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  Contribution to the field

Stroke is a leading cause of serious long lasting disability. For many years nearly all therapeutic approaches to stroke were failing.
The discovery of stem cells has brought up a lot of hope to overcome daunting outcomes of stroke. Though, no stem cell-based
approach has been translated to a routine clinical treatment. Surprisingly, mechanical thrombectomy rapidly became a mainstay of
stroke management as it overwhelmingly superseded efficacy of any other therapeutic approach. Therefore, the question arises if
stem cell-based therapy is still a promising solution or a dead end. We have collected most recent evidence of the advances in the
field of stem cells for stroke. While the replacement of damaged brain tissue by stem cells seems still to be a distant objective, we
are witnessing an explosion of novel paradigms including combination therapies. Interestingly, while mechanical thrombectomy is
indeed radically improving outcomes, still many patients experience some neurological deficits, which prevent their return to
premorbid status. Notably, clot removal provides a gateway for therapeutic agents including stem cells to the infarcted tissue.
Moreover, the smaller tissue damage due to thrombectomy may actually be easier repaired by stem cells, so regenerative
medicine seems to be more promising solution than ever.
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 The introduction of recanalization procedures has revolutionized acute stroke 51 

management, although the narrow time window, strict eligibility criteria and logistical 52 

limitations still exclude the majority of patients from treatment. In addition, residual 53 

deficits are present in many patients who undergo therapy, preventing their return to 54 

premorbid status. Hence, there is a strong need for novel, and ideally 55 

complementary, approaches to stroke management. 56 

In preclinical experiments, cell-based treatments have demonstrated  57 

beneficial effects in the subacute and chronic stages following stroke [1; 2; 3] and  58 

therefore are considered a promising option to supplement current clinical practice. 59 

At the same time, great progress has been made in developing clinically feasible 60 

delivery and monitoring protocols [4]. However, efficacy results initially reported in 61 

clinical studies fell short of expectations [5] raising concerns that cell treatment might 62 

eventually share the ‘dead end fate’ of many previous experimental stroke therapies. 63 

This Research Topic reviews some of the latest and most innovative studies to 64 

summarize the state of the art in translational cell treatments for stroke. 65 

 66 

New mechanistic insights from preclinical experiments 67 

 Umbilical cord blood (UCB)-derived cells are a widely available and rich 68 

source of relatively young cells. However, it is unclear which fraction of this 69 

heterogeneous population is responsible for the therapeutic effects reported after 70 

stroke. Gornicka-Pawlak and colleagues investigated CD34- mononuclear cells 71 

(MNCs) either freshly prepared or cultured for 3 days versus a UCB derived neural 72 

stem cell line (https://www.frontiersin.org/articles/10.3389/fneur.2019.00786/full) [6]. 73 

The study particularly focused on restoring cognitive functions after stroke what is a 74 

novel endpoint for the UCB derived neural stem cell line. Freshly prepared cells were 75 
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found most effective, which is in line with what has been reported for motor and 76 

sensory functions using UCB-MNCs after stroke [7]. An enriched environment was 77 

provided to the animals, further fostering cognitive recuperation in a clinically 78 

meaningful setup. Mu et al revealed that a combination of adipose stem cells and 79 

rehabilitation after experimental stroke is beneficial 80 

(https://www.frontiersin.org/articles/10.3389/fneur.2019.00235/full) [8]. This approach 81 

follows the newest STem Cells as an Emerging Paradigm in Stroke (STEPS) 82 

recommendations and is expected to provide more translationally relevant data [9]. 83 

Hwang et al. proved that a combination of UCB-MNC and erythropoietin is also 84 

beneficial (https://www.frontiersin.org/articles/10.3389/fneur.2019.00357/full) 85 

 [10]. Green and colleagues stereotaxically applied neural stem cells in the subacute 86 

stage after large cortico-striatal and smaller striatal strokes 87 

(https://www.frontiersin.org/articles/10.3389/fneur.2019.00335/full) 88 

 [11]. Cell graft vitality was better preserved in smaller, striatal lesions, which are  89 

associated with a stabilization of functional neuronal networks. However, this effect 90 

was only transient, indirectly pointing to other long-term degenerative mechanisms 91 

and processes that thus far have not been identified. Encouraging results were 92 

reported regarding the efficacy of bone marrow-derived mesenchymal stem cells 93 

(MSCs) which have been applied in numerous preclinical trials for almost two 94 

decades. Satani et al. performed a systematic review and meta-analysis on 141 95 

preclinical studies, confirming robust efficacy in acute and subacute time windows 96 

(https://www.frontiersin.org/articles/10.3389/fneur.2019.00405/full) [12]. It is 97 

noteworthy that comparable effects were seen in multiple labs around the world. 98 

Based on these robust data, the authors suggest that this approach should  advance 99 

to carefully planned and implemented clinical trials. 100 
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Translational and clinical considerations  101 

 Defining the best-suited cell source is crucial to taking the translational 102 

process from the preclinical to the clinical stage. Ideally, the respective cells should 103 

be applicable for autologous and allogeneic use, and should exert beneficial effects 104 

via indirect (‘bystander’) effects while also exhibiting the potential for replacement of 105 

brain cells including astrocytes, oligodendrocytes and, most challenging, neurons 106 

thus covering all potential aspects of brain tissue regeneration [13]. Recent research 107 

by Gancheva et al. revealed that dental pulp stem cells may perfectly fill this role 108 

(https://www.frontiersin.org/articles/10.3389/fneur.2019.00422/full) [14]. Another  109 

relevant aspect to translation is the safety of cell applications. Potential adverse 110 

events such as secondary microinfarction were reported when intraarterially 111 

administering large diameter cell populations such as MSCs. However, this 112 

phenomenon seems to depend on infusion speed and, in particular, cell dose, since 113 

lower doses can be safely delivered to the brain [15; 16]. Cell engineering is another 114 

approach used to mitigate these potential adverse effects, for instance by increasing 115 

cell egress from cerebral capillaries [17]. Moreover, no strong evidence of such 116 

complications has been observed after MSC delivery in clinics [18]. The use of MSC-117 

derived extracellular vesicles in place of MSCs also may help circumvent this 118 

problem. Bang and Kim, both working at the forefront of clinical translation, 119 

summarize the state of the art in this field, focusing on emerging clinical applications 120 

and remaining challenges 121 

(https://www.frontiersin.org/articles/10.3389/fneur.2019.00211/full) [19].  122 

    Results from clinical cell therapy studies in stroke have been reported for 123 

intravenous injections [20; 21] and intracerebral grafts [22]. Although overall safety 124 

has been confirmed, analysis of efficacy endpoints suggests that magnitude of effect 125 
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may be smaller in human than animal studies, and a number of logistical challenges  126 

also have been identified. Krause’s group reviewed such problems, providing an 127 

unbiased overview of bottlenecks in the translational process, and discussing 128 

relevant aspects such as cost-to-benefit ratios and the role of industry-driven clinical 129 

research (https://www.frontiersin.org/articles/10.3389/fneur.2019.00656/full) [23]. 130 

Despite the moderate collective tepid enthusiasm regarding cell-based approaches, 131 

encouraging clinical data is available. Haque et al. report metabolic changes 132 

observed by magnetic resonance spectroscopy in the brains of patients being 133 

treated with autologous bone marrow-derived MNCs 134 

(https://www.frontiersin.org/articles/10.3389/fneur.2019.00656/full)  [24]. These 135 

changes correlated with NIHSS scores and might not only indicate efficacy, but could 136 

also be used as surrogate markers for treatment efficacy in future clinical trials. 137 

 138 

Summary and outlook  139 

Although clinical translation of cell-based therapies is clearly gaining 140 

momentum, a number of open questions remain. One is the role of co-morbidities, 141 

which are abundantly present in human patients but are rarely modelled preclinically. 142 

Laso-Garcia and colleagues have analysed this discrepancy and provide a 143 

comprehensive summary on effects of the most relevant comorbidities including 144 

hypertension, diabetes, and obesity both from clinical and preclinical perspectives 145 

(https://www.frontiersin.org/articles/10.3389/fneur.2019.00332/full) [25]. Aspects 146 

such as potential cell-drug interactions also await clarification [26]. Finally, 147 

remarkable developments towards precision stem cell medicine have been achieved, 148 

which may facilitate stem cell-based therapies. Stem cell labelling and real-time 149 

imaging are capable of improving precision of transplantations [27]. Progress in 150 
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biomarker research [28] and artificial intelligence [29] may soon revolutionize 151 

research on outcome assessment, which will be pivotal to the future success of stem 152 

cell therapies. In summary, the road on which we travel with cell therapies for stroke 153 

is probably not a dead end but the journey remaining is challenging and long. 154 

Nevertheless, the overall research progress may finally shed light on the path, with 155 

this Research Topic identifying some of the most important past and future 156 

milestones along the way.    157 
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