ [0, 1].

The proof of proposition 4 is a straightforward application of dynamical systems,

and is implemented numerically, see appendix B.3. The intuition for the result can be

seen from the Euler equation for hiring,

ht =
γ

ψ

((
e∗

et

N∗

Nt

)α
− 1

)
+

1

1 + r
ht+1 '

αγ

ψ

(
e∗ − et
e∗

+
N∗ −Nt

N∗

)
+

1

1 + r
Etht+1 (12)

which may be compared with the Euler equation (6) for the model with separable pro-

duction technology. With a non-separable production technology, the urgency of hiring

or firing is no longer summarized by the deviation of employment from its desired level

N∗−Nt, but depends also on the fraction of labor that is optimally allocated to current

production e∗−et, which in turn depends on the state of organization in the firm. If the
organizational capital stock was at its optimal steady state level before an unexpected

increase in technology, then it still is after the shock hits. Therefore, it is initially cost-

less for firms to disinvest in organization, reallocating workers from organizational to

current productive tasks. This reduces the incentive for hiring. Over time, however,

organizational capital gets depleted, which negatively affects production and profits.

When this happens, more workers are allocated to organizational tasks again, and firms

need to hire more workers to achieve the desired level of output.

As in the case of fixed costs, the length of the delay increases with adjustment costs

ψ and the discount rate r, both of which increase the incentive to postpone incurring

the adjustment costs, and decrease with the depreciation rate of organizational capital

λ, which determines how fast underinvestment in organizational tasks leads to a decline

in the organizational capital stock. Different from the fixed-costs case, the length of

delay does not depend on the size of the shock and the predictions of the model change

very little when we linearize the equilibrium conditions.
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3.3 Persistence in hiring

The optimal hiring policy with a non-separable production technology is summarized in

figure 2, which shows the response of hiring to an increase in technology for fixed and

quadratic adjustment cost. While the hiring policy looks quite different depending on

the specification of adjustment costs, the optimal policy in both cases involves delay, in

the sense that either all or most hiring takes place later than the impact of the shock.

While delayed adjustment in the model with non-convex adjustment costs is a non-

linear effect, which depends on the size of the shock, this is not the case for the model

with convex adjustment costs. With convex adjustment costs, whether there is delayed

adjustment depends on parameters. In this model, we can linearize the equilibrium

conditions without qualitatively affecting the dynamics, which greatly facilitates incor-

porating non-separabilities into larger-scale macroeconomic models.

If firm-level dynamics are well described by a model with fixed adjustment costs,

then aggregate dynamics may look like the dynamics predicted by a model with convex

costs in our framework. In a model with heterogeneous firms and fixed adjustment costs,

in response to an aggregate shock some firms will adjust employment immediately, some

will never adjust employment and some will adjust after a delay, see proposition 3.

Therefore, we would expect aggregate hiring to jump on impact of the shock, and then

to continue while more and more firms adjust. Depending on the distribution of firm

heterogeneity, as well as other model parameters, aggregate hiring may be monotonically

decreasing after the shock, or may peak after a delay, just as in the case of quadratic

adjustment costs, see proposition 4. This result echoes the aggregation result in Thomas

(2002) and Khan and Thomas (2008) for models with standard separable production

technology.

The intuition for why delayed adjustment may be optimal in our model is straightfor-

ward. The non-separable production technology, in particular the slow-moving organiza-

tional capital stock, acts as a storage (or smoothing) technology for labor. This storage

technology provides firms with an intensive margin for labor adjustment: firms may

postpone organizational tasks and reallocate workers to current productive activities,

effectively borrowing labor from the future. Using this intensive margin immediately

increases production and therefore profits. And the intensive margin is initially costless,

because the organizational capital stock is slow to depreciate, and remains at its current

level even when organizational investment drops. Eventually, however, the borrowed

labor needs to be paid back. The (slow) depreciation of the organizational capital stock

negatively affects production and profits, and this cost increases over time, so that the

firm is forced to allocate more workers to organizational tasks again. Having exhausted

the intensive margin of adjustment, firms must then turn to the extensive margin and

hire more workers.

The type of delay predicted by our model is endogenous, in the sense that delayed

adjustment is optimal in response to a single shock, even if no further shocks hit the

economy. This makes it different from the delay discussed e.g. in Dixit and Pindyck
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(1994) in the context of investment, and used e.g. in Bachmann (2012) in the context

of employment, which we might call exogenous delay. In a model with non-convex

adjustment costs, but with a separable production technology, as in these studies, a

firm may choose not to respond to a shock while it is “waiting for new information”

(Dixit and Pindyck (1994, p.9)), i.e. to take a “wait and see”approach (Schreft, Singh,

and Hodgson (2005)). However, new information in this context means new shocks. If

those new shocks are such as to further increase the benefits of adjustment, then the

firm may decide to adjust after a “delay”. However, if the new shocks revert the effect of

the first shock, then adjustment may never happen. In our model with a non-separable

production technology, on the other hand, delayed adjustment will happen in response

to some shocks, but it does not happen immediately. The distinction is important,

because estimated impulse responses from a VAR, if correctly identified, describe the

response of the economy to a single shock. Therefore, only a model with endogenously

delayed adjustment can explain the hump shapes in the estimated response of hiring.

We will turn to the quantitative implications of our model in section 5 below, but

first take a brief detour into the dynamics of capital and investment in the next section.

4 The dynamics of capital and investment

The impulse response of capital investment to technology and monetary policy shocks,

like that of hiring, shows a clear hump-shape (Altig, Christiano, Eichenbaum, and Linde

(2011)). For this reason, the DSGE literature often assumes so called “cost-of-change

adjustment costs”, i.e. costs that are quadratric in the change in investment it rather

than its level, g (it, it−1) = 1
2ψ (it/it−1)

2 (Christiano, Eichenbaum, and Evans (2005),

Christiano, Eichenbaum, and Trabandt (2018)). In this section, we argue that standard

“level”adjustment costs, g (it) = 1
2ψi

2
t , in combination with a non-separable production

technology, give rise to very similar dynamics as cost-of-change adjustment costs with

a standard separable production technology. We show that the persistence puzzle we

documented for hiring in section 2.5 holds for investment as well, and argue that, since

the model is symmetric in capital and labor, our results for the dynamics of hiring with

a non-separable production function apply equally to investment in a model with fixed

labor.

The model in sections 2 and 3 assumed that production requires only labor. In order

to focus on the dynamics of investment, we can make the opposite extreme assumption

that production requires only capital Kt. Then, the simple production function (1)

would be replaced by Yt = AtK
α
t , where α ∈ (0, 1) is the capital share, whereas if we

allow for intertemporal non-separability, production function (8) becomes

Yt = φAt (utKt)
α + (1− φ)BtL

ρ
t (13)

and

Lt = (1− λ)Lt−1 + λ̃ ((1− ut)Kt)
α
ρ (14)
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where all parameters have the same interpretation as before and ut is the fraction of the

capital stock that is used for current production, with 1 − ut of capital being used for
investing in organizational or intangible capital. Perhaps the easiest way to interpret

1− ut is as the fraction of machines that are shut down for maintenance. The planner
may adjust the capital stock by investing or disinvesting in it, Kt = Kt−1 + it.

This model for capital adjustment is almost completely symmetric to the model for

labor adjustment, with the capital share α playing the role of the labor share 1 − α in
that model, except that the way investment affects profits is slightly different from the

way hiring does. Maintaining the same assumptions of linear utility and competitive

markets as before, the planner maximizes the expected net present value of profits,

max
{it}∞t=0

∞∑
t=0

(
1

1 + r

)t
[Yt − it − g (it)] (15)

The difference with the labor adjustment model is that investment in capital lowers

profits, whereas the stock of labor reduces profits (or utility) in objective function (3).

The Euler equation for investment in this model, is given by

it =
r

(1 + r)ψ

((
u∗

ut

K∗

Kt

)1−α
− 1

)
+

1

1 + r
it+1 (16)

where ut = u∗ = 1 if φ = 1 or λ = 1, see appendix C for the derivation. Comparing

this equation to Euler equation for hiring (12), it is clear that the model for capital

adjustment model is symmetric to the one for labor adjustment under a parameter

restriction on the value of leisure in that model, γ = r/ (1 + r).

The symmetry between the models for capital and labor adjustment allows us to

extend our results for hiring dynamics to investment.

The desired capital stock is log-proportional to capital productivity for φ = 1,

K∗t
Kt

=

(
α (1 + r)

r

Yt
Kt

)1/(1−α)
(17)

see appendix C and compare to (7). Therefore, a regression of log investment on an MA

for log capital productivity is a meaningful summary of the persistence in investment,

see the discussion in section 2.4. The bottom panel in figure 1 shows the dynamics of

investment in the data (private non-residential fixed investment, net of consumption

of fixed capital, from the NIPA), as well as in the model with a standard separable

production function (φ = 1). The figure documents a persistence puzzle for investment,

which is very similar as the puzzle for hiring that we documented earlier, although

less severe. In the model, investment monotonically declines after the initial impact of

the shock, whereas in the data the response is hump-shaped and peaks only after 5-8

quarters (compared to 8-12 quarters for hiring).

A non-separable production function brings the dynamics of investment closer to the
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data.

Proposition 5 The optimal investment policy in response to a change in technology in
the capital adjustment problem described by equation (15) and a non-separable produc-

tion technology described by (13) and (14) exhibits delayed adjustment, both for fixed

adjustment costs and for quadratic adjustment costs, as described in propositions 3, and

4 replacing hiring with investment and employment with capital.

Qualitatively, a non-separable production technology can explain the peristence puz-

zle in hiring as well as in investment. Whether this mechanism is suffi cient to match the

data is a quantitative question, to which we now turn. Since production in macroeco-

nomic models usually requires both labor and capital, there is an additional quantitative

question whether the model can match the persistence in both hiring and investment

for the same parameter values.

5 Persistence in macroeconomic models

We showed that in a simple model with non-separable production technology the opti-

mal policy for hiring and investment involves delayed adjustment. In this section, we

argue that this delay is quantitatively relevant, in the sense that it brings the model

dynamics substantially closer to the data. As a by-product, we also show that the result

goes through if there are adjustment costs in both capital and labor and if we extend

the model in other dimensions to make it more similar to the type of DSGE models

typically used in the literature. The main quantitative exercise is to calibrate the model

parameters to the literature as much as possible, and then to evaluate whether there

exist values for the free parameters describing the non-separability in production, that

generate peristence in hiring and investment as observed in the data. In section 6 we

think about whether the parameters we need are reasonable, and whether we can find

additional evidence to test our story.

5.1 Quantitative analysis

We use the following production technology for output using labor and capital,

Yt =

[
φ
(
At (utKt)

α (etNt)
1−α
)σ−1

σ
+ (1− φ) (BtL

ρ
t )

σ−1
σ

] σθ
σ−1

(18)

where organizational capital Lt evolves according to,

Lt = (1− λ)Lt−1 + λ̃ ((1− ut)Kt)
α
ρ ((1− et)Nt)

1−α
ρ (19)

which is a straightforward extension of (8) and (13). There are only two new parame-

ters: θ, which measures decreasing returns to scale in production, and σ, the elasticity of
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substitution between current production and organizational capital. We need decreas-

ing returns, because otherwise the model (with linear utility) does not have a steady

state. Decreasing returns arise for instance if firms are monopolistically competitive

and face elastic demand for their product, as in a standard new Keynesian model.6 We

assume technology At is stochastic and follows an exogenous Markov process, and keep

the technology for organizational capital production Bt fixed at unity for most of the

analysis.

There are adjustment costs in both labor and capital. Consistent with the literature,

we let the adjustment cost functions be quadratic in the relative adjustment, i.e. in

hiring and investment as a fraction of employment and capital respectively, so that

gN (ht) = 1
2ψN (ht/Nt)

2 and gK (it) = 1
2ψK (it/Kt)

2. Furthermore, we assume that the

stocks of both employment and capital depreciate,

Nt = (1− δN )Nt−1 +Ht = Nt−1 + ht (20)

Kt = (1− δK)Kt−1 + It = Kt−1 + it (21)

where δN is the separation rate and δK is the depreciation rate for physical capital.

Notice that our timing assumptions imply that depreciated employment and capital

may be reinstalled within the period, so that δN and δK are gross depreciation rates.

Also note that we assume that adjustment costs depend on hiring ht and investment it
net of replacement hiring/investment, rather than on total hiring Ht and investment It.

We maintain the assumption that utility is linear, but we allow for a preference shock

as a stand-in for all non-technology shocks. Thus, we assume that per-period welfare

is given by Zt [Yt − It − gN (ht)− gK (it)] − γNt, where Zt is stochastic and follows an

exogenous Markov process that is independent of At. This second shock brings the

correlation matrix of the model variables closer in line with data by breaking the almost-

perfect comovement between variables in a one-shock model, and is also needed to help

a simple RBC models like ours match the relative volatility of labor market variables,

hiring and employment. The equilibrium conditions for the quantitative model are listed

in appendix D.

The calibration of the model is summarized in table 1. For most of the parameters,

we choose values that are commonly used in the literature. In this spirit, we calibrate the

quarterly discount rate r to 3% to match the average return on equity, the capital share

α to 0.33, θ = 0.87 to match the markup of 12.5% of a monopolistically competitive firm

(Galí (2015, p.67)), choose a depreciation rate for capital δK of 2.5% (King and Rebelo

(1999b)), a (gross) separation rate δN of 30% per quarter (Gali and van Rens (2020)), and

calibrate the marginal rate of substitution between consumption and leisure γ to match

the average employment population ratio N̄ = 0.7. We set the autocorrelation of At to

match the corresponding parameter for total factor productivity in the data, normalize

6Maximizing profits PtCt−costs(Ct) subject to the demand equation Ct =const·P−εt ⇔ Pt = C
−1/ε
t

is equivalent to maximizing C(ε−1)/ε
t −costs(Ct). In this example, θ = (ε− 1) /ε.
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the standard deviation of innovations in At to 1% and set the stochastic process for Zt
equal to that for At, loosely based on the estimates in Smets and Wouters (2007, Table

1B) showing that the autocorrelations and standard deviations of non-technology shocks

are in the same order of magnitude as those of technology shocks.

The parameters φ, ρ, σ and λ, which describe the non-separability in the produc-

tion technology are specific to our model and consequently there is no guidance in the

literature on how to calibrate these parameters. In our quantitative exercise, we treat

these as free parameters and explore how they affect the prediction of the model for

the dynamics of hiring and investment. Since there are few direct estimates of adjust-

ment costs, the literature often sets these parameters to match a volatility target. We

follow this practice and set adjustment costs for employment ψN , together with φ, ρ,

σ and λ, to match the response of hiring. We then treat the response of investment

as an overidentifying restriction, setting the adjustment costs for capital equal to those

for employment, ψK = ψN , and evaluate the performance of the model to match the

response of investment for the same parameter values that we calibrated to the response

of hiring.

5.2 The dynamics of hiring and investment

Figure 3 shows the model impulse responses employment, hiring, and capital and in-

vestment for the model with a separable and a non-separable production technology.

The three lines in this figure correspond to increasing shares of organizational capital in

production: 0 (separable production function), 15% (the calibrated baseline) and 30%.

The model with a non-separable production function can replicate the hump-shaped

impulse responses for hiring and investment, and the length of the delay increases in the

share of organizational capital in production. Thus, the results we proved in sections

3 and 4 hold for a more general model, in which production requires both capital and

labor, with a standard calibration for the parameters.

Next, we ask the question whether we can find parameters for the production tech-

nology so that the dynamics of hiring and investment match the persistence observed

in the data. As a summary measure of the dynamics of hiring and investment, we use

MA regressions of these variables on labor and capital productivity respectively, as in-

troduced in sections 2.5 and 4. We vary parameters φ, ρ, σ, λ and ψN and for each set

of values for these parameters recalibrate the other parameters to match their targets,

simulate the model and run the same regression we ran on the actual data on the model-

simulated data. We look for parameter values that minimize the distance between the

estimated response of hiring from the data and the model. The results of this exercise

are presented in figure 4, and the values for φ, ρ, σ and λ we used for these figures are

reported in table 1.

It is clear from figure 4 that the model has no trouble replicating the persistence in

hiring observed in the data, and it also gets close to matching the responses of investment

with the same parameter values, even though we did not target this response in the
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calibration. Hiring responds little initially and peaks after just over two years in the

data, whereas investment jumps more on impact but peaks around the same time as

hiring. The calibrated model matches the response of hiring almost perfectly. The model

also gets close to matching the amount of delay (0.39 in the model as well as in the data)

and the lenth of the delay (8 quarters in the model versus 7 in the data), even though

we did not target this response in the calibration.

The share of organizational capital we need to assume in order to match the hiring

dynamics observed in the data is 1 − ū = 1 − ē = 15%, corresponding to φ = 0.56,

see table 1. Organizational capital is slightly less persistent than physical capital, with

a depreciation rate of 2.7%. In section 6 below, we discuss some evidence on whether

these are reasonable parameter values and try to find ways to test our story.

5.3 Robustness

The non-standard element in our model is the production technology, and this is where

we focus our robustness analysis. We start with varying the parameters φ, which mea-

sures the importance of organizational capital in production, and λ, its depreciation

rate, which have the expected effect on the results. These and all other results discussed

in this subsection are reported in table 2.

We then consider the elasticity of substitution between current production and or-

ganizational capital σ, which is qualitatively important for the predictions of the model.

For an increase in productivity to have a positive effect on the fraction of workers et
allocated to current production, σ needs to be suffi ciently greater than one. The reason

is that for smaller values of σ an increase in technology At affects the productivity of

organizational capital production just as much as or even more than that of current

productive activities. If we set Bt = At, then varying σ leaves the impulse responses

virtually unaltered, suggesting that it is not the degree of substitutability that is impor-

tant, but the effect of changes in At on the relative productivity of current production

over organizational investments. Thus, we need to think of a boom as a period of high

relative productivity of current production. Organizational investments are no more

productive in a boom than in a recession. Then, because capital and labor are overall

more valuable, firms will substitute organizational investments for productive inputs in

a boom and vice versa in a recession.

Next, we turn to the symmetry in the production function between labor and capital.

In the simple model with only labor in section 3, it was relatively straightforward to

justify our non-separable production technology in equations (8) and (9) as the smallest

possible deviation from a standard separable production function as in (1). But in

the full model with both labor and capital, as in (18) and (19), further assumptions

were required, importantly the assumption that the capital and labor shares in current

productive activities are the same as in organizational capital production. Relaxing this
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assumption, we replace equation (19) with

Lt = (1− λ)Lt−1 + λ̃ ((1− ut)Kt)
αL
ρ ((1− et)Nt)

1−αL
ρ (22)

We start from the extreme case that organizational capital production requires only

labor, αL = 0, and gradually increase the capital share in organizational capital pro-

duction. As we may have expected, the model is able to generate delay in investment

only if it requires capital.

Finally, we explore the robustness of our results if we assume adjustment costs over

gross rather than net hiring, Ht = ht + δNNt−1, and investment, It = it + δKKt−1. In

this case, the model is still able to generate delayed adjustment, see table 2, and the

amount of delay is only slightly lower.

6 Evidence and implications

We showed that an otherwise standard macroeconomic model with a non-separable

production technology can match the persistence in hiring and investment observed

in the data, because the non-separability creates an additional margin of adjustment

that firms may use to increase factor inputs into current production by postponing

other types of activities. The most direct evidence for this mechanism comes from a,

somewhat dated, survey by Fay and Medoff (1985). In this survey, plant managers were

asked how many workers they had been forced to let go in the previous recession, and

how many they could have fired while still meeting production requirements. The results

showed that there was labor hoarding in the amount of 6% of workers, who were not

needed during the recession but who had nevertheless not been laid off. Importantly

for this paper, the survey then asked managers to indicate how they employed these

“extra” workers. The answers indicated that these workers were assigned to “other

work”, including (in order of frequency) cleaning, painting, maintenance of equipment,

equipment overhaul, or sent on training. In the context of our model, these types of

“other work” can all be considered organizational tasks, because they do not affect

production immediately, but are likely to improve productivity in the longer run. The

estimate of 6% lines up well with our calibrated model, which predicts a decrease in et
of 6.2% in the first year (from 12% in the first quarter to 2% in the fourth quarter) after

a one-standard-deviation shock.

We model non-separabilities production as an additional state variable, which we

label organizational capital, because there is evidence that organization is important

in economics: for the existence of firms (Prescott and Visscher (1980)), to explain the

large drop in output in the transition from a planned to a market economy (Blanchard

and Kremer (1997)), for understanding the link between information technology and

skill-biased technological change (Brynjolfsson and Hitt (2000)), for stock market value

(Lev, Radhakrishnan, and Zhang (2009), Hall (2000a)), for asset returns (Eisfeldt and

Papanikolaou (2013)), and it is often meaningful to think of organization as a stock of

23



“capital”that positively affects productivity (Hall (2000b)). Organizational or intangi-

ble capital has also been shown to be important for measured productivity and business

cycles (McGrattan and Prescott (2010), McGrattan and Prescott (2012), McGrattan

(2017)), for optimal taxation (Conesa and Domínguez (2013), Conesa and Dominguez

(2018)), and for the rise in the relative volatility of labor market variables (Mitra (2019)).

This offers further opportunities for testing the model, building on a literature trying

to measure organizational capital.

An ideal test of our explanation would compare the predictions of our model for the

dynamics of (investments in) organizational capital directly to the data. This requires

good estimates of organizational capital, at suffi ciently high frequency and over a suffi -

ciently long time period. Since such an idea test is not feasible due to lack of data, we

try to build our case based on a compendium of indirect evidence. In subsection 6.1, we

discuss some of the attempts to measure organizational capital, and show that the esti-

mated share of organization in production is roughly in line with what our model needs

to match the data on persistence in hiring and investment. Section 6.2 uses capacity

utilization as an observable proxy for allocation of labor and capital to production versus

organization, and shows that its dynamics are consistent with the dynamics predicted

by our model. Finally, we attempt a test of our mechanism by checking whether differ-

ences in organizational capital line up with differences in persistence across industries

(in subsection 6.3) and over time (in subsection 6.4).

6.1 Organizational capital share in production

Although measuring organizational capital is far from straightforward (Lev, Radhakrish-

nan, and Zhang (2009)), the literature has made a number of strong attempts. Atkeson

and Kehoe (2005) estimate a structural model based on Prescott and Visscher (1980)

and find that 8% of output is due to intangibles. Hall (2000a) uses a weight of 9%

for e-capital in production and find that accumulation of e-capital contributed 15%

to productivity growth over the 1990-98 period. Black and Lynch (2005) argue that

employer-provided training is an important component of organizational investments

and more easily measured, and find that 30% of output growth is due to “workplace

practices”, mostly training. The sources-of-growth analysis by Corrado, Hulten, and

Sichel (2009) considers investments in IT and training, but also R&D and advertising

and find an income share of 15% due to intangibles in 2000-03, with growth in the share

of intangibles contributing 27% to growth in labor productivity from 1995 to 2003. Fi-

nally, Squicciarini and Mouel (2012) develop a measure of organizational investments

in organization by using O*Net to identify occupations, in which workers perform tasks

that are classified as organizational: organising, planning and prioritising work; building

teams, matching employees to tasks, and providing training; supervising and coordi-

nating activities; communicating across and within groups. They find that over 20% of

employees work primarily on organizational tasks, double the estimates used in Corrado,

Hulten, and Sichel (2009).
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There seems to be broad consensus in this empirical literature that the share of

organizational capital in output is somewhere between 8 and 20%, and that accumulation

of organizational capital accounts for a much larger contribution to growth in output

and productivity. We find that in order to match the observed persistence in hiring and

investment with our model, we need to assume that 15% of labor and capital are being

used for organizational tasks in steady state, well in line with these estimates. Since

we did not target the organizational capital share, nor any of the series that are used

to estimate it, but instead calibrated it to the response of hiring and investment, we

interpret this as evidence in favor of our model.

6.2 The dynamics of factor input allocation

Our model has strong predictions for the dynamics of factor input allocation. Reallo-

cating workers and capital services from current production to organization acts as an

intensive margin of adjustment that makes it possible for firms to delay adjusting labor

and capital. As a consequence, we would expect factor allocation to respond immedi-

ately when a shock hits the firm, and the response of et and ut should not show a hump

shape. To test this prediction, we need an empirical counterpart of et or ut.

There is little direct evidence on the allocation of workers or capital within a firm,

beyond the one-time survey by Fay and Medoff (1985). Empirical measures of orga-

nizational investment are of limited use as well, because they are available at best an

annual frequency and for relatively short periods. We argue that capacity utilization is

a good measure for et and ut, as it measures changes in (current) output that cannot

be explained by changes in factor inputs. Basu, Fernald, and Kimball (2006) argue

that changes in hours-per-worker are a good proxy for changes in both labor effort and

capital utilization, and Fernald (2012) provides a long quarterly time series for capacity

utilization based on this idea, which we use to test the predictions of our model for the

dynamics of et and ut.7

In figure 5, we show the result of the same MA regression on productivity for capacity

utilization as we showed for hiring and investment in figure 1. The response of utilization

to changes in the economy is immediate, without evidence for a delayed response as for

hiring or investment, consistent with the predictions of our model. This is further

evidence in favor of the mechanism proposed in this paper.

6.3 Cross-industry evidence

The response of sectoral investment to macroeconomic shocks is hump-shaped, just as

in aggregate data (Zorn (2016)). This finding implies that the delayed response of

investment in aggregate data is not due to a composition effect but to a mechanism that

operates within-industries. Therefore, we can use the variation in the response of hiring

7Alternative proxies we considered are effort (Shea (1990)) and skill acquisition (DeJong and Ingram
(2001), Dellas and Sakellaris (2003)). While the cyclicality of these measures is consistent with our
model as well, the data are annual, which makes it diffi cult to estimate the dynamics precisely.
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(and investment) across industries to provide some further evidence for the mechanism

we propose in this paper.

We explore to what extent the response of hiring and investment to shocks across

industries is correlated with various measures of organizational capital intensity. Our

model predicts that adjustment of employment and capital in industries with a higher

share of organizational capital should exhibit more delay. A range of measures of or-

ganizational or intangible capital intensity is available for the US at the industry level,

although at a relatively high level of aggregation: data on information capital intensity

as suggested by Brynjolfsson, Hitt, and Yang (2002) and provided by the Bureau of

Labor Statistics (2019a); data on intangible capital, organizational capital and training

intensity constructed using the perpetual inventory method from a broad range of invest-

ments, including things that are usually treated as intermediate costs in the NIPA, from

INTAN-Invest (Carol Corrado (2016)); a task-based measure of organizational invest-

ments produced by Squicciarini and Mouel (2012); data on e-capital from Hall (2000a);

and data on employer-provided training as suggested by Black and Lynch (2005) as

a measure for organizational capital and provided by the Bureau of Labor Statistics

(2019b). We match these data to measures of delay in hiring and investment calculated

from the US KLEMS (Bureau of Labor Statistics (2019a)), see appendix E for a more

detailed description of the data and the measures for delay and organizational capital

intensity.

The correlations between delay in hiring and organizational capital intensity we find

tend to be positive, ranging from 0.7 for the percentage of workers that received formal

training provided by their employer over the past year to zero for e-capital intensity,

see appendix E. Unfortunately, the number of industries at which the measures of

organizational capital intensity are provided is too low (between 8 and 28) to estimate

these correlations with any reasonable degree of certainty. We conclude that the cross-

industry evidence is at least not inconsistent with the explanation for delayed adjustment

proposed in this paper.

6.4 Jobless recoveries

There is evidence that persistence in the US economy substantially increased some time

in the 1980s. This change in business cycle dynamics has been documented in a small

literature on the emergence of so called jobless recoveries (Schreft and Singh (2003),

Aaronson, Rissman, and Sullivan (2004), Bachmann (2012), Jaimovich and Siu (2018))

or slow recoveries (Galí, Smets, and Wouters (2012)). When we run our MA regressions

for hiring on labor productivity and for investment on capital productivity separable for

the pre and post 1985 sample, it is clear that delays increased substantially over time,

particularly for hiring, see figures 6 and 7.

As a further test of our explanation for persistence, we ask if we can attribute

the increase in persistence to an increase in the importance of non-separabilities in

production. Corrado, Hulten, and Sichel (2009) document that the share of intangible
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capital in output increased by more than 50% from 1975 to 1995 (and then further

increased by over 30% from 1995 to 2015, see Carol Corrado (2016)). When we double

the share of organizational capital in our model, from 15% to 30%, we find that the

length of the delay in hiring increases from 8 to 9 quarters, and the length of delay in

investment increases from 8 to 11 quarters, see table 2. These model predictions are

roughly consistent with the change in persistence in hiring and investment in the data,

see figures 6 and 7.

Compared to other explanations for the emergence of jobless recoveries (Bachmann

(2012), Koenders and Rogerson (2005), Berger (2012), Jaimovich and Siu (2018)), our

explanation is perhaps most similar to Koenders and Rogerson (2005), who also argue

that reorganizations will be postponed when productivity is relatively high. The main

difference is that in the model in Koenders and Rogerson (2005), reorganization will be

postponed for as long as an expansion lasts, whereas in this paper postponing organi-

zational tasks is a temporary solution. Therefore, whereas their model can explain the

emergence of the jobless recoveries following the longer expansions since the 1980s, it

cannot match the hump-shaped impulse responses in hiring and investment, which were

the main motivation for this study.

7 Conclusions

We offered an explanation for the hump-shaped impulse responses in hiring and invest-

ment in US data that relies on non-separabilities in production in combination with

standard adjustment costs in labor and capital. A non-separable production technology

means that firms can intertemporally substitute labor and capital, allowing them to ad-

just factor inputs without the need for hiring and investment or firing and disinvestment.

In combination with adjustment costs in labor and capital, this new intensive margin of

adjustment generates an incentive to postpone hiring and investment in response to a

shock, a feature of the model which we labelled delayed adjustment. Delayed adjustment

in our model is endogenous, i.e. adjustment eventually happens in response to a single

shock and does not require a specific sequence of shocks, nor does it depend on the spe-

cific type of adjustment costs (non-convex or convex). We discussed some evidence that

the organizational capital share in production the model needs to match the persistence

in hiring and investment observed in the data, is consistent with empirical estimates of

organizational and intangible capital.

Compared to the early literature on propagation (Cogley and Nason (1995); Rotem-

berg and Woodford (1996)), we draw a sharp distinction between the persistence in

stock and flow variables, arguing that whereas adjustment costs may explain persis-

tence and hump-shaped responses in the stocks (capital and employment), they cannot

by themselves account for persistence in the flows (investment and hiring). This is the

same observation that led Christiano (2011) to dismiss adjustment costs in capital as a

“failed approach”. Following Christiano, Eichenbaum, and Evans (2005), the literature
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has addressed the problem by assuming adjustment costs in the change in investment

rather than in capital, i.e. g (it, it−1) = 1
2ψ (it/it−1)

2 instead of g (it) = 1
2ψi

2
t , see e.g.

Christiano, Eichenbaum, and Trabandt (2018). We show that with a reasonably cali-

brated non-separable production technology, a model with standard adjustment costs

generates impulse responses that are very similar to a model with cost-of-change adjust-

ment costs.
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Parameter Target Value
Discount rate r S&P500 0.03
Capital share α RBC literature 0.33
Technology shock At persistence RBC literature 0.979
Technology At innovation std dev normalization 0.01
Preference shock Zt persistence same stochastic process as At 0.979
Preference Zt innovation std dev same stochastic process as At 0.01
Decreasing returns to scale θ = ε−1

ε markup 12.5% 0.87
Depreciation capital δK RBC literature 0.025
Separation rate (gross) δN data (CPS) 0.30
Disutility from working (wage) γ empl-pop ratio N̄ = 0.7 0.53

AC capital ψK ψK = ψN in the baseline 40
AC employment ψN hiring response 40
Diminishing returns to OC hiring response 0.97
Importance organization in production φ hiring response 0.56
Depreciation organizational capital λ hiring response 0.027
EOS current production and organization σ hiring response 3.9

Table 1: Calibration
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Hiring Investment
amount
delay

length
delay

amount
delay

length
delay

Data (1948:Q1-2007:Q4) 0.89 8 0.39 7
– Pre-84 (1948:Q1-1984:Q4) 0.83 8 0.32 5
– Post-84 (1985:Q1-2007:Q4) 1.65 11 0.63 7

φ = 1 (no OC, e = u = 1) 0.00 0 0.00 0
φ = 0.56 (baseline, e = u = 1− 0.15) 0.52 8 0.39 8
φ = 0.5 (more OC, e = u = 1− 0.30) 0.84 9 0.61 11

λ = 0.015 (OC depreciates less) 0.84 9 0.64 11
λ = 0.027 (baseline) 0.52 8 0.39 8

σ = 3 (OC more complementary) 0.01 1 0.02 4
σ = 3.9 (baseline) 0.52 8 0.39 8
σ = 5 (OC more substitutable) 0.76 9 0.74 9

Bt = At, σ = 3 (OC more complementary) 0.41 11 0.23 8
Bt = At, σ = 3.9 0.58 12 0.50 10
Bt = At, σ = 5 (OC more substitutable) 0.59 12 0.51 10

αL = 0 (OC requires only labor) 0.81 10 0.00 0
αL = 0.15 (OC requires more labor) 0.95 11 0.18 6
αL = α = 0.33 (baseline) 0.52 8 0.39 8
αL = 0.5 (OC requires less labor) 0.00 0 0.73 11

AC over gross hiring/investment 0.40 7 0.59 8

Table 2: Robustness analysis. The amount of delay is measured as peak minus impact
hiring or investment as a fraction of peak hiring/investment. The length of delay is the
difference between the time of peak hiring/investment and the time of impact measured
in quarters.
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Figure 1: Persistence in hiring and investment in the data (black solid line with grey
standard error bands) and in a model with standard separable production function with
convex adjustment costs (red dashed line). The figure shows the coeffi cients of an MA
regression of hiring ht on labor productivity (output per hour) Yt/Nt and investment it
on capital productivity Yt/Kt for the period from 1948:Q1 to 2007:Q4, and the response
over a simulated sample of the model over 100, 000 periods.
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Figure 2: Delayed hiring in a model with fixed and quadratic adjustment costs.
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Figure 3: Impulse response functions of the model with separable and non-separable
production technology, φ = 1 (e = u = 1), 0.56 (e = u = 1 − 0.15) and 0.5 (e = u =
1− 0.3).
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Figure 4: Persistence in hiring and investment in the data (black solid line with grey
standard error bands), in our baseline model (red line with diamonds), and in the model
without organizational capital (blue line with stars). The figure shows the coeffi cients
of an MA regression of hiring Ht on labor productivity (output per worker) Yt/Nt and
investment It on capital productivity Yt/Kt for the period from 1948:Q1 to 2007:Q4,
and the response over a simulated sample of the model over 100, 000 periods.
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Figure 5: Persistence in capacity utilization. The figure shows the coeffi cients of an MA
regression of capacity utilization on capital productivity Yt/Kt. Unlike for hiring and
investment, there is no evidence for delayed adjustment in utilization.
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Figure 6: The emergence of the slow and jobless recoveries. MA regression of hiring on
labor productivity before (blue diamonds) and after (red plusses) 1985.

Figure 7: The emergence of the slow recovery of investment. MA regression of investment
on capital productivity before (blue diamonds) and after (red plusses) 1985.
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A Proofs and derivations for separable production

A.1 Optimal hiring policy (5) with fixed adjustment costs

The only state variable in our benchmark model is the level of employment inherited

from last period Nt−1, which evolves through hiring and firing as in law of motion (2).

Since we analyze a one-time permanent shock to technology, i.e. At+s = At for all s ≥ 0,

we treat the state of technology At as a parameter rather than a state variable. Let

V (Nt) denote the value of the planner’s program.

At time t, when the shock hits, the planner decides whether to adjust employment,

by hiring or firing some workers, or not. If she decides not to adjust, then the value

function evolves according to the following Bellman equation.

V (Nt−1) = AtN
1−α
t−1 − γNt−1 +

1

1 + r
V (Nt−1) (A.1)

This equation is readily solved explicitly for the value function

V (Nt−1) =
1

r

(
AtN

1−α
t−1 − γNt−1

)
(A.2)

for all periods from t onwards.

If the planner decides to adjust employment, then she pays the adjustment costs ψ.

The advantage is that she then gets to hire or fire any number of workers in period t

to achieve a new level of employment. Since adjustment costs are independent on the

amount of hiring or firing, and given our assumption that the level of technology is

constant from period t onwards, it is clear that the planner will adjust employment to

the frictionless optimal level, i.e. ht = N∗t −Nt−1. Therefore, the continuation value of

the program equals V (N∗t )− ψ in this case.
The planner decides to adjust employment or not in order to maximize the contin-

uation value of the program, i.e. she adjusts employment if V (N∗t ) − ψ > V (Nt−1),

where V (.) as in (A.2).

V (N∗t )− V (Nt−1) = AN∗1−αt − γN∗t −AtN1−α
t−1 + γNt−1 > rψ (A.3)

The planner adjusts employment if the increase in the net present value of profits from

having the optimal level of employment instead of the current level exceeds the adjust-

ment costs. Using expression (4) for N∗t to eliminate the level of technology At, the

condition for adjusting employment

1

r

[
γ

1− α

(
1−

(
Nt−1
N∗t

)1−α)
− γ

(
1− Nt−1

N∗t

)]
>

ψ

N∗t
(A.4)

depends only on the ratio of employment to its desired level N∗t , adjustment costs as a

fraction of the desired level of employment and other model parameters.

Condition (A.4) can be used to prove the following properties of the optimal hiring
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policy:

1. For Nt−1 close to N∗t , the planner does not adjust employment, because the limit

for Nt−1 → N∗t of the left-hand side of the condition equals zero, whereas the

right-hand side is strictly greater than zero.

2. For Nt−1 suffi ciently large, it is optimal to hire some workers, because for Nt−1 →
∞ the left-hand side of the condition tends to infinity. ForNt−1 suffi ciently small, it

is optimal to hire some workers if ψ < 1
r

[
1

1−αγN
∗
t − γN∗t

]
= 1

r

[
AN∗1−αt − γN∗t

]
,

i.e. if adjustment costs are smaller than the net present value of profits in the

frictionless optimum, a parameter restrictions which we assumed to be satisfied.

3. If it is optimal to adjust employment (hire) for Nt−1 < N∗t , then it is also optimal

to adjust for N ′t−1 < Nt−1, because the derivative of the left-hand side of the

condition is negative if Nt−1 < N∗t . Similarly, if it is optimal to adjust employment

(fire) for Nt−1 > N∗t , then it is also optimal to adjust for N
′
t−1 > Nt−1, because

the derivative of the left-hand side of the condition is positive in this case.

Combining properties 1 and 2 and using that the left-hand side of condition (A.4) is

continuous in Nt−1 > 0, by the intermediate value theorem there exist values 0 <

bH (N∗t ) < N∗t and bF (N∗t ) > 0 for any value of N∗t , such that the planner is indifferent

between adjusting employment or not if Nt−1 = N∗t −bH (N∗t ) and Nt−1 = N∗t +bF (N∗t ).

By property 3, these bounds are unique, and it is optimal to hire if and only if Nt−1 <

N∗t − bH (N∗t ) and it is optimal to fire workers if and only if Nt−1 < N∗t + bF (N∗t ). This

proves lemma 1 in the main text.

The adjustment process guarantees that employment Nt−1 will not deviate very far

from its frictionless optimal level N∗t . Therefore, we can simplify condition (A.4) by

approximating it around Nt−1 = N∗t .

ψ

N∗t
<

1

r

[
1
2αγ

(
Nt−1 −N∗t

N∗t

)2
+O

((
Nt−1 −N∗t

N∗t

)3)]
(A.5)

Note that the first-order terms evaluate to zero, because N∗t is the optimal level of

employment, so that V ′ (N∗t ). Setting higher-order terms to zero and requiring that

this approximate condition holds with equality in the bounds, we get an approximate

expression for the bounds.

ψ

N∗t
=

1

r
1
2αγ

(
b (N∗t )

N∗t

)2
⇒ bH (N∗t ) = bF (N∗t ) = b (N∗t ) =

√
2rψN∗t
αγ

(A.6)

so b is increasing in adjustment costs and discount rate, and depends on the production

and utility functions and N∗t as well. This latter dependence is because the adjustment

costs matter as a fraction of the (desired) MPL. This proves expression 5 in the main

text.
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A.2 Optimal hiring policy (6) with convex adjustment costs

The Bellman equation with quadratic adjustment costs is given by

V (Nt−1) = max
ht

{
At (Nt−1 + ht)

1−α − γ (Nt−1 + ht)−
ψ

2
h2t +

1

1 + r
EtV (Nt−1 + ht)

}
(A.7)

The first-order condition for hiring ht

(1− α)AtN
−α
t − γ − ψht +

1

1 + r
EtV

′ (Nt) = 0 (A.8)

and the envelope condition for employment Nt

V ′ (Nt−1) = (1− α)AtN
−α
t − γ +

1

1 + r
EtV

′ (Nt) (A.9)

can be combined in the usual way to get an Euler equation for hiring

V ′ (Nt−1) = ψht

ψht = (1− α)AtN
−α
t − γ +

ψ

1 + r
Etht+1 (A.10)

Using condition (4) for the frictionless optimal level of employment to eliminate

the level of technology At, we can write the Euler equation in terms of the ratio of

employment over its frictionless optimal level.

ψht = γ

((
N∗t
Nt

)α
− 1

)
+

ψ

1 + r
Etht+1 (A.11)

Since the adjustment process guarantees that Nt will not deviate too much from N∗t ,

the Euler equation can be simplified by taking a linear approximation in Nt around N∗t .

The result is expression (6) in the main text.
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B Proofs and derivations for non-separable production

B.1 Frictionless optimal level of employment (11)

Bellman equation

V (Lt−1) = max
et,Nt

{
φAt (etNt)

1−α + (1− φ)Bt

(
(1− λ)Lt−1 + λ̃ ((1− et)Nt)

1−α
ρ

)ρ
− γNt

+
1

1 + r
V
(

(1− λ)Lt−1 + λ̃ ((1− et)Nt)
1−α
ρ

)}
(B.12)

The first-order conditions for et and Nt are given by

0 = (1− α)φAte
−α
t N1−α

t − ρ1− α
ρ

(1− φ)BtL
ρ−1
t λ̃ (1− et)

1−α
ρ
−1
N

1−α
ρ

t

− 1− α
ρ

λ̃ (1− et)
1−α
ρ
−1
N

1−α
ρ

t

1

1 + r
V ′ (Lt) (B.13)

0 = (1− α)φAte
1−α
t N−αt + ρ

1− α
ρ

(1− φ)BtL
ρ−1
t λ̃ (1− et)

1−α
ρ N

1−α
ρ
−1

t − γ

+
1− α
ρ

λ̃ (1− et)
1−α
ρ N

1−α
ρ
−1

t

1

1 + r
V ′ (Lt) (B.14)

Envelope condition for Lt

V ′ (Lt−1) = ρ (1− φ) (1− λ)BtL
ρ−1
t +

1− λ
1 + r

V ′ (Lt) (B.15)

Combine the two FOC to eliminate V ′ (Lt)

(1− α)φAt (etNt)
−α = γ (B.16)

which tells us that etNt jumps immediately to its optimal steady state level ((1− α)φAt/γ)1/α.

Combining the FOC for et with the EC for Lt gives an Euler equation for for

(1− et)Nt.

((1− et)Nt)
1− 1−α

ρ = λ̃
(1− α) (1− φ)Bt

γ
Lρ−1t +

1− λ
1 + r

((1− et+1)Nt+1)
1− 1−α

ρ (B.17)

Combined with the LOM for OC, Lt = (1− λ)Lt−1+ λ̃ ((1− et)Nt)
1−α
ρ , this is a system

of two difference equations, one stable and one unstable, in (1− et)Nt and Lt.

In general, (1− et)Nt and Lt will slowly converge to steady state. However, it is

worth noticing that the dynamics of these variables do not depend on At (this is an

implication of additive separability of the production function), so if there is only a

(one-time permanent) shock only At and Lt was initially in steady state, then Lt and

(1− et)Nt remain in steady state. Since etNt is constant as well, that means that

et = e∗, Nt = N∗ and Lt = L∗ are all constant in the frictionless optimum, assuming
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that Lt was in steady state to start with.

Thus, the frictionless optimum steady state is given by:

e∗N∗ =

(
(1− α)φA

γ

)1/α
(B.18)

which implies

L∗ =
λ̃

λ

(
(1− α) (1− φ)B

γ

) 1−α
αρ

=

(
r + λ

(1 + r)λ

)1/ρ((1− α) (1− φ)B

γ

) 1−α
αρ

(B.19)

e∗

1− e∗ =

(
φA

(1− φ)B

)1/α
(B.20)

N∗ =

(
(1− α)φA

γ

)1/α
+

(
(1− α) (1− φ)B

γ

)1/α
(B.21)

which is expression (11) in the main text.

B.2 Proposition 3 for fixed adjustment costs

There are now two endogenous state variables in the problem, the level of employment

Nt−1 and the organizational capital stock Lt−1, and V (Nt−1, Lt−1) denotes the value

of the planner’s programme. We analyze a one-time permanent shock to technology

At, as in appendix A.1, treating At = A as a parameter, and keep the productivity of

organizational capital production fixed at Bt = 1. Since the model with non-convex

adjustment costs is highly non-linear and potentialy asymmetric, we consider only a

positive shock, i.e. an increase in technology At. We also assume that organizational

capital Lt is in steady state when the change in technology At occurs.

At each time t, the planner decides whether or not to adjust employment, whereas

even if she decides not to adjust employment, she can still choose the allocation of

workers et optimally, so that the value function satisfies the following Bellman equation,

V (Nt−1, Lt−1) = max

〈
max
N

V (N,Lt−1)− ψ , (B.22)

max
et

{
φA (etNt)

1−α + (1− φ)Lρt − γNt−1 +
1

1 + r
V (Nt−1, Lt)

}〉
(B.23)

where

Lt = (1− λ)Lt−1 + λ̃ ((1− et)Nt)
1−α
ρ (B.24)

as in (9) and Nt = Nt−1 if employment is not adjusted.
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B.2.1 Outline of the proof

We show that for an intermediate sized shock, the optimal policy involves employment

adjustment after a delay. The proof runs by contradiction. Suppose that delayed ad-

justment is not optimal. Then, the optimal policy must be either to immediately hire

some more workers or to never do so. In sections B.2.2 and B.2.3, we solve for the

net present value of profits under each of these policies, which we denote by VIA and

VNA respectively. In section B.2.4, we then show that there exists a feasible adjustment

strategy involving delayed adjustment that gives a higher net present value of profits

VDA than never adjusting employment, VDA − ψ > VNA at time t → ∞, and than
immediately adjusting employment, VNA > VIA − ψ at time t = 0. Therefore, neither

of the two possible strategies without delay is optimal and it must be that the optimal

policy involves delay.

B.2.2 Immediate adjustment

If employment is adjusted immediately after the increase in productivity, it is set to

maximize the value of the program henceforward. Since the optimal amount of hiring

will depend on the initial value of the organizational capital stock, in general it is hard

to solve for VIA, but the problem simplifies considerably with our assumption that the

economy was initially in steady state. In this case, the economy will be in steady state

after the one-time permanent increase in technology At as well, see the discussion below

equation (B.15) above, and there are no dynamics beyond the initial adjustments in et
and Nt.

Conditional on adjusting employment, the optimal level of employment is the same

as in the frictionless case, so that the value of the program with immediate adjustment,

after the adjustment costs are sunk, simply equals the value in the frictionless model,

which equal the net present value of an infinite stream of constant profits, see (B.12),

VIA (Nt−1, L
∗) = V (N∗, L∗) =

1 + r

r

[
φA (e∗N∗)1−α + (1− φ) (L∗)ρ − γN∗

]
(B.25)

where L∗, e∗ and N∗ as in (B.19), (B.20) and (4), respectively.

B.2.3 No adjustment

If the planner decides not to adjust employment, Bellman equation (B.22) reduces to

V (Nt−1, Lt−1) = max
et

{
φA (etNt−1)

1−α + (1− φ)Lρt − γNt−1 +
1

1 + r
V (Nt−1, Lt)

}
(B.26)

In this case the first order condition for et and the envelope condition for Lt may

be combined to get an Euler equation for the fraction of workers assigned to current
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productive tasks et.

φA (etNt−1)
−α = (1− φ)L−αt +

1− λ
1 + r

A (et+1Nt−1)
−α (B.27)

The Euler equation and the law of motion for organizational capital (B.24) constitute

a system of two difference equations that describes the joint dynamics of et and Lt. The

system is close to linear, and with a quadratic production function it would have been

exactly linear. We can linearize it by simply linearizing the marginal product function

around the frictionless steady state, i.e. et around e∗N∗/Nt−1 and Lt around L∗. The

linear system has one stable root, 1 − λ, and one unstable root, (1 + r) / (1− λ), so

that the solution is unique. When technology changes, et jumps to the saddle path and

then et and Lt gradually converge to their new steady state, which is different from the

frictionless optimal one.

The steady state of the system is given by

ē

1− ē =

(
φA

1− φ

)1/α
=

e∗

1− e∗ (B.28)

which is the same as in the frictionless optimum steady state, and organizational capital

L̄ =
λ̃

λ
(1− e∗)Nt−1 =

Nt−1
N∗

L∗ (B.29)

where L∗ does not depend on A, so is the same before and after the improvement in

technology.

Recall that before the change in technology employment was at its frictionless opti-

mal level, so that Nt−1 < N∗ after the increase in At. Therefore, the new steady state

for organizational capital is lower than L∗ and Lt slowly decreases. For et two things

happen. First, the increase in technology raises its steady state e∗. Second, initially

Lt > L̄, which by the Euler equation implies et > et+1, so that et overshoots its already

higher steady state and therefore declines over the transition.

The value of the program without employment adjustment is found by substituting

the optimal policy for et into Bellman equation (B.26). The effects of et and Lt on the

value of the program work in the same direction.

VNA (Nt, Lt) =

∞∑
s=0

(
1

1 + r

)s( At
1− α (et+sNt)

1−α +
Bt

1− αL
1−α
t+s − γNt

)
(B.30)

After the increase in A, both Lt and et decrease, so that VNA decreases as well.

Comparing (B.25) and (B.30), it is clear that initially the value of the firm is higher if

employment is immediately adjusted, VIA (Nt−1, L∗) > VNA (Nt−1, L∗), simply because

VIA (Nt−1, L∗) = V (N∗, L∗) = maxN VNA (N,L∗). Of course, that observation does not

imply that it is always preferrably to adjust employment, because of the adjustment

costs. More importantly for the proof, the value of the program without adjusting
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employment is not constant over time. Since the value function is strictly increasing

in Lt, VNA (Nt, Lt) decreases over time as the organizational capital stock is slowly

depleted and, after an initial major rellocation towards production, workers are gradually

allocated back from production to organizational tasks.

B.2.4 Delayed adjustment

Now consider the decision whether or not to hire extra workers, and suppose that the

firm is only allowed to adjust employment immediately or not at all. Comparing (B.25)

and (B.30), we see that the difference between the net present value of profits in either

case VIA (Nt−1, L∗) − VNA (Nt−1, L∗) is increasing in the size of the shock N∗ − Nt−1.

Therefore, if the shock is suffi ciently small, then VIA − VNA < ψ and the firm prefers

not to adjust employment at t = 0, whereas if the shock is suffi ciently large, then

VIA − VNA > ψ and the firm prefers to immediately hire more workers.

An interesting situation arises if N∗−Nt−1 is small enough so that VIA− VNA < ψ,

i.e. the firms prefers no hiring over immediately hiring, but not by much. Since VNA
decreases over time, in this case the inequality is reverted at some point, i.e. VIA−VNA >
ψ for some t > T , at which point the firm would regret not having adjusted employment

immediately. Of course, immediately adjusting and never adjusting employment are

not the only two choices available to the firm, and the fact that firms may regret their

decision to not adjust employment immediately if these were the only two options does

not immediately imply that delayed adjustment is the optimal policy. However, we will

show that there exists a feasible policy involving delayed adjustment that dominates

both the option to immediately adjust and the option to never adjust employment.

This will complete the proof of proposition 3.

Consider the following adjustment policy. When productivity increases, initially no

new workers are hired but the fraction of workers assigned to current productive tasks

is set to the level e∗ that is optimal in the new steady state. Then, after a long time

T , new workers are hired, setting employment to the same levels that would have been

optimal if these workers would have been hired immediately, maintaining the fraction

of workers assigned to current production at e∗. While not necessarily optimal, because

the organizational capital stock will no longer be at L∗ when employment is adjusted,

this policy is clearly feasible. We will show that this adjustment policy results in higher

profits both than adjusting immediately and than never adjusting employment.

If we let the time of adjustment T → ∞, then the value of the program under

the proposed policy with delayed adjustment approaches the value of the program if

employment is never adjusted at time zero VDA → VNA. On the other hand, at time

T , when employment adjustment has just happened, the value of the program under

delayed adjustment equals the value of the program under immediate adjustment, except

that the organizational capital stock is at its steady state level under no adjustment,

VDA (N∗, LT ) = VIA

(
N∗, Nt−1N∗ L

∗
)
. Delayed adjustment dominates both immediate

adjustment and no adjustment if it preferred over immediate adjustment at time zero and
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over not adjusting at time T and onwards. Thus, we need the following two conditions

to hold simultaneously:

VNA (Nt−1, L
∗) > VIA (N∗, L∗)− ψ (B.31)

VIA

(
N∗,

Nt−1
N∗

L∗
)
− ψ > VNA

(
Nt−1,

Nt−1
N∗

L∗
)

(B.32)

For eachNt−1/N∗, we can find a ψ for which both inequalities are satisfied, which implies

that for each ψ, we can also find a shock Nt−1/N∗ which satisfies both conditions.

B.3 Proposition 4 for convex adjustment costs

B.3.1 Derivation of the quilibrium conditions

Bellman equation

V (Nt−1, Lt−1) = max
et,ht

{
φAt (etNt)

1−α + (1− φ)BtL
ρ
t − γNt −

1

2
ψh2t +

1

1 + r
V (Nt, Lt)

}
(B.33)

where

Nt = Nt−1 + ht (B.34)

Lt = (1− λ)Lt−1 + λ̃ ((1− et)Nt)
1−α
ρ (B.35)

FOC(ht)

0 = (1− α)φAt (etNt)
−α et + ρ (1− φ)BtL

ρ−1
t

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1

(1− et)− γ − ψht

+
1

1 + r

{
V1,t+1 +

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1

(1− et)V2,t+1
}

(B.36)

EC(Nt−1)

VN,t = (1− α)φAt (etNt)
−α et + ρ (1− φ)BtL

ρ−1
t

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1

(1− et)− γ

+
1

1 + r

{
VN,t+1 +

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1

(1− et)VL,t+1
}

(B.37)

which imply

VN,t = ψht (B.38)

and an Euler equation for hiring

ψht = (1− α)φAt (etNt)
−α et + ρ (1− φ)BtL

ρ−1
t

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1

(1− et)− γ

+
1

1 + r

{
ψht+1 +

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1

(1− et)VL,t+1
}

(B.39)
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FOC(et)

0 = (1− α)φAt (etNt)
−αNt − ρ (1− φ)BtL

ρ−1
t

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1
Nt

− 1

1 + r

1− α
ρ

λ̃ ((1− et)Nt)
1−α
ρ
−1
NtVL,t+1 (B.40)

EC(Lt)

VL,t = ρ (1− φ)BtL
ρ−1
t (1− λ) +

1− λ
1 + r

VL,t+1 (B.41)

Use the FOC for et to further simplify the Euler equation for ht

ψht = (1− α)φAt (etNt)
−α − γ +

1

1 + r
ψht+1 (B.42)

which is exactly the same as for the model with separable production function, except

for the φ and the et, so that any change in the dynamics for ht will need to come through

dynamics in et. Using the expression for the frictionless optimum steady state e∗N∗,

see equation (11), to elimate the technology shock, (1− α)φAt = γ (e∗N∗)α, the Euler

equation for hiring can be rewritten as (12) in the main text.

Combine the FOC for et and the EC for Lt in the usual way to get a second Euler

equation.

VL,t = ρ
1− λ
λ̃

φAt
(etNt)

−α

((1− et)Nt)
1−α
ρ
−1

(B.43)

(etNt)
−α

((1− et)Nt)
1−α
ρ
−1

= λ̃
(1− φ)Bt

φAt
Lρ−1t +

1− λ
1 + r

At+1
At

(et+1Nt+1)
−α

((1− et+1)Nt+1)
1−α
ρ
−1

(B.44)

which again forms a saddle-path stable system of difference equations in combination

with the LOM for OC

Lt = (1− λ)Lt−1 + λ̃ ((1− et)Nt)
1−α
ρ (B.45)

B.3.2 The dynamics of hiring

Summarizing, the dynamics of hiring ht, joint with those for et, Nt and Lt are given by

the following dynamic system.

ψht = (1− α)φAt (etNt)
−α − γ +

1

1 + r
ψht+1 (B.46)

(etNt)
−α

((1− et)Nt)
1−α
ρ
−1

= λ̃
(1− φ)Bt

φAt
Lρ−1t +

1− λ
1 + r

At+1
At

(et+1Nt+1)
−α

((1− et+1)Nt+1)
1−α
ρ
−1

(B.47)

Nt = Nt−1 + ht (B.48)

Lt = (1− λ)Lt−1 + λ̃ ((1− et)Nt)
1−α
ρ (B.49)

These are four difference equations in four unknowns, which we solve numerically
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using Dynare.

For some parameter values, the model predicts a delay in hiring, in the sense that

the response of hiring to an increase in technology peaks not on impact of the shock but

one or more periods later. To explore how these dynamics depend on parameter values,

we define the following summary statistics:

1. We say that the response of hiring exhibits delay if hiring initially increases after

a shock, i.e. if |hτ+1| > |hτ | where τ is the period that the change in technology
At occurs.

2. If there is delay, then we define the amount of delay as the relative increase in hiring

after impact. Let hτ be hiring in the period the change in technology occurs, and

let hp denote hiring in the peak period. Then, the amount of delay is defined as

(|hp| − |hτ |) / |hp|.

3. The length of the delay is defined simply as the time between the period in which

hiring peaks and the period when the shock hit, p− τ .

Figures B.1 and B.2 show for which combinations of adjustment costs ψ, share

1 − φ and depreciation rate λ of organizational capital delayed hiring occurs. Figures
B.3, B.4, B.5, B.6 and B.7 show the amount and length of the delay as a function of

adjustment costs ψ, the discount rate r, the organizational capital share 1 − φ, the

depreciation rate of organizational capital λ, and diminishing returns in organizational

capital ρ, respectively. Delayed adjustment is more likely to occur, larger and longer for

higher adjustment costs, a higher discount rate, a higher organizational capital share

and a lower depreciation rate of organizational capital. Delay becomes less likely as

diminishing returns in the use of organizational capital in production disappear, i.e. for

ρ→ 1 and the length of the delay seems to be maximized for ρ around 1−α = 0.67, i.e.

if diminishing returns are entirely in the use rather than the production of organizational

capital.
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Figure B.1: Delayed adjustment (+) for different values of adjustment costs ψ and the
share of organizational capital in production 1− φ
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Figure B.2: Delayed adjustment (+) for different values of the depreciation rate of
organizational capital λ and the share of organizational capital in production 1− φ
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Figure B.3: Amount and length of delay in hiring for different values of adjustment costs
ψ
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Figure B.4: Amount and length of delay in hiring for different values of the discount
rate r
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Figure B.5: Amount and length of delay in hiring for different values of the share of
organizational capital in production 1− φ
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Figure B.6: Amount and length of delay in hiring for different values of the depreciation
rate of organizational capital λ
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Figure B.7: Amount and length of delay in hiring for different values of diminishing
returns to organizational capital ρ
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C Capital adjustment

The Bellman equation is given by

V (Kt−1, Lt−1) = max
ut,it

{
φAt (utKt)

α + (1− φ)BtL
ρ
t − it −

ψ

2
i2t +

1

1 + r
EtV (Kt, Lt)

}
(C.50)

where

Kt = Kt−1 + it (C.51)

Lt = (1− λ)Lt−1 + λ̃ ((1− ut)Kt)
α
ρ (C.52)

Following the same steps as in appendix B.3 (combining the first-order condition

for it with the envelope condition for Kt to get an Euler equation, and then using

the first-order condition for ut to simplify it), we get the following Euler equation for

investment

ψit = αφAt (utKt)
α−1 − r

1 + r
+

1

1 + r
ψht+1 (C.53)

Setting ψ = 0 for the frictionless allocation gives,

αφAt (u∗tK
∗
t )α−1 =

r

1 + r
(C.54)

so that we can rewite the Euler equation as,

ψit =

(
ut
u∗t

Kt

K∗t

)α−1 r

1 + r
− r

1 + r
+

1

1 + r
ψht+1 (C.55)

which simplifies to equation (16) in the main text.
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D Equilibrium conditions quantitative model

Bellman equation

V (Nt−1,Kt−1, Lt−1) = max
et,ut,ht,it

{
Zt

[
φ
(
At (utKt)

α (etNt)
1−α
)σ−1

σ
+ (1− φ) (BtL

ρ
t )

σ−1
σ

] σθ
σ−1

−γNt − Ztit − δKZtKt−1 −
ψN
2
Zth

2
t −

ψK
2
Zti

2
t +

1

1 + r
EtV (Nt,Kt, Lt)

}
(D.56)

where

Nt = Nt−1 + ht (D.57)

Kt = Kt−1 + it (D.58)

Lt = (1− λ)Lt−1 + λ̃ ((1− ut)Kt)
α
ρ ((1− et)Nt)

1−α
ρ (D.59)

D.1 Labor

Combining FOC(ht) and EC(Nt−1) to get an Euler equation for ht

VN (Nt−1,Kt−1, Lt−1) = ψNZtht (D.60)

ZtψNht = θ [...]
σθ
σ−1−1 Zt

[
(1− α)φ

(
At (utKt)

α (etNt)
1−α
)σ−1

σ 1

Nt

+ (1− α) (1− φ) (BtL
ρ
t )

σ−1
σ

1

Lt
λ̃ ((1− ut)Kt)

α
ρ ((1− et)Nt)

1−α
ρ

1

Nt

]
− γ

+
1− α
ρ

λ̃ ((1− ut)Kt)
α
ρ ((1− et)Nt)

1−α
ρ

1

Nt

1

1 + r
EtVL (Nt,Kt, Lt) +

ψN
1 + r

EtZt+1ht+1

(D.61)

Simplify using FOC(et)

ψNht = θ [...]
σθ
σ−1−1 (1− α)φ

(
At (utKt)

α (etNt)
1−α
)σ−1

σ 1

etNt
− γ

Zt
+ψNEt

[
1

1 + r

Zt+1
Zt

ht+1

]
(D.62)

D.2 Capital

Combine FOC(it) and EC(Kt−1) to get an Euler equation for it

VK (Nt−1,Kt−1, Lt−1) = Zt (1− δK + ψKit) (D.63)
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Zt (1− δK + ψKit) = θ [...]
σθ
σ−1−1 Zt

[
αφ
(
At (utKt)

α (etNt)
1−α
)σ−1

σ 1

Kt

+α (1− φ) (BtL
ρ
t )

σ−1
σ

1

Lt
λ̃ ((1− ut)Kt)

α
ρ ((1− et)Nt)

1−α
ρ

1

Kt

]
− ZtδK

+
α

ρ
λ̃ ((1− ut)Kt)

α
ρ ((1− et)Nt)

1−α
ρ

1

Kt

1

1 + r
EtVL (Nt,Kt, Lt)

+
1

1 + r
Et [1− δK + ψKit+1] (D.64)

Simplify using the FOC(ut)

ψKit = θ [...]
σθ
σ−1−1 αφ

(
At (utKt)

α (etNt)
1−α
)σ−1

σ 1

utKt

−
(
r + δK
1 + r

− 1− δK
1 + r

Zt+1 − Zt
Zt

)
+ ψKEt

[
1

1 + r

Zt+1
Zt

it+1

]
(D.65)

D.3 Organizational capital

Combine FOC(et) and FOC(ut) to get a restriction on the allocations of labor and

capital

0 = θ [...]
σθ
σ−1−1 Zt

[
φ
(
At (utKt)

α (etNt)
1−α
)σ−1

σ

(
1− et
et
− 1− ut

ut

)]
(D.66)

which implies

et = ut (D.67)

EC(Lt−1)

VL (Nt−1,Kt−1, Lt−1) = θ [...]
σθ
σ−1−1 Ztρ (1− φ) (BtL

ρ
t )

σ−1
σ

1− λ
Lt

+
1− λ
1 + r

EtVL (Nt,Kt, Lt)

(D.68)

Combine FOC(et) and EC(Lt−1) to get a third Euler equation

VL (Nt−1,Kt−1, Lt−1) = ρ
1− λ
λ̃

θ [...]
σθ
σ−1−1 Ztφ

(
At (utKt)

α (etNt)
1−α
)σ−1

σ

((1− ut)Kt)
α
ρ ((1− et)Nt)

1−α
ρ

1− et
et

(D.69)

Ωt
1− et
et

=
1− φ
φ

λ̃
(BtL

ρ
t )

σ−1
σ

Lt
+ (1− λ)Et

[
1

1 + r

Zt+1
Zt

Θt+1

Θt
Ωt+1

1− et+1
et+1

]
(D.70)

where

Θt = θ [...]
σθ
σ−1−1 , Ωt =

(
At (utKt)

α (etNt)
1−α
)σ−1

σ

((1− ut)Kt)
α
ρ ((1− et)Nt)

1−α
ρ

(D.71)
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D.4 Summary of equilibrium conditions

Definitions

Θt = θ

[
φ
(
At (utKt)

α (etNt)
1−α
)σ−1

σ
+ (1− φ) (BtL

ρ
t )

σ−1
σ

] σθ
σ−1−1

(D.72)

Ωt =

(
At (utKt)

α (etNt)
1−α
)σ−1

σ

((1− ut)Kt)
α
ρ ((1− et)Nt)

1−α
ρ

(D.73)

Euler equation for hiring

ψNht = Θt (1− α)φ
(
At (utKt)

α (etNt)
1−α
)σ−1

σ 1

etNt
− γ

Zt
+ ψNEt

[
1

1 + r

Zt+1
Zt

ht+1

]
(D.74)

Euler equation for investment

ψKit = Θtαφ
(
At (utKt)

α (etNt)
1−α
)σ−1

σ 1

utKt

−
(
r + δK
1 + r

− 1− δK
1 + r

Zt+1 − Zt
Zt

)
+ ψKEt

[
1

1 + r

Zt+1
Zt

it+1

]
(D.75)

Labor and capital allocation

et = ut (D.76)

Euler equation for organizational investment

Ωt
1− et
et

=
1− φ
φ

λ̃
(BtL

ρ
t )

σ−1
σ

Lt
+ (1− λ)Et

[
1

1 + r

Zt+1
Zt

Θt+1

Θt
Ωt+1

1− et+1
et+1

]
(D.77)

Laws of motion

Nt = Nt−1 + ht (D.78)

Kt = Kt−1 + it (D.79)

Lt = (1− λ)Lt−1 + λ̃ ((1− ut)Kt)
α
ρ ((1− et)Nt)

1−α
ρ (D.80)

This is a system of 7 difference equations in 7 variables: et, ut, ht, it, Nt, Kt and Lt.
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E Cross-industry evidence

The industry-level evidence for a positive correlation between delayed adjustment and

organizational capital intensity, discussed in section 6.3 in the main text, is summarized

in table E.1.

The measures of delay in hiring and investment were calculated from the US KLEMS

dataset provided by the Bureau of Labor Statistics (2019a),8 which contains information

on labor and capital input (employment and capital services) and labor and capital

productivity (output employee and per unit of capital services) as indices (2007=100) by

6-digit NAICS industries and year, for the period 1987-2018. We calculated (net) hiring

and investment as the (annual) first difference in labor and capital input, respectively.

In order to obtain a scalar measure of delay, we first regress the first differences of

hiring and investment on an MA(6) in the first differences of labor and capital pro-

ductivity, respectively, where 6 annual lags correspond to the 24 quarterly lags we use

for aggregate data. We impose the constraint that the sum of the coeffi cients in this

MA regression equals zero, so that hiring and investment return to zero after 6 years,

and construct the response of hiring and investment in levels. Then, we calculate the

amount of delay as the difference between peak hiring/investment and hiring/investment

on impact, as a fraction of peak hiring/investment.

We aggregated the 6-digit NAICS data to the appropriate level to match with data

from other sources on organizational capital intensity. Information Capital intensity is

reported in the same dataset at the 3-digit NAICS level, but only for manufacturing

industries (NAICS codes 331-339, 18 industries). Data on intangible capital, organiza-

tional and training intensity (Carol Corrado (2016, table 5, p.100)) are from INTAN-

Invest,9 and are organized at major NACE (Nomenclature des Activités Économiques

dans la Communauté Européenne) sectors. We use the NAICS 2017 to ISIC Rev.4

crosswalk provided by the Census Bureau,10 in combination with ISIC REV.4 - NACE

REV.2 crosswalk,11 to match and aggregate to major NACE sectors. E-capital is calcu-

lated and reported by Hall (2000a, table 5, p.100) at the 2-digit SIC level (22 industries

spanning almost the entire economy), whereas employer-provided training is reported

by the Bureau of Labor Statistics (2019b, table 5, p.100) from the 1995 Survey of Em-

ployer Provided Training (SEPT) at the level of 9 major industries,12 with a mapping

provided to 2-digit SIC codes. We used the NAICS to SIC crosswalk from the NAICS

Association,13 to assign 4-digit SIC codes to the industries in our data, which we then

aggregate to 2-digit SIC and BLS major industries. We average labor and capital input

and productivity measures weighting by labor compensation cost in million US dollars

as a measure of size of the different industries.

8https://www.bls.gov/mfp/
9http://www.intaninvest.net/
10https://www.census.gov/eos/www/naics/concordances/concordances.html
11https://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_REL&IntCurrentPage=10
12https://www.bls.gov/news.release/sept.nws.htm
13https://www.naics.com/naics-to-sic-crosswalk-search-results/

21



Correlation with delay in
Measure of OC intensity Sample hiring investment
IC capital intensity (%) 3-digit NAICS (N = 18) 0.23 0.09
(BLS) (manufacturing only) [0.67] [0.15]
Intangible capital intensity NACE major industries (N = 12) 0.32
(INTAN Invest) [0.63]
Organizational capital int NACE major industries (N = 12) −0.07
(INTAN Invest) [0.08]
Training intensity NACE major industries (N = 12) −0.08
(INTAN Invest) [0.09]
e-Capital (log) 2-digit SIC (N = 15) −0.02

[0.01]
CHS measure OC investment Approx 3-digit NAICS (N = 28) 0.28
(Squicciarinii & Le Mouel 2012) [0.27]
Task-based measure OC inv Approx 3-digit NAICS (N = 28) 0.22
(Squicciarinii & Le Mouel 2012) [0.34]
Employer-provided training BLS major ind (N = 8) 0.69
(% workers formal training) [0.44]
Employer-provided training BLS major ind (N = 8) 0.38
(hours of formal training) [0.98]

Table E.1: Persistence across industries. The amount of delay is measured as peak
minus impact hiring or investment as a fraction of peak hiring/investment. Standard
errors for the correlation coeffi cients were calculated using the delta method.
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