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Abstract

This thesis focuses on modelling and solving one of the fundamental financial prob-

lems for an individual investor — the life-cycle decision making problem. In particular,

we study three kinds of life-cycle problems that focusing on various preferences of the

investor such as bequest motive and ambiguity aversion by using different financial in-

struments. The investment, consumption and saving decisions are affected by various

uncertainties.

We first investigate a life-cycle consumption and asset allocation problem introduc-

ing habit formation preferences and demand for term life insurance. We consider an

investor who is ambiguity-averse about stock returns and model the problem in a robust

optimization framework. Our main contribution is to develop a robust life-cycle con-

sumption and asset allocation model and show its tractability when integrating investor’s

subjective preferences and uncertainties. The empirical study shows the important con-

sequences of degree of ambiguity aversion on life-cycle decisions, especially on the stock

allocation. We also investigate the relationship between term life insurance demand and

investor’s ambiguity aversion/habit formation preferences.

Then we study a life-cycle consumption and asset allocation problem incorporating

labour income ambiguity, stock market predictability and analyse effects of the correla-

tion between stock return and labour income on investor’s life-cycle decisions. We model

the ambiguity aversion about labour incomes using the robust optimization framework

and show its importance in explaining the strong (retirement) saving motive observed in

empirical data. The computational results (obtained under assumptions of stock return
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to be predicable or not) illustrate possible effect of stock market predictability on not

only the stock allocation, but also the consumption and saving decisions.

Finally, we focus on the investor’s consumption and housing decisions over the life

cycle. We assume that the investor needs to make consumption choices between non-

durable/durable goods as well as housing decisions. We introduce the letting decisions

(given the homeownership) in the life-cycle model, along with renting and housing de-

cisions. The underlying life-cycle consumption and housing problem is formulated as a

Markov decision process and solved by traditional dynamic programming method using

a backward induction. We empirically show how letting choices are driven by investor’s

preferences (such as risk aversion, elasticity of intertemporal substitution, bequest mo-

tive and the housing weight in the consumption utility) and hence influence renting and

owning decisions. The computational results illustrate that, by including letting deci-

sions, our calibrated life-cycle model performs well in matching the empirical data in

terms of life-cycle homeownership rate and investor’s living space patterns.
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Chapter 1

Introduction and Background

1.1 Introduction

One of the fundamental financial problems individuals face is the life-cycle decision

making problem, where the investor needs to i) choose consumption decisions between

non-durable and durable goods, ii) decide the amount of wealth to save for future use

or leave to her heirs and also iii) allocate wealth among different kinds of instruments

such as housing assets, stocks, bonds and financial derivatives such as life insurance and

annuity products. The life-cycle decision making problem appears in the investor’s daily

life, thus is really important, especially in a world where most of the financial decision

making nowadays is shifting towards individuals, e.g., retirement plans.

On the other hand, this problem is notoriously difficult to solve [e.g., Samuelson,

1969; Merton, 1969, 1971; Cocco et al., 2005; Yao and Zhang, 2005] since life-cycle

decisions are intertwined, and a small change in one decision at any time has impact on

other decisions for the rest of life, not only for the individual herself, but also for other

members of the household. Most importantly, the life-cycle decisions need to be made

under different uncertainties.

Traditional approaches such as dynamic programming and stochastic programming

often suffer from the curse of dimensionality, which restrict the modeller in terms of

the number of model ingredients (hence unable to investigate the interactions between

them), decision variables (such as the number of stocks) and decision periods (e.g., only

considering specific periods during the life). As a result, many life-cycle models find

it difficult to match the model results with empirical data or conventional wisdom in

different aspects such as stock allocation, consumption and wealth pattern and insur-

ance products investments. Therefore, advanced mathematical optimization methods
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are needed for solving the life-cycle decision making problem.

In this thesis, we study three life-cycle problems focusing on various model in-

gredients, investor’s subjective preferences and uncertainties using traditional dynamic

programming algorithms which are popular in finance literature and also the robust op-

timization approach which has not been applied to life-cycle problems before. By doing

that, we obtain quite a few important but new findings on different life-cycle decisions

and are also able to match the empirical data to some extent.

In general, our research proposes a modelling and solution framework for the indi-

vidual investors’ life-cycle decision-making problems and contributes to finance, insur-

ance and operational research communities. This research helps financial institutions,

insurance companies as well as governments to understand the optimal life-cycle deci-

sions from the investor’s perspective. Moreover, individual investors would be better

equipped with decision support tools that help them prepare for a long life without

financial difficulties.

In the next section, we describe the main characteristics of the life-cycle problems

and the literature review of specific life-cycle problems is presented at corresponding

chapters.

1.2 Description of Life-cycle Problems

A typical life-cycle problem [Cocco et al., 2005] aims to find the optimal consumption

of non-durable goods and how much wealth to allocate in stocks at each time period (e.g.,

one year) during the life to maximize the total life-cycle utilities of consumption and/or

bequest. This problem has also been extended in the literature to incorporate other

realistic ingredients. For example, in real life, the investor does not only need to decide

the amount to consume non-durable goods but also the durable goods such as homes

and cars, which also contribute to the utility of consumption. In terms of the portfolio

choices, besides the stocks and bonds, the investor can also allocate the wealth in housing

assets and other financial derivatives such as life insurance and annuity products. All

these ingredients together form a rich body of the life-cycle problems, which have drawn

substantial interest in both academic circles and the industry.

Since the life-cycle problems are mainly individual-oriented, those individual in-

vestor’s subjective preferences are also important when studying the life-cycle problems.

First of all, the modeller needs to decide how to express the investor’s life-cycle utility

(or felicity), which is mostly the objective function of the life-cycle problem to maxi-

mize. There are two common choices in the literature: the constant relative risk aversion
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(CRRA) utility and Epstein-Zin-Weil utility [Epstein and Zin, 1989, 1991; Weil, 1989].

The main difference between these two types of utility functions is that the latter one

allows the modeller to disentangle the relative risk aversion coefficient for static gam-

bles and the intertemporal elasticity of substitution for deterministic variations. On the

other hand, the former one is defined only by the relative risk aversion coefficient and as-

sumes the intertemporal elasticity of substitution to be the multiplicative inverse of the

risk aversion. Other subjective preferences commonly introduced in the model include:

the bequest motive, which shows the investor’s attitudes towards heirs and beneficiaries;

habit formation in consumption, which defines how each unit of consumption contributes

to the consumption utility; housing weight in the consumption utility, which determines

the investor preference of housing consumption over non-durable consumption; ambigu-

ity aversion (or uncertainty aversion), which represents the investor’s preference towards

uncertainties;1 etc.

Life-cycle problems involve long-horizon decision making, which usually covers the

entire life of the investor. Therefore, they inevitably contain different kinds of uncer-

tainties unknown to the investor when making investment and/or life-cycle decisions.

The two most common uncertainties appeared in the life-cycle problem are the labour

income and stock returns. The standard specification of labour income in the literature

[e.g., Cocco et al., 2005; Gomes and Michaelides, 2005] consists of three components: a

deterministic function and two random variables with respect to permanent and tem-

porary shock of the labour income. In terms of the stock return, there are also two

frequently used models to describe the stock return pattern during the decision horizon:

the stock return is independently and identically distributed which means the stock re-

turn is not predictable or the stock return is time-varying, to some extent predictable,

and is modelled by certain processes such as the mean-reversion and auto-regression

processes. According to different ingredients introduced in the life-cycle problem, there

are also other uncertainties such as the house prices, interest rates, returns on other

financial assets such as bonds, variable (e.g., equity-linked) life insurance and annuities.

In this thesis, we focus on three specific life-cycle problems introducing model in-

gredients (such as life insurance products, stock market predictability, housing assets)

and investor’s subjective preferences (such as bequest motive, habit formation in con-

sumption, risk aversion and ambiguity aversion). We also consider different kinds of

uncertainties including stock returns, labour income and house prices. In general, risk

1Risk aversion and ambiguity aversion have different meanings in finance. If the investor is risk-
averse, she prefers a sure lottery rather than a risky lottery (with known probabilities) given the same
expected value. If the investor is ambiguity-averse, she prefer the lottery with known probability rather
than unknown probability although both lotteries are risky.
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aversion and ambiguity aversion are two commonly used terms in financial and economic

literature but they have different meanings. Risk aversion measures the investor’s pref-

erence between a risky alternative and its expected value, where the probabilities are

known. Ambiguity aversion is the preference between a risky alternative with known

probability and the ambiguous counterpart with unknown probability, where the ex-

pected values are the same [Ellsberg, 1961]. Mathematically, in the life-cycle problem,

risk aversion usually appears in the utility function which defines the curvature of the

utility while ambiguity aversion is modelled as the worst case towards uncertainty. We

will describe each life-cycle problem in the corresponding chapter.

1.3 Solution Methods for Life-cycle Problems

All those model ingredients, investor’s subjective preferences and uncertainties make

the life-cycle problems quite sophisticated and require advanced mathematical optimiza-

tion methods to model and solve. Traditionally, the life-cycle problems are solved by

dynamic programming algorithms that require specific modelling framework using states

and actions that correspond to random paths and decisions, respectively [e.g., Merton,

1969, 1971; Richard, 1975; Viceira, 2001; Gomes and Michaelides, 2003; Cocco et al.,

2005]. However, those stochastic dynamic programming models suffer from the curse of

dimensionality in state and action spaces of the system, especially when applied to such

sophisticated life-cycle problems. Moreover, explicit optimal solutions may not exist

with the inclusion of certain constraints as well as the investor’s preferences.

Alternatively, the stochastic programming approach has been applied for solving the

life-cycle problems [e.g., Geyer et al., 2009; Konicz, Pisinger, Rasmussen and Steffensen,

2015]. The stochastic programming methods assume that random variables arising in

the underlying real-life problem follow a known probability distribution. The uncer-

tainty can be modelled by a finite number of realizations (i.e., scenarios) given the

distribution. The optimal strategy is determined in view of these scenarios [Dantzig and

Infanger, 1993]. However, the scenario-based stochastic programming also suffers from

the curse of dimensionality. The problem of size grows exponentially with the increase in

decision periods and number of scenarios, which affects the computational tractability.

In particular, some previous studies have to reduce the decision periods in the model due

to tractability issues [Geyer et al., 2009] or to generate an efficient and effective scenario

tree that leads a good approximate solution [e.g., Pflug, 2001; Gülpınar et al., 2004].

Another approach, which has not been applied for solving the life-cycle problems, is

robust optimization developed by El Ghaoui and Lebret [1997], Ben-Tal and Nemirovski
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[1998] and Bertsimas and Sim [2004], among others.2 Robust optimization takes the

worst-case perspective to optimize the investor’s consumption and bequest utilities in

view of uncertain data, and explicitly addresses computational tractability of the un-

derlying problem from the modelling stage. The robust optimization approach assumes

that the random variables belong to uncertainty sets that can be constructed from prob-

ability distributions of uncertain factors [Gulpinar and Hu, 2016]. Depending on the

specification of uncertainty sets, the robust counterpart of the original problem can be

formulated as a tractable optimization problem with no random parameters. The robust

optimal strategy remains feasible for all realizations of the stochastic data within the

pre-specified uncertainty sets, including the worst-case values if they can be found.

In this thesis, we use robust optimization to model two life-cycle problems assuming

the investor is ambiguity-averse towards stock return and/or labour income. We also

apply a dynamic programming algorithm to solve a life-cycle consumption and housing

problem under uncertainty.

1.4 Structure of Thesis and Contributions

In this thesis, we study life-cycle problems that are interlinked with each other in

terms of different aspects such as investors’ preferences, underlying uncertainties. This

thesis consists of three main chapters in which we introduce the underlying life cycle

problems and present computational results. Our main contributions are summarised as

follows.

In Chapter 2, we introduce a life-cycle consumption and asset allocation problem

introducing habit formation preferences and demand for term life insurance. We assume

the investor is not only risk-averse but also averse to ambiguity about stock returns. A

robust optimization framework is presented and other preferences of the investor such

as subjective survival belief and borrowing option on investor’s life-cycle decisions are

empirically studied. The robust life-cycle consumption and asset allocation model is

tractable in handling various model ingredients, investor’s subjective preferences and

uncertainties. Our main finding is that not only the existence of the ambiguity aversion,

but also the degree of it has important consequences for life-cycle decisions, especially

on the stock allocation. We also contribute to literature by investigating the relation-

ship between term life insurance demand and investor’s ambiguity aversion and habit

2Robust optimization in the context of financial economics is similar to the max-min expected utility
framework with multiple priors proposed by Gilboa and Schmeidler [1989], Epstein and Wang [1994] and
Epstein and Schneider [2003] in finance and economic literature.
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formation preferences.

In Chapter 3, we study a life-cycle consumption and asset allocation problem as-

suming the investor is not only ambiguity-averse about stock returns but also labour

income and introduce a robust optimization framework. In the presence of ambiguity

aversion, we analyse the effect of correlation between labour income and stock return

and stock market predictability on investor’s life-cycle decisions. The main contribution

of studying this life-cycle problem is to model the ambiguity aversion about labour in-

comes using the robust optimization framework and show its importance in explaining

the saving motive observed in data. We then empirically compare the life-cycle deci-

sions assuming the stock return is predictable or not and show the effect of stock market

predictability on not only the stock allocation, but also the consumption and saving

decisions.

Chapter 4, focuses on a life-cycle consumption and housing problem under uncer-

tainties of labour income and house price. We incorporate letting decisions along with

renting and owning in a life-cycle consumption and housing model and show how let-

ting choices are driven by investor’s preferences and hence influence renting and owning

decisions. We formulate the problem as a Markov decision process and solved with dy-

namic programming via backward induction. The model assumes that the investor has

recursive preferences and also considers investor’s different subjective preferences such

as risk aversion, elasticity of intertemporal substitution, bequest motive and the housing

weight in the consumption utility. Our computational results illustrate that by including

letting decisions, our calibrated life-cycle model performs well in matching the data in

terms of life-cycle homeownership rate and investor’s living space patterns.

Chapter 5 introduces concluding remarks and summarizes the future work in this

research area.
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Chapter 2

Life-cycle Asset Allocation of

Ambiguity Averse Investors:

Habit Formation and Term Life

Insurance

2.1 Introduction

One of the fundamental problems individuals face is how to choose consumption and

asset allocation optimally to maximize the life-cycle utility, especially in a world where

most of the financial decision making is shifting towards individuals, e.g., retirement

plans, life insurance choices, etc. This problem is notoriously difficult to solve [e.g.,

Samuelson, 1969; Merton, 1969, 1971; Cocco et al., 2005] since life-cycle decisions are

intertwined, and a small change in one decision at any time has impact on other decisions

for the rest of life, not only for the individual herself, but also for other members of the

household.

In this chapter, we formulate a life-cycle model that incorporates habit formation

in consumption. Habit formation models have been successful in explaining the equity

premium puzzle [e.g., Sundaresan, 1989; Abel, 1990; Constantinides, 1990] and under-

standing the stylized facts about aggregate consumption [e.g., Carroll et al., 2000; Fuhrer,

2000] and asset returns [Chen and Ludvigson, 2009; Grishchenko, 2010]. With habit for-

mation, the investor’s utility of consumption is not determined by the absolute amount
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of consumption but the relative change compared to some reference level.1 In this set-

ting, we add the bequest motive to study the demand for life insurance. We also deviate

from the standard expected utility paradigm, i.e., ambiguity neutrality, and assume that

the investor is not only averse to risk but also averse to ambiguity about stock returns

within the max-min expected utility framework [Ellsberg, 1961; Gilboa and Schmeidler,

1989]. Thus we analyse investor’s life-cycle problem focusing on the interaction between

habit formation preferences and different degrees of ambiguity aversion.

Stock market is an important vehicle to transfer consumption over the life-cycle,

however it is a risky investment. The investor’s consumption, saving and asset alloca-

tion strategies crucially depend on the probability structure (e.g., mean, variance and

covariance) of stock returns. A classical approach to model stock returns and associ-

ated risk is to obtain point estimates from past observations, which inevitably involve

errors. Because of the estimation errors, the investor faces ambiguity about the stock

return when making life-cycle decisions. Earlier experimental evidence [Ellsberg, 1961]

confirms the Ellsberg Paradox which reveals that investors are not neutral but averse to

this ambiguity.2

Empirical evidence, e.g., stock-holding puzzle, also shows that investors tend to be

more conservative in forming portfolios when facing ambiguity [e.g., Cao et al., 2005;

Garlappi et al., 2007]. In this chapter, we consider an ambiguity-averse investor who

makes decisions that are robust to stock return ambiguity. We model the stock return

ambiguity by defining a set around the point estimates which represents alternative paths

(priors) for stock returns. The risk-averse investor still evaluates the expected utility

when making life-cycle decisions, but chooses the optimal decisions by maximizing the

minimal (in other words, worst-case) expected utility over this set due to ambiguity

aversion [Gilboa and Schmeidler, 1989].

By studying the life insurance demand in a life-cycle model with habit formation

and ambiguity, we fill an important gap in the literature. Human capital [e.g., Yaari,

1965; Chen et al., 2006] and bequest motives [e.g., Bernheim et al., 1985; Bernheim,

1991; Inkmann and Michaelides, 2012] are two main ingredients to study the life in-

surance demand. Human capital represents the economic value of investor’s skills and

1There are different kinds of habit formation models. As summarized by Gomes and Michaelides
[2003], according to the source of the reference level, the habit formation models can be categorized as
external (the consumption of some reference groups) and internal ones (the investor’s past consumption).
Regarding the measurement of change, the models can be divided into additive (measuring the difference)
and multiplicative (measuring the ratio) ones. We use the internal additive version in this chapter based
on Chen and Ludvigson [2009] and Grishchenko [2010].

2There is also evidence that rhesus monkeys show similar ambiguity aversion preference [Hayden
et al., 2010], and it is stronger than risk aversion among chimps and bonobos [Rosati and Hare, 2011].
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knowledge, and is often measured by the present value of future labour income [Schultz,

1961]. A sudden death, especially at an early stage of life, deprives the heirs from the

human capital and thus life insurance has been proposed to protect the heirs against this

mortality risk [Yaari, 1965]. Meanwhile, bequest motive drives the investor to transfer

some wealth to the heirs when she dies. Hence, life insurance is also a good tool to

guarantee bequest since it provides death benefits. In our model, we consider a one-year

renewable term life insurance product, which gives a certain amount of death benefit

to the heirs if the investor dies within a year, and the contract is renewable at matu-

rity3. The lump-sum amount of death benefit depends both on the premium paid and

the mortality rate of the investor. While the term life insurance guarantees the death

benefit just for one year, the investor is still able to decide the amount of inheritance by

accumulating financial wealth over her life time. Therefore, in our model we examine

the investor’s optimal choice when both short-term and long-term bequest decisions are

available. We find that the optimal choice depends on both habit formation preferences

and investor’s ambiguity aversion. To the best of our knowledge, this is the first work

that incorporates both aspects.

There are two main contributions of this chapter. First, not only the existence of

the ambiguity aversion, but also the degree of it has important consequences for life-cycle

decisions. The stock allocation is monotonically decreasing in the degree of ambiguity

aversion. We also observe that habit formation only has effect on asset allocation when

the degree of ambiguity aversion is high. Moreover, in certain parameter range of the

ambiguity aversion, the model delivers a hump-shaped stock allocation pattern over the

life span. Empirical observations [e.g., Ameriks and Zeldes, 2004; Yao and Zhang, 2005;

Fagereng et al., 2017] suggest investors should have such a hump-shaped investment

profile. In particular, at the early ages of life, investors who have low labour income

and savings, should stay out of the stock market while they increase the stock alloca-

tion during the middle ages when they receive higher labour income and accumulate

more wealth. After retirement, when income is reduced, the investment strategy should

become more conservative, and the investors should switch to less risky investments.

Similar advice is given by life-cycle investment theory and asset managers [e.g., Bakshi

and Chen, 1994; Campbell and Viceira, 2002]. However, such a hump-shaped investment

profile is difficult to obtain in previous life-cycle models [e.g., Gomes and Michaelides,

3It is worthwhile to mention that the whole life insurance is another type of life insurance contracts
and typically provides a protection for the entire life. As stated by Brown [2001], whole life insurance
and term life insurance products have different economic implications. The former one may be more
attractive to the high-income investors while the latter one is more affordable and thus, is more appealing
to broader population.
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2003; Cocco et al., 2005].4

Second, we contribute to literature by investigating the term life insurance demand

of an ambiguity-averse investor with habit formation preferences. While earlier papers

show the role of human capital and bequest motive [e.g., Bernheim, 1991; Chen et al.,

2006; Inkmann and Michaelides, 2012; Hambel et al., 2017] on life insurance demand,

we consider other important characteristics such as ambiguity aversion and habit forma-

tion and additional realistic features such as subjective survival belief5 and borrowing

opportunity. Our results suggest that similar to the bequest motive, ambiguity aversion,

subjective survival belief and borrowing opportunity also increase the investor’s demand

on term life insurance while habit formation, which plays a dominant role compared to

other factors, has an opposite effect. This finding, which has not been explored before

in the context of life-cycle problems, can explain why the demand for term life insurance

products remains weak [Chambers et al., 2011], especially among those who are more

financially vulnerable [Bernheim et al., 2003], despite being more affordable compared

to other insurance products.

Our work is related to three strands of literature. We follow several studies that

introduce internal habit formation models in life-cycle problems. Both Diaz et al. [2003]

and Polkovnichenko [2007] find a positive relationship between habit formation and

wealth accumulation. Under similar settings, Gomes and Michaelides [2003] document

a contradictory finding with empirical evidence that habit formation results in an early

participation in the stock market. As mentioned above, by varying the degree of the

stock market ambiguity in the model, our model shows that the investor prefers not

to participate in the stock market at early ages. However, the model fails to generate

realistically low stock market participation level while keeping the hump-shape in the

absence of additional features such as fixed entry costs, recursive preferences or learning

mechanism.

Moreover, we study the investor’s life insurance demand in the life-cycle setting

similar to earlier studies. Chen et al. [2006] show that human capital increases the term

life insurance demand. Inkmann and Michaelides [2012] argue that bequest motive has

4Gomes and Michaelides [2005] obtain more realistic life-cycle asset allocation via recursive prefer-
ences, fixed entry cost and risk heterogeneity. Benzoni et al. [2007] obtains a hump-shaped profile by
assuming that stock return and labour income are co-integrated. Campanale [2011] and Peijnenburg
[2016] also build life-cycle models with ambiguity aversion as we do in this chapter. But to get a hump-
shape profile, they assume that investors learn about the equity premium. These assumptions are absent
in our model.

5Recent empirical evidence [e.g., Heimer et al., 2015; Groneck et al., 2016] shows that objective
survival beliefs differ from the subjective ones, that is, young investors typically underestimate their
life-span while the elderly expect to live longer than the predictions obtained from the mortality table.
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a positive correlation with term life insurance. Gao and Ulm [2015] and Koijen et al.

[2016] provide suggestions about the optimal portfolio choice among different insurance

products such as variable annuities, term life insurance and long-term care insurance.

Compared to those papers, we mainly investigate the relationship between the term life

insurance and different factors (as ambiguity aversion and habit formation) and analyse

how the investor’s life insurance demand is affected by these unexplored factors.

Furthermore, our work is based on the max-min expected utility framework with

multiple priors proposed by several works such as Gilboa and Schmeidler [1989], Ep-

stein and Wang [1994] and Epstein and Schneider [2003]. Meanwhile, independently to

aforementioned papers, El Ghaoui and Lebret [1997], Ben-Tal and Nemirovski [1998]

and Bertsimas and Sim [2004] among others, develop a robust optimization paradigm in

operations research domain, which shares similar ideas, but is presented in a different

terminology. Robust optimization models uncertainty6 in deterministic sets (i.e., the set

of priors) and solves the problem with respect to the worst-case over the set. Unlike the

max-min expected utility framework in financial economics, robust optimization aims

to solve general decision making problems under uncertainty. Such techniques have

been applied in solving various investment problems such as mean-variance portfolio

optimization [e.g., Goldfarb and Iyengar, 2003; Garlappi et al., 2007] and multi-period

portfolio selection [e.g., Ben-Tal et al., 2000; Bertsimas and Pachamanova, 2008] and

asset-liability management [Gulpinar and Pachamanova, 2013; Gulpinar et al., 2016].

In the life-cycle setting, Campanale [2011] models stock return ambiguity by two

priors (either higher or lower than the mean return) with equal probability and find

that the ambiguity reduces the stock allocation. Peijnenburg [2016] assumes the stock

return belongs to a confidence interval symmetrically around the stock return mean and

can vary within the length of one-fourth standard deviations. She also finds that stock

return ambiguity reduces the market participation and moreover, decreases the wealth

accumulation during the life. Both papers assume that the investor can learn about

the stock return ambiguity during the life in a sense that the degree of ambiguity is

reduced. Only with the learning, these two papers are able get a hump-shaped stock

allocation profile, which is closer to the empirical evidence. However, in this chapter, we

model the stock return ambiguity by a different set, which is ellipsoid-shaped. The use

of such an ellipsoidal uncertainty set is less conservative (in case of more than one risky

asset with uncertain returns) and it allows taking into account standard deviations and

covariances of random variables. We obtain a hump-shaped stock allocation profile over

6Ambiguity and uncertainty have been interchangeably used in finance [e.g., Epstein and Schneider,
2003; Garlappi et al., 2007; Peijnenburg, 2016] and broadly have the same meaning.
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the life-cycle (for certain size of the uncertainty sets) without making any assumption

on learning. Another difference compared to Campanale [2011] and Peijnenburg [2016]

is that we analyze the relationships between stock return ambiguity and other life-cycle

decisions such as life insurance demand.

The rest of the chapter is organized as follows. Section 2 describes the life-cycle

asset allocation problem for an ambiguity-averse investor. A brief overview on solution

approaches is presented in Section 3. We introduce the robust formulation of the life-

cycle problem in Section 4. Section 5 summarizes design of numerical experiments in

terms of parameter selection and data calibration. We present the results in Section 6.

Section 7 summarizes the main findings and concludes the chapter.

Notation: Throughout the thesis, we use tilde (∗̃) to denote randomness; e.g., ỹ

denotes random variable y. Boldface is used to denote vectors; for example, a is a vector.

In particular, we denote a vector of ones by 1 = [1, · · · , 1] in appropriate dimension and

“·” displays a vector multiplication.

2.2 The Life-cycle Asset Allocation Problem

In this section, we introduce a stochastic optimization formulation of the life-cycle

asset allocation problem for an ambiguity-averse investor. We consider a discrete-time

environment that spans T time periods. Life-cycle decisions are made at each time

period (i.e., one year) t = 1, · · · , T and t = 0 represents today.

Given the current age of the investor, she is alive for maximum T periods and retires

at certain age K < T . At each time period t, the investor receives the labour income

(the retirement income for t > K) and needs to decide the amount of consumption, asset

allocation and death benefit of the term life insurance that she is willing to leave to the

heirs.

The problem formulation contains random variables on the asset returns r̃t including

the return on the risk-free asset and value of the labour income l̃t at each point in time

(t = 1, . . . , T ).

Investment Products: We assume that the investment portfolio is constructed

fromM risky assets over a planning horizon T . Securities are denoted bym = 1, 2, · · · ,M
and m = 0 identifies the risk-free asset. After an initial investment at t = 0, the portfolio

can be restructured at discrete times t = 1, · · · , T − 1 and redeemed at the end of the

investment horizon t = T .

Apart from financial assets, we assume that the investor has an option to buy one-

year renewable life insurance products (abbreviated as term life insurance henceforth).
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The mechanism of term life insurance products is briefly described as follows. At time

t, the investor decides the amount of wealth to buy term life insurance (i.e., premium)

which provides amount of death benefit (i.e., face value) to the heirs if the investor dies

before t + 1. The maturity of term life insurance products is one year. In time t + 1,

the investor can renew the insurance contract by paying a new premium. Let qt and

dt
7 denote the premium and the face value of the term-life insurance contract at time t,

respectively. A linear relationship between qt and dt is expressed by the pricing formula

as qt = (1 − pt)dt where pt represents the conditional probability of being alive at t

assuming that she has been alive at time t− 1.

Constraints: We model constraints in terms of habit formation, asset and cash

balance, no short-sale and non-negativity of decisions.

Habit formation: As mentioned before, we use an internal addictive model for habit

formation of the investor’s preferences as introduced by Polkovnichenko [2007]. Let zt

be a reference point of the consumption amount that the investor him/herself is likely

to consume in the past (i.e., the consumption habit). Let ct denote the amount of con-

sumption at time t. The investor’s utility of consumption at time period t is determined

by two factors: the current amount of consumption (ct) and the reference level (zt) of

the consumption habit formation. The investor gains more utility of consumption if the

current consumption is higher than the reference point (ct > zt) and vice versa. We

assume that the investor starts with no habit formation; thus the initial reference level

is z0 = 0 and the consumption at t = 0 is c0 = 0.8 At any time period t ≥ 1, zt is

proportional to the reference level zt−1 and consumption level ct−1 at previous time t−1

according to the degree of habit formation persistence λ and formulated as follows;

zt = λzt−1 + (1− λ)ct−1, t = 1, · · · , T. (2.1)

Balance constraints: At time t, a balance constraint determines the wealth gained

from each asset. The investor can adjust the portfolio through trading in risky assets.

Let hmt , smt and bmt denote decision variables representing the amount of asset m to be

held, sold and bought at time t, respectively. The holding dynamics for risky asset m

at time t are defined in terms of holdings and the gain received at t− 1 plus the current

7Throughout the chapter, the face value (dt) of a term-life insurance contract is referred as the
investor’s demand at time t for the term life insurance products.

8For the numerical experiments, we have also considered initial reference levels higher than zero.
However, the empirical results do not differ much at different age groups apart from the first five years.
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trading (for buying bmt and selling smt at time t) as:

hmt = (1 + r̃mt )hmt−1 − smt + bmt , m = 1, · · · ,M, t = 1, · · · , T. (2.2)

At t = 0, both the initial holding of risky asset m and the cash holding are hm0 = 0,

h0
0 = 0, respectively. The amount of cash at t consists of value of investment at t − 1

plus cash received from the position changes and labour income minus consumption and

death benefit to be paid out at time t and is determined as:

h0
t = (1 + r̃0

t )h
0
t−1 + (1− es)(1 · st)− (1 + eb)(1 · bt) + l̃t − ct − (1− pt)dt, t = 1, · · · , T,

(2.3)

where st and bt denote vectors of buying and selling decisions, with fixed transaction

costs es and eb, respectively, over all assets m = 1, · · · ,M and 1 ∈ RM is a vector of

ones.

Total wealth at t = 1, · · · , T is accumulated over all holdings of risky and risk-free

assets;

wt =
M∑
m=1

hmt + h0
t , t = 1, · · · , T. (2.4)

No short sales: A set of non-negativity constraints on the holdings of asset m at

time t is imposed to prevent borrowing (i.e., short sales);

hmt ≥ 0, m = 0, · · · ,M, t = 1, · · · , T. (2.5)

Non-negativity constraints: The investor’s consumption and demand for term life

insurance over the life-cycle are non-negative;

ct, dt ≥ 0, t = 1, · · · , T. (2.6)

The amount of asset m to be bought or sold at time t cannot be negative. This

implies the following non-negativity constraints;

bmt , s
m
t ≥ 0, m = 1, · · · ,M, t = 1, · · · , T. (2.7)

Objective Function: The investor’s goal is to maximize expected total utilities of

consumption and bequest over the life (T periods).
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• The utility of consumption at t does not only depend on the current consumption

ct, but also is influenced by previous consumption levels ct−1, · · · , c1. Let β define

importance of habit formation. The utility of consumption at t is represented as

UC(ct − βzt).

• If the investor dies before t+ 1, the inheritors receive the financial wealth (wt) left

by the investor and the death benefit of the term life insurance (dt) bought by the

investor. Therefore, the utility of bequest is formulated as UB(wt + dt).

Given the bequest motive strength (η) and time discount factor (δ), the objective

function (OF ) of the life-cycle asset allocation problem of an ambiguity-averse investor

is formulated as the expected total utilities of consumption and bequest over the life;

OF = Er̃
[ T∑
t=1

δt
( t−1∏
i=1

pi

)(
ptUC

(
ct − βzt

)
+ η(1− pt)UB

(
wt + dt

))]
. (2.8)

Note that the expectation is taken over a random vector r̃ of asset returns consisting

of r̃mt for all t and m. Following the previous studies [for instance, see Cocco et al., 2005],

we use the time-separable power utility function (CRRA) with the coefficient of relative

risk aversion (where γ > 0 and γ 6= 1) for both utilities of consumption and bequest.

The Stochastic Optimization Model: We can formulate the life-cycle consump-

tion and asset allocation problem in view of the investor’s preferences: habit formation,

bequest motive and demand for term life insurance as a multi-stage stochastic optimiza-

tion model in a compact form as follows;

Pstoc(r̃) : max
c,d,h,b,s

Er̃
[ T∑
t=1

δt
( t−1∏
i=1

pi

)[
pt

(ct − βzt)1−γ

1− γ
+ η(1− pt)

(wt + dt)
1−γ

1− γ

]
s.t. Constraints (2.1), · · · , (2.7).

(2.9)

In this model we assume that the investor lives until time T (age 100) for sure,

with monotonically decreasing survival rates with the increase of t (age). This can be

interpreted as the average situation for all investors in reality. In other words, on average,

the percentage of investors who can live up to age t should be roughly the same as the

survival rate given in the mortality table at that age.

Next, we first provide a brief overview on the stochastic optimization approaches

to solve the life-cycle asset allocation problem and then introduce a robust optimization

approach to the life-cycle asset allocation problem.
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A description of the notation used in this chapter is provided in Table 2.1.

Table 2.1: Description of notation

Parameters

T , M investment horizon and number of risky assets, respectively

pt probability of investor to be alive at t conditional on being alive at t− 1

η strength of bequest motive

β importance of habit formation

λ, γ degrees of habit formation persistence and risk aversion, respectively

eb, es transaction costs for buying and selling assets, respectively

χ interest rate spread

δ discount factor

ft deterministic component in the log labour income

Decision Variables

ct consumption at time t

dt term life insurance demand at time t

bmt , smt amount bought and sold of asset m at time t, respectively

hmt holding in asset m at time t

wt financial wealth at time t

zt habit formation reference level at time t

vt amount borrowed at time t

Random Parameters

r̃mt return on asset m between time t− 1 and t

l̃t labour income at time t

R̃mt cumulative gross return on asset m at time t

νt permanent shock to the log labour income

εt temporary shock to the log labour income

2.3 Brief Overview: Stochastic Optimization Approaches

The life-cycle consumption and asset allocation problem can be solved by tradi-

tional approaches based on dynamic programming algorithms that require specific mod-

elling framework using states and actions that correspond to random paths and deci-
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sions, respectively [e.g., Merton, 1969, 1971; Richard, 1975; Viceira, 2001; Gomes and

Michaelides, 2003; Cocco et al., 2005]. The (stochastic) dynamic programming models

suffer from the curse of dimensionality in state and action spaces of the system, especially

when applying for such a life-cycle problem that involves a long investment horizon and

many life-cycle decisions. Moreover, explicit optimal solutions may not exist with the

inclusion of constraints regarding portfolio weight limit, transaction costs, borrowing, as

well as the investor’s preferences such as habit formation and bequest motive.

Alternatively, the scenario-based stochastic programming approach has been applied

for solving the life-cycle problems [e.g., Geyer et al., 2009; Konicz, Pisinger, Rasmussen

and Steffensen, 2015]. The stochastic programming methods assume that random vari-

ables arising in the underlying real-life problem follow a known probability distribution.

The uncertainty can be modelled by a finite number of realizations (i.e. scenarios) given

the distribution. The optimal strategy is determined in view of these scenarios [Dantzig

and Infanger, 1993]. However, the scenario-based stochastic programming also suffers

from the curse of dimensionality. The problem size grows exponentially with the increase

in decision periods and number of scenarios, which affect the computational tractability.

In particular, the previous studies for the life-cycle problems aim to reduce the decision

periods in the model due to tractability issues. For example, Geyer et al. [2009] assume

that the investor makes decisions in four particular stages during the life.

In this chapter, we introduce a robust optimization approach to the life-cycle con-

sumption and asset allocation problem of an ambiguity-averse investor with habit for-

mation preferences and term life insurance products. Robust optimization takes the

worst-case perspective to optimize the investor’s consumption and bequest utilities in

view of uncertain data and explicitly addresses computational tractability of the under-

lying problem from the modelling stage. The robust optimization approach assumes that

the random variables belong to uncertainty sets that can be constructed from probability

distributions of uncertain factors. Depending on the specification of uncertainty sets, the

robust counterpart of the original problem can be formulated as a tractable optimization

problem with no random parameters. The robust optimal strategy remains feasible for

all realizations of the stochastic data within the pre-specified uncertainty sets, including

the worst-case values if they can be found.

Soyster [1973] first presents the robust optimization framework for a linear model

and Becker et al. [1986] apply robust optimization to macroeconomic policy under model

uncertainty. Then robust optimization is re-developed theoretically and systematically

by El Ghaoui and Lebret [1997] and Ben-Tal and Nemirovski [1998] independently. Since

then, it has been applied for solving various practical problems in different areas. In
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particular, robust optimization has been used in finance for asset management (for a

comprehensive overview, see Fabozzi et al. [2007], single period mean-variance portfolio

management [e.g., Goldfarb and Iyengar, 2003; Gulpinar and Rustem, 2007; Oguzsoy

and Güven, 2007; Soyster and Murphy, 2013] and multi-period investment problems

[Ben-Tal et al., 2000; Bertsimas and Pachamanova, 2008] and asset-liability management

[e.g., Gulpinar and Pachamanova, 2013; Gulpinar et al., 2016]. For further information

on robust optimization and recent developments, the reader is referred to Ben-Tal et al.

[2009]. For an extensive research on robust optimisation algorithms and its applications

in finance, the reader is referred to Rustem and Howe [2002].

The uncertainty sets can be defined as discrete or infinite number of realisations of

uncertain parameters around the mean [e.g., El Ghaoui and Lebret, 1997; Ben-Tal and

Nemirovski, 1999; Rustem et al., 2000; Gulpinar and Rustem, 2007]. There also exist

symmetric (such as interval and polyhedral), asymmetric and data-driven uncertainty

sets developed for various applications in the literature. In particular, an interval uncer-

tainty set, which can be regarded as the investor’s confidence about the estimated value,

is empirically proven to be a conservative set for the robust investment strategies [Gold-

farb and Iyengar, 2003]. Natarajan et al. [2009] show that the shape of uncertainty sets

also defines a risk measure (e.g., CVaR) on the constraints with uncertain coefficients.

Robust optimization has also been applied for solving the life-cycle investment prob-

lems. Recently, Peijnenburg [2016] studies the robust life-cycle portfolio choice problem

and modelled stock return ambiguity using an interval set constructed by one-fourth

standard deviation around the mean of the asset returns. Campanale [2011] considers

an uncertainty set containing two realisations (either low or high) of stock returns.

2.4 Robust Life-cycle Asset Allocation Model

As the investor is ambiguity-averse towards asset returns, it may be desirable to

obtain robust life-cycle decisions that remain optimal even under the worst-case realisa-

tions of random events (asset returns). In this case, the worst-case approach rather than

expected utility maximization would be appropriate to employ. The worst-case approach

is based on the max-min utility optimization criteria. Assume that the uncertain asset

returns belong to a discrete or continuous uncertainty set, denoted as Θ. The life-cycle
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asset allocation problem can be formulated as follows;

Prob(r̃) : max
c,d,h,b,s

min
r̃∈Θ

[ T∑
t=1

δt
( t−1∏
i=1

pi

)[
pt

(ct − βzt)1−γ

1− γ
+ η(1− pt)

(wt + dt)
1−γ

1− γ

]
s.t. Constraints (2.1), · · · , (2.7).

(2.10)

In order to derive the robust counterpart of Prob(r̃), we first reformulate the model in

terms of the cumulative returns and then apply a convenient variable transformation as

suggested by Ben-Tal et al. [2000]. In this way we reduce the number of constraints with

uncertain asset returns. This transformation does not only eliminate cross-constraint

correlations of random variables, which is harder to model, but also to reduce the con-

servativeness of the robust counterpart solution.

Let us introduce the cumulative return R̃mt for m = 0, 1, · · · ,M at t = 0, 1, · · · , T
as R̃m0 = 1, R̃m1 = 1+ r̃m1 , R̃m2 = (1+ r̃m1 )(1+ r̃m2 ), · · · , R̃mt = (1+ r̃m1 )(1+ r̃m2 ) · · · (1+ r̃mt ).

We define new decision variables as θmt =
hmt
R̃mt

, %mt =
bmt
R̃mt

and ζmt =
smt
R̃mt

. When hmt , bmt

and smt in the problem Pstoc(r̃) are replaced by new decision variables, then the balance

and total wealth constraints become:

wt =
M∑
m=0

R̃mt θ
m
t , t = 1, · · · , T, (2.11)

θmt = θmt−1 − ζmt + %mt , m = 1, · · · ,M, t = 1, · · · , T, (2.12)

θ0
t = θ0

t−1 +
M∑
m=1

R̃mt
R̃0
t

(ζmt − %mt ) +
l̃t

R̃0
t

− ct + (1− pt)dt
R̃0
t

, t = 1, · · · , T . (2.13)

Let α̃t =
[
R̃0
t , R̃

1
t , · · · , R̃Mt

]′
and µ̃t =

[R̃1
t

R̃0
t

, · · · , R̃
M
t

R̃0
t

,
l̃t

R̃0
t

,
1

R̃0
t

]′
denote vectors of

random variables in constraints (2.11) and (2.13), respectively. For notational conve-

nience, we also define vectors of decision variables εt and τt such that:

ε
′
t =

[
θ0
t , θ

1
t , · · · , θMt

]
and τ

′
t =

[
ζ1
t − %1

t , · · · , ζMt − %Mt , 1,−ct − (1− pt)dt
]

in corresponding to α̃t and µ̃t. Let Sαt and Sµt denote pre-specified uncertainty sets for

random variables α̃t and µ̃t, respectively. The life-cycle asset allocation problem Prob(r̃)
becomes:
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Prob(R̃) : max
c,d,θ,%,ζ

min
α̃t∈Sαt , µ̃t∈S

µ
t

{
T∑
t=1

δt
( t−1∏
i=1

pi

)[
pt

(ct − βzt)1−γ

1− γ
+ η(1− pt)

(wt + dt)
1−γ

1− γ

]}

s.t. Constraints (2.1), (2.5), (2.6), (2.7), (2.11), (2.12), (2.13).

Note that the tractability of the optimization model depends on the choice of un-

certainty sets around uncertain stock returns and labour income shocks. As described

earlier α̃t is a non-linear function of asset returns r̃mt for m = 0, . . . ,M whereas µ̃t is

also a non-linear function of asset returns r̃mt as well as labour income l̃t. The labour

income l̃t is calibrated as a log function of two independent uncertain shocks. The cali-

bration method will be explained in detail in Section 2.5. We assume that the uncertain

parameters α̃t and µ̃t belong to symmetric (ellipsoidal) uncertainty sets. These sets are

specified by mean values (α̂t and µ̂t) and covariance matrices (Σα
t and Σµ

t ) of random

variables (α̃t and µ̃t, respectively) as:

Sαt =
{
α̃t | ‖(Σα

t )−
1
2 (α̃t − α̂t)‖2 ≤ Γαt

}
and Sµt =

{
µ̃t | ‖(Σµ

t )−
1
2 (µ̃t − µ̂t)‖2 ≤ Γµt

}
,

where ‖ · ‖2 represents the Euclidean norm. Parameters Γαt and Γµt are so-called the

degree of ambiguity aversion (or the budget of robustness).

The robust counterpart of Prob(R̃) can be obtained from the following proposition.

Proposition 2.4.1. Given the ellipsoidal uncertainty sets Sαt and Sµt for random vari-

ables α̃t and µ̃t, the robust counterpart of the problem Pstoc(r̃) is obtained as follows;

max
c,d,θ,%,ζ

T∑
t=1

δt
( t−1∏
i=1

pi

)[
pt

(ct − βzt)1−γ

1− γ
+ η(1− pt)

(wt + dt)
1−γ

1− γ

]
s.t. ‖(Σα

t )−
1
2 εt‖2 ≤ 1

Γαt
(α̂′tεt − wt), t = 1, · · · , T

θmt = θmt−1 − ζmt + %mt , m = 1, · · ·M, t = 1, · · · , T

‖(Σµ
t )−

1
2 τt‖2 ≤ 1

Γµt
(θ0
t−1 + µ̂′tτt − θ0

t ), t = 1, · · · , T

zt = ρzt−1 + (1− λ)ct−1, t = 1, · · · , T

ct, dt ≥ 0, t = 1, · · · , T

θmt ≥ 0, m = 0, · · · ,M, t = 1, · · · , T

%mt , ζ
m
t ≥ 0, m = 1, · · · ,M, t = 1, · · · , T .
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Proof. Consider the life cycle asset allocation model Prob(R̃):

max
c,d,θ,%,ζ

T∑
t=1

δt
( t−1∏
i=1

pi

)[
pt

(ct − βzt)1−γ

1− γ
+ η(1− pt)

(wt + dt)
1−γ

1− γ

]
s.t. wt ≤ min

α̃t∈Sαt

{
ε′t · α̃t

}
, t = 1, · · · , T

θmt = θmt−1 − ζmt + %mt , m = 1, · · · ,M, t = 1, · · · , T

θ0
t ≤ θ0

t−1 + min
µ̃t∈Sµt

{
τ ′t · µ̃t

}
, t = 1, · · · , T

zt = ρzt−1 + (1− ρ)ct−1, t = 1, · · · , T

ct, dt ≥ 0, t = 1, · · · , T

θmt ≥ 0, m = 0, · · · ,M, t = 1, · · · , T

%mt , ζ
m
t ≥ 0, m = 1, · · · ,M, t = 1, · · · , T .

The inner minimization problem in the first set of constraints can be rewritten as

follows;

max
α̃t

{
ε′t · α̃t

}
s.t. ‖(Σα

t )−
1
2 (α̃t − α̂t)‖2 ≤ Γαt .

Let κt ≥ 0 denote the Lagrangian multiplier for the constraint. The Lagrangian

function can be constructed as:

L(α̃t, κt) =
{
ε′t · α̃t

}
+ κt

(
‖(Σα

t )−
1
2 (α̃t − α̂t)‖2 − Γαt

)
.

The first-order optimality and complementary conditions, respectively, are driven

as:

∂L(α̃t, κt)

∂α̃t
= 0 =⇒ εt +

κt

‖(Σα
t )−

1
2 (α̃t − α̂t)‖2

(Σα
t )−1(α̃t − α̂t) = 0, (2.14)

κt

(
‖(Σα

t )−
1
2 (α̃t − α̂t)‖2 − Γαt

)
= 0. (2.15)

From (2.14) and (2.15), one can obtain κt 6= 0. In addition, we have

‖(Σα
t )−

1
2 (α̃t − α̂t)‖2 = Γαt . (2.16)
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Substituting (2.16) into (2.14), we can compute

α̃t − α̂t =

(
−Γαt
κt

)
Σα
t εt. (2.17)

The Lagrangian multiplier κt can be found from (2.16) and (2.17) as κt =
√
ε′tΣ

α
t εt.

Then the optimal objective function value of the inner minimization problem min
α̃t∈Sαt

{
ε′t ·

α̃t

}
becomes

{
ε′t ·α̃t

}
= ε′t ·α̂t−Γαt ‖(Σα

t )−
1
2 εt‖2. By reinjecting this back into the original

constraint, we obtain the robust formulation of the constraint.

Similarly, we can derive the robust counterpart of the third set of constraints where

the inner minimization problem min
µ̃t∈Sµt

{
τ ′t · µ̃t

}
needs to be solved.

The degree of ambiguity aversion (Γ) adjusts the size of the corresponding uncer-

tainty sets.9 When Γ is selected as zero, the policy corresponds to the nominal investment

strategy that is achieved by solving the underlying stochastic program with fixed mean

returns of assets. For the increasing values of Γ, the size of uncertainty set increases

so that more possible realizations of random variable are included into the set. This

implies that the investor is more ambiguity-averse. The choice of Γ also links with the

probability guarantee of the corresponding constraint’s feasibility. As shown in Ben-Tal

et al. [2000] and Bertsimas and Sim [2004], the constraint that contains random vari-

able is feasible with a probability of 1 − κ if the size of uncertainty set is chosen as

Γ =
√
−2 lnκ. In other words, the high probabilistic guarantee of feasibility is achieved

for the choice of low κ values (at high specification of price of robustness). Since the

life cycle asset allocation problem involves multi decision-making stages, the probability

guarantee in constraints for t ≥ 1 is conditional on the previous stages. In order to avoid

too conservative strategies, we choose relatively small values of Γ (i.e., Γ ≤ 1) for the

computational experiments, which is in line with Ben-Tal et al. [2000] and Bertsimas

and Pachamanova [2008].

Note that in the optimization model (2.4.1), the constraints are either linear or

second order conic (due to the use of ellipsoidal uncertainty sets) and the objective

function contains 2 · T power utility functions. As shown by Alizadeh and Goldfarb

[2003], when the coefficient γ is a rational number, the power utility function can be

reformulated as a second order cone program (SOCP). In our numerical experiments, we

used Mosek to solve the underlying non-linear programming problems. This is in line

with several other studies [e.g., Brown and Smith, 2011; Konicz, Pisinger, Rasmussen

9In the current setting, the only source of ambiguity aversion is uncertain stock market returns, hence
Γαt = Γµt = Γ.
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and Steffensen, 2015; Konicz, Pisinger and Weissensteiner, 2015; Haugh et al., 2016]

where similar power utility maximization problems are considered.

2.5 Model Setting

The robust life-cycle asset allocation model (2.4.1) contains four main elements:

ambiguity aversion towards uncertain asset returns, habit formation preferences, bequest

motive and term life insurance. Due to the curse of dimensionality, most previous papers

which formulate the life-cycle problem via dynamic programming, study these elements

in isolation. In comparison, by formulating the problem in the multi-stage stochastic

programming form, we study these elements together in a unified model while keeping

it computationally tractable. In particular we are concerned with two main questions

which have been only partially answered before:

• How are the investor’s life-cycle decisions affected by investor’s preferences such as

ambiguity aversion and habit formation?

• What factors determine the investor’s willingness to buy term life insurance?

2.5.1 Baseline Calibration

We address the first question using a baseline calibration of the model parameter

values which are widely used in the literature and are treated as standard choices. Later,

we will modify the model setting in order to study the second question.

In all the models, we consider an investor who starts making life-cycle decisions at

the age of 20 (i.e., at t = 1). The investor retires at age 65, and dies with probability

1 at age 100 (i.e., T = 80). We consider an asset allocation problem where wealth can

be allocated among two assets: risk-free and risky asset (stock). Following the earlier

literature [e.g., Cocco et al., 2005; Peijnenburg, 2016], we set the risk-free return to 2%

and assume that the return on risky asset is time-independent, and normally distributed

with equity premium 4% and standard deviation 15.7%.

We assume that the labour income (before retirement) is uncertain and formulated

as suggested by Cocco et al. [2005]:

log(l̃t) = ft + ν̃t + ε̃t. (2.18)

The deterministic component ft in (4.10) is modeled by a third-order polynomial function

of age t as follows;

ft = a0 + a1t+ a2t
2/10 + a3t

3/100,
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where coefficients a0, a1, a2 and a3 need to be estimated. Moreover, ν̃t = ν̃t−1 + ũt and

ũt ∼ N (0, σ2
ν) refers to permanent shock to the labour income whereas ε̃t ∼ N (0, σ2

ε) is

the temporary shock. The retirement income is a constant fraction (e.g., ξ=0.68) of the

permanent labour income in the year just before retirement. In other words, there is no

temporary shock ˜epsilon during retirement.

In numerical results, we use the same labour income estimates, as given in Cocco

et al. [2005], of shock variances (σε, σν), polynomial coefficients (a0, a1, a2, a3) as well

as the retirement income fraction for three different education groups of investors who

have no high school degree, high school degree and college degree. Since the choice of

groups does not affect the main conclusions reported in this chapter, we only present

the computational results obtained by the labour income estimates for the investor with

high school degree group.

We use the 2013 mortality rates from US Social Security10 to calculate the con-

ditional probability of being alive (pt) in each time period. The results related with

amount of consumption, death benefit of term life insurance, holding in assets and total

wealth are presented in terms of thousands of 1992 US dollars.

The investor’s degree of ambiguity aversion (Γ) towards uncertain asset returns is

varied from 0 (that is, ambiguity neutral) to 1. From the empirical study, we observe

that when Γ = 1, the investor allocates almost whole wealth into the risk-free asset.

Increasing Γ beyond 1 does not change her investment pattern.

As an usual practice in the literature [e.g., Gomes and Michaelides, 2003; Polkovnichenko,

2007], we also choose two levels of habit formation: i) the investor has no habit forma-

tion β = 011, and ii) the investor has a certain degree of habit formation. In particular,

the importance of habit formation is defined as β = 0.5 whereas the degree of habit

formation persistence is λ = 0.5.

The other model parameters are selected as follows. Time discount factor is δ = 0.96

and the degree of risk aversion is fixed at γ = 4. The investor has a bequest motive η = 1;

this implies that she views the utility of consumption and bequest equally important.

Alternative Parameter Settings: After showing the baseline calibration results,

we vary the values of some model parameters to investigate whether investor’s life-cycle

decisions (especially the willingness to buy term life insurance) are sensitive to chosen

parameter values. We particularly focus on the degree of risk aversion (γ), bequest

motive (η) and the importance of habit formation (β).

We also modify the model to add borrowing constraints [e.g., Cocco et al., 2005;

10The reader is referred to https://www.ssa.gov/oact/STATS/table4c6.html.
11Note that λ = 1 and z0 = 0 also corresponds for a case of no habit formation.
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Kouwenberg and Zenios, 2006], and consider investor’s subjective survival belief [Groneck

et al., 2016] to investigate how these features change investor’s life cycle decisions.

2.5.2 Model Implementation

We apply a rolling-horizon procedure to find optimal life-cycle decisions by repeat-

edly solving the robust stochastic optimization model in T numbers of iterations, denoted

by k = 1, 2, · · · , T − 1, T . The main steps of this procedure in terms of states updated

and actions taken at each time period are summarised in Table 2.2.

Table 2.2: Dynamic rolling-horizon procedure

Iteration # of time periods Decisions Random

variables

State variables

number in the model implemented realized updated

k = 1 T c1, d1, b1, s1 r̃1, l̃1 h1, z1, w1

k = 2 T − 1 c2, d2, b2, s2 r̃2, l̃2 h2, z2, w2

...
...

...
...

...

k = T − 1 2 cT−1, dT−1,

bT−1, sT−1

r̃T−1, l̃T−1 hT−1, zT−1,

wT−1

k = T 1 cT , dT , bT , sT r̃T , l̃T hT , zT , wT

At the beginning, the uncertain stock returns (r̃t) are unknown to the investor.

What the investor knows is the mean and variance information used in the calibration.

Based on this information the investor builds uncertainty sets (the size of the uncertainty

set is determined by investor’s degree of ambiguity aversion Γ) and derive the robust

counterpart introduced in Section 2.4. The uncertain labour income (l̃t) is also unknown

and we assume that the investor is ambiguity-neutral to such uncertainty. Thus, we

generate labour income for all time periods according to Equation (4.10).

At iteration k = 1, the model with all T time periods is solved but only the first-

stage decisions at t = 1 in terms of consumption c1, investment decisions b11 and s1
1 and

term life insurance demand d1 are implemented.

Then the investor observes the actual stock return and the labour income for t = 1,

which is simulated according to the calibrated mean/variance information of the stock

returns and labour income process, respectively. Once the actual asset returns and labour

income are observed, the asset holdings h1, total wealth w1 and the habit formation

reference level z1 are updated.
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By going forward in time, the number of time periods in the optimization model

is reduced by one at each iteration (1 < k ≤ T ). Then the optimization model is

solved again and only the first stage decisions are implemented. The holdings in each

asset, total wealth and habit formation reference level (i.e. h1
k, w

1
k and zk) are updated

according to the new observed asset returns and labour income. At the last iteration

k = T , we solve the problem with only one time period.

We run the rolling-horizon procedure 1000 times with different stock returns and

labour income processes simulated from the probability distributions introduced in Sec-

tion 2.5.1. We then report the average and standard deviation (in parentheses) of 1000

simulations as the optimal life-cycle decisions (i.e., consumption, wealth, stock allocation

and term life insurance demand) during the life.

2.6 Computational Results

2.6.1 Consumption and Investment Decisions

In order to analyse the life-cycle decisions using the baseline calibration, we present

the results in five age groups: ‘20+’, ‘20-24’, ‘25-44’, ‘45-64’ and ‘65+’. In particular,

‘20+’ represents the entire life span of the investor (from age 20 to 99 represented by

t = 1, ..., T ) while the other four age groups refer to certain periods during the life. For

instance, ‘25-44’ corresponds to time periods t = 6, ..., 25 in the model.

For each age group, we report the results in terms of average values of the optimal

consumption, wealth, stock allocation and term life insurance demand during that spe-

cific time period. For example, the average consumption value for age groups ‘25-44’ and

‘45-64’ are computed as follows. First, we run the rolling horizon procedure 1000 times

to obtain 1000 sets of ct for t = 1, . . . , T . Then, the average value ĉt at time period t is

computed over 1000 points of ct. Finally, we calculate the average consumption values

for the age groups ‘25-44’ and ‘45-64’ as ĉ6+ĉ7+...+ĉ25
20 and ĉ26+ĉ27+...+ĉ45

20 , respectively.

In particular, the case Γ = 0 corresponds to the expected value optimization model

where average stock returns are used as inputs (i.e. r̄t = E[r̃t]). By varying Γ from 0 to

1, we increase the size of uncertainty sets that uncertain stock returns belong to.

Table 2.3 summarizes the simulation results in terms of different degrees of ambi-

guity aversion (Γ ∈ [0, 1]) towards stock returns under two habit formation levels: β = 0

(left) and β = 0.5 (right). The results of Γ = 0, 0.25, 0.55, 0.65, 0.75, 1.0 are chosen to

present due to space limitations. The following observations stand out from Table 2.3.
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Table 2.3: Average consumption, wealth and asset allocation with baseline calibration

Habit level (β = 0) Habit level (β = 0.5)

Γ 20+ 20-24 25-44 45-64 65+ 20+ 20-24 25-44 45-64 65+

Panel A. Consumption

0
25.20 17.35 24.91 27.75 25.03 25.57 16.60 25.16 28.05 25.67

(2.01) (0.60) (1.07) (1.81) (3.55) (3.02) (0.52) (1.02) (2.26) (5.89)

0.25
25.31 17.36 24.89 27.70 25.32 25.79 16.59 25.15 27.93 26.24

(2.11) (0.60) (1.06) (1.75) (3.80) (3.30) (0.53) (1.01) (2.17) (6.60)

0.55
24.93 17.36 25.10 27.19 24.62 25.28 16.74 25.31 27.14 25.42

(2.41) (0.60) (1.08) (1.83) (4.61) (2.95) (0.53) (1.04) (1.81) (5.96)

0.65
24.01 17.36 25.46 26.52 22.70 24.17 16.75 25.64 26.56 23.03

(1.70) (0.60) (1.08) (1.65) (2.85) (1.85) (0.53) (1.05) (1.65) (3.27)

0.75
22.85 17.36 25.56 25.91 20.34 22.88 16.75 25.69 26.01 20.37

(1.24) (0.60) (1.08) (1.55) (1.43) (1.22) (0.53) (1.06) (1.55) (1.37)

1
22.68 17.36 25.57 25.85 19.99 22.86 16.75 25.70 26.01 20.32

(1.20) (0.60) (1.08) (1.54) (1.33) (1.22) (0.53) (1.06) (1.55) (1.37)

Panel B. Wealth

0
46.38 0.27 9.09 72.27 59.48 50.43 5.29 12.46 78.79 62.36

(14.91) (0.23) (3.63) (19.81) (25.48) (27.05) (1.93) (5.97) (33.48) (47.57)

0.25
48.56 0.23 9.54 72.80 63.88 54.25 5.13 13.05 79.95 70.11

(16.76) (0.20) (3.61) (20.58) (29.22) (31.80) (1.89) (6.21) (35.86) (57.21)

0.55
44.24 0.22 6.59 62.63 61.53 47.12 4.33 7.60 64.13 66.10

(21.57) (0.19) (3.21) (25.28) (38.45) (29.33) (1.44) (3.73) (29.01) (54.97)

0.65
32.41 0.22 3.29 45.84 45.98 32.81 4.32 4.31 47.06 45.02

(13.48) (0.19) (1.95) (17.98) (22.75) (17.50) (1.43) (2.47) (21.03) (30.45)

0.75
20.88 0.22 2.40 33.05 27.43 18.75 4.32 3.55 32.93 21.40

(3.45) (0.19) (1.40) (7.58) (4.14) (3.55) (1.43) (1.82) (8.32) (3.31)

1
19.56 0.22 2.31 32.13 25.00 18.60 4.32 3.54 32.84 21.11

(3.12) (0.19) (1.40) (7.42) (3.13) (3.53) (1.43) (1.82) (8.31) (3.28)

Panel C. Stock allocation (%)

0
99.68 95.96 99.79 99.95 99.46 99.83 99.97 99.98 99.99 99.65

(0.09) (8.08) (0.10) (0.01) (0.17) (0.09) (0.01) (0.01) (0.00) (0.21)

0.25
98.87 12.38 96.52 99.18 98.88 98.97 61.10 96.92 99.30 99.03

(0.73) (11.55) (1.87) (0.55) (0.89) (0.71) (13.63) (1.77) (0.63) (0.71)

0.55
93.06 5.91 90.89 95.00 91.98 94.90 1.50 84.19 95.10 96.58

(2.57) (11.68) (7.59) (3.22) (2.74) (3.23) (5.48) (12.17) (3.64) (3.09)

0.65
73.89 5.75 74.54 80.49 69.57 72.26 0.19 63.13 80.60 67.95

(5.87) (11.36) (17.84) (9.75) (4.19) (6.87) (0.15) (24.26) (10.57) (4.63)

0.75
13.20 5.64 13.19 9.26 15.93 1.65 0.13 0.91 0.87 2.46

(5.49) (11.40) (6.61) (4.49) (6.83) (0.44) (0.08) (0.53) (0.30) (0.62)

1
0.44 5.32 3.67 0.49 0.28 0.03 0.09 0.21 0.03 0.02

(0.13) (10.94) (2.00) (0.18) (0.09) (0.01) (0.04) (0.10) (0.01) (0.01)

Data 40.00 —— 38.50 42.00 36.50 40.00 —— 38.50 42.00 36.50

This table displays the average consumption, wealth and stock allocation (in Panels A, B, and C,

respectively) for different degrees of ambiguity aversion (Γ) and two habit formation levels (β). The

average (and standard deviation) values are calculated as the 50 percentile (median) of 1000 simulations

using the rolling-horizon procedure. The last row (labelled as ‘Data’) displays the stock allocation during

certain time periods given by the empirical data from Survey of Consumers Finance 2010. Note that

unlike the results in Panels A, B and C, the blocks under ‘20+’ and ‘65+’ show the average stock

allocation up to age 84 (not 100).
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First we focus on the case with no habit formation (left panel). The average stock

allocation decreases from nearly 100% to 0% over the life span (column ‘20+‘) with

the increase of the degree of ambiguity aversion (Γ) from 0 to 1 (Panel C). Average

consumption and wealth follow a similar decreasing pattern, but there is a slight increase

in the average values when Γ varies from 0 to 0.25. As we will discuss in detail below,

this implies that the investor has two separate strategies when she faces the stock return

uncertainty.

When Γ ≤ 0.25, the investor does not immediately reduce the allocation in risky

asset (i.e, the stock allocation is still greater than 99%). We observe that she accumulates

more wealth before the retirement (as shown in columns 25-44 and 45-64) by sacrificing

some amount of consumption. Such saving motive boosts the wealth and consumption

after the retirement because of the high stock allocation (i.e., 99.46 and 98.88% as in

column 65+).

This results in high average wealth and consumption over the life span. However,

there exists a utility loss over the life span despite the increase in average wealth and

consumption. In other words, the life-cycle utility (sum of utilities over time, i.e., objec-

tive function value) still decreases as Γ increases from 0 to 0.25. This implies that the

investor life-cycle strategy is more conservative when she shifts from being ambiguity

neutral (Γ = 0) to ambiguity averse (Γ = 0.25).

When Γ ≥ 0.25, the investor chooses another strategy to respond to the stock return

uncertainty. In this case, the investor prefers to consume more (unlike the decreasing

pattern when Γ ≤ 0.25) and accumulates less wealth during the age group of 25-44. This

impacts his consumption and saving behaviour during 45-64 and 65+. In other words, she

starts consuming less and also saving less wealth due to previous decisions. As ambiguity

aversion increases, the investor fears possible stock market downside performance, and its

potential damage on her life-cycle utility. Therefore, this induces her to invest less wealth

in the stock market (or invest more in risk-free asset). Unless the investor is willing to

participate in the stock market, more saving at early ages does not necessarily bring

high portfolio return (and high utility) at later ages (due to stock return uncertainty).

However, consuming more in early ages can provide immediate utility without facing

stock return uncertainty although such a consumption behaviour may negatively affect

the wealth accumulation as well as consumption at later ages.

So far we are concerned with the behaviour of the investor at specific age category

(by looking at column-wise results) as the degree of ambiguity aversion varies. Simi-

larly, we can analyse the structure of different investment decisions over life span at a

certain ambiguity aversion level. In terms of life-cycle decisions in Table 2.3, we ob-
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serve that both consumption and wealth profiles display a hump-shaped pattern; that

is in line with earlier life-cycle models [e.g., Gomes and Michaelides, 2003; Cocco et al.,

2005; Peijnenburg, 2016]. However, most the earlier life-cycle models struggle to gen-

erate a hump-shaped pattern in stock allocation, an important feature of the life-cycle

investment hypothesis [e.g., Bakshi and Chen, 1994; Geanakoplos et al., 2004; Yao and

Zhang, 2005] and the tactical asset allocation [Campbell and Viceira, 2002]. Note that

with baseline calibration, the model generates the hump-shaped investment pattern for

0.55 ≤ Γ ≤ 0.65. For example, in case of Γ = 0.65, the model predicts that a young in-

vestor (aged 25-44) on average allocates around 74.5% of her wealth in the stock market.

This increases up to 80.5% for the middle-aged investor, and decreases again to 69.6%

during the retirement age. While the model captures a realistic hump-shaped pattern

(e.g., stock allocation increases (from 74.54% to 80.49%) by 8% during young-middle

ages and decreases (from 80.49% to 69.57%) by 13.5% during middle-old ages), the level

of average stock allocation is relatively high (73.9%) compared to the empirical data

(40%) gathered from the Survey of Consumer Finances in 2010.

Now, let’s turn to the case that incorporates moderate level of habit formation

(β = 0.5). The right panel of Table 2.3 shows that the overall patterns of consumption,

wealth and stock market allocation are similar to that with no habit formation (β =

0). But the investor’s savings motive is stronger at the expense of lower consumption

in the first five years of economic life. Such effect of habit formation on the savings

motive is also observed in earlier studies [e.g., Diaz et al., 2003; Gomes and Michaelides,

2003; Polkovnichenko, 2007]. Compared to ambiguity aversion, habit formation plays a

secondary role on the asset allocation, having only a significant impact for high values

of Γ (≥ 0.7). Highly ambiguity-averse investor allocates less wealth in stocks if she has

habit formation preferences.

2.6.2 Term Life Insurance Demand

While the important life-cycle decisions involve consumption, wealth accumulation

and asset allocation, our model also incorporates the choice for term life insurance prod-

ucts. As stated in Section 4.2, we assume that the investor has an option to buy one-

year renewable life insurance products (abbreviated as term life insurance). We start

analysing the term life insurance in the same model setting using baseline calibration

and then present additional results to illustrate the interactions and tensions between

the term life insurance demand and investor’s various preferences such as risk/ambiguity

aversion and bequest motive/habit formation. Finally, we would like to establish how
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the introduction of borrowing option and the subjective survival belief into the life-cycle

consumption and asset allocation model alters the ambiguity-averse investor’s decision

regarding term life insurance.

Baseline Setting: in Table 2.4, we first note that the investor purchases more

term life insurance if she has a higher degree of ambiguity aversion towards stock market

returns. Compared to the stock return uncertainty, the pay-off (i.e., death benefit) from

the term life insurance is relatively certain. This feature of the term life insurance

becomes attractive for an investor who is highly averse to possible bad outcomes from

the stock market. To the best of our knowledge, this relationship has not been studied

before in a life-cycle setting.

Table 2.4: Average term life insurance demand with baseline calibration

Habit level (β = 0) Habit level (β = 0.5)

Γ 20+ 20-24 25-44 45-64 65+ 20+ 20-24 25-44 45-64 65+

0
6.09 16.99 16.37 0.54 1.83 2.61 8.55 6.66 0.04 0.90

(0.86) (0.57) (2.64) (0.51) (0.69) (0.69) (1.83) (2.28) (0.07) (0.48)

0.25
6.06 17.00 16.22 0.70 1.75 2.55 8.88 6.44 0.05 0.85

(0.86) (0.57) (2.52) (0.53) (0.72) (0.72) (1.80) (2.36) (0.08) (0.48)

0.55
7.06 17.03 19.09 1.36 2.01 3.34 9.74 9.30 0.15 0.85

(1.12) (0.57) (2.54) (1.42) (1.02) (0.64) (1.54) (1.92) (0.38) (0.54)

0.65
8.39 17.03 22.00 3.59 2.12 4.10 9.75 11.64 0.82 0.85

(1.30) (0.57) (1.89) (2.71) (1.13) (0.77) (1.53) (1.78) (1.20) (0.52)

0.75
9.18 17.02 22.64 4.58 3.01 4.53 9.75 12.00 1.05 1.50

(1.35) (0.57) (1.69) (2.98) (1.15) (0.84) (1.53) (1.72) (1.35) (0.64)

1
9.53 17.07 22.92 4.75 3.54 4.56 9.76 12.02 1.05 1.57

(1.43) (0.58) (1.73) (3.07) (1.25) (0.85) (1.53) (1.72) (1.36) (0.68)

This table displays the average term life insurance demand values for different degrees of am-

biguity aversion (Γ) and two habit levels (β). The average (and standard deviation) values are

calculated as the 50 percentile (median) of 1000 simulations using the rolling-horizon procedure.

When habit formation preferences are introduced into the model (right panel of

Table 2.4), the investor spends less on term life insurance, regardless of the level of

ambiguity aversion. Recall that the main purpose of life insurance is to protect the

heirs from unexpected death and its adverse financial consequences. Therefore, the

demand for life insurance mainly stems from altruistic motives. On the hand, habit

formation preferences lead to more egoistic choices. In other words, an investor with

habit formation preferences would save more for her future self resulting in less wealth
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allocated to life insurance products.

Regarding the life-cycle choices, the investor’s demand for life insurance is highest at

the young age (20-44) when she has the highest human capital, that is, expected value of

future labour income. While this has been documented in earlier literature [Chen et al.,

2006], our results also show that the investor’s demand for life insurance is sensitive

neither to the degree of ambiguity aversion nor to the habit formation preferences.

Risk versus Ambiguity Aversion: we now investigate the impact of both risk (γ)

and ambiguity (Γ) aversion on life-cycle asset allocation decisions, and mainly focus on

establishing their interaction in the context of life insurance demand. These factors have

been studied in isolation in the literature. Most of asset pricing models are concerned

with risk aversion [e.g., Mehra and Prescott, 1985; Ingersoll, 1987; Cochrane, 2009].

There are also other studies establishing the effect of ambiguity aversion on financial

decision making [e.g., Gilboa and Schmeidler, 1989; Goldfarb and Iyengar, 2003; Garlappi

et al., 2007; Gulpinar et al., 2016; Peijnenburg, 2016].

Figure 2.1: Risk versus ambiguity aversion

The two plots compare the average term life insurance demand over the entire life for varying

degrees of risk aversion and ambiguity aversion, under two habit formation preferences: either

the investor has no habit formation (left) or has a habit formation level of β = 0.5 (right). The

x, y and z axes denote the degree of ambiguity aversion, risk aversion and term life insurance

demand, respectively.

Figure 2.1 illustrates the corresponding average term life insurance demand over

the entire life for varying degrees of investor’s ambiguity aversion (Γ ∈ [0, 1]) and risk

aversion level (γ ∈ [2, 10]). The strength of bequest motive is fixed at unity (η = 1). We

first observe at lower levels of risk aversion, investor’s term life insurance demand in-

creases significantly with the degree of ambiguity aversion. The effect is less pronounced
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for intermediate level of risk aversion. However, at the higher end of risk aversion (i.e.,

γ = 10), we see that life the insurance demand increases again with the degree of ambi-

guity aversion, though to a lesser extent.

Second, as demonstrated in Table 2.4, the average life insurance demand is lower

when the investor has habit formation preferences (see the right panel of Figure 2.1).

Moreover, the life insurance demand does not monotonically change in the degree of risk

aversion: it is concave, that is, higher insurance demand at intermediate levels of risk

aversion, for ambiguity neutral investors, and becomes convex, that is, higher insurance

demand either at low or high levels of risk aversion, for highly ambiguity-averse investors

(Γ = 1).

Bequest Motive versus Habit Formation: as shown by the baseline case in

Figure 2.1, habit formation preferences reduce investor’s willingness to buy term life

insurance. We also know from earlier literature [e.g., Bernheim, 1991; Inkmann and

Michaelides, 2012] that the bequest motive has the opposite effect, which creates a

tension between bequest motive and habit formation. In other words, an investor with

habit formation places more weight on her own utility of consumption rather than the

utility of the heirs (bequest motive). Therefore, in this section we investigate how these

two factors jointly affect the term life insurance demand. For this purpose, the risk

aversion level is fixed at 4 and the bequest motive strength is varied within a range

(η ∈ [1, 5]). In the literature, there is little consensus on the choice of bequest motive

parameter since it is difficult to estimate [Dynan et al., 2002]. We therefore choose a

range of bequest motive parameters η ∈ [1, 5] that is commonly used in earlier literature;

for instance, see [Cocco et al., 2005]. One can also consider other settings such as

η ∈ [0, 1] and show the impact of this parameter on life-cycle decisions.

Figure 2.2 presents the average term life insurance demand obtained by varying the

strength of bequest motive under different degrees of ambiguity aversion with (right) and

without (left) habit formation. One can easily observe that the bequest motive increases

the term life insurance demand not only for ambiguity-neutral investors as shown before

in earlier literature [e.g., Bernheim, 1991; Inkmann and Michaelides, 2012] but also for

ambiguity-averse investors. The conclusion from Table 2.4 that the degree of ambiguity

aversion increases the term life insurance demand, still holds regardless of the strength

of bequest motive. Introducing the habit formation preferences in the model (as in the

right panel in Figure 2.2) does not change the general conclusion that habit formation

preferences reduce the term life insurance demand.
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Figure 2.2: Bequest motive versus ambiguity aversion

The two plots compare the average term life insurance demand over the entire life for varying

degrees of bequest motive and ambiguity aversion, under two habit formation preferences: either

the investor has no habit formation (left) or has a habit formation level of β = 0.5 (right). The

x, y and z axes denote the degree of ambiguity aversion, bequest motive and term life insurance

demand, respectively.

So far, we have discussed the implications of incorporating habit formation only at

the certain level (β = 0.5). Next we illustrate how different levels of habit formation

(β ∈ [0, 1]) and bequest motives (η ∈ [1, 5]) affect life insurance demand for investors

with two representative degrees of aversion towards stock return uncertainty. As in the

benchmark case, the level of risk aversion is fixed at γ = 4.

We start with a case of an ambiguity-neutral investor (Γ = 0). As displayed in the

left panel in Figure 2.3, when the investor has strong habit formation preferences, the

bequest motive does not play an important role on the life insurance demand. In other

words, habit formation dominates the bequest motive. In addition, the bequest motive

only matters when habit formation preferences are weak. From the right panel in Figure

2.3, we see that introducing the ambiguity aversion (Γ = 1) does not change the previous

observation.

Moreover, while an ambiguity-neutral investor with strong habit formation prefer-

ences (i.e. β = 0.6, 0.8) hardly demand life insurance products, an ambiguity-averse

investor with strong habit formation preference still purchases substantial amount of life

insurance products unless the preference is extremely strong (β = 0.8).
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Figure 2.3: Bequest motive versus habit formation

The two plots compare the average term life insurance demand over the entire life with varying

bequest motives and habit formation preferences in two degrees of ambiguity aversion. The left

plot denotes Γ = 0 (ambiguity-neutral) while the right one denotes Γ = 1 (ambiguity-averse).

The x, y and z axes denote the importance of habit formation, strength of bequest motive and

term life insurance demand, respectively.

2.6.3 Borrowing Option

In the computational experiments so far, we have assumed that the investor is not

allowed to borrow (i.e., wt ≥ 0 for t = 1, · · · , T ). However, in reality, investors often

prefer financial markets to borrow capital, so that they can have further flexibility to

consume or save over time. We would like to investigate how the borrowing option affects

the life-cycle decisions (in particular, the term life insurance demand) using the baseline

calibration. Now, we present the mathematical formulation of the robust life cycle asset

allocation model in view of the borrowing option.

In order to investigate impact of borrowing option on life-cycle decisions, we extend

the life cycle consumption and asset allocation model as suggested by Kouwenberg and

Zenios [2006].

Suppose that the investor is allowed to borrow some amount of capital vt ≥ 0 at

intermediate time periods t = 1, · · · , T − 1 and the amount of borrowing at each time

period t is restricted by her/his income; that is vt ≤ l̃t for t = 1, · · · , T − 1. The

borrowing option is not available at the final period, vT = 0. The amount of money

borrowed at t will be repaid at next time period t + 1 under fixed interest rate spread
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χ. In this case, the cash balance constraint for each time period is modified as follows;

h0
t = (1 + r̃0

t )h
0
t−1 +

M∑
m=1

(smt − bmt ) + l̃t − ct − (1− pi)dt + vt − (1 + χ)vt−1, t = 1, · · · , T.

Therefore, the total wealth at time t becomes (wt − vt), and accordingly the utility of

bequest is updated as UB(wt − vt + dt).

In order to investigate impact of borrowing on the life-cycle decisions, we conduct

experiments with the life cycle asset allocation model with and without borrowing option

using baseline calibration. We fix χ = 0.025 as suggested by Kouwenberg and Zenios

[2006].

Table 2.5 presents the difference between the average consumption levels obtained

by the robust life-cycle optimization model with and without borrowing options under

the investor’s preferences towards habit formation and ambiguity aversion.

Table 2.5: Differences in average consumption with and without borrowing

Habit level (β = 0) Habit level (β = 0.5)

Γ 20+ 20-24 25-44 45-64 65+ 20+ 20-24 25-44 45-64 65+

0 -0.18 3.64 -0.33 -0.56 -0.43 0.14 2.45 0.14 -0.09 -0.06

0.25 -0.06 3.57 -0.35 -0.59 -0.12 0.27 2.34 0.20 -0.20 0.29

0.55 -0.20 3.58 -0.37 -0.84 -0.27 -0.31 2.86 -0.14 -0.85 -0.54

0.65 -0.36 3.58 -0.38 -1.06 -0.51 -0.30 2.86 -0.21 -0.93 -0.45

0.75 -0.40 3.58 -0.49 -0.99 -0.59 -0.31 2.86 -0.27 -0.92 -0.44

1 -0.32 3.58 -0.50 -0.95 -0.42 -0.30 2.86 -0.27 -0.92 -0.40

We observe that the investor tends to consume more in the first five years if she

can borrow money. The consumption level decreases slightly in later ages due to the

repayment of interest on the amount of capital borrowed. This is because increasing early

consumption (at the cost of lower consumption in later ages) can benefit the life-cycle

utility.

Next we would like to establish how the wealth of an investor with bequest motive

(η = 1) evolves over the life cycle with or without the borrowing option. Figure 2.4 dis-

plays the net wealth (computed as the total wealth minus borrowed amount) of different

types of investors: ambiguity neutral (Γ = 0) versus ambiguity aversion (Γ = 1) with no

habit preference (β = 0) and habit formation (β = 0.5).
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Figure 2.4: Net wealth gained with and without borrowing

The two plots compare the net wealth pattern over the entire life without (left) and with (right)

borrowing. Each curve represents different parameter setting regarding with degree of ambiguity

aversion and importance of habit formation. The horizontal dashed line indicates the zero wealth.

As displayed in Figure 2.4, the net wealth is negative up to a certain stage of life

span with borrowing option (right panel) and the particular age at which it becomes

non-negative depends on both ambiguity aversion and habit formation. However, for

the ambiguity-averse investor, the effect of habit formation is not visible before the

retirement.

Figure 2.5: Borrowing option

The two plots show the average term life insurance demand during the life without borrowing

(left) and with borrowing (right). The x, y and z axes in the right two panels denote the

importance of habit formation, degree of ambiguity aversion, and term life insurance demand,

respectively.
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In Figure 2.5, we vary the degree of ambiguity aversion and importance of habit

formation and compare investor’s term life insurance demand without (left plot) and

with (right plot) borrowing option. We observe that the borrowing option substantially

increases term life insurance demand, regardless of investor’s preferences with respect

to uncertainty and habit formation. The increased amount is more visible when the

investor has low habit formation preference (i.e. β is small). Because of the borrowing

option, the investor now has more resources at the early stages of life both to consume

and to invest in term life insurance products (see Table 2.5 for the evidence). Thus, the

investor not only increases the own utility of consumption but also the utility of heirs. In

other words, borrowing option is instrumental in improving investor’s life-cycle utility.

Table 2.6: Comparison of average borrowing rates (%) at various habit levels

Γ 20+ 20-24 25-44 45-64 65+ 20+ 20-24 25-44 45-64 65+

Habit level (β = 0) Habit level (β = 0.3)

0 99.26 99.97 99.94 99.66 98.51 99.84 99.98 99.97 99.88 99.72

0.25 98.20 80.75 99.92 99.29 99.12 98.71 81.92 99.97 99.80 99.80

0.55 64.99 75.31 99.96 84.74 31.28 62.31 50.72 99.44 86.21 28.11

0.65 38.43 75.31 99.87 31.43 0.98 36.57 50.67 99.38 31.21 0.70

0.75 29.89 75.33 91.25 7.34 0.39 27.70 50.65 89.88 6.70 0.11

1 29.66 75.28 90.97 6.78 0.34 27.65 50.62 89.80 6.60 0.09

Habit level (β = 0.5) Habit level (β = 0.8)

0 99.96 100.00 99.99 99.97 99.93 100.00 100.00 100.00 100.00 99.99

0.25 99.32 90.00 99.99 99.92 99.94 99.96 100.00 99.92 99.96 99.99

0.55 60.00 34.99 97.50 86.28 26.17 52.78 95.41 99.62 84.34 0.38

0.65 35.22 34.95 97.37 32.16 0.51 25.34 12.86 76.84 20.03 0.01

0.75 25.50 34.94 86.24 5.72 0.02 5.61 12.16 19.11 0.00 0.00

1 25.49 34.91 86.22 5.69 0.02 5.61 12.16 19.10 0.00 0.00

Table 2.6 compares the average borrowing rates (%) of investors within different age

groups and varying habit formation levels. The average borrowing rate is calculated by

taking the average value of
vt
lt

at each time t within the specific age group. For instance,

the average borrowing rate of an ambiguity-neutral investor with no habit formation

(Γ = 0 and β = 0) over the life is 99.26%. From the results in Table 2.6, one can analyse

the investor’s willingness to borrow in different circumstances.

We notice that the average borrowing rate over life time decreases as Γ increases.

This is because in the case of fixed interest spread (χ), the investors with higher degree of

ambiguity aversion are concerned with downside risk of the stock market and the ability
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to repay the borrowed amount. Moreover, for high Γ values (Γ ≥ 0.65), the investor is

much less willing to borrow in later ages, especially after retirement, since she mainly

relies on the income from the stock market (as opposed to labour income) to pay back

the debt.

2.6.4 Subjective Survival Beliefs

In reality, there is evidence [Groneck et al., 2016] that subjective survival beliefs

are different from the objective ones. The latter, obtained from the mortality table, is

used for the computational experiments so far. We are now concerned with analysing

the effect of subjective survival beliefs on investor’s life-cycle decisions using the baseline

calibration. We adopt the learning model suggested by Groneck et al. [2016] to calculate

subjective survival rates in lieu of objective rates (pt) in the utility functions. Since

we assume that the price of the insurance products is not affected by the investor’s

subjective survival belief, we still use the objective survival rates to price term life

insurance products.

A brief description of the learning model is as follows. Let j denote the investor’s

current age. The investor’s subjective survival rate ωjt from age j to a target age t in

the future is determined as:

ωjt = πj · φ+ (1− πj) · ϕjt ,

where ϕjt denotes the objective survival rate from age j to t and is calculated by ϕjt =
t∏
i=1

pi. As introduced before, pi represents the conditional probability of being alive at t

given being alive at t−1 and is calibrated from the mortality table. φ ∈ [0, 1] denotes the

investor’s degree of optimism about her survival rate. Given the initial weight π0 ∈ [0, 1],

the age-dependent weight πj on the optimism at age j is defined as follows;

πj =
π0

π0 + (1− π0) · 1√
j

.

Note that πj ∈ [0, 1] and the formulation has two implications. First, the investor’s

subjective survival rate (ωjt ) is governed by investor’s initial weight on optimism π and

age j. If π0 = 0, then πj = 0 and subjective survival rates are equal to the objective

ones. For π0 > 0, πj is an increasing function on the age j. This implies that as the

investor becomes older, her survival belief depends more and more on her own degree

of optimism (φ) rather than the objective survival rates (ϕjt ). Second, the subjective
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survival rate is a function of degree of optimism (φ) and objective survival rate (ϕjt ).

Note that if φ > ϕjt , then subjective survival rate is larger than the objective one. That

is, the investor believes she can live longer than expected according to the mortality

table.

We choose the same values of degree of optimism (φ = 0.418) and initial weight on

the optimism (π = 0.135) as in Groneck et al. [2016] to calculate the investor’s subjective

survival rates in our model.

Figure 2.6: Subjective versus objective survival rates

This figure compares subjective (solid blue) and objective (dashed red) survival rates for the

investor being at age 20 (left) and age 65 (right).

Figure 2.6 shows the differences between objective and subjective survival rates for

an investor at current age of 20 (left) and 65 (right). As we can see, regardless of the

current age, the investor believes that she dies sooner than suggested by the mortality

table in the near future while she overestimates the life span in distance future.

Next, we are interested in investors’ willingness to purchase term life insurance in

the presence of subjective survival beliefs. Figure 2.7 compares the average (over the life

span, 20+) term life insurance demand of an investor with either objective or subjective

survival beliefs, and with varying individual’s preferences with respect to ambiguity

aversion and habit formation.

We observe that the investor with subjective survival belief purchases substantially

more term life insurance products regardless of degree of ambiguity aversion and habit

formation. The difference is particularly striking when habit formation is less relevant

for the investor. This is an artifact of the evidence presented in Figure 6, that is,

the underestimation of survival probability in the near future, since term life insurance

products are tightly links to short term bequest decisions. Overall, this implies that,
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apart from bequest motive and ambiguity aversion, subjective survival belief is also a

potential factor that affects the investor’s willingness to buy term life insurance.

Figure 2.7: Objective versus subjective survival belief

These two plots compare the average term life insurance demand over the entire life with objective

(left) or subjective (right) survival beliefs. The x, y and z axes denote importance of habit

formation, the degree of ambiguity aversion and term life insurance demand, respectively.

2.6.5 Embedded Models

We are now concerned with comparison of different robust life-cycle optimization

models under investor’s preferences represented by different degrees of ambiguity aver-

sion and habit formation. In particular, we would like to investigate how bequest motive

and the choice to buy term life insurance affect the investor’s life cycle decisions. We

implement three types of robust life-cycle asset allocation models. A brief description of

these models is as follows.

The robust life-cycle asset allocation model presented in Proposition 1 is a generic

model (labelled as M(BEQ, INS)) and involves both options of having bequest motive

and life insurance products. The other two models (labelled as M(NBEQ,NINS) and

M(BEQ, NINS), respectively) that have been widely studied in the literature can be seen

as special cases of the general life-cycle asset allocation model M(BEQ, INS). More pre-

cisely, M(NBEQ, NINS) assumes that the investor is neither a bequest motive nor has

choice to buy life insurance. On the other hand, M(BEQ, NINS) allows the investor to be

a bequest motive, but does not give any choice to buy life insurance products.
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Figure 2.8: Impact of bequest motive on investor’s life cycle decisions: consumption
(top panel) and wealth (bottom panel).

We run all three models using baseline calibration with and without habit formations

(i.e., β = 0 and 0.5, respectively) and also vary ambiguity aversion parameter between 0

and 1. The empirical experiments show that the main differences between these models

are realised in the consumption and wealth decisions. The asset allocation, however, is

largely determined by the degree of ambiguity aversion. Therefore, we only present the

comparison results of consumption and wealth decisions obtained by these models.

Figure 2.8 shows impact of having bequest motive on life-cycle decisions in terms

of the differences between average amount of consumption (above) and wealth (below)

obtained by M(BEQ, NINS) and M(NBEQ, NINS). In four plots, x and y axes represent the

investor’s age and degree of ambiguity aversion, respectively. A positive number (shown

by warm colour) indicates that the model M(BEQ, NINS) provides higher consumption (or

wealth) values than those produced by the model M(NBEQ, NINS). From these results,

we observe that the investor has a stronger saving motive if she has bequest motive since

41



he/she gives up more consumption in early ages (as displayed by blue parts in the two

plot at the top panel). Such a saving motive increases the wealth during the remaining

life and also, increases the consumption in later ages (as highlighted by red parts).

Figure 2.9: Impact of term life insurance investment on life cycle decisions:
consumption(top panel) and wealth (bottom panel).

Finally, we would like to illustrate how the choice of life insurance investment im-

pacts on the consumption and wealth decisions of the investor over life span. Figure 2.9

presents results in terms of the differences between the average consumption (top panel)

and wealth (bottom panel) obtained by models M(BEQ, INS) and M(BEQ, NINS) at vari-

ous age of the investor and degree of ambiguity aversion (at x and y axes, respectively).

Note that a positive number (represented by warm colour) describes amount of average

consumption or wealth obtained by M(BEQ, INS) to be higher than those provided by

M(BEQ,NINS).

If the investor buys term life insurance, then he/she consumes slightly more at

early ages as shown by red and yellow parts in two plots at the top panel. In this case,
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the investor uses the term life insurance to ease the concern of leaving bequest to the

heirs, but not directly saves more wealth (by consuming less) if she cannot buy term life

insurance. Such a behaviour results in a reverse pattern compared to the Figure 2.8.

The investor with the choice to buy term life insurance consumes less and accumulates

less wealth in middle and later ages.

2.7 Conclusions

In this chapter, we study a life-cycle consumption and asset allocation problem with

term life insurance that incorporates realistic features such as ambiguity aversion, habit

formation and bequest motive. We model stock return ambiguity using uncertainty sets

and formulate the problem in a robust optimization framework.

We obtain several important findings that contribute to the literature. Investor’s

asset allocation largely depends on the degree of ambiguity aversion. While earlier

literature shows that an ambiguity-averse investor allocates less wealth in stock, we

add to this evidence that this relation is monotonically decreasing in the degree of

ambiguity aversion. This is precisely important, because we only observe an effect of

habit formation on asset allocation when the degree of ambiguity aversion is high.

There are several factors that affect the term life insurance demand within a life-

cycle model. Similar to the bequest motive, ambiguity aversion also increases the demand

for term life insurance. If one takes into account other realistic features such as subjective

survival beliefs and borrowing opportunities, one would expect that investors should buy

term life insurance more than they actually do. Our model potentially explains why this

is the case. We show that habit formation leads to less term life insurance demand and

plays a first-order role compared to other factors.

There are several possible extensions of this chapter. One can consider other types of

insurance products such as annuities, whole life insurance and long-term care insurance

within the life-cycle model. Given the important role of habit formation on term life

insurance, it may provide an explanation for other known puzzles in the literature such

as annuity puzzle. One can also consider robustifying other uncertain parameters such

as labour income uncertainty and its implications for life-cycle choices.
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Chapter 3

Life-cycle Portfolio Choice with

Labour Income Ambiguity and

Stock Market Predictability

3.1 Introduction

The life-cycle consumption and portfolio choice problems have drawn substantial

research interest since the pioneering works by Samuelson [1969], Merton [1969] and

Merton [1971]. Merton [1971] builds a life-cycle model considering insurable labour

income in a complete market setting (in other words, no labour income risk). His striking

result is that the investor should have a constant stock allocation rule over the life cycle

in contrast with observed data and the general industry advice of a time-varying stock

allocation.

Since then, alternative economic mechanisms have been proposed and various in-

gredients have been added to the life-cycle models to match the empirical evidence (that

is, time varing stock allocation pattern over the life cycle). However, there still exist at

least two main disagreements between predictions of theoretical models and empirical

observations.

First, it is well known that many U.S. households hold limited amount of stocks,

which is irreconcilable with theoretical predictions [e.g., Mankiw and Zeldes, 1991; Dim-

mock et al., 2016]. Moreover, they tend to have a hump-shaped stock allocation pattern

over the life time as shown in data (e.g., Survey of Consumer Finances). That is, the

investor participates more in the stock market when middle aged and less so when she

is young or retired. The low level of stock allocation and hump-shaped life-cycle pattern
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jointly form the so-called stock holding puzzle [e.g., Viceira, 2001; Cocco et al., 2005;

Gomes and Michaelides, 2005].

Second, empirical evidence also indicates that U.S. Households hold more than one-

third of the total wealth after retirement [Wolff, 2016] and they decumulate their wealth

much slower than the predictions obtained from life-cycle models, even in presence of

a strong bequest motive [e.g., De Nardi et al., 2010, 2016]. There should be some

other omitted factors that have not been incorporated in previous life-cycle models that

explain such strong savings motive. We refer to this as ’retirement saving puzzle’, which

is becoming more important given the ageing population in a global context.

In this paper, we formulate a life-cycle consumption and portfolio choice model

where we assume that the investor can be ambiguity-averse towards both stock return

and/or labour income uncertainty. In the presence of ambiguity aversion, we also in-

vestigate how the correlation between stock return and labour income shocks affects

investor’s stock allocation, consumption and wealth accumulation decisions. Moreover,

we investigate whether the assumption of market return predictability alters our con-

clusions. While most of the life-cycle models assume no predictability in market returns

(or equity premium) [e.g., Merton, 1971; Cocco et al., 2005; Peijnenburg, 2016], with

the exception of few papers [e.g., Campbell and Viceira, 1999; Michaelides and Zhang,

2017], there has been no concensus in the empirical literature on predictability evidence

[e.g., Welch and Goyal, 2007; Cochrane, 2011].

Our contribution is twofold. First, we develop a life-cycle model that incorporates

both stock return and labour income ambiguity using the max-min expected utility

framework [e.g., Gilboa and Schmeidler, 1989; Epstein and Wang, 1994; Epstein and

Schneider, 2003], a.k.a. robust optimization in operational research [e.g., El Ghaoui

and Lebret, 1997; Ben-Tal and Nemirovski, 1998; Bertsimas and Sim, 2004]. To the

best of our knowledge, we are the first paper to investigate the ambiguity aversion

towards labour income on investor’s life-cycle decisions. Our results show that, when

the investor is ambiguity-averse to the labour income uncertainty, she accumulates more

wealth during the life time, especially after retirement. We do not need to include other

features to explain the retirement saving puzzle such as medical spending and longevity

risk [e.g., De Nardi et al., 2010, 2016]. Meanwhile, if the investor is also ambiguity-

averse towards the stock return, our results indicate that she has limited stock market

allocation in line with the empirical data, and the stock allocation pattern over the life-

cycle is hump-shaped. Therefore, we show that the ambiguity aversion towards these

uncertainties during the life time is one of the key factors that help reconcile the seemly

contradictive results offered by earlier theoretical models and empirical observations in
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terms of savings and portfolio choices. Moreover, we also find that if there is a positive

correlation between stock return and labour income, the level of stock allocation is even

lower, especially when the investor is ambiguity-averse towards stock return uncertainty.

Second, we investigate the effect of stock market predictability on the life-cycle

decisions, in the presence of ambiguity aversion. We compare the investor’s consumption,

saving and stock allocation strategies assuming the stock return is either i.i.d. (lack

of predictability) or follows a mean reversion process (predictable stock returns). We

have two main observations. First, stock market predictability makes the investor’s

consumption and saving pattern smoother over the life-cycle. We calculate the coefficient

of variation (CV) of investor’s consumption and saving at all ages. In almost all (35

out of 36) cases (depending on the degree of ambiguity aversion and regardless of the

correlation between stock returns and labour income), CV with i.i.d. stock return is

higher than that with predictable stock return. Second, we find that overall, whether

stock market is predictable or not does not affect the average stock allocation over the

life cycle. In other words, stock allocation results are mostly robust to the assumption

on the underlying stock return process. This is different from the findings in Michaelides

and Zhang [2017], where they find that stock market predictability substantially reduces

stock allocation when the investor is young.

Our research is related to three strands of literature. First, to explain the investor’s

stock allocation pattern over the life cycle, many ingredients have been added to the basic

life-cycle model by Merton [1971]. Viceira [2001], Cocco et al. [2005] and Gomes and

Michaelides [2005] among others, show that if there is labour income risk, the investor’s

stock allocation decreases as the age grows. And high correlation between stock return

and labour income or disastrous labour income shocks reduce the stock allocation when

the investor is young. Benzoni et al. [2007] allow correlation between stock dividend

(other than the return) and labour income, and find that such correlation helps to form

a hump-shaped life-cycle stock allocation pattern, especially in the young ages. Fagereng

et al. [2017] incorporate disastrous stock return shocks and show that along with fixed

stock market entry costs (which is also included in Gomes and Michaelides [2005]), they

can match the Norwegian data in terms of stock participation and allocation rates. We,

along with Campanale [2011], Peijnenburg [2016] and Dimmock et al. [2016] study the

ambiguity aversion towards the stock return, which reduces the level of stock allocation

over the life cycle.

Second strand of literature is related to the ’retirement saving puzzle’. High medical

expenses may be one of the reasons that retired investors decumulate wealth too slowly.

De Nardi et al. [2010] find that medical expenses increase quickly as the investor’s age
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grows and is also positively correlated with the income, and these expenses drive the

investor to save more. In contrast, some other papers such as Hubbard et al. [1994]

and Palumbo [1999] find medical expenses only have minor effects on retirement saving.

Longevity risk can be another explanation for strong saving motive after retirement

because the investor face the risk that she will live too long but does not have enough

income [e.g., Spillman and Lubitz, 2000; Cocco and Gomes, 2012]. But the importance of

medical expense and longevity risk can be questionable because if this is the case, investor

should buy more annuity or long-term care insurance products than actually observed

in data (annuity puzzle, see for example, Lockwood [2012] and Pestieau and Ponthière

[2012]). We provide a new perspective, that is, the ambiguity aversion towards labour

(retirement) income motivates the investor to save more, especially during retirement.

Third, many papers investigate the effect of stock market predictability on portfolio

choice and/or consumption decisions in the absence of labour income risk [e.g., Kim

and Omberg, 1996; Brennan et al., 1997; Campbell and Viceira, 1999; Barberis, 2000;

Wachter, 2002; Campbell et al., 2013]. Similarly to ours, Michaelides and Zhang [2017]

consider both labour income risk and stock market predictability and compare the results

with the i.i.d. case. But they do not consider ambiguity aversion towards either labour

income or stock return as we do.

The rest of the paper is organized as follows. In Section 2, we introduce the life-

cycle consumption and portfolio choice model, the mean reversion and labour income

processes. Section 3 explain the robust optimization formulation with ambiguity aver-

sions towards uncertain stock return and labour income. Section 4 focuses on model

calibration and parameter settings. We present numerical experiments in Section 5.

Our findings and concluding remarks are summarized in Section 6.

3.2 A Multi-stage Stochastic Life-cycle Portfolio Choice

Model

In this section we introduce a basic multi-stage stochastic programming formulation

of the life-cycle problem for an ambiguity-averse investor who is mainly concerned with

uncertainties arising due to labour income and asset returns.

We consider a discrete-time life-cycle model involves T time periods of an investment

horizon. Life-cycle decisions are made at each time period (i.e., one year or one month)

t = 1, · · · , T and t = 0 represents today. We assume that, given the current age of the

investor, s/he is alive for maximum T periods and retires at certain age K < T . At each
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time period t, the investor receives the labour income t ≤ K and the retirement income

for t > K. The life-cycle problem aims to find the optimal allocation of asset allocation

and amount of consumption r so that he life-cycle CRRA utilities over consumption

gained over the life-cycle is maximized.

We assume that the investor is allowed to allocate the financial wealth in two ac-

counts at each time period t: a stock account hst with uncertain rate of returns, r̃t, and

a cash account hct with fixed risk-free rate of return, rf . The investor receives labour

income (or the retirement income) l̃t and make the consumption ct and stock allocation

xt decisions at each time period t. We define xt as the capital putting in or taking out

from the stock account, which can be either positive or negative, representing the buy-

ing or selling transaction of the stock.1 Then the capital in the stock and cash accounts

between time periods are dynamically evolved as follows;

hst = r̃th
s
t−1 + xt, ∀t,

hct = rfhct−1 − xt + l̃t − ct, ∀t.

We assume that the investor cannot hold negative positions in the stock and cash

accounts to avoid borrowing and short-sales in the model. Therefore, we impose non-

negativity constraints for both cash and stock holdings constraints;

hct , h
s
t ≥ 0, ∀t.

The investor aims to maximize the life-cycle CRRA utilities over consumption ct,

given the subjective discount factor δ and survival rate pt at each time period;

T∑
t=1

δt

(
t∏
i=1

pi

)(
c1−γ
t

1− γ

)
,

where parameter γ represents the degree of risk aversion. Overall, the multi-stage

1Although we ignore transaction cost in the current investment model, it can be easily integrated.
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stochastic life-cycle optimization model (PMP ) can be formulated as follows;

PMP : max
c,x

Et

[ T∑
t=1

δt

(
t∏
i=1

pi

)(
c1−γ
t

1− γ

)]
s.t. hst= r̃th

s
t−1 + xt, ∀t

hct= rfhct−1 − xt + l̃t − ct, ∀t
ct, h

c
t , h

s
t ≥ 0, ∀t.

Modelling Uncertain Asset Returns and labour Income: Assume that the

risk-free rate rf at time t is known. Following Campbell and Viceira [1999]; Michaelides

and Zhang [2017], we consider a mean reversion process to model uncertain stock returns

during the life-cycle as follows;

r̃t = rf + ỹt + z̃t,

ỹt = µy + φ(yt−1 − µy) + ε̃t,

where ỹt is the prediction of future equity premium and follows an AR(1) process. µy

is the expected mean of the equity premium and φ determines the strength of mean

reversion (in other words, the speed that the stock return moves to the mean µy). In

addition, z̃t ∼ N (0, σ2
z) and ε̃t ∼ N (0, σ2

ε ) represent the innovations and the correlation

ρz,ε between these two innovations is estimated. Given this generic model, the value of

φ determines the type of model.

• If φ = 0 and σε = 0, the prediction of future equity premium ỹt becomes deter-

ministic and equals to µy. The mean reversion process reduces to an i.i.d. stock

return model with mean µy + rf and standard deviation σz.

• For 0 < φ < 1, ỹt depends on the mean of equity premium and the difference be-

tween ỹt−1 and mean of equity premium. Therefore, in the long run, the prediction

of future equity premium ỹt tends to become mean µy.

• On the other hand, if φ = 1, then ỹt only depends on the previous observation ỹt−1

and is not mean-reversed.

For the labour income uncertainty, we use standard specification in the literature to

model the labour income process. Following Cocco et al. [2005]; Gomes and Michaelides

[2005], the logarithm of the labour income l̃t at time t has three components: a de-

terministic function ft as well as two random variables with respect to permanent and
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temporary shocks of the labour income, ũt and ε̃t, respectively. It is formulated as:

log(l̃t) = ft + ν̃t + ε̃t, ∀t ≤ K,

where ν̃t = ν̃t−1 + ũt and ũt ∼ N (0, σ2
u) represents to permanent shock to the labour

income, whereas ε̃t ∼ N (0, σ2
ε) refers the temporary shock. The correlation between

permanent shock to the labour income and stock return ρz,u is determined as in some

previous papers [e.g., Barberis, 2000; Cocco et al., 2005; Benzoni et al., 2007; Michaelides

and Zhang, 2017]. In addition, the deterministic function ft depends on the investor’s

age. According to Cocco et al. [2005], ft is specified by a third-order polynomial function

of the age of the investor as:

ft = a0 + a1t+ a2t
2/10 + a3t

3/100.

Finally, we formulate the retirement income for t > K as a constant fraction (ξ) of

the permanent labour income in the year just before retirement as:

log(l̃t) = log(ξ) + ft + ν̃K , ∀t > K.

In other words, there is no temporary shock ε̃ after the retirement.

3.3 Robust Optimization Approach to the Life-cycle Port-

folio Choice Problem

We assume the investor is ambiguity-averse towards the uncertain stock return and

labour income. Instead of solving PMP , the investor takes the worst-case perspective

assuming the uncertain stock return r̃t and labour incomes l̃t belonging to uncertainty

sets Srt and Slt, respectively. We then need to solve the following robust optimization

model (or the max-min framework) to maximize the life-cycle utility while minimizing

the uncertainties over sets Srt and Slt as follows;
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PRO : max
c,x

T∑
t=1

δt(

t∏
i=1

pi)(
c1−γ
t

1− γ
)

s.t. hst≤ min
r̃t∈Srt

r̃th
s
t−1 + xt, ∀t

hct≤ rfhct−1 − xt + min
l̃t∈Slt

l̃t − ct, ∀t

ct, h
c
t , h

s
t ≥ 0, ∀t.

Since the uncertain stock return and labour income appear in the constraints of stock

and cash accounts, respectively, we can consider two independent interval uncertainty

sets for both asset return and labour income uncertainties as follows;

Srt = [µrt − Γrσ
r
t , µ

r
t + Γrσ

r
t ] and Slt = [µlt − Γlσ

l
t, µ

l
t + Γlσ

l
t],

where the mean (µrt and µlt) and standard deviation (σrt and σlt) of stock return and labour

income need to be estimated. Since labour income is a log function of two independent

shocks, building uncertainty sets around the shocks will increase the problem complexity.

As done in Chapter 2, we directly build uncertainty sets around labour income l̃t as a

simplification and estimate the corresponding µlt and σlt by using simulation. In addition,

Γr, Γl ≥ 0 represent the investor’s degree of ambiguity aversion towards stock return and

labour income uncertainties. Note that if Γr = Γl = 0, then the investor is ambiguity-

neutral towards both uncertainties and the uncertainty sets become a single value (that

is the mean). On the other hand, if Γr,Γl > 0, then the investor is more ambiguity-

averse towards the uncertainty. In this case, the investment decisions become more

conservative.

The optimal solutions of the inner minimization problems in the constraints of

PRO can be easily found as the µrt − Γrσ
r
t and µlt − Γlσ

l
t respectively. In other words,

if the investor’s degrees of ambiguity aversion against asset return and labour income

uncertainties are specified as Γr and Γl > 0, then s/he assumes that the stock return

and labour income take the worst-case values to obtain an optimal consumption and

stock allocation decisions in the life-cycle problem. Therefore, PRO is equivalent to the
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following multi-stage optimization problem;

PRO−IN : max
c,x

T∑
t=1

δt(
t∏
i=1

pi)(
c1−γ
t

1− γ
)

s.t. hst≤ (µrt − Γrσ
r
t )h

s
t−1 + xt, ∀t

hct≤ rfhct−1 − xt + µlt − Γlσ
l
t − ct, ∀t

ct, h
c
t , h

s
t ≥ 0, ∀t.

Note that this optimization model displays the same characteristics in terms of ob-

jective function and constraints as in Section 2.4.1. We use Mosek to solve the underlying

optimization model.

3.4 Design of Computational Experiments

In the numerical results, we aim to investigate the following several questions.

• How do the stock return ambiguity and/or labour income ambiguity affect the

investor’s life-cycle decisions?

• How will the life-cycle decisions change, if there is correlation between stock return

and labour income, in the presence of ambiguity aversion.

• What is the implication of stock market predictability on the life-cycle decisions?

In order to answer these three questions, we conduct computational experiments in

the following ways.

1. We assume there is stock market predictability (i.e., using a mean reversion

stock return process) as the benchmark case. We let the degree of ambiguity aversion

towards labour income to 0 (Γl = 0) to show the effect of stock return ambiguity on the

consumption, saving and stock allocation decisions.

2. We do the reverse and set the degree of ambiguity aversion towards stock return

to 0 (Γr = 0) and show the effect of labour income ambiguity (Γl > 0).

3. We assume the investor is ambiguity-averse to both stock return and labour

income ambiguities (i.e., Γr > 0,Γl > 0) and illustrate the results.

4. In the case of both ambiguities, we compare the results of consumption, saving

and stock allocation decisions assuming there is or is not correlation between stock return

and labour income and the stock market predictability.
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3.4.1 Model Calibration

To calibrate the mean reversion process of the stock return over the entire life, we

choose the same parameter values as in Michaelides and Zhang [2017]. The risk-free

return rf is 2%. The expected mean of the equity premium µy is 4%. the strength

of mean reversion φ = 0.91, the volatilities of two innovations zt and εt are 0.18 and√
0.000034 respectively. The correlation is two innovation ρz,ε equals to −0.8. The

baseline calibration of the correlation between permanent shock of labour income and

stock return ρz,u is 0.15 according to Michaelides and Zhang [2017] but we also test the

case of no correlation ρz,u = 0.

When choosing the parameters related to the labour income, we follow Cocco et al.

[2005], which consider three different labour income processes classified by investor’s

different education groups. We use the same estimates of parameter values assuming

the investor has high school degree, which gives the medium labour incomes compared

to other two age groups: no high school degree and college degree. We find that the

choice of different education groups does not affect the main findings.

We use a degree of risk aversion of 5 and discount factor of 0.96, which are standard

choices in the literature [e.g., Cocco et al., 2005; Gomes and Michaelides, 2005]. We take

the 2013 mortality rates from US Social Security2 to calculate the conditional probability

of being alive (pt) in each time period.

For the degrees of ambiguity aversion towards stock return and labour income, in the

numerical experiments, we consider three cases: the investor is ambiguity-averse towards

either the stock return or labour income ((Γr > 0,Γl = 0) or (Γr = 0,Γl > 0)) and also,

the investor is ambiguity-averse towards both ambiguities (Γr > 0,Γl > 0). In each case,

we vary Γr and/or Γl from 0 and 0.4, which is enough to show the effect of ambiguity

aversion towards stock return and/or labour income on the life-cycle consumption, saving

and stock allocation decisions.

The results related with amount of consumption, holding in assets and total wealth

are presented in terms of thousands of 1992 US dollars.

3.4.2 Model Implementation

We apply a rolling-horizon procedure to find optimal life-cycle decisions by repeat-

edly solving the robust optimization model PRO−IN in T numbers of iterations, denoted

by k = 1, . . . , T . The main steps of this procedure in terms of states updated and actions

taken at each time period are summarised in Table 3.1.

2The reader is referred to https://www.ssa.gov/oact/STATS/table4c6.html.
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At the beginning, the uncertain stock returns (r̃t) and labour incomes (l̃t) are un-

known to the investor. The investor only knows about the mean and standard deviations

as in the calibration (µrt , µ
l
t, σ

r
t and σlt). Based on this information the investor builds

uncertainty sets with degrees of ambiguity aversion (Γr and Γl) and formulate PRO−IN

explicitly.

At iteration k = 1, the model with all T time periods is solved but only the first-stage

decisions at t = 1 in terms of consumption c1 and stock allocation x1 are implemented.

Then the investor observes the actual stock return and the labour income for t = 1,

which is simulated according to the calibrated mean/variance information of the stock

returns and labour income process, respectively. Once the actual asset returns and

labour income are observed, the value in stock and cash accounts (hc, hs) are updated.

By going forward in time, the number of time periods in the optimization model is

reduced by one at each iteration (1 < k ≤ T ). Then the optimization model is solved

again and only the first stage decisions are implemented. The stock and cash account

values (i.e. hck and hsk) are updated according to the new observed asset returns and

labour incomes. At the last iteration k = T , we solve the problem with only one time

period.

Table 3.1: Dynamic rolling-horizon procedure

Iteration # of time periods Decisions Random

variables

State variables

number in the model implemented realized updated

k = 1 T c1, x1 r̃1, l̃1 hc1, hs1
k = 2 T − 1 c2, x2 r̃2, l̃2 hc2, hs2
...

...
...

...
...

k = T − 1 2 cT−1, xT−1 r̃T−1, l̃T−1 hcT−1, hsT−1
k = T 1 cT , xT r̃T , l̃T hcT , hsT

We run the rolling-horizon procedure 1000 times with different stock returns and

labour income processes simulated from the probability distributions introduced in Sec-

tion 3.4.1. We then report the average and standard deviation (in parentheses) of 1000

simulations as the optimal life-cycle decisions (i.e., consumption and stock allocation)

during the life.
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3.5 Numerical Results

3.5.1 Impact of Ambiguity Aversions

As explained in Section 3.4, we first show the results assuming the investor has

different degrees of ambiguity aversion towards stock return and/or labour income.

We present the results in the following ways. We define several age groups, each of

those represent certain periods during the life. They are: ‘20-34’, ‘35-44’, ‘45-54’,‘55-64’,

‘65-74’, ‘75-100’. Such classification of age is commonly used in previous literature [e.g.,

Gomes and Michaelides, 2005; Peijnenburg, 2016] and empirical datasets (e.g., Survey

of Consumer Finances). To show the average performance over the entire life, we also

report results in age group ‘20-99’.

In each age group, we report the results in terms of average values of the optimal

consumption, wealth and stock allocation. For example, the average consumption value

for age group ‘35-44’ is computed as follows. First, we run the rolling horizon procedure

1000 times to obtain 1000 sets of ct for t = 1, . . . , T . Then, the average value ĉt at

time period t is computed over 1000 points of ct. Finally, we calculate the average

consumption values as ĉ16+ĉ17+,...,+ĉ25

10 .

Stock Return Ambiguity Only: Table 3.2 summarizes the investor’s consump-

tion, wealth and asset allocation decisions with different degrees of ambiguity aversion

towards stock return.

From Panel C in Table 3.2, it is clear that the stock allocation is negatively corre-

lated with the degree of ambiguity aversion in almost all age groups, which means the

ambiguity aversion has effect on the stock allocation during the entire life of the investor.

Moreover, we obtain a hump-shaped life-cycle stock allocation pattern for all degrees of

Γr, while only for Γr = 0.2, the highest stock allocation appears at the middle age group

‘55-64’.

From Panel A and B, we notice that in general, if the investor is ambiguity aversion

to the stock return, the average consumption and wealth over the life cycle are lower.

When Γr increases from 0 (ambiguity-neutral) to 0.2, the investor consumes more in age

groups ‘35-44’ and ‘45-54’ and accumulates less wealth, which means her saving motive

is weaken. In comparison, if Γr increases to 0.4, the investor accumulates more wealth in

age group ‘55-64’ (saving motive is stronger) by sacrificing some amount of consumption.

As a result, case, the investor consumes more during the retirement period compared to

the case when Γr = 0.2. Such effect of ambiguity aversion towards stock return on the

saving motive is also documented in Chapter 2.
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Table 3.2: Life-cycle decisions under stock return ambiguity

Age group 20-100 20-34 35-44 45-54 55-64 65-74 75-100

Γr Panel A. Consumption

0 27.03 21.62 29.39 31.29 32.63 30.32 24.07

0.2 26.16 21.41 29.97 32.57 32.19 25.87 22.63

0.4 25.88 21.52 29.65 30.53 30.58 26.11 23.15

Γr Panel B. Wealth

0 48.79 10.29 33.91 59.05 97.72 91.83 36.95

0.2 36.75 11.80 33.76 48.33 62.44 45.52 34.51

0.4 41.11 8.96 28.94 46.98 80.57 76.99 32.79

Γr Panel C. Stock allocation (%)

0 69.76 38.50 50.61 57.68 74.67 76.28 59.85

0.2 49.96 39.51 52.34 52.00 56.37 48.41 29.12

0.4 34.95 19.94 39.82 39.50 33.54 27.05 25.40

This table displays the average consumption, wealth and stock allocation (in Panels A, B, and C,

respectively) for different degrees of ambiguity aversion towards stock return (Γr). The average

values are calculated as the 50 percentile (median) of 1000 simulations using the rolling-horizon

procedure.

Labour Income Ambiguity Only: We now investigate the effect of ambiguity

aversion towards labour income on the life-cycle decisions (Γl ≥ 0) and assume the

investor is ambiguity-neutral to the stock return uncertainty (Γr = 0). Table 3.3 presents

our results.

As shown in Panel B of Table 3.3, the investor’s saving motive increases at every age

group with the increase of Γl. It is worth mentioning that, in our model, we assume the

degree of ambiguity aversion is constant over the life cycle (e.g., Γl = 0.2 for t = 1, . . . , T ).

But actually, the investor may have higher degrees of ambiguity aversion especially when

the labour income level is high in middle ages or she is only to get retirement income

during the retirement. That means the degree of ambiguity aversion may increases as

the age grows. So , the ambiguity aversion towards labour income can be one penitential

reason to explain the ’retirement saving puzzle’.
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Table 3.3: Life-cycle decisions under labour income ambiguity

Age group 20-100 20-34 35-44 45-54 55-64 65-74 75-100

Γl Panel A. Consumption

0 27.03 21.62 29.39 31.29 32.63 30.32 24.07

0.2 27.81 21.18 29.11 31.88 33.74 32.15 25.54

0.4 28.77 20.50 28.57 33.08 35.52 34.45 27.11

Γl Panel B. Wealth

0 48.79 10.29 33.91 59.05 97.72 91.83 36.95

0.2 65.14 14.60 50.22 84.88 128.36 116.45 47.71

0.4 86.39 20.77 73.20 121.16 167.18 146.77 60.66

Γl Panel C. Stock allocation (%)

0 69.76 38.50 50.61 57.68 74.67 76.28 59.85

0.2 72.18 47.92 62.52 67.25 76.82 76.69 63.14

0.4 73.52 56.86 72.30 73.31 76.96 74.64 70.16

This table displays the average consumption, wealth and stock allocation (in Panels A, B, and C,

respectively) for different degrees of ambiguity aversion towards labour income (Γl). The average

values are calculated as the 50 percentile (median) of 1000 simulations using the rolling-horizon

procedure.

Because of the increase in the saving over the life-cycle, the investor’s consumption

pattern in young ages or later is different. If the investor is aged below 44, she consumes

less if Γl is higher because she is accumulating more wealth while for investors aged

above 45, the consumption level is higher because of the high level of wealth. In other

words, if the investor is ambiguity aversion to the labour income, she shifts part of the

consumption to retirement.

In terms of the stock allocation, we find if the investor is ambiguity-averse towards

the labour income, she allocates more in the stock. This is because we assume the

investor is ambiguity-neutral towards the stock return and therefore, stocks become

safer compared to the uncertain labour income.

Stock Return and Labour Income Ambiguities: We assume that i) the in-

vestor is ambiguity-averse to both stock return and labour income uncertainties and,

ii) the degree of ambiguity aversion is the same for both uncertainties. The results are

summarized in Table 3.4.
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Table 3.4: Life-cycle decisions under stock return and labour income ambiguities

Age group 20-100 20-34 35-44 45-54 55-64 65-74 75-100

Γr and Γl Panel A. Consumption

0 27.03 21.62 29.39 31.29 32.63 30.32 24.07

0.2 26.34 21.08 29.83 32.72 32.34 26.41 23.10

0.4 26.90 20.48 27.98 29.68 32.36 29.63 25.93

Γr and Γl Panel B. Wealth

0 48.79 10.29 33.91 59.05 97.72 91.83 36.95

0.2 42.46 14.65 40.18 55.71 71.04 52.49 39.32

0.4 75.27 16.47 58.43 99.02 147.14 133.01 55.95

Γr and Γl Panel C. Stock allocation (%)

0 69.76 38.50 50.61 57.68 74.67 76.28 59.85

0.2 48.32 37.05 51.50 53.81 55.57 53.89 26.28

0.4 26.51 14.32 29.58 27.44 20.30 28.28 28.36

This table displays the average consumption, wealth and stock allocation (in Panels A, B, and C,

respectively) for different degrees of ambiguity aversion towards stock return and labour income

(Γr and Γl). The average values are calculated as the 50 percentile (median) of 1000 simulations

using the rolling-horizon procedure.

The results in Panel C shows that stock allocation is mostly influenced by the

ambiguity aversion towards stock return but not the labour income because as the degrees

of ambiguity aversion towards both uncertainties increase, the stock allocation decreases,

which is different from that in Table 3.3. Moreover, by comparing Table 3.2, 3.3 and

3.4, we find if the investor is ambiguity-averse to both uncertainties, the stock allocation

is even lower compared to the single ambiguity case.

By analysing the results in Panel A and B with those in Table 3.2 and 3.3, we

find that the consumption and wealth decisions are affected by both uncertainties. And

the effect of labour income ambiguity may be a bit stronger than that of stock return

ambiguity because for Γr = Γl − 0.4, the wealth pattern is much closer to that in

Table 3.3 rather than that in Table 3.2. Overall, the results in Table 3.4 suggest that

ambiguity aversion to both stock return and labour income can explain the low level of

stock allocation and high saving observed in data.

In the next subsection, we allow the correlation between stock return and permanent
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shock to the labour income and set ρz,u = 0.15 according to the calibration in Michaelides

and Zhang [2017]. We also compare the results assuming the stock return is predictable

(mean-reversed) or not (i.i.d.). The results are displayed in Table 3.5.

3.5.2 Degree of Correlation and Stock Market Predictability

The results in Table 3.5 can be divided into four blocks. We first compare the upper

two and lower two blocks to investigate the effect of correlation between stock return

and labour income. We find that the correlation does not affect the consumption and

wealth too much for different degrees of ambiguity aversion. However, when there is

correlation, especially for high degree of ambiguity aversion (0.4) and if there is no stock

market predictability, the stock allocation is lower.

By comparing the left two and right two blocks, we analyse the effect of stock market

predictability. In contrast to the findings in Michaelides and Zhang [2017] where they find

stock market predictability substantially reduces the stock allocation, especially when

the investor is young, we observe that the stock market predictability does not affect

the stock allocation much. Only for high degree of ambiguity aversion (0.4), if the stock

return is predictable, the investor allocates more wealth in stocks. To some extent, this

is in line with the findings in Barberis [2000], but they claim stock market predictability

can substantially (in our case, much weaken) increases the stock allocation in the long

run because the mean-reversion property slows the growth of conditional variances of

stock return.

Moreover, we find stock market predictability makes the investor’s consumption and

wealth smoother. We obtain this conclusion by calculate the coefficient of variation (CV)

of the consumption and wealth over the life. For instance, the CV for consumption is

calculated as the standard deviation of consumption value in 6 age groups divided by the

mean consumption over the life (i.e., the value in age group ‘20-100’). We find that the

CV values of consumption and wealth if the stock return is i.i.d. (i.e., no stock market

predictability) are all higher than those if the stock return follows a mean reversion

process (i.e., stock market predictability) in 35 out of 36 cases with different ρz,u and Γ

values. In Table 3.6, we show the CV values assuming Γr = Γl ≥ 0 as an example.

We notice that for both consumption and wealth, CV values with no stock market

predictability are all higher than those with stock market predictability, which implies

that consumption and wealth are smoother over the life cycle. Such effect of stock market

predictability on the consumption and wealth is hardly documented in the literature.

We believe why consumption and wealth become smoother if there is stock market
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predictability is because of the lower variance of stock return compared to the case if

stock return is i.i.d.

Table 3.6: Coefficient of variation comparison over the life cycle

Coefficient of Variation

Consumption Wealth

Γr and Γl i.i.d.
Mean

Reversion
i.i.d.

Mean

Reversion

ρz,u = 0

0 0.18 0.16 0.72 0.70

0.2 0.23 0.20 0.52 0.50

0.4 0.16 0.16 0.68 0.64

ρz,u = 0.15

0 0.16 0.16 0.67 0.64

0.2 0.21 0.20 0.43 0.40

0.4 0.15 0.14 0.62 0.60

This table displays the coefficient of Variation (CV) values for consumption and wealth for

different degrees of ambiguity aversion(Γr and Γl), degrees of correlation between stock return

and permanent shock to the labour income assuming there is stock market predictability. The

CV for consumption is calculated as the standard deviation of consumption(wealth) value in 6

age groups divided by the mean consumption(wealth) over the life (i.e., the value in age group

‘20-100’).

3.5.3 Comparison with Empirical Data

In this section, we aim to compare the model predictions with those in the empirical.

We follow Gomes and Michaelides [2005] and Peijnenburg [2016] that use two criteria:

stock allocation and wealth-to-income ratio.

The dataset we refer to is Survey of Consumer Finances, which is a triennial cross-

sectional survey of U.S. families on financial assets3. For the stock allocation, we collect

from the ’Stock holdings as share of group’s financial assets’ in the Survey of Consumer

Finances public data. In terms of the wealth-to-income ratio, we calculated as the

median value of ’Family net worth’ divided by ’Before-tax family income’. We take the

average stock allocation and wealth-to-income ratio values of the recent 6 surveys (from

3For further information, the reader is referred to https://www.federalreserve.gov/econres/

aboutscf.htm.
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year 2001 to 2016) as the comparable counterparts, which show the average performance

in the 21th centenary in general.

The stock allocation results in our model are just as those showed in Panel C in

previous tables. The wealth-to-income ratio at t is calculated as the wealth divided by

the labour or retirement income at every t. The average wealth-to-income ratio in each

age group is then calculated as the mean wealth-to-income ratios for every t in that age

group.

We show the comparison results between empirical data and our model predictions

in five cases with different degrees of ambiguity aversion towards stock return and labour

income, which is shown in Table 3.7.

Table 3.7: Model predictions versus empirical data

Age group 20-100 20-34 35-44 45-54 55-64 65-74 75-100

Panel A. Survey of Consumer Finances (2001-2016)

stock allocation 50.70 44.10 53.50 54.24 53.95 50.90 47.54

wealth-to-income ratio 3.38 0.32 1.16 2.19 3.79 5.44 7.40

Panel B. Model: Γr = 0.2, Γl = 0.2

stock allocation 50.44 37.05 51.50 53.81 55.57 53.89 32.18

wealth-to-income ratio 1.35 0.55 1.04 1.39 1.82 1.97 1.13

Panel C. Model: Γr = 0.2, Γl = 0.4

stock allocation 49.03 36.69 46.57 51.58 52.41 56.58 40.86

wealth-to-income ratio 1.64 0.71 1.32 1.61 2.25 2.50 1.35

Panel D. Model: Γr = 0.2, Γl = 0.6

stock allocation 49.79 38.51 45.26 49.70 52.63 55.73 42.51

wealth-to-income ratio 2.16 0.94 1.81 2.05 3.06 3.53 1.73

Panel E. Model: Γr = 0.3, Γl = 0.3

stock allocation 41.22 30.76 44.31 42.73 40.36 43.11 38.00

wealth-to-income ratio 1.73 1.85 0.57 1.10 1.66 2.75 3.62

Panel F. Model: Γr = 0.4, Γl = 0.4

stock allocation 26.53 14.32 29.58 27.44 20.30 28.28 28.44

wealth-to-income ratio 2.63 0.61 1.49 2.53 4.07 5.41 2.33

This table shows the comparison results between model predictions with different degrees of

ambiguity aversion towards stock return and labour income and data from Survey of Consumer

Finances in terms of stock allocation and wealth-to-income ratio.
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We find the best match of data in Panel A is the results with Γr = 0.2 and Γl = 0.6

in Panel D. The average stock allocation over the life cycle is almost the same as that in

the data and also we obtain a hump-shaped life-cycle pattern. In terms of the wealth-to-

income ratio, we obtain close results up to age 54 but still report less wealth-to-income

ratio since age 55, mainly after age 75. Recall that we consider a very simple life-cycle

consumption and portfolio choice model that only considers ambiguity aversions. One

can incorporate other factors such as bequest motive and medical expenses to improve

the wealth-to-income ratio during the retirement period. Overall, the results imply that

the ambiguity aversion towards stock return can explain the empirical stock allocation

data quite well but the ambiguity aversion towards labour income itself is not enough

to explain the wealth pattern.

In other panels, we show if we change the degrees of ambiguity aversion, what

will happen to the stock allocation and wealth-to-income ratio matching. As shown in

Panel F, if both degrees of ambiguity aversion are 0.4, the matching of wealth-to-income

ratio improves compared to the results in Panel D but the stock allocation is too low

and there is no hump shape. If both degrees of ambiguity aversion reduce to 0.2 (See

Panel B), the matching of stock allocation is even better than that in Panel D but the

wealth-to-income ratio is too low.

3.6 Conclusions

In this paper, we analyse the effects of ambiguity aversion towards stock return

and/or labour income on the life-cycle consumption, wealth and stock allocation deci-

sions. Our main findings are as follows.

The stock allocation is negatively correlated with the ambiguity aversion towards

stock return and if the investor is also ambiguity-averse towards the labour income, she

allocates even less wealth in stock. The correlation between stock return and permanent

shock to the labour income has a similar effect on the stock allocation. In contrast, if

the investor is only ambiguity-averse towards the labour income, the stock allocation

increases over the life cycle. We also find that the stock market predictability is almost

irrelevant to the stock return. Only if the investor is highly ambiguity-averse towards

the stock return, she allocates more in the stocks if there is stock return is predictable.

The ambiguity aversion towards labour income substantially increases investor’s

saving motive. In other words, the investor accumulates more wealth (by sacrificing

early consumption). The results still hold if the investor is also ambiguity-averse to-

wards the stock return. We also find that the presence of stock market predictability
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make the investor’s life-cycle consumption and wealth pattern smoother, which is hardly

documented in the literature.

By incorporating the ambiguity aversion towards stock return and labour income,

we manage to obtain a stock allocation pattern closer to real data in terms of the low

level and the hump shape over the life cycle. We can also explain part of the strong

(retirement) saving motive in data, although we do not incorporate any other ingredients

such as bequest motive and medical expenses, which have been reported in the literature

that can increases the investor’s saving motive.
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Chapter 4

Dynamic Life-cycle Consumption

and Housing Problem under

Uncertainty

4.1 Introduction

Although real estate is one of the most important asset classes in an investor’s port-

folio, it has been absent in many life-cycle portfolio selection problems [e.g., Samuelson,

1969; Merton, 1969, 1971; Gourinchas and Parker, 2002; Cocco et al., 2005]. Households

face important decisions regarding housing investment such as how to choose between

owning and renting a house, and how to decide the proportion of wealth put in the

housing asset (e.g., the size of the owned or rented house) during her lifetime. Moreover,

conditional on homeownership, one can also decide to let (i.e., downsize the living space)

to others to obtain rental income. The latter aspect is the main focus of this chapter.

Some recent papers study the housing decisions in a life-cycle setting. These papers

mainly focus on investor’s housing choices between owning and renting, and/or how

the housing assets act as a part of the investment portfolio [e.g., Cocco, 2004; Yao and

Zhang, 2005; Li and Yao, 2007; Kraft and Munk, 2011; Attanasio et al., 2012; Cooper

and Zhu, 2016]. But to the best of our knowledge, none of them considers the letting

choice along with the homeownership and renting decisions.

In this chapter, we formulate a consumption and housing model that incorporates

three types of housing decisions: owning, renting and letting (conditional on house

ownership). We show that letting, owning and renting decisions are intertwined in such

a way that letting decision also affects investor’s choices between owning and renting.
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This is because with the letting option, homeownership not only provides the investor

the opportunity to do housing investments during her lifetime, but also generates cash

flows, which can be used for future housing and non-durable consumption and hence

affects housing and liquid wealth accumulation. Therefore, we argue that it is important

to include the letting decision when studying investor’s housing problem in a life-cycle

setting.

Another important feature of our a life-cycle model is that it does not only cover

the retirement period (i.e., wealth-decumulation period) as most other papers do [e.g.,

Yogo, 2016; Xu et al., 2017], but also the wealth-accumulation period, when the investor

earns stochastic labour income. Using this life-cycle model, we investigate how an in-

vestor chooses the optimal owning, renting and letting decisions as well as non-durable

consumption and saving strategies during her lifetime. In particular, by studying the

life-cycle pattern of letting, we can explore some related questions such as when is the

optimal time to start letting? Or, how do the optimal letting choices affect investor’s

decisions on living space profile (e.g., downsizing) over the lifetime?

Our model assumes that the investor has recursive preferences, that is, Epstein-

Zin-Weil-type utility over consumption and bequest [e.g., Epstein and Zin, 1989, 1991;

Weil, 1989]. We then study how investor’s different subjective preferences such as risk

aversion, elasticity of intertemporal substitution (EIS), bequest motive and the housing

weight in the consumption utility1 affect the life-cycle housing decisions in the presence

of letting choice. This helps us explain the primary factors that affect investor’s letting

decisions, as well as other consumption and housing choices.

There are two main contributions of this chapter. First, we show how letting choices

are driven by investor’s preferences and hence influence housing decisions. In particular,

we find that the homeowner’s willingness to let is negatively correlated with the housing

weight in the utility of consumption but positively correlated with the bequest motive

and EIS. Not surprisingly, the housing weight in the utility of consumption is one of

the key factors that drives the homeowner’s letting decisions. For a homeowner with

relatively low housing weight in the utility of consumption (e.g., housing weight = 0.2

[as in Yao and Zhang, 2005]). In other words, non-durable consumption contributes

80% of the total utility of consumption.), she opts for letting in almost the entire life.

However, when the housing weight increases to 0.4 [as in Yogo, 2016], the homeowner is

only willing to let during the retirement period. The bequest motive, on the other hand,

determines the homeowner’s life-cycle letting pattern, especially after retirement. For the

1The housing weight in the utility of consumption determines the investor’s preference of housing
consumption over non-durable consumption.
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homeowner with no bequest motive, the overall life-cycle letting pattern is hump-shaped.

The letting willingness reaches the peak at around age 70, and decreases since then, no

matter how large the housing weight is in the utility of consumption. In contrast, for the

homeowner with some bequest motives, she has a similar letting pattern up to the age

70 as in the case without the bequest motive. However, after the age 70, the homeowner

keeps letting during the remaining lifetime, with a slightly increased letting willingness

as she ages. The EIS plays a similar role as the bequest motive.

Second, our calibrated life-cycle model (using a choice of housing weight = 0.3) per-

forms well in matching the data in terms of life-cycle homeownership rate and investor’s

living space patterns. We are not the first ones who offer a model that aims at matching

the life-cycle homeownership data. However, many previous models [e.g., Li and Yao,

2007; Dı́az and Luengo-Prado, 2008; Attanasio et al., 2012; Iacoviello and Pavan, 2013]

find it difficult to match the homeownership rate pattern in the late time periods after

retirement (e.g, after about age 75). Our model, along with some others [e.g., Yang,

2009; Chambers et al., 2009], manages to match the homeownership rate pattern after

age 75 but these two papers do not consider letting as ours. Moreover, while matching

the life-cycle homeownership rate pattern, we are also able to get close results of the

average living space2 compared to the data, using the same calibrated model and we also

find that letting plays an important role in matching the living space. That is, if letting

is not allowed, the living space in most periods during the life (around age 40-80) will be

too high compared to data. This means that the letting choice is an essential ingredient

in the life-cycle consumption and housing models to explain investor’s housing decisions.

Our work is related to a broad literature studying investor’s life-cycle consumption

and asset allocation decisions. In this literature most papers consider non-durable con-

sumption and asset allocation among liquid financial assets such as bonds and stocks,

but abstract from housing consumption and housing assets [e.g., Viceira, 2001; Gomes

and Michaelides, 2003; Polkovnichenko, 2007; Koijen et al., 2009; Peijnenburg, 2016;

Michaelides and Zhang, 2017]. Some others include the housing asset,s and investigate

investor’s asset allocation choices among liquid and housing assets. But these studies still

assume that investor does not gain any utility of consumption from housing [e.g., Cocco,

2004; Cooper and Zhu, 2016; Yogo, 2016; Xu et al., 2017]. One difference from those

above-mentioned studies, our work does not include equity as an asset class but only

considers a bond with a stochastic return over the life-cycle. This is partly motivated by

empirical studies [e.g., Mankiw and Zeldes, 1991; Garlappi et al., 2007; Dimmock et al.,

2For the homeowner, the living space is calculated as the total size of the house owned minus the size
to let out while for the tenant, the living space is simply the size of the house rented.

67



2016] which find that investors have limited stock market participation.

In the life-cycle setting, some other papers study the investor’s consumption choices

between housing and non-durable consumption and/or housing choices between owning

and renting [e.g., Yao and Zhang, 2005; Piazzesi et al., 2007; Li and Yao, 2007; Dı́az

and Luengo-Prado, 2008; Chambers et al., 2009; Yang, 2009; Attanasio et al., 2012].

Compared to these papers, we not only incorporate the housing choices between renting

and owning, but also assume the investor can let if she is an owner of the house and

investigate how investor chooses the life-cycle consumption and housing decisions in the

presence of letting choice.

The rest of the chapter is organized as follows. In Section 2, we introduce our

dynamic programming formulation of the life-cycle consumption and housing problem.

Section 3 focuses on model calibration and parameter settings. We present the results

of numerical experiments in Section 4. Our findings and concluding remarks are sum-

marized in Section 5.

4.2 Problem Statement

In this section, we introduce a dynamic programming formulation of the life-cycle

consumption and housing problem for an investor who has bequest motive. We consider

a discrete-time environment that spans T time periods. Life-cycle decisions are made

at each time period (i.e., one year) t = 1, · · · , T and t = 0 represents today. Given the

current age of the investor, s/he is alive for maximum T periods and retires at certain age

K < T . At each time period t, the investor receives the labour income (the retirement

income for t > K) and needs to decide the amount of consumption of non-durable goods,

and housing decisions during the remaining life-time to maximize the expected life-cycle

utilities. In a standard form, the investor is assumed to retire at age 65 and die at age

100.

The problem formulation contains random variables on real interest rate r̃t, labour

income l̃t, and house prices q̃t at each point in time (t = 1, . . . , T ).

Housing Decisions: The life cycle problem is concerned with three types of hous-

ing decisions, namely renting, owning and letting. While the investor has incompatible

housing choices as renting and owning some units of house, s/he can let some units of

house to others to gain rental income once she owns the house. We consider a broad

interpretation for the size of the house, which does not only refer to the physical space

of the house, but also the quality and location of the house [Cocco, 2004]. Let ht denote

a decision variable for displaying house status as renting or owning at time t. The sign
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of ht determines the status of homeownership. If ht < 0 (or ht > 0), then this implies

that the investor rents (or owns) the house. We display the floor area (square meter) of

the house to be rented or owned by the investor as |ht|.
Let hmin represent the minimum square metre of the house. Following previous stud-

ies [e.g., Cocco, 2004; Yogo, 2016], we assume that the investor can only own a house

that is larger than hmin. where ht ≥ hmin > 0. On the other hand, there is no minimum

requirement for the size of house to be rented; therefore, ht ≤ 0. A feasible set of housing

decision variables for owning and renting becomes Ft = {ht | −∞ ≤ ht ≤ 0, or hmin ≤ ht ≤ ∞} .
Let xt ≥ 0 at time period t be a decision variable that represents size of house that

the owner lets to others. The maximum floor area that owner of the house is allowed to

let is expressed by a constraint as xt ≤ ht − hmin.

Cash Flow: Housing transactions provide flow of cash at each time period. Let

g(ht | ht−1) be a function that represents amount of cash received from owning (ht > 0)

or renting (ht < 0) the house at time t given the house status ht−1 determined at time

t − 1. Similarly, we define another function ḡ(xt) on the basis of letting decisions xt at

time t. Table 4.1 summarizes the corresponding cash flow functions for different house

status under specific conditions.

Table 4.1: Cash flow received/paid for transformations in house status (renting,
owning and letting) under specific conditions

House status Owning/Renting Conditions Received/Paid Cash Letting Conditions Cash

(ht−1, ht) g(ht | ht−1) (xt) ḡ(xt)

Keep renting ht−1, ht ≤ 0 ϕq̃tht xt = 0 0

From renting to owning ht−1 ≤ 0, ht ≥ hmin −(1 + λ + ξ)q̃tht 0 ≤ xt ≤ ht − hmin ϕq̃txt

Keep owning & upsize ht−1, ht ≥ hmin, ht ≥ ht−1 −(1 + λ + ξ)q̃tht + (1 + λ)q̃tht−1 0 ≤ xt ≤ ht − hmin ϕq̃txt

Keep owning & downsize ht−1, ht ≥ hmin, ht < ht−1 −(1− λ + ξ)q̃tht + (1− λ)q̃tht−1 0 ≤ xt ≤ ht − hmin ϕq̃txt

From owning to renting ht−1 ≥ hmin, ht ≤ 0 (1− λ)q̃tht−1 + ϕq̃tht xt = 0 0

House-renting: If the investor rents a house at time t−1 (i.e., ht−1 < 0), she can either

keep renting (but allowed to change size of the rented house) or buy a new house

at time t. If the investor chooses to rent the house at time t (i.e., ht ≤ 0), s/he

pays a rent that is determined as a certain percentage (ϕ) of the current market

price (q̃t) of the house as ϕq̃tht. On the other hand, if the investor decides to buy

a new house to become a homeowner at time t (i.e., ht ≥ hmin), then s/he needs to

pay a transaction cost λq̃tht at the top of the house price q̃tht where parameter λ

is a fraction paid for buying the house. Moreover, at the end of time period t, the

homeowner needs to pay a fraction ξ of the house price as the annual maintenance
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cost ξq̃tht.

House-owning: If the investor owns a house at time t − 1, then there are two options

to implement at time t. First, the investor can use the house-ownership as further

housing investment opportunities and upsize or downsize her/his owned house by

receiving or paying the price differences, respectively. Of course, s/he can also

carry on living in the same house as before, which does not generate any cash

flows. Second, the investor may prefer selling the house and become a tenant.

This leads to the house status to be changed from owning to renting. In this

case, s/he receives (1−λ)q̃tht after paying the transaction cost and will pay rental

payments according to the size of the house to be rented.

House-letting: Once the investor owns a house, then any remaining space beyond the

minimum required living area can be let out to others. The investor who decides

to let xt ≥ 0 floor areas of the house receives the rental income ϕq̃txt. Following

Iacoviello and Pavan [2013], we assume that no-arbitrage condition holds such that

the rental payments per house floor area equals to the rental incomes from letting.

Investor’s Preferences: We assume that the investor has Epstein-Zin-Weil-type

preferences over consumption and bequest [Epstein and Zin, 1989, 1991; Weil, 1989]. We

denote the utility of housing goods in consumption at time t as a function f(ht, xt) that

is defined as

f(ht, xt) =

ht − xt if ht ≥ hmin (owning)

−ζht if ht ≤ 0 (renting)

This implies that in both renting and owning housing situations, the investor obtains

utility of housing consumption unlike in case of ct that only gives utility of non-durable

consumption. If the investor is a homeowner, then s/he receives ht − xt as the utility

of housing consumption. On the other hand, if he is a tenant, we assume that s/he

experiences utility loss compared to owning a house, which is modelled by multiplying

ht by a discount factor ζ. Such an assumption is common in previous economic literature;

for instance, see Rosen [1985], Poterba [1992], Iacoviello and Pavan [2013].

The investor’s consumption preference over non-durable and durable goods is ex-

pressed by the Cobb–Douglas-type utility function as follows;

U(ct, ht, xt) = f(ht, xt)
θ(ct)

1−θ, (4.1)

where θ ∈ (0, 1) determines the investor’s utility weight over durable or non-durable
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consumption.

Let e(ht) denote the utility of housing wealth in bequest at time t that is defined

as follows;

e(ht) =

(1− ξ)q̃tht if ht ≥ hmin,

0 if ht ≤ 0.

This implies that the investor who is bequest motive leaves (1 − ξ)q̃tht as bequest

(after paying the maintenance cost). On the other hand, a tenant does not leave any

house wealth as bequest. Following Yogo [2016], we assume that the investor does not

view the financial wealth wt and housing wealth e(ht) equally in the bequest, which

is specified by the weight θ defined in the Cobb–Douglas-type utility function. For the

investor with bequest motive η > 0, she also has the utility of bequest, which is measured

by the total wealth upon death as:

U(wt, ht) = (wt + e(ht))

(
θ

(1− θ) q̃t

)θ
. (4.2)

In other words, financial and housing wealth are not perfectly substitutable in the be-

quest. Under our parameter calibration, ( θ
(1−θ)q̃t )

θ is negatively correlated with unit

house price q̃t. This means for the same size of the house, the increase of utility of

bequest is slower than housing wealth and vice versa.

Budget and Borrowing Constraints: At each time t, the investor receives labour

income l̃t (and the retirement income after the age of 65) and makes (housing and non-

durable) consumptions as well as housing transactions. If the investor is a homeowner,

she can borrow up to a fraction $ of the market price of the house. This is a simplified

model of the mortgage, which is commonly used in previous studies such as Cocco [2004],

Yao and Zhang [2005] and Yogo [2016].

We now define two variables representing wealth accumulation. Let wt denote the

(real) cash-on-hand at time t and at be the remaining wealth at time t. The remaining

wealth at time t is obtained by reducing the consumption (ct) of non-durable goods from

the total amount of cash that is consisting of cash-on-hand (wt), labour income (l̃t) and

total cash flow received from housing transactions (in renting, owning and letting as

g(ht | ht−1) + ḡ(xt)). If the remaining wealth is positive then it will be accumulated by

the interest rate r̃t to obtain the cash-on-hand wt+1 at next time period t+1. In the case

of negative remaining wealth, we assume that the investor also needs to pay a mortgage

premium with fixed rate κ [Campbell and Cocco, 2015], at the top of the interest rate
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payment. These budget and borrowing conditions can be expressed by a set of linear

constraints as follows;

wt+1 = atr̃t + κmin {at, 0} , (4.3)

at = wt − ct + g(ht | ht−1) + ḡ(xt) + l̃t, (4.4)

at ≥ −$h
E[e(ht)]

1− ξ
. (4.5)

The Dynamic Life-cycle Optimization Model: The dynamic life-cycle con-

sumption and housing problem finds the optimal strategies consisting of consumption

and housing decisions at each time period so that the investor’s total life-cycle utilities of

consumption and bequest are maximized subject to budget and borrowing constraints.

Given any state of the system in cash-on-hand wt and housing status ht−1 in previous

time period t− 1, we define a value function at time t as Jt(wt, ht−1). Let pt denote the

investor’s survival rate at time t conditional on being alive at t − 1. We can formulate

Jt(wt, ht−1) in a compact form as follows;

Jt(wt, ht−1) = max
ct,ht,xt

{
(1− δ)U(ct, ht, xt)

1−1/ψ+

δEt
[
pt+1Jt+1(wt+1, ht)

1−γ + η(1− pt+1)U(wt, ht)
1−γ
] 1−1/ψ

1−γ
} 1

1−1/ψ

,

(4.6)

that can be also recursively rewritten as:

Jt(wt, ht−1) = max
ct,ht,xt

{
(1− δ)

(
f(ht, xt)

θc1−θt

)1−1/ψ
+

δEt

[
pt+1Jt+1(wt+1, ht)

1−γ + η(1− pt+1)
(
wt+1 + e(ht)

)(1−γ)
(

θ

(1− θ)q̃t

)θ(1−γ)
] 1−1/ψ

1−γ
} 1

1−1/ψ

s.t. wt+1= atr̃t + κmin {at, 0} ,
at= wt − ct + g(ht | ht−1) + ḡ(xt) + l̃t,

at≥ −$h E[e(ht)]
1−ξ ,

xt≤ ht − hmin,
ht∈ Ft, xt ≥ 0, ct ≥ 0.

(4.7)

where δ denotes the subjective discount factor, ψ measures the elasticity of intertemporal

substitution and γ represents the relative risk aversion.
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4.3 Solution of the Life-cycle Consumption and Housing

Problem

A closed-form solution leading the optimal policy is obtained for limited cases of

the life-cycle problems such as Merton [1969]. Numerical approaches have been used for

more general cases including grid methods with backward induction, simulation opti-

mization and scenario-based stochastic programming. The common drawback for these

approaches is the curse of dimensionality. The size of state space exponentially increases

as the number of decisions and the decision epochs increase [e.g., Cocco et al., 2005;

Gao and Ulm, 2015]. In the grid methods, the state space for each time period is

discretized into many nodes while the simulation based approach as well as the scenario-

based stochastic programming approach require large simulation steps [e.g., Chen et al.,

2006] and large number of scenarios, respectively, to achieve more accurate approximate

strategies (close to the optimal policy if possible). However, in practice, the modeler

needs to reduce the number of scenarios or decision stages to manage the curse of di-

mensionality of dynamic programs (see for example, Geyer et al. [2009] and Konicz,

Pisinger, Rasmussen and Steffensen [2015]).

4.3.1 Backward Induction Method

In order to solve the dynamic life-cycle consumption and housing problem (4.7), we

consider the backward induction method. There are three control variables at each time

period t: namely, consumption (ct), housing floor area (ht) and letting floor area (xt).

The state variables are the cash-on-hand (wt) and housing floor area in the previous time

period (ht−1). Note that ht−1 is used as a state variable to compute the value function

at time t. In addition, we need to compute the function g(ht | ht−1) as amount of cash

received/paid at time t.

The backward induction method starts from terminal states at the end of planning

horizon T towards to the initial states at time t = 1. For each grid point of discretised

state spaces, we find the optimal consumption and housing decisions. This leads to

N ∗M number of states where m = 1, . . .M and n = 1, . . . , N . For those points that

are not lying on the grid specified, we firstly interpolate the housing value on N grids

and then look up the cash-on-hand value on M grids.

Next, we will describe the main steps of the algorithm below.

Step 1: Reformulation of the Model

We first reformulate the dynamic programming formulation of the life-cycle con-
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sumption and housing problem. Notice that, solving the maximization problem (4.7) is

equivalent to solving the following minimization problem;

Jt(wt, ht−1)1−1/ψ = min
ct,ht,xt

{
(1− δ)

(
f(ht, xt)

θc1−θt

)1−1/ψ

+

δEt

[
pt+1J

1−γ
t+1 + η(1− pt+1)

(
wt+1 + e(ht)

)(1−γ)
(

θ

(1− θ)q̃t

)θ(1−γ)
] 1−1/ψ

1−γ
}

s.t. wt+1= atr
f + κmin {at, 0}+ l̃t+1,

at= wt − ct + g(ht | ht−1) + ḡ(xt),

at≥ −$h
E[e(ht)]

1−ξ ,

xt≤ ht − hmin,
ht∈ Ft = {ht | −∞ ≤ ht ≤ 0, or hmin ≤ ht ≤ ∞} ,
xt≥ 0, ct ≥ 0.

(4.8)

Then we introduce an auxiliary decision variable zt to re-state the min {at, 0} as:

Jt(wt, ht−1)1−1/ψ = min
ct,ht,xt,zt

{
(1− δ)

(
f(ht, xt)

θc1−θt

)1−1/ψ

+

δEt

[
pt+1J

1−γ
t+1 + η(1− pt+1)

(
wt+1 + e(ht)

)(1−γ)
(

θ

(1− θ)q̃t

)θ(1−γ)
] 1−1/ψ

1−γ
}

s.t. wt+1= atr
f + ztκ+ l̃t+1,

at= wt − ct + g(ht | ht−1) + ḡ(xt),

at≥ zt,
at≥ −$h

E[e(ht)]
1−ξ ,

xt≤ ht − hmin,
ht∈ Ft = {ht | −∞ ≤ ht ≤ 0, or hmin ≤ ht ≤ ∞} ,
xt≥ 0, ct ≥ 0, zt ≤ 0.

(4.9)

Step 2: Construction of Grids and Formulation of Sub-problems

We set up M number of grids for cash-on-hand (wt) at each time period wt and N

grids for home size ht−1 at time t− 1 that leads to form a grid space with size of M ∗N
in total. The whole grid space can be divided into two blocks: ht−1 ≤ 0 and ht−1 ≥ hmin
that represent being a tenant and a homeowner at previous time period t-1, respectively.

For each block of grid space, instead of solving the problem Jt(wt, ht−1)1−1/ψ, we

solve the following three (incompatible) sub-problems, differing from the range of current

home size ht:

• currently being tenant: ht ≤ 0
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• currently being homeowner and upsizing the home size: ht ≥ ht−1 and ht ≥ hmin

• currently being homeowner and downsizing the home size: ht ≤ ht−1 and ht ≥ hmin

In order to find the optimal solutions of subproblems, we use the KKT optimality

conditions. The derivation of the first order optimality conditions are presented in

Appendix 4.A.

The solution of three sub-problems provides three sets of optimal decisions. Then

we calculate the objective function value of these three sub-problems and pick the set of

optimal decisions which give the highest objective function value and nominate it as the

set of optimal decisions of the whole problem Jt(wt, ht−1)1−1/ψ. In this way, we avoid

introducing extra binary state variables to represent the house status as either renting

or owning [Yao and Zhang, 2005].

4.4 Model Setting and Calibration

We design computational experiments to investigate performance of dynamic life-

cycle consumption and housing model. In particular we are concerned with two main

questions which have been only partially answered before:

• How are the investors life-cycle consumption and housing decisions affected by

investor’s preferences?

• What factors affect the housing strategies in terms of renting, owning and letting?

We first explain our calibration and parameter setting used in empirical study and then

present our computational results.

4.4.1 Model Calibration

As mentioned in formulation of the life-cycle consumption and housing decision-

making problem, the investor faces three kinds of uncertainties including interest rates,

labour incomes and house prices. We now describe how to model these uncertain param-

eters. For real interest rate, the AR(1) processes is used to model real interest rate r̃t

as presented by Campbell and Cocco [2015]. Let ς̃t denote white noise that is normally

distributed: ς̃t ∼ N (0, σ2
ς ). Given coefficients µr and φr, the log of interest rate at time

t can be formulated as follows;

log(r̃t) = µr(1− φr) + φr log(r̃t−1) + ς̃t.
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We assume that the labour income (before retirement) is uncertain and formulated

as suggested by Cocco et al. [2005]. The log of labour income at t consists of three

components: a deterministic term ft, permanent shock ν̃t and temporary shock ε̃t as:

log(l̃t) = ft + ν̃t + ε̃t. (4.10)

The deterministic component ft in (4.10) is modelled by a third-order polynomial func-

tion of age t as follows;

ft = a0 + a1t+ a2t
2/10 + a3t

3/100,

where coefficients a0, a1, a2 and a3 need to be estimated. Moreover, the permanent

shock follows a one-period auto-regression process

ν̃t = ν̃t−1 + ũt,

where ũt ∼ N (0, σ2
u) refers to permanent shock to the labour income whereas ε̃t ∼

N (0, σ2
ε) is the temporary shock. The retirement income is a constant fraction (e.g.,

0.68) of the permanent labour income in the year just before retirement. In other words,

there is no temporary shock during the retirement.

In numerical results, we use the same estimates of parameters of the labour income

process as given in Cocco et al. [2005]. They are the deterministic component ft, shock

variances (σε, σu), and polynomial coefficients (a0, a1, a2, a3) as well as the retirement

income fraction for three different education groups of investors who have no high school

degree, high school degree and college degree. Since the choice of groups does not affect

the main conclusions reported in this chapter, we only present the computational results

obtained by the labour income estimates for the investor with high school degree group.

We model the log of real house price growth by a random walk with drift as described

in Campbell and Cocco [2015]:

log(q̃t) = log(q̃t−1) + g + τ̃t,

where constant parameter d represents the average yearly growth of the house price.

In addition, τ̃t ∼ N (0, σ2
τ ) is normally distributed. In addition, we assume that the

innovation to house price growth (τ̃t) is correlated with permanent shock (ũt) of labour

income as well as innovations (ς̃t) of real interest rate. The parameter settings for the

mean, standard deviation, AR(1) coefficient as well as the correlation values of the
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interest rate and house price progresses (ρτ,u, ρτ,ζ) are all estimated as in Campbell and

Cocco [2015]. The other parameters used for numerical experiments using the baseline

setting are summarized in Table 4.2.

Table 4.2: Calibration and parameter settings used in empirical study

Notation Uncertainty-related parameters Fixed values

µr Mean log real rate 0.012

φr Log real rate AR(1) coefficient 0.825

σς Std. of the log real rate shock 0.018

d Mean log real house price growth 0.003

στ Std. of the log real house price shock 0.162

ρτ,u Correl. perm. inc. and house price shocks 0.191

ρτ,ς Correl. real int. rate and house price shocks 0.3

σu Std. of the log real labour income permanent shock 0.103

σε Std. of the log real labour income temporary shock 0.272

Other model parameters

η bequest motive 1

γ relative risk aversion 5

ψ elasticity of intertemporal substitution (EIS) 0.5

δ time discount factor 0.96

$ borrowing limit 20%

θ housing weight in the utility of consumption 0.3

ξ annual housing maintenance cost 1.5%

ϕ rental payment/income gain per unit of house 6%

λ transaction cost of housing trades 6%

ζ utility discount in housing consumption when renting 0.832

hmin minimum square metre of the house to own 40

Data from US social security 20133 is used to calculate investor’s conditional prob-

ability of alive pt. The time discount factor δ is chosen as 0.96. We set the investor’s

bequest motive η as 1, which implies the investor views the utility of consumption and

utility of bequest equally important. The relative risk aversion γ and elasticity of in-

tertemporal substitution ψ are fixed as 5 and 0.5, respectively.

In order to calibrate the hmin value, data from US Census Bureau4 is considered.

This provides the distribution of the floor area in new single-family houses over the

whole US. The data implies that around 90% of the new single-family houses in US

is at least 100 square metre. Moreover, according to Household Size and Composition

Around the World 2017 data booklet by United Union, the average household size in

3The reader is referred to https://www.ssa.gov/oact/STATS/table4c6.html.
4The reader is referred to https://www.census.gov/construction/chars/pdf/squarefeet.pdf.
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US is 2.6 people. Therefore, we set hmin = 40 since in the baseline setting we solve the

problem for an individual investor).

To standardize the initial house price per square metre of the house, we follow

Iacoviello and Pavan [2013], which assumes that the minimum size of the house to

purchase costs two times the average income. Under our calibration of labour income

process, the average income at age 20 is 16.04 (thousands U.S. dollar). Then the initial

house price per square metre is 16.04 ∗ 2/40 = 0.802.

We find that in the literature, the choice of housing weight in the consumption

utility θ is varied between 0.2 [Yao and Zhang, 2005] and 0.4 [Yogo, 2016]. We choose

an intermediate value θ = 0.3 and find that our model performs well in matching the

data in terms of life-cycle homeownership rate and investor’s living space patterns.

Following Yogo [2016], we set the borrowing limit $ as 20%, which indicates that

a homeowner is allowed to borrow 20% against her housing equity. According to Ia-

coviello and Pavan [2013], the utility discount ζ in housing consumption (when renting

is compared to owning) is fixed at 0.832. This implies that renting a house with size

100 gives the same utility of housing consumption as owning a house with size 83.2. In

line with Yao and Zhang [2005], the annual housing maintenance cost ξ is 1.5%, rental

payment (when renting a house) or income (when letting a house) per unit of house ϕ

is 6%. Moreover, the transaction cost (λ) for upsizing or downsizing the owned house is

fixed as 6%. In the baseline setting, we also assume the investor starts with 0 financial

wealth and 0 housing wealth (i.e., the investor does not own a house).

4.4.2 Model Implementation

In order to solve the dynamic programming model with traditional backward induc-

tion approach, we choose M = 200 grids of cash-on-hand and N = 34 grids of previous

housing status. For the uncertain parameters including interest rate, labour income

and house price, we first generate K = 40, 000 simulations and then solve the dynamic

programming problem for each simulation. We present our results in terms of average

values of the investor’s house size rented, owned and let, as well as consumption and

saving decisions over all simulations.

We are mainly concerned with three kinds of trade-off in the life-cycle consumption

and housing model. First, how does the investor choose between owning and renting

a house? We answer this question by showing the well-known homeownership rates

throughout investor’s entire life. Second, conditional on being a homeowner, how does

one choose between living in the house and letting it out? In the case of letting, the
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homeowner gains rental payments as the cost of reducing the living space. Therefore,

we will illustrate the homeowner’s letting willingness and living spaces over the life

cycle. Finally, we empirically investigate the tradeoff between non-durable consumption

and saving once the investor has made her housing decision. We report the results of

numerical experiments in the following section.

4.5 Numerical Results

4.5.1 Homeownership versus Rental Property

As mentioned before, we first investigate how the investor chooses her housing

decisions during the lifetime using the dynamic programming formulation of the life-

cycle consumption and housing problem. To be more specific, we illustrate what factors

drive the investor to choose between owning or renting a house.

We first focus on the effect of bequest motive on homeownership rates. In Figure 4.1,

we illustrate the homeownership rate with four different degrees of bequest motive (η)

under two settings of initial housing wealth. That is, we assume the investor either has

no initial housing wealth (i.e., the investor does not own a house, which is our benchmark

case) or has the minimum housing wealth (i.e., the investor owns a house of size hmin).

The homeownership rate, by definition, is the proportion of investors that own houses

divided by the total number of investors. Therefore, at every age, the homeownership

rate is calculated by the number of positive ht value (i.e., representing that the investor

owns a house) in all K simulations divided by K. For instance, a homeownership rate

of 0.6 at age 40 means that out of K = 40, 000 simulations, there are 24, 000 incidents

where the investor owns a house at age 40.

As shown in the left plot of Figure 4.1, for all four degrees of bequest motive

(η), the homeownership rate for the investors with zero initial housing wealth starts

at 0 (Recall that we assume the minimum-sized house requires on average two years’

labour income.) and then increases until investor ages around 40. For investors with no

bequest motive (i.e., η = 0), the homeownership rate keeps increasing until retirement

and then decreases after retirement. While for those with some degrees of bequest

motive, the homeownership rate maintains almost the same level until retirement and

decreases moderately for only 20 more years. Such difference in the life-cycle pattern

of homeownership rate with different degrees of bequest motive is mainly due to the

differences in the motivation to leave housing wealth to the heirs. We also note that the

higher the degree of bequest motive the higher is the homeownership rate at every age.
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Figure 4.1: Homeownership rates (bequest motive and initial housing wealth)

The two plots compare the homeownership rates over the entire life for varying degrees of bequest

motive (η) under two settings of initial housing wealth: (left) 0 housing wealth (i.e., the investor

does not own a house) and (right) minimum housing wealth (i.e., the investor owns a house with

size hmin). At every age, the house ownership rate is calculated by the number of positive ht in

all simulations divided by the total number of simulations.

By comparing the left and right plots of Figure 4.1, we notice that the difference in

the initial housing wealth only affects the homeownership rate before retirement. If the

investor has some initial housing wealth, the homeownership rate starts at around 0.55

at age 20 and then keeps increasing for another 10 (investor with bequest motive) or

20 (investor without bequest motive) years, and then slightly decreases until retirement.

Since we assume the investor has the minimum housing wealth in all simulations. A

rate of 0.55 means that in about 45% of the simulations, the investor immediately sells

the house at age 20 and become tenants. After retirement, the homeownership rate is

almost the same as the case with no initial housing wealth suggesting that the role of

initial wealth in housing preferences disappears in the later stages of life.

We also compare the homeownership rates implied by our model with the recent

data from Housing Vacancies and Homeownership (CPS/HVS), US Census Bureau5 in

the Table 4.3. The homeownership rate value from our model in each age group is

calculated as the mean of homeownership rates in all ages within that age group.

5See https://www.census.gov/housing/hvs/data/q118ind.html for more information
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Table 4.3: Homeownership rate: data versus model predictions

Age group Data

Model predictions

No initial housing wealth (η) Minimum initial housing wealth (η)

0 1 3 5 0 1 3 5

Average 63.9 55.2 71.3 77.3 80.0 68.1 79.3 83.7 85.7

<25 22.6 1.5 10.2 15.3 17.8 63.1 68.8 71.4 72.6

25-29 32.1 18.4 54.5 70.3 76.2 69.3 85.0 90.7 92.9

30-34 45.7 42.8 74.1 84.5 88.3 73.4 88.5 93.5 95.1

35-39 56.4 58.3 79.9 88.4 91.0 76.9 87.7 93.4 94.7

40-44 61.8 66.0 81.6 88.8 91.0 78.0 86.2 91.9 93.3

45-49 67.5 69.5 82.1 87.9 90.1 77.4 85.1 90.0 91.6

50-54 71.1 70.8 81.8 87.0 89.0 76.0 83.9 88.5 90.1

55-59 73.8 70.5 81.3 85.8 88.1 74.3 82.8 86.9 89.0

60-64 76.9 70.3 80.5 85.1 87.5 73.2 81.5 85.7 88.2

65-69 79.1 69.2 78.9 83.2 85.7 71.6 79.7 83.7 86.2

70-74 81.4 65.2 74.4 78.2 81.0 67.2 75.1 78.5 81.4

>75 76.8 56.3 72.4 76.6 78.9 57.7 73.0 76.9 79.3

This table compares the homeownership rates for different degrees of bequest motive and initial

housing wealth derived from our model with latest data from Housing Vacancies and Homeown-

ership (CPS/HVS), US Census Bureau. The homeownership rate value in each age group from

our model is calculated as the mean of homeownership rates in all ages within that age group.

We first notice that in age group ’<25’, our model predictions are lower (higher) than

the data for investors with no (minimum) initial housing wealth. For example, the data

indicate an average homeownership rate of 22.6% for the investor aged lower than 25,

while our model predicts a homeownership rate of 1.5% if in all 40, 000 simulations, the

investors have no initial housing wealth and no bequest motive, but a much higher rate

of 63.4% if all investors have some initial housing wealth. This makes sense because in

reality, the proportion of the investors aged 20 who have initial housing wealth (received

from others such as the family) must be somewhere in between 0 and 1 rather than the

two extreme cases we consider. As noted in Figure 4.1, the homeownership rate increases

as the degree of bequest motive increases.

Second, we observe that for the investors before retirement, the data is mostly in

line with the model predictions with no bequest motive while for the investor during

retirement, the data is closer to the model predictions if investors have some degrees of

bequest motive. This is reasonable that investor’s bequest motive may increase with the

increase of age and mortality risk as argued in the literature [e.g., Menchik and David,

1983; Hurd, 1989].

Another factor that affects the homeownership rate is the housing weight in the

utility of consumption (θ). θ measures the investor’s preference of consuming housing
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relative to non-durable goods. A higher θ means that the investor is more willing to

consume housing other than non-durable goods. In Figure 4.2, we show the life-cycle

homeownership rate with θ = 0.2 [Yao and Zhang, 2005] and 0.4 [Yogo, 2016] assuming

that the investor can choose between letting or maintaining the same living space, in the

absence and presence of bequest motive. (To make the figure more readable, we have

omitted our benchmark choice θ = 0.3, which is the median value.)

Figure 4.2: Homeownership rates (housing weight in utility of consumption and letting
options)

The two plots compare the homeownership rates over the entire lifetime for varying degrees of

housing weights in the utility of consumption (θ) and with or without the letting option under

two settings of bequest motive: 0 (left) and 1 (right).

We first notice that the model including an investor with higher θ imply higher

homeownership rates during most of the lifetime, especially after age 40. This is intuitive

because a lower θ means that the investor prefers non-durable consumption rather than

the housing consumption. In other words, the investor gains more utility from consuming

non-durable goods instead of maintaining the ownership of the same living space.

We also observe that if θ = 0.4, there is almost no difference in the homeownership

rates with or without letting option. As we will show in Section 4.5.2, this is because

the investor does not choose to let much. On the contrary, if θ = 0.2, for both degrees of

bequest motive, the homeownership rate is higher (lower) before (after) retirement if the

investor can let. This is related to the amount of labour (retirement) incomes investor

receives. Before retirement, the investor receives labour income, which motivates the

investor to become the homeowner because she can let out part of the house to gain

extra rental income. As we will show in Section 4.5.3, this rental income is mainly used
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in the form of non-durable consumption rather than liquid or housing wealth accumula-

tion. After retirement, however, since the investor receives much less retirement income

compared to labour income, in order to keep the consumption level, some homeowners

become tenants, which thus reduces the homeownership rate.

Besides the degree of bequest motive and housing weight in the consumption utility,

we also find that investor’s life-cycle homeownership pattern is related to the borrowing

limit of home equity. In the baseline setting, we choose a borrowing limit of 20%, which

means that the investor can borrow up to 20% of her home equity. In Figure 4.3, we

vary the borrowing limit value ($) from 0 up to 0.4 for investors with either no bequest

motive or a bequest motive equal to 1.

Figure 4.3: Homeownership rates (borrowing limit)

The two plots compare the homeownership rates over the entire life for varying degrees of bor-

rowing limits ($) under two settings of bequest motive: 0 (left) and 1 (right).

We notice that overall, the borrowing limit does no affect the average homeownership

rate of the entire life much but only has impact on the life-cycle pattern before and after

retirement. That is, for both degrees of bequest motive (0 or 1), the homeownership

rate is lower (higher) before (after) retirement if the borrowing limit is lower. This is

because before retirement, the investor with higher borrowing limit has more capital

(from mortgage) to own larger houses. While after retirement, the investor receives

much less (retirement) income. In order to keep the consumption level and repay the

borrowed amount of capital, some of the previous homeowners become tenants, which

results in a lower homeownership rate if the investor’s borrowing limit is higher.

In addition, we illustrate the relationship between homeownership rate and elasticity

of intertemporal substitution, that is, preference for the early resolution of uncertainty,

in Figure 4.4. Our benchmark choice of EIS is 0.5 [as in Xu et al., 2017]. If EIS =

83



0.2, then the Epstein-Zin-Weil utility reduces to the power utility (since our benchmark

choice of risk aversion is 5). Yogo [2016] also uses higher EIS value of 0.7. Therefore, we

vary EIS between 0.2 and 0.7 and plot the homeownership rates for each age group.

Figure 4.4: Homeownership rates (elasticity of intertemporal substitution (EIS))

The two plots compare the homeownership rates over the entire life for varying degrees of EIS

under two settings of bequest motive: 0 (left) and 1 (right).

It is clear that homeownership rate is positively correlated with EIS regardless

of the bequest motive. If EIS = 0.2, which means the investor has the power utility

over consumption and/or bequest, the homeownership rate is lower, especially in the

retirement period and is not in line with the data (See Table 4.3). That means, in

order to match the homeownership rate in real data, Epstein-Zin-Weil utility with some

degrees of EIS is essential.

4.5.2 Living Space versus Letting

After studying the investor’s choice between owning and renting, we then focus

on the homeowner’s choice between maintaining the living space and letting (that is,

downsizing the living space). That is, conditional on homeownership, what is the optimal

balance between housing consumption and rental income obtained by letting out (part

of) the living space to others?

We first investigate the relationship between the letting choice and bequest motive

in Figure 4.5, assuming different levels of initial housing wealth. The criterion we use

the measure the homeowner’s willingness to let is the letting allocation rate. At every

age for every homeowner, the letting allocation rate is calculated as the house size to let
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divided by the total house sizes which can be used for letting (ht − hmin6). Then the

letting allocation rate at every age we plot in Figure 4.5 is calculated as the mean of all

homeowners’ letting allocation rates.

Figure 4.5: Letting allocation rates (bequest motive and initial housing wealth)

The two plots compare the letting allocation rates over the entire life for varying degrees of

bequest motive (η) under two settings of initial housing wealth: (left) 0 housing wealth (i.e., the

investor does not own a house at age 20) and (right) minimum housing wealth (i.e., the investor

owns a house with size hmin at age 20). At every age for every homeowner, the letting allocation

rate is calculated as the house size to let divided by the total house sizes which can be used for

letting (ht − hmin. Then the letting allocation rate at every age is calculated as the mean of all

homeowners’ letting allocation rates.

We first notice that with our benchmark parameter value θ = 0.3, the homeowner

almost does not let before age 40, for all degrees of bequest motive and initial housing

wealth. That means the homeowner has a strong motive to live in the house (contributing

to the housing consumption utility) rather than let out before retirement. Then the

homeowner starts to downsize the living space and keep increasing the letting part to gain

rental income she ages. For the homeowner with no bequest motive, the letting peaks

around age 70, and then starts to decline later in life. As we will show below in Figure

4.9, meanwhile, the homeowner also slightly downsizes in terms of homeownership. This

means that instead of letting and owning a large house, the homeowner chooses to live

in a smaller house and hold more liquid wealth when she is old.

In contrast, the homeowner with some degree of bequest motive keeps increasing the

letting allocation rate while slightly downsizing the living space (See Figure 4.9 below).

6Recall that hmin is defined as the minimum size to own. In the case of letting, we assume this is the
part of the house which should be left for homeowner’s living space and cannot be let to others
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At age 100, the letting allocation rate is about 40%, which means the homeowner only

lives in 60% of her owned house. This implies that for the homeowner with bequest

motive, rental income from letting during the retirement period becomes part of her

bequest.

Figure 4.6: Letting allocation rates (housing weight in utility of consumption)

The two plots compare the letting allocation rates over the entire life for varying degrees of

bequest motive (η) under two settings of initial housing wealth: (left) 0 housing wealth (i.e., the

investor does not own a house at age 20) and (right) minimum housing wealth (i.e., the investor

owns a house with size hmin at age 20).

Besides the bequest motive, another factor that affects the homeowner’s choice

between living and letting is the housing weight in the utility of consumption (θ). On

one hand, letting reduces the homeowner’s housing consumption from living in the owned

space. On the other hand, letting gives the homeowner more capital for future use, which

can benefit non-durable consumption. So in principle, a homeowner with higher θ should

let less. We show such effect of θ on letting allocation rates in Figure 4.6.

It is clear that the housing weigh in utility of consumption is negatively correlated

with the letting decisions. A higher θ reduces the letting allocation rate. In comparison,

as shown in Figure 4.2, a higher θ is positively correlated with the homeownership rate.

For the homeowner with no bequest motive, the life-cycle pattern of letting is hump-

shaped. When the homeowner is young, she prefers living in the owned space rather

than letting. Then she increases her living space in middle ages. If θ = 0.2, which means

the utility of housing consumption is one-fourth of the non-durable consumption in the

utility of consumption, the homeowner uses up to 60% of her living space in letting. As

we will show below, meanwhile, she slightly reduces the living space. This means at

the middle ages, the homeowner prefers letting rather than living in the owned space.
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After retirement, mainly after age 80, the letting allocation rate significantly reduces

and declines to 0, for all degrees of θ.

For the homeowner with bequest motive, the letting pattern before retirement is

quite similar to that without bequest motive. However, during the retirement period,

the homeowner keeps allocating her living space in her house in letting in order to gain

rental income for the bequest purpose. This confirms the observations we have found in

Figure 4.5.

Figure 4.7: letting allocation rates (elasticity of intertemporal substitution (EIS))

The two plots compare the letting allocation rates over the entire life for varying degrees of EIS

under two settings of bequest motive: 0 (left) and 1 (right).

We also study the relationship between letting allocation rate and EIS in Figure

4.7, where we vary the EIS value from 0.2 and 0.7 as before. We find the elasticity

of intertemporal substitution has a similar effect as the bequest motive. That is, a

homeowner with higher EIS preference is more willing to let, mainly after retirement.

However, the EIS does not affect the homeowner’s letting decision before retirement,

which is different from the effect of housing weight in consumption utility.

After investigating the letting allocation rate, we then study the homeowner’s living

space during the lifetime. Throughout this chapter, we present the mean values for the

average living space for the investors. Other statistical metrics (such as median and/or

any percentile) do not change our observations and findings. We first look at the living

space of tenants in Figure 4.8, who do not own the house (and hence cannot let). At

every age, the living space of a tenant is −ht.
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Figure 4.8: Living space (tenants, bequest motive, initial housing wealth)

The two plots compare the average living area (square metre) over the entire life for tenants for

different degrees of bequest motive and initial housing wealth. At every age, the living space of

a tenant is −ht.

We find that initial housing wealth plays a role for the living space of a tenant. If

the investor does not have any housing wealth at age 20, the only choice for her is to

rent a house and become a tenant. Recall that in our calibration, the minimum sized

house requires two years’ of labour income to buy. Then the tenant with no bequest

motive starts with a living space of 80 square metre (and around 45 square metre if

she has bequest motive). In comparison, if the investor has minimum housing wealth

at age 20, she is already a homeowner. Then she has two options, either keep on being

a homeowner or sell the house and become a tenant. For those who chooses to become

tenants, they live in considerably larger houses than those without initial housing wealth.

After a short increase during the first five years (only for the tenant without initial

housing wealth), the living space of a tenant keeps decreasing up to age 70 and remains at

a low level until age 100. This is because as the age grows, where the tenants gain labour

income. More and more of them are able to buy housing and become homeowners. The

remained tenants are those who experience low labour income due to the uncertainty

(in other words, they are unlucky). Then they can only rent a small-sized house.

We then focus on the living space of homeowners ad then show the average living

spaces among all investors including homeowners and tenants in Figure 4.9. The living

space is calculated as ht − xt, which is the net space of the house owned minus the part

let out. The average living space of all investors is calculated as the mean living space

regardless of the homeownership.
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Figure 4.9: Living space (homeowners/all investors, bequest motive, initial housing
wealth)

The four plots compare the average living area (square metre) over the entire life for homeown-

ers/all investors for different degrees of bequest motive and initial housing wealth. At every age,

the living space of a homeowner is ht − xt, which is the net space of the house owned minus

the part let out. The average living space of all investors is calculated as the mean living space

regardless of the homeownership.

Our first observation from the top two plots is that the initial housing wealth does

not affect the living space considerably. Regardless of the initial housing wealth, home-

owners always start with living spaces of around 50 square metres. That means, if the

investor initially own a house with minimum size of 40 square metre, she will not upsize

the living space too much and also not will not upsize the letting space as shown in

Figure 4.5. Instead, she will use this amount of extra capital (compared to the one with

no initial housing wealth) in non-durable consumption and accumulating liquid wealth.

Second, we find that on average, the homeowners without bequest motive have

larger living spaces then those with bequest motive. This is mainly because there are
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more investors who are homeowners if they have bequest motive then those who have

not. The increase in number of homeowners reduces the average value.

Combining the living spaces of tenants and homeowners, we get the bottom two

plots in Figure 4.9. As we can see, the average living spaces of tenants and homeowners

who have bequest motive are less than those without bequest motive. However, since

investors with bequest motive have higher homeownership rates, the average living spaces

of all investors are almost the same regardless of the bequest motive, except the first

(last) ten years, where investors without bequest motive have higher (lower) living spaces.

This indicates that overall, investor’s living space is not so correlated with the degree of

bequest motive during most time in life.

We also compare the living space predicted by our model with the latest data from

US Census Bureau7. In 2017, the average living space per person in the US is around

96 square metre, where our model predicts around 11% larger average living space per

person of 106 to 108 square metre during the entire life, depending on the degrees of

bequest motive.

Figure 4.10: Living space (all investors, housing weight in utility of consumption,
letting)

The four plots compare the average living area (square metre) over the entire life for all investors

including homeowners and tenants with or without letting, and varying degrees of housing weight

in the utility of consumption.

Next, we investigate the relationship between house weight in the consumption

utility θ and living space over the life cycle. Moreover, we compare the results both with

7For further information, the reader is referred to https://www.census.gov/construction/chars/

pdf/c25ann2017.pdf.
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and without letting option. Since from Figure 4.9 we know that bequest motive does

not affect the investor’s living space much, we only show the results of homeowners with

bequest motive (i.e., η = 1) in Figure 4.10.

We observe a clear positive correlation between the housing weight in the con-

sumption utility θ and living space, which is straightforward to understand. Because

the investor with higher θ prefers more housing consumption rather than non-durable

consumption.

We also notice that with letting, the investor has less living space compared to the

case without letting. The higher θ is, the less living space the investor has. Therefore,

letting helps us to match the data in terms of the living space. Without letting, the

average living space of an investor during the life is 116 square metre with our benchmark

choice of θ = 0.3, while if the investor can let, the average living space reduces to 105

square metre, which is closer to the data of 96 square metre.

In addition to this, we conduct several paired t-tests for different θ values with

or without letting to investigate whether our findings are statistically significant. The

results show that under 95% confidence level, the investor has a larger (smaller) living

space if θ is higher (lower) at all time periods t = 1, . . . , T . It is also statistically

significant under 95% confidence level that the investor has a larger living space if she

cannot let during the life except in some particular time periods in early ages. For

instance, t = 4, 6 when θ = 0.2, t = 1 when θ = 0.3 and t = 1, 2, 3, 5, 12 when θ = 0.4.

The reason for these exceptions is that in early ages, the investor cannot let much due

to the limited size of house owned.

4.5.3 Non-durable Consumption versus Saving

Finally, we would like to investigate investor’s non-durable consumption and saving

strategies given the investor has made the optimal housing decisions. In particular, we

want to see what letting can improve investor’s non-durable consumption and saving

strategies. In Figure 4.11, we show how non-durable consumption and liquid wealth

(cash-on-hand) vary over the life cycle, given the letting option, different degrees of

bequest motive and housing weights in consumption utility.

The top left figure shows how letting affects investor’s non-durable consumption.

First, if letting is not allowed, the increase in the housing weight in consumption utility

θ mainly reduces investor’s non-durable consumption before retirement (by comparing

the cases of ’θ = 0.2, no letting’ and ’θ = 0.4, no letting’). However, if the investor is

allowed to let, the investor’s non-durable consumption with lower θ dominates that with
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higher θ (by comparing the cases of ’θ = 0.2, letting’ and ’θ = 0.4, letting’). This implies

that letting mainly benefits investor’s non-durable consumption during the retirement

period, where the investor cannot earn labour income.

Figure 4.11: Non-durable consumption and liquid wealth (letting, bequest motive,
housing weight in consumption utility

The four plots compare the non-durable consumption and liquid wealth over the entire life

with/without bequest motive or letting option and varying degrees of housing weight in utility

of consumption.

By comparing the top two figures, we also have two observations. First, in the

case of no letting, the investor consumes less non-durable goods during the retirement

period if she has bequest motive. This is because for the investor who has bequest

motive, she wants to accumulate more liquid or housing wealth during the retirement

as a bequest. Second, if the investor can let and if θ = 0.2 (which means the investor

is willing to let), the investors consume almost the same amount of non-durable goods
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during the retirement period, no matter whether she has or has not the bequest motive

(by comparing the two lines of ’θ = 0.2, letting’ in left and right two figures). This

indicates that letting is more beneficial to the investor who has bequest motive. Because

they can keep the non-durable consumption level during retirement although the investor

is accumulating wealth for bequest purpose at that time.

From the bottom two figures, we notice that letting reduces the accumulation of

liquid wealth during most periods in life, especially during the retirement period for the

investor who has bequest motive. This also shows that although the investor gains extra

incomes from letting, she will not use this amount of capital to accumulate liquid wealth

but mainly consume non-durable goods.

4.6 Conclusions

In this chapter, we formulate a life-cycle consumption and housing model that in-

corporates three kinds of housing decisions: renting, owning and letting (conditional on

the homeownership). Besides the housing decisions, the investor also needs to choose

the amount to consume non-durable goods and the remaining wealth is saved as liquid

wealth (cash-on-hand).

We mainly investigate three kinds of tradeoffs among those decisions. First, how

does the investor choose between renting and owning a house? Second, if the investor

owns a house, how does she balance between living in the housing and letting a portion

of it (i.e, downsizing the living space) to gain extra rental income? At last, after the

investor has made the housing decisions, how does she make non-durable consumption

and saving decisions, both in the absence and presence of letting option?

We find that the investor with higher bequest motive and EIS is more willing to

own a house rather than rent one, while the housing weight in the consumption utility

has the opposite effect. On the other hand, letting and the borrowing limit from house

equity helps to make up the life-cycle pattern of homeownership rate. The investor who

can let or has a higher borrowing limit is more (less) willing to own a house before (after)

retirement, compared to the one who cannot let or has a lower borrowing limit.

The homeowner is more willing to let out rather than living in the home during the

life if she has a small preference of housing in the utility of consumption while the degree

of bequest motive and EIS mainly affect the letting decision during the retirement period.

The homeowner with no bequest motive has hump-shaped life-cycle letting pattern. She

has the highest letting willingness at around age 70, just after the retirement age 65.

In comparison, the homeowner who has bequest motive still keeps increasing the letting
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willingness after age 70. Similar effect is seen from a higher EIS value.

The homeowner mainly uses the rental income from letting in consuming non-

durable goods rather than accumulating liquid wealth, regardless of bequest motive.

To be more specific, letting can benefit the investor’s non-durable consumption during

the retirement period, where the investor does not have labour income. Moreover, for

the investor who has bequest motive, letting helps to keep the non-durable consumption

level while she is accumulating liquid wealth for the purpose of bequest.
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Appendix

4.A Derivation of the First-order Optimality Conditions

In this section, we derive the first-order optimality conditions for the objective

function with respect to each control variable ct, ht, xt, zt (first-order conditions for the

linear inequality constraints are straightforward) at each time period t.

Time t=T:

∂JT
∂cT

=(1− 1/ψ)
{

(1− θ)(1− δ)f(hT , xT )θ(1−1/ψ)c
(1−θ)(1−1/ψ)−1
T

− δηET
[
rf (

θ

(1− θ)q̃T
)θ(1−1/ψ)(wT+1 + e(hT+1))−1/ψ

]}
,

∂JT
∂hT

=(1− 1/ψ)
{
θ(1− δ)f(hT , xT )θ(1−1/ψ)−1c

(1−θ)(1−1/ψ)
T

∂f(hT , xT )

∂hT

+ δηET
[
(

θ

(1− θ)q̃T
)θ(1−1/ψ)(wT+1 + e(hT+1))−1/ψ(rf

∂g(ht | ht−1)

∂hT
+
∂e(hT+1)

∂hT
)
]}
,

∂JT
∂xT

=(1− 1/ψ)
{
θ(1− δ)f(hT , xT )θ(1−1/ψ)−1c

(1−θ)(1−1/ψ)
T

∂f(hT , xT )

∂xT

+ δηET
[
(

θ

(1− θ)q̃T
)θ(1−1/ψ)(wT+1 + e(hT+1))−1/ψ(rf (

∂g(ht | ht−1)

∂xT
+
∂ḡ(xt)

∂xT
))
]}
,

∂JT
∂zT

=δηET
[
κ(

θ

(1− θ)q̃T
)θ(1−1/ψ)(wT+1 + e(hT+1))−1/ψ

]}
.
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Time t=1, . . .,T− 1:

∂Jt
∂ct

=(1− 1/ψ)
{

(1− θ)(1− δ)f(ht)
θ(1−1/ψ)c

(1−θ)(1−1/ψ)−1
t

− δrfEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1

∂Jt+1

∂wt+1
+ η(1− pt+1)(

θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ

]}
,

∂Jt
∂ht

=(1− 1/ψ)
{
θ(1− δ)f(ht)

θ(1−1/ψ)−1c
(1−θ)(1−1/ψ)
t

∂f(ht)

∂ht

+ δEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1

∂Jt+1

∂wt+1
rf
∂g(ht | ht−1)

∂ht

+ η(1− pt+1)(
θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ(rf

∂g(ht | ht−1)

∂ht
+
∂e(ht+1)

∂ht
)
]}
,

∂Jt
∂xt

=(1− 1/ψ)
{
θ(1− δ)f(ht)

θ(1−1/ψ)−1c
(1−θ)(1−1/ψ)
t

∂f(ht)

∂ht

+ δEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1

∂Jt+1

∂wt+1
rf
∂g(ht | ht−1)

∂ht

+ η(1− pt+1)(
θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ(rf

∂g(ht | ht−1)

∂xt
+
∂ḡ(xt)

∂xt
)
]}
,

∂Jt
∂zt

=δκEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1

∂Jt+1

∂wt+1
+ η(1− pt+1)(

θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ

]}
.

(4.11)

By taking the partial derivative with respect to wt of Model 4.9, we get:

∂Jt
∂wt

=(1− 1/ψ)
{
δrfEt

[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1

∂Jt+1

∂wt+1
+ η(1− pt+1)(

θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ

]}
.

Then we obtain the envelop condition as:

∂Jt
∂wt

=(1− 1/ψ)
{

(1− θ)(1− δ)f(ht)
θ(1−1/ψ)c

(1−θ)(1−1/ψ)−1
t

}
. (4.12)
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Substitute (4.12) into (4.11), first order conditions can be rewritten as ( ∂Jt+1

∂wt+1
is

eliminated):

∂Jt
∂ct

=(1− 1/ψ)
{

(1− θ)(1− δ)f(ht)
θ(1−1/ψ)c

(1−θ)(1−1/ψ)−1
t

− δrfEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1(1− θ)(1− δ)f(ht+1)θ(1−1/ψ)c

(1−θ)(1−1/ψ)−1
t+1

+ η(1− pt+1)(
θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ

]}
,

∂Jt
∂ht

=(1− 1/ψ)
{
θ(1− δ)f(ht)

θ(1−1/ψ)−1c
(1−θ)(1−1/ψ)
t

∂f(ht)

∂ht

+ δEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1(1− θ)(1− δ)f(ht+1)θ(1−1/ψ)c

(1−θ)(1−1/ψ)−1
t+1 rf

∂g(ht | ht−1)

∂ht

+ η(1− pt+1)(
θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ(rf

∂g(ht | ht−1)

∂ht
+
∂e(ht+1)

∂ht
)
]}
,

∂Jt
∂xt

=(1− 1/ψ)
{
θ(1− δ)f(ht)

θ(1−1/ψ)−1c
(1−θ)(1−1/ψ)
t

∂f(ht)

∂ht

+ δEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1(1− θ)(1− δ)f(ht+1)θ(1−1/ψ)c

(1−θ)(1−1/ψ)−1
t+1 rf

∂g(ht | ht−1)

∂ht

+ η(1− pt+1)(
θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ(rf

∂g(ht | ht−1)

∂xt
+
∂ḡ(xt)

∂xt
)
]}
,

∂Jt
∂zt

=δκEt
[
pt+1J

1−γ
t+1 + η(1− pt+1)((wt+1 + e(ht+1))(

θ

(1− θ)q̃t
)θ)1−γ] 1−1/ψ

1−γ −1

· Et
[
pt+1J

−γ
t+1(1− θ)(1− δ)f(ht+1)θ(1−1/ψ)c

(1−θ)(1−1/ψ)−1
t+1

+ η(1− pt+1)(
θ

(1− θ)q̃t+1
)θ(1−γ)(wt+1 + e(ht+1))−γ

]}
.

Notice that, the first-order optimality conditions presented above involve calcula-

tions of the expected values Et
[
. . .
]
. In order to compute these expectations approxi-

mately, one can follow a regression-based method introduced by Koijen et al. [2009].

97



Chapter 5

Summary of Thesis and Future

Work

In this thesis, we study three main life-cycle problems focusing on different aspects

in terms of model ingredients, investor’s subjective preferences and uncertainties.

We first investigate a life-cycle consumption and asset allocation problem introduc-

ing habit formation preferences and demand for term life insurance. We consider an

investor who is not only risk-averse but also averse to ambiguity about stock returns

in a robust optimization framework. Our key findings are as follows. There are several

factors that affect the term life insurance demand. Similar to the bequest motive, ambi-

guity aversion also increases the demand for term life insurance. If one takes into account

other realistic features such as subjective survival beliefs and borrowing opportunities,

one would expect that investors should buy term life insurance more than they actually

do. Our model potentially explains why this is the case. We show that habit formation

leads to less term life insurance demand and plays a first-order role compared to other

factors.

Moreover, we find that investor’s stock allocation largely depends on the degree

of ambiguity aversion. While earlier literature shows that an ambiguity-averse investor

allocates less wealth in stock, we add to this evidence by showing that this relation is

monotonically decreasing in the degree of ambiguity aversion. This is precisely impor-

tant, because we only observe an effect of habit formation on asset allocation when the

degree of ambiguity aversion is high.

Then we study a life-cycle consumption and asset allocation problem with labour

income ambiguity. We also analyse the effects of the correlation between stock return

and labour income and stock market predictability on investor’s life-cycle decisions, in
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the presence of ambiguity aversion. We obtain several important findings that contribute

to the literature. The ambiguity aversion towards labour income substantially increases

investor’s saving motive. In other words, the investor accumulates more wealth (by

sacrificing early consumption). The results still hold if the investor is also ambiguity-

averse towards the stock return.

By incorporating the ambiguity aversion towards both uncertainties, we obtain a

stock allocation pattern closer to real data in terms of the low level and the hump shape

over the life cycle. We can also explain part of the strong (retirement) saving motive

in data. Moreover, our computational results confirm that the presence of stock market

predictability makes the investor’s life-cycle consumption and wealth pattern smoother,

which is hardly documented in literature.

In the third life-cycle problem, we focus on the investor’s consumption and housing

decisions over the life cycle. We introduce the letting decisions (given the homeowner-

ship) into the model, along with renting and housing, which have been incorporated in

previous life-cycle models. We mainly investigate three kinds of tradeoffs among life-

cycle decisions and our findings can be summarised as follows. First, we find that the

investor with higher bequest motive and EIS is more willing to own a house rather than

rent one, while the housing wealth in the consumption utility has the opposite effect. On

the other hand, letting and the borrowing limit from house equity helps to make up the

life-cycle pattern of homeownership rate. The investor who can let or has a higher bor-

rowing limit is more (less) willing to own a house before (after) the retirement, compared

to the one who cannot let or has a lower borrowing limit.

Second, the homeowner is more willing to let out rather than living in the house/flat

during the life if she has a small preference of housing in the utility of consumption

while the degree of bequest motive and EIS mainly affect the letting decision during the

retirement period. The homeowner with no bequest motive has hump-shaped life-cycle

letting pattern. She has the highest letting willingness at around age 70, just after the

retirement age 65. In comparison, the homeowner who has bequest motive still keeps

increasing the letting willingness after age 70. Similar effect is seen from a higher EIS

value.

Furthermore, the homeowner mainly uses the rental income from letting in con-

suming non-durable goods rather than accumulating liquid wealth, regardless of bequest

motive. To be more specific, letting can benefit the investor’s non-durable consumption

during the retirement period, where the investor does not have labour income. More-

over, for the investor who has bequest motive, letting helps to keep the non-durable

consumption level while she is accumulating liquid wealth for the purpose of bequest.
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There are several other research questions that we have not investigated in this

thesis but remain interesting and valuable for future work. For instance, in the presence

of letting, how will the investor optimally choose between investing in housing wealth

and financial assets such as stocks and annuities, especially after retirement. What are

the implications of ambiguity aversion and habit formation in housing consumption on

housing decisions including renting, owning and letting?

Throughout the thesis, we use calibrations widely applied in the literature to define

the economic-related parameters and processes such as stock return and labour income.

Alternatively, one can collect data related to different groups of the population and

estimate the corresponding parameters and processes. This allows us to investigate

the life-cycle decision making problems of different population coming from different

backgrounds (e.g., different countries and groups of investors).

Moreover, besides the traditional dynamic programming, scenario-based stochastic

programming and robust optimization, some recent developed methods such as decision

rule approach [e.g., Ben-Tal et al., 2004; Calafiore, 2008; Kuhn et al., 2011], distribution-

ally robust optimization [e.g., Calafiore and Ghaoui, 2006; Delage and Ye, 2010; Goh and

Sim, 2010], approximate dynamic programming [e.g., Powell, 2007] may be also suitable

in solving the life-cycle problems.

Finally, some other uncertainties such as interest rates and mortgage rates are of-

ten assumed to be certain or follow distributions (e.g., normal distribution) and time-

independent. One may consider more realistic models for describing these uncertainties

and show the implications on life-cycle decisions.
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