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Abstract

The metabolic processes in the body naturally produce a diverse set of Volat-
ile Organic Compounds (VOCs), which are excreted in breath, urine, stool and other
biological samples. The VOCs produced are odorous and influenced by disease,
meaning olfaction can provide information on a person’s disease state.

A variety of instruments exist for performing “artificial olfaction”: measuring
a sample, such as patient breath, and producing a high dimensional output repres-
enting the odour. Such instruments may be paired with machine learning techniques
to identify properties of interest, such as the presence of a given disease.

Research shows good disease-predictive ability of artificial olfaction instru-
mentation. However, the statistical methods employed are typically o↵-the-shelf,
and do not take advantage of prior knowledge of the structure of the high dimen-
sional data. Since sample sizes are also typically small, this can lead to suboptimal
results due to a poorly-learned model.

In this thesis we explore ways to get more out of artificial olfaction data.
We perform statistical analyses in a medical setting, investigating disease diagnosis
from breath, urine and vaginal swab measurements, and illustrating both successful
identification and failure cases. We then introduce two new latent variable models
constructed for dimension reduction of artificial olfaction data, but which are widely
applicable. These models place a Gaussian Process (GP) prior on the mapping from
latent variables to observations. Specifying a covariance function for the GP prior is
an intuitive way for a user to describe their prior knowledge of the data covariance
structure. We also enable an approximate posterior and marginal likelihood to be
computed, and introduce a sparse variant. Both models have been made available
in the R package stpca hosted at https://github.com/JimSkinner/stpca. In
experiments with artificial olfaction data, these models outperform standard feature
learning methods in a predictive pipeline.
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Notation

Matrices, vectors and scalars are respectively denoted as bold capital (e.g., X), bold

lowercase (e.g., x), and non-bold lowercase (e.g., x). Vectors are always column

vectors, except when transposed (e.g., x>). We often refer to a single column or

row of a matrix using the indexed vector notation with the same letter; e.g., xi may

denote the ith row of the matrix X. It will be made clear whether the index refers

to a row or a column. We also refer to single elements of a matrix, in which case we

use lowercase capital with subscript indices; e.g., Xij would refer to the element in

X at the ith row and jth column. The characters i, j, l,m are reserved as indices,

so will not be used as constants.

The constants n, d, k respectively refer to the number of samples, the dimen-

sionality of a dataset, and the latent dimensionality in a feature learning method.

X will refer to a set of data with dimensions n ⇥ d. xi is the ith sample, which

is also the ith row of X. V is an n ⇥ k matrix of latent representations. W is a

d⇥k “loadings” matrix which takes a sample in the latent space and projects it into

the raw measurement space (e.g., Wvi projects the latent representation of the ith

sample into d dimensions).

xv



Chapter 1

Introduction

This introductory chapter covers background material for this thesis, and is split

into three sections.

Section 1.1 introduces the latent variable model, and describes a number

of well known latent variable models under a consistent syntax. A focus is put on

linear latent variable models, but nonlinear models are included to illustrate how

non-linearity may be achieved. Latent variable models are an important tool in un-

derstanding unsupervised machine learning techniques and how di↵erent techniques

are connected.

Section 1.2 discusses the statistical background used in this thesis, which

is primarily Bayesian statistics. Model selection in a Bayesian setting is discussed,

and the reader is introduced to the Laplace approximation for approximating the

model evidence. The Empirical Bayes approximation for hyper-parameter selection

is then discussed, and it is shown how selecting the hyper-parameters maximising

the model evidence is an approximation to full Bayesian inference.

Section 1.3 introduces the Gaussian Process as a distribution over functions

with nice analytic properties. When using this as a prior over some unknown latent

function and collecting noisy observations at a finite set of points, a posterior can

be computed in closed form. A Gaussian process requires a covariance function,

which controls the characteristic properties of the functions considered likely, such

as smoothness and the range of correlations. These covariance functions are often

interpretable, and a list of well known covariance functions is given in Section 1.3.2.
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1.1 Latent Variable Models

Modern data science often requires working with high dimensional datasets, fre-

quently with more dimensions than observations (n ⌧ d). Reducing the number

of dimensions the data are represented in is often desirable; this may aid data ex-

ploration through visualisation, improve the predictive accuracy of a classification

pipeline or reduce computational requirements. A very simple way of reducing di-

mensionality is to consider a subset of the variables at hand, but this will often

discard relevant information. Instead one may preserve more signal by deriving fea-

tures from the entirety of the original set of measurements. There are many ways

of achieving this.

Latent variable models are an important tool when deriving feature learning

techniques. These models consider a dataset as a collection of observations which

are arrived at by transforming, and possibly adding noise to, some unobserved latent

representation. This latent representation is typically of lower dimension than the

observation, and a feature learning technique attempts to infer the latent variables.

If the model is representative of reality, the inferred latent variable should capture

useful information in lower dimension.

In this work we are particularly interested in linear latent variable models.

Here the observations x are modelled as an a�ne transformation of the latent vari-

ables v:

x ⇡Wv + µ (1.1)

where W and µ are fixed parameters, where these are learned di↵erently depend-

ing on precise model. Note that only the latent-to-observed mapping is linear; in

some linear latent variable models the mapping from observation to reconstruction

Wv+µ is non-linear. For example, in Dictionary Learning (introduced later in this

chapter), finding v for a given x and fixed parameters requires solving a non-linear

optimisation, so the mapping from x to Wv + µ does not have a liear form that

holds across all values of x. Certain models such as PCA and Probabilistic PCA do

learn a linear mapping, simplifying the mathematics and interpretation.

It is usually the case that µ is computed as the mean of each sample. This

means that, to clean up notation, we can assume that the data has had the mean

subtracted from it, and that µ = 0. It will be assumed in this thesis that data are

zero-mean, unless otherwise specified.

Linear latent variable models can be appropriate in the n ⌧ d setting be-

cause there may be insu�cient information in the data to learn complex non-linear

relationships. The simplicity of the linear model provides additional advantages;
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inspecting a single column of W shows how much each observed dimension contrib-

utes to a given latent dimension. Analytic tractability also often leads to simple

inference procedures.

A set of well known latent variable models are presented. Many more tech-

niques exist; those presented were chosen to illustrate key ways in which models

may di↵er.

Notation

We use the notation throughout the thesis that n is the number of samples, d is

the number of features, and the n ⇥ d matrix of data X has been centred so that

every column has zero mean. The ith sample, which is also the ith row of X, is

denoted xi. V is the n ⇥ k matrix of latent representations, where k < d is the

latent dimensionality. The ith row of V, which is the latent representation of xi,

is denoted vi. Since we have assumed zero mean data, µ is taken to be zero unless

stated otherwise. The loadings matrix W is the d⇥k matrix which maps the latent

space to the space of observations.

1.1.1 Models

Principal Component Analysis

Principal Component Analysis (PCA) [e.g., Bishop, 2006, Section 12.1] is a common

technique in data analysis. Given a matrix of data X 2 Rn⇥d, PCA can be used to

compute the first Principal Component (PC), which is a d dimensional vector giving

the direction in which the data show the greatest variance. PCs higher than the

first are defined as the direction of maximal variance of the data subject to being

orthogonal to all previous PCs. There are min(d, n) principal components that can

be computed; this is intuitive since the data cannot vary in more than min(d, n)

orthogonal directions.

A common use of PCA is to reduce the dimensionality of the data. By using

the first k PCs as an under-complete basis for the data, a k-dimensional latent

representation of each sample is given. A point in the latent space can always be

projected back to the d-dimensional observed data space; doing so will place the

reconstructions on a k-dimensional linear subspace of the observed data space.

In PCA, one performs the eigen-decomposition of the sample covariance mat-

rix for centred X:
1

n
X>X = Q⇤Q> (1.2)
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where Q contains the principal components in columns, and the diagonal matrix ⇤

contains the associated eigenvalues. It is common to consider only the first k < d

principal components contained in the columns of the d⇥ k matrix Qk, paired with

the diagonal k⇥k matrix ⇤ containing the associated eigenvalues. Using these, one

can obtain a k-dimensional latent representation of the data

V = XQk⇤
� 1

2
k = X(W+)> (1.3)

where we have defined the linear mapping

W+ := ⇤
� 1

2
k Q>

k 2 Rk⇥d (1.4)

Under this definition, W+> takes a point in the observed data space and maps it to

the latent space. Qk maps the d-dimensional points to the k-dimensional principal

subspace, and ⇤
� 1

2
k re-scales such that each latent variable has variance 1.

Given a point in the latent space, one can always map back to the observed

data space through

W := Qk⇤
1
2
k 2 Rd⇥k (1.5)

W+ in Equation 1.4 is the left inverse of W since W+W = Ik, but WW+ has

rank k so cannot equal Id. This means that we can map from the latent space to

the observed space and back without information loss, but the converse is not true

unless k = d. By mapping observations to the latent space and back, one obtains

an approximate reconstruction of the data:

Xk = VW = XQkQ
>
k (1.6)

where Xk is a rank-k reconstruction of the original data X, and is the “best” linear

rank-k reconstruction in terms of `2 norm, i.e.,

Xk = argmin
X̃

||X� X̃||
2
F subject to rank(X̃) = k (1.7)

where ||A||F =
pP

i |Ai|2 =
qP

i,j A
2
ij is the Frobenius norm.

PCA is closely related to the Singular Value Decomposition (SVD) of X,

which illustrates some of the ideas above more clearly. Performing the SVD of X,

we get

X = Ū⌃̄V̄> (1.8)

The standard notation for the SVD does not include the over-bar; we have included
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this as a reminder of which variables have been obtained from the SVD of X, and

to distinguish these from previously defined variables (such as the latent variables

V). Using Equation 1.8, one can reformulate the sample covariance matrix:

1

n
X>X = V̄(

1

n
⌃̄⌃̄

>
)V̄> (1.9)

This has a similar form to the sample covariance matrix eigen-decomposition, which

is not coincidental. V̄ is orthogonal and 1
n⌃̄⌃̄

>
is diagonal, so PCA and SVD have

the correspondence:

Qk = V̄k (1.10)

⇤k =
1

n
⌃̄k⌃̄k (1.11)

W = n
� 1

2 V̄k⌃̄k (1.12)

W+ = n
1
2 ⌃̄

�1
k V̄>

k (1.13)

V = n
� 1

2 Ūk (1.14)

This is convenient since performing the SVD of the n ⇥ d matrix X is potentially

computationally faster than computing the full eigen-decomposition of the d ⇥ d

sample covariance matrix.

Probabilistic PCA

Probabilistic PCA [Tipping and Bishop, 1999] is a probabilistic latent variable model

closely related to PCA. The plate diagram is given in Figure 1.1 and the probability

model is:

vi ⇠ N (0, I ) (1.15)

xi|vi,W,�
2
⇠ N (Wvi,�

2I ) (1.16)

with uniform priors over W,�
2. These constant over the entire domain, so are

improper.

Equation 1.16 tells us that given a latent representation, we obtain a dis-

tribution over observations centred at Wvi with isotropic variance �
2. Larger �

2

relates to a noisier modelled data generating process. Since we cannot observe the

latent variable, it is of interest to integrate out vi to obtain the likelihood [Tipping

and Bishop, 1999]:

xi|W,�
2
⇠ N (0,WW> + �

2I ) (1.17)
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vi

xi W

σ2

n

Figure 1.1: Plate diagram for PPCA, equates to the factorisation p(X,V,W,�
2) =⇥Qn

i=1 p(xi|vi,�
2
,W)p(vi)

⇤
p(�2)p(W).

We can see now that if we do not know vi, we expect a distribution of observations

that, if �2 is small, is approximately a low-rank Gaussian.

We can obtain the parameters W, �2 by maximising the likelihood of our

data. In PPCA this can be done in closed form [Tipping and Bishop, 1999]. This

uses the eigen-decomposition of the sample covariance matrix 1
nX

>X = Q⇤Q>,

⇤ = diag[�1, · · · ,�d], giving the Maximum-Likelihood parameters:

WML = Qk(⇤k � �
2
MLI )

1
2R (1.18)

�
2
ML =

1

d� k

dX

i=k+1

�k (1.19)

Here, Qk is the d ⇥ k matrix formed from the first k columns of Q, and ⇤k =

diag[�1, · · · ,�k]. R 2 Rk⇥k is an arbitrary orthonormal matrix representing a

non-identifiability in the model, which we may simply pick to be R = I . Com-

putationally, the eigendecomposition can be obtained e�ciently from the SVD of

X.

One may also be interested in the stochastic mapping from observed to latent

space, which is also available in closed form [Tipping and Bishop, 1999]. This uses

the definition M := W>W + �
2I . Note this is k ⇥ k, unlike the similar looking

covariance matrix of the likelihood. The mapping is

vi|xi,W,�
2
⇠ N

⇣
M�1W>xi,�

2M�1
⌘

(1.20)

This is centred at a linear transformation of xi, so both the latent-to-observed

(Equation 1.16) and observed-to-latent mappings are linear in expectation. One

can also see that the uncertainty is the same over all latent representations (�2M�1),
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regardless of xi.

PPCA recovers PCA exactly in the case of �2
& 0 and R = I . Considering

the formula for the WML, we can see that in this case, WML = Qk⇤
1
2
k . This exactly

recovers the formula for the loadings in PCA, Equation 1.5. Considering now

the mapping to the latent space Equation 1.20, this collapses to a point mass at

(W>W)�1W>. This is the left-inverse of W, so corresponds exactly to the latent

mapping in PCA, Equation 1.3.

Whilst the maximum likelihood parameters are available in closed form as

above, these can also be computed using Expectation Maximization. This is an iter-

ative method of MAP inference, which is discussed in more detail in Section 1.1.2.

Factor Analysis

Factor Analysis (FA) is closely related to PPCA, with the model taking the following

form

p(x|v, ✓) = N (x|Wv, ) (1.21)

p(v) = N (v|0, I ) (1.22)

The only modelling di↵erence to PPCA is that in FA the d⇥d matrix  is diagonal

with each element a free parameter, whereas PPCA uses �
2Id. It is tractable to

integrate out the latent variables, arriving at the FA likelihood:

p(x|✓) = N (x|0,WW> + ) (1.23)

Comparing this to the PPCA likelihood Equation 1.17, it can be seen that FA

generalises PPCA, since restricting  = �
2I recovers PPCA exactly.

As with PPCA, parameters are determined via maximum likelihood. How-

ever, FA does not have a closed form maximum likelihood solution for  or W.

Inference can instead be performed iteratively with Expectation Maximisation [Ru-

bin and Thayer, 1982].

Categorical PCA

So far every method presented is defined for real-valued observations. One can

consider modifications to the probability model of PPCA to arrive at PPCA-like

algorithms for data in other domains. Murphy [2012, Section 12.4] describes a

method for categorical data, where each element of a single sample x can take one

of c values: xi 2 {1, · · · , c}, and the values have no meaningful ordering. This would
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apply to data such as blood type, which may take a single value from A, B, AB or

O.

To arrive at categorical PCA from PPCA, the Gaussian distribution used

in the mapping from the latent to observation space is replaced with a categorical

distribution. This produces the probability model:

p(x|v,✓) =
dY

i=1

Cat(xi|�(Wiv +w0i)) (1.24)

p(v) = N (v|0, I ) (1.25)

✓ = {Wi,w0i}
d
i=1 contains the parameters of the model, and � : Rd

! [0, 1]d is the

softmax function

�(z) =
1

Pd
j=1 exp (zj)

2

664

exp (z1)
...

exp (zd)

3

775

This “squashes” a vector z 2 Rd into a vector of positive real values that sum to one.

The resultant vector thus parametrises the event probabilities of a d-dimensional

categorical distribution.

Unlike PPCA, Categorical PCA does not admit a closed form likelihood.

Khan et al. [2010] give a method of approximate inference. This method supports

a latent-to-observed mapping made up of a product of Gaussian and Categorical

distributions, enabling mixed-type data to be used.

Independent Component Analysis

Independent Component Analysis (ICA) [Hyvrinen and Oja, 2000] is a linear latent

variable model in which W is learned by maximising the statistical independence of

the latent dimensions. This is di↵erent to searching for uncorrelated features as in

PCA, and complete independence is not always achievable with a linear projection.

V and W are known as the source and mixing matrices respectively.

The key di↵erence from PCA is that each latent variable vi is modelled as

non-Gaussian and statistically independent :

p(v1, · · · , vk) =
kY

i=1

p(vi) (1.26)

When performing inference, both the source and mixing matrices are inferred, and

the columns of the source matrix are inferred to be as close to statistically inde-
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pendent as a linear transformation will allow.

Statistical independence between the latent variables cannot be verified without

access to the data generating distribution. A proxy for independence must thus

be used, leading to a number of di↵erent ICA models. A common proxy is non-

Gaussianity of the latent variables, with the following rationale: assuming the true

source distributions are independent and non-Gaussian, the Central Limit Theorem

tells us that an additive combination of these sources will be closer to Gaussian dis-

tributed than the individual sources. Decomposing X into VW> with maximally

non-Gaussian columns of V may thus un-mix the independent signals.

A number of methods are used to measure non-Gaussianity, which are re-

viewed by Hyvrinen and Oja [2000] and briefly discussed here. The kurtosis of a

Gaussian random variable is zero, so the absolute value or squared value of the

empirical kurtosis of each latent variable may be used to measure non-Gaussianity.

Kurtosis as a measurement is simple analytically and computationally, but may

be sensitive to outliers. Additionally, using only kurtosis cannot distinguish any

zero-kurtosis distribution from a Gaussian.

Another measure of non-Gaussianity is information theoretic, relying on the

result that: out of all real distributions with equal variance, that with the largest

entropy is the Gaussian. One can then define the non-negative negentropy of a

random variable x

J(x) = H(xGauss)�H(x) (1.27)

where H(x) is the entropy of x, and xGauss is a Gaussian random variable with

the same covariance matrix as x. J(x) is zero if and only if x is Gaussian. Use

of negentropy is well justified as a measure of non-Gaussianity, but is di�cult to

compute, requiring an approximation of the pdf.

A synthetic example is illustrated in Figure 1.2. Latent signals are simu-

lated and a mixing matrix is applied. The observed mixed signals are then unmixed

using ICA. The latent signals are independent: one dimension (V1) is simulated

from a uniform distribution, and the other (V2) from an exponential. The inde-

pendant signals (a uniform and an exponential distribution) are correctly identified

by ICA. Note that ICA is unable to recover the order of the signals, nor their sign.

Sparse PCA

Sparse PCA (SPCA) is closely related to PCA, but produces exact zeroes in the

loadings. This sparsity means the loadings no longer capture the maximum variance

subspace, but interpretability and computation are aided since only a subset of the
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Figure 1.2: Left: true, latent signals have been generated independently from a uniform
(V1) and an exponential (V2) distribution. Centre: Observations, as well as their projec-
tions onto the Independent Components. Right: The learned latent space correctly identifies
approximately uniform and exponentially distributed latent signals.

full loadings need to be considered. It is possible for an entire row of the loadings to

be zero, thus completely ignoring the associated variable when computing the latent

variables. Sparsity is achieved using an `1 penalty; intuition for why this produces

sparsity is given in Section 5.1.2.

There are a number of formulations of SPCA. The SCoTLASS procedure for

rank-1 SPCA [Jolli↵e et al., 2003] solves the minimisation

argmax
||u||2=1
||u||1t

n
u>X>Xu

o
(1.28)

which is the maximum variance formulation of PCA with the additional constraint

that the `1 norm of the vector u is less than the hyper-parameter t.

Another method of rank-1 SPCA is proposed by Zou et al. [2006], and is

based on a reconstruction formulation:

argmin
u,w2Rd

||w||2=1

n
||X�Xuw>

||
2
F + �1||u||1 + �2||u||

2
2

o
(1.29)

which is obtained by taking the reconstruction formulation of PCA and applying the

elastic net penalty (the `1 plus `2 penalty) to the loadings. Typically �2 is set to a

fixed small constant (e.g., 10�6), whilst �1 requires more tuning. PCA is recovered

with the settings �1 = �2 = 0.

One can extend this to a higher rank case by iteratively solving for further

sparse PCs constrained to be orthogonal to discovered PCs. However, requiring ex-

10



act orthogonality may limit the sparsity of solutions, and approximate orthogonality

may be preferable [Hastie et al., 2015, Section 8.2.3], in which case one can solve

the rank-k version of Equation 1.29, where U and W are now d⇥ k matrices, for

any 1  k  d:

argmin
U,W2Rd⇥k

W
>
W=Ik

n
||X�XUW>

||
2
F + �1||U||1 + �2||U||

2
2

o
(1.30)

Dictionary Learning

Dictionary Learning (DL) was originally developed as a model of the mammalian

visual cortex, and was termed Sparse Coding [Olshausen and Field, 1997], though

this term is often used to refer to inference of only V given a fixed W. More e�cient

algorithms have since been developed [Mairal et al., 2009]. In DL, the learned latent

variables V (also known as the “sparse codes”) are typically sparse due to a prior

over each latent variable which is highly peaked around zero. This is a similar

problem to SPCA except the goal here is to find sparse V as opposed to sparse W.

Sparsity in V allows an overcomplete dictionary to be learned, where k > d.

The intuition behind this is that only the dictionary elements needed to explain

an observation are utilised by the sparse code. More technically, p(x|v,W), as a

function of v, will have a non-unique maximum along a ridge. The action of the

prior means that p(x|v,W)p(v) has a unique maximum (up to permutation and

sign) even as k > d, where some elements of V are exactly zero.

Mairal et al. [2009] use the definition of Dictionary Learning as performing

the minimisation

argmin
V2Rn⇥k

W2Rd⇥k

⇢
1

2
||X�VW>

||
2
F + �||V||1

�

subject to |wi|  1 8i = 1, · · · , k

(1.31)

By minimising this loss function, DL trades o↵ `2 reconstruction error against

sparsity inV, where the strength of the trade-o↵ is controlled by the hyper-parameter

�. The constraint on the magnitude of each dictionary element exists because mul-

tiplying W and V by arbitrary c and c
�1 respectively leaves the reconstructions

unchanged but reduces the penalty ||V||1 for c > 1.

Equation 1.31 is non-convex in V and W jointly, but convex in each term

individually. Alternating between V and W thus produces tractable inference tech-

niques. With fixed V, finding the optimum W is a simple regression with a convex

constraints |wi|  1. With fixed W, the optimum V is found using a lasso regres-
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sion, for which many algorithms exist [e.g., Hastie et al., 2015].

Non-negative Matrix Factorisation

Non-negative Matrix Factorisation (NMF) [Paatero and Tapper, 1994] can be ob-

tained by optimising a constrained `2 reconstruction of the data:

argmin
W2Rd⇥k

V2Rn⇥k

1

2
||X�VW>

||
2
F subject toW � 0, V � 0 (1.32)

The reconstructionsVW> contain non-negative values. Such an algorithm would be

useful when we have prior knowledge of the observations being non-negative (or that

it would be non-negative if it were noiseless), meaning the data must not be centred.

This model is symmetric in features and observations: switching X ! X> simply

swaps the learned parameters V,W. Since the objective function is unchanged by

scaling V by a constant and W by the inverse, it may be desirable to introduce

constraints or regularisation terms. Note that this model has no hyper-parameters.

Robust PCA

Robust PCA (RPCA) [Candès et al., 2011] is a modification to PCA which enables

principal subspace recovery under corrupted observations. The matrix of observa-

tions X is modelled as

X = L+ S (1.33)

where L is a low-rank matrix, and S is a sparse matrix. Performing RPCA involves

decomposing a dataset X into L and S. L then contains a low-rank approximation

to an un-corrupted X, and S contains the corruptions. The term ‘robust’ refers

to robustness of the technique to outliers. PCA minimises the sum of the squared

reconstruction errors, so a single outlying value can have a large impact on the

recovered subspace. In RPCA, such an outlier would be absorbed into S, leaving L

to capture the principal subspace of the un-corrupted data.

A number of algorithms exist to produce the decomposition in RPCA. Prin-

cipal Component Pursuit [Candès et al., 2011] solves:

minimise ||L||⇤ + �||S||1

subject to L+ S = X
(1.34)

||L||⇤ is the nuclear norm of L, which is the sum of the singular values of L. The

hyper-parameter �, controls the trade-o↵ between producing low-rank L and sparse
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Figure 1.3: Two frames of a train station surveillance video which have been decomposed
into foreground and background using RPCA. Left column: original video frames (rows of
X). Centre column: foreground (rows of L). Right column: background (rows of S). Note
that S does not really contain the foreground as we would intuitively mean, but contains the
perturbations to the background which obtain the foreground.

S. Performing this minimisation produces sparsity in the singular values of L and the

elements of S. Intuition as to why this produces sparsity is given in Section 5.1.2,

but the key point is that an `1 regularised minimisation often produces sparse coef-

ficients, and the nuclear norm can be seen as an `1 penalty on the singular values

of L.

The constraint of L + S exactly reconstructing X may be relaxed [Hastie

et al., 2015, Section 7.7]. This is equivalent to augmenting the decomposition as

X = L+ S+N where N contains low-magnitude Gaussian noise).

One interesting application of RPCA is foreground/background separation in

video. By considering each of the video frames as an i.i.d row in X and performing

RPCA, the video is separated into the approximately static background in L, and

the sparse perturbations in S which give the foreground. This is illustrated in

Figure 1.3, which was generated using the code published by Lin et al. [2010].

Gaussian Process Latent Variable Model

The Gaussian Process Latent Variable Model (GP-LVM) [Lawrence, 2004] is a

method for nonlinear dimension reduction. The form of the non-linearity is dic-

tated by a choice of covariance function, and a linear covariance function recovers

PPCA. The model is dual to PPCA: in the GP-LVM the loadings are integrated
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out and the latent variables optimised, in PPCA this is reversed. This leads to a

Gaussian process mapping from the latent space to the data space.

As in PPCA, the GP-LVM uses

p(x|v,W,�) = N (x|Wv,��1I ) (1.35)

To integrate out the loadings, an independent prior over each element of W is

introduced with hyper-parameter ↵.

p(Wij |↵) = N (Wij |0,↵
�1) (1.36)

This enables a closed form marginalisation over W, producing a marginalised like-

lihood

p(X|V,↵,�) =

Z
p(X|V,W,�)p(W|↵) dW (1.37)

= (2⇡)�
nd
2 |K|

� d
2 exp

✓
�
1

2
Tr
h
X>K�1X

i◆
(1.38)

=
dY

i=1

N (X:,i|0,K) (1.39)

where K = ↵VV> + �
�1I . This is a product of d independent Gaussian processes

mapping from the latent space to each observed variable. The covariance function

for the GP mapping is Kij = ↵v>
i vj + �

�1 [i = j], which is a linear plus a noise

covariance function. One can then consider other covariance functions allowing

non-linear mappings.

Regardless of covariance function, one can optimise V with a non-linear

gradient based optimiser. Gradients of the log likelihood can be obtained via the

chain rule using

@ ln p(X|V,↵,�)

@K
= K�1VV>K�1

� dK�1 (1.40)

along with @K
@vij

, which will depend on the choice of covariance function. Similarly,

kernel hyper-parameters such as � may be tuned jointly with V.

Autoencoders

An autoencoder is a neural network trained to output its own input. If the network

is constrained in some way, such as having a hidden layer of dimensionality smaller

than the input, then the network is unable to learn the identity function. Thus, to
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produce an output similar to the input, the network learns to represent the data in

a way such that accurate reconstructions can be made for inputs which are likely,

foregoing the ability to reconstruct unlikely inputs. The actual reconstruction is

usually not of interest, but the latent representation can be used like that of any

other model discussed. Goodfellow et al. [2016, Chapter 14] provides an excellent

overview of the area.

An autoencoder consists of an encoder function v = f(x) and a decoder

function xrec = g(v). These are both parametrised, and are trained to minimise a

loss function L(x, g(f(x))) which penalises dissimilarity between x and its recon-

struction xrec. v is a latent representation of x, and is the object of interest for

feature learning. Being a neural network, training is usually performed with some

variant of stochastic gradient descent [Goodfellow et al., 2016, Chapter 8].

Many of the above models can be formulated as autoencoders, with PCA

being a simple example [Baldi and Hornik, 1989]. If we have a linear encoder and

decoder

v = Wx (1.41)

xrec = Uv (1.42)

and a squared error loss function:

L(x, g(f(x))) = ||x� xrec||
2
2 = ||x�UWx||22 (1.43)

then minimising the loss
nX

i=1

L(xi, g(f(xi))) (1.44)

reduces to performing the minimisation

argmin
W,U

||X�XW>U>
||
2
F (1.45)

The minimum loss in Equation 1.45 is achieved when W>U> is the or-

thogonal projection onto the principal subspace of X. In this case, W spans the

principal subspace, and the left singular vectors of W, given by SVD, are the PCs.

SPCA or Sparse Coding can be reached from such an autoencoder (single

hidden layer, identity activation function) by adding a lasso penalty to the loss

function over W or V respectively. One could also partition V into equal sized VL,

VS and change the decoder to Xrec = (VL + VS)U. By then adding an `1 norm

penalty to VS and a nuclear norm penalty to VL, Robust PCA is recovered.
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Figure 1.4: Graphical representation of an autoencoder. The input vector is fed through
the encoder which outputs a (typically lower dimension) code, which when input into the
decoder gives an imperfect reconstruction of the input.

Formulating these models as autoencoders is enlightening and highlights how

they are linked. However, the methods of inference typically used in autoencoders

(e.g., stochastic gradient descent) would perform poorly compared to model-specific

inference techniques. Autoencoders in practice use a deep neural network for both

the encoder and decoder with non-linear activation functions, allowing for highly

non-linear feature extractors to be learned.

Summary

A number of latent variable models have been presented, and their salient features

are compared in Table 1.1. The models presented were each chosen to illustrate a

single way in which PCA can be extended, but it is possible to combine multiple of

these concepts. Mairal et al. [2010] allow sparsity constraints on both the loadings

and the latent variables leading to a method with sparsity in bothW andV. Hubert

et al. [2016] detail a sparse and robust PCA.

1.1.2 Inference

Expectation Maximisation

Expectation Maximisation (EM) is an algorithm for finding the maximum likelihood

or maximum-a-posteriori parameters in a latent variable model. EM is typically used

when directly maximising the likelihood is di�cult, but maximising the joint likeli-

hood p(X,V|✓) is easier. This is the case for Factor Analysis where argmax ✓ p(X|✓)
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PCA Linear mapping justified as maximum variance preserving, or
minimum reconstruction error.

PPCA Probabilistic model: MAP parameters recover principal sub-
space.

FA Generalises PPCA with a separate parameter for noise on each
observed variable.

Categorical PCA Categorical likelihood considers discrete-valued data.
ICA Learn loadings such that latent variables are independent.
SPCA PCA variant with sparsity in loadings.
DL PCA variant with sparsity in latent variables.
NMF Loadings and latent variables both non-negative.
RPCA Decompose matrix of data into sparse + low rank matrices.
GP-LVM Nonlinear; data are modelled as Gaussian Process mapping

from latent space.
Autoencoder Generalises many of the above. Usually deep (highly non-

linear) architecture.

Table 1.1: List of latent variable models presented in this section, as well as their most
salient feature when compared to classical PCA.

does not have a solution in closed form, but argmax ✓ p(X,V|✓) does.

EM describes an alternating scheme with an expectation step (E-step) and

a maximisation step (M-step), beginning with some guess at the parameters ✓
old.

In the E-step, we compute the posterior over latent variables p(V|X, ✓
old), and con-

struct a function giving the expected complete log likelihood E[log p(X,V|✓)]p(V|X,✓old).

This often simplifies, especially in the case where p(X,V|✓) is in the exponential

family, since the log cancels the exponentiation. In the case of a Gaussian complete

log likelihood, this reduces to computing moments, which we will see. In the M-step,

the expected complete log likelihood is maximised with respect to ✓. This EM cycle

is repeated until convergence.

This procedure converges to the maximum likelihood parameters, and we

walk through a proof of this below. The proof is well known, and involves decom-

posing log p(X|✓) into a lower bound plus a non-negative residual. The E-step and

M-step are shown to be a consequence of maximising this lower bound.

We first introduce q(V) which is any arbitrary distribution over the latent

variables with the same support as p(V|X, ✓). Since q(V) integrates to 1, it is

trivially true that

log p(X|✓) =

Z
q(V) log p(X|✓) dV (1.46)

By the product rule, p(X|✓) = p(X,V|✓)/p(V|X, ✓). We use this below, introduce
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q(V)/q(V) and split the equation into two terms.

log p(X|✓) =

Z
q(V) log

p(X,V|✓)

p(V|X, ✓)
dV (1.47)

=

Z
q(V) log

q(V)p(X,V|✓)

q(V)p(V|X, ✓)
dV (1.48)

=

Z
q(V) log

p(X,V|✓)

q(V)
dV

�

Z
q(V) log

p(V|X, ✓)

q(V)
dV

(1.49)

= L(q, ✓) + KL(q||p) (1.50)

KL(q||p) is the Kullback-Leibler divergence of the distribution q from the distribu-

tion p(V|X, ✓). This is a non-negative quantity, with KL(q||p) = 0 holding if and

only if q(V) = p(V|X, ✓) everywhere. Since KL(q||p) is non-negative, L(q, ✓) is a

lower bound on log p(X|✓). We can thus maximise log p(X|✓) by maximising L(q, ✓),

as long as KL(q||p) = 0 at this maximum, which we will see to be true. Iterating

between maximisation with respect to q and ✓ turns out to correspond to the E-step

and M-step respectively.

If we have some current value of the parameters ✓old, we can maximise L(q, ✓)

with respect to q by considering that this maximum must occur when KL(q||p) = 0,

meaning q = p. This gives us the solution that q(V) = p(V|X, ✓old). By substituting

this into the lower bound we arrive at

L(p, ✓) =

Z
p(V|X, ✓old) log

p(X,V|✓)

p(V|X, ✓old)
dV (1.51)

=

Z
p(V|X, ✓old) log p(X,V|✓) dV + const (1.52)

= E [log p(X,V|✓)]p(V|X,✓old)
+ const (1.53)

=: Q(✓, ✓old) + const (1.54)

(1.55)

This is the E-step of EM. The expectation can be computed in closed form in a

number of models, and frequently involves computing a set of su�cient statistics.

Note that L(p, ✓old) is equal to log p(X|✓old) since the KL term is zero.

We have maximised L(q, ✓) with respect to q, and we can now maximise

with respect to ✓. For any ✓ such that Q(✓, ✓old) > Q(✓old, ✓old), it will hold that

p(X|✓) > p(X|✓old). However, this will also cause the (typically unknown) KL term

to become positive, so a L(q, ✓) will again become a lower bound.
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Maximising L(q, ✓) with respect to ✓ is the M-step in EM. It is su�cient to

maximise Q(✓, ✓old), which is the expected complete-data log likelihood. In many

models, including PPCA and FA, p(X|V, ✓) and p(V) both belong to the exponential

family, producing a closed-form maximisation. Whilst EM specifies full maximisa-

tion in the M-step, any increase in the lower bound during the M-step will also

increase the likelihood and thus converge to a maxima, and is known as Generalised

EM.

Example: Expectation Maximisation for PPCA

EM is useful if maximising Q(✓, ✓old) is easier than maximising p(X|✓). This is often

the case for the exponential family, where the log cancels the exponentiation. EM

for PPCA illustrates this; the E-step is computed as:

E [log p(X,V|✓)]p(V|X,✓old)
/ �

1

2

nX

i=1

⇢
d log �2 + �

�2
||xi||

2

� 2��2E[vi]
>W>xi

+ �
�2Tr

h
E[viv

>
i ]W

>W
i

+Tr
h
E[viv

>
i ]
i�

(1.56)

The full expectation has reduced to computing just the su�cient statistics of the

Gaussian. This requires p(vi|xi, ✓) (Equation 1.20) and uses the identity E[viv>
i ] =

cov[vi] + E[vi]E[vi]>, giving:

E[vi] = M�1
oldW

>
oldxi (1.57)

E[viv
>
i ] = �

2
old(W

>
oldWold + �

2
oldI )

�1 + E[vi]E[vi]
> (1.58)

To find ✓new, the M-step may then be performed by taking derivatives of Equa-

tion 1.56 with respect to ✓, setting to zero and solving analytically. This gives the

update step:

Wnew =

"
nX

i=1

xiE[vi]
>
#"

nX

i=1

E
h
viv

>
i

i#�1

(1.59)

�
2
new =

1

nd

nX

i=1

⇢
xix

>
i � 2E[vi]

>W>
newxi

+Tr
h
E
h
viv

>
i

i
W>

newWnew

i�
(1.60)
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The fact that Wnew does not depend on �
2
new means that calculating Wnew and

then �
2
new gives us the joint maxima of E

⇥
log p(X,V|W,�

2)
⇤
.

Gradient Ascent

One of the simplest techniques to find the maximum likelihood parameters is gradi-

ent ascent [see e.g., Goodfellow et al., 2016, Section 4.3]. The idea is that one can

think of the log likelihood as a high dimensional surface on which we try and find

the highest point by repeatedly taking small steps in the direction pointing most

steeply uphill. This requires some initial value of the parameters ✓(0) and the ability

to compute the gradient @ log p(X|✓)
@✓ . Taking a step in the uphill direction corresponds

to computing the gradient ascent step:

✓
(t+1) = ✓

(t) + ⌘
@ log p(X|✓)

@✓

���
✓=✓(t)

(1.61)

This is iterated until some convergence criteria is met, such as the gradient becoming

su�ciently small. The learning rate ⌘ is a hyper-parameter and controls the size

of the step taken. If ⌘ is too large then the gradient steps may decrease the log

likelihood, resulting in poor performance. Using a small value of ⌘ will reduce the

risk of this, at the cost of slower convergence.

Gradient ascent can fail in very flat regions of the likelihood landscape. If

✓
(0) is chosen poorly, such as a value with extremely low likelihood, the gradient

may not point towards the maxima, or may become numerically indistinguishable

from zero. Saddle points may also be problematic; since the gradient nearby will

be very close to zero, very small steps may be taken leading to slow or premature

convergence.

Basic gradient ascent can be modified in a number of ways. Instead of fixing

⌘, each gradient step may be evaluated with multiple values of ⌘ and the step is

made with the value causing the biggest increase in the log likelihood. This is known

as line search.

Gradient ascent may perform poorly if the log likelihood changes rapidly in

some directions and slowly in others, producing a surface looking like a long ridge.

Ideally each gradient step would move more in the direction of low variance. If we

can compute the Hessian, once can instead use the step:

✓
(t+1) = ✓

(t) +H�1
✓(t)

@ log p(X|✓)

@✓

���
✓=✓(t)

(1.62)

20



which uses the Hessian

H✓(t) =
@
2 log p(X|✓)

@✓@✓>

���
✓=✓(t)

(1.63)

This is Newton’s method [see e.g., Goodfellow et al., 2016, Section 4.3.1], which con-

sists of fitting a quadratic to the function being minimised, and jumping straight

to the maxima. This can produce faster convergence as long as the log likelihood is

locally concave, however the Hessian may be very large if there are many paramet-

ers.

1.2 Statistical Background

1.2.1 Bayesian Model Selection

A common scenario in a scientific analysis is to have a collection of modelsM1,M2, · · ·

describing the distribution of some observations of interest of through p(x|M).

Given this set, we would like to select a single model for use in an analysis. To

do this we require a definition of which is the “best” model out of a collection.

In Bayesian Model Selection, we first observe a set of data X and then select the

most likely model given that data, which is the model with the greatest posterior

probability p(M|X).

In a fully Bayesian context, one would not select a single model but would

integrate over all models under consideration. However, we may prefer a single

model due to interpretability and computation. Assuming identifiability, as the

amount of data we observe increases, the mass of p(M|X) will typically concentrate

around a single model. This justifies the use of the maximum-a-posteriori model as

an approximation to a mixture of every model.

If we have a uniform prior over our models, then our posterior over models

is proportional to our likelihood over models:

p(M|X) =
p(X|M)p(M)R
p(X|M)p(M) dM

(1.64)

= p(X|M)
p(M)

p(X)
(1.65)

/ p(X|M) (1.66)

With p(M|X) / p(X|M), to select the most likely model it is su�cient to
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find the model maximising the quantity

p(X|M) =

Z
p(X|✓,M)p(✓|M) d✓ (1.67)

known as the evidence for model M. This term also appears as the normalisation

constant in the posterior over the vector of model parameters ✓:

p(✓|X,M) =
p(X|✓,M)p(✓|M)

p(X|M)
(1.68)

The integral in Equation 1.67 can be computed in closed form if we have an

appropriate likelihood with a conjugate prior [e.g., Bishop, 2006, Section 2.4.2], but

this is not true in general. The Laplace approximation may be used to approximate

the model evidence, which is discussed below

Bayesian Occam’s razor

Selecting the model with the greatest evidence performs a trade-o↵ between selecting

a model complex enough to fit the data well, but simple enough so that it cannot

explain any possible set of observations. We can see this by noting the evidence

p(x|M) defines a normalised distribution over datasets. If model Mcomplex is very

complex, a wide range of datasets will be considered likely. If model Msimple is

simple, only a small number of datasets will be considered likely. Since these distri-

butions are normalised, the most likely dataset under Msimple will produce a greater

evidence than the most likely dataset under Mcomplex. Thus, if Msimple explains the

data well, it will be preferred under the Bayesian paradigm. Bayesian inference thus

embodies an implicit Occam’s razor, preferring explanations that are only complex

enough to explain the data observed [e.g., MacKay, 2002, Chapter 28].

Bayes’ Factors

It may be desirable to quantify by how much a given model is preferred over another.

The model with the highest maximum-a-posteriori value may be very complex, and

a model which is only slightly inferior (in terms of posterior probability) may be

more interpretable or computationally lighter. If we are to compare two models M1

and M2, we can compute the Bayes Factor

K =
p(M1|X)

p(M2|X)
=

p(X|M1)p(M1)

p(X|M2)p(M2)
(1.69)
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log10K Strength of evidence

< 0 negative (supports M2)
0 to 0.5 barely worth mentioning
0.5 to 1 substantial
1 to 1.5 strong
1.5 to 2 very strong
2 to 2.5 decisive

Table 1.2: Interpretation of the scale of a given Bayes’ factor p(M1|X)
p(M2|X) in terms of the

support for model M1 over M2 [Je↵reys, 1998, Appendix B: Tables of K].

where we have applied Bayes’ rule and the p(X) terms have cancelled. With a uni-

form prior over models this reduces to the ratio of model evidences. The Bayes’

factor can be interpreted as the amount of support for model M1 over M2. A num-

ber of interpretations have been proposed for di↵erent values of K [Je↵reys, 1998;

Kass and Raftery, 1995], and we list those given by Je↵reys [1998] in Table 1.2.

Bayes’ Factors also have the desirable property of being applicable even un-

der improper priors, as long as the parameters with the improper priors are shared

between the models being compared. Improper priors lead to improper evidence,

which can lead to di�culties when comparing model evidences since each evidence

is multiplied by an unknown constant, and this constant may di↵er between models.

However, when the only improper priors are shared between models then this un-

known constant is the same for each model and thus evidence comparison is possible

[Robert, 2007, Chapter 7].

The Laplace Approximation

Suppose that we are interested in a probability distribution q(x) = q̃(x)
Zq

, where we

know the un-normalised distribution q̃(x) but do not know the intractable normal-

ising constant Zq =
R
q̃(x) dx. We may approximate q(x) with a Gaussian distribu-

tion centred at x̂ = argmax x q̃(x), which we can find analytically or numerically.

The Laplace approximation of q(x) gives us an approximating Gaussian dis-

tribution, and can be justified in terms of a truncated Taylor expansion. If we

Taylor expand log q̃(x) around x̂ and drop terms above second order, we get an

un-normalised Gaussian approximation to q̃(x).

log q̃(x) = log q̃(x̂) +rx log q̃
��>
x̂
(x� x̂)�

1

2
(x� x̂)>H(x� x̂) + . . . (1.70)

⇡ log q̃(x̂)�
1

2
(x� x̂)>H(x� x̂) (1.71)
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Figure 1.5: Laplace approximation (red) to a non-Gaussian distribution

Where Hij = �@2 log q̃
@xi@xj

��
x̂
is the Hessian of � log q̃(x) evaluated at x̂. Since x̂ is a

maximum of q̃(x), the gradient rx log q̃
��
x̂
is a vector of zeroes, and H is nonnegative

definite (positive definite if q̃(x) has a unique maximum, which we assume here).

Exponentiating Equation 1.71, we get an un-normalised Gaussian

q̃(x) ⇡ q̃(x̂) exp

⇢
�
1

2
(x� x̂)>H(x� x̂)

�
(1.72)

This may be normalised in closed form to approximate q(x)

q(x) ⇡
1

Zlaplace
q̃(x̂) exp

⇢
�
1

2
(x� x̂)>H(x� x̂)

�
(1.73)

where

Zlaplace =

Z
q̃(x̂) exp

⇢
�
1

2
(x� x̂)>H(x� x̂)

�
dx (1.74)

= q̃(x̂)(2⇡)
|x|
2 |H|

� 1
2 (1.75)

where |x| is the length of the vector x. We thus obtain the closed form approximation

q(x) ⇡ (2⇡)�
|x|
2 |H|

1
2 exp

⇢
�
1

2
(x� x̂)>H(x� x̂)

�
(1.76)

= N
�
x | x̂,H�1

�
(1.77)

Approximating the model evidence

We may use the Laplace approximation to arrive at an approximation for the model

evidence. Using Equation 1.73, we can choose q̃(✓) = p(X|✓,M)p(✓|M) and
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approximate the evidence as follows:

p(X|M) =

Z
p(X|✓,M)p(✓|M) d✓ (1.78)

=

Z
q̃(✓) d✓ (1.79)

⇡ q̃(✓̂)

Z
exp

⇢
�
1

2
(✓ � ✓̂)>H(✓ � ✓̂)

�
d✓ (1.80)

= q̃(✓̂)(2⇡)
|✓|
2 |H|

� 1
2 (1.81)

= p(X|✓̂,M)p(✓̂|M)(2⇡)
|✓|
2 |H|

� 1
2 (1.82)

Equation 1.82 can give an estimate of the evidence of model M as long

as we can compute |H|. We can numerically approximate H and calculate the

determinant, but this scales poorly for models with high dimension. Without special

structure, storing H requires O(|✓|2) storage. For very high dimensional problems,

this may be prohibitively large.

Bayesian Information Criterion

Further approximations can be made to Equation 1.82 which arrive at the defin-

ition of the Bayesian Information Criterion (BIC) [see e.g., Murphy, 2012, Section

5.3.2.4]. These steps involve deriving a computationally cheaper approximation to

|H| term, then dropping constants and terms related to the prior.

First we expand out the definition of H and use the i.i.d assumption of our

data to expand the log likelihood into a sum of the contributions from each datum.

H = �
@
2 log q̃

@✓@✓>

���
✓̂

(1.83)

= �
@
2

@✓@✓>

(
log p(X|✓,M) + log p(✓|M)

)���
✓̂

(1.84)

= �
@
2

@✓@✓>

(
1

n

nX

i=1

n log p(xi|✓,M) + log p(✓|M)

)���
✓̂

(1.85)

Now since each xi is an i.i.d draw from the true data generating distribution, the
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sum here approximates an expectation as n becomes large.

H ⇡ �
@
2

@✓@✓>

n
E [n log p(x|✓,M)]ptrue(x) + log p(✓|M)

o���
✓̂

(1.86)

= �n
@
2E [log p(x|✓,M)]

@✓@✓>

���
✓̂
�

@
2 log p(✓|M)

@✓@✓>

���
✓̂

(1.87)

= nI(✓̂)�
@
2 log p(✓|M)

@✓@✓>

���
✓̂

(1.88)

where I(✓̂) is the Fisher information matrix evaluated at ✓̂. This is an important tool

in frequentist statistics, but is not vital for the discussion presented here. However,

a few properties are worth noting. The expectation is taken over a single sample,

and thus I(✓̂) does not depend on the sample size n.

At this stage it is easy to derive the Bayesian Information Criterion (BIC).

Plugging Equation 1.88 into Equation 1.82 and taking logarithms, we arrive at

an approximation to the evidence

log p(X|M) ⇡ log p(X|✓̂,M)+log p(✓̂|M)+
|✓|

2
log(2⇡)�

1

2
log

����nI(✓̂)�
@
2 log p(✓|M)

@✓@✓>

���
✓̂

����
(1.89)

To arrive at BIC we multiply by -2 and make two further approximations. Firstly,

we assume that our prior p(✓|M) is broad enough to be treated as a constant,

allowing us to drop both terms involving the prior.

�2 log p(X|M) ⇡� 2 log p(X|✓̂,M)� |✓| log(2⇡) + log |nI(✓̂)| (1.90)

=� 2 log p(X|✓̂,M) + |✓| (log n� log(2⇡)) + log |I(✓̂)| (1.91)

Now if we assume n is very large, we can drop any terms not depending on n,

arriving at the definition of BIC:

BIC = |✓| log n� 2 log p(X|✓̂,M) (1.92)

BIC is widely used for model selection, largely because it is very easy to

compute, but is not always appropriate. A more accurate way of performing model

selection would be to pick the model maximising Equation 1.82, but this may be

infeasible if |✓| is large.

1.2.2 Empirical Bayes

Empirical Bayes [see e.g., Murphy, 2012, Section 5.6] is an approximation to full

Bayesian inference in a hierarchical model p(X, ✓,�) = p(X|✓)p(✓|�)p(�). In the
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full Bayesian treatment one would often integrate out the hyper-parameters, but

this is often computationally prohibitive. The Empirical Bayes procedure instead

allows one to select a single value of the hyper-parameters instead of integrating

over all values. This is justified as approximating the hyper-parameter posterior as

a point mass centred at the mode:

p(�|X) ⇡ ��̂(�) where �̂ = argmax
�

p(�|X) (1.93)

If we additionally assume a uniform prior p(�), then application of Bayes’ rule

allows us to reach the equivalent condition �̂ = argmax � p(X|�), where p(X|�) is

the marginal likelihood.

This point mass approximation means that any operation in which we would

be required to marginalise out � becomes computationally easier. One example is if

we are interested in the posterior over parameters. Instead of integrating over the

entirety of p(�|X), only a single value of � ever needs to be considered, and this

translates into simply conditioning the posterior on the most likely �:

p(✓|X) =

Z
p(✓|X,�)p(�|X) d� (1.94)

⇡

Z
p(✓|X,�)��̂(�) d� (1.95)

= p(✓|X, �̂) (1.96)

The approximation is often reasonable. If the number of hyper-parameters is

small, this can have the consequence that p(�|X) is highly peaked. In this scenario,

integrating over � can give a similar result to fixing it at �̂.

Empirical Bayes uses the data to estimate the prior distribution, which is

against the Bayesian philosophy. Technically this is no longer a prior in the Bayesian

sense, since it does not reflect our belief prior to observing the data.

1.3 Gaussian Processes and Covariance Functions

1.3.1 Gaussian Processes

A Gaussian Process (GP) [see e.g., Rasmussen and Williams, 2005] is a (potentially

infinite) collection of random variables such that any finite subset has a multivariate

normal joint distribution. The random variables may have any arbitrary index set

X , but here we will focus on X = Rd. The set of random variables is collected into a

random process f , where a single x 2 X is used to index a single real-valued random
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variable f(x).

A GP can be seen as an infinite generalisation of a multivariate normal

distribution, and is specified completely by its mean function m(x) and covariance

function C(x,x0), which are infinite-dimensional versions of the mean vector and

covariance matrix. To indicate that we have a GP prior on the function f(x), we

write

f(x) ⇠ GP(m(x), C(x,x0)) (1.97)

however, for simplicity and without loss of generality, we will assume m(x) = 0.

By the definition of a GP, the joint distribution of any finite set of random

variables f = [f(x1) · · · f(xn)]> is a multivariate normal.

f |X ⇠ N (f |0,K) (1.98)

where

Kij = C(xi,xj) (1.99)

Here the covariance matrix K has been specified element-wise, and depends on the

choice of covariance function C. The covariance function controls how we expect f

to behave, and choosing an appropriate covariance function is important in model-

ling using GPs. This is further discussed in Section 1.3.2. To correctly model a

random process, the GP must satisfy consistency, meaning that if we expand the

set of observed variables, this does not change the distribution of the original set.

Mathematically this means adding a single random variable f(x⇤) to the collection

f appends the row/column [C(x1,x⇤) · · ·C(xn,x⇤)C(x⇤
,x⇤)] to K.

A GP is a probability distribution over functions, and may be used to specify

a prior over the unknown function f . This is a powerful tool in machine learning;

one can specify their prior over some mapping (perhaps in a regression context),

collect some data and compute a posterior over the mapping. In other contexts,

one defines a parametric function to do this and performs Bayesian inference on the

parameters. In the GP setting, the prior is placed directly on the function and the

GP is non-parametric.

Making predictions

Here we show how a GP can be used in a regression context. We may observe

the value of f at a finite set of locations and wish to produce a posterior over

the value at a new location for which we have no data. Given a set of inputs

X = [x1 · · ·xn] paired with observed values f = [f(x1) · · · f(xn)]>, this amounts
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Figure 1.6: Prior and posterior predictive distributions from a 1-dimensional GP with
squared exponential covariance function. Shaded region shows 95% confidence intervals. The
prior distribution is the same everywhere: every horizontal slice is a mean zero variance 1
normal. The posterior distribution shows 3 data points which have been conditioned on. The
predictive variance shrinks nearer to these points, and returns to the prior far from these
points.

to computing the posterior predictive distribution of a new point p(f(x⇤)|x⇤
,X, f).

This can be computed in closed form, which we show starting with the full joint

distribution:

"
f

f(x⇤)

#
|x⇤

,X ⇠ N

 
0,

"
C(X,X) C(X,x⇤)

C(x⇤
,X) C(x⇤

,x⇤)

#!
(1.100)

Here we are using the notation where C(X,X) is an n ⇥ n matrix where the

i, jth element is C(xi,xj). Similarly, C(X,x⇤) is length-n column vector containing

C(x1,x⇤) · · ·C(xn,x⇤).

Now through applying the Gaussian identity for conditioning on a variable,

we obtain the posterior predictive distribution

f(x⇤)|x⇤
,X, f ⇠ N (f(x⇤)|0, C(x⇤

,x⇤)� C(x⇤
,X)C(X,X)�1

C(X,x⇤)) (1.101)

Modelling noisy observations

So far we have assumed access to the true function values f(x), meaning the re-

gression like will pass exactly through all collected data points. A more realistic

modelling scenario is that we have noisy observations y, which we model with the

Gaussian likelihood

y|f(x),�2
n ⇠ N (y|f(x),�2

n) (1.102)
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where we now have a parameter �2
n describing the variance on the i.i.d observation

noise. In the special case of this Gaussian likelihood, we may integrate out the

latent values f(x) using our Gaussian prior (Equation 1.98) to obtain the marginal

likelihood in closed form:

y|X,�
2
n ⇠ N (y|0, C(X,X) + �

2
nI ) (1.103)

Comparing this with Equation 1.98, the only di↵erence is that C(X,X) has

changed to C(X,X) + �
2
nI . This change may also be obtained by switching from

a base covariance function C(x,x0) to a ‘noisy’ covariance function Cnoisy(x,x0) =

C(x,x0) + �
2
n [x = x0]. This also guarantees the invertibility of K, since many cov-

ariance functions produce a semi-definite K and adding �
2
n to the diagonal ensures

all eigenvalues are positive. The value of �2 may be selected by maximising the

marginal likelihood.

Now, given observations X, y, and using the same logic as above, our pos-

terior predictive distribution at a new point x⇤ becomes:

f(x⇤)|x⇤
,X,y,�2

n ⇠ N (C(x⇤
,X)

�
C(X,X) + �

2
nI
��1

y,

C(x⇤
,x⇤)� C(x⇤

,X)
�
C(X,X) + �

2
nI
��1

C(X,x⇤))
(1.104)

Here we are predicting f(x⇤) as opposed to y
⇤ since we would like to predict the

true latent value, not the noisy observation.

1.3.2 Covariance Functions

A GP requires a covariance function which defines the set of functions the GP is able

to represent. A valid covariance function is any function which, when constructing

a matrix of pairwise evaluation between elements of the index set, always produces

a positive semi-definite matrix. This means that the d⇥ d matrix K where

(K)ij = C(xi,xj) 8 i, j 2 1 · · · d (1.105)

is always a valid covariance matrix.

Covariance functions are closed under summation and multiplication. This

allows the construction of new covariance functions from old. Additionally, many

covariance functions are easy to interpret. A consequence of this is that they are an

attractive way of specifying a prior. A practitioner may be able to encode their prior

knowledge of some process into a covariance function, thus producing a prior distri-

bution reflecting their own understanding. Compositionality and interpretability are
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Figure 1.7: Squared Exponential. Parameter values: �
2
n = 0.8, ` = 0.3. Left: 4 samples.

Right: K.

taken advantage of by Lloyd et al. [2014] to produce human-readable descriptions

of data trends by fitting a GP with a compound covariance function.

A number of widely-known covariance functions are briefly discussed here.

To illustrate the covariance structure they encode, samples from N (0,K) are shown.

For more detail consult Rasmussen and Williams [2005, Chapter 4].

We work mostly with stationary covariance functions. These depend only

on the distance r := ||xi � xj ||, and are translation invariant. To keep notation

compact, we show these as a function of r below.

Squared Exponential

CSE(r) = �
2
s exp

✓
�

r
2

2`2

◆
(1.106)

The Squared Exponential (SE) covariance function is an infinitely di↵erenti-

able function of r, which is reflected in the smooth looking samples in Figure 1.7.

�
2
s is the “signal variance”, which gives the variance at any single xi. The length

scale, `, controls how rapidly the covariances decay as the distance r increases.

Rational Quadratic

CRQ(r) = �
2
s

✓
1 +

r
2

2↵`2

◆�↵

(1.107)

The Rational Quadratic (RQ) covariance function is a scale mixture of SE

covariance functions with di↵erent length scales. ↵ controls the heaviness of the tail

of CRQ; ↵ closer to 0 encodes longer range covariances. This can be seen in the

covariance matrix produced; near r = 0 the covariance looks like the SE, but as r

increases, the covariance dies o↵ much more slowly. In the limit ↵ ! 1, the RQ

becomes the SE, so if the RQ is parametrised such that this limit can be reached,

using the RQ produces a space of models which includes all those which can be
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Figure 1.8: Rational Quadratic. Parameter values �
2
n = 0.8, ` = 0.3,↵ = 0.2. Left: 4

samples. Right: K.

reached using the SE.
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Figure 1.9: Independent. Parameter value �
2
n = 0.8. Left: 4 samples. Right: K.

Cind(r) = �
2
n [r = 0] (1.108)

The independent covariance function encodes that the values at each xi are

independent of each other, and independent of their locations xi. The covariance

matrix produced is a scaled identity matrix �
2
nI , and thus the samples in Figure 1.9

look like white noise.

Melkumyan-Ramos

CMR(r) =

8
<

:
�
2
s

h
2+cos(2⇡rl�1)

3 (1� r
l ) +

1
2⇡ sin(2⇡ r

l )
i

if r < l

0 if r � l

(1.109)

The Melkumyan-Ramos (MR) covariance function [Melkumyan and Ramos,

2009], which we have named after the authors, is a compactly supported covariance

function and is equal to exactly 0 whenever r is greater than the hyper-parameter

l. This produces a sparse K, which has computational advantages in storage and
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Figure 1.10: MR covariance function [Melkumyan and Ramos, 2009]. Parameter values
�
2
n = 0.8, l = 0.5. Left: 4 samples. Right: K.

inversion.

The MR may be obtained by taking a single period of a sine wave and shifting

and scaling such that its peak value �
2
s is at 0 and it touches 0 at ±r. Close to

r = 0, the MR approximates the SE covariance function, producing visually similar

samples.

Positive Definite Covariance Functions

All of the above covariance functions are valid in the mathematical sense of positive-

semi-definiteness, and they will always produce positive-semi-definite covariance

matrices. However, the semi-definiteness can be a problem computationally. A

Gaussian likelihood requires inverting the covariance matrix, and this cannot be

performed if the covariance matrix is only semi-definite.

The GP literature confronts the same problem. When fitting a Gaussian

process, it is standard to take the semi-definite covariance matrix K, and add �
2
n

to each element on the diagonal. �2
n is a another parameter which may be learned,

and has the interpretation of the variance of i.i.d noise which is added to some true

latent function value fi.

Adding �
2
n to the diagonal of K is equivalent to adding the independent

covariance function Cind to the selected covariance function C, producing the new

covariance function Cnoisy:

Cnoisy(xi,xj) = C(xi,xj) + Cind(xi,xj) (1.110)

= C(xi,xj) + �
2
n [xi = xj ] (1.111)

This also adds �
2
n to each of the eigenvalues of K, guaranteeing a positive-definite

K with a smallest eigenvalue of at-least �2
n.
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Figure 1.11: Noisy Squared Exponential. Parameter values: �
2
n = 0.8, ` = 0.3,�2

n = 0.1.
Left: 4 samples. Right: K.
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Figure 1.12: Noisy Rational Quadratic. Parameter values �2
n = 0.8, ` = 0.3,↵ = 0.2,�2

n =
0.1. Left: 4 samples. Right: K.

Noisy Squared Exponential

CNSE(r) = �
2
s exp

✓
�

r
2

2`2

◆
+ �

2
n [r = 0] (1.112)

The Noisy Squared Exponential covariance function is simply a sum of the

SE and Independent covariance functions. For small values of �2
n, this will be a

close approximation to the SE covariance function, but will produce an invertible

K. The addition of �2
n to the diagonal can be observed in the right-hand plot of

Figure 1.11, which is otherwise identical to Figure 1.7.

Noisy Rational Quadratic

CNRQ(r) = �
2
s

✓
1 +

r
2

2↵`2

◆�↵

+ �
2
n [r = 0] (1.113)

Similarly to the Noisy SE, the Noisy RQ is a covariance function that may

be used in practise due to always producing positive definite covariance matrices as

long as �2
n > 0.
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1.4 Summary

This introductory chapter has covered mathematical and statistical background core

to this thesis. A selection of latent variable models have been surveyed in Sec-

tion 1.1, each illustrating a key way in which latent variable models may di↵er.

Common techniques for performing inference in such models were introduced in

Section 1.1.2.

Section 1.2 introduced the Bayesian statistical background. Selection of a

model from a candidate set in a Bayesian setting was covered, introducing Bayesian

Occam’s razor, Bayes’ Factors and the Laplace approximation.

Finally, Section 1.3 introduced the Gaussian Process in a modelling context.

It is shown how the GP may be used as a Bayesian prior over a function, where prior

belief over properties of the function may be expressed via choice of a covariance

function. A number of covariance functions were illustrated.
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Chapter 2

Artificial Olfaction

A major theme of this thesis is statistical methodology in artificial olfaction. The

previous chapter introduced the required statistical background, and this chapter

introduces artificial olfaction in three major parts: background material, techniques

specific to our lab, and a series of analyses performed by the author.

Our focus is on the use of artificial olfaction in a medical setting. A core

task in this context is to analyse the odour of a patient sample – e.g., urine, breath,

blood, stool, sputum or swab – and determine if the patient has a disease of in-

terest, or to distinguish between similar diseases. Such a tool could be of value

medically, enabling a rapid, non-invasive procedure able to aid diagnoses or track

disease progression.

Section 2.1 introduces some background, covering biological olfaction, ol-

faction in medicine, and existing work. Section 2.2 describes three methods for

artificial olfaction used in the novel scientific content of this thesis. These are the

Electronic Nose (E-nose), Field Asymmetric Ion Mobility Spectrometry (FAIMS),

and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). Section 2.3 con-

tains data analyses performed by the author for this thesis.

2.1 Background

Artificial Olfaction instruments are a class of devices which are, in a certain sense,

able to “smell”. Some, like the Electronic Nose, are inspired directly by mammalian

olfaction, whilst others work under a very di↵erent paradigm. A major property that

they all share is that they analyse a gas of interest and produce a high dimensional

numerical output which characterises the odour of the gas. The instruments need not

be able to identify compounds which make up the gas; it is only required that similar
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gasses produce similar outputs. When paired with statistical and machine learning

techniques, an artificial olfaction instrument may be to identify some property of

interest, such as the presence of a disease in a hospital patient.

Olfaction has potential value in a medical setting for diagnosis and monit-

oring. However, relying on a human to identify a disease by smell would be highly

variable, depending on the state of health, level of training and any strong tasting

foods eaten. Using a trained animal introduces further issues of of communication

di�culties, as well as health hazards when brought in to a hospital. A quantitative

measurement using some analytical instrument would be the ideal solution, which

techniques in artificial olfaction o↵er.

Artificial Olfaction is an attractive piece of instrumentation for medical use.

If able to perform diagnosis, such a machine can be non-invasive, only requiring pa-

tient urine, breath or other readily supplied sample. Diagnosis also has the potential

to be rapid, since many artificial olfaction devices are portable enough to be used

at the point of care, and only take seconds to minutes to provide a measurement.

2.1.1 Biological Olfaction

Biological olfaction in humans [e.g., Gardner and Bartlett, 2000, Chapter 3] begins

in the olfactory epithelium—a patch of tissue around 6 cm2 containing around 10

million olfactory receptor neurons [Schacter et al., 2014]. Each receptor neuron

has 10–60 hair-like cilia, the membranes of which contain olfactory receptor (OR)

proteins. There are around 400 types of OR protein in humans [Gilad and Lancet,

2003], each of which is broadly sensitive to a wide range of compounds. Upon

interacting with an odourant, an OR undergoes a conformation change and leads to

an action potential in the OR neuron, carrying information to the olfactory bulb in

the brain. This is illustrated in Figure 2.1a.

The broad specificity of each OR is important; a given compound likely binds

to a number of ORs, and an OR will be activated by a number of compounds. This

means that odourants that have not been previously encountered will still likely

produce an activation pattern which is distinct from known odours. Figure 2.1b

illustrates a response pattern across each sensor type which uniquely identifies a

given odour.

The olfactory epithelium is coated in a mucous layer approximately 20µm

thick, which introduces two e↵ects. Firstly, the interaction between OR and odour-

ant occurs in an aqueous environment. Secondly, di↵erent molecules may take dif-

ferent times to cross the mucous layer, producing a chromatographic a↵ect. This

temporal separation may carry information to aid the discrimination of odours, and
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Odour in nasal cavity
Cilia

Olfactory 
epithelium

OR neurons

To olfactory bulb

(a)

Sensor response

Odour

Sensor array

(b)

Figure 2.1: (a) Olfactory Receptor (OR) neurons in the olfactory epithelium end in cilia
which enter the nasal cavity. These cilia are covered in broadly sensitive ORs, and an
odourant molecule binding to such a receptor will contribute towards inducing an action
potential in the OR neuron. This action potential is carried to the olfactory bulb in the
brain. There are approximately 400 unique types of OR neuron in humans [Gilad and
Lancet, 2003], each with di↵erent ORs on the cilia. (b) A simplified cartoon of human
olfaction. A given odour will produce an activation pattern across all sensors. Di↵erent
odours will produce di↵erent activation patterns. The pattern in its entirety characterises
the smell.

has been applied in an electronic nose setting in Che Harun et al. [2012].

The olfactory neurons continuously die and are regenerated with a half-life

of around 4–8 weeks. Most artificial olfaction techniques have a fixed sensor or set

of sensors over their lifetime, and thus may su↵er from sensor drift.

2.1.2 Medical Diagnosis

Use of artificial olfaction in medicine is predominantly limited to scientific studies,

but good discriminative ability has been shown for a variety of diseases using breath

[Brinkman et al., 2017; Lewis et al., 2017; Montuschi et al., 2013; Dragonieri et al.,

2007; Montuschi et al., 2010; DAmico et al., 2010; Dragonieri et al., 2009; Kolk

et al., 2012; Bruins et al., 2013], stool [van Gaal et al., 2017; Bomers et al., 2015],

sputum [Kolk et al., 2010], and urine [Westenbrink et al., 2015; Arasaradnam et al.,

2015, 2014, 2013]

There is a long history of using smell in medicine. Early medical practitioners

were aware that the odour of bodily excretions can be influenced by the presence

of disease. Starting from 400BC, human analysis of the odour of sputum would be

aided by vaporising the sputum on hot coals [Wilson and Baietto, 2011]. From the

early 19th century descriptive aromas of diseases have been published to aid with

diagnosis, of which we present a small subset in Table 2.1.

There are many non-human animals with a far superior sense of smell. In
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Disease/Disorder Body source Descriptive aroma

Acromegaly Body Strong, o↵ensive
Anaerobic infection Skin, sweat Rotten apples
Azotemia (prerenal) Urine Concentrated urine odour
Bacterial proteolysis Skin Over-ripe Camembert
Bacterial vaginosis Vaginal discharge Amine-like
Bladder infection Urine Ammonia
Bromhidrosis Skin, nose Unpleasant
Dariers disease Buttocks Rank, unpleasant odour

Table 2.1: Descriptive aromas of a variety of diseases. First 8 items of a 50 item table.
Copied from Wilson and Baietto [2011].

2010, a systematic review of detection of human cancers by canines concluded that

dogs may be able to smell cancer with a high enough sensitivity and specificity to

be diagnostically useful [Moser and McCulloch, 2010].

The reasons for changes in odour of biological samples due to disease are

numerous and complex, depending on the condition at hand. Volatile organic com-

pounds (VOCs) are produced by pathogens at a site of infection, as well as by the

inflammatory and immune responses by the host [Covington et al., 2015]. Many

gastrointestinal diseases cause, or are caused by, imbalances in gut microbial colon-

ies, leading to production of di↵erent VOCs [Sagar et al., 2015]. Many volatiles

produced in disease are excreted in sweat, urine, breath, blood, sputum and other

samples which enable analysis.

There is ample evidence for the existence of diagnostically useful signal in

the odour of patient breath, sputum, stool and other biological samples. However,

extracting this signal is challenging. There is a great deal of natural variation in

odour (e.g., smoking, BMI, and gender [Blanchet et al., 2017]), and this uninform-

ative ‘noise’ may swamp the useful signal. The magnitude of the interesting signal

may also be smaller than variation between experimental batches or sample degrad-

ation whilst in storage [Esfahani et al., 2016]: Berkhout et al. [2016] found the VOC

profiles of stool samples to be a↵ected by sample mass, sample temperature, sample

dilution, freeze-thaw cycles, and time at room-temperature storage.

Industry has begun to show interest in VOC analysis for medical purposes.

For example, IMSPEX produce the BreathSpec™, which is a purpose built GC-IMS

for analysing human breath in which a flow-controlled mouthpiece allows direct

sampling of breath1. Owlstone have also begun a medical venture2, using their

1https://breathspec.com
2https://www.owlstonemedical.com

39

https://breathspec.com
https://www.owlstonemedical.com


ReCIVA Breath Sampler as part of a trial for lung cancer detection.

2.2 Instruments

In the analyses done for this thesis, three di↵erent instruments were used for artifi-

cial olfaction: Electronic Nose (E-nose), Field Asymmetric Ion Mass Spectrometry

(FAIMS), and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). Each

machine detects di↵erent properties of a gas, and has relative advantages and dis-

advantages.

2.2.1 The Electronic Nose

The Electronic Nose (E-nose) [e.g., Gardner and Bartlett, 2000] was invented in

the 1980s as a machine to discriminate odours in a manner inspired by biological

olfaction [Persaud and Dodd, 1982]. The key idea is to measure a gas mixture by

using multiple diverse sensors, each sensitive to a broad range of volatile compounds,

much like the human nose. Di↵erent mixtures produce di↵erent response patterns

across all sensors, known in the literature as a “smell signature”. In a medical

context, a signal of interest (such as presence of a disease) will likely change the

concentrations of many di↵erent VOCs. Furthermore, each VOC will likely bind to

a number of sensors. The relevant signal will thus likely be mixed up across sensors.

Identification of a relevant signal in a noisy background will be di�cult for a human

operator, but amenable to a machine learning approach.

The gold standard analytical chemistry technique for characterising a gas is

GC-MS. The E-nose di↵ers from this in that it is not currently possible to determ-

ine the molecular content of the gas mixture. Using the E-nose is comparatively

inexpensive and requires less training than the GC-MS, and may also use ambient

air as a carrier gas [Fens et al., 2012].

An E-nose requires an odour delivery system, allowing controlled delivery of

a gas to a sensor chamber. In this thesis we are interested in the case where samples

of interest (such as blood, stool or urine) have been prepared into vials in consistent

quantity and dilution. This lends itself to a headspace sampling delivery system.

Here, the prepared samples are left until the gas above the sample (the “headspace”)

has equilibrated, and a sample of the headspace is delivered to the sensor chamber via

syringe. Hand delivery via syringe is possible, but an automated system (an auto-

sampler, illustrated in Figure 2.2) can improve repeatability through consistent

syringe operation and timing. Alternative systems may use flow injection, where a
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Syringe
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Autosampler

Sensor chamber
(a) (b)

Figure 2.2: The Electronic Nose may take advantage of an auto-sampler, providing an
automated and finely controlled system of delivering a sample headspace to an E-nose sensor
array. (a): Sampling the headspace of a prepared sample using a syringe. (b): Injecting
the headspace sample into the sensor chamber.

Figure 2.3: The alpha-MOS FOX-4000 Electronic nose with auto-sampler.
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Figure 2.4: Typical Alpha-MOS FOX-4000 measurement output. Each curve is a time-
series of the response of a single sensor as a gas is passed through the sensor array.
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carrier gas is passed over a sample of interest and across the sensors, but this is not

as appropriate in this setting.

Many types of sensor—such as MOS sensors—interact chemically with the

gas being measured, and may remain contaminated after the sample is removed.

For this reason it is common to decontaminate the E-nose using purified air after

each measurement is taken. The amount of time required for decontamination will

depend on the sample being analysed: certain compounds may interact strongly

with the sensors and require many hours to days for the contamination levels to

drop to an acceptably low level. Chemical interactions causing permanent changes

to the sensors may cause sensor drift to occur over periods of months to years,

changing the response characteristics of the sensor.

Many di↵erent sensors have been used in the electronic nose [James et al.,

2005]. These can di↵er in their recovery times and response to di↵erent compound

groups. Sensors are often metal oxide semiconductors, conducting polymers or piezo-

electric sensors, but can be more exotic: Rains et al. [2006] use live wasps trained

to react to specific substances.

The E-nose has been applied successfully in analysing patient urine to detect

colorectal cancer [Westenbrink et al., 2015], to discriminate between IBD subtypes

and healthy controls [Arasaradnam et al., 2013], and to identify urinary tract cancers

[Bernabei et al., 2008].

The E-nose used in this thesis is the Alpha-MOS FOX-4000 (Figure 2.3),

which has Metal Oxide based sensors. An HS100 auto-sampler is included, allowing

fine control over the amount of headspace sampled, as well as the flow of headspace

into the sensing unit. Figure 2.4 shows typical data representing a single sample

from the FOX-4000; a time-series of the response of 18 sensors as a gas is passed

over the sensor array.

2.2.2 Field Asymmetric Ion Mobility Spectrometry

Another instrument used for artificial olfaction is the Field Asymmetric Ion Mo-

bility Spectrometer (FAIMS) [Guevremont, 2004; Owlstone Nanotech, 2006; Wilks

et al., 2012; Shvartsburg et al., 2009]. Unlike the electronic nose which uses mul-

tiple heterogeneous chemical sensors, the FAIMS uses a single ion detector. The

molecules making up a gas are ionised, and these ions are separated out according

to their mobility, producing a spectrum. This spectrum is produced under di↵erent

intensities of separation, producing a two-dimensional separation as illustrated in

Figure 2.5a.

We use the Owlstone Lonestar (Figure 2.5b) [Owlstone Nanotech, 2006;
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(a) Example FAIMS output. The data
are non-negative, 26112 dimensional
and fit on a 512⇥ 51 grid.

(b) FAIMS photograph. Sample is housed and
analysed in the black section on the left. Bulk of
machine is data display and carrier gas regulator.

Figure 2.5: Field Asymmetric Ion Mass Spectrometry (FAIMS)

Wilks et al., 2012; Shvartsburg et al., 2009] for the analyses in this thesis. Ionisation,

ion separation and detection are performed on a single fingertip sized chip [Owlstone

Nanotech, 2006]. The bulk of the machine is for housing the sample and circuitry,

maintaining a constant flow of carrier gas, and displaying the output.

A number of medical studies have been performed to assess the ability of

FAIMS to distinguish a set of diseased patients from a matched control group, as

reviewed by Covington et al. [2015]. Diseases investigated with good results in-

clude: Hepatic Encephalopathy using breath [Arasaradnam et al., 2016a], Tubercu-

losis using breath [Sahota et al., 2016], Inflammatory Bowel Disease using breath

[Arasaradnam et al., 2016b] and stool [van Gaal et al., 2017], Non alcoholic fatty

liver disease using urine [Arasaradnam et al., 2015], C. di�cile infection using stool

[Bomers et al., 2015], and Colorectal cancer using urine [Arasaradnam et al., 2014].

For analysing a liquid sample, we use a 5ml liquid sample prepared in a

vial, which is inserted into an airtight chamber. The chamber is heated such that

the sample releases gas into the “headspace”; the volume directly above the liquid

sample containing the gas to be analysed. This headspace is analysed by FAIMS.

Such a process can be used to measure patient urine, blood, and stool. Patient

breath may also be measured, and one way of achieving this is to capture patient

breath within a sterile Tedlar bag. This sample can then be cooled and transported,

and drawn into the FAIMS using air as a carrier gas [Arasaradnam et al., 2016a].

How it works

The FAIMS relies on mobility : a physical property of a charged particle (an ion)

subject to an electrical field whilst travelling through a gas. The mobility µ is
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defined as the constant of proportionality relating the strength of the electric field

E to the terminal drift velocity vd:

vd = µE (2.1)

At low electric fields, mobility may be approximated as being independent

of the field strength. However in high electric fields the dependence on E becomes

important. The dependence of µ on E is di↵erent per ionic species. FAIMS works in

the high electric field regime, and uses these properties to separate out ionic species.

The sample headspace is ionised upon entering the FAIMS, which is com-

monly done using ultra-violet light or the radioactive isotope Ni63. An electrical

field then drives these ions between two metal plates towards an ion detector. As

the ions travel towards the detector, they are subject to an electric field orthogonal

to the direction of travel which is made up of a constant and a periodic component.

The periodic component of the applied field is known as the Dispersion Field

(DF). This has an asymmetric waveform which is briefly, strongly positive, and

slightly negative for a longer period of time. The area (voltage ⇥ time) in each

phase is the same. Due to the species-dependent change in ion mobility in strong

electric fields, the ratio of mobilities between the positive and negative phase will

be di↵erent for each ionic species. This will cause a net drift towards either of the

metal plates for nearly all ionic species. If an ion touches a plate, its charge is lost

and it will not be detected. If the ratio of mobilities is approximately 1, the ion

will continue though the filter and be detected. By increasing the strength of the

DF, the ions are dispersed more strongly. This will also change the mobility ratios

of all species due to the non-linearity of mobility in high electrical potentials. This

process is illustrated in Figure 2.6.

A DC component to the electrical field is also added, known as the Compens-

ation Voltage (CV), which introduces a net drift for all ions. Varying the CV for a

fixed DF allows di↵erent ionic species with mobility ratios away from 1 to reach the

detector.

By cycling through a range of values for both the DF (strictly positive) and

CV (symmetric around 0V) and measuring the ionic flux, the output in Figure 2.5a

is produced. The x and y axes are CV and DF respectively, and the value at each

location is ionic flux, which must be non-negative. The image is 26112 dimensional,

since to produce the output the FAIMS steps through 512 CV values and 51 DF

values.
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Figure 2.6: The FAIMS works by heating the sample, then collecting and ionising the
headspace. The ions are dragged between two metal plates by an electric field. An asymmetric
electrical field waveform is applied, giving each ionic species a net drift towards the top or
bottom plate. Ions that touch either plate lose their charge and are not detected. Ions with no
net drive reach the end of the filter and are detected. This is repeated for 512 Compensation
Voltages and 51 Dispersion Voltages [Guevremont, 2004].

Properties of the data

Typically a single sample is left in the FAIMS long enough to produce three meas-

urements. These measurements are not identical because the sample will continue to

be heated whilst in the FAIMS, changing the composition of the headspace. Certain

compounds can also be exhausted, not appearing in the third run, and others can

take longer to dissolve out of the liquid sample.

An advantage of FAIMS over E-nose is reduced susceptibility to sensor drift.

Sensor contamination can still be an issue; for example, after a sample has been

run through the FAIMS, the sensor can remain contaminated for a period of time

depending on the contaminating compound and concentration. Running a blank

sample for a few runs can remove this contamination, but certain compounds such

as high percentage alcohol can contaminate the FAIMS for hours or days.

The output of the FAIMS will depend not only on the sample but also the

background smell of the room. By subtracting the third from the first run of a single

sample, this can be somewhat compensated for as only the di↵erences are retained.

This can also help remove contamination from a previous sample from the signal.
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Algorithm 2.1: Statistical pipeline pseudo-code
Input: Data X, labels y, parameter �

1 Xwav  Wavelet2D(X)
2 Drop columns of Xwav with standard deviation < �

3 cross-validate
4 Split Xwav,y into (Xtr,ytr), (Xte,yte)
5 pvals wilcox(Xtr,ytr)
6 Keep columns of Xtr,Xte corresponding to the two smallest pvals
7 Train classifiers with (Xtr,ytr)
8 Predict y⇤

te from Xte on each classifier

end
9 Concatenate each y⇤

te into y⇤

10 return auc(y,y⇤)

Prediction pipeline

A statistical pipeline has previously been developed (not by the author) to pro-

duce cross-validated AUCs from labelled datasets of patient samples as measured

by FAIMS [Martinez-Vernon et al.]. Pseudo-code of the pipeline is given in Al-

gorithm 2.1.

The pipeline first performs a 2d wavelet transformation independently on

each sample, which fits the natural 2d representation of a FAIMS measurement.

The standard deviation of each wavelet coe�cient is computed across all samples,

and wavelets with a standard deviation below a user-specified threshold � are

dropped. This results in ignoring regions of the FAIMS plane which vary little

between samples. Wavelets representing corner regions are usually dropped at this

stage due to negligible ionic flux.

Supervised feature selection and class prediction is then performed within

a cross-validation. For a k-fold cross-validation, within each fold every kth sample

is taken to be in the test set. The Wilcoxon rank-sum test [e.g., DeGroot and

Schervish, 2013] is used to independently assess each feature (wavelet coe�cient)

in the test set for whether the distributions of positive and negative samples have

the same median. The two features with the smallest p-values are retained and the

rest discarded, where this value of two has been selected to maximise performance

on past data. Each of a set of classifiers is then trained on the training set, and

predictions are made for the class of each sample in the test set. Over all of the

folds, a prediction is made for the class of every sample. An AUC is then computed

using the known classes and predicted classes.
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(a) Photograph of the Flavourspec GC-IMS with
auto-sampler.

(b) 2d separation of a single sample.
Used with permission from olive oil
study3.

Figure 2.7: Gas Chromatography-Ion Mass Spectrometry (GC-IMS)

2.2.3 GC-IMS

GC-IMS combines two well-known analytical chemistry techniques: Gas Chromato-

graphy (GC) followed by Ion Mobility Spectrometry (IMS). The GC stage performs

a 1d separation of a gas, which then feeds into an IMS system that performs a

second separation and detection. A 2d separation is thus produced.

The GC-IMS used in this thesis is the Flavourspec, produced by G.A.S4, a

member of the IMSPEX group. The Flavourspec has been used extensively food

product analysis [Fernandez et al., 2017; Márquez-Sillero et al., 2014; Krisilova et al.,

2014; Garrido-Delgado et al., 2012]. The setup includes an auto-sampler (visible in

Figure 2.7a), facilitating more repeatable and less labour-intensive experimenta-

tion.

An example Flavourspec output is given in Figure 2.7b. The colour is

ionic flux at the detector (red high, blue low). The y-axis is the time taken for the

detected ions to have passed through the GC column. The x-axis is the time taken

for a small packet of ions already having passed through the GC column to pass

through the IMS. Individual compounds tend to form visible peaks.

3http://imspex.com/wp-content/uploads/Application_N_olive-oils_N_dstw_130606.pdf
4www.gas-dortmund.de
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Figure 2.8: Gas Chromatography: A gaseous analyte is delivered into the injection point by
syringe. An inert carrier gas pushes the analyte through a separation column. Compounds
within the analyte react with the surface of the separation column to a varying degree, slowing
their rate of travel through the column. A detector measures the amount of compound exiting
the separation column. Di↵erent peaks in the detector correspond to di↵erent compounds.

Gas Chromatography

Gas Chromatography [e.g., Fowlis, 1995] is used in this thesis to produce a pre-

separation of the analyte before being separated again by the IMS. GC is made up

of three major stages; an injection point, a separation column and a detector. An

analyte is introduced through the injection point and carried through the column by

a carrier gas. Di↵erent compounds in the analyte will take di↵erent amounts of time

to pass through the column due to interactions with a coating on the column surface.

A detector lies at the end of the column, and a chromatograph can be produced

by plotting the detector response against the period of time following injection.

Typically the chromatograph will show a number of peaks each corresponding to a

di↵erent compound.

An auto-sampler is used to deliver samples of headspace to the GC. A syringe

injects a thin band of headspace through an injection point. Although a thinner band

enables greater separation resolution, this reduces the amount of analyte available.

An inert carrier gas then carries the analyte through the separation column.

The column is made up of glass or metal tubing coated in a thin layer of

some liquid or polymer with which di↵erent compounds in the analyte will react.

Some compounds will react strongly, sticking to the wall of the column, whilst other

compounds will remain gaseous. During separation, the column thus contains a gas

moving towards the detector (the “mobile phase”), and a solid or liquid coating (the

“stationary phase”). Compounds which do not react with the stationary phase will

exit the column first and be detected separately to those exiting later.

Certain analytes can contaminate or permanently change the properties of
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Figure 2.9: Ion Mobility Spectrometry: Ions from some mixed ion source are released, and
an electrical potential drives these ions down a drift tube to an ion detector. The ions drift
through a carrier gas which flows in the reverse direction, removing any negatively charged
or non-charged particles. Di↵erent ion species drift at di↵erent rates, and thus reach the
detector at the end of the drift tube at di↵erent times. Ionic flux at the ion detector will
exhibit peaks relating to individual ion species.

the column coating, causing sensor drift. Cleaning of the input is possible, but can

reduce sensitivity.

Di↵erent detectors can be used to detect di↵erent properties of the gas exiting

the column, though they are typically broadly sensitive. It is also common to use

a Mass Spectrometer as a detector. In this thesis, an Ion Mobility Spectrometer is

used.

Ion Mobility Spectrometry

A number of techniques fall under the category of Ion Mobility Spectrometry (IMS);

here we focus on drift tube IMS [see e.g., Eiceman et al., 2013] as used in the

FlavourSpec [G.A.S., 2017]. In drift tube IMS, a gas is ionised and the ions are

driven down a tube (the “drift tube”) by a uniform electric field towards an ion

detector. Importantly, this is done in the presence of an inert drift gas. This is a

bu↵er gas and travels in the opposite direction to the ion flow. In a vacuum, an

ion within an electrical field would accelerate linearly. The presence of the drift gas

means the ions quickly reach a terminal velocity due to collisions, the rate of which

depends on the mass and geometric structure of the ion. A homogeneous mixture

of ions thus separates whilst traversing the drift tube. Ionic flux is measured at the

end of the drift tube, so a 1d spectrum of ion flux against drift time is produced.

IMS can produce a spectrum over a short period (tens of milliseconds). This

is fast enough to be used as a detector unit following separation in a GC column

which operates over much longer time-scales (on the order of 10 minutes for the

Flavourspec used in this thesis).
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2.3 Analyses and Publications

The following analyses are presented in chronological order. All analyses investig-

ate data produced by one of the three artificial olfaction instruments described in

Section 2.2. Some key characteristics of each are given in Table 2.2.

The first analysis on Whiskey was performed as an exercise to build famili-

arity with the experimental and data analysis procedures, so all lab work and data

analysis was performed by the author. All subsequent analyses are performed on

medical data sets collected by collaborators, and the author performed only the data

analysis.

The general form of each analysis is that samples are collected from two or

more classes (e.g., healthy samples and disease-positive samples), and we show that

one is able to construct a statistical pipeline that is able to predict which class a

new sample belongs to. In the medical studies, the measurements are from either

the breath of patients, or the headspace above a urine sample. Studies showing that

the artificial olfaction method is able to distinguish between the classes of interest

have been published, which the subsection titles reflect.

Many of these are small sample pilot studies, meaning that we have few

samples and thus expect low statistical power. As a consequence we expect, before

seeing any data, to be unable to draw any strong conclusions confidently. However,

these small sample analyses are still valuable in identifying which future analyses

are likely to be the most fruitful.

2.3.1 Scotch Whiskey

To gain intuition for the data collection process, a study was performed in which

di↵erent scotch whiskeys were run through the FAIMS, generating a dataset of

whiskey odours on which a basic analysis was performed. Five di↵erent brands of

Study Technique Sample type Section Publication

Whiskey FAIMS Sample headspace 2.3.1
Irritable Bowel Disease FAIMS Breath 2.3.2 [Arasaradnam et al., 2016b]
Tuberculosis uvFAIMS Breath 2.3.3 [Sahota et al., 2016]
Hepatic Encephalopathy uvFAIMS Breath 2.3.4 [Arasaradnam et al., 2016a]
Diabetes E-nose Urine headspace 2.3.5 [Esfahani et al., 2015]
Bacterial Vaginosis E-nose Vaginal swab 2.3.6
Diabetes/Obesity GC-IMS Urine headspace 2.3.7

Table 2.2: The studies performed used a range of artificial olfaction instruments, and used
di↵erent biological samples to measure. Studies in which sample separation was successful
were published.
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scotch whiskey were used (see Table 2.3). Four of the bottles are single malts; i.e.,

produced by a single distillery. A blended whiskey was also included. For each single

malt, four 5cl bottles were purchased to investigate within-distillery variation. The

FAIMS used was the Lonestar (Owlstone, Cambridge, UK) [Owlstone Nanotech,

2017a,b, 2006; Wilks et al., 2012; Shvartsburg et al., 2009].

The Ardbeg whiskey is “peated”. This means that peat smoke is used in

production of the whiskey, and gives a strong recognisable smell in the final product.

This was included to investigate if the FAIMS can distinguish peated from un-peated

whiskeys. A range of maturation times were also selected, as maturation may also

be a property the FAIMS can detect.

Data Collection

The FAIMS detector chip is highly sensitive to alcohol; the high alcohol content of

the neat whiskey would saturate the response from the sensor and would require

decontaminating the sensor for long periods of time (days or more). The whiskey

must thus be diluted. 10%, 4% and 2% dilutions were attempted, and 4% was

determined to give a good signal strength without saturating the sensor, so was

used in the following experiment.

For each of the 4 single malts, samples were taken from 4 di↵erent bottles.

Only a single bottle of the blended whiskey was used. For each sample, three

sequential runs were done, recording three data points. The total number of smell

signatures recorded was thus 4 ⇥ 4 ⇥ 3 + 3 = 51. The methodology used in data

collection was as follows:

1. Prepare Sample: pipette 4800ml water and 200ml spirit into sample container.

2. Replace sample in FAIMS with newly prepared sample.

Distillery Single Malt Age ABV Peated

Aberlour Yes 10 40% No
Ardbeg Yes 10 46% Yes
Glenfiddich Yes 15 40% No
Glenlivet Yes 18 43% No
Co-operative Blended Scotch Whiskey No – 40% –

Table 2.3: Whiskey brands analysed with the FAIMS. A range of maturation ages was
selected, as was the presence of a peated whiskey and a blend. The omitted information for
the blended whiskey is not commercially available.
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Figure 2.10: Whiskey data projected onto the first two Principal Components. Each sample
was left in the FAIMS long enough to collect three measurements, and each of the three runs
of each sample is connected by a dotted line. It can be seen that the first principal component
is simply how long the sample has been in the FAIMS. Each type of whiskey has been given
a di↵erent symbol, and no separation between whiskeys can be seen.

3. Warm sample for 5 minutes.

4. Start the FAIMS, collecting three data points over 7 minutes 30 seconds.

5. Stop data collection, wait for pressure and temperature to stabilise (⇠ 0.5 L
min ,

⇠ 0.1bar).

6. Remove sample, replace with empty sample container.

7. Perform blank runs until the sensor is no longer contaminated.

8. Repeat.

Analysis

Performing PCA on the whiskey data and projecting the data onto the first two

principal components, we obtain Figure 2.10. Each sample from a single bottle

gives three data points due to being left in the FAIMS for thee runs to investigate

by how much the runs di↵er. This turns out to be the largest source of variance

in the data, and is thus the first Principal Component of the data. The third run

is used for the remainder of the analysis, so each individual bottle corresponds to

exactly one data point. This was chosen as the third run has the greatest mean

pixel intensity, corresponding to a greater total number of volatiles being measured.
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Figure 2.11: AUCs obtained with Random Forest classifier after supervised dimension
reduction. The 4 classification tasks are 1-against-rest for each of the 4 single malt whiskeys.
It is clearly an easier task to distinguish the Ardbeg from the other whiskeys, which may be
related to it being the only peated whiskey.

We attempt 4 binary classification tasks: for each sample we classify whether

it is from a single malt of interest, or from the remaining 3 single malts. This is done

with a leave-one-out cross-validation to produce a set of predictive probabilities, and

uses the previously developed pipeline detailed in Section 2.2.2. AUCs for each

task are displayed in Figure 2.11.

Observing Figure 2.11, it can be seen that Ardbeg is readily distinguished

from the other whiskeys. This may be due to it being peated, which would be an

interesting hypothesis to study further. The remaining three single malts do not

separate so easily. Glenlivet looks like it separates well and the 95% confidence

interval of the AUC does not include 0.5, but more data would be needed to draw

the conclusion that the FAIMS can distinguish it easily.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is performed to linearly project the data onto

the two dimensions in which each of the 5 classes of whiskey are maximally separated

(Figure 2.12). Since the number of data points and classes are low compared to

the dimensionality of the data, it is unsurprising that the classes can be separated

well. To test generalisation of separation across types of whiskey, each whiskey is

removed in turn when learning the projection. When applying the projection to the

data, the held out data continues to form clusters distinct from the whiskeys used to

learn the projection. This shows that, under this statistical model, the FAIMS sees

samples from our unseen whiskeys as similar to each other and di↵erent to other

whiskeys seen.
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Figure 2.12: LDA is applied to the whiskey data, reducing the data to two dimensions.
Plotting this (top left) shows good separation between groups. To see how the projection gen-
eralises to new whiskeys, we learn the projection 5 more times (remaining plots), each with
one of the whiskeys omitted during learning. Applying the learned projection to all whiskeys,
we see the omitted whiskey is still separated from the others, showing good generalisation.

Conclusions

This small sample study provides evidence that the FAIMS is, with the correct signal

processing pipeline, able to distinguish between certain types of whiskey. With more

data perhaps the whiskeys could be distinguished with greater accuracy. The easiest

whiskey to distinguish from all others in the study was the only peated whiskey

investigated. Further investigation would be required to show that the FAIMS can

distinguish peated from un-peated whiskeys, but this study provides support for

such a hypothesis.

Care must be taken in the experimental process to produce high quality data.

The FAIMS must be decontaminated for su�cient time between running samples,

particularly if they contain a compound to which the sensor is particularly sensitive,

such as alcohol. The data produced are also sensitive to how long the sample has

been in the FAIMS chamber. If a machine learning classifier has been trained on

just the third run of each training sample, then only the third run of a sample should
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be classified.

The study was only of small sample size, and a number of analyses were

attempted, such as including and excluding the cooperative blended whiskey. This

kind of high-flexibility and low-power study can often appear to produce significant

results when there are none [Simmons et al., 2011]. Whilst it may be sensible to

believe the FAIMS is able to distinguish Ardbeg from the other un-peated whiskeys,

the 100% accuracy achieved here is unlikely to hold on a larger study.

2.3.2 Non-invasive exhaled volatile organic biomarker analysis to

detect Inflammatory Bowel Disease [Arasaradnam et al., 2016b]

Inflammatory Bowel Disease (IBD) is a class of diseases characterised by inflamma-

tion of the bowel and small intestine, causing pain and reducing quality of life [NICE,

2015]. IBD has two main forms: Crohn’s Disease (CD) and Ulcerative Colitis (UC).

CD and UC a↵ect approximately 115,000 [NICE, 2012] and 146,000 [NICE, 2013]

individuals in the UK respectively.

A number of methods exist for diagnosis of IBD, but distinguishing between

UC and CD can be di�cult when the disease is limited to the colon [Arasaradnam

et al., 2016b]. This study was aimed to determine whether the electronic nose

can distinguish between breath from IBD patients and healthy controls, and also

whether UC can be distinguished from CD.

53 IBD patients (29 UC, 24 CD) were recruited sequentially from dedicated

IBD clinics at University Hospitals Coventry & Warwickshire. 11 healthy controls

volunteers (V) were recruited such that the controls reported no overt gastrointest-

inal symptoms and were not on routine oral medication. For each of the patients and

controls, morning breath samples were taken following a 2 hour fast. Breath was

captured using a custom device in which breath is captured in a Tedlar® bag. Envir-

onmental conditions are accounted for by first having the patient inhale filtered air.

Captured samples were frozen at �20°C, transported to the University of Warwick

and tested using the Lonestar FAIMS unit on the same day as capture.

Classification task UC & CD vs V UC vs V CD vs V UC vs CD

AUC
(95% CI)

0.82
(0.74–0.89)

0.75
(0.65–0.86)

0.77
(0.67–0.88)

0.68
(0.58–0.78)

Table 2.4: AUCs and 95% confidence intervals achieved on classification tasks involving
breath from control volunteers (V), patients with Crohn’s Disease (CD), and patients with
Ulcerative Colitis (UC).
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(a) IBD vs control (b) UC vs CD

Figure 2.13: ROC curves for medically relevant IBD prediction tasks

The collected data were processed using the previously developed statistical

pipeline described in Section 2.2.2, using sparse logistic regression as the classifier.

Four classification tasks were attempted: UC & CD vs V, UC vs V, CD vs V, and

UC vs CD. AUCs are presented in Table 2.4. The two groups can be distinguished

between in all cases, and discriminating between IBD and healthy control breath

has the greatest accuracy. For the interested reader, ROC curves for all tasks have

been included in Appendix B.1.1.

The experimental procedure collected 2 consecutive FAIMS measurements

(which we call ‘runs’) of each sample. The analysis was performed once with each

run, and run 2 produced superior results on all 4 classification tasks, so the results

from the second run are presented here. Results from the first run are given in

Appendix B.1.2. There was also 13.6% more signal in the second run as measured

by mean pixel intensity, which possibly reflects greater VOC content explaining the

better performance.

The most clinically interesting cases are diagnosis of IBD (UC & CD vs V)

and distinguishing UC from CD. ROC curves for these are given in Figure 2.13.

Whilst our ability to distinguish UC from CD is lower than that of colonoscopy, it

is greater than that on-the-spot diagnosis [Arasaradnam et al., 2016b]. Our results

here are supported by van Gaal et al. [2017], who show paediatric stool FAIMS

measurements can distinguish healthy controls from IBD with AUC of 0.76 (95%CI

0.62–0.9), and UC from CD with AUC 0.9 (95%CI 0.8–1).

The task of discriminating IBD from healthy control samples, and the task of
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discriminating UC from CD have some notable di↵erences. Being able to distinguish

between IBD and control samples does not imply that FAIMS could be used as a

diagnostic test; it could be the case that there is a very general immune response in

the body to being unwell, and we could be picking up on that instead of the specifics

of IBD. If this was the case, we would only be able to discriminate between well and

unwell patients. The fact that we have good separation between the UC and CD

samples provides evidence against this; UC and CD are very similar diseases, both

causing inflammation of the gastrointestinal tract, yet we are able to discriminate

between the two. This shows that FAIMS can identify disease-specific signal.

The result of discriminating UC from CD is more likely to hold up in a real

world medical application than the result for diagnosing IBD. The reason is that the

population chosen for this study was patients attending an IBD outpatient clinic,

whereas attempting to diagnose IBD in the general population is a more di�cult

task due to increased diversity in the population.

It is interesting that IBD, a condition occurring in the gastrointestinal tract,

can be diagnosed and categorised using breath measurements. Previous work relat-

ing to this includes FAIMS and E-nose diagnosis of IBD [Arasaradnam et al., 2013],

as well as discriminating between those with active IBD and those in remission.

2.3.3 A simple breath test for tuberculosis using ion mobility: A

pilot study [Sahota et al., 2016]

Tuberculosis (TB) is an infectious bacterial disease. In 2015 there were 10.4 million

new TB cases worldwide, and 1.4 million TB deaths [World Health Organization,

2016]. This study [Sahota et al., 2016] investigates the use of FAIMS in distinguish-

ing patients with TB against healthy control volunteers (V) using patient breath.

This would be an attractive mechanism for diagnosis, since the standard method of

microbiological culture can take up to 2 months [Sahota et al., 2016].

This study uses ultra-violet (UV) light as the ionization source instead of

the radioactive isotope Ni63. UV does not ionize the same range of chemicals as

Ni63, so can produce a lower quality signal. However, avoiding radioactive isotopes

means the FAIMS can be transported easily and used in hospitals without special

licensing, allowing the samples to be analysed more rapidly and thus undergoing

less degradation.

Over 6 months, 21 adults with TB were recruited from the University Hospit-

als Coventry & Warwickshire with suspected TB, before or within 1 week of starting

anti-TB medication. 19 healthy controls were also recruited.

Breath was captured by each participant breathing through a mouthpiece
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Figure 2.14: ROC curve for classification pipeline on TB vs Controls classification task
using Gaussian Process (GP) classifier.

with a two-way valve until a 3L Tedlar® bag was filled. Samples were then analysed

within 2 hours of collection by the Lonestar uvFAIMS (Owlstone, UK).

Using the previously developed statistical pipeline (Section 2.2.2) with

leave-one-out CV, each sample was classified as healthy or TB using a Gaussian

Process classifier5. We obtain an AUC of 0.83 (95%CI: 0.68 – 0.98) (Figure 2.14).

We use the second of 2 available runs due to greater mean signal.

Two patients in the control group were initially suspected of TB but were

finally given alternative diagnoses of non-TB bacterial infections. These are of

interest to study; perhaps their similar disease will confuse the classifier into labelling

them as TB positive. This does appear to be the case, since their assigned predictive

probabilities of belonging to the TB class are greater than is characteristic for points

from the Control class (Figure 2.15).

The results here di↵er slightly to those described in the publication relating

to this work Sahota et al. [2016] since the analysis has been re-run with leave-one-

out cross-validation (instead of 10-fold), and the Gaussian process classifier has been

switched to the one written by the author.

Our results agree with previous work, obtaining similar levels of predictive

accuracy. Breath has been identified as a possible route for TB diagnosis using

GC-MS [Kolk et al., 2012] and E-nose [Bruins et al., 2013]. Sputum has also been

measured with E-nose [Kolk et al., 2010], with slightly lower accuracy.

5Implemented by the author as described in [Rasmussen and Williams, 2005]. R package hosted
at https://github.com/JimSkinner/gpclassifier
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Figure 2.15: The predictive probabilities of each point having TB. Points have been sorted
by their assigned predictive probabilities. Colours indicate the true class of each point, and
a good separation between classes can be seen. The two filled squares indicate points in the
control class that were initially misdiagnosed as having TB, and it can be seen that these
have been more di�cult to classify.

2.3.4 Breathomics—exhaled volatile organic compound analysis to

detect hepatic encephalopathy: a pilot study [Arasaradnam

et al., 2016a]

Hepatic Encephalopathy (HE) is a disturbance in brain function resulting from

liver disease. Symptoms range from minor changes in consciousness, memory and

concentration to confusion, amnesia and coma [Cash et al., 2010]. HE is categorised

into covert and overt HE; symptoms of covert HE are absent or minor, whilst overt

HE shows much greater mental disturbances. Whilst there are treatments available

for both covert and overt HE, these treatments are typically given only for overt HE

due to ease of diagnosis [Arasaradnam et al., 2016a]. It is thus a clinically useful

task to detect covert HE.

13 patients with covert HE, 9 patients with overt HE, and 20 control volun-

teers were recruited. The control group comprised of healthy volunteers without

clinical or biomedical evidence of liver disease. Breath samples were taken following

a 2 hour fast and absence of cigarette smoking. A custom breath capture device was

used, allowing natural breathing through a mouthpiece until a 3L Tedlar® bag is

filled. Only end-tidal breath is collected, which has a higher VOC content. Samples

were then frozen at �20°C and transported to the University of Warwick, where the

uvFAIMS was used to collect smell measurements.
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(a) Classifying HE from controls. (b) Classifying covert from overt HE.

Figure 2.16: HE classification task ROC curves

The previously mentioned statistical pipeline (Section 2.2.2) was used to

classify samples. Two classification tasks were decided upon: classifying HE (covert

or overt) from controls, and classifying covert HE from overt HE. On HE classific-

ation we obtained an AUC of 0.84 (95%CI 0.75–0.93), and on distinguishing covert

from overt HE we obtained an AUC of 0.71 (95%CI 0.57–0.84). The relevant ROC

curves are given in Figure 2.16.

Semi-supervised learning

This is a small sample study (n=42), meaning that the feature learning stage may

not produce features that are optimum for good classification. Following publication

of [Arasaradnam et al., 2016a], we investigated including additional unlabelled data

in this feature learning stage to see if this could improve predictive accuracy.

We use the previously developed pipeline (Section 2.2.2) but use Diction-

ary Learning (DL) as a replacement for the wavelet transformation as the feature

learning stage. In addition, the classifier and the number of retained features in the

supervised Wilcoxon rank sum feature selection stage are chosen on a training set

comprising two thirds of the data. The remaining third of the data is then used to

produce a ROC curve.

This procedure was repeated twice with one variation: in one run the DL

stage operates only on the data at hand; in another run DL is performed on a

larger dataset of 141 samples made from combining a number of previous studies

in addition to the HE data. The AUCs on the test set for each variant were 0.75

(95%CI 0.54–0.96) and 0.96 (95%CI 0.88–0.1) respectively; ROC curves are given
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(a) AUC on classifying HE from healthy
controls using standard pipeline with Dic-
tionary Learning as a replacement for the
fixed wavelet transformation.

(b) AUC obtained with the same pipeline
as Figure 2.17a, but including addi-
tional unlabelled FAIMS data in the Dic-
tionary Learning stage.

Figure 2.17: Predictive performance appears to increase when including additional unla-
belled data in the feature learning stage.

in Figure 2.17. This shows evidence that augmenting the feature learning stage

with a corpus of unlabelled data has enabled better predictions. The small size of

the validation set means the uncertainty around the AUCs are large; a larger study

be better able to show whether or not a true improvement was made.

2.3.5 A rapid discrimination of diabetic patients from volunteers

using urinary volatile and an electronic nose [Esfahani et al.,

2015]

This subsection details a study into the ability of the FOX4000 electronic nose to

distinguish between urine from type-2 diabetic patients and healthy controls. This is

an interesting case study as the results initially appeared good, with the statistical

pipeline obtaining 100% accuracy on predicting whether samples in a validation

dataset were from control or diabetic patients, leading to a published conference

abstract and talk [Esfahani et al., 2015]. However, further scrutiny revealed that

this predictive accuracy was due to a flaw in the study design.

91 urine samples taken from 43 type-2 diabetic patients and 48 control vo-

lunteers were collected at University Hospital Coventry & Warwickshire. Samples

were collected in clinic and frozen to -80°C within 2 hours. For E-nose analysis,

urine samples were thawed to 4°C for 24 hours, and 3ml of sample was aliquoted
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into 10ml glass vials.

The dataset of 91 samples was split into a training dataset of size 61, and a

validation dataset of size 30. The split was done by ordering the samples by the run

date and placing every third sample in the validation set. The training dataset was

used to construct the statistical pipeline, and this was then applied to the validation

dataset to estimate the predictive accuracy.

The pipeline to produce classifications was chosen to be a feature learning

stage followed by a classifier. Using the training set, ICA (Independent Component

Analysis, Section 1.1.1) was selected as the feature learning stage, and the Random

Forest as the binary classifier.

Model Selection

A pipeline is evaluated on the training dataset by reducing the dimension of the

data with a feature learning technique, then producing predictive probabilities with

a classifier inside of a 10-fold cross-validation. The predictive probabilities produced

were compared to the known labels to produce an AUC; the higher the AUC, the

better the pipeline. A number of feature learning techniques and classifiers were

applied to the training set, and the best-performing pair in terms of training AUC

were then applied to the validation set.

The four classifiers investigated were the Random Forest [Breiman, 2001],

SVM [e.g., Bishop, 2006], Sparse Logistic Regression [e.g., Hastie et al., 2015] and

Gaussian Process Classifier [Rasmussen and Williams, 2005]. ICA, PCA, the 1D

wavelet transformation, and a collection of hand-engineered features were all con-

sidered at the dimension reduction stage. These are each described below, and the

training AUCs produced are given in Table 2.5.

The hand-engineered features were suggested by Dr James Covington, having

been previously used in processing of E-nose data with the MultiSens Analyser soft-

ware package [JLS Innovation, 2009, Section 4.1]. Each of the 18 sensors is reduced

to 2 features each, giving 36 dimensional data. The first feature is the di↵erence

between the maximum and minimum value achieved by the curve, which captures

how much a sensor responds to the gas presented. The second feature is the area

under the sensor response curve after having the sensor value at time 0 subtracted

from the entire curve. Alone, this feature cannot distinguish between sensor re-

sponses which are intense and brief, and those which do not reach a high maximum

but take a long time to return to the baseline after the gas is removed. However,

when paired with the first feature this allows the classifier to use information on

how quickly a sensor returns to baseline.
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Training AUC

Dimension
Reduction

Feature
Count

Sparse
Linear

Regression
Random
Forest SVM

Gaussian
Process
Classifier

Hand-engineered
features 36 0.671 0.922 0.923 0.937

Wavelets 2 0.856 0.923 0.945 0.883
3 0.852 0.927 0.952 0.895
4 0.856 0.928 0.949 0.893
5 0.856 0.922 0.942 0.923
6 0.853 0.918 0.938 0.917
7 0.850 0.918 0.938 0.933
8 0.859 0.928 0.938 0.935

PCA 2 0.463 0.906 0.881 0.903
3 0.463 0.923 0.900 0.935
4 0.714 0.994 0.991 1.000
5 0.948 0.997 0.971 0.991
6 0.954 0.999 1.000 1.000
7 0.943 1.000 1.000 1.000
8 0.957 1.000 1.000 1.000

ICA 2 0.965 0.856 0.901 0.899
3 0.588 0.967 0.858 0.942
4 0.703 1.000 0.990 0.996
5 0.942 0.993 0.974 1.000
6 0.934 1.000 0.998 0.997
7 0.964 0.996 1.000 1.000
8 0.970 1.000 1.000 1.000

Table 2.5: AUCs obtained on the training data in a 10-fold cross-validation for every
dimension reduction technique and classifier attempted. We see that PCA and ICA perform
similarly, and are the only techniques to obtain an AUC of 1.

The wavelet decomposition is applied to each sample separately by concaten-

ating all sensor traces into a single vector and applying the 1d wavelet decomposition

using the wavethresh R package [Nason, 2016]. This produces 4095 sparse wavelet

coe�cients, of which only 2496 have non-zero values over the entire training set so

are retained. This is still a large number of features, so in the cross-validation stage

we include an additional supervised feature selection stage, using only the in-fold

training data to learn which features to select and applying this to the test data.

The Wilcoxon rank-sum test is performed on each of the 2496 features, testing the
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null hypothesis that the feature distribution for the disease and control groups is the

same. This produces a p-value for each feature, and we retain only the k features

with the lowest p-values. k is varied from 2–8, producing the AUCs in Table 2.5.

Comparing the wavelet and hand-engineered feature AUCS, we see the wavelets

out-perform the hand-engineered features.

The wavelet decomposition was considered due to its good performance on

the FAIMS data in the previously developed pipeline (Section 2.2.2). Most fea-

tures produced by the wavelet transformation use information only from a single

sensor, since each wavelet feature captures signal around a particular location. The

only features that capture signal across sensors will be very wide wavelets (since

the response from all sensors are concatenated together), or wavelets at the bound-

ary between sensors. This di↵ers from PCA and ICA in which every feature uses

information from every sensor.

PCA and ICA were applied for a range of latent dimensionalities. Due to

the finite size of our dataset, a number of models achieved perfect classification

producing an AUC of exactly 1. There is thus insu�cient information to choose the

‘best’ model, so we invoke Occam’s razor and select the simplest model achieving

perfect classification. With a latent dimensionality of 4, both PCA and ICA are

able to achieve an AUC of 1. We decided upon the model using an ICA reduction to

4 dimensions followed by classification by a Random Forest classifier. However, an

equally valid choice would have been PCA to 4 dimensions followed by classification

by a Gaussian Process Classifier.

Results on validation dataset

By selecting the model maximising cross-validated AUC, it is expected that we have

over-fit and the AUC of 1 achieved is optimistic. To estimate the generalisation

performance we apply the selected pipeline to the validation data.

Predictive probabilities are produced for the validation data using the same

pipeline, and including the training data in the feature learning and classifier train-

ing. We again obtain an AUC of 1 (Figure 2.18a), perfectly classifying every

validation sample and indicating a high predictive accuracy.

Most of the predictions produced are highly confident since the predictive

probabilities are close to 0 or 1. Figure 2.18b shows that a range of classification

thresholds of approximately 0.4–0.55 would give perfect classification.
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(a) ROC curve for predictions produced
on validation dataset. We obtain an AUC
of 1, since all samples may be classified
perfectly.

(b) The predictive probability distributions for
the control and disease classes set are non-
overlapping. Selecting a classification threshold
within the approximate region of 0.4–0.55 would
give perfect classification of the validation data.

Figure 2.18: Predictions on the validation data are accurate and confident.

Investigating the feature space

Investigating the 4 dimensional feature space is interesting. By considering just two

of the dimensions, the data can be plotted and coloured by its disease class for visual

inspection. This is given for all pairs of features in Figure 2.19. The first feature

(V1) is good at separating the classes, particularly when combined with the 4th

feature (V4).

Combining features V1 and V4 appears, from Figure 2.19, to be su�cient

for highly accurate classification. This leads to the question of why a latent dimen-

sionality k of 4 and not 2 was selected. The reason is that ICA is unsupervised, and

in the k = 2 case the feature mappings learned did not correspond to V1 and V4.

ICA discovers underlying signals in the data regardless of their relevance for classi-

fication, and k = 4 was necessary in this case to uncover the informative features V1

and V4. Given a larger dataset it may be useful to incorporate an additional feature

selection stage, retaining only the ICA dimensions useful for disease classification.

In the V1/V4 pair useful for classification, the disease signal is clustered

and the control signal more spread-out. One can expect this since, for disease-

positive samples, the disease signal swamps all other signal, making all disease-

positive samples appear similar. The representation of the control samples is thus

dominated by non-disease related signal, which displays much more variation.
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Figure 2.19: 2d projections of the data into pairs of ICA dimensions. Colours indicate
diabetic (red) or control (blue). The V1/V4 projection separates the classes particularly well.
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Figure 2.20: Each box shows the time-series for a single sensor for every sample, coloured
to indicate class (red for disease, blue for control). No obvious di↵erence in sensor responses
can be seen between classes. However, we know that from these samples we can achieve very
good classification. This must mean that the signal is spread across multiple sensors.

The signal is spread across sensors

Each of the 18 sensors in the FOX4000 produces a time-series as the gas from a

single sample is passed through the sensor array. By plotting the time-series of all

samples in Figure 2.20 and colouring by the sample class (red for diabetic, blue for

control) we can search visually for di↵erences in sensor activations between classes.

There is no clear visual di↵erence between the red and blue sensor responses.

However, we know that the classes can be distinguished between very accurately.

Furthermore, the hand-engineered features and the wavelet decomposition both ex-

tract features which take information from only a single sensor per feature. These

local feature extraction techniques under-perform both PCA and ICA which extract

global features, taking information from all sensors. There must thus exist a strong

signal that is spread across multiple sensors. This illustrates the use of feature learn-

ing techniques for electronic noses; informative features require information from all

sensors, but this would be di�cult to design by hand.
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Figure 2.21: Di↵erent samples were stored for di↵erent periods of time before being meas-
ured by the electronic nose. Ordering samples by their age and colouring by the sample label
(diabetic – red, control – blue), it can be seen that all control samples were older than 433
days, and all diabetic samples were younger than 233 days at the time of measurement.

Where the study failed

Along with the electronic nose measurements, we also have clinical data about each

patient and other information about each sample. To further confirm the validity of

our result, we check for confounding variables; i.e., whether the presence of diabetes

is associated with any demographic information. If this was the case, it may be

that it is not the presence of diabetes that we are able to detect with the electronic

nose, just some demographic property which, in the dataset we have, happens to

associated with diabetes.

To test for such an association, we try to predict the diabetes label from the

patient age, date of birth, gender and BMI. We also include the age of the sample;

the period of time between when the sample was collected and when it was measured

with the electronic nose. Using the Random Forest, SVM, Sparse Logistic Regression

and Gaussian Process classifiers, we do cross-validation and obtain an AUC of 1 from

every classifier. This indicates that the diabetes label can be predicted completely

from this auxiliary information without using the electronic nose data, and therefore

our study may be misleading.

Further investigation shows that the control and disease samples were stored

frozen at �80°C for di↵erent periods of time (Figure 2.21). The range of ages

for the diabetic samples was 22-233 days, whilst the range of ages for the control

samples was 433–1384 days. This is problematic as the VOC content of a sample
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(a) Control age prediction (b) Diabetic age prediction

Figure 2.22: Investigating the information about the sample age contained in electronic
nose measurement. Within the training set, a cross-validated model could predict the age of
the control samples accurately. Ideally we would be able to predict the sample class but not
the sample age.

may change over time during storage. It is possible that our model has learnt only

to distinguish between samples stored for less than 233 days or greater than 433

days.

We investigated whether the electronic nose measurements contain inform-

ation about the age of the sample, and thus whether our model could simply have

learned to classify the samples by age. To do this we trained a classifier to predict

whether the age of each sample is above or below the mean sample age. This was

done separately for the control and disease groups. We achieved the ROC curves in

Figure 2.22, which show that the relative age of a sample in the control group can

be predicted with high accuracy, even within each group.

Being able to predict the sample age this way shows there is sample age

information in the electronic nose measurements. It is possible that the classifier

is using this information to produce accurate classifications. In short, the study

data are confounded by sample age, and we cannot say anything meaningful about

disease detection.

Sample age compensation

We attempted to remove the sample age signal from the data, and investigate if the

disease state can still be predicted after the age signal has been removed. Using only

the training set, we fit models of how samples change over time and subtract this

from the data. Ideally this would remove all information relevant to the sample age,
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(a) Class prediction ROC (b) Control age prediction
ROC

(c) Diabetic age prediction
ROC

Figure 2.23: By modelling how a sample changes with age, we can subtract the age related
signal from each sample. We try a number of models on the training set to do this, and
select that producing the ROCs shown. We are successfully able to remove the ability of the
predictive pipeline to predict the sample ages, whilst keeping the ability to predict the sample
disease classes.

making sample age prediction di�cult. If there existed any signal in the original

data relating to the disease class beyond that of the sample age, the age-adjusted

data should still be predictive of the disease class. We would thus ideally achieve

poor predictions of the sample age, but good predictions of the sample disease class.

Three classification tasks are considered for the age adjusted data: classifica-

tion of the disease class, classification of whether the control samples are older than

the mean control sample age, and classification of whether the diabetic samples are

older than the mean diabetic sample age.

A number of age compensation techniques were attempted. The best achiev-

ing method was to first reduce the data to 19 dimensions with ICA. A separate

1d linear regression was fit from the sample age to each of the ICA features. This

allowed a point in ICA feature space to be predicted from the sample age alone.

The age-predicted ICA representation of each sample was then subtracted from the

ICA representation previously obtained from the electronic nose data. Separate re-

gressions were performed for the control and disease samples. Sample disease class

was then classified using an SVM with the Gaussian radial basis function kernel.

Using the age-adjusted training data to predict the disease class, control

sample age and disease sample age, we obtain AUCs of 0.98 (95%CI: 0.96–1), 0.57

(95%CI: 0.35–0.8) and 0.51 (95%CI: 0.3–0.73) (Figure 2.23). This shows good

ability to remove age signal and retain disease signal. However, applying the same

pipeline to the validation set (including the training data in the feature learning

stage), these AUCs become 0.98 (0.95–1), 0.64 (0.29–1) and 0.82 (0.59–1) respect-
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(a) Class prediction ROC (b) Control age prediction
ROC

(c) Diabetic age prediction
ROC

Figure 2.24: A sample age compensation model is trained on the training set and applied to
the validation set. When predicting disease class and sample ages on the adjusted validation
set, we find the classifier still has good ability to predict the are of the disease samples
(right-hand ROC), meaning the age adjustment does not generalise from the training set.

ively (Figure 2.24).

The predictive performance of disease class between the test and validation

data is very similar, showing the age adjustment does not damage the relevant

signal. However, it is still possible to predict the age of the diseased samples so the

disease signal is still confounded by age. Furthermore there is large uncertainty on

the sample age AUCs due to the small sample size. Further investigation thus puts

us at risk of discovering a false positive, so we do not attempt further to compensate

for age.

Discussion

We developed a model on the training set and achieved 100% predictive accuracy

when applying this to a validation dataset. However this was misleading and the

model likely has no ability to detect disease, and would not generalise. The reason

for this result was that the data for the control and disease classes were stored for

di↵erent lengths of time, and the amount of time in storage could be detected by

the electronic nose.

We attempted to remove the signal related to the sample storage time by

fitting a model to how samples degrade over time and subtracting this from the

data. However we were unable to find a good model that could generalise well to

points not used in model development. Furthermore, even if it did appear that

we had removed the sample age signal whilst retaining good disease prediction this

would still not give us confidence in the ability for the electronic nose to detect

diabetes. The reason for this is that one can never be absolutely certain of having
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removed all age related signal from the dataset.

The primary lesson from this analysis is that study design is important. The

study was designed and run without consulting a statistician, who would likely have

discovered the issue with sample age counfounding at an earlier point. To have

confidence in a positive result, the sample disease class (diabetic/healthy) must not

be predictable from the sample collection date, storage time or run date, nor from

any other demographic information.

The apparently good result was only discovered to be false from actively

searching for confounding factors. This kind of rigour is necessary to avoid mislead-

ing results such as those described here entering the body of scientific literature.

As illustrated here, using a subset of the data from a single experiment to

evaluate generalisation performance can still be overly optimistic. Here the train-

ing/validation split was used, but since these were subsets of one dataset generated

by a single ongoing experiment, the same experimentally-induced invalidities existed

in both splits. Had a separate experiment been performed, the model would have

performed poorly on the new data. The validation set would ideally be generated

from such a separate experiment, though this may be time consuming and costly.

Useful insights can still be drawn from this study. The di↵erence between

the older control samples and the younger diabetic samples was not measured by a

single sensor, but was distributed across many, perhaps all. ICA performed well at

extracting this information, and this may generalise across datasets.

This dataset was used in Esfahani et al. [2016], who investigate how the

FAIMS signal from urine is impacted by the time of the urine in storage, and suggest

that urine samples be stored for no more than 12 months, ideally 9, before headspace

measurement by FAIMS.

2.3.6 Bacterial Vaginosis

This section describes an exploratory data analysis using FOX4000 E-nose meas-

urements of 66 vaginal swabs. Three diseases were investigated: Bacterial Vagin-

osis (BV), Group B Streptococcal infection (GBS) and Candidiasis (candida). The

primary goal of the analysis was to distinguish between the three diseases, as well

as to distinguish between diseased and healthy control samples.

The samples were collected and run in two batches, the details of which

are summarised in Table 2.6. The batches were used as training and validation

datasets, containing 29 and 37 samples respectively. This is a more robust test of

the generalisation properties of the classifier compared to a random split; if a model

selected on the training set performs well on a validation set generated by a di↵erent
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Dataset BV GBS Candida Control Total Collected Run

Training 5 3 6 16 29 10/6/15–
22/7/15

24/8/15–
26/8/15

Validation 8 5 5 23 37 05/8/15–
30/9/15

13/10/15–
20/10/15

Table 2.6: Case counts and collection/run date ranges for training and validation datasets.
The “total” column is less than the sum of the “BV”, “GBS”, “Candida” and “Control”
columns as some patients were found to have multiple diseases.

experiment, then this shows that the model is robust to batch e↵ects, which would

be required in a real world application.

The headspace of each swab was measured twice; once dry, and once after

the addition of potassium hydroxide (KOH) solution. The standard diagnostic pro-

cedure for BV involves identification of a fishy odour after addition of KOH [NGC,

2012], so we may expect a-priori that addition of KOH helps with E-nose BV dia-

gnosis.

There are a number of classification tasks of interest. Accurate classification

of the type of infection would be clinically useful. Furthermore, if the precise disease

can be identified this shows that the E-nose is able to detect disease specific signal

instead of simply being able to distinguish well from unwell patients. Candida is

a fungal disease whilst BV and GBS are bacterial, so it is of interest to test if

the electronic nose can distinguish fungal from bacterial infections, which require

di↵erent medical treatments. However, testing a large number of hypotheses on a

small dataset is likely to lead to false positives. We thus focus on discriminating

between Candida-positive samples and all other samples, since this is the largest

class available and being the only fungal disease it may be the easiest to detect.

Data pre-processing

The raw data are plotted in Figure 2.25. The very left of each sub-plot shows

the sensor response value before any gas is passed over the sensor. This di↵ers

between di↵erent samples, but ideally would be the same. This additional source

of variation is removed by subtracting the starting value from each sensor trace,

causing each trace to start at zero. We also then divide each sensor trace by its

standard deviation, as we find that this also correlates with the starting value. The

sensor traces after this pre-processing stage are shown in Figure 2.26.
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Figure 2.25: Left: dry. Right: KOH treated samples. Each box is a single sensor, where the
sensor response for every sample is shown. Di↵erent samples start with di↵erent baselines,
though this value is reported by the sensor before any sample is seen. The value of the baseline
a↵ects whether the sample under or overshoots the baseline at the end of the time-series.
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Figure 2.26: Left: dry. Right: KOH treated samples. Sensors are standardised by sub-
tracting their initial value and scaling all time-series’ to have standard deviation 1. Some
sensors return to a value other than their original baseline.
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Figure 2.27: The “Peak Height” model represents an entire sensor trace as the di↵erence
between the initial value and the peak height.

Peak height and sensor level models

The FOX4000 has 18 separate sensors, each responsive to a di↵erent property of

the gas being measured. In theory, the sensor response sits at some baseline value

and, once the gas being analysed starts being passed over the sensor, the sensor will

ramp up to some maximum value dependent on the gas. Once the gas stops being

passed over the sensor, the sensor response will return to the baseline value. This

turns out not to always hold true in practise, as is discovered during the analysis.

The output from the FOX4000 is a time-series of sensor responses for each

sensor. Each sensor is sampled 181 times during the run, giving a 181 dimensional

measurement from each sensor. However, the sensor response is quite simple and

can likely be summarised in a much smaller number of dimensions, producing a

low dimension feature representation of the sensor response. We investigated two

“sensor level models” in this analysis, which consider each sensor independently, and

use prior knowledge of the physics of the sensors to compute a small set of features

summarising the response time-series.

The sensor level models here have been constructed specifically for extracting

features from an electronic nose sensor response time-series. This contrasts to using

flexible and widely applicable feature learning techniques with many parameters

such as PCA and ICA. Such techniques do not incorporate our prior knowledge of

the sensor physics, but may learn structure that we did not think to look for. These

are investigated after the sensor level models.

The simplest sensor level model we refer to as “Peak Height”, which rep-

resents a sensor trace as the di↵erence between the baseline sensor value and the

sensor value at the peak signal. This is illustrated in Figure 2.27. The Peak Height

model makes the assumption that all of the information in a single sensor trace is
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Figure 2.28: The Lorentzian model for a single sensor as described by Equation 2.2. The
two curves correspond to di↵erent parametrisations in the model.

contained within the height of the peak. All other information, including the rate

of change of the signal, the final value in the tail of the signal, and all other shape

information, is discarded. This is an interesting hypothesis to test, and if the model

performs poorly compared to others which do take this additional information into

account, this tells us that there is information in the signal other than the simple

height of the peak value. Since this reduces each sensor trace to a scalar, the Peak

Height model reduces the full dataset to 18 dimensions (one dimension per sensor).

The Lorentzian Model and unexpected sensor behaviour

Feature extraction was also performed using the Lorentzian model [Carmel et al.,

2003], which is a model with 4 parameters. The Lorentzian model is specifically

used for feature extraction of electronic nose data, so is less general than methods

such as PCA but may be interpreted as using prior information about underlying

physics of the measurement process. We thus have reason to expect good results.

The form for the Lorentzian model is as follows. Ri(t) is the response of the

ith sensor at time t.

Ri(t) =

8
>>><

>>>:

0, t < ti,

�i⌧i tan�1
⇣
t�ti
⌧i

⌘
, ti  t  ti + T,

�i⌧i

h
tan�1

⇣
t�ti
⌧i

⌘
� tan�1

⇣
t�ti�T

⌧i

⌘
,

i
, t > ti + T

(2.2)

This is illustrated in Figure 2.28. The 4 parameters of the Lorentzian model are

ti, �i, ⌧i and T . These are readily interpretable, which helps with setting initial
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Figure 2.29: Many of the sensor time-series do not behave as expected, and thus are fit
poorly by the Lorentzian model. Here the worst fitting time-series are given. Left: Dry.
Right: KOH.

values:

1. ti is the time the gas being analysed starts to pass over the sensor.

2. �i is related to the amplitude of the signal. The maximum value attained in

the Lorentzian model is Ri(T ) = �i⌧i tan�1
⇣

T
⌧i

⌘
.

3. ⌧i is the decay time of the signal.

4. T is the time at which the signal reaches its maximum value, and is also the

time at which gas stops being passed over the sensor.

The Lorentzian model was fitted to each 1d sensor time-series by minimising

the sum of squares error using the R package optimx [Nash and Varadhan, 2011].

This is quite sensitive to the initial guesses of the 4 parameters of the model, but

the interpretability of the parameters helped formation of a sensible initial guess.

The Lorentzian model did not fit the data well as it assumes that after the

gas has stopped being passed over the sensor, the sensor value returns to 0. This is

not the case since many of our sensors over-shoot their original value. Because of

this we discard the tail of the data; The Lorentzian model is only fit up until the

point where the sensor response has returned to 50% of its peak value. Some of our

fits are poor (Figure 2.29), others are quite good if we do not consider the tail of

the sensor trace (Figure 2.30).

Comparing the sensor traces for the best and the worst fitting Lorentz model

cases, it can be seen that the possible variation between sensor traces may be quite

complex without an obvious parametric form. This justifies the use of more flexible

techniques such as ICA, which is considered below.
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Figure 2.30: Ignoring the tail (values after the trace has returned to 50% peak value),
some sensors are well described by the Lorentzian model. The best fitting sensor time-
series’ are given for the dry (left) and KOH (right) data. The tail does not fit well because
the Lorentzian model (blue line) cannot cross 0, so we have only fit the data up until the
signal has decreased to 50% of its peak value.
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pairs of feature extraction methods and classifiers under investigation. 4 dimensional ICA
is selected using this plot; this gives the most stable performance and the greatest minimum
AUC. The Random Forest classifier is also selected. Some points for the Sparse Logistic
Regression classifier are absent because identical predictive probabilities were produced for
all samples, and thus a meaningful ROC could not be computed.
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Training set model selection

Using the training dataset, we select a dimension reduction and classification pipeline.

We attempt 4 di↵erent classification techniques: the Lorentzian model, wavelets

paired with supervised feature selection, ICA and Peak Height. The dimension re-

duction is selected pairwise with one of the classifiers: Sparse Logistic Regression,

Random Forest, Gaussian Process Classifier and Support Vector Machine. Selection

is done by investigating AUCs produced in cross-validation on the training dataset

for classifying candida vs non-candida. AUCs are compared in Figure 2.31.

The Lorentzian model and Peak Height are both described above. The wave-

let transformation is a 1 dimensional version of that used in the FAIMS pipeline

(Section 2.2.2), using the same Wilcoxon rank-sum supervised feature selection to

2 dimensions within the cross-validation stage.

The feature learning stage selected is ICA to 4 dimensions, which gives the

most stable AUCs in Figure 2.31, and also the greatest minimum AUC. The Ran-

dom Forest classifier is selected due to being the best performing classifier given

the 4d ICA dimension reduction. This happens to be the same pair of methods as

selected in the previous E-nose study done for this thesis (Section 2.3.5), though

further investigation would be required to show if this is meaningful or not. We do

not simply select the highest performing feature extractor/classifier pair since this

is a small sample study and there is a high variance on these AUC estimates; we

opt instead for a stable choice.

High training AUC variance

There is large variance in the LOO-CV training AUCs (Figure 2.31). Further

investigation shows that the fastICA package used to perform ICA is nondetermin-

istic, and predictive performance is sensitive to the seed used in fitting. This may

explain some of the variance in AUC between di↵erent latent dimensionalities for

ICA.

The high variance between classifiers within a single feature extraction method

is more puzzling, but may be explained by the small training data set size (6 can-

dida, 8 non-candida), and the fact that 3 of the classifiers used are highly flexible,

so may exhibit high variance.

The high-variance AUC estimate makes it di�cult for us to choose a feature

exctraction method and classifier. Since the goal here is to select a model (as

opposed to evaluating performance), using bootstrap resampling instead of LOO-

CV may reduce the variance of the estimate [Kuhn and Johnson, 2013, Section 4.7]
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Figure 2.32: ROC curve for candida/non-candida classification obtained by learning an
ICA feature space transformation followed by a Random Forest classifier trained on the full
training data, and applied to validation data. The mean AUC is not clinically significant,
but there is also large uncertainty on the AUC estimate due to small samples sizes. Since
the 95% confidence intervals on the AUC contain 0.5, we cannot confidently say that the
FOX4000 with the statistical pipeline developed here is able to distinguish at all between
candida positive and control swabs.

and allow us to to better pick a model, especially if the feature learning stage is

performed each bootstrap.

Results on Validation Dataset

We use the validation dataset to evaluate the performance of the selected statistical

pipeline. The training and validation datasets are pre-processed as above. It is

important that the training and validation sets are scaled separately due to batch

e↵ects, which are discussed below. This is statistically valid to do since we are not

using the disease label information in performing the separate standardisation.

We transformed the validation data to a 4 dimensional feature space by

applying the same ICA transformation that we learned from (and applied to) the

training data above. Then, using the Random Forest classifier trained on the feature

representation of the full training dataset, we produce predictive probabilities for

each feature representation of the validation set coming from a sample with candida.

Combining these predictive probabilities with the known disease labels, we produce

the ROC curve presented in Figure 2.32 and obtain an AUC of 0.6 (95%CI 0.24–

0.96).

Since 0.5 is well within the 95% confidence interval on the AUC, we cannot

confidently say that the E-nose with our pipeline is able to distinguish between

swabs from patients with and without candida.
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(a) Sensor responses for dry samples
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(b) Sensor responses for KOH samples

Figure 2.33: There is a visual di↵erence between the sensor responses on the training data
(red) and validation data (blue). Each plot shows the responses of all sensors on all samples.
Plot Figure 2.33a shows the sensor responses for the dry samples, and Figure 2.33b
shows those for the KOH samples. The di↵erence between training and validation data is
most noticeable on the KOH samples.

It appears that our statistical power is low, which we expect since the sample

size is small. This produces large uncertainty on the AUC in Figure 2.32, and we

make the decision not to pursue attempts at prediction any further. Although there

are more questions of interest to ask this dataset, this kind of multiple hypothesis

testing can be dangerous. By repeatedly coming up with new hypotheses (e.g.,

ability to discriminate bacterial from fungal infections) and testing if the hypothesis

holds true, we may end up with a result that looks positive but is simply a statistical

fluctuation. Thus, even if we were to get good results after more iterations on the

statistical pipeline, confidence in the result would be low due to multiple hypothesis

testing. Such a process is known as “p-hacking”, where a researcher may, inten-

tionally or not, keep generating hypotheses until a statistically significant p-value

is found. The final result is then often published without detailing the process that

has taken place, producing a published result that cannot be replicated. This is a

known issue with a large amount of literature, and is discussed by Ioannidis [2005].

Investigating batch e↵ects
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(a) Sensor responses for dry samples
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(b) Sensor responses for KOH samples

Figure 2.34: The separation between training and validation samples remains after stand-
ardisation. The change in sensor response between batches was more than just a shift and
a scale. E.g., in row 4, column 1, it can be seen that the validation set curves (blue) end
further from the baseline than the training curves.
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Figure 2.35: Samples run in di↵erent batches have di↵erent baselines (sensor response
values before a sample is measured). The y-axis shows the baseline value for sensor 1 (top
left in Figure 2.34, Figure 2.33). The x-axis is the hospital assigned sample ID. Points
are coloured by the day on which they were measured by E-nose. A clear nonlinear change
in baseline between batches can be seen.

Investigation reveals batch e↵ects which make it challenging to generalise

from the training dataset to the validation dataset. By plotting the raw time-series

of every sensor for every sample in Figure 2.33, and colouring by membership of

the training/validation dataset, a separation can be seen. It is not known what

causes this separation between training and validation dataset, but it may be due

to di↵erences in experimental procedure, di↵erences in background signal, or sensor

contamination/drift.

The batch e↵ects appear mostly as a shift of entire sensor responses by a

fixed amount over time. Using the same standardisation procedure as above such

that all sensors start at the same value removes this, producing Figure 2.34. The

training data still reach a smaller peak on average than the validation data, des-

pite being standardised separately. This is due to the unexpected overshoot of the

sensors when returning to their initial values contributing to the standard deviation.

Compensating for such batch e↵ects thus requires a more sophisticated model. This

illustrates another di�culty in practical implementation of electronic nose systems

for diagnosis: the response to the same headspace may be di↵erent at di↵erent times.

Investigating sensor drift

The baseline value of the sensors at time 0 – before the gas to be analysed is

presented – changes between samples. This is surprising and may a↵ect our ability

to generalise, since the e↵ect is not just limited to shifting the sensor response but

also changes the trajectory of the return to baseline value.
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The batch e↵ects are not limited to the training and validation sets, but

a↵ect the sensors on a daily basis. This is illustrated in Figure 2.35, which shows

that samples run on the same day have similar baselines, and this baseline changes

per day. Points are coloured by the day they were run, and the x-axis shows the

IDs assigned to each sample by the hospital; it appears samples were likely run se-

quentially by ID. The y-axis shows the starting value of the sensors for dry samples.

Clearly the sensor baseline changes day by day, and may also drift to a lesser ex-

tent throughout the day. It appears likely that the sample with ID 400 has been

mislabelled as being run on 24/8/15.

There is more consistency in the validation set than the control set, with

almost no change in baseline between the batch run on 15/10/2015 and that run

on 20/10/2015. If there was a change in experimental process around this time it

would be interesting to know what it was. It is not known what causes this change

in baseline, but it is clearly nonlinear. It is also the case that the majority of the

change occurs whilst experiments are not being run.

Conclusions

A study was performed to distinguish Candidiasis-positive patients from Candidiasis-

negative patients using E-nose measurements of vaginal swabs. A prediction pipeline

constructed on a batch of samples did not generalise well to a second batch of

samples. Further investigation revealed large batch e↵ects which would explain this

poor generalisation.

Large uncertainty was repeatedly encountered. Model selection was di�cult,

with large variation in predictive accuracy depending on the classifier used. The

validation AUC produced by the final model had wide 95% confidence intervals

including AUC=0.5.

It was found that the sensors do not behave as expected. After the gas

being analysed is no longer present, many sensors fail to return to their baseline

value and may under or over-shoot the baseline. This means the Lorentzian models

fail to fit the data. The baseline value also changes over time, a↵ecting the sensor

behaviour, meaning that correcting for this di↵erence is not trivial. The change in

baseline value is not a simple function of time or experiments run, and may involve

experimental procedures or environmental conditions, so may be di�cult to correct

for.
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Figure 2.36: Left: Raw output from the Flavourspec measurement of a single sample.
Right: By taking the logarithm of the output more detail in the form of multiple peaks can
be seen.

2.3.7 Discriminating Diabetes from Obesity

This section describes the first analysis performed with the Flavourspec GC-IMS in-

strument (Section 2.2.3) at the University of Warwick. The experimental and data

analysis parts of the analysis are thus largely exploratory, and a simple investigation

of the data was performed before attempting more complex techniques.

This was a small sample study of 56 urine samples (29 diabetic, 27 obese).

The goal of the study was to discriminate between the diabetic and obese patients

using urine headspace measurements. No training/validation data split was used

since doing this previously on similarly sized data sets lead to problematically low

statistical power. Instead, cross-validation was used to evaluate performance.

Due to the similarity of the structure of the Flavourspec data with that of

the FAIMS data, a statistical pipeline similar to that developed for the FAIMS was

produced. The high dimension of the Flavourspec data (25713000 features) meant

that additional computational considerations were required.

The data

The Flavourspec measures a gas by first performing Gas Chromatography (GC)

followed by Ion Mobility Spectrometry (IMS). The molecules in the gas are first

separated by GC. This 1d separation of the original gas is then discretised into 5714

compartments, and each compartment is measured by IMS at 4500 points. This

produces a 2d grid of positive real valued IMS signal intensity. The output of the

Flavourspec for single sample is illustrated in Figure 2.36.

Each sample is 5714⇥4500 = 25713000 dimensional; representing each value

as a double precision (8 byte) floating point number means the data are 25713000⇥
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Figure 2.37: (a): Summing up each of the columns of a single Flavourspec measurement
allows a single sample to be represented by a single curve, allowing the visual comparison
of many samples. (b): Zooming the x-axis on the region of largest signal variation, a
“bump” around column number 1230 can clearly be seen which may potentially distinguish
the diabetic and obese samples.
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Figure 2.38: Zooming further into the “bump”, it can be seen that only 5 of the 27 obese
samples are in the bump.

8bytes ⇡ 0.2GB per sample. The full dataset of 56 samples is thus 11.5GB, which is

large enough for the dataset to require special treatment when loading into memory

to avoid computational di�culties on a modern laptop.

Investigating the dataset

The dataset is first investigated for any simple and clear structure before moving

on to more advanced techniques. Learning about the distribution of diabetic and

obese samples by visually comparing the 2d images (such as Figure 2.36) of all 56

samples is di�cult. By summing up along the columns a 1d curve is obtained, which

is simpler to compare between samples as multiple curves may be plotted. This is

shown in Figure 2.37a where curves are coloured depending on if the corresponding

sample was from a diabetic or obese patient. Figure 2.37b shows the same plot

with the x-axis restricted to the region in which most of the signal variation occurs.
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Figure 2.39: Looking at the bump height of each sample, it can be seen that the bump
was likely an experimental artefact which disappeared overnight. A slow linear drift towards
reduced sensor response is also apparent.

To the right of Figure 2.37b a bump of blue (obese) curves can be seen.

Zooming in on this region we obtain Figure 2.38, revealing that the bump does

not distinguish diabetic from obese samples; only 5 of the 27 obese samples are in

the bump. By considering only column 1231 (containing the top of the bump), the

bump height of each curve can be plotted on the y-axis, and samples ordered along

the x-axis by the order in which they were run. This gives Figure 2.39, where

points have been coloured by the day the sample was run, and the point shape

shows the class of the sample. It can be seen that all samples forming the bump

(sample numbers 4–7) were run sequentially and on the same day. The bump is

likely due to a factor a↵ecting the experiment; this could be sensor contamination,

a change in background signal or any other unknown factor. Importantly it seems

unlikely that this bump is predictive of anything we might be interested in.

Figure 2.39 also shows that the sample classes are well mixed after the first

day when only obese samples were run. There also appears to be a slow, linear

drift of reduced sensor response over the 7 days the experiment was being run. This

drift appears to depend more on the number of samples run than the time that has

passed, since there is no jump between the samples run on 06/11/15 and those run

on 10/11/15. If the sample classes were mixed on the first day, a diabetic sample

would likely have fallen within the bump. Depending on whether this hypothetical

point also formed part of the bump, this would have provided strong evidence either

for or against the hypothesis that the bump is non-predictive.

The change in the mean signal over time was investigated by summarising

each sample as the mean of the sensor response, giving Figure 2.40. This reveals
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Figure 2.40: The mean signal from the Flavourspec output for each sample is plotted.
Samples are placed on the x-axis in the order they were run. The mean signal drifts over
time, with large jumps between days. There is no obvious di↵erence in the mean signal
between diabetic and obese samples.

clear batch e↵ects as well as a within-batch drift. Such batch e↵ects can make

predictions di�cult. However, given flexible machine learning techniques and data

from su�ciently many batches, it can still be possible to learn a model able to

produce accurate predictions in spite of batch e↵ects.

Adapting the wavelet decomposition pipeline

A statistical pipeline has previously been developed for the FAIMS based on per-

forming a wavelet decomposition to the smooth 2d FAIMS data and using the wave-

let coe�cients as features. Inside a cross-validation loop, 2 of the wavelet coe�cients

are selected using the Wilcoxon rank-sum supervised feature selection technique, and

these features are used to train a classifier and predict the class of the out-of-fold

points.

The FAIMS data and the Flavourspec data have common structure in the

2d, smooth representation of each sample. Thus, there is reason to believe that the

FAIMS pipeline, when adapted to the Flavourspec data, may perform well.

Loading and decomposing the data

For computational reasons we chose to sequentially load each sample, performed a

wavelet decomposition on that sample, and set any wavelet coe�cients smaller than

a threshold to zero, giving a sparse feature representation of the sample. To pick

the threshold we loaded a single sample and decomposed it into wavelet coe�cients.
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Figure 2.41: A Histogram of the log absolute values of the wavelet coe�cients used to
represent a single sample shows bimodality. A threshold of 10�0.95 is chosen (red line) and
all wavelet coe�cients with a magnitude smaller than this are set to zero.

Showing a histogram of the log of these coe�cients in Figure 2.41, a bimodality

can be seen where wavelets contributing a lot to the Flavourspec measurement are

separated from those which contribute very little. A threshold is selected at the

trough between the two modes.

The number of wavelet coe�cients before thresholding is 1398101. We set all

wavelet coe�cients with absolute values less than 10�0.95
⇡ 0.11 to zero, producing a

sparse matrix with 160334 non-zeroes. This is 11.47% of the original dimensionality,

requiring 1.2Mb per sample.

The appropriateness of this level of compression was checked by reconstruct-

ing the 2d Flavourspec output from the sparse coe�cients, which is illustrated in

Figure 2.42. These are visually very similar to the raw data in Figure 2.36, and

by eye there are no important features that have been lost. Comparing the raw data

to that recovered from the sparse wavelet coe�cients, the root mean squared pixel

error is 5.5⇥ 10�3, which is small compared to the mean pixel intensity of 0.83.

All samples were then loaded into memory, sequentially being wavelet de-

composed, thresholded, and added to a sparse matrix containing all samples. Any

columns of this matrix (corresponding to coe�cients for a single wavelet) containing

fewer than 6 non-zeroes were removed. This removed 2833 columns, leaving 11125

dimensional data which can comfortably fit in memory on a modern laptop. We also

dropped any columns with a standard deviation below 10�1.9, dropping a further

6101 columns. This is a sensible feature selection step as we do not expect regions

of the Flavourspec measurement plane which vary very little to be informative with

respect to sample classification. A histogram of column standard deviations along
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Figure 2.42: To check the suitability of the threshold chosen, the measurement has been
recreated from the thresholded wavelet coe�cients. Comparing this to Figure 2.36, no
important features have been lost.

Figure 2.43: Here we plot the residuals between the wavelet reconstructed data in Fig-
ure 2.42 and the original data in Figure 2.36. No structure of importance can be seen in
the residuals.

with the threshold is given in Figure 2.44.

Predictive accuracy

After being processed as above the data were of dimension 149683. Due to the small

sample size of 56, and having been a↵ected by low statistical power in previous

similarly sized studies, we opted not to use a separate validation set and instead

10-fold cross-validated on the full dataset to produce predictive probabilities.

As with the pipeline developed for the FAIMS (Section 2.2.2), this cross-

validation includes a supervised feature selection stage. The feature selection stage

happens before the classification stage, and uses only the labels from the training

data. For each feature, the R implementation of the Wilcoxon rank-sum test [R Core

Team, 2014] is used to test the null hypothesis that the diabetic and obese samples
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Figure 2.44: Histogram of standard deviations logarithms (base 10) of wavelet coe�cients.
This is constructed after removing any wavelets with fewer than 6 samples with absolute
coe�cients above the threshold of 10�0.95. The red line shows another threshold; any wavelets
with standard deviations below 10�1.9 are dropped.
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Figure 2.45: AUCs obtained in a 10-fold cross-validation loop of statistical pipeline de-
veloped for Flavourspec. These particular ROCs retain 5 features prior to classification,
however varying this from 2 to 12 does not significantly change the ROC curves. No stat-
istically significant ability to predict the sample class was discovered.

were selected from populations having the same distribution [Hollander et al., 2013].

This produced a p-value for each feature, and we dropped all features except those

with the smallest p-values. That is, we retained only the features which appear to

be the most discriminative. The number of features to retain was varied from 2 to

12.

Finally, to produce predictions we used the set of 4 classifiers: Random Forest

[Liaw and Wiener, 2002], SVM [Karatzoglou et al., 2004], Sparse Logistic Regression

[Friedman et al., 2010] and Gaussian Process Classifier [Rasmussen and Williams,

2005; Karatzoglou et al., 2004]. We were not able to achieve any statistically sig-

nificant or clinically significant AUCs from any pair of feature learning techniques

and classifiers; all were similar to those given in Figure 2.45.
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Conclusions

During this study no model was found that could accurately discriminate between

samples from diabetic and obese patients in cross-validation. If there is any signal

in the data, we have not been able to discover it. It may be the case that this was

due to a flaw in the experimental procedure.

Using 2d wavelet transformation and coe�cient thresholding we have been

able to compress the Flavourspec data whilst minimally impacting the measure-

ment reconstructions. However, we do not know if this will generalise to samples

containing greater signal.

2.3.8 Summary

This section has detailed the analyses on artificial olfaction data performed for this

thesis. The subsections are presented in chronological order of the analyses. The

Whiskey study was performed first, which is the only study in which the entire

process—pipetting samples and operating the FAIMS—was performed by the au-

thor. This was an illuminating exercise, highlighting a number of unexpected sources

of variance: consistency of pipetting and dilution quantities, sensor contamination

from previous samples and variance in decontamination times (the first sample in

the day is e↵ectively uncontaminated), and ambient temperature/humidity/odours.

It was interesting that the whiskey that the statistical pipeline was best able to

discriminate from the others was that which most humans would also also find

the most unique (the peated whiskey). The fact that 100% classification accuracy

was achieved in that case indicates the potential strong discriminative potential of

FAIMS.

FAIMS was investigated as a possible method of diagnosing IBD, and for

distinguishing between two IBD sub-types. Breath from 53 IBD patients (29 UC,

24 CD) and 11 healthy volunteers was collected in an IBD clinic and transported to

Warwick University for analysis. For discriminating between the IBD-positive pa-

tients and healthy controls we obtained an AUC of 0.82. For distinguishing between

IBD sub-types we obtained an AUC of 0.68. The moderate ability to distinguish sub-

types indicates that disease-specific signal exists within the FAIMS measurement,

and the ability to diagnose IBD is not based entirely o↵ some general indicator of

poor health, such as inflammation or immune response.

Breath samples of 21 TB patients and 19 healthy controls were collected,

and an AUC of 0.83 produced in classifying the samples within leave-one-out cross-

validation.
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A study into Hepatic Encephalopathy diagnosis was performed, with 13 cov-

ert HE, 9 overt HE, 20 healthy control samples. Breath samples were collected

within the hospital and analysed with uvFAIMS. The standard pipeline lead to

ability to distinguish HE samples from control samples with an AUC of 0.84, and

discrimination between the HE sub-types with an AUC of 0.71. Including addi-

tional unlabelled FAIMS data in the feature learning stage increased the AUC to

0.96. This was a relatively small sample study, so error bars on all the AUCs are

quite large.

A larger study into type 2 diabetes was performed using the E-nose to ana-

lyse the headspace of patient urine. Urine samples were collected from 41 type-2

diabetic patients and 48 healthy control volunteers. This study initially looked

promising, producing an AUC of 1 on a held-out validation set. However, it was

later discovered that the control samples and the diabetic samples had been frozen

for di↵erent periods of time, and the pipeline had likely only learned to classify

samples based o↵ the amount of VOC degradation having occurred in storage, and

not based o↵ any disease-specific signal. Useful lessons were still learnt from the

study: useful signal is likely spread across multiple sensors, it is important to con-

sider possible confounders in study design, and a validation set should ideally come

from an independent experiment.

A set of vaginal swabs were taken from patients with Bacterial Vaginosis,

Group B Streptococcal infection and Candidiasis. These were collected and analysed

with the E-nose in two batches, which were used as a training dataset and a held-

out validation set. A predictive pipeline was trained on the training set but did

not generalise to the validation set, which was determined to be due to large batch

e↵ects. Further investigation may have been interesting, but small sample size and

low statistical power meant searching for results would likely have uncovered false-

positive conclusions.

Urine from diabetic and obese patients was taken to be analysed by the

Flavourspec—a GC-IMS instrument. The Flavourspec output is extremely high

dimensional and requires special considerations because of this. Unfortunately, the

data do not appear to contain any appreciable signal for distinguishing between the

two classes. However, a pipeline similar to that for the FAIMS (Section 2.2.2) was

developed, which appears to compress the data with little signal loss, and may be

used in later studies.
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Chapter 3

Structured PCA: Theory

This chapter introduces the novel unsupervised learning method which we call Struc-

tured PCA (StPCA). This model is closely related to PCA, and builds upon the

Probabilistic PCA (PPCA) model introduced by Tipping and Bishop [1999]. An

implementation of StPCA has been made available in the R package stpca hosted

at https://github.com/JimSkinner/stpca. Documentation for this package has

been included in Appendix C.2.

Given a set of d dimensional data, StPCA learns a latent representation of

the data, meaning each sample is represented in k < d dimensions. In doing this,

StPCA also learns a covariance structure across the measured variables. The d⇥ k

loadings matrix W will be the focus of much of the chapter, and plays the role of

mapping the k-dimensional latent space to the d-dimensional observation space. As

we will see, W also describes the covariance structure modelled by StPCA, and the

columns of W are closely related to the Principal Components (PCs) in PCA.

The novel contribution of StPCA is that the user may specify a Gaussian

Process prior over the loadings, which reduces to specifying a covariance function.

It is assumed that each dimension is associated with a ‘location’ variable, such as

the relative location of pixels in an image. A Gaussian posterior is then inferred

and Bayes factors may be computed, enabling model selection for the value of k

and the choice of covariance function used, as well as tuning of covariance function

hyper-parameters.

StPCA can play a role in an analysis similar to that of PCA. We use StPCA

in this thesis as a feature extraction method. High dimensional samples are reduced

in dimension by considering their latent representations as learned by StPCA. As

well as moving to a latent space, the first few columns of the loadings – analogous

to the PCs – can also be of interest to a researcher since they inform about the
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structure of variations in a given problem.

StPCA also enables a Normal approximation to the posterior over the load-

ings. By examining the covariance of this uncertainty reported by StPCA, a re-

searcher can better quantify the certainty of any conclusions drawn and understand

to what extent the covariance structure is well specified by the data. In contrast,

classical PCA produces only a point estimate of the PCs. StPCA would thus be

helpful in cases where we would like to quantify our uncertainty.

StPCA is a probabilistic, graphical, linear latent variable model paired with

an e�cient algorithm for approximate posterior inference. This algorithm is de-

terministic and iterative, and does not use rejection sampling or other Monte Carlo

techniques for inference. Instead, approximations are made, producing a Gaussian

approximation to the posterior, and tractable computations.

This chapter is structured as follows. Section 3.1 formally introduces the

StPCA model and discusses how the Laplace approximation may be used to com-

pute an approximate posterior and evidence, enabling uncertainty quantification

and model selection. Section 3.2 goes in to more detail about how to construct the

prior, and its relation to Gaussian Processes and covariance functions. Section 3.3

derives the computations required to perform inference. Section 3.4 discusses how

PCA may be recovered as a special case of StPCA, and Section 3.5 concludes.

3.1 Model

A design matrix of zero-mean observations X = [x1 · · ·xn]
>
2 Rn⇥d is assumed

provided. The number of observations is denoted n, and the dimensionality of the

observations is d. Each xi for i 2 1 · · ·n is a column vector of length d representing

a single sample.

In the StPCA model, each xi is paired with an unobserved latent variable

vi 2 Rk where k < d is the dimensionality of the latent space. V is the n ⇥ d

matrix where the ith row is vi. The mapping from latent space to observation space

is linear and represented by the parameter W 2 Rd⇥k, the ith column of which is

referred to by wi. The parameter �
2 controls the magnitude of the noise in the

modelled data generating process. Each feature of X is associated with a location

variable, where the location for feature i is denoted ti. Prior covariance between

features is specified with a covariance function acting between each pair of features,

producing the d ⇥ d covariance matrix K� . Covariance function hyper-parameters

are denoted �.

95



vi

xi W

σ2

n
β

ti
d

Figure 3.1: Plate diagram for StPCA. This is equal to that for PPCA but with the addition
of the hyper-parameters � and the location variables t1 . . . td on which only the loadings W
depend.

3.1.1 Exact model

The joint probability over all random variables in the exact model has the factor-

isation

p(X,V,W,�
2
,�) = p(X|V,W,�

2)p(V)p(W|�)p(�2)p(�) (3.1)

=
⇥ nY

i=1

p(xi|vi,�
2
,W)p(vi)

⇤⇥ kY

j=1

p(wj |�)
⇤
p(�2)p(�) (3.2)

which corresponds to the plate diagram in Figure 3.1. Although p(W|�) depends

also on the location variables t1 . . . td, this is omitted from the syntax – as are d

and k – since these are fixed, non-random quantities.

Equation 3.2 contains the sub-product

nY

i=1

p(xi|vi,�
2
,W)p(vi) =

nY

i=1

p(xi,vi|�
2
,W) (3.3)

= p(X,V|W,�
2) (3.4)

which we call the complete data likelihood, as this is the joint likelihood of the data

and the latent variables given all parameters. The distribution of a single xi depends

only on the paired vi, and does not change when all other vj 6=i change. vi is thus

an unobserved latent representation of xi with dimension k  d.
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The model is defined fully by defining each of the terms in the factorisation.

p(xi|vi,W,�
2) = N (xi|Wvi,�

2I ) i 2 1, . . . , n (3.5)

p(vi) = N (vi|0, I ) i 2 1, . . . , n (3.6)

p(wi|�) = N (wi|0,K�) i 2 1, . . . , k (3.7)

p(�) / 1 (3.8)

p(�2) / �
�2 (3.9)

From Equation 3.5, the role of parameters W and �
2 can be seen. If we

know the model parameters and the latent representation of a sample, we obtain a

distribution over what the observation could possibly have been. The mean of this

distribution is obtained by applying the loadings W to project vi up to dimension

d. W is thus in Rd⇥k. There is �2 isotropic variance around this mean, which is the

same for every sample.

The term K� in Equation 3.7 is the prior covariance matrix and is a

function of the hyper-parameters �. We assume that each of the d dimensions of

the observed data space is associated with a location parameter ti, i 2 1 · · · d. K�

is then constructed by applying a covariance function C( · , · ;�) parametrised by �

to obtain the prior covariance between every pair of dimensions. Symbolically, the

i, jth element of K� is constructed as:

(K�)ij = C(ti, tj ;�) 8 i, j 2 1 · · · d (3.10)

As a simple example, say we are working with images such that each element

of an observation is the grey-scale intensity of a pixel, and ti is the location of pixel

i. Choosing a covariance function such as the Squared Exponential then encodes

the prior knowledge that nearby pixels have strong prior covariance, so are expected

to take similar values. When performing inference, this translates into encouraging

elements of each wi associated with nearby pixels to take similar values. A single

learned wi will then capture a smooth image, and a sample reconstruction Wv =
Pk

i=1w
>
i vi is built from a linear combination of these underlying images.

The marginal priors p(�) and p(�2) are improper. We assume the domain

of � is over the reals, so an uninformative uniform prior is appropriate. For �2, we

use the Je↵rey’s prior for a scale parameter [e.g, Jaynes, 2003, Chapter 12]. The

uniform prior over � does not present any problems since we do not integrate over

� at any point (we approximate the evidence with the marginal likelihood). We do

integrate over �2 in computing the marginal likelihood, which is improper; however,
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Variable Domain Meaning

n Z+ Number of observations.
d Z+ Dimensionality of observations.
k Z+

, k  d Dimensionality of latent variables.
xi Rd A single observation indexed by i 2 1 · · ·n.
X Rn⇥d Design matrix of observations; the ith row is x>

i .
vi Rk Latent representation of xi, i 2 1 · · ·n.
V Rn⇥k Matrix of latent variables. Row i is v>

i .
W Rd⇥k The loadings matrix which maps the k-dimensional

latent space up to the space of d-dimensional ob-
servations.

�
2 R+ The variance of the predicted distribution of an ob-

servation given its latent representation.
K� Rd⇥d Prior covariance matrix which encodes our prior

knowledge of the covariance structure of our obser-
vations. Depends on hyper-parameters �.

� Rn� Hyper-parameters controlling K� .
ti Rnt Location parameter associated with each of the d

dimensions of the observation space, i 2 1 · · · d.
C( · , · ;�) Rnt ⇥ Rnt 7! R Covariance function, parametrised by �, used to

construct K� : (K�)ij = C(ti, tj ;�) 8 i, j 2 1 · · · d.

Table 3.1: Variables used in StPCA

we do not deal with the true marginal likelihood and consider only the Laplace

approximation, the nature of which always produces a normalised distribution.

StPCA is related to the GP-LVM (Section 1.1.1), which also introduces

a Gaussian prior on W. The GP-LVM uses the prior p(W) =
Qk

i=1N (wi|0,↵I ),

which can be also be constructed in StPCA using the independent covariance func-

tion. Using this prior and integrating out the loadings leads to a linear Gaussian

Process mapping from latent to observaion space [Lawrence, 2004]. The di↵erence in

model between StPCA and GP-LVM is that the GP-LVMmay extend to a non-linear

latent-to-observation mapping by introducing a non-linear kernel in the Gaussian

Process mapping. However, with a linear GP-LVM the models are quite similar.

The inference procedures still di↵er in that StPCA marginalises out the latent vari-

ables and optimises the loadings, whilst the GP-LVM marginalises out the loadings

and optimises the latent variables.
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Calculating the likelihood

The likelihood of StPCA can be computed in closed form. Using Equations 3.5

and 3.6, we marginalise out the latent variables

p(xi|W,�
2) =

Z

Rk
p(xi|vi,W,�

2)p(vi) dvi (3.11)

=

Z

Rk
N (xi|Wvi,�

2I )N (vi|0, I ) dvi (3.12)

The same marginalisation is performed in PPCA [Tipping and Bishop, 1999, Equa-

tion 3]. Equation 3.12 has the form of a marginalisation over the mean of a

Gaussian with a conjugate Gaussian prior [Gelman et al., 2013, Section 2.4]. The

marginal distribution is thus Gaussian, so we only need to compute the mean and

covariance:

E
⇥
xi|W,�

2
⇤
= 0 (3.13)

cov(xi|W,�
2) = WW> + �

2I (3.14)

The derivation of these is bulky and has been moved to Appendix D.1.1. Using

these, this gives us the closed form likelihood

p(xi|W,�
2) = N (xi|0,WW> + �

2I ) (3.15)

Considering the covariance of this Gaussian, we see that k directions of vari-

ance are modelled by the rank-k matrix WW>, and each of these directions has

variance of at-least �
2 due to the addition of the �

2I term. The remaining d � k

directions all have variance of exactly �
2. If �2 is very small, the data are modelled

as laying on a degenerate Gaussian spanning only a k-dimensional subspace.

Latent Space

We have seen from Equation 3.5 that if we know the latent representation of a

sample, one can obtain a distribution over possible observations (repeated here, for

convenience):

p(xi|vi,W,�
2) = N (xi|Wvi,�

2I )

However, if we have some observations and are interested in their unobserved latent

representations, it is more natural to consider the posterior over latent variables:

p(vi|xi,W,�
2) = N (vi|M

�1W>xi,�
2M�1) (3.16)
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which uses the definition M = W>W + �
2I . Note that the di↵erence from C =

WW>+�
2I , being of order k  d. This may be computed by noting both p(xi|vi)

and p(vi) are Gaussian and using the rules of Gaussian conditioning [e.g., Bishop,

2006, Section 2.3.3].

Non-identifiability of W and V

StPCA has a non-identifiability in W and V. For any orthogonal matrix R 2 Rk⇥k,

making the substitution W ! WR does not change the likelihood nor the prior

(and thus the posterior). This is the case because R, by definition, satisfies RR> =

R>R = I , and W only appears in the likelihood and prior as WW>, which would

be substituted as WW>
! (WR)(R>W>) = WW>. The interpretation of this

is that W defines a subspace, and one can always change basis within this subspace

without changing the model.

Furthermore, when considering the complete likelihood in which vi also oc-

curs, these also appear only as the product Wvi, which also is invariant to the

substitution Wvi ! (WR)(R>vi) = Wvi. R captures rotations around the origin

in the latent space, as well as sign flips (reflections around the origin) and permuta-

tions of the columns of V. This tells us that there is no preferred orientation of the

latent space; one may always rotate and reflect the points in the latent space around

the origin, as long as the projection W from the latent to observed data space is

also modified.

3.1.2 Approximate Posterior and Evidence

The posterior and evidence of StPCA do not have closed form solutions, but these

distributions are both of interest to us. We show how we obtain approximations to

these, and to keep syntax clean we first introduce the parameter vector:

✓ :=
h
vec(W)

�2

i
(3.17)

which is a column vector of length dk+1 =: n✓ constructed by stacking the columns

of W and appending �
2.

Sine the evidence is intractable, we use the Empirical Bayes approximation

(detailed in Section 1.2.2), approximating the evidence as the marginal likelihood

with the maximum-marginal-likelihood hyperparameters:

p(✓|X) ⇡ p(✓|X, �̂), �̂ = argmax
�

p(X|�) (3.18)
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this avoids marginalising over the hyperparameter posterior, and instead selects just

a single value of beta.

Neither p(✓|X, �̂) nor p(X|�) are available in closed form. However, perform-

ing the Laplace approximation (Section 1.2.1) to the marginal likelihood gives us

both of these. We take the logarithm of the un-normalised posterior, Taylor expand

around the mode ✓̂ to second order and exponentiate, producing:

p(X|W,�
2)p(W|�)p(�2) ⇡ p(X|Ŵ, �̂

2)p(Ŵ|�)p(�̂2) exp

⇢
�
1

2
(✓ � ✓̂)>H�(✓ � ✓̂)

�

(3.19)

which requires computing the maximum a posteriori parameters

✓̂ :=
h
vec(Ŵ)

�̂2

i
= argmax

✓
p(X|W,�

2)p(W|�)p(�2) (3.20)

The matrix H� is the negative Hessian of the log posterior evaluated at the MAP

parameters ✓̂. We make the evaluation at � explicit in the subscript as this will

later need to be distinguished from the same matrix evaluated at �̂. H� is defined

element-wise as

(H�)ij := �
@
2 ln p(X|W,�

2)p(W|�)p(�2)

@✓i@✓j

���
✓=✓̂

(3.21)

which is a n✓⇥n✓ matrix. Although this is the negative Hessian of the log posterior,

the intractable normalising factor p(X|�) does not contribute. We thus only require

the prior and likelihood, both of which we have in closed form, enabling a closed

form for Equation 3.21.

The time complexity of computing |H� | is O(n3
✓) using the standard LU

decomposition [Trefethen and Bau, 1997, Lecture 20]. Storage and computation

may thus become challenging under large d, so we make further approximations to

H� . We define H̃� ⇡ H� as a block-diagonal approximation. H̃� has k+1 blocks: k

blocks of size d⇥d containing the covariance for each wi, and a single 1⇥1 block for

the variance of �2. These blocks are denoted Hwi
� 8i 2 1 · · · k and H�2

� . The form

for H̃� is discussed further in Section 3.1.2. Using this approximation only d
2
k+1

elements need to be stored, and the determinant may be computed e�ciently as

|H̃� | = |H�2

� |
Qk

i=1 |H
wi
� |. H̃�1

� may also be computed by separately inverting each

of the blocks.

The approximate marginal likelihood is obtained by integrating out ✓ from
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Equation 3.19. This is a Gaussian integral, giving the closed form solution

p(X|�) ⇡ p(X|Ŵ, �̂
2)p(Ŵ|�)p(�̂2)(2⇡)

dk+1
2 |H̃� |

� 1
2 (3.22)

Finally, the distribution p(W,�
2
|X,�) is related to those we have already

approximated via Bayes’ rule:

p(W,�
2
|X,�) =

p(X|W,�
2)p(W|�)

p(X|�)
(3.23)

which, substituting in the approximate distributions, is an un-normalised Gaussian

distribution divided by its normalisation constant, giving the Gaussian approxima-

tion:

p(W,�
2
|X,�) ⇡ N (✓|✓̂, H̃�1

� ) (3.24)

Now that we have approximate forms for p(W,�
2
|X,�) and p(X|�), we

obtain a posterior we can compute:

p(W,�
2
|X) ⇡ N (✓|✓̂, H̃�1

�̂
) (3.25)

this requires both �̂ (appearing in H̃�1
�̂

) and ✓̂.

✓̂ = argmax
✓

p(X|W,�
2)p(W|�̂)p(�2) (3.26)

�̂ = argmax
�

p(Ŵ|�)|H̃� |
� 1

2 (3.27)

These two maximisations depend on each other; to solve both we may alternate

between maximising ✓ with fixed �, and maximising � with fixed ✓.

Equation 3.26 performs MAP estimation of the StPCA parameters. This

may be performed e�ciently using Expectation Maximisation, and is discussed in

Section 3.3.1.

Equation 3.27 is low-dimensional so may be maximised with standard op-

timisation techniques. As long as the covariance function used is di↵erentiable with

respect to the hyper-parameters, analytic gradients may be obtained enabling gradi-

ent based optimisation techniques. This is shown in Section 3.3.2.
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Structure of H̃�

As mentioned above, we use a block-diagonal approximation H̃� ⇡ H� :

H̃� :=

2

66666664

Hw1
� 0 · · · · · · 0

0 Hw2
� 0 · · · 0

... 0
. . .

. . .
...

...
...

. . . Hwk
� 0

0 0 · · · 0 H�2

�

3

77777775

(3.28)

where the blocks are defined as

H�2

� =
@
2
�ln p(X|W,�

2)p(�2)

(@�2)2

���
✓̂

(3.29)

Hwi
� =

@
2
�ln p(X|W,�

2)p(W|�)

@wi@w>
i

���
✓̂
8i 2 1 · · · k (3.30)

The blocks are available in closed form:

H�2

� =Tr
h
XC�1C�1C�1X>

i
�

n

2
Tr
h
C�1C�1

i
� �

�4 (3.31)

Hwi
� =K�1

� +

C�1
⇣
w>

i C
�1X>XC�1wi + n� nw>

i C
�1wi

⌘
+

C�1
⇣
X>XC�1wiw

>
i +wiw

>
i C

�1X>X+
⇣
w>

i C
�1wi � 1

⌘
X>X� nwiw

>
i

⌘
C�1

(3.32)

Detailed derivations of these are given in Appendix D.2.1.

Toy Example

Here we present a toy example, simulating data from an StPCA model to illus-

trate the type of data to which StPCA applies. We consider data which has a

1-dimensional spatial structure, which is reflected by choosing ti =
i
d and the co-

variance function as the noisy Squared Exponential with length scale 0.2, signal

variance 1 and noise variance 10�5. This small noise variance is large enough such

that the matrix K may be inverted without numerical problems, but small enough

to produce smooth loadings.

We choose a latent dimensionality of 2, observation noise variance of 0.05, and

d = 100. The columns of W are plotted in Figure 3.2, illustrating their spatial

structure. Since the synthetic data are constructed from a linear combination of
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Figure 3.2: The columns of W in the toy example described, showing their spatial structure.
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Figure 3.3: Left: Synthetic observations constructed by taking a linear combination of the
columns of W, and adding white noise. Right: The latent space. One can see how a given
sample xi can be decomposed into vi1w1 + vi2w2 + noise.

these, the synthetic data also has a spatial struture (illustrated in Figure 3.3).

Impact of the Laplace approximation

The Laplace approximation is used to produce an approximate posterior and mar-

ginal likelihood. Whilst this is an improvement upon using a point estimate in

terms of quantifying uncertainty (assuming appropriateness of the approximation),

the Laplace approximation is a strong assumption. Specifically the assumption is

that the entire posterior is unimodal and well represented by a Gaussian distribution

fit to the local curvature around the mode. We do not have any guarantees that

this is true, however we do find good empirical performance in Chapter 4.

Using the Laplace approximation, the posterior is reported as the location

of a mode and covariance matrix of an approximating Gaussian, and the marginal

likelihood is obtained as the normalising constant of this Gaussian. If the true

posterior is not well approximated, then the MAP will still be correct, but the
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covariance matrix may not well describe the true posterior covariance structure.

Also, if the approximation is poor, then the approximate marginal likelihood may

be inaccurate causing poor hyper-parameter values to be selected.

An alternative to the Laplace approximation would be to take an MCMC

approach and sample directly from the posterior, which has the property of giving

the asymptotically correct posterior given enough computation. In modern prob-

abilistic programming languages such as Stan [Carpenter et al., 2017] this should

be relatively easy to implement given the model defined in Equation 3.5 – Equa-

tion 3.9. One would need to place proper priors on � and �
2 to make the model

truly generative. Care must also be taken with sampling values of �; for each new

sample the O(d3) operation of decomposing K� is required (so that values can be

drawn from p(W|�)). This is an expensive operation so it may be preferable to

limit � to a small number of values and optimise.

3.2 The covariance structure prior p(W|�)

The prior p(W|�) is used to incorporate additional information into learning the

loadings matrix W. Since W is used to describe the covariance structure of the data

(Equation 3.15), p(W|�) encodes prior knowledge of the covariance structure of

the data.

The prior has the form

p(W|�) =
kY

i=1

p(wi|�) (3.33)

=
kY

i=1

N (wi|0,K�) (3.34)

which decomposes into k independent identical Gaussian priors, each over a column

of the loadings.

Each of the d input variables, and thus each of the elements of each wi, is

associated with a location vector ti. In this thesis we focus on the case where each of

the features of the input corresponds to a pixel in a 2d image, and the corresponding

ti is a length 2 column vector encoding the coordinates of the pixel. We note that

this model can easily be applied to a wide range of other location types such as 1d

time-series or 3d images. In principle one could even use strings or other structured

objects instead of real-value vectors by using a covariance function defined on the

appropriate domain [e.g., Rasmussen and Williams, 2005, Section 4.4], but we do

105



not explore this.

The prior over wi is mean 0 with a covariance matrix constructed element-

wise as

(K�)ij = C(ti, tj ;�) 8 i, j 2 1 . . . d (3.35)

where C( · , · ;�) is a covariance function parametrised by the hyper-parameters �.

This is a Gaussian process prior over W. There is a large body of literature on

covariance functions, and we summarise the relevant material in Section 1.3.2.

A covariance function is an intuitive way to specify a prior over high dimen-

sional covariance structure. A number of well-known covariance functions are inter-

pretable, with interpretable hyper-parameters. For example, selecting the squared

exponential covariance function encodes locality and smoothness, whilst the expo-

nential covariance function similarly encodes locality, but without smoothness [e.g.,

Rasmussen and Williams, 2005, Chapter 4].

If d is large, storing the d ⇥ d covariance matrix K� may become computa-

tionally challenging, as will the O(d3) inversion required to compute the value of the

prior. To facilitate large d, one can use compactly supported covariance functions ;

stationary covariance functions which equal identically zero for large separation

between inputs [Wendland, 1995; Melkumyan and Ramos, 2009].

3.2.1 Prior data covariance

In StPCA we place a prior over the loadings matrix W to express our prior know-

ledge of the covariance structure of the data. The form of the prior data distribution,

p(x|�), would show how the prior over the loadings a↵ects our prior over the data,

if at all. However, this distribution is improper and analytically di�cult to obtain

due to the improper prior in �
2. For this reason we study p(x|�2

,�); our prior ex-

pectation of how the data should be distributed given that we know the magnitude

of the noise.

p(x|�,�2) does not have a closed form solution. However, we are primarily

interested in the covariance, since it is covariance structure we are imposing through

p(W|�). Computing moments is tractable, so we study the covariance of p(x|�,�2).
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The mean of p(x|�,�2) is 0, so the covariance is calculated as

E
h
xx>

i

p(x|�,�2)
=

Z

Rd
xx>

p(x|�,�2) dx (3.36)

=

Z

Rd
xx>

Z

Rd⇥k
p(x|W,�

2)p(W|�) dW dx (3.37)

=

Z

Rd⇥k

Z

Rd
xx>

p(x|W,�
2) dx

�
p(W|�) dW (3.38)

=

Z

Rd⇥k
E
h
xx>

i

p(x|W,�2)
p(W|�) dW (3.39)

=

Z

Rd⇥k
(WW> + �

2I )p(W|�) dW (3.40)

= E
h
WW>

i

p(W|�)
+ �

2I (3.41)

=
kX

i=1

E
h
wiw

>
i

i

p(wi|�)
+ �

2I (3.42)

= kK� + �
2I (3.43)

p(x|�,�2) thus has the same covariance as p(wi|�), but scaled by k and corrupted

by white noise.

3.3 Inference

To compute the approximate posterior, we need to find ✓̂ and �̂ (Equations 3.27

and 3.26). We derive these procedures here.

3.3.1 Inferring ✓

The maximum-a-posteriori parameters for StPCA, ✓̂, are not available in closed

form. However, they may be computed using Expectation Maximisation (EM),

which we derive below. This is similar to the EM procedure in PPCA [Tipping and

Bishop, 1999], but the prior over W adds some complications which will be seen.

For the expectation step, we compute the expected complete log posterior

with respect to the posterior over the latent variables. Since we are maximising this,
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we are free to drop terms which are constant in ✓:

E
⇥
ln p(W,�

2
|X,V,�)

⇤
(3.44)

/ E
⇥
ln p(X,V|W,�

2) + ln p(W|�) + ln p(�2)
⇤

(3.45)

= E
⇥
ln p(X|V,W,�

2)
⇤
+ E [ln p(V)] + ln p(W|�) + ln p(�2) (3.46)

= �
1

2

nX

i=1

⇢
d ln 2⇡�2 +Tr

h
E
h
viv

>
i

ii
+ �

�2x>
i xi

� 2��2E [vi]
>W>xi + �

�2Tr
h
E
h
viv

>
i

i
W>W

i

+ k ln 2⇡

�

�
1

2

kX

i=1

⇢
d ln 2⇡ + ln |K� |+w>

i K
�1
� wi

�
� ln�2

(3.47)

We can see that the expected complete log likelihood depends only on the

expected first and second order statistics E [vi], E
⇥
viv>

i

⇤
; the su�cient statistics for

the Gaussian. Note that, unless specified with a subscript, all expectations are taken

with respect to the posterior over the latent variables given the old parameter values

p(V|X,Wold,�
2
old,�old). In the expectation step of EM we only need to compute

these su�cient statistics:

E [vi] =
⇣
W>W + �

2I
⌘�1

W>xi (3.48)

E
h
viv

>
i

i
= �

2
⇣
W>W + �

2I
⌘�1

+ E [vi]E [vi]
> (3.49)

The maximisation stage of EM is more complicated, as we are unable to

obtain a closed form expression for the parameters jointly maximising

(Wnew,�
2
new) = argmax

W,�2
E
⇥
ln p(W,�

2
|X,V,�)

⇤
(3.50)

However, we can obtain expressions for maximising p(W,�
2
|X,V) for W with fixed

�
2, and for �

2 with fixed W. One could iterate between these until convergence;

however, performing just a single iteration of each is su�cient. For an EM procedure

to converge, it is only required that, after the M-step,

E
⇥
ln p(Wnew,�

2
new|X,V,�)

⇤
� E

⇥
ln p(Wold,�

2
old|X,V,�)

⇤
(3.51)

This is guaranteed by performing maximisation with respect to �
2 and then with

respect to W. These maximisation steps are derived below. This incomplete max-
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imisation is an instance of generalised EM [Murphy, 2012, Section 11.4.9].

The M-step for �2 is relatively simple:

0 =
@

@�2 new
E
⇥
ln p(W,�

2
new|X,V,�)

⇤
(3.52)

= �

✓
nd

2
+ 1

◆
@ ln�2

new

@�2
new

�
1

2

@�
�2
new

@�2
new

nX

i=1

n
x>
i xi � 2E [vi]

>W>xi +Tr
h
E
h
viv

>
i

i
W>W

io
(3.53)

Solving the partial derivatives and rearranging, gives us

�
2
new =

1

nd+ 2

nX

i=1

n
x>
i xi � 2E [vi]

>W>xi +Tr
h
E
h
viv

>
i

i
W>W

io
(3.54)

this is no di↵erent to the maximisation step for �2 in PPCA, which is to be expected

since p(W|K�) does not depend on �
2.

Maximising W is more complicated. Here we again take partial derivatives

and attempt to solve for W.

0 =
@

@W
E
⇥
ln p(W,�

2
|X,V,�)

⇤
(3.55)

=�
1

2

nX

i=1

⇢
�2��2E [vi]

> @W>

@W
xi + 2��2 @

@W
Tr
h
E
h
viv

>
i

i
W>W

i�
�

1

2

kX

i=1

(
@w>

i K
�1
� wi

@W

)

(3.56)

=
nX

i=1

n
�
�2E [vi]

> xi � �
�2WE

h
viv

>
i

io
�

1

2

@

@W
Tr
h
W>K�W

i
(3.57)

=

 nX

i=1

E [vi]
> xi

�
�W

 nX

i=1

E
h
viv

>
i

i �
� �

2K�1
� W (3.58)

=)

�
�2K�

�
W +W

 nX

i=1

E
h
viv

>
i

i ��1

=


�
�2K�

� nX

i=1

E [vi]
> xi

� nX

i=1

E
h
viv

>
i

i ��1

(3.59)

=:

AW +WB = C (3.60)

This is a Sylvester equation for W [e.g., Bhatia and Rosenthal, 1997]. In this

particular case we have positive-semidefinite A and positive-definite B, making an

109



analytic solution tractable. The positive-definiteness for B can be seen using the

definition of E
⇥
viv>

i

⇤
in Equation 3.49 to expand out

nX

i=1

E
h
viv

>
i

i
= n�

2M�1 +
�
XWM�1

�>
XWM�1 (3.61)

where M = W>W + �
2I . The first term is a positive multiple of the positive-

definite M�1, and the second term is positive-semidefinite. The sum of the two thus

produces a positive definite B.

Below we show how to solve for W. Taking Equation 3.60, we eigen-

decompose B = QB⇤BQ>
B

and post-multiply by QB:

AW +WB = C (3.62)

AW +WQB⇤BQ
>
B = C (3.63)

AWQB +WQB⇤B = CQB (3.64)

AW̃ + W̃⇤B = C̃ (3.65)

Now, looking at individual columns of C̃,

C̃i = (AW̃)i + (W̃⇤B)i (3.66)

= (A+ �iI )W̃i (3.67)

The matrix (A+�iI ) is always positive definite due to adding �i > 0 to the diagonal

of A. We can thus invert this and solve for W̃.

W̃i = (A+ �iI )
�1C̃i (3.68)

=
�
�
�2K� + �iI

��1

 
�
�2K�

� nX

i=1

E [vi]
> xi

�
QB⇤B

!

i

(3.69)

So W̃ may be calculated column-wise, and W can be recovered as

W = W̃Q>
B (3.70)

Implementation notes

This computation can be made e�cient. B�1 =
Pn

i=1 E
⇥
viv>

i

⇤
is constructed as

part of the EM procedure in ✓ inference; we can obtain QB by eigen-decomposing

B�1 without any inversion.

We do need to solve the large linear system (A + �iI )�1C̃i. However, if a

110



compactly supported covariance function is used, A = �
�2K� is sparse, and adding

�
2 to the diagonal does not change the sparsity pattern, so the linear system may

be solved e�ciently. This is taken advantage of using a sparse solver in the stpca

package.

The number of EM iterations required for convergence is reduced if we start

o↵ with a good guess at the MAP values. Making this guess must be computationally

cheap otherwise we could have simply run the EM algorithm for longer. In stpca

we initialise �
2 and W from the closed from maximum likelihood parameters for

PPCA as per Equation 1.18 and Equation 1.19. Convergence has empirically

been found to be much faster using PPCA initialisation over random initialisation.

3.3.2 Inferring �

Inference of � requires performing the maximisation in Equation 3.27, which is

repeated here:

�̂ = argmax
�

p(Ŵ|�)|H̃� |
� 1

2 (3.71)

This maximisation is performed in StPCA through the iterative BFGS method

[Fletcher, 1987, Algorithms 2.6.2 and 2.6.4]. BFGS was chosen since it takes advant-

age of function gradients, which are desirable since the optimisation is low dimension

(the number of hyper-parameters) and gradients are analytic in this case.

We focus on maximising the logarithm of p(Ŵ|�)|H̃� |
� 1

2 , which is analyt-

ically simpler and more computationally stable, since probability densities can get

small enough for numerical precision to be important. We thus require the partial

derivatives
@ log p(Ŵ|�)|H̃� |�

1
2

@�i
for each �i 2 �.

The covariance function used to construct K� is specified by the user of

StPCA. We assume here that the user also supplies a function giving the partial

derivatives of the covariance function with respect to the hyper-parameters:

@C(tj , tk;�)

@�i
=

✓
@K�

@�i

◆

jk

(3.72)

Not all covariance functions admit an analytic derivative, but in these cases a nu-

merical derivative may still be used. This allows us to obtain expressions for

@ log p(Ŵ|�)|H̃� |
� 1

2

@�i
=

@

@�i


log p(Ŵ|�)�

1

2
log |H̃� |

�
(test)

First we expand out the definition of log p(Ŵ|�) (Equation ??), dropping constant

terms. We also recall that |H̃� | is block-diagonal, so its log determinant is the sum
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of the log determinants of each block, and we can drop the H�2

� since it is constant

with respect to �. This gives:

�
1

2

@

@�i


k log |K� |+Tr

h
Ŵ>K�1

� Ŵ
i
+

kX

j=1

log |H
wj

� |

�
(3.73)

Now we apply the derivative operator to each of the three terms. This uses the

identity for the derivative of a matrix determinant (Equation A.8) for the first

and third terms. For the second term, the step can be performed by expanding

out Tr
h
Ŵ>K�1

� Ŵ
i
=
Pk

i=1 ŵ
>
i K

�1
� ŵi, moving the derivative operator inside and

using the identity for the derivative of a matrix inverse (Equation A.9). This

arrives at:

�
1

2


kTr


K�1

�

@K�

@�i

�
� Tr


Ŵ>K�1

�

@K�

@�i
K�1

� Ŵ

�
�

kX

j=1

Tr


H

wj

� K�1
�

@K�

@�i
K�1

�

� �

(3.74)

Finally we re-arrange for readability:

�
1

2
Tr

2

4

0

@kK�1
� �K�1

� ŴŴ>K�1
� �

kX

j=1

K�1
� H

wj

� K�1
�

1

A @K�

@�i

3

5 (3.75)

Computational considerations

The bulk of the computation required in StPCA is in the �-tuning stage due to

requiring K�1
� in p(W|�) as well as each Hwi

� . In stpca we perform a single decom-

position of K� and use this whenever required, but this is still a computationally

heavy operation, requiring O(d3) operations every �-tuning iteration. When using a

compactly supported covariance function, a computationally cheaper sparse matrix

decomposition is performed. However, if the feature covariance length scales are

long, K� will remain dense.

To scale StPCA to higher dimensional data, it would be possible to take

advantage of reduced rank covariance approximations which are common in the

Gaussian Processes literature [e.g., Rasmussen and Williams, 2005, Section 8.1].

Here we assume we have used a ‘noisy’ covariance function, so K� has the form

Knoiseless
� + �

2I , and the noiseless part of the covariance matrix is associated with a

noiseless part of the covariance function C
noiseless. If the noiseless covariance matrix

is then approximated as rank m:

Knoiseless
� ⇡ LL>

, L 2 Rd⇥m (3.76)
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then the calculation for the approximate K�1
� can be rearranged using the matrix

inversion lemma as

(LL> + �
2I )�1 = �

�2I � �
�2L(L>L+ �

2I )�1L (3.77)

This form only requires inverting an m⇥m matrix, saving computation.

There are a number of reduced rank approximations to choose from. An

approximate covariance can be constructed using only m pseudo-features with loc-

ations t̂i, i = 1 . . .m. The low-rank approximation to Knoiseless
� is then

Knoiseless
� ⇡ K

tt̂
K�1

t̂t̂
K

t̂t
(3.78)

Here K
tt̂

= K>
t̂t

is the d ⇥ m noiseless covariance between the real and pseudo-

features such that (K
tt̂
)ij = C

noiseless(ti, t̂j ; �). K
t̂t̂

is the noiseless covariance

within the pseudo-features: (K
t̂t̂
)ij = C

noiseless(t̂i, t̂j ; �). Another option would

be to obtain L as an incomplete Cholesky decomposition of Knoiseless
� [Fine and

Scheinberg, 2001].

Initialising �

FromEquation 3.43, we know that StPCA has a prior expectation of the covariance

structure of the data which depends on K� .

cov(x|�2
,�) = kK� + �

2I (3.79)

If we assume that the data actually have this covariance (i.e., the prior was good),

one can make the equality

S = kK� + �
2I (3.80)

where S = 1
nX

>X. This can be rearranged to give

K� =
1

k

�
S� �

2I
�

(3.81)

which is the starting point for initialising �; we would like a value of � such that

K� ⇡
1
k

�
S� �

2I
�
.

Many covariance functions are of the form C( · , · ;�) = �
2
f C̃( · , · ;�), where

�
2
f is the signal variance, and C̃ has the property that C̃(t, t;�) = 1. For such

covariance functions, each element of the diagonal of Equation 3.81 has the form

�
2
f =

1

k

�
Sii � �

2
�

(3.82)
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for each i 2 1 · · · d. We thus use the following initialisation for �2
f :

�
2
f  

1

k
mean

�
diag

�
S� �

2I
��

(3.83)

Similarly, if C̃ is the squared exponential covariance function, a single non-

diagonal element of Equation 3.81 can be considered and rearranged to have the

form

` =

s
||ti � tj ||22

2(ln(�2
fk)� ln(Sij))

(3.84)

The reason we only consider o↵-diagonal elements i 6= j is that the diagonal elements

contain no information relevant to the length scale. We thus propose the initialiser

for the length scale

` mean

 s
||ti � tj ||22

2(ln(�2
fk)� ln(Sij))

8 i 6= j

!
(3.85)

3.4 Relationship to PCA

The approximate posterior reported by StPCA is centred at the MAP, which is

closely related to PCA. In the case of zero noise and an infinitely broad prior, the

MAP W is exactly equal to the principal components (PCs) scaled by the square

root of their associated eigenvalues (show in Section 3.4.2). From this point of

view, StPCA is simply PPCA with the addition of prior knowledge, and a covariance

matrix describing the uncertainty around the estimated PCs as an additional output.

3.4.1 The Structured Components

In Section 3.1, we discussed how StPCA has a non-identifiability, where W may

be transformed to W !WR for any k ⇥ k orthonormal matrix R, as long as the

latent space is similarly transformed. This non-identifiability means that once a

MAP W has been found, transforming W with any R will also produce a value

maximising the posterior.

In StPCA, we choose to apply an orthogonal transformation to the MAP W

such that the columns of W are orthogonal and aligned with the eigenvectors of

the likelihood covariance WW> + �
2I . We do this by performing the SVD of W,

and reconstructing it with the right singular vectors replaced with the k⇥k identity

matrix.

This transformation provides additional interpretability of W. The first
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column ofW, w1, now has the direction of the greatest modelled variance in the data

and is orthogonal to all other columns. We call the direction of these transformed

columns of W the Structured Components (StCs) due to their similarity to the

PCs in PCA; wi/||wi|| is the i’th StC. Note that the direction of greatest modelled

variance may not be the same as the direction of greatest variance in the data, but

these become equivalent in the limit of an infinitely broad p(W|�), where StPCA

recovers PPCA and the StCs align with the PCs.

3.4.2 Recovering PCA from the StPCA MAP

In the limiting case of using an infinitely broad prior, StPCA becomes equal to

PPCA, and the MAP parameters equal the maximum likelihood parameters. We

know from PPCA that a closed form solution exists for W in this case [Tipping and

Bishop, 1999, Appendix A], which has an interesting form to study:

WML = argmax
W

log p(X|W,�
2) (3.86)

= Qk

�
⇤k � �

2I
� 1

2 R (3.87)

Here, Q⇤Q> is the eigen-decomposition of the sample covariance matrix 1
nX

>X.

Qk is the d ⇥ k matrix containing the first k PCs in columns, and ⇤ is the k ⇥ k

diagonal matrix containing the corresponding eigenvalues. R is any orthonormal

k⇥ k matrix and is discussed in Section 3.1, but represents a non-identifiability in

the relating to rotations in the latent space, and may be chosen to be the identity

matrix.

Choosing R = I and �
2 = �

2
PCA = 0, we obtain WPCA = Qk⇤

1
2 which is

simply the first k PCs, each with magnitude of the square root of its corresponding

eigenvalue. This produces a degenerate probability model since the likelihood covari-

ance matrix (WW>+�
2I ) is low rank. However, this model exactly recovers PCA.

This can be seen by plugging these values of R and �
2 in to the latent-to-observed

and observed-to-latent mappings in StPCA (Equations 3.5 and 3.16 respectively):

p(xi|vi,WPCA,�
2
PCA) = N (xi|Qk⇤

1
2
k vi,0) (3.88)

p(vi|xi,WPCA,�
2
PCA) = N (vi|⇤

� 1
2

k Q>
k xi,0) (3.89)

Here the covariance matrices are both zero, so we do not have probabilistic state-

ments but deterministic mappings. These may be given in matrix form to show

the mapping to the latent space and the corresponding reconstruction for the entire
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dataset:

V = X(Qk⇤
� 1

2
k ) = XW+>

PCA (3.90)

Xrec = V(⇤
1
2
kQ

>
k ) = VW>

PCA (3.91)

(3.92)

where W+
PCA = ⇤

� 1
2

k Q>
k is the left inverse of WPCA, and Xrec is the reconstruction

of X from the latent variables V. Comparing this to the mappings between latent

and observed space in PCA (Section 1.1.1) we see the mappings here are identical.

Due to the equivalence with PCA, the PCs and eigenvalues may be extracted

from WPCA using the SVD. The left singular vectors correspond to Qk, and the

singular values correspond to ⇤
1
2 . R may also be separated out since it corresponds

to the right singular vectors; this may be of use if we have performed inference

by maximising the likelihood numerically, since R would then be arbitrary. R can

always be separated from WPCA, WML or WMAP in this way, so we consider only

the case of R = I without loss of generality.

3.5 Conclusion

StPCA is a linear latent variable model with a Gaussian Process prior placed on the

loadings, which implicitly places a prior over the covariance structure of the model.

One often has knowledge about how a set of features relate to each other; if the

features are pixels in an image or points in a time-series, we may expect the features

which are closer in space/time to be more highly correlated. Such prior knowledge

is not typically incorporated into traditional feature learning techniques such as

PCA, which assume a-priori that features are independent. Taking advantage of

this prior knowledge may produce a more accurate model, especially if the data are

small-sample and high dimensional.

The StPCA prior is specified via choice of covariance function. This is a

convenient method of prior specification since covariance functions are often inter-

pretable, with interpretable hyper-parameters. Inference is performed by finding

the MAP parameters, and then constructing an approximate Gaussian posterior

centred at the MAP. Finding the MAP is performed using generalised EM, where

the maximisation step increases the expected complete log posterior, but does not

fully maximise it. This partial maximisation step involves setting up a Sylvester

equation which is always guaranteed to give a solution.

After finding the MAP parameters, the Laplace approximation is used to
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produce a Gaussian approximation to the posterior. An analytic form for the Hes-

sian at the MAP is used to produce the covariance matrix for the approximating

Gaussian, and the diagonal of this gives the approximate posterior variance for each

parameter.

In performing the Laplace approximation, we also obtain an approximate

marginal likelihood. Model selection may be performed by maximising this, which

can aid selection of the latent dimensionality, covariance function and covariance

function hyper-parameters. Bayes factors are well calibrated, so the amount of

support for one model over another may be quantified.

StPCA is related to the well-known and understood models PCA and PPCA.

Considering the limit of an infinitely broad StPCA prior, the PPCA model is exactly

recovered. Consequently, PCA may also be recovered in the limit of the ‘noise’

parameter �2 going to zero.

117



Chapter 4

Structured PCA: Results

4.1 Synthetic Data

To test StPCA, synthetic data are simulated from the StPCA model, and StPCA

is fitted back to the data. It is expected that StPCA would outperform any other

technique in recovering an accurate model from the data. This exercise is not to

judge the e↵ectiveness of StPCA over other techniques, but to test its performance

in a best-case scenario, to test how misspecification of K� impacts performance, and

to test that the implementation works as expected. The ability to recover hyper-

parameters is of particular interest, since approximations have been made use of in

hyper-parameter inference, making the model approximate.

Data Generation

Each sample of the synthetic data has the structure of a 21⇥21 image (d = 441). A

single dataset contains n = 15 such images constructed by using a fixed W drawn

from the prior where k = 4, and an i.i.d latent variable drawn from a multivariate

unit Normal. 50 such datasets are generated and test performance is computed

across these. The reason for this is that a single dataset has a fixed W, but we

would like to see performance across many instances of W.

Each feature in the data represents a pixel value, where pixel i has coordinates

ti 2 [0, 1]2. The covariance function used in generating the data is the Noisy Squared

Exponential (NSE, Section 1.3.2) with hyper-parameters �
2
k = 2, ` = 0.2, �2

n =

10�6. For the noise parameter we use �
2 = 1.8, and for simplicity we use a mean µ

of zero. Examples of this synthetic data are given in Figure 4.1; each row of images

is the first 5 samples from within a single dataset. The dataset-specific structure

can be seen as common directions of variance with each row.
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Element 1 Element 2 Element 3 Element 4 Element 5

D
ataset 1

D
ataset 2

−5 0 5 10
intensity

Figure 4.1: The first 5 elements of the first (top) and second (bottom) datasets generated.
Common patterns can be seen within each dataset, which are a result of there being only 4
smooth latent patterns of which each sample is a linear combination plus noise.

w_1 w_2 w_3 w_4

D
ataset 1

D
ataset 2

−4 −2 0 2
intensity

Figure 4.2: Each column of the loadings matrices used to generate the synthetic data in
Figure 4.2 may also be displayed as an image. Each image in Figure 4.2 is made up of
a linear combination of the loadings displayed here, plus white noise.
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The data are simulated from StPCA using ancestral sampling. �, k,�
2

are fixed at the values given above. W is then drawn from p(W|�) and V is

drawn from p(V) = N (0, I ). The samples are then simulated from the likelihood

p(xi|vi,W,�
2) = N (Wvi,�

2I ). The procedure for generating the data is given

algorithmically in Algorithm 4.1.

For the simulated data we would ideally like to use the SE covariance function

to produce perfectly smooth loadings, and thus the samples would be smooth plus

noise �
2. However, simulating from p(W|�) requires inverting K� , which, in the

case of the SE, is semi-definite and thus non-invertible. Using the ‘noisy’ SE (NSE)

adds �
2
n to the diagonal, making K� positive-definite and thus inversion possible.

We choose the small value �
2
n = 10�6 so we can simulate W, but the columns are

only contaminated with a low level of noise.

Covariance Structure Estimation

Here we test the ability of StPCA to uncover the subspace the synthetic data lie on.

StPCA is compared to PCA and PPCA in this task, and StPCA is fitted with both

the Rational Quadratic (RQ) and Tapered Squared Exponential (TSE) covariance

functions. The data are generated using the SE, which is a special case of the RQ

(when ↵!1). The taper length is set to 0.2 where each sample is a 1⇥ 1 box, so

the TSE cannot learn parameters reducing it to the SE, but K� is sparse.

The 4 techniques (StPCA (RQ), StPCA (TSE), PCA, PPCA) are all lin-

ear latent variable models, so produce a matrix of loadings defining the modelled

subspace the data lie on. For a single dataset, each of the 4 techniques is fit with

k = 4. We then compute the largest principal angle (Appendix A.1) between the

Algorithm 4.1: The process for generating the data

�
2
 1.8;

k  4;
n 15;
�  {�

2
k = 2, ` = 0.2,�2

n = 10�6
};

(K�)ij  kNSE(||ti � tj ||;�) 8 i, j 2 1 · · · d;
foreach j 2 {1 · · · 50} do

Draw wj
i ⇠ N (0,K�) 8 i 2 1 · · · k;

Draw vj
i ⇠ N (0, I ) 8 i 2 1 · · ·n;

Draw xj
i ⇠ N (Wvi, 1.8I ) 8 i 2 1 · · ·n;

end
return (Wj

,Vj
,Xj) 8 j 2 1 · · · 50;
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Figure 4.3: Distribution of the largest Principal Angle between learned principal subspace
and real principal subspace over 50 synthetic datasets. Lower angles indicate that the learned
subspace is closer to the true subspace. StPCA with either covariance function outperforms
PCA and PPCA. The RQ more flexible RQ covariance function outperforms the less flexible
TSE.

estimated subspace and the true subspace, which measures how di↵erent the sub-

spaces are. Repeating this over all 50 synthetic datasets shows us the distribution

of the largest principal angle for each technique, which is shown in Figure 4.3. It

can be seen that StPCA with either covariance function outperforms both PCA and

PPCA at subspace recovery, as the StPCA angles are lower. The RQ covariance

function shows better performance than the TSE, which is due to the TSE being in-

su�ciently flexible. In all cases the RQ learns hyper-parameters such that it closely

approximates the SE.

The PCs/StCs may also be compared visually, as in Figure 4.4. Here is

shown the first StC and first PC recovered from the first two synthetic datasets.

These are compared to the ground truth direction of greatest variation of the data

generating distribution. One can see that the ground truth and the two StCs are

smoother than the PCs learned by PCA/PPCA.

Structured Component uncertainties

In Figure 4.4, there are regions which have been recovered well and regions which

deviate substantially from the ground truth. Since StPCA returns a full (approxim-

ate) posterior, we can consider the certainty with which each pixel has been learned.

Figure 4.5a shows the absolute di↵erence between the generating w1 in the

first synthetic dataset, and the w1 as recovered by StPCA fitted to this dataset.

Figure 4.5b shows, for each pixel, the standard deviation of the posterior over that
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StPCA (TSE) StPCA (RQ) PPCA PCA Ground truth

D
ataset 1

D
ataset 2

−0.10 −0.05 0.00 0.05 0.10
intensity

Figure 4.4: The first column of W (i.e., the direction of most variation) as learned by
StPCA, PPCA and PCA. The right-hand column shows w1 used in the underlying gener-
ative process. Greater similarity between the learned w1 and the true w1 indicated better
performance. We can see that the learned w1 for PPCA and PCA is rougher than that
learned by StPCA and the ground truth.

RQ TSE

Error

1 2 3 4 5
(a)

RQ TSE

U
ncertainty

0.05 0.06 0.07 0.08
(b)

Figure 4.5: (a): Error in the first StC, as measured by the distance between each element
and the corresponding element of the ground truth PC. This is shown for both the RQ and
TSE covariance functions. (b): 1 standard deviation of the uncertainty at each element
of the StC. Uncertainty is underestimated, but correlates with error. The RQ and TSE
covariance functions produce similar loadings, but di↵er in posterior uncertainty, with larger
uncertainty assigned to the RQ.
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(a) Larger posterior variance correctly pre-
dicts a larger expected error. Each plotted
point corresponds to a single element of the
inferred w1 over all 50 datasets. The x-axis
shows the di↵erence between the inferred and
true value, and the y-axis shows the pos-
terior standard deviation around the inferred
value.
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(b) Uncertainty is underestimated in
StPCA. Dividing the error (inferred values
of wi minus ground truth) by the posterior
variance would produce a standard Normal
if the posterior variance were correct. The
variance of this distribution is greater than
1, showing uncertainty is underestimated.

Figure 4.6: Posterior uncertainty is overestimated, but associated with high error.

pixel. One can see that the regions which are learned accurately are associated with

lower posterior uncertainty, and vice-versa.

Comparing the error to the posterior uncertainty, it can be seen that the

regions of high error occur at regions of high uncertainty. This illustrates StPCA

being able to correctly identify which elements of the StCs are accurately learnt,

and which may deviate from the ground truth.

Larger reported uncertainty correctly predicts larger expected discrepancies

between the estimated and true values of w1 (Figure 4.6a). However, the uncer-

tainties reported are underestimates (Figure 4.6b). Care must thus be taken when

interpreting the posterior variance; although one can see the relative confidence with

which elements of W have been learned, the absolute confidence on each element

may be misleading.

The Empirical Bayes approximation will contribute to the uncertainty un-

derestimate, since the approximation states that we are extremely certain of the

hyper-parameter value, placing all posterior mass on a single point �̂. An exact pos-

terior would take the uncertainty over this hyper-parameter estimate in to account.

The contribution of the Laplace approximation to the uncertainty underestimate is

unclear. However, our further approximation of the posterior Hessian being block-
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Figure 4.7: Distribution of reconstruction errors between noiseless data and data which
has been de-noised by each of the techniques. All techniques do better than no de-noising
(left hand box). PCA and PPCA perform similarly, which is expected as they learn the same
principal subspace. StPCA outperforms PCA/PPCA with both the Squared Exponential or
Rational Quadratic covariance function, and the RQ performs the best.

diagonal (H� ⇡ H̃�) does not change the uncertainties in Figure 4.5, since we

only plot the variances on each pixel, corresponding to the diagonal of H� , and the

o↵-diagonal elements are not plotted.

De-noising

PCA is often used in de-noising; the first k PCs are used to approximately capture

the signal, and the remaining d � k are discarded. Transforming the data to k-

dimensional latent representations then back to d-dimensional data space gives a

de-noised version of the data. StPCA can also be used to de-noise in this manner,

and may outperform PCA if the prior is appropriate.

Using the previously generated synthetic data, we de-noise the data with

PCA, PPCA and StPCA using k = 4. We then calculate Euclidean distances

between the de-noised data and the noiseless synthetic data. This produces a dis-

tribution of reconstruction distances for each de-noising technique, which are shown

in Figure 4.7.

The de-noised data are closer to the original signal for all de-noising tech-

niques. PPCA and PCA perform similarly, whilst StPCA outperforms both. Again,

the RQ covariance function produces a better result than the TSE, indicating it has

fit the data better and the taper is too restrictive.

Figure 4.8 shows a single sample being de-noised. The StPCA de-noised

samples are visually (and by `2 distance) more similar to the original sample than
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Figure 4.8: Top row, left to right: the noisy and noiseless version of the first sample from
the first dataset generated, along with a version de-noised by each algorithm. Bottom row:
the images from the top row with the noiseless sample (row 1, column 2) subtracted, for the
purpose of showing the error. The norm of the error for PCA and SPCA is larger than for
StPCA.

the PCA/PPCA de-noised samples.

Discrete Model Selection

We compare log Bayes Factors for selecting the latent dimensionality k and cov-

ariance function. StPCA is fitted to the synthetic data with values of k from 1

to 10, and log Bayes Factors are computed. This is done for the TSE and RQ

functions, and we also include the (ground truth) SE for comparison. We consider

Bayes Factors instead of marginal likelihoods so we are able to quantify the amount

of evidence for one model over another. The Bayes Factors are normalised to the

maximum marginal likelihood model, so the highest scoring model obtains a log

Bayes Factor of zero.

The log Bayes Factors are shown in Figure 4.9. It can be seen that with

all covariance functions the true dimensionality of 4 is identified. Although the SE

and RQ covariance functions appear to perform similarly, the Bayes’ Factor for the

RQ covariance function at k = 4 is 8⇥ 10�29, which is very strong evidence for the

true SE covariance function.
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Figure 4.9: Log Bayes Factors (normalised to the maximum marginal likelihood model)
against k for StPCA with the 3 covariance function: Squared Exponential (SE), Tapered
Squared Exponential (TSE) and Rational Quadratic (RQ). All models select the true value
of k, and the true SE covariance function is selected. Visually the RQ performs similarly,
but the Bayes Factor for the RQ with k = 4 is 8⇥ 10�29, which is very strong evidence for
the SE.

Hyper-parameter tuning

To test hyper-parameter recovery, we fit the StPCA model with SE covariance

function back to the generated data and compare the learned hyper-parameters

against the known true ones. If StPCA inference were exact, the mean of the

hyper-parameters inferred over many such datasets should be equal to the true set

of generating hyper-parameters. However, the inference is approximate due to the

use of the Laplace approximation. It is thus of interest to see how this impacts

hyper-parameter learning. Figure 4.10 compares the learned and ground truth

hyper-parameter values. Also shown are the initial values used, which were ob-

tained using the parameter initialisation described in Section 3.3.2.

Looking at the diagonal of Figure 4.10, it can be seen that the learned

length scales ` and noise variances �2
n are centred around the generating value. The

learned signal variances �2
f do not centre around the generating value, showing that

in every case we learn a signal variance that is too low. This shows that we do

not recover the data-generating hyper-parameters in expectation, so should be wary

about drawing conclusions from hyper-parameter inferences. However, the initialiser

for the signal variance appears to be good for these particular datasets. The other

two initialisers give starting values further from the true values, but still in a sensibly

close range such that the hyper-parameter optimisation finds a good mode.
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Figure 4.10: Hyper-parameters: ground truth, initialising and learned values. The learned
length scale is close to the true value, but the learned signal variance is an underestimate
and the noise variance is overestimated.
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4.2 FAIMS Data

Here we investigate the performance of StPCA on real data. We use the IBD dataset

from Section 2.3.2, which contains FAIMS measurements of the breath of 53 IBD

patients and 11 healthy volunteers.

The full FAIMS data are too high dimensional for StPCA to easily process

due to the O(d3) scaling associated with inverting the matrix K� . For this reason

we restrict the analysis to a subset of the pixels and compare to other techniques.

However, the raw FAIMS data are over-sampled, so some level of feature selection

is justified.

We compare 4 feature learning models – StPCA, PPCA, ICA and SPCA.

PPCA, ICA and SPCA are all linear latent variable models and have been described

in Section 1.1.1. Each model learns a mapping from high dimensional feature space

to a low dimensional latent space, and any observed sample may be translated to

a latent representation. We evaluate the quality of the latent spaces produced by

the predictive accuracy obtained when using the latent representations as features

in a classification task. The task chosen is to distinguish between IBD-positive and

IBD-negative samples, and the metric used to evaluate this is 10-fold cross-validated

AUC. AUCs are computed for a number of sparsity levels of the input; i.e., we retain

di↵erent numbers of input pixels and compare how the 4 techniques perform at these

di↵erent sparsity levels.

4.2.1 Pipeline

The results presented are from a single run of a pipeline described here. The data

are first pre-processed, removing a large number of irrelevant features. The pre-

processing stage is discussed in more detail below.

We then perform an analysis which performs model selection and fitting

for each of the 4 models, then measures predictive capability using 10-fold cross-

validated AUC. This analysis is performed 8 times, each using a di↵erent sized

subset of the original features, with subset sizes equally spaced between 20 and 330.

The purpose of this is to investigate how StPCA compares to other techniques as

the input becomes more sparse.

To keep variance between runs to a minimum, once a feature has been re-

moved at a given sparsity level, it remains removed for all higher sparsity levels.

This removes the possibility of a high sparsity level retaining more informative

pixels than a lower sparsity level and subsequently producing a higher performing

classifier. This is achieved by removing a subset of the remaining pixels each time

128



Algorithm 4.2: Pseudo-code for pipeline to evaluate StPCA performance
against PPCA, ICA and SPCA.
Input: Data X, labels y, feature learning models models

1 Pre-process X; retain 330 features
2 foreach sparsity in sparsityLevels do
3 foreach model in models do
4 Xs  drop features from X to correct sparsity level
5 V feature transform Xs using model with hyper-parameter tuning
6 for fold in 1 · · · 10 do
7 (Vtr,ytr), (Vte,yte) split V,y into training/test set
8 Train Gaussian process classifier on Vtr,ytr

9 y⇤
te  predict labels for Vte

10 Compute auc(yte,y⇤
te)

end

end

end
11 return AUCs for each sparsity, model, fold

the sparsity level is increased.

The feature transformation and model selection for k (and also the sparsity

parameter � for SPCA) is performed prior to splitting the data into the training

and test set in cross-validation. Although this is using data from the test set in

constructing the feature space, this is statistically valid since it does not make use

of the labels. Such a procedure could still be applied in a real world medical setting:

upon collecting a new sample, a feature learning stage could include this sample

without needing to know the diagnostic outcome. An alternate approach would be

to learn the feature transformation on the training set and apply this to the test

set. Our approach was chosen to ease the computational burden, as only 1 model

selection stage must be performed instead of 1 per fold.

Following the feature transformation, the AUC is computed using 10-fold

cross-validation. Pseudo-code for this procedure is presented in Algorithm 4.2.

Predictions are made using the Random Forest (RF) and Gaussian Process Classifier

(GPC).

Data pre-processing

To remove irrelevant features, pixels with a standard deviation below 0.01 are re-

moved. This procedure has already been established to work well on previous data-

sets, and is used by an existing FAIMS data processing pipeline discussed in Sec-

tion 2.2.2. Observing the standard deviation of each pixel, there is a high frequency
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Figure 4.11: Histogram of the log standard deviation of pixel intensity values. The low-
variance peak towards the left corresponds to pixels which only vary between samples due to
measurement noise, and contain no signal relating to the actual sample. All pixels with a
standard deviation below that indicated by the red line at 0.01 are dropped.
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Figure 4.12: FAIMS data after pre-processing. Low variance pixels are removed, then
pixels with no neighbours and edge pixels are removed. A random subset of 330 of the
remaining pixels are retained.

of pixels with similar low-level variation which stems only from measurement noise,

and not from intra-sample variation (Figure 4.11). The threshold was chosen to

drop all pixels with a standard deviation near this measurement noise value. Follow-

ing this, any pixels with no neighbours are also dropped, as are edge pixels. From

the remaining pixels, a random subset of 330 are retained. Examples of samples

post pre-processing are given in Figure 4.12.

Model Selection

For all models, model selection is performed for k, the latent dimensionality. The

way this is performed is di↵erent per model, and is described below. SPCA requires
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Figure 4.14: Synthetic data simulated from the fitted StPCA model with k = 6 does not
show anything pathological about the fitted model. The data show the characteristic high
intensity region in the bottom centre, and variations are within sensible bounds.

selection of the additional parameter � controlling the sparsity of the loadings, which

is selected with k in a 2d grid search.

Model selection for StPCA is performed by maximising the approximate mar-

ginal likelihood. A value of k between 3 and 9 is selected. StPCA is fit for each

value of k with the noisy squared exponential covariance function, and � is tuned.

Bayes factors are then computed between each model, normalised to the maximum

marginal likelihood model.

As an example, we plot the log Bayes factors for each k in the case of StPCA

being fit to the full 330 dimensional data in Figure 4.13. A value of k = 6

is selected. All Bayes factors other than that for k = 6 are very much smaller

than 1, so a value of 6 is chosen with a high degree of certainty. To comment on

the biological significance of this value would require deeper understanding of the
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Figure 4.15: Fitting PPCA to the data, the Laplace-approximated log marginal likelihood
increases monotonically with k up until the largest value considered (40). This means that
PPCA picks a very large value of k compared to other methods. Our prior knowledge about
the FAIMS data tell us that it is unlikely that 40 independent directions of variation are
supported by the data.

compounds contributing to the variations captured by the model, as well as the

biology underlying the production of these compounds, both of which are outside

the scope of this thesis.

Since StPCA is probabilistic, we can simulate data from the fitted model

and visually inspect it for deviations from how we expect a good model to behave.

4 draws from the fitted model are shown in Figure 4.14; these appear sensible,

showing a high intensity region at the bottom centre as characteristic of FAIMS.

Model selection for PPCA is performed by fitting PPCA for for k in the range

1–40, and computing an approximation to the marginal likelihood for each fitted

model. The model with the greatest marginal likelihood is selected.

The marginal likelihood approximation used is the Laplace approximation

(Section 1.2.1), which is the same as used for StPCA. This is an important com-

parison to make as the model selection for PPCA and StPCA is the same except

for the additional prior used in StPCA.

Again, we demonstrate this in Figure 4.15, plotting the log marginal like-

lihoods obtained for each k. In this case, the log marginal likelihood continues

increasing as we increase k up to the maximum value, so k = 40 is selected.

Model selection in SPCA is performed by minimising an information criterion

introduced by Hubert et al. [2016]. This is used to select both k as well as the SPCA

sparsity parameter �. The (k,�) pair selected is that minimising the information

criterion.

The information criterion is computed at a grid of (k,�) values, with k
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Figure 4.17: Model selection with ICA. For each value of k a reconstruction of the data
is computed and the mean squared error (MSE) between the real and reconstructed data
calculated. The value of k is selected at which the MSE exhibits an ‘elbow’, defined as the
greatest second derivative over the integers, which, in this case, is k = 3.

between 3 and 19. 5 equally spaced values of � considered within the range 0 –

2 are considered. A plot illustrating this is given in Figure 4.16, which was created

by model-selecting SPCA on the 330 dimensional data.

Model selection for ICA is performed by computing cross-validated reconstruc-

tion error for values of k from 1 to 40, and selecting the value of k at the ‘elbow’.

Writing the mean squared error obtained at k as MSE(k), we define the elbow as

the point maximising

MSE(k � 1)� 2MSE(k) +MSE(k + 1) (4.1)
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Figure 4.18: AUCs obtained on FAIMS data with Gaussian Process Classifier in 10-fold
cross-validation after dimension reduction with StPCA, SPCA, PPCA and ICA with model
selection. The process is repeated with di↵erent sized feature subsets (x-axis). The two plots
di↵er only in the inclusion of error bars. StPCA under-performs other techniques, but there
is large uncertainty.

which is the second derivative on the integers. As above, a plot illustrating this

process is given in Figure 4.17, in which model selection is performed on the 330

dimensional FAIMS data and the selected value is k = 3.

Predictions

Predictions are produced using a Gaussian process classifier1 This is done inside

a 10-fold cross-validation. Transformation to feature space is done prior to the

cross-validation so that feature learning only needs to be performed once.

4.2.2 Results

By running the pipeline described in the previous section and plotting the AUC

against the number of input features, we obtain Figure 4.18. It can be seen that

StPCA here under-performs SPCA, PPCA and ICA. However, the 95% confidence

intervals are larger than the di↵erences between feature extraction techniques, so

this result is obtained with low certainty. The reason behind the large confidence

intervals is that the data set is only small (n = 32).

Plotting the latent dimensionality selected by each technique at each feature

count, we obtain Figure 4.19. Here we see StPCA and ICA are far more stable

than SPCA and PPCA. PPCA uses the Laplace approximation to the marginal

1Implemented by the author as described in [Rasmussen and Williams, 2005]. R package hosted
at https://github.com/JimSkinner/gpclassifier.
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Figure 4.19: Model selection is performed di↵erently for each method, though always un-
supervised. Both StPCA and PPCA maximise the Laplace approximation to the evidence,
so it is interesting that PPCA selects larger k for larger d, but StPCA consistently picks
k = 6, despite the similarity between models. ICA appears to compress the data well, having
both the best performance in Figure 4.18 and the lowest selected dimension.

likelihood, as does StPCA. It is thus interesting that the selected values of k for

PPCA diverge as the number of features increases, but this does not happen for

StPCA. This could be due to the spatial prior in StPCA.

In the remainder of this section we probe these results with a few computa-

tional experiments. We replace the Gaussian Process Classifier used with a Random

Forest to determine how much of the result is classifier-specific. We then disable

model selection and fix k, allowing the model selection performance to be teased

apart from the fitted model performance. Finally we re-run the entire pipeline with

multiple seeds so to observe the variability in the result.

Replacing the Gaussian Process with a Random Forest classifier

Here we replace the Gaussian Process Classifier (GPC) with a Random Forest (RF)

classifier. The reasoning behind this is that the RF is known to be a particularly

robust classifier, and the poor StPCA performance may be due to the GPC not

fitting well. This re-run uses the same seed as the original results, so the variation

is not due to a di↵erent pixel subset in the data.

The results from using the RF are plotted in Figure 4.20. In this case all

the StPCA AUCs become comparable to those from the other methods. As before,

the 95% confidence intervals are still large compared to the di↵erences between

methods. The meaning of this result is that StPCA is not necessarily producing a

worse feature representation for disease classification in this scenario, only that the

particular classifier (GPC) failed to fit the features well.
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Figure 4.20: By replacing the Gaussian Process Classifier (GPC) with the Random Forest
(RF) for making the predictions used to compute AUCs, the performances between techniques
become comparable. This suggests that the GPC may have had di�culty fitting the features
produced by StPCA in Figure 4.19.

Fixing k

For this experiment we disable model selection and fix k to 3 (the value selected by

ICA) and 4. AUCs are again computed using the RF and GPC in 10-fold cross-

validation, and are presented in Figure 4.21.

For the GPC, we see that StPCA performance improves for a latent dimen-

sionality of 3 or 4. This is likely due to the GPC poorly fitting the higher dimensional

model-selected feature space, so says little about the StPCA performance. For k = 3,

we recover the original behaviour of ICA as expected. When k = 4, StPCA joins

ICA/PPCA as a top-performing method. However, unlike these the performance

does not drop for the highest feature count used, perhaps because of the additional

structure imposed by the spatial prior.

For the RF, the performance of StPCA remains good for k = 3 and 4, whilst

the PPCA and SPCA performance degrades. Both StPCA and ICA appear quite

robust to the value of k, but StPCA outperforms ICA in every case.

From this experiment we can see that StPCA is able to e↵ectively compress

FAIMS data, producing accurate classifications even down to 3 dimensions. We also

see that the GPC used is not always able to fit the StPCA feature space e↵ectively.

Comparing StPCA to PPCA is interesting to extract the influence of the structured

prior, which we see gives a boost in performance in almost all cases when using the

RF.
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Figure 4.21: We re-compute AUCs with k fixed to 3 and 4 (left two columns) with both the
Random Forest (RF) and Gaussian Process Classifier (GPC). The poor GPC performance
for on StPCA with model selection is likely due to the GPC failing to fit well, and we observe
a better fit on a lower dimensional feature space. Looking at the RF, StPCA performs well
with fixed k = 3 and 4, though not better than when model selection is enabled.

Multiple restarts with di↵erent seeds

Finally we repeat the entire fitting and prediction procedure with multiple di↵erent

seeds to observe the variability in the results. Since the model fitting is deterministic,

the only stochastic part is the input feature subsetting. The only di↵erence between

runs is thus the subsets of features used.

In Figure 4.22 we plot the AUCs obtained with the RF over multiple runs

for each dimension reduction method. The mean AUC for StPCA is higher than all

other techniques over the entire range of feature counts, and the StPCA AUCs are

also more stable than all other techniques.

Looking at the selected values of k in Figure 4.23, we see StPCA and

ICA are highly stable across runs and feature counts. The consistency in StPCA

indicates a peaked posterior in k, since a very broad posterior would be reflected in

an erratic value of k being selected. This is also the scenario in which the Laplace

approximation is reliable. There is a small increase in selected dimensionality for

StPCA for very low feature counts, which is surprising since for fewer features we
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Figure 4.22: Re-running with di↵erent seeds gives di↵erent RF AUCs due to feature subset
variability. Compared to other methods, StPCA produces a greater mean AUC for all feature
counts, as well as more stable AUCs.
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Figure 4.23: The selected k for StPCA is stable, picking k = 6 over most of the feature
count range. The increase in the selected k for low feature counts is notable, since once
would expect a lower dimensionality to be selected. It is also interesting that the PPCA k

increases with the feature count, but the StPCA k does not.
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would expect a simpler model to be selected.

PPCA reliably increases the size of the latent space with the feature count,

but this increase model complexity does not appear to positively influence AUC.

SPCA appears unstable in the selected latent dimensionality, despite the AUCs being

stable, indicating a robustness to the selected k. ICA reliably produces the highest

AUCs and lowest selected ks, so appears to be an e↵ective dimension reduction

technique for this data.

It is surprising that we do not see a consistent degradation in performance

as the feature count is reduced. This indicates that only a small number of FAIMS

pixels are su�cient for classification.

4.3 Conclusion

This chapter has been split into a section on fitting to synthetic data, and a section

on fitting to FAIMS data. Synthetic data are drawn from an StPCA model, and

StPCA, PCA and PCA are fit to the data. When simulating data from StPCA, the

SE covariance function is used, but when fitting to the data we use the RQ and TSE

covariance functions. We use a number of methods to evaluate the fitted StPCA,

PPCA and PCA models.

The data generating process generates noiseless data on a k-dimensional

subspace, then adds isotropic Gaussian noise to this. We compare methods by

their ability to recover this subspace from data, and find that StPCA is better

able to recover this subspace, despite having a misspecified covariance function.

When plotting the direction of greatest variation for each model, we find that this

is smoother for StPCA, reflecting the ground truth, than it is for PPCA and PCA.

StPCA has an advantage over PCA and PPCA of being able to produce an

approximate posterior over the loadings instead of a point mass. We show that

higher posterior certainty is correlated with lower variation from the ground truth,

but uncertainty is underestimated in the particular case considered.

In de-noising a sample, StPCA also outperforms PPCA and PCA in terms

of `2 distance between the de-noised sample and the ground truth noiseless sample.

StPCA produces an approximate marginal likelihood, which may be used

for model selection. We illustrate that, on the data considered, maximisation of

the approximate marginal likelihood in StPCA picks the ground truth covariance

function, as well as the ground truth latent dimensionality.

We then apply StPCA to FAIMS data, reducing the data to a lower dimension

with StPCA and producing predictions (IBD vs control) from this feature space.
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Comparing StPCA to PPCA, SPCA and ICA, StPCA is found to produce the

greatest AUCs on average when paired with the Random Forest classfier, and also

displays the least AUC variance. Comparing StPCA to PPCA, this increase in

performance must be due to the structured StPCA prior, since the is the only way

in which StPCA and PPCA di↵er. We use both the RF and GPC classifiers in this

section, but the GPC appears to not fit the StPCA feature space well.

The StPCA prior induced by the SE covariance function is quite crude. The

SE encodes stationarity, but looking at FAIMS images shows clear non-stationarities,

since there is always a plume around the same location and there is far more variation

within this plume than around the image edges. It may be the case that a non-

stationary covariance function can be constructed to specify this, possibly improving

performance.
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Chapter 5

Sparse Structured PCA

This chapter describes an extension to StPCA which produces a sparse loadings

matrix. We name this extension Sparse StPCA (SpStPCA).

StPCA has been designed with the case of d � n in mind, where there

is typically high uncertainty and the addition of prior knowledge on the loadings

may help learn a good model. We take this idea further with the introduction of

sparsity. When dealing with d � n, assuming sparsity, i.e., that only a subset

of the input features contain useful information, has proven to be useful [Hastie

et al., 2015], leading to techniques such as Sparse PCA (SPCA). We thus investigate

combining StPCA with sparsity, and see how this a↵ects the ability to make accurate

predictions on FAIMS data.

We begin with background in Section 5.1, starting with subgradients – a

generalisation of the gradient often used in sparse modelling – and then discuss

existing techniques in sparse modelling. The modelling assumptions and inference

procedures for SpStPCA are covered in Section 5.2, and results of applying SpSt-

PCA to FAIMS data are presented in Section 5.3.

5.1 Background

Sparsity is not a new concept; the Lasso [Tibshirani, 1996] is a well-known method

of regularising a statistical estimator to produce sparse coe�cients, which is de-

sirable for a number of reasons. Presence of exact zeroes can reduce memory and

computational requirements, and may improve interpretability. Lasso regularisation

may also reduce the variance in the estimate of the coe�cients at the cost of only a

small increase in bias.

The Lasso computes a point estimate of the parameters which corresponds
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to the posterior mode when the parameters have i.i.d Laplace priors. The Bayesian

Lasso [Park and Casella, 2008] extends this by Gibbs sampling from the posterior,

and also enables model selection of the sparsity hyper-parameter using Bayesian

methods. The Bayesian Lasso was initially presented in a regression setting, but

Guan and Dy [2009] use the Bayesian Lasso model to derive a Sparse Probabilistic

PCA model using variational inference to report an approximate posterior.

A number of sparse latent linear models exist: SPCA uses sparsity in the

loadings, whilst Dictionary Learning is sparse in the latent variables. It is very

common to obtain sparsity via minimisation of an `1 norm, which has attractive

analytic properties which are discussed below.

5.1.1 Subgradients and subdi↵erentials

In StPCA, finding themaximum-a-posteriori W is performed by setting the gradient

of the negative expected complete log posterior to 0 and solving for W. This works

because the function is convex and di↵erentiable, so any value of W with zero

gradient is a global minimum. In this chapter we consider minimisation of convex

but nondi↵erentiable functions, meaning that we cannot look for points with zero

gradient since the gradient may not exist. To get around this we use the notion of

subgradients and subdi↵erentials.

For a di↵erentiable convex function, the tangent plane at any point always

provides a lower bound for the entire function. At any nondi↵erentiable point the

tangent plane is not defined. Instead we may consider the set of all planes (the

“subtangent planes”) which provide a lower bound.

In 1 dimension, the subdi↵erential of a convex function f at point x0 is the

set of all scalars z such that

f(x) � f(x0) + z(x� x
0) (5.1)

for all x in the domain of f . If z is an element of the subdi↵erential, we call it a

subgradient. Generalising to p dimensions, a vector z 2 Rp is a subgradient of a

convex function f : Rp
! R i↵

f(x) � f(x0) + z>(x� x0) (5.2)

Whenever f is di↵erentiable at x0, the subdi↵erential is equal to the singleton

set containing the gradient. At nondi↵erentiable points, the subdi↵erential is a

convex set of all subgradients.

An example nondi↵erentiable convex function which will be used throughout
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this chapter is the absolute value function f(x) = |x|. The subdi↵erential in this

case is

@f

@x
=

8
>>><

>>>:

{+1} if x > 0

[�1,+1] if x = 0

{�1} if x < 0

(5.3)

which can be written compactly as sign(x). Here we use @f
@x to indicate the partial

subdi↵erential of f with respect to x, overloading the partial derivative operator.

We continue this syntax throughout this chapter, and the intended operator should

be clear from context.

Using subgradients, the condition for x0 to be a minimum of a convex nondif-

ferentiable function f is

0 2
@f

@x

���
x=x0

(5.4)

That is, the vector of all zeroes is a subgradient of f at x0. In the case of f(x) = |x|,

we can see from Equation 5.3 that this is satisfied when x = 0.

5.1.2 The Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator) is a method for es-

timating model parameters where the parameter estimates are sparse (contain exact

zeroes). Here we will focus on the case of the Lasso being applied to a linear model,

but the Lasso may be applied more generally. In the linear regression case, we have

a matrix of predictors V 2 Rn⇥k and vector of responses x 2 Rn. Our aim is to

fit the linear model x ⇡ Vw, where it is common to fit the vector of coe�cients

w 2 Rk using the least squares estimator

argmin
w2Rp

1

2
||x�Vw||

2
2 (5.5)

The least-squares Lasso estimator is obtained by considering the least squares

estimator and subjecting this to the constraint that the parameter estimates lie

inside the `1 ball of radius t:

argmin
w2Rp

1

2
||x�Vw||

2
2

subject to ||w||1  t

(5.6)

The solution to this problem often contains exact zeroes. t > 0 is a hyper-parameter,

where smaller values produce sparser solutions.
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Figure 5.1: Constrained `1 norm (left) and `2 norm (right). One can see that in the `1

constrained plot, the optimum value of � lies at the corner of the constrained region where
�2 is equal to 0, and thus �̂t is sparse. This sparsity does not result from the `2 case. Figure
adapted from [Hastie et al., 2015, Figure 2.2].

Why is a sparse solution produced?

Figure 5.1 illustrates why the `1 constraint produces sparsity, but the `2 constraint

does not. Unconstrained, the problem has the solution ŵ, with red contours showing

the squared error function to be minimised. When restricting w to lie in the region

||w||1  t, the lowest achievable objective value, ŵ, lies at the point of the feasible

region, at which w1 = 0 and w2 = t.

The Lagrange Dual problem

Equation 5.6 may be written in Lagrangian form

argmin
w2Rp

1

2
||x�Vw||

2
2 + �||w||1 (5.7)

where we have a di↵erent hyper-parameter controlling sparsity � > 0. By Lag-

rangian duality [e.g., Bishop, 2006, Appendix E], for any value of t in the constrained

form where the constraint is active, these exists a value of � in the Lagrangian form

such that the two problems have the same solution. One can also translate the other

way; if ŵ� is a solution to the Lagrangian form, then it is also a solution to the

constrained form with t = ||ŵ�||1.

It may be preferable to implement the Lasso by solving the Lagrangian

form instead of the constrained form due to the lack of constraints. The Lag-

range form also highlights a link to Bayesian inference. The function being min-

imised in Equation 5.7 has the form of a negative log posterior with a Gaus-

sian likelihood and i.i.d Laplace priors on w. The squared error term is propor-
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tional to
Qn

i=1 logN (xi|v>
i w,�

2) for any �
2, and the `1 term is proportional to

log
Qk

i=1 Laplace(wi|0,
1
�). The evidence term does not appear, since it is constant

in w. Another way of obtaining the Lasso is thus to introduce Laplace priors on the

parameters and perform MAP inference.

Computing the Lasso solution

The objective function in Equation 5.7 is convex and – due to the `1 penalty –

nondi↵erentiable. Following Section 5.1.1, to find the optimum w we require a

point at which 0 is a subgradient, but this is not available in closed form. One way

in which the Lasso solution can be computed is via cyclic coordinate descent [e.g.,

Hastie et al., 2015, Chapter 5], in which the objective is minimised with respect to

each element of w in some fixed order until convergence.

To derive cyclic coordinate descent, we first rewrite the objective function in

Equation 5.7 as

f(w) =
1

2
||r(l) �V:,lwl||

2
2 + �||w�l||1 + �|wl| (5.8)

Here we use V:,l to indicate the l’th column of V, and wl to indicate l’th element of

w. V:,�l and w�l indicate V and w with their l’th row removed respectively. We

have defined the partial residual r(l) = x�V:,�lw�l which is the residual from the

current fit ignoring the l’th predictor.

We now compute the subdi↵erential

@f

@wl
= wl||V:,l||

2
2 � r(l)>V:,l + � sign(wl) (5.9)

At the optimum value w
⇤
l this will contain 0, so we consider a single z 2 sign(w⇤

l )

and solve for w⇤
l , arriving at

w
⇤
l =

r(l)>V:,l � �z

||V:,l||
2
2

(5.10)

Since the denominator is positive, the numerator has the same sign as w
⇤
l and z,

allowing us to consider three cases w⇤
l < 0, w⇤

l > 0 and w
⇤
l = 0.

w
⇤
l =

1

||V:,l||
2
2

8
>>><

>>>:

r(l)>V:,l � � if r(l)>V:,l > �

0 if |r(l)>V:,l|  �

r(l)>V:,l + � if r(l)>V:,l < ��

(5.11)
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Figure 5.2: The soft-thresholding operator using � = 0.5.

This can be written more compactly as

w
⇤
l =

S�(r(l)>V:,l)

||V:,l||
2
2

(5.12)

using the soft-thresholding operator, which we illustrate in Figure 5.2:

S�(x) = max(|x|� �, 0) sign(x) (5.13)

The elastic-net

The elastic-net [e.g., Hastie et al., 2015] is a generalisation of the Lasso, adding a

combination of ridge and Lasso penalties:

argmin
w

1

2
||y �Vw||

2
2 + �


1� ↵

2
||w||

2
2 + ↵||w||1

�
(5.14)

The parameter ↵ 2 [0, 1] smoothly interpolates between the Lasso (↵ = 1) and ridge

regression (↵ = 0).

The Lasso can have erratic behaviour when variables are highly correlated

(which is the case with FAIMS data). If input features V:,i,V:,j are identical, then

coe�cients wi and wj are non-identifiable, and their learned values may depend

upon initialisation and implementation. The addition of the `2 penalty recovers

uniqueness since wi, wj will be given equal values.
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The coordinate descent update step for the elastic-net has the form

w
⇤
l =

S�↵(r(l)>V:,l)

||V:,l||
2
2 + �(1� ↵)

(5.15)

which can be seen to be similar to the Lasso solution. The di↵erence is in the

reduced thresholding parameter �↵, and with increased shrinkage due to the addi-

tional positive term �(1� ↵) in the denominator.

Related models

The Lasso may be modified to achieve sparsity in di↵erent domains. So long as the

regularisation term remains convex, the problem remains tractable.

One variant of the Lasso is used in Robust PCA (introduced in Section 1.1.1),

which uses the nuclear norm in the penalty term to encourage an inferred matrix to

be low-rank. The nuclear norm is the sum of the singular values of a matrix. Since

these are positive for any real matrix, this is the same as the sum of the absolute

singular values. This is similar to the Lasso, which uses a sum of absolute coe�-

cients to achieve sparsity in the coe�cients. By penalising the sum of the absolute

singular values, we achieve sparsity in the singular values, and thus produce a low-

rank matrix. Other variants can be found in Hastie et al. [2015, Chapter 4], which

include the group Lasso, in which groups of variables are defined, and all variables

in a group are set to zero together.

5.2 Model

SpStPCA is obtained by taking the structured Gaussian prior over W in StPCA

and multiplying this by an i.i.d Laplace prior:

p(✓|�, b) /

"
kY

i=1

N (wi|0,K�)

#"
kY

i=1

dY

j=1

Laplace(wij |0, b)

�
(5.16)

The purpose of the Laplace prior is to introduce sparsity into the MAP W.

The amount of sparsity is modulated by the new hyper-parameter b, where smaller

values of b lead to a sparser MAP W. Introduction of this prior does not change

the E-step in the EM procedure for MAP inference in StPCA. Only the M-step is

a↵ected, which we describe below.

The prior Equation 5.16 does not integrate to 1, and there is no closed form

normalising constant. This introduces an unknown constant into the posterior.
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However we are primarily interested in finding the MAP, so this constant is not

problematic.

5.2.1 Solving the SpStPCA MAP

The SpStPCA M-step is performed by maximising the expected complete log pos-

terior

Q(✓, ✓old) = E [log p(X|V, ✓)]p(V|X,✓old) + log p(✓|�, b) (5.17)

=�
1

2

⇣
nd log 2⇡ + nd log �2 + �

�2E
h
||X�VW>

||
2
F

i⌘

�
1

2

⇣
kd log 2⇡ + k log |K� |+Tr

h
W>K�1

� W
i⌘

�

✓
log 2b+

1

b
||W||1

◆
(5.18)

This is the same as that for StPCA except with the additional term �(log 2b +
1
b ||W||1), which arises from the Laplace part of the SpStPCA prior.

Considering only the parameter W, maximisation is performed by minim-

ising the function

f(W) :=
1

2
E
h
||X�VW>

||
2
F

i
+ �

2

✓
1

2
Tr
h
W>K�1

� W
i
+

1

b
||W||1

◆
(5.19)

=
1

2
E
h
||X�VW>

||
2
F

i
+ ⌦(W) (5.20)

/�Q(✓, ✓old) (5.21)

where we have introduced ⌦(W) for cleaner syntax. In StPCA we derive a solution

to the W maximisation step in terms of the solution to a Sylvester equation. In

this case we are unable to obtain such a solution due to the additional term ||W||1.

We instead minimise Equation 5.19 using coordinate descent. Below we derive

an analytic minimiser for a single wlm 2 W. The objective is convex, so cycling

through each element of W and minimising converges at the global minimum.
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Coordinate Descent

We can rewrite

X�VW> = X�
kX

i=1

V:,iw
>
i (5.22)

=

0

@X�
kX

i 6=l

V:,iw
>
i

1

A�V:,lw
>
l (5.23)

= Rl
�V:,lw

>
l (5.24)

where V:,l is the column vector made from the l’th column of V. We have in-

troduced Rl which is the partial residual obtained by subtracting from the data

the reconstructions made without the l’th latent dimension. Using Equation 5.24

and the definition of the Frobenius norm, the squared reconstruction error may be

written as

||X�VW>
||
2
F =

dX

i=1

||rli �V:,lwli||
2
2 (5.25)

where rli is the i’th column of Rl. This formulation is useful as it allows us to single

out an element of W, and enables us to rewrite f(W) as

f(W) =
1

2
E
"

dX

i=1

⇣
rl>i rli � 2wlir

l>
i V:,l + w

2
liV

>
:,lV:,l

⌘#
+ ⌦(W) (5.26)

=
1

2
E
h
||Rl

||
2
F

i
�

dX

i=1

wliE
h
rl>i V:,l

i
+

||wl||
2
2

2
Tr
h
E
h
V:,lV

>
:,l

ii

+ ⌦(W) (5.27)

To perform coordinate descent, we take the derivative with respect to a single

element wlm:

@f

@wlm
= wlmTr

h
E
h
V:,lV

>
:,l

ii
� E

h
rl>mV:,l

i
+

@⌦

@wlm
(5.28)

where
@⌦

@wlm
= �

2

 
dX

i=1

wli(K
�1
� )m,i +

1

b

@|wlm|

@wlm

!
(5.29)

We now introduce z as an element of the subdi↵erential of |wlm| and solve
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for the value w
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, giving:
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Following the same process as the derivation for the Lasso (Section 5.1.2), this

can be be written as
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where S is the soft-thresholding operator introduced in Section 5.1.2. As expected,

smaller values of b produce more thresholding. We also see more thresholding for

larger values of �2. This makes sense as, if we believe the data are corrupted by

a high level of noise, it takes a stronger signal to convince us that a given feature

contains useful information.

Computing expectations

Two expectations must be computed to find w
⇤
lm in Equation 5.31, which we

compute here. These are taken over p(vi|xi, ✓), which in StPCA is

p(vi|xi, ✓) = N (vi|M
�1Wxi,�

2M�1) (5.32)

This remains true in SpStPCA since we have only altered the prior, which p(vi|xi, ✓)

does not depend on. Using this, we can obtain the following expression for the

expectation

E
h
V:,lV

>
:,l

i
= cov(V:,l) + E [V:,l]E [V:,l]

> (5.33)

= �
2(M�1)l,lI + (XW>M�1):,l(XW>M�1)>:,l (5.34)

The second expectation, E
⇥
rl>mV:,l

⇤
, can be obtained by expanding out the

definition of rlm and using independence to substitute E
h
V>

:,iV:,l

i
= E[V:,i]

> E[V:,l]

for i 6= l, arriving at:
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With these expectations, we can now perform cyclic coordinate descent to find the
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MAP W in SpStPCA.

Relation to elastic-net

The M-step of SpStPCA is closely related to the elastic-net. If we choose K� =

(1 � 1
b )

�1I and substitute this into the function to be minimised during the W-

maximisation step (Equation 5.19), we obtain the minimisation problem

argmin
W

1

2
E
h
||X�VW>

||
2
F

i
+ �

2

✓
1� b

�1

2
||W||

2
F + b

�1
||W||1

◆
(5.36)

Comparing Equation 5.36 to the elastic-net (Equation 5.14), we see see the

problems are very similar. There is in fact an equivalence between the problems.

Although the squared error term in Equation 5.36 is under an expectation, this

expectation is over V and the term remains quadratic in W. Knowing this, we can

see the equivalence with the hyper-parameter correspondence �
2 = �, b�1 = ↵.

From this perspective, we can see SpStPCA as a generalisation of the elastic-

net. In the elastic-net, all features are a-priori considered independent. SpStPCA

generalises this by enabling features to be tied together in the prior through K� . By

choosing K� to be diagonal as above we return to considering independent features,

so it is no surprise that we recover the elastic-net.

Mathematically, the SpStPCA maximisation step for W contains the term
1
2 Tr

h
W>K�1

� W
i
, in which the elements of W interact through K� . When selecting

K� proportional to the identity matrix, this term collapses into a constant times

||W||
2
F, as seen in Equation 5.36.

5.2.2 Consequences of sparsity prior

Posterior invariances

In StPCA the posterior is invariant to the transformation W ! WR for any or-

thonormal matrix R. We use this in StPCA to rotate W such that each column

points in an eigen-direction, improving interpretability. This is no-longer the case

in SpStPCA as the prior does not have this rotational invariance, as such a trans-

formation would a↵ect the sparsity pattern, and, more generally, ||W||1 6= ||WR||1.

The invariances the SpStPCA posterior does have are permutations in the

columns of W and flipping the sign of any element of W. In stpca we order the

columns of W to be descending in magnitude, so column 1 still captures more

variation than the remaining columns, though unlike StPCA it is not the direction

of the most variance.
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Evidence approximation

StPCA uses the Laplace approximation of the evidence, which requires finding the

posterior mode and using the local curvature to approximate the entire posterior

as an un-normalised Gaussian, then computing the normalising constant (the ap-

proximate evidence) in closed form. The Laplace approximation cannot be used for

SpStPCA because the posterior is not di↵erentiable anywhere any element of W is

0, which may be the case at the mode. The evidence approximation for StPCA thus

cannot be used for SpStPCA.

Computing the entire b-path

It may be desirable to fit StPCA for a range of values of b to see how the sparsity

pattern is a↵ected, which we do in the experiments in the next section. This can

be performed e�ciently by starting from a large value of b, corresponding to non-

sparse solutions, initialising from StPCA then fitting with the coordinate descent

algorithm described above. We then adjust b to the second largest value and fit

SpStPCA again, initialising from the previous fit.

Empirically this saves a large amount of computation compared to fitting

for each value of b separately, allowing SpStPCA to cheaply be fitted over an entire

range of values of b. This is the same procedure as pathwise coordinate descent as

used in the Lasso to perform the same task of fitting over a range of values of the

sparsity parameter [Hastie et al., 2015].

5.3 Results

In this section we use computational experiments to investigate the behaviour of

SpStPCA. The dataset we use is a set of 64 FAIMS measurements of breath from 53

IBD patients and 11 healthy controls. This is the dataset described in Section 2.3.2

and used in the StPCA computational experiments in Section 4.2.

As with the StPCA experiments, we use a subset of the FAIMS features to

reduce the computational costs. To make the experiments comparable, we use the

same feature subset of 330 features used in the Section 4.2 experiments. We also

use the same covariance function (noisy squared exponential), and the values � and

k as selected in the StPCA experiment.

This section is split into three parts. In Section 5.3.1, we look at how

SpStPCA performs in an unsupervised setting, and investigate how the value of

b impacts the sparsity in the loadings. We then investigate the accuracy of dis-
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Figure 5.3: As b is decreased, the number of zeroes in W increases.

ease/control predictions made from the learned latent space in Section 5.3.2, and

compare these to the results obtained by StPCA on the FAIMS data experiments

in Section 4.2.

5.3.1 E↵ect of varying b

By fitting SpStPCA for a range of values of b and considering the number of zeroes

in W, we obtain Figure 5.3. This shows a monotonic increase in the sparsity of

W as b is decreased, which is to be expected.

It is of interest to know whether, once a given element of W is set to zero,

the element remains at zero for all smaller values of b. In Figure 5.4 we plot which

elements are zero for each value of b considered. In the left-hand plot the elements

are presented in an arbitrary order. On the right-hand plot they are ordered by the

total time spent at zero. This plot shows us that once an element of W becomes

zero, it will often remain zero for all smaller values of b, but this is not always the

case. This non-monotonicity of selection is also a property of SPCA [Hastie et al.,

2015].

The relationship between coe�cients being zero and the location of the coef-

ficients ti is also of interest. We illustrate this in Figure 5.5 by plotting the values

of w1, and whether they equal zero, at the locations ti. It can be seen that de-

creasing b causes all coe�cients to shrink. However, those elements corresponding

to pixels on the outside of the FAIMS plume are set to zero first.

Automatic model and feature selection

SpStPCA is able to perform automatic feature selection and automatic model se-

lection for k. As W becomes more sparse, entire columns are set to zero. This is
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given value of b. The di↵erence between the two plots is the ordering of the elements of W;
the left-hand plot shows the stacked columns, and the right-hand plot has sorted the elements
by the total number of ‘false’ values over the entire row. It can be seen that the selection
of a feature is fairly stable; once a coe�cient becomes zero, it usually remains zero. This
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Figure 5.5: Top: values in w1 plotted at their locations ti. Bottom: Indicator of whether
the elements of w1 are zero (black) or non-zero (red). As we decrease b from high (right)
to low (left), we can see shrinkage on the coe�cients in the top row. We also see, in the
bottom row, that the first features set to zero are those on the outside of the plume.
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Figure 5.6: Automatic model and feature selection

accompanied by the variance in the corresponding latent dimensions also shrinking

to zero. When this occurs the e↵ective value of k is reduced. Similarly, when an

entire row of W becomes zero, the corresponding feature is no-longer used when

computing the latent representations, thus selection of a subset of features to use is

performed automatically. These are demonstrated in Figure 5.6, where we show

how the percentage of features selected and the e↵ective value of k change with the

sparsity of W.

5.3.2 Disease prediction

Experiments performed here are for the purpose of discovering whether the addition

of sparsity aids in producing a latent space in which FAIMS data can be accurately

classified.

In Section 4.2, StPCA was fitted to the 330-dimensional FAIMS data. In

applying SpStPCA in this section, we take the model-selected StPCA values of k

and � (using the SE covariance function), and use these in SpStPCA. We then

fit SpStPCA with a range of values of b and see how the predictive performance

changes. Predictive performance is measured using 10-fold cross-validated AUC,

where predictions mare made using the Random Forest (RF) classifier.

The AUCs obtained are shown in Figure 5.7. For comparison, AUCs ob-

tained using PPCA, SPCA and ICA are also included. For large b, SpStPCA obtains

the same performance as StPCA in Section 4.2. This is unsurprising, as large b

means little shrinkage, producing a model closer to StPCA. As b is reduced from
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Figure 5.7: 10-fold cross-validated AUCs using Random Forest classifier. For large b the
model becomes equal to StPCA. Greater predictive accuracy can be obtained by decreasing b,
introducing sparsity in W.

the maximum value we see an increase in performance. This is interesting, since

this corresponds to greater regularisation and suggests that StPCA was perhaps too

flexible. Further reducing b gives a trough in performance, followed by another peak

where only 73 features are used.

Comparison to SPCA

A fair comparison of the above test of SpStPCA is to SPCA, which also has a para-

meter we can alter to change the amount of sparsity in the loadings. We fit SPCA

with k = 6 over a range of sparsities, and again compute 10-fold cross-validated

AUCs, comparing the performance of SPCA and SpStPCA against the sparsity in

the loadings. Results are shown in Figure 5.8, where SpStPCA outperforms SPCA

over most of the sparsity range. The performance boost seen in SpStPCA must be

due to the spatial prior, since this is the only way in which the models di↵er.

5.3.3 Generalising across datasets

Here we compare SpStPCA to SPCA in generalising across FAIMS disease classific-

ation tasks. We take the models fitted to IBD in the previous section and investigate

how these fitted models generalise to the TB dataset used in Section 2.3.3. This

TB dataset is chosen since, similarly to the IBD data, this dataset was collected

using the FAIMS instrument, and is also of breath measurements. The TB data are

reduced to the same set of 330 features as used in the previous section.
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Figure 5.8: Both SpStPCA and SPCA have a parameter controlling sparsity. By tweaking
these and considering the predictive performance achieved and the level of sparsity in the
loadings, the two methods can be compared. We can see that SpStPCA produces higher AUCs
for nearly all sparsity levels considered. The di↵erence in performance must be due to the
spatial prior in SpStPCA, since this is the only way in which the methods di↵er.

We first consider the generalisability of the parameters learned on the IBD

data. Taking the SpStPCA and SPCA models achieving the greatest AUCs in

Figure 5.8, we apply the feature transformations as learned on the IBD data to the

TB data and evaluate predictive performance. As before, performance is measured

using AUC produced in a 10-fold cross-validation using the Random Forest classifier.

SpStPCA and SPCA obtain AUCs of 0.91 and 0.84 respectively.

We then investigate generalisability of the hyper-parameters. Considering

the SpStPCA and SPCA hyper-parameter values which obtain the greatest predict-

ive performance in Figure 5.8, we fit SpStPCA and SPCA to the TB data and

again produce cross-validated AUCs. SpStPCA and SPCA obtain AUCs of 0.91

and 0.83 respectively.

Interestingly, the original study in Section 2.3.3 obtained a leave-one-out

cross-validated AUC of 0.83. SpStPCA out-performs this when generalising both

the parameters and hyper-parameters from IBD, and SPCA performs similarly.

As a final experiment we fit SpStPCA and SPCA over a range of sparsity

hyper-parameter values and investigate how their performance changes with the

sparsity of the loadings. This produces the plot in Figure 5.9, in which we can

see that for almost every given level of sparsity, SPCA out-performs SpStPCA. The

reason we obtained greater AUCs for SpStPCA earlier in this section is that the

hyper-parameters used from the IBD experiments produce di↵erent sparsity levels.

SPCA produces close to 100% sparsity, whilst SpStPCA produces lower sparsity so
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Figure 5.9: SPCA seems to out-perform SpStPCA when considering the AUCs obtained
over a range of sparsity levels. However, when taking the maximum AUC hyper-parameters
from the IBD data and applying them to the TB data, SpStPCA selects a lower level of
sparsity so obtains a greater AUC. The highlighted points show the AUCs achieved with the
IBD selected hyper-parameters.

obtains a higher AUC on the TB data.

The sparsity level for SpStPCA is better performing than that for SPCA,

and also closer to the optimum for SpStPCA, showing better generalisation than

the SPCA hyper-parameter. Note that if both techniques had picked their optimum

sparsity levels they would have performed similarly, with SpStPCA and SPCA ob-

taining AUCs of 0.957 and 0.960 respectively.

5.4 Future Work

One drawback of SpStPCA is that the Laplace approximation to the marginal like-

lihood cannot be used. Due to the Laplace distribution term of the SpStPCA prior,

the posterior contains nondi↵erentiable points which may be at the mode, meaning

the Hessian is not defined and the Laplace approximation cannot be applied. For

future work one could derive a marginal likelihood approximation which gets around

this issue. We suggest a possible route here, inspired by the Laplace approximation.

One could also investigate variational approximations.

We follow a similar process to the Laplace approximation, first defining vec-

tors ✓z ✓ ✓ and ✓
nz
✓ ✓ of the parameters with their MAP value at zero and non-zero

respectively. We also define |✓
z
| and |✓

nz
| to be the length of each vector. First we
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make an approximation to the un-normalised posterior:

p(X|✓)p(✓|�, b) ⇡ p(X|✓̂)p(✓̂|�, b) exp

8
<

:�
1

2
(✓nz � ˆ✓nz)>H(✓nz � ˆ✓nz)�

|✓z|X

i=1
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z
i |

si

9
=

;

(5.37)

/ N (✓nz| ˆ✓nz,H�1)

|✓z|Y

i=1

Laplace(✓zi |0, si) (5.38)

Here H�1 is the negative Hessian of the un-normalised log posterior with respect

to ✓
nz, as in the Laplace approximation. ˆ✓nz is the MAP value of ✓nz; ✓̂z is the

zero-vector, so is not included as a symbol in Equation 5.37. If all variables

are non-zero at the MAP, ✓z is empty and the Laplace approximation is recovered

exactly. There are |✓
z
| scale variables si that need to be determined. We know that

the un-normalised posterior has a non-di↵erentiable mode at 0 for each parameter

in ✓
z; the values of each si may be determined by matching the subgradients of the

approximation to the subgradients of the un-normalised log posterior.

The marginal likelihood approximation is found by computing the area un-

der Equation 5.37, which can be done in closed form. When integrating Equa-

tion 5.37 over ✓, this splits in to a product of a Gaussian integral over ✓nz, and |✓
z
|

one-dimensional integrals over each ✓
z
i . The resulting normalising constant is:

p(X|�, b) ⇡ p(X|✓̂)p(✓̂|�, b)(2⇡)
|✓z|
2 |H|

� 1
2

|✓z|Y

i=1

2si (5.39)

5.5 Conclusion

SpStPCA is a linear latent variable model with a prior obtained by multiplying

together the structured prior from StPCA and i.i.d Laplace priors. Introducing the

Laplace priors means the MAP loadings are frequently sparse, which has the advant-

ages of improved interpretability, as well as feature selection and model selection for

the latent dimensionality.

SpStPCA generalises SPCA. In SPCA, the features are a-priori independent.

In SpStPCA this is not the case due to the structured part of the prior, as in

StPCA. Independence may be recovered by providing a diagonal covariance matrix

to the structured prior. Furthermore, the SPCA model may be recovered exactly

by correctly parametrising the covariance matrix.

SpStPCA also generalises StPCA. By choosing the sparsity hyper-parameter
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b to be very large, corresponding to less sparsity, the SpStPCA MAP coincides with

that of StPCA. SpStPCA may be e�ciently fitted over a range of b values, enabling

exploration.

We perform computational experiments, investigating how SpStPCA per-

forms on FAIMS data compared to SPCA. Performance is measured via AUCs in

classifying disease samples from healthy controls in 10-fold cross-validation. We first

consider a dataset of breath measurements from IBD-positive patients and healthy

controls. This is the same dataset used in the StPCA experiments, enabling compar-

ison. For large b, SpStPCA performs the same as StPCA as expected. By decreasing

b, and thus introducing sparsity, the AUCs obtained increase and out-perform all

methods used in the StPCA experiments on the same dataset. Furthermore, when

comparing SpStPCA to SPCA over a range of sparsity hyper-parameter values, Sp-

StPCA produces greater AUCs over the majority of the range of possible sparsity

values.

We then consider how SpStPCA generalises to a new dataset compared to

SPCA. We consider the TB dataset from Section 2.3.3, and investigate how the

transformations learned on the IBD dataset perform when applied to the TB data-

set. We also investigate how the best performing hyper-parameter values on IBD

generalise to TB. In both cases StPCA outperforms SPCA. This appears to be due

to SPCA selecting too high a level of sparsity on IBD.

The Laplace approximation used in StPCA to approximate the evidence and

posterior cannot be used in SpStPCA due to non-di↵erentiable points at the MAP.

However, we suggest an alternative evidence approximation.
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Chapter 6

Conclusions

The devices studied here – inspired by olfaction, and in the early stages of medical

use – are showing great promise. We have seen multiple studies where biological

samples from hospital patients displaying some disease can be distinguished from

that of healthy controls using an artificial olfaction instrument. We have also seen

cases where disease subtypes have been distinguished between, easing some of our

concerns that we are only picking up on a generic “poor health” signal. Human

olfaction already plays a vital part of certain diagnostic procedures, and we have

learned that canines, with their superior olfactory capabilities, can detect medically

interesting signal beyond the reach of humans. There seems, to the author, to be

a great deal of evidence that the odours given o↵ by biological samples contain

valuable information on the state of health. Until now this information source has

been largely closed to us, but with the introduction of these devices, odour has

become a phenomenon which can be measured and quantified.

Scientific studies performed for evaluating the medical potential of artificial

olfaction instrumentation have typically only collected a small number of samples.

This is understandable given their exploratory nature, but limits our ability to draw

confident conclusions, especially when the signals are fairly weak. Compounding

this, the data are typically high dimensional, and standard feature learning tech-

niques such as PCA are generally applied. A problem here is that a statistical model

of the data is re-learned on each analysis, producing high variance in the learned

parameters. This means that a study may appear to fail due to learning a poor set

of parameters, despite signal existing within the data. However, we typically have

plenty of prior knowledge about the structure of the data, and utilising this would

allow us to squeeze the best results out of the data we have.

In this thesis we have introduced the new statistical models StPCA and
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SpStPCA, for which we have produced implementations1. These are linear latent

variable models which allow a user to specify a prior over the covariance structure

of the data, and thus to learn a more accurate model from fewer samples, provided

the prior is good. This prior may be intuitively specified via a covariance function,

and may help a researcher get the most out of a small quantity of data. StPCA al-

lows an approximate marginal likelihood to be computed, leading to an approximate

posterior and allowing a researcher to examine the certainty with which parameters

have been learned. Principled Bayesian model selection is also enabled, allowing

quantification of the support for one model (specified by latent dimensionality, co-

variance function and hyper-parameters) over another. SpStPCA extends StPCA

by introducing sparsity on the parameter estimates, improving interpretability and

empirically improving performance on FAIMS data. This extension unfortunately

means the evidence approximation no longer applies, but we suggest a possible al-

ternative.

StPCA and SpStPCA generalise ridge regression and the elastic net respect-

ively, introducing correlation structure between the features. In both cases there

is an `2 penalty term on the coe�cients, independently encouraging coe�cients to

be small. In this work, the coe�cients to which the `2 norm is applied are tied

together through the prior covariance matrix. Coe�cients which are described as

a-priori more correlated are encouraged to have similar values. As a result, features

in StPCA and SpStPCA are not necessarily a-priori independent.

StPCA and SpStPCA were designed for use with artificial olfaction data, but

are highly general methods which are made application-specific via a user-specified

covariance function in the prior. These should both be of use in any field where

one wishes to fit a latent variable model and has prior knowledge of the covariance

structure of the data. This would most likely be useful in cases of high dimension

and small sample number. Data such as images or time-series, where we expect

nearby points to take similar values, are clear candidates for application, but the

full range of applications is very broad.

There is still a great deal more exploration and development to be done be-

fore these instruments can be routinely applied in medicine. Studies performing

multi-class classification between a larger number of diseases and subtypes would

be interesting, as we may discover that, although samples from a range of diseases

can all be distinguished from control samples, the diseases themselves may not be

distinguished between. An immediate thought here is to combine all datasets col-

lected with a particular machine, but we have already seen that batch e↵ects within

1https://github.com/JimSkinner/stpca

162

https://github.com/JimSkinner/stpca


an experiment are common, so batch e↵ects between experiments will likely domin-

ate. These technologies are constructed to be sensitive to a broad array of signals,

but this also means that many possible background signals may be confounding,

making batch e↵ects di�cult to avoid. The measurements may be confounded by

many signals irrelevant to health, such as sample storage time, di↵erences in exper-

imental procedure, patient diet and time since last meal. Careful study design is

thus required to avoid accidental confounding of the data.

Interestingly, the BreathSpec project2 analyses patient breath in-situ, elim-

inating storage time and experimental procedure as sources of variation, and thus

as possible confounders. Another major source of variance lies in individual patient

information, such as age or gender. Disease predictions typically come from the

sample measurement alone, but including this patient information in the predictive

model may be required to obtain the best predictive accuracy.

A likely application of value would be to discriminate between diseases which

appear similar but demand di↵erent treatment, such as distinguishing bacterial from

viral infections. In this thesis we have focused on the use of artificial olfaction in

diagnosis, but this is unlikely to be the only medical application. Monitoring the

progression or remission of a disease could be fruitful, especially since intra-patient

variability will be less of an issue. However, given that artificial olfaction has the

potential to provide a broadly sensitive, low-cost, non-invasive (depending on sample

type), rapid and portable method of biomarker detection, it seems probable that

there are many more medical uses which have not yet been considered.

What will the future of medicine making full use of artificial olfaction look

like? This is clearly speculative, but one can imagine, due to their broad sensitivity,

that a single artificial olfaction instrument can replace a large number of specialised

tests, saving costs in terms of time, equipment and training. This may be of par-

ticular value in the developing world. The set of diseases and subtypes for which

testing is cheap and easy may expand, and routine checks for common cancers may

help early detection. There is still a large body of experimental work that must be

done to reach these goals, and by building appropriate statistical tools we aim to

get the most out of every experiment.

2https://breathspec.com
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Appendix A

Useful mathematical tools

A.1 Principal Angles

A useful tool to compare the ”closeness” of two linear subspaces is to compute the

Principal Angles between them [Knyazev and Zhu, 2012]. In this Thesis, Principal

Angles have been computed using the R package prangles which has been written

by the author and made available at https://github.com/JimSkinner/prangles.

It is assumed that these subspaces contain the origin. For linear subspaces X ⇢ Rn

and Y ⇢ Rn of dimension p  n and q  n respectively, the principal angles ⇥(X ,Y)

are a non-increasing list of angles of length m := min(p, q).

A.1.1 Definition

Given two unit vectors x and y, the acute angle between these vectors ✓(x,y) is

defined as

cos ✓(x,y) = |x>y| (A.1)

This definition may be recursively extended to the Principal Angles ⇥(X ,Y) =

[✓1, · · · , ✓m].

cos(✓k) = max
x2X
||x||=1

max
y2Y

||y||=1

|x>y| = |x>
k yk| (A.2)

subject to the constraints

x>xi = y>yi = 0, i = 1, · · · , k � 1 (A.3)

So, x1 and y1 are only constrained to be unit vectors and are thus the most

distant unit vectors in X and Y respectively. The corresponding ✓1 is the largest

angle between the subspaces. x2 and y2 are then defined to be maximally distant

165

https://github.com/JimSkinner/prangles


unit vectors, but constrained to be orthogonal to x1 and y1 respectively. Due to

this constraint, it must be the case that ✓2  ✓1.

A.1.2 Properties

If any of the angles are zero, the subspaces intersect. Since the subspaces contain the

origin, this rules out the case of parallel subspaces, so any two subspaces intersect

at at-least a point.

The number of principal angles equal to zero is the dimensionality of the

space in which the subspaces intersect. For example, a single zero angle implies

that the subspaces intersect along a line.

If the largest principal angle is zero, this means that one subspace is contained

within the other. If the subspaces are of the same dimension, this means that they

are the same subspace.

A.1.3 Computation

Here we consider how to compute the principal angles where we are given two

matrices containing bases for subspaces U = [u1 · · ·up] 2 Rn⇥p, V = [v1 · · ·vq] 2

Rn⇥q.

E�cient algorithms for computing the principal angles between the subspaces

defined by U and V are described by Björck and Golub [1973]. A high level overview

of such an algorithm is given in Algorithm A.1. First orthonormal bases QU,QV

for U,V are extracted using QR decomposition. Then the singular values of M =

Q>
UQV are computed, and the arccos of these values are the principal angles.

Algorithm A.1: Compute principal angles ⇥ given bases U,V.

QU  QR(U).Q;
QV  QR(V).Q;

M Q>
UQV;

C svd(M).⌃;
⇥ [arccos(Cii), i 2 1, · · · ,m];
return ⇥;

A.2 The single-element matix

The single-element matrix Jab is a matrix of all zeroes except for the (a, b)’th ele-

ment, which is a one. A comprehensive list of the properties of this matrix is given
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by Petersen and Pedersen [2012, Section 9.7]. We list here only a few proprties

which are used in this thesis.

The size of Jab is defined such that any expression it is involved in is well

defined. As used in this thesis it will typically be non-square.

A few properties of the single-element matrix are worth noting. Firstly, the

single element matrix is an outer product of two single element vectors.

Jab = eae
>
b (A.4)

The product of two single-element matrices is either another single-element matrix

or the matrix of zeroes, which can be seen easily noting that e>a eb = [a = b].

JabJcd = eae
>
b ece

>
d =

8
<

:
Jad if b = c

0 if b 6= c

(A.5)

Finally, two more complex relations:

Tr[AJab] = Tr
h
e>b Aea

i

= Tr[Aba]

= Aba (A.6)

Tr[AJabBJcd] = Tr
h
e>d Aeae

>
b Bec

i

= AdaBbc (A.7)

A.3 Matrix derivitives

For a general matrix Y which is a function of x

@|Y|

@x
= |Y|Tr


Y�1@Y

@x

�
(A.8)

For invertible Y which is a function of x:

@Y�1

@x
= �Y�1@Y

@x
Y�1 (A.9)

For any Y:
@ Tr[Y]

@x
= Tr


@ [Y]

@x

�
(A.10)
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which we can see because:

@ Tr[Y]

@x
=

@

@x

X

i

Yii (A.11)

=
X

i

@

@x
Yii (A.12)

= Tr


@ [Y]

@x

�
(A.13)

For general X, Y both a function of x:

@XY

@x
= X

@Y

@x
+

@X

@x
Y (A.14)
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Appendix B

Analyses

Here we list figures and results not directly applicable to the main thesis, but may

be of interest to certain readers.

B.1 Non-invasive exhaled volatile organic biomarker ana-

lysis to detect Inflammatory Bowel Disease [Arasarad-

nam et al., 2016b]

B.1.1 All classification tasks investigated

Here the ROC curves and AUCs for all classification tasks attempted are given. Since

the pipeline reduces the data to two dimensions (by feature-selecting wavelets) before

classification, we can plot the data in these two dimensions and see the separation

of classes.
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B.1.2 AUCs obtained from run 1

The IBD analysis presented in the main body of the thesis uses only the second run

of FAIMS measurements. Here we tabulate the results obtained using run 1.

Task AUC 95%CI

UC vs CD,V 0.94 0.88 – 0.99
CD vs UC,V 0.63 0.49 – 0.77
UC vs V 0.68 0.47 – 0.89
CD vs V 0.51 0.31 – 0.71
UC,CD vs V 0.59 0.41 – 0.77
UC vs CD 0.61 0.45 – 0.77

Table B.1: AUCs achieved using run 1 instead of 2
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Appendix C

R Package Documentation

R packages have been developed as part of this thesis. All R packages are hosted un-

der the Github account of the author https://github.com/JimSkinner. Packages

may be downloaded and installed simply with the devtools package. For example,

to install the gpclassifier package one may enter the following into an R terminal.

library(devtools)

install_github("JimSkinner/gpclassifier")

C.1 gpclassifier

The R package gpclassifier (https://github.com/JimSkinner/gpclassifier)

implements a Gaussian process Classifier for binary classification tasks. The im-

plementation uses the Expectation Propagation approxmation, and was developed

following the book Gaussian Processes for Machine Learning by Rasmussen and

Williams [2005].

The most common usage pattern of the package would be to use the GPC

function to train a classifier model on a matrix of training data X.train and training

labels Y.train, and then predict a new set of labels on a set of test data X.test.

library(gpclassifier)

model.gp = GPC(X.train, Y.train)

predictions.gp = predict(model.gp, X.text)
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Package ‘gpclassifier’
June 27, 2017

Type Package

Title Implements a Gaussian Process binary Classifier

Version 1.0

Date 2015-10-17

Author Jim Skinner

Maintainer Jim Skinner <j.r.skinner@warwick.ac.uk>

Description
R implementation of a Gaussian Process Classifier using the Expectation Propagation approxi-
mation detailed in (Gaussian Processes for Machine Learning; Rasmussen and Williams, 2006)

License MIT

Depends methods

Imports optimx, memoise, kernlab, functional

R topics documented:
covarFun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
CovarFun-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
covarFun.LatentPlusNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
covarFun.SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getCovarFun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getDLml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getKernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getKernelGrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getLml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
GPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
hpTune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
predict,GPC-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
setHP<- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
update<- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Index 9

1



2 CovarFun-class

covarFun Construtor method of CovarFun class

Description

Creates a new CovarFun object intended to be used inside a GPC Gaussian Process Classifier.

Usage

covarFun(k, dk, hp)

Arguments

k A kernel function (object, x, y) -> numeric() which, given data x and y returns
an inner product. Kernel hyperparameters may be accessed with object@hp.

dk A function (object, x, y) -> list() which returns the gradient of k with respect to
the hyprparameters in the form of a lsit of the same shape as the kyperparameters

hp A list of kernel hyperparameters.

Details

A CovarFun object extends the kernel object which supplies a kernel function along with a list
of hyperparameters. CovarFun also supplies a function returning the gradient of the kernel with
respect to the hyperparameters, such that the hyperparameters may be tuned by the GPC class.

Examples

# Isotropic squared exponential covariance function with log length scale
# (ll) hyperparameter
library("gpclassifier")
k = function(.Object, x, y) {

exp(-0.5 * sum(exp(-2*.Object@hp$ll) * (x-y)^2))
}
hp = list(ll=0)
dk = function(.Object, x, y) {

list(ll=.Object@k(.Object, x, y) * exp(-2*.Object@hp$ll)*crossprod(x-y))
}
C = covarFun(k, dk, hp)

CovarFun-class Class CovarFun.

Description

Class CovarFun defines a covariance function to be used as part of a GPC gaussian process classi-
fier. A CovarFun object is made up of a kernel k(x,y), a set of hyperparameters used in the kernel,
and a function returning the gradient of the kernel with respect to each of the hyperparameters.



covarFun.LatentPlusNoise 3

covarFun.LatentPlusNoise
Augment CovarFun with latent function and noise hyperparameters

Description

Creates a covariance function k which augments some covariance function k_f with two extra hy-
perparameters lsf and lsn such that: k(x, y) = exp(lsf)*k_f(x, y) + exp(lsn)*I[x=y] Automatically
provides derivatives of lsf, lsn. Used for neater covariance funtion specifications. lsf, lsn stand for
log(sigma^2_f) and log(sigma^2_n), where ’f’ labels the magnitude parameter and kernel for the
latent function, whilst ’n’ labels the magnitude parameter for the noise.

Usage

covarFun.LatentPlusNoise(covarFun)

Arguments

covarFun CovarFun object to augment.

Value

covarFun augmented with lsf, lsn hyperparameterss for signal and noise magnitude.

Examples

C = covarFun.LatentPlusNoise(covarFun.SE(0))

covarFun.SE Squared Exponential covariance function.

Description

Squared Exponential covariance function.

Usage

covarFun.SE(ll = 0)

Arguments

ll log length scale hyperparameter. ll must be of length 1 or the same length as
the input vectors. If length 1 then this is an isotropic SE covar fun, else there is
a length scale for each dimension of the input.

Value

CovarFun for a squared exponential covariance function

Examples

C <- covarFun.SE(0)



4 getHP

EP Calculate site parameters, likelihood and likelihood gradient using
Expectation Propagation

Description

Calculate site parameters, likelihood and likelihood gradient using Expectation Propagation

Usage

EP(object)

getCovarFun GPC Return the covariance function (class CovarFun) used.

Description

GPC Return the covariance function (class CovarFun) used.

Usage

getCovarFun(object)

getDLml Return partial derivatives of the log marginal likelihood with respect
to each of the hyperparameters.

Description

Return partial derivatives of the log marginal likelihood with respect to each of the hyperparameters.

Usage

getDLml(object)

getHP Return the list of hyperparameters.

Description

Return the list of hyperparameters.

Usage

getHP(object)



getK 5

getK GPC Return the covariance matrix; the matrix of inner products be-
tween each pair of data points in the space induced by the covariance
function.

Description

GPC Return the covariance matrix; the matrix of inner products between each pair of data points in
the space induced by the covariance function.

Usage

getK(object)

getKernel Return kernel function k:x,y -> numeric(). Differs from the kernel
function specified when constructing the CovarFun, since the ker-
nel function returned only requires parameters x,y, not object.

Description

Return kernel function k:x,y -> numeric(). Differs from the kernel function specified when con-
structing the CovarFun, since the kernel function returned only requires parameters x,y, not ob-
ject.

Usage

getKernel(object)

getKernelGrad Return kernel gradient function k:x,y -> list(). As with getKer-
nel(CovarFun), this differs from the kernel gradient function specified
when constructing the CovarFun, since the function returned only
requires parameters x,y, not object.

Description

Return kernel gradient function k:x,y -> list(). As with getKernel(CovarFun), this differs from the
kernel gradient function specified when constructing the CovarFun, since the function returned
only requires parameters x,y, not object.

Usage

getKernelGrad(object)



6 GPC

getLml Return log marginal likelihood.

Description

Return log marginal likelihood.

Usage

getLml(object)

GPC Class GPC.

Description

Class GPC defines a Gaussian Process Classifier. GPC(), GPC(X, Y, covarFun) creates a new GPC
object used to predict labels for new input data.

Construct a new GPC object.

Usage

GPC(X, Y, covarFun = NA)

GPC(X, Y, covarFun = NA)

Arguments

X Matrix of input data; sample in rows.

Y Logical vector of binary labels.

covarFun Covariance function to use. Must be of class CovarFun. If omitted, the squared
exponential covariance function is used by default.

Details

Covariance function hyperparameters are selected automatically through maximum likelihood. This
class is implemented using the Expectation Propagation approximation detailed in (Gaussian Pro-
cesses for Machine Learning, Rasmussen and Williams, 2006).

Value

S4 object of class GPC, where covarance function hyperparameters have been set to their maximum
likelihood estimates.



hpTune 7

Examples

# Create synthetic dataset
X <- matrix(rnorm(60), ncol=2)
Y <- rowSums(X^2) < 1

# New GPX Object with default squared exponential covariance function.
gpc <- GPC(X, Y)

# Predict labels for new data
Xst <- matrix(rnorm(60), ncol=2)
Yst <- predict(gpc, Xst)

hpTune Return maximum likelihood covariance function hyperparameters

Description

Return maximum likelihood covariance function hyperparameters

Usage

hpTune(object)

predict,GPC-method Predict labels from unlabelled data.

Description

Use a trained GPC classifier to produce label predictions of a new set of unlabelled data.

Usage

## S4 method for signature 'GPC'
predict(object, Xst)

Arguments

object A fitted GPC objet
Xst A matrix of data for which to produce label predictions

Examples

# Create synthetic dataset
X <- matrix(rnorm(60), ncol=2)
Y <- rowSums(X^2) < 1

# New GPX Object with default squared exponential covariance function.
gpc <- GPC(X, Y)

# Predict labels for new data
Xst <- matrix(rnorm(60), ncol=2)
Yst <- predict(gpc, Xst)



8 update<-

setHP<- Change the CovarFun hyperparameter list to the list supplied.

Description

Change the CovarFun hyperparameter list to the list supplied.

Usage

setHP(object) <- value

update<- Update X, Y or covarFun

Description

Update the data X, labels Y or covariance function covarFun, causing a recalculation of hyperpa-
rameters, site parameters and covariance matrix.

Usage

update(object) <- value



C.2 stpca

The stpca R package (https://github.com/JimSkinner/stpca) implements Struc-

tured PCA as described in Chapter 3.
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2 cov.RQ.beta0

Index 13

cov.RQ Rational quadratic covariance function

Description

Rational quadratic covariance function

Usage

cov.RQ(X, X2, beta, D = NA, ...)

Examples

locations = matrix(rnorm(10), ncol=2)
beta = rnorm(3) # Logarithms of variance, length scale & alpha

K = cov.RQ(locations, beta=beta)
stopifnot(all(Matrix::diag(K)==exp(beta[1]))) # Diagonal is exp(beta[1])
stopifnot(all(svd(K)$d>0)) # K is positive definite
stopifnot(all(K[upper.tri(K)]<K[1,1])) # Largest element is on diagonal

cov.RQ.beta0 Computationally cheap estimate for beta0 for cov.RQ.

Description

Computationally cheap estimate for beta0 for cov.RQ.

Usage

cov.RQ.beta0(X, locations, k)

Examples

library(functional)
n = 10; k = 4; dim=c(10, 10); kern=Curry(cov.SE, beta=log(c(2, 0.4, 0.3)))
synth = synthesize_data_kern(n, k, dim, kern, noisesd=0.2)
beta0 = cov.RQ.beta0(synth$X, synth$grid, k)
stopifnot(all(is.finite(beta0)))



cov.RQ.d 3

cov.RQ.d Rational quadratic covariance function derivatives wrt hyperparame-
ters

Description

Rational quadratic covariance function derivatives wrt hyperparameters

Usage

cov.RQ.d(X, X2, beta, D = NA, ...)

Examples

point1 = matrix(rnorm(1), ncol=1)
point2 = matrix(rnorm(1), ncol=1)
beta = rnorm(3) # Logarithms of variance, length scale & alpha

library(numDeriv)
Ks.2points = vapply(cov.RQ.d(point1, point2, beta=beta), function(K) {

K[1,1]
}, numeric(1))
Ks.2points.num = grad(function(beta_) {

as.numeric(cov.RQ(point1, point2, beta=beta_))
}, x=beta)
stopifnot(all.equal(Ks.2points, Ks.2points.num))

cov.SE Squared exponential covariance function

Description

Squared exponential covariance function

Usage

cov.SE(X, X2, beta, D = NA, ...)

Examples

grid = matrix(1:10, ncol=1)
beta = rnorm(2)
K = cov.SE(grid, beta=beta)
stopifnot(all(Matrix::diag(K)==exp(beta[1])))



4 cov.SE.d

cov.SE.beta0 Computationally cheap estimate for beta0 for cov.SE.

Description

Computationally cheap estimate for beta0 for cov.SE.

Usage

cov.SE.beta0(X, locations, k)

Examples

library(functional)
n = 10; k = 4; dim=c(10, 10); kern=Curry(cov.SE, beta=log(c(2, 0.4)))
synth = synthesize_data_kern(n, k, dim, kern, noisesd=0.2)
beta0 = cov.SE.beta0(synth$X, synth$grid, k)
stopifnot(all(is.finite(beta0)))

cov.SE.d Squared exponential covariance function derivatives wrt hyperparam-
eters

Description

Squared exponential covariance function derivatives wrt hyperparameters

Usage

cov.SE.d(X, X2, beta, D = NA, ...)

Examples

point1 = matrix(rnorm(1), ncol=1)
point2 = matrix(rnorm(1), ncol=1)
beta = rnorm(2) # Logarithms of variance and length scale

Ks.1point = cov.SE.d(point1, beta=beta)

# Derivative wrt variance at zero distance should always be exp(beta[1])
stopifnot(all.equal(Ks.1point[[1]][1,1], exp(beta[1])))

# Derivative wrt lengthscale at zero distance should always be 0
stopifnot(all.equal(Ks.1point[[2]][1,1], 0))

# Identical tests with numerical gradient
library(numDeriv)
Ks.1point.num = grad(function(beta_) {

cov.SE(point1, beta=beta_)[1,1]
}, x=beta)
stopifnot(all.equal(Ks.1point.num[1], exp(beta[1])))
stopifnot(all.equal(Ks.1point.num[2], 0))
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Ks.2points = cov.SE.d(point1, point2, beta=beta)
Ks.2points.num = grad(function(beta_) {

as.numeric(cov.SE(point1, point2, beta=beta_))
}, x=beta)

# Check numerical gradient equals analytic gradient
stopifnot(all.equal(as.numeric(Ks.2points[[1]]), Ks.2points.num[1]))
stopifnot(all.equal(as.numeric(Ks.2points[[2]]), Ks.2points.num[2]))

min.f.generator Value and gradient of function to be minimized in tuning beta

Description

Value and gradient of function to be minimized in tuning beta

Usage

## S3 method for class 'f.generator'
min(X, W, mu, sigSq, locations, covar.fn, covar.fn.d,

D = NA, max.dist = Inf, sparse = FALSE)

Value

A function which, when given a value of beta, returns a value and gradient of a function to be
minimized in beta-tuning.

Examples

set.seed(1)
n = 100
d = 30
k = 3
X = matrix(rnorm(n*d), ncol=d)
W = matrix(rnorm(d*k), nrow=d, ncol=k)
mu = rnorm(d)
sigSq = rnorm(1)^2
locations = matrix(rnorm(d*2), ncol=2)
beta = rnorm(2)

fdf = spca:::min.f.generator(X, W, mu, sigSq, locations, cov.SE, cov.SE.d)

library(numDeriv)
grad.analytic = fdf(beta)$df
grad.numeric = grad(function(beta_) {

fdf(beta_)$f
}, x=beta)
all.equal(grad.analytic, grad.numeric, tolerance=100*.Machine$double.eps^0.5)



6 spca

predict.spca De-noise a sample using a trained spca object.

Description

De-noise a sample using a trained spca object.

Usage

## S3 method for class 'spca'
predict(object, ...)

Arguments

object An spca object returned from a call to spca

samples samples to de-noise

Value

De-noised samples of the same dimensionality as the parameter samples

spca Performs SPCA

Description

Performs SPCA

Usage

spca(X, k, locations, covar.fn, covar.fn.d = NULL, beta0 = c(), trace = 0,
report_iter = 10, max.dist = Inf, maxit = 20, maxit.outer = 5)

Arguments

X Data

k Latent dimensionality

locations the coordinates of each dimenion in X

covar.fn covariance function to generate K_beta

covar.fn.d gradient of the covariance function with respect to hyperparameters

beta0 initial hyperparameters

trace amount of reporting. 0=none, 1=low, 2=high

report_iter Number of iterations between reports

max.dist Maximum distance between features to consider

maxit number of inner iterations

maxit.outer number of outer iterations
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Value

An spca object.

Examples

library(fields)
data(ozone2)

# Missing data: Replace missing values by column means
X = ozone2$y
for (col in 1:ncol(X)) {

ind = is.na(X[,col])
X[ind,col] = mean(X[,col], na.rm=TRUE)

}
X = X/sd(X) # Scale for numerical reasons

locations = ozone2$lon.lat
locations = apply(locations, 2, function(col) (col-min(col))/(max(col)-min(col)))

model.spca = spca(X, 3, locations, cov.SE, cov.SE.d, beta0=log(c(1, 0.5)),
maxit=20, maxit.outer=3, trace=0)

spca.H Compute all the blocks of H.

Description

Compute all the blocks of H.

Usage

spca.H(X, W, mu, sigSq, K)

Arguments

X Data
W Loadings matrix
K Prior covariance matrix

Value

H

Examples

set.seed(1)
d=10; k=3; n=1000
X = matrix(rnorm(n*d), ncol=d)
W = matrix(rnorm(d*k), ncol=k)
mu = rnorm(d)
sigSq = rnorm(1)^2
K = cov.SE(matrix(1:10, ncol=1), beta=log(c(2, 3)))
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library(numDeriv)
library(Matrix)

#Test that the analytic hessian for mu & sigSq matches numerical Hessian.
H.analytic = spca:::spca.H(X, W, mu, sigSq, K)
HsigSq.numeric = Matrix(hessian(function(sigSq_) {

-spca.log_posterior(X, K, W, mu, sigSq_)
}, x=sigSq))
stopifnot(all.equal(H.analytic$sigSq, HsigSq.numeric,

tolerance=1e-8))

Hmu.numeric = Matrix(hessian(function(mu_) {
-spca.log_posterior(X, K, W, mu_, sigSq)

}, x=mu))
stopifnot(all.equal(H.analytic$mu, Hmu.numeric, tolerance=1e-6))

spca.H.W Compute all the w_i blocks of H

Description

Compute all the w_i blocks of H

Usage

spca.H.W(X, W, mu, sigSq, K)

Arguments

X Data

W Loadings matrix

K Prior covariance matrix

Value

H_w_i

Examples

set.seed(1)
d=10; k=3; n=10
X = matrix(rnorm(n*d), ncol=d)
W = matrix(rnorm(d*k), ncol=k)
mu = rnorm(d)
sigSq = rnorm(1)^2
K = cov.SE(matrix(1:10, ncol=1), beta=log(c(1, 3)))

library(numDeriv)
library(Matrix)
Hw1.analytic = spca:::spca.H.W(X, W, mu, sigSq, K)[[1]]
Hw1.numeric = Matrix(hessian(function(w) {

W_ = W
W_[,1] = w
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-spca.log_posterior(X, K, W_, mu, sigSq)
}, x=W[,1]))

stopifnot(all.equal(Hw1.analytic, Hw1.numeric))

spca.log_bayes_factor
Compute bayes factor

Description

Compute bayes factor

Usage

spca.log_bayes_factor(X, K1, W1, mu1, sigSq1, K2, W2, mu2, sigSq2)

Arguments

X Data

Value

Log bayes factor; model 1 is numerator

spca.log_evidence Compute the laplace approximation to the log evidence given the MAP
parameters K, mu, sigSq as well as the prior covariance matrix K.
Note that this is multiplied by an UN-KNOWN CONSTANT due to the
flat priors over mu and sigSq. However, this unknown constant is al-
ways the same regardless of k and K, so this may be used to compute
meaningful bayes factors between SPCA models.

Description

Compute the laplace approximation to the log evidence given the MAP parameters K, mu, sigSq as
well as the prior covariance matrix K. Note that this is multiplied by an UN-KNOWN CONSTANT
due to the flat priors over mu and sigSq. However, this unknown constant is always the same
regardless of k and K, so this may be used to compute meaningful bayes factors between SPCA
models.

Usage

spca.log_evidence(X, K, W, mu, sigSq)

Arguments

X Data
K Prior covariance matrix
W Loadings matrix



10 spca.log_likelihood

Value

Approximate log evidence

spca.log_likelihood
Does not yet work with ’new’ SPCA architecture Calculate the log
likelihood for SPCA with given parameters

Description

Does not yet work with ’new’ SPCA architecture Calculate the log likelihood for SPCA with given
parameters

Usage

spca.log_likelihood(X, W, mu, sigSq)

Arguments

X Data

Value

log likelihood (numeric)

Examples

d = 50
k = 5
n = 15

set.seed(1)
X = matrix(rnorm(n*d), nrow=n, ncol=d)
mu = colMeans(X)
Xc = sweep(X, 2, mu, '-')
covar.svd = svd(Xc/sqrt(n), nu=0, nv=k)
covar.eigval = covar.svd$d^2
sigSq = sum(covar.eigval[-(1:k)])/(d-k)
W = covar.svd$v %*% diag(sqrt(covar.eigval[1:k] - sigSq), ncol=k, nrow=k)

R = svd(matrix(rnorm(k*k), ncol=k, nrow=k))$u # Random orthonormal matrix

# The likelihood is invariant to multiplying by an orthonormal matrix.
l1 = spca.log_likelihood(X, W, mu, sigSq)
l2 = spca.log_likelihood(X, W%*%R, mu, sigSq)
stopifnot(all.equal(l1, l2))
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spca.log_posterior Calculate the *un-normalised* log posterior for SPCA with given pa-
rameters

Description

Calculate the *un-normalised* log posterior for SPCA with given parameters

Usage

spca.log_posterior(X, K, W, mu, sigSq)

Arguments

X Data

K Prior covariance matrix

W Loadings matrix

Value

un-normalised log posterior (numeric)

spca.log_prior Calculate the *un-normalised* log prior for SPCA with given loadings
matrix

Description

Calculate the *un-normalised* log prior for SPCA with given loadings matrix

Usage

spca.log_prior(K, W)

Arguments

K Prior covariance matrix

W Loadings matrix

Value

un-normalised log prior (numeric)
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synthesize_data Synthesize fake data from SPCA model

Description

Synthesize fake data from SPCA model

Usage

synthesize_data(n, k, K, noisesd = 0)

Arguments

n Number of samples to create

k Latent dimensionality

K prior covariance matrix

noisesd standard deviation of noise added to data

synthesize_data_kern
Synthesize fake data from SPCA model

Description

Synthesize fake data from SPCA model

Usage

synthesize_data_kern(n, k, dim, kern, noisesd = 0)

Arguments

n Number of samples to create

k Latent dimensionality

dim dimensions of grid to construct

kern cvarinace function used to build the prior covariance matrix K

noisesd standard deviation of noise added to data



Appendix D

StPCA

A number of derivations were ommitted from the main text body, and are instead

presented here for the interested reader.

D.1 Model

D.1.1 Mean and covariance of the likelihood

In Section 3.1.1, the mean and covariance of the likelihood are stated but no

detailed proof is given. The detailed proof is presented here. First we show the

mean of p(xi|W,�
2) is 0, which we do by computing the expected value.
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Now, using E
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= 0, we compute the covariance of p(xi|W,�
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Putting all this together gives us

p(xi|W,�
2) = N (xi|0,WW> + �

2I ) (D.18)

D.2 Approximate Posterior

D.2.1 Structure of H̃�

Here we provide a detailed derivation of H̃� used in the laplace approximation to

the evidence in Section 3.1.2. The mathematics required is limited only to matrix

algebra and matrix derivative operations [Petersen and Pedersen, 2012].

Recall that H̃� is block-diagonal, with blocks H̃w1
� · · · H̃wk

� and H̃�2

� . Here we

derive the form of each of the blocks. This is done by considering just the (l,m)’th

element of each block, solving the second partial derivatives, then manipulating the

result into a form which allows us to recover a matrix formula for the entire block.
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where the first two terms inside the parenthesis come from the likelihood, and the

last term comes from the prior. i, j 2 1 · · · k index the columns of W. We now solve

the matrix of partial derivatives of each of these terms separately, then substitute

these back in to Equation D.19. Note that the second partial derivative is with

respect to wi and wj , which may be di↵erent. For computing the required blocks

only the case of i = j is required. However, looking at all pairs of columns of W

gives us a better insight into how much covariance structure is approximated away

when using H̃ over H.

We start with the impact of the prior.
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The indicator function [i = j] means that the prior has no impact if i 6= j. This is

intuitive since the prior is independent on each wi.

In the following derivation we will be looking at derivatives with respect to

the scalars wil, which is the l’th element of the column wi. We will repeatedly make

use of the following matrix-scalar derivative.
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Here, Jil 2 {0, 1}k⇥d is the single-entry matrix; it is zero everywhere except for

the (i, l)’th element which is a 1. The properties of the single element matrix are

discussed in Appendix A.2.

We now consider the first term from the likelihood. Following this, it is useful
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to note that the indices i, j run from 1 to k, whilst l,m run from 1 to d.
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Using Equation A.8
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Split into two sum of two equal traces
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We can now move the derivative inside the trace (Equation A.10) and evaluate

the derivative. Both C and W depend on wjm, so we require the matrix identities

Equation A.14 and then Equation A.9:
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Expand out matrix derivatives
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This can now split in to three trace terms which are of the form of the single-element

matrix identities Equation A.6 and Equation A.7. Using these identities we

obtain:
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Where the second line has been obtained using
�
W>C�1W

�
ji

= w>
j C

�1wi. We

now use
�
C�1wj

�
l

�
C�1wi

�
m

=
�
C�1wjw>

i C
�1
�
lm

and move the subscripting to

198



outer parentheses:
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Since this is true for all l,m 2 1 · · · d we can make make the statement
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We now consider the Tr
⇥
XC�1X>⇤ term. First we move the derivative with

respect to wil inside the trace, use the identity for the derivative of the inverse of a

matrix, then evaluate @C
@wil

:

 
@
2Tr

⇥
XC�1X>⇤

@wi@w>
j

!

lm

= �
@

@wjm

@

@wil
Tr
h
XC�1X>

i
(D.35)
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@

@wjm
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X
@C�1

@wil
X>
�

(D.36)

= �
@

@wjm
Tr


XC�1 @C

@wil
C�1X>

�
(D.37)

= �
@

@wjm
Tr
h
XC�1(WJil + JliW

>)C�1X>
i

(D.38)

= �2
@

@wjm
Tr
h
XC�1WJilC

�1X>
i

(D.39)

We now move @
@wjm

inside the trace and use the identity for taking the deriv-
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ative of a product of matrices. We then expand out the parentheses and rearrange:

� 2Tr


X>X

@C�1WJilC�1

@wjm

�
(D.40)

= �2Tr


X>X

✓
�C�1(WJjm + JmjW

>)C�1WJilC
�1

+C�1JmjJilC
�1

�C�1WJilC
�1(WJjm + JmjW

>)C�1

◆�
(D.41)

= 2Tr


C�1X>XC�1

⇣
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JmjW
>C�1WJil +

WJilC
�1WJjm +

WJilC
�1JmjW

>
�

JmjJil

⌘�

(D.42)

Finally we use identities of the single-element matrix inside of a trace. This removes

the trace operator and all single-element matrices. After this we use the fact that

all i and j subscripts pull out a single column of W, so we can instead refer to wi

and wj . We can then move the l, m subscripts to the outer parentheses:

= 2
⇣
(C�1X>XC�1W)lj(C

�1W)mi +

(C�1X>XC�1)lm(W>C�1W)ji +

(C�1X>XC�1W)mi(C
�1W)lj +
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(D.43)
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Again, since this is true for all indices l,m we can state the entire matrix at once

@
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XC�1X>⇤

@wi@w>
j

= 2
⇣
C�1X>XC�1wjw

>
i C

�1 +

C�1wjw
>
i C

�1X>XC�1 +

(w>
j C

�1wi)C
�1X>XC�1 +

(w>
j C

�1X>XC�1wi)C
�1
�

[i = j]C�1X>XC�1
⌘
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Putting these together we arrive at the definition of each of the blocks:
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Structure of H�2

�
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1

2
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� 2 ln��2

�
(D.49)

We derive the three terms separately below, then put them all together.
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Using these we can obtain an equation for H�2

� :

H�2

� = Tr
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i
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