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Abstract

We prove a bound on the effective resistance R x y( , )

between two vertices x y, of a connected graph which

contains a suitably well‐connected subgraph. We apply

this bound to the Erdős‐Rényi random graph n p( , )

with np n= Ω(log ), proving that R x y( , ) concentrates

around d x d y1/ ( ) + 1/ ( ), that is, the sum of reciprocal

degrees. We also prove expectation and concentration

results for the randomwalk hitting times, Kirchoff index,

cover cost, and the random target time (Kemenyʼs
constant) on n p( , ) in the sparsely connected re-

gime n n np nlog + log log log < 1/10≤ .
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1 | INTRODUCTION AND RESULTS

The effective resistance R x y( , ) between two vertices x y, of a graph G V E= ( , ) is the energy
dissipated by a unit current flow from x to y when all edges have unit resistances. That is,

{ }R x y θ e θ x y( , ) = inf ( ) : is a unit flow from to ,
θ

e E

2∑
∈

(1)
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see Section 1.3 for a complete mathematical formulation. The effective resistance has con-
nections to Markov chain theory, in particular for infinite graphs the transience or recurrence of
a random walk is determined by the resistance from the origin to cut sets at arbitrary distance
from the origin [13]. In finite graphs the resistances determine hitting times of random walks
[26] and are related to the eigenvalues of the Laplacian [23].

We prove a new bound on effective resistance for graphs G containing a subgraph H with
good connectivity properties. The result, Theorem 2.3, may be stated (very) informally as

R x y
d x d y

G H( , )
1

( )
+

1

( )
+ Error ( , ),x y,≤

where d ( )⋅ is the degrees of a vertex and G HError ( , )x y, is an error term. Depending on the graph
G and the subgraph H chosen the error may be insignificant compared to the other terms. In
that case our bound is essentially tight as d x d y1/( ( ) + 1) + 1/( ( ) + 1) is always a lower bound
on R x y( , ), see Section 2 for a full statement of Theorem 2.3. Although this bound holds for any
connected graph, the G HError ( , )x y, term may dominate; our bound works well for graphs with
strong expansion properties. We apply this bound to the random graph n p( , ) ∼ , that is the
simple graph  on n vertices with law n p( , ) given by sampling each edge independently with
probability p. The random graph n p( , ) has been extensively studied [4,16,19] and so it is a
natural question to determine the effective resistance for such a fundamental graph distribu-
tion. We remark that throughout all logʼs are base e and we define ε ε n p( , )n n≔ to be the
function

ε
n

np np

log

log( )
.n ≔ (2)

Theorem 1.1. For any c > 0 let n p( , ) ∼ with c n np nlog 1/10≤ ≤ . Then for a fixed
i j V, ∈ , where i j≠ ,

R i j
d i d j

ε d i

d i

ε d j

d j
o e o n( , ) −

1

( )
+

1

( )
> 9

2 + ( )

( )
+ 9

2 + ( )

( )
= ( ) + ( ).n n np

2 2
− /4 −3

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

Notice if np n= Ω(log ) then ε o= (1)n . Theorem 1.1 shows that with high probability
(w.h.p.) the main contribution to the effective resistance R i j( , ) between vertices i j V, ∈ comes
from the flow through edges connecting i and j to their immediate neighbours.

From the definition (1) of R x y( , ) one observes that the contribution to the resistance from
each edge in the graph is quadratic in the amount of flow passing through that edge. The main
idea of Theorem 2.3 is to show that if a graph contains a subgraph from a certain family well
connected graphs then there are many paths between the neighbours of x and y which become
edge disjoint away from x and y. If this is the case then the flow can be divided up evenly
between the edges close to x and y, further away we use the edge disjoint paths to carry the
flow. In a graph with good expansion there should be many paths such paths and so the flow
through these edges should be negligible compared to that through edges close to x and y.
However since we balanced the flow evenly over edges close to x and y the contribution to
R x y( , ) from these edges is close to optimal and matches a simple lower bound up to lower
order terms. Aside from n p( , ) our bound on resistance, Theorem 2.3, may potentially be
applied to other random graph models such as binomial random intersection graphs [16, §11]
and Chung‐Lu graphs [9] in certain regimes. These regimes where this bound may be effective
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are those where there is constant minimum degree, the average degrees is large, and it is hard to
get good enough control on the spectral statistics to apply spectral methods to obtain estimates
on the resistances or hitting times with the correct leading constant.

We also consider expected hitting times h i j( , ) of a random walk. Let Pi
G be the law of a

simple random walk (SRW) Xt on G, that is the random process which at each step moves
to a uniformly chosen neighbour of the current vertex, then h i j t τ X iE( , ) [ | = ]G

j 0≔ , where
τ t X jinf{ : = }j t≔ . Hitting times are well studied in Markov chain theory [1, 22]. They also
feature in randomised algorithms, for example, the run time of the original LOGSPACE
algorithm for undirected complexity [23], and are a popular tool in machine learning to
analyze the structure of graphs [27]. Tetaliʼs formula [26] relates hitting times to
resistances:

h i j E G R i j
d u

R j u R u i( , ) = | ( )| ( , ) +
( )

2
[ ( , ) − ( , )].

u V

∑⋅
∈

(3)

Using Tetaliʼs formula we derive results for hitting times and related qualities via controlling
resistances. We shall focus on the following regime for n p( , ) which we call sparsely
connected:

n n np nlog + log log log .1/10≤ ≤ (4)

Recall that n p( , ) has average degree np, however, at the lower end of the range (4) it
also has vertices of constant degree w.h.p. so, at the lower end, n p( , ) is far from being
regular.

Let n ≔ be the event  is connected and [ | ] ⋅ be conditional expectation w.r.t. n p( , ) .

Theorem 1.2. Let n p( , ) ∼ satisfy (4). Then for any i j V, ( )∈ , where i j≠ ,

R i j
O ε

np
and h i j n O ε[ ( , )| ] =

2 ± ( )
[ ( , )| ] = (1 ± ( )).n

n  

We obtain concentration for resistances and hitting times from Theorem 1.1.

Theorem 1.3. For any c > 0 let n p( , ) ∼ with np c o n= ( ± (1))log . Then for
fixed i j V≠ ∈ ,

(i) ( ) ( )R i j e( , ) − > .
np c n n

2 10

log( )log log( )

−Ω
n

n
2

log

(log log )2 ≤ Further, if np ω n= (log ) and

np n1/10≤ then

(ii) ( )R i j osup ( , ) − > =
i j V

np

n

np n
{ , }

2 7 log

( )

1
3/2

⎛
⎝⎜⎜

⎞
⎠⎟⎟⊆

.

(iii) ( )h i j n n osup | ( , ) − | > 12 =
i j V

n

np n
{ , }

log 1
⎛
⎝⎜⎜

⎞
⎠⎟⎟⊆

.

Observe Theorem 1.3 (iii) gives concentration of h i j( , ) around n for all pairs i j V, ∈ when
np ω n= (log ). For np n= Θ(log ) we prove concentration by the second moment method.
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Theorem 1.4. Let n p( , ) ∼ satisfy (4), f n( ) : + → . Then for a fixed i j V i j, ,∈ ≠ ,

h i j n n f n ε O
f n

(| ( , ) − | > ( ) ) =
1

( )
.n

⎛
⎝⎜

⎞
⎠⎟⋅

In particular by choosing f n np( ) = log log( ) above we have concentration for a fixed pair
i j V, ∈ , not all pairs; the following proposition shows that this is best possible.

Proposition 1.5. Let n p( , ) ∼ . If np n n= log + 100 log log log , then w.h.p. there
exists i j V, ∈ such that R i j( , ) 1≥ and h i j n n( , ) > log( )/3. For any c1 < < ∞, if
np c n= log( ) then there is an a > 0 and i j V, ∈ such that w.h.p. R i j a np( , ) (2 + )/≥

and h i j a n( , ) > (1 + ) .

Theorems 1.2 to 1.4 are valid only for np n1/10≤ , however, concentration and expectation
for all of the aforementioned random variables has been determined for np above this range.
The original contribution of this paper is determining expectation and concentration close to
the connectivity threshold np n= log , see the literature review in Section 1.2 for more details.

One consequence of applying Theorem 2.3 to n p( , ) is that we can also show that there are
many ways to select a edge‐disjoint paths between the first neighbours of a pair of vertices. In
particular for a graph G let paths i j l( , , )2 be the maximum number of paths of length at most l
between vertices i and j of G that are vertex disjoint on V B i B j\( ( ) ( ))1 1∪ .

Theorem 1.6. Let n p( , ) ∼ , where for any c > 0, c n np nlog 1/10≤ ≤ . Let
l n nplog /log( ) + 9≔ . Then for i j V, ∈ , where i j≠ ,

(i) paths i j l d i d j n p o e( ( , , ) min{ ( ), ( )}) 5 + ( )np n
2 2 2

3 4 −7 min{ ,log }/2 ≠ ≤ ,
(ii) paths i j l np np np o np(| ( , , ) − ( ) | > 3( ) log ) = (1/ )2

2 3/2 .

We also prove results for some other related indices which appear in the literature for
n p( , ) . For a discussion of how our results extend previous work see Section 1.2.
Let π v d v E( ) = ( )/2| | for v V∈ be the stationary distribution of the SRW on G and define,

H G π i h i j j V T G π j h i j( ) ( ) ( , ) for , ( ) ( ) ( , ).j

i V j V

∑ ∑≔ ∈ ≔
∈ ∈

(5)

The index H G( )j is known as the stationary hitting time to j [24] and T G( ) is the random target
time or Kemenyʼs constant [1,22]. Note that T G( ) is independent of the vertex i in (5), see
[23, Equation 3.3], and the expected running time of Wilsonʼs algorithm [28] on G is O T G( ( )).

Theorem 1.7. Let n p( , ) ∼ satisfy (4). Then for any i V ( )∈ ,

H n O ε T n O ε[ ( )| ] = (1 ± ( )) and [ ( )| ] = (1 ± ( )).i n n    

The Kirchoff index K G( ) and cover cost cc G( )i of a finite connected graph G are defined by

K G R i j cc G
n

h i j i V( ) ( , ), and ( )
1

− 1
( , ) for .

i j V

i

j V{ , }

∑ ∑≔ ≔ ∈
⊆ ∈

(6)
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The former is studied in the contexts of mathematical chemistry [12] and sensor networks [5],
and the latter was introduced to bound the cover time [17,18]. By linearity of expectation:

Corollary 1.8 (Of Theorem 1.2). Let n p( , ) ∼ satisfy (4). Then for any i V ( )∈ ,

K
n

p
O ε cc n O ε[ ( )| ] = (1 ± ( )) and [ ( )| ] = (1 ± ( )).n i n    

We prove concentration for these random variables on n p( , ) by the second moment method.

Theorem 1.9. Let n p( , ) ∼ satisfy (4) and let f n( ) : + → . Fix i V∈ and let X be
any of the random variables K H T cc( ), ( ), ( ), ( )i i    . Then

X X X f n ε O
f n

(| − [ | ]| > [ | ] ( ) ) =
1

( )
.n   

⎛
⎝⎜

⎞
⎠⎟⋅

1.1 | Outline of the Paper

Section 2 contains our bounds on the effective resistance. In particular, in Section 2.1 we prove a
general bound, Theorem 2.3, which is based on the existence and structure of a desirable subgraph
H . In Section 2.2 we describe a specialisation of this bound based on a specific family of subgraphs
defined by an exploration process which is well suited to n p( , ) . In Section 3 we prove preliminary
results regarding the subgraph of n p( , ) described in Section 2.2, these results are needed to apply
our bounds on effective resistance to n p( , ) . In Section 4 we apply the results of Sections 2 and 3 to
prove Theorems 1.1 and 1.3, which determine resistances in n p( , ) , and Theorem 1.6, which
concerns paths between second neighbours in n p( , ) . Finally in Section 5 we combine results from
the previous three sections to prove Theorems 1.2, 1.4, 1.7, and 1.9 which are results on the
expectation and concentration for hitting times of random walks and related indices on n p( , ) . In
the remainder of this section we shall discuss some related work and how our work extends known
results and also cover some preliminary material.

1.2 | Related work

In [20] Jonasson studies the cover time, that is the expected time to visit all vertices from the
worst starting vertex, for n p( , ) . He bounds the cover time by showing effective resistances and
hitting times on n p( , ) concentrate in the regimes, where ω n np n(log ) = 1/3≤ . Jonasson does
not use spectral methods and instead bounds the effective resistance by finding a suitable flow.
This is the approach we have also taken, using a refined analysis we extend Jonassonʼs results
for hitting times to the range (4) and for effective resistance to the case np n= Ω(log ). It is
worth noting that the cover time has since been determined for all connected n p( , ) by Cooper
and Frieze [11] using the first visit Lemma and mixing time estimates.

Let L D A= − be the graph Laplacian, where A is the adjacency matrix and D is the
diagonal matrix with D d i= ( )i j, if i j= and D = 0i j, otherwise [12, 23]. Many previous results
rely on exploiting connections between resistances or hitting times and spectral statistics of L or
other representations of the graph. In this paper we do not employ spectral methods; the results
we achieve hold for n p( , ) close to the connectivity threshold where the minimum degree is 1
w.h.p. and it is hard to obtain good enough estimates on the relevant spectral statistics.
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Boumal and Cheng [5] exploit an expression for the Kirchoff index K G( ) in terms of the trace of
L G( )† , the Moore‐Penrose pseudoinverse of L G( ) [12], to obtain expectation and concentration for
K ( ) on n p( , ) with np ω n= ((log ) )6 . We will now outline a related expression for K G( ) and
explain how this can also be used with spectral statistics to control K G( ). Let λi be the eigenvalues
of L G( ), where G is a finite connected graph. Then by the matrix tree theorem [18]:

K G
λ

( ) =
1

.
λ i0i

∑
≠

(7)

A theorem of Coja‐Oghlan [10, Theorem 1.3], states that if n p( , ) ∼ with np C nlog0≥ for
sufficiently large C0 the nonzero eigenvalues of L ( ) concentrate around the mean. Combining
these estimates with (7) yields concentration for K ( ) and with extra work the leading order
term of K[ ( )| ]   can be determined when np C nlog0≥ . It is of note however that Boumal
and Cheng obtain second order terms for K[ ( )| ]   , which is not possible with the latter
method. Theorems 1.2 and 1.9 give expectation and concentration for K ( ) in the range (4).

Löwe and Torres [24] obtain concentration results for T H( ), ( )i  and also the commute
time κ i j h i j h j i( , ) = ( , ) + ( , ) on n p( , ) . Again, the result comes from using expressions for
these quantities in terms of the eigenvectors and eigenvalues of the transition matrix of the
simple random walk, these expressions can be found in [23]. Löwe and Torres then apply
results from Erdős et al [14] to bound from above the reciprocal of the spectral gap. Löwe and
Torres require np ω n= ((log ) )C0 for some C > 00 sufficiently large as this is needed to apply
the results in [14]. Theorems 1.2, 1.7, 1.9, and 1.4 extend these results to the range (4).

Von Luxburg et al [27, Theorem 5] prove bounds on the difference of h i j E( , )/2| | from
d i1/ ( ) for nonbipartite graphs by the reciprocal of the spectral gap and the minimum degree of

G. They then apply these to various geometric random graphs. These bounds give the same
result as Theorem 1.1 (iii) when applied to n p( , ) with np ω n= (log ), however, if
np O n= (log ) they will only give the hitting times up‐to a constant. Theorem 1.4 provides
concentration results for h i j( , ) recovering the leading constant in the extended range (4).

On a different note, Bollobás and Thomason [4, Theorem 7.4] showed the threshold for
having minimum degree k n( ) coincides with the threshold for having at least k n( ) vertex‐
disjoint paths between any two points. Theorem 1.6 can be thought of as a “local first neigh-
bourhood relaxation” of this statement for two vertices as it roughly states that if you want to
separate two vertices x and y and your not allowed to use any vertices from either x or yʼs first
neighbourhoods then w.h.p. the next best option take the smaller of x or yʼs second neigh-
bourhoods as a separator. Broder et al [6] show that there are edge disjoint paths between any
two sets of vertices in n p( , ) , provided that the sets are not too large and provide a polynomial
time algorithm to find them. The restrictions on the sets are very modest, however, their results
do not give bounds on the length of the paths found or exact bounds on their number.

1.3 | Further preliminaries

We use X ∼ to denote the random variable X having law . For random variables A B, , we
say that B dominates A if A x B x[ > ] [ > ] ≤ for every x and we use the notation B A1≽ , or
A B1≼ in this case. If A B1≼ and A B, 0≥ then A B[ ] [ ]α α ≤ for any α 1≥ . Let n pBin( , )

denote the binomial distribution over n trials each of probability p. Some additional prob-
abilistic notions and lemmas may be found in Appendix A.
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Throughout we will be working on a finite simple connected graphG V E= ( , ) with V n| | =

and E m| | ≕ . Let d i j( , ) be the graph distance between i j V, ∈ and define the following:

i j V d i j k d i i B i iΓ ( ) { : ( , ) = }, ( ) |Γ ( )| , ( ) Γ ( ),G k G k k G k
h

k

h, , ,
=0

≔ ∈ ≔ ≔ ⋃ (8)

which are the kth neighbourhood of i, size of kth neighbourhood and the ball of radius k
centred at i, respectively. We drop theG from the subscripts in (8) when the graph is clear, and
the subscript 1 when referring to first neighbourhoods, that is, x xΓ( ) Γ ( )1≔ and d x x( ) |Γ( )|≔ .

The hitting times h i j( , ) can be far from symmetric, see the example of the lollipop graph
[23]. The commute time κ i j( , ) is the expected number of steps for a random walk from i to
reach j and return back to i. The commute time κ i j( , ) is symmetric and related to hitting times
and effective resistances by the commute time formula [7]

κ i j h i j h j i m R i j( , ) ( , ) + ( , ) = 2 ( , ).≔ ⋅ (9)

1.3.1 | Erdős‐Rényi Graphs

The Erdős‐Rényi or Binomial random graph model n p( , ) is a probability distribution over
simple n vertex graphs. Any given n vertex graph G V E= ( , ) is sampled with probability

( )G p p( = ) = (1 − ) .E G
n E G| ( )| 2
−| ( )| 

This  is the product measure over edges of the complete graph Kn, where each edge occurs as
an i.i.d. Bernoulli random variable with probability p p n0 < ( ) < 1≔ . Throughout  will de-
note expectation with respect to . Another feature of Erdős‐Rényi graphs worth mentioning is
that for each u V∈ the degree of u is binomially distributed d u Bin n p( ) ( − 1, )∼ and the
degrees are not independent. This model has received near constant attention in the literature
since the original n m( , ) model was studied by Erdős and Rényi [15]. For more information
consult one of the many books on random graphs [4, 16, 19].

Observe that the effective resistance becomes a random variable when the graph is drawn
from n p( , ) . Since the effective resistance between two disconnected vertices is infinite we
shall need to condition on the event n ≔ that  is connected. Let ( ) ( | )   ⋅ ≔ ⋅ and

[ | ]   ≔ ⋅ be the expectation with respect to  . The following theorem gives a bound on
being disconnected above the np n= log connectivity threshold.

Theorem 1.10 (Bollobás [3, Theorem 9, §VII]). Let n p np n ω n( , ), = log + ( ) ∼ ,
where ω n( ) → ∞. Then

e( ) 4 .c ω n− ( )  ≤ ⋅ (10)

1.3.2 | Basics of electrical network theory

There is a rich connection between random walks on graphs and electrical networks, consult
either of the books [13, 25] for a thorough introduction to the subject. Here we only intend to
make the definition of R i j( , ) given in the introduction rigorous and cover the essentials.
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An electrical network, N G C( , )≔ , is a graph G and an assignment of conductances
C E G: ( ) +→ to the edges of G. Our graph G is undirected and we define E G( )

→
≔

xy xy E G{ : ( )}→ ∈ , this is the set of all possible oriented edges for which there is an edge inG. For
some i j V G, ( )∈ , a flow from i to j is a function θ E G: ( ) →

→ satisfying θ xy θ yx( ) = − ( )→ → for
every xy E G( )∈ as well as Kirchoffʼs node law for every vertex apart from i and j, that is

θ uv v V v i j( ) = 0 for each , , .
u vΓ ( )1

∑ → ∈ ≠
∈

A flow from i and j is called a unit flow if in addition to the above it has strength 1, that is

θ iu θ uj( ) = 1, ( ) = 1.
u i u jΓ ( ) Γ ( )1 1

∑ ∑
→ →

∈ ∈

For the network N G C= ( , ) we can then define the effective resistance R i j( , )C between two
vertices i j V G, ( )∈ . First for a flow θ on N let

θ
θ e

C e
( ) =

( )

2 ( )
,

e E

2

 ∑
∈
→

be the energy dissipated by θ. Then for i j V G, ( )∈ , R i j( , )C can be defined as

R i j θ θ i to j( , ) inf{ ( ) : is a unit flow from }.C ≔ (11)

We refer to the flow minimising (11) as the current, thus the effective resistance is the energy
dissipated by the current of strength 1 from i to j in N G C= ( , ). This current exists and is
unique since we are working on a finite graph. Equivalently R i j( , ) is the reciprocal of the
amount of flow when a unit potential difference is fixed between i and j.

The conductances C define a reversible Markov chain [25]. In this paper we fix C e( ) = 1 for
all e E G( )∈ as this corresponds to a simple random walk, in this case we write R i j( , ) instead of
R i j( , )C . This R i j( , ) is the effective resistance in Equations (6), (3), and (9).

One very useful tool is Rayleighʼs monotonicity law [25, §2.4]: If C C E G, ′ : ( ) +→ are
conductances on the edge set E G( ) of a connected graph G and C e C e( ) ′( )≤ for all e E G( )∈

then for all pairs i j V G{ , } ( )⊂ , we have R i j R i j( , ) ( , )C C′ ≤ .

2 | BOUNDS ON EFFECTIVE RESISTANCE

The aim of this section is to obtain bounds on R u v( , ) for which the main contribution, when
applied to graphs with good expansion, comes from the first neighbourhoods of u and v.

2.1 | General bound

Recall that d x( ) denotes the size of the first neighbourhood of vertex x V G( )∈ . Jonasson gives
the following lower bound on effective resistance.
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Lemma 2.1 (Jonasson [20, Lemma 1.4]). For any graph G V E= ( , ) and x y V, ∈ , x y≠

R x y
d x d y

( , )
1

( ) + 1
+

1

( ) + 1
.≥

We seek an upper bound where the dominant term looks roughly like the one in Lemma 2.1.
To achieve this we shall define a subgraph H x y r k( , , , ) which will allow us to route flow
through the graph efficiently. Recall the definition (8) of xΓ ( )H k, , d x( )H k, , and B x( )H k, .

Definition 2.2. For a graph G and x y V G, ( )∈ , x y≠ define H H x y r k G( , , , )≔ ⊆ as
follows. First, B x( )H r, (resp. B y( )H r, ) is a tree with a nonempty set of leaves all at distance
r from x (resp. y). Second, for each vertex w x yΓ ( ) Γ ( )H r H r, ,∈ ∪ there exists a set Hw

such that

(i) The vertex w is connected to every vertex in Hw by paths of lengths at most k.
(ii) For every distinct w z x y, Γ ( ) Γ ( )H r H r, ,∈ ∪ , the sets H H,w z are disjoint and the paths

connecting w to Hw and z to Hz are edge disjoint.
(iii) For every w z x y( , ) Γ ( ) × Γ ( )H r H r, ,∈ there is an edge from Hw to Hz.

To better understand why defining H x y r k( , , , ) as above will help us control effective
resistance R x y( , ) in graphs with good expansion we first recall definition (11) which states that
R x y( , ) is determined by the sum over all edges of the square of the current through each edge.
Heuristically one wishes to keep the max flow through an edge as small as possible, since this
max is squared. If a graph has good expansion properties, that is every set has lots of edges
leaving the set, then the smallest edge cuts separating x from y will be “close” to x and y. Our
approach is thus to find a flow from x to y which balances the flow as evenly as possible over
edges close to x and y where the cuts are smaller and thus the amount of flow is greater. We
divide the flow evenly among all descendants of x (from the perspective of rooting B x( )H r, at x)
and do the same for the flows in the reverse direction in B y( )H r, . Then once we are clear of the
r‐neighbourhoods we use the abundance of paths to route the flow from B x( )H r, to B y( )H r, . The
challenge is to then make sure all the paths meet up and that we have a valid flow, the structure
of the desired subgraph H outlined in Definition 2.2 will allow us to do this.

We now bound R x y( , ) in terms of the neighbourhoods of vertices in H x y r k( , , , ). This bound
is effective when a subgraph H can be found whoʼs vertices close to x and y have degrees similar to
what they were in the original graph. Let i x x x x x x x x E H( ) { : = , ( )}i k k0 1 0 −1≔ ⋯ ∈ be the set
of all paths of length i from x in H , and 1 = 1j x= if j x= and 0 otherwise.

Theorem 2.3. For a graph G, x y V, ∈ disjoint and k r, 1≥ , if H x y r k G( , , , ) ⊆ then

R x y
d x d y d p

k

d p

1
( , )

1

( )
+

1

( )
+

1

( )

1 + ( + 1)

( ( ) − 1)
,

H H i

r

pp p H j

i
j r

H j=1
2

=1

−1
= −1

2

i1

∑ ∑ ∏≤
⋅

⋯

where summation pp p x y( ) ( )i i i1  ⋯ ∈ ∪ is over all paths of length i from x or y in H .

Proof. We will now describe a unit flow θ from x to y through the network N H C= ( , ),
where C e( ) = 1 for all e E H( )∈ . This flow will be used to bound R x y( , ) from above
by (11).
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To begin we assign a flow of θ xx d x( ) = 1/ ( )H1 , where x xΓ ( )H1 ∈ is a neighbour of x.
Likewise let θ yy d y( ) = −1/ ( )H1 , where y yΓ ( )H1 ∈ . Then, for each edge x xi i−1 , where
x xΓ ( )i H i,∈ and i r1 ≤ ≤ we send the amount of flow entering xi divided by the number
of edges to x xΓ ( )i H i,∈ . So inductively if the unique path from x x= 0 to some xi is
x x x, , …, i0 1 , then the flow through the (directed) edge x xi i−1 is

θ x x
d x h x d x d x d x

( ) =
1

( )( ( ) − 1) ( ( ) − 1)
=

1

( )

1

( ) − 1
,i i

H H i H j

i

H j
−1

1 −1 =1

−1

∏
⋯

where we follow the convention that empty products are equal to 1.
We do the same with edges in the r neighbourhood of y but the flow is reversed. The

total contribution to θ( ) from the ball B x( )H r, of radius r around x is then given by

d x d x

1

( )

1

( ( ) − 1)
i

r

xx x x H j

i

H j=1 ( )
2

=1

−1

2
i i1 

∑ ∑ ∏
⋯ ∈

(12)

and likewise for the contribution to θ( ) from the edges in B y( )H r, .
We now describe the flow across an edge from Hw to Hz, where

w z x y( , ) Γ ( ) × Γ ( )H r H r, ,∈ . Indeed for each such edge ew z, we assign a flow

θ e θ x w θ zy
d x d x d y d y

( ) = ( ) ( ) =
1

( ) ( ( ) − 1)

1

( ) ( ( ) − 1)
,w z r r

H H r H H r
, −1 −1

−1 −1

⋅
⋯

⋅
⋯

where xx x w x( )r r1 −1 ⋯ ∈ (resp. yy y z y( )r r1 −1 ⋯ ∈ ) is the unique path of length r from x

(resp. y) to w (resp. z) in H . The reason for assigning this flow is that if we sum over all
the vertices in yΓ ( )H r, we obtain

θ e θ x w
d y h y

θ x w( ) = ( )
1

( ) ( ( ) − 1)
= ( ),

z y

w z r

y H r
r

Γ ( )

, −1

( ) −1
−1

H r r, 

∑ ∑
⋯

∈

(13)

which is precisely the flow leaving through w xΓ ( )H r,∈ . Thus the contribution to θ( ) by
the flow through these edges is precisely

d x d x d y d y

1

( )

1

( ( ) − 1)
=

1

( )

1

( ( ) − 1)
xx x x H j

r

H j yy y y H j

r

H k( )
2

=1

−1

2
( )

2
=1

−1

2
r r r r1 1 

∑ ∏ ∑ ∏
⋯ ∈ ⋯ ∈

(14)

We are not concerned with how flow is rooted from w to the relevant vertices of Hw but
note that since there is a path from w to each vertex in Hw with an edge to some Hz, where
z yΓ ( )H r,∈ constructing a flow is possible. We now bound the contribution from these paths.

Claim. The contribution to the θ( ) by the flow through the paths from w xΓ ( )H r,∈ to Hw is
at most k θ x w( )r−1

2⋅ , where xx x w x( )r r1 −1 ⋯ ∈ . The analogous bound holds for z yΓ ( )H r,∈ .

Proof of claim. We can assume that all paths to vertices in Hw have length k otherwise
we can subdivide edges on these paths, only increasing total resistance by Rayleighʼs
monotonicity law. Consider the set Si of edges in the union of all paths to Hw with furthest
endpoint from w at distance k1 ≤ ℓ ≤ from w, this edge set separates w from Hw.
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Recalling property (ii) of Definition 2.2, the only flow through these edges is that from w

to Hw. Thus the combined flow through Si is θ x w( )r−1 since this is the amount of flow
entering at w and leaving Hw, as shown by (13). Thus since the contribution to θ( ) by the
edges of Si is the sum of the squares of the flows through each edge of Si we see that this
cannot exceed θ x w( )r−1

2 by convexity. The result follows by summing the contributions
from the k such edge sets Si. □

Thus the contribution to θ( ) from all edges in these paths is at most

k

d x d x

k

d y d y( )

1

( ( ) − 1)
+

( )

1

( ( ) − 1)
.

xx x x H j

r

H j yy y y H j

r

H j( )
2

=1

−1

2
( )

2
=1

−1

2
r r r r1 1 

∑ ∏ ∑ ∏
⋯ ∈ ⋯ ∈

(15)

The result follows by summing the contributions (12), (14), and (15) to θ( ) . □

2.2 | Application to n p( , )

To apply Theorem 2.3 to n p( , ) one must describe a suitable H x y r k( , , , ), this is achieved using
the modified breadth‐first search (MBFS) algorithm. The inputs to the MBFS algorithm are a graph
G and a subset I u v V G= { , } ( )0 ⊆ , the outputs are sets I S V G, ( )i i ⊆ and E E G( )i ⊆ indexed by
the iteration of the algorithm. The algorithm is similar to one used in [2, §11.5] to explore the giant
component of an Erdős‐Rényi graph. However, the MBFS algorithm differs from other variations on
breadth‐first search algorithms used in the literature as it starts from two distinct vertices. More
importantly it also differs by removing clashes, where a clash is a vertex with more than one parent
in the previous generation as exposed by a breadth‐first search from two root vertices. In what
follows all graphs are on a common labelled vertex set V n[ ]≔ .

Modified breadth‐first search algorithm, G IMBFS( , )0 : To begin set S V I\0 0≔ , and
I E= =i i ∅ for all i 1≥ . Then generate the sets Si and update the sets Ii and Ei for i 1≥

iteratively by the following procedure:

Step1: Set S S=i i−1. For each w Si∈ check all pairs w w{ , ′}, where w I′ i−1∈ and,
• if there exists w I′ i−1∈ such that ww E G′ ( )∈ then remove w from Si,
• if there is a unique w I′ i−1∈ such that ww E G′ ( )∈ then add w to Ii and add ww′ to Ei.
Step 2: If Si ≠ ∅ and Ii ≠ ∅ then advance i to i + 1 and return to step 1. Otherwise end.

The set Ii contains the “active” vertices in the ith iteration and Si is the set of vertices that
have not been used in the first i iterations and Ei is the set xy E G x I y I{ ( ) : , }i i−1∈ ∈ ∈ of edges
“accepted” by the algorithm. Notice that S S S …0 1 2⊇ ⊇ and the sets I{ }i i 0≥ are all disjoint. A
vertex in Si will not be included in either Ii+1 or Si+1 if it has two or more neighbourhoods in Ii,
in this instance it is just ignored by the algorithm. If instead those vertices in Si with edges to
more than one vertex in Ii were added to Ii+1 then this procedure would describe a standard
breadth‐first search starting from two root vertices. Notice also that in step 1 the order in which
we consider the vertices of Si and then the edges between Si and Ii is unimportant.

For each pair of vertices I V0 ⊆ the MBFS algorithm provides a filtration

I( ),i i 0F F≔ (16)
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where 0 1F F⊆ ⊆⋯ , on the set of labelled graphs on V . Roughly speaking I( )i 0F only sees
graphs that are the distinguishable by MBFS run up to step i 0≥ from initial set I0. To
make this precise we must first describe an equivalence relation on graphs. Let u v V, ∈

and G F, be graphs on V . We say G Fk
u v{ , }≅ if the same k‐sequence of sets S I E{ , , }i i i i k1≤ ≤

is output when G u vMBFS( , { , }) and F u vMBFS( , { , }) are run for k iterations. Let
I u v V= { , }0 ⊆ and define I( )i 0F to be the σ‐algebra where the atoms are the equivalence
classes of i

u v{ , }≅ .
Let x Ik∈ , where Ik is produced by running G IMBFS( , )0 for some given I0. We shall now

define xΓ ( )*i , the MBFS neighbourhood of x , let x xΓ ( )*0 ≔ and for i 1≥

x y I
x x x x y

x x E j i
Γ ( ) :

there exists = , , …, = , where

for all = 1, …,
,*i k i

i

j j k j
+

0 1

−1 +

⎧⎨⎩
⎫⎬⎭≔ ∈

∈
(17)

and let d x x( ) = |Γ ( )|* *i i . Equivalently, we can also define xΓ ( )*i for i 1≥ inductively

x z I y x yz EΓ ( ) { : there exists Γ ( ) and }.* *i k i i i+ −1≔ ∈ ∈ ∈

To try and further clarify (17) we define the following sets S x( )k which are the vertices in Sk that
will not cause any clashes when the Γ*‐neighbourhood of x is explored,

S x S z( ) Γ ( ) .k k
z I z x,

1

k

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟≔ ⋃

∈ ≠

(18)

We can then also define the neighbourhood xΓ ( )*i inductively as follows:

x y S yΓ ( ) = Γ ( ) ( ).*i
y x

k i
Γ ( )

1 +
*i−1

⋃ ∩
∈

(19)

We define the pruned neighbourhood xΦ( ) of x I1∈ by

x x y d y D φ x xΦ( ) Γ ( ) \ { : ( ) }, and let ( ) |Φ( )| ,* *1≔ ≤ ≔ (20)

where

D D n p c
np c o n c

np ω n

( , ) =
max

50
, 50 , if = ( ± (1))log( ), where > 0,

0, if = (log( )).

⎧
⎨⎪
⎩⎪

⎧⎨⎩
⎡
⎢⎢

⎤
⎥⎥

⎫⎬⎭≔ (21)

This is the MBFS neighbourhood of x with all the neighbours who have less than D “MBFS‐
children” removed. The choice of D is related to concentration for binomial random variables
and our choice for this will be apparent during the proof of Lemma 3.3. One may think of D as
an atypically small value for the degree of a vertex.

Define the pruned neighbourhoods wΨ ( )1 of w I0∈ by

w w y y ψ w wΨ ( ) Γ ( ) \ { : Φ( ) = }, and let ( ) |Ψ ( )| .*1 1 1≔ ∅ ≔ (22)
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Set u uΨ ( ) = { }0 and let the pruned second neighbourhood wΨ ( )2 of w I0∈ be given by

w x x ψ w wΨ ( ) Φ( ) = Φ( ), also let ( ) |Ψ ( )| .
x w x w

2
Ψ ( ) Γ ( )

2 2
*1 1

≔ ⋃ ⋃ ≔
∈ ∈

(23)

For G u vMBFS( , { , }) define Ψi, the pruned version of Ii for i = 0, 1, 2, by

u v iΨ Ψ( ) Ψ( ), = 0, 1, 2.i i i≔ ∪

We prune the first neighbourhoods of vertices x I1∈ to obtain xΦ( ) so that later on when we
consider the trees induced by the union up to i of the Γ*‐neighbourhoods of y xΦ( )∈ we can get
good control over the growth rate of the trees. We prune the first neighbourhoods of vertices
w I0∈ as above so that we can send flow from our source vertex w to its pruned neighbourhood

wΨ ( )1 without having to worry about it getting stuck in any “dead ends.”
Recall (16), the definition of the filtration I( )k 0F . Observe that if x Ik∈ then xΓ ( )*1 is k+1F

measurable. It is worth noting, however, that if y I1∈ then yΦ( ) is 3F measurable and not
necessary 2F measurable since yΦ( ) is determined by vertices at distances 2 and 3 from I0. A
consequence of this is that for w I0∈ , w wΨ ( ), Ψ ( )1 2 are both 3F measurable as they are both
determined by the Φ‐neighbourhoods of vertices in wΓ ( )*1 .

Definition 2.4 (The set Au v
n k
,
, ). For integers n k, 0≥ let Au v

n k
,
, be the set of n‐vertex graphs

on V , where u v V, ∈ , such that for every pair x y u v( , ) Ψ ( ) × Ψ ( )2 2∈ the neighbourhoods
xΓ ( )*k and yΓ ( )*k are nonempty and there is at least one edge ij E G( )∈ , where

i xΓ ( )*k∈ , j yΓ ( )*k∈ .

We relate the structure of G Au v
n k
,
,∈ to Theorem 2.3 to give a bound on R u v( , ).

Corollary 2.5 (Of Theorem 2.5). Run G i jMBFS( , { , }) and suppose G Ai j
n k
,

,∈ . Then

R i j
ψ i ψ j

k

ψ i φ a

k

ψ j φ b

ψ i

k

φ x ψ j

k

φ y

( , )
1

( )
+

1

( )
+

+ 2

( ) ( )
+

+ 2

( ) ( )

1

( )
1 + sup

+ 2

( )
+

1

( )
1 + sup

+ 2

( )
.

a i b j

x i y j

Ψ ( )
2

Ψ ( )
2

Ψ ( ) Ψ ( )

1 1

1 1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟

∑ ∑≤
⋅ ⋅

≤

∈ ∈

∈ ∈

Proof. If we can find a some suitable subgraph H i j k( , , 2, ), from Definition 2.2, encoded
by the property Ai j

n k
,

, then the result follows by Theorem 2.3. The only thing that can go
wrong with G Ai j

n k
,

,∈ according to Definition 2.4 is that if one of the neighbourhoods
i j iΨ ( ), Ψ ( ), Ψ ( )1 1 2 , or jΨ ( )2 are empty. In this case one of the terms ψ i( ),ψ i( ), φ a( ), or φ b( )

on the RHS of the inequality will be 0, we define 1/0 to be infinity and so the inequality
holds vacuously. □

We encode Definition 2.4 as the following event for n p( , ) ∼ ,

{ }k n np Aexists log /(2 log ) + 2 such that ,u v u v
n k

, ,
, ≔ ≤ ∈ (24)

and say that  satisfies the strong path property if this holds, for an illustration of this property
consult (Figure 1).
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Notice that in Definition 2.4 either uΨ ( )1 or vΨ ( )1 may be empty, thus we also define the
following sets Bw

u v, for w u v{ , }∈ using the output of G u vMBFS( , { , }):

B G w B B B{ : Ψ ( ) }, and let .w
u v

u v u
u v

v
u v,

1 ,
, ,≔ ≠ ∅ ≔ ∩

Similarly to how we defined u v, define the events

B{ }, = .w
u v

w
u v

u v u
u v

v
u v, ,

,
, ,    ≔ ∈ ∩ (25)

3 | THE STRONG PATH PROPERTY FOR n p( , )

In this section, we prove some results needed to successfully apply Corollary 2.5 to n p( , ) in the
sparsely connected range (4), in particular we show that u v, holds w.h.p. To apply the bound
on effective resistance in terms of the reciprocals of ψ and φ we couple them to d and d*.
Lemmas 3.1, 4.2, and 3.4 will help us achieve this.

Lemma 3.1. Let n p( , ) ∼ , I u v V{ , }0 ≔ ⊂ , and i k, 0≥ . Run IMBFS( , )0 .

(i) Then S Bin n p| | ( − 2, (1 − ) )1
2∼ and I Bin n p p| | ( − 2, 2 (1 − ))1 ∼ .

(ii) Conditioning on x I{ }k∈ and S x| ( )|k , then

d x Bin S x p( ) (| ( )| , ).* k∼

(iii) Conditioning on x I S I{ }, | | , | |k k i k i+ +∈ , and d x( )*i , then

d x Bin S d x p p( ) (| | , ( ) (1 − ) ).* *i k i i
I

+1 +
| |−1k i+∼ ⋅ ⋅

Proof. Item (i): A vertex in S0 is in S1 if it is not connected to either vertex in I0. This
happens independently w.p. p(1 − )2 for each of the n − 2 vertices in S0 thus
S Bin n p| | ( − 2, (1 − ) )1

2∼ .

FIGURE 1 Illustration of G Au v
n k
,
,∈ , see Definition 2.4. Note: vertex z is not in uΨ ( )2 as it is connected to

less than D vertices in I3 and w is not in I2 as it has more than one parent in I1 [Color figure can be viewed at
wileyonlinelibrary.com]
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A vertex in S0 is in I1 if it is connected to exactly one vertex in I0. This happens
independently with probability p p2 (1 − ) for each of the n − 2 vertices in S0 thus I| |1 ∼

Bin n p p( − 2, 2 (1 − )).
Item (ii): Recall the definitions of xΓ ( )*1 and S x( )k for x Ik∈ , given by (17) and (18),

respectively. Observe the following relation:

x x S y x S xΓ ( ) = (Γ ( ) ) Γ ( ) = Γ ( ) ( ).* k
y I y x

k1 1
,

1 1

k

∩ ⋃ ∩
∈ ≠

Since we completely remove the vertices if they clash, and the edges of are independent,
the order MBFS explores the neighbourhoods of each y Ik∈ is unimportant. Assume that
we have explored the neighbourhood of every y Ik∈ with y x≠ . We then know which
vertices in the neutral set Sk will not clash if included in xΓ ( )1 and these are the vertices in
S x( )k . Since edges occur independently with probability p, conditioning on S x| ( )|k yields
d x Bin S x p( ) (| ( )| , )* k∼ .

Item (iii): For a vertex v Sk i+∈ we have v xΓ ( )*i+1∈ when there is exactly one edge
yv E( )∈ , where y xΓ ( )*i∈ and there is no edge of the form y v E′ ∈ , where y I′ k i+∈ and
y y′ ≠ . Conditioning on the sizes of Ik i+ and xΓ ( )*i we see that each v Sk i+∈ is a member
of xΓ ( )*i+1 with probability d x p p( ) (1 − )*i

I| |−1k i+⋅ ⋅ . These events are independent, thus

d x Bin S d x p p( ) (| | , ( ) (1 − ) ),* *i k i i
I

+1 +
| |−1k i+∼ ⋅ ⋅

conditional on S I| | , | |k i k i+ + , and d x( )*i . □

Let x Ik∈ . Choosing i = 0 in Lemma 3.1 (iii) gives d x Bin S p p( ) (| | , (1 − ) )* k
I| |−1k∼

conditional on S| |k and I| |k whereas Lemma 3.1 (ii) gives d x Bin S x p( ) (| ( )| , )* k∼ conditional
on S x| ( )|k . To relate (ii) to (iii) observe that conditional on S| |k and I| |k ,
S x Bin S p| ( )| (| | , (1 − ) ).k k

I| |−1k∼ Item (iii) then follows as if X B n p( , )∼ and, conditional on X ,
Y B X q( , )∼ , then Y is a simple binomial variable with distribution Y B n pq( , )∼ .

The next two lemmas provide tail estimates on the sizes of Γi and Γ*i . We prove them by
induction where the inductive step comes from applying Chernoff bounds to the binomial
distributions described in Lemma 3.1. For Lemma 3.2 this induction shows that w.h.p. the
sequence d u d u( ), ( ), …2 is bounded above by the sequence a np a np, ( ) , …1 2

2 , where the ai satisfy
a recurrence relation. This recurrence can later be solved to give bounds on the sequence ai
based on the exceptional probability desired. This strategy is inspired by [8].

Lemma 3.2. Let n p( , ) ∼ , where np ω= (1). Then for u V∈ and α ∈ , α 6≥ ,

B u α np o e(| ( )| > ( ) ) = ( ).i
i αnp− /3

Proof. Let d u a np{ ( ) ( ) }i i i
i ≔ ≤ and i j

i
i=0 ≔ ⋂ . We shall show

( ) e
λ

λ np
exp −

2(1 + /3 )
,i

c

j

i

j

=0

−
2

 
⎛
⎝⎜

⎞
⎠⎟∑≤

by induction on i 0≥ , where a 0i ≥ is given by the recurrence

a a
λ a

np
a= +

( )
, = 1,i i

i i

i+1 ( +1)/2 0
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and λ i λ= 3 +i
2 for some λ specified later. For the base case d u a( ) = 1 =0 0. Now

observe

a np np λ a np np a λ
a

np
a np( ) + ( ) = ( ) +

( )
= ( ) .i

i
i i

i i
i i

i

i i
i+1 +1

( +1)/2 +1
+1

⎛
⎝⎜

⎞
⎠⎟

(26)

Conditional on d u( )i we have d u Bin d u n p( ) ( ( ) , )i i+1 1≼ ⋅ . Thus by (26) above

d u a np

Bin d u n p a np np λ a np d u 1

(( ) ) ({ ( ) > ( ) } )

[ ( ( ( ) , ) > ( ) + ( ) | ( )) ].

i
c

i i i
i

i

i i
i

i i
i

i

+1 +1 +1
+1

+1
i

 
 

  



∩ ≔ ∩

≤ ⋅

Now by the Chernoff bounds, Lemma A.1, we have

λ a np

a np λ a np

i λ

λ a np
e e

1

1

(( ) ) exp −
( )

2( ( ) + ( ) /3)

= exp −
3 +

2(1 + /3 ( ) )
( ),

i
c

i
i i

i

i
i

i i
i

i i
i

i
λ
λ np

i

+1

2 +1

+1 +1

2

+1

− −
2(1+ 3 )

i

i

2

 

 

 







⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

∩ ≤

≤ ∕

(27)

for n large enough since a 1i ≥ and np ω= (1) thus λ a np λ np/ ( ) /i i
i+1 ≤ . Now ob-

serve that i i+1 ⊆ and i is the disjoint union of i+1 and ( )i
c

i+1 ∩ . Hence by (27)
we have

e
λ

λ np
( ) = ( ) − (( ) ) = 1 − exp −

2(1 + /3 )
( ).i i i

c
i

i
i+1 +1

−
2

       
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟∩

If we continue iteratively and recall d u= { ( ) 1}0 0 ≤ , thus ( ) = 10  , then we have

e e e e( ) = 1 − ( ) 1 − .i

j

i

j
λ
λ np

j

i

j
λ
λ np

+1

=0

− −
2(1+ /3 )

0

=0

− −
2(1+ /3 )

2 2

  
⎛
⎝⎜

⎞
⎠⎟∏ ∑⋅ ≥ ⋅

Let λ k np= for any k 3≥ and observe that

e e O
k np

k
O e(( ) ) = exp −

2(1 + /3)
= ( ),i

c

j

i

j
λ
λ np knp

=0

− −
2(1+ /3 )

2
−3 /4

2

 
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟∑≤ ⋅ (28)

where the last equality follows since k

k

k

2(1 + / 3)

3

4

2

≥ provided k 3≥ , and np ω= (1).
We will show that a k2i ≤ for all i. Since a k= 1 20 ≤ assume a k2i ≤ , then by (26)

a a
λ a

np

λ a

np

λ a

np
= +

( )
= 1 + +

( )
.i i

i i

i
j

i
j j

j+1 ( +1)/2

0 0

=1
( +1)/2∑

Recall that λ i λ= 3 +i
2 and observe that λ λ k np= =0 . Thus we have

a k
j k np k

np
k O np k= 1 + +

3 + 2

( )
= 1 + + (( ) ) 2 ,i

j

i

j+1

=1

2

( +1)/2
−1/2∑ ≤
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for large n. Finally, conditional on d u k np{ ( ) 2 ( ) }j
i

j
i

i=0 ⋂ ≤ ⊆ we have

B u d u k np α np| ( )| = ( ) 2 ( ) ( ) ,i

j

i

j

j

i

i i

=0 =0

∑ ∑≤ ≤

where α k= (2 + 1/100) , now for this α we have o e(( ) ) = ( )i
c αnp− /3  by (28). □

Lemma 3.3. Let n p( , ) ∼ , and i ∈ satisfy i n np1 log( )/log( ) − 3≤ ≤ ⌊ ⌋ . Let Ψ2 be
defined with respect to u vMBFS( , { , }) for u v V, ∈ such that u v≠ .

(i) Let c > 0, np c nlog≥ . Then ( )d y np y o e( ) < 15( ) | Ψ = ( )*i
i np−1

2
−4 ∈ .

(ii) If np ω n= (log ) then ( )d y np y o n( ) < ( ) | Ψ = ( )*i
i K9

10 2
− ∈ for any fixed K 0≥ .

(iii) If np n− log → ∞ then B v np o n(| ( )| < 15( ) ) = ( )j
i−5 −4 for any j i5 − 2≤ ≤ .

Proof. We will first set up the general framework for a neighbourhood growth
bound and then apply this bound under different conditions to prove Items (i), (ii),
and (iii).

Run u vMBFS( , { , }) and let y Ih∈ , n S| |i i h+≔ , p p p(1 − )i
I| |−1i h+≔ ⋅ , and

r n p=i j i

i
j j= 0

∏ . We wish to show that there exists some i i, 00 0∈ ≥ such that for
all i i0≥ :

( )d y a r i λ( ) < ( + 1)exp(− /2),*i i i+1 +1
2 ≤ (29)

where a 0i ≥ satisfies a a λ a r= − /i i i i+1 , for some initial ai0 we will find later. Observe

a r n p λ a r n p a λ
a

r
r a r− = − = .i i i i i i i i i

i

i
i i i−1 −1 +1

⎛
⎝⎜

⎞
⎠⎟

Applying Lemma 3.1 (iii) and conditioning on i h+F yields d y Bin n d y p( ) ( , ( ) )* *i i i i+1 ∼ .
Let { }d u a r( )*i i i i i h−1 +F ≔ ≥ ∈ and assume ie( )i

c λ− /22  ≤ . Now by Lemma A.1
(i),

( )
( ) ( )

( ) ( )

d y a r d y a r n p λ a r n p

Bin n d y p a r λ a r

λ a r a r i λ i λ

1

( ) < = ( ) < − |

, ( ) < − | +

exp(− /(2 )) + exp(− /2) = ( + 1)exp(− /2).

* *

*

i i i i i i i i i i i i i h

i i i i i i i i h i
c

i i i i

+1 +1 +1 −1 −1 +

+

2 2 2

i

F

F

  

   

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥≤

≤

The above always holds, however, it may be vacuous as if i is too large then ai may be
negative. This can also happen for an incorrect choice of the starting time i0 and initial value
ai0. We address this in the application making sure to condition on events where everything is
well defined. In this spirit let n np hlog( )/log( ) − − 1ℓ ≔ ⌊ ⌋ and define the event

{ }I np d y np S n np{| | 26( ) } ( ) 13( ) {| | − 26( ) }.*
i

i h
i h

i
i

i h
i h

=0
+

+
+

+ ≔ ⋂ ≤ ∩ ≤ ∩ ≥
ℓ
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Conditioning on the event  and the filtration i h+F for any i ≤ ℓ ensures that
Bin n d y p( , ( ) )*i i i is a valid probability distribution and n p o np= (1 − (1))i i . By Lemma 3.2
with α = 13,

B u np o e( ) 2 (| ( )| > 13( ) ) = ( ).c

i

i
i np

=0

+2

−4  ∑≤
ℓ

(30)

Item (i): Recall from (23) that if y u v IΨ ( ) Ψ ( )2 2 2∈ ∪ ⊆ then d y D( ) >* , defined at (21).
Thus conditional on 3F ∩ , d y Bin n o Dp o( ) ( (1 − (1)), (1 − (1)))*2 1≽ . If we choose
λ np= 3 , then since in this regime D = max{ , 50}

c

50
⌈ ⌉ applying Lemma A.1 (i) yields

( ) ( )d y Dn p d y Dn p e e1 1*( ) < /2 = [ *( ) < /2| ( + )] + ( ) .Dnp c λ
2 1 1 2 1 1 3

− 10 − /2c
2

F      ≤ ≤∕

Take i = 10 and a D= /32 since on  we have D n p Dnp/2 /31 1 ≥ . Now a ai2 ≥ ⋯ ≥ so on
the event  we have the following for any i n np3 log( )/log( ) − 3≤ ≤ ⌊ ⌋ :

a a
λ a

r

D
o

D

np
= −

3
− (3 + (1))

3
16,i

k

i
k

k
2

=2

−1

∑ ≥ ≥

since conditional on  we have r n p o np= (1 − (1))( )i j i

i
j j

i
= 0

∏ ≥ for any
i n np1 log( )/log( ) − 3≤ ≤ ⌊ ⌋ . Notice also that d y D np( ) > > 15( )* 0 so by (29)

( ) ( )d y np d y a r i e o e o e* ( ) < 15( ) * ( ) < + ( ) ( + 1) + ( ) = ( ).i
i

i i i
c λ np np

+1 +1 +1
− /2 −4 −42   ≤ ≤

Item (ii): For this case on the event  we have n p o np ω n= (1 − (1)) = (log )i i for every
i0 ≤ ≤ ℓ, this is why D = 0 when np ω n= (log ) in the definition (21) as we do not need

to rely on the fact that d y( )* greater than some constant to start the branching.
Fix K > 0 and let λ K n= 3 log . As before conditioning on 3F ∩ ensures that

d y Bin n p Bin n o p o( ) ( , ) ( (1 − (1)), (1 − (1)))* 0 0 1∼ ≽ . By Lemma A.1 (i),

d y r λ r e λ1 1[ ( ( ) < − (5/4) | )( + )] + ( ) exp(− /2).* λ c
0 0 3

−25 /32 2c
2

F     ≤ ≤

Take i = 00 , a = 19/201 since on  we have r λ r np− (5/4) 19 /200 0 ≥ . Now
a ai1 ≥ ⋯ ≥ so on the event  we have the following for any

i n np2 log( )/log( ) − 3≤ ≤ ⌊ ⌋

a a
λ a

r
o

K n

np
o= −

19

20
− (1 + (1))

19 3 log

20
=

19

20
− (1)

9

10
.i

k

i
k

k
1

=1

−1

∑ ≥
⋅

≥

Thus for any i n np K1 log( )/log( ) − 3, > 0≤ ≤ ⌊ ⌋ we have

( ) ( )d y np d y a r i e e o n( ) < 9/10( ) ( ) < + ( ) ( + 1) + ( ).* *i
i

i i i
c λ np K

−1
− /2 −4 −2   ≤ ≤ ≤

Item (iii): We assume that np θ n= (log ) for larger p the result follows from stochastic
domination. Since  ∈ there exists a path u u u u, , …,0 1 4≔ with u u Ej j−1 ∈ for each

j1 4≤ ≤ . Let f u v V u u u v E( ) = { \ { , …, } : }j j0 4∈ ∈ . Then, for D from (21), by
Lemma A.1 (ii),

18 | SYLVESTER



f u D Bin n p D e
e n p

D
e( ( ) < ) = ( ( − − 1, ) < )

( − − 1)
= .j

n p
D

o np−( − −1) −(1− (1))  ⎛
⎝⎜

⎞
⎠⎟ℓ ≤ ⋅

ℓℓ

Let  be the event d u D j{ ( ) for some 0 4}j 00
≥ ≤ ≤ . Then as f u{ ( )}j j=0

4 are i.i.d. we have

f u D e o n( ) ( ( ) < ) / ( ) ( ).c
j

o n5 −5(1− (1))log −4    ≤ ≤ ≤ (31)

On  there is some u Vj0
∈ with d u u j( , ) = 4j 00

≤ and d u D( ) >j0 . We use the stochastic
domination d u d u( ) ( )*i j i j10 0

≽ to bound the growth of B u| ( )|i j+ 0
from below by that of

d u( )*i j0 , where u Ij j0 0
∈ is defined with respect to u vMBFS( , { , }) for some v V∈ . Let

λ n= 3 log and recall D = max{ , 50}
c

50
⌈ ⌉ . On  , r o np= (1 − (1))j +10

, thus by
Lemma A.1 (i):

( )d u dn p e e1 1( ) < /2| [ ] .*j j j j
dr λ

+2 +1 +1 +1
− /8 − /2j

0 0 0 0
0 +1

2
F     

⎡⎣ ⎤⎦ ≤ ≤∩ ∩

Take i j= + 10 0 and a d= /3j +20
since on  ∩ we have dn p dnp/2 /3j j+1 +10 0

≥ . Now

a ai i0
≥ ⋯ ≥ and on the event  ∩ we have r o np= (1 − (1))( )i

i j− 0. Thus we have the

following for any ε > 0 and j i n np j+ 3 log( )/log( ) − − 10 0≤ ≤ ⌊ ⌋ :

a a
λ a

r

d
o

d n

np
= −

3
− (3 + (1))

log

3( )
16.i j

k j

i
k

k
+2

= +2

−1

20

0

∑ ≥ ≥

Notice also d y d np( ) > > 15( )*j +1
0

0
. Thus for any i n np4 log( )/log( ) − 5≤ ≤ ⌊ ⌋ :

( )
B u np d u np

d y a r

(| ( )| < 15( ) ) ( ( ) < 15( ) | , ) + ( ) + ( )

( ) < | , / ( ) + ( )/ ( ) + ( ),*

i
i

i
i j c c

i i i
c c

+1
−5

+1
− −1

+1 +1

0   
    

   

     

   



≤

≤

which is at most i e o e o n o n2( + 1) + ( ) + ( ) = ( )λ np− /2 −4 −4 −42
by the bounds on ( )  , ( )  ,

and ( )c  given by (10), (30), and (31), respectively. □

The next lemma allows us to couple the complex Ψ1 and Φ neighbourhood distributions to
the far more simple Γ* and Γ‐neighbourhood distributions.

Lemma 3.4. Let n p( , ) ∼ , where c n np o nlog ( )1/3≤ ≤ for any c > 0. Let I1 and the
φ ψ ψ, , 2, and d*‐distributions be defined with respect to u vMBFS( , { , }) , u v V, ∈ . Then

(i) φ x d x x I e( ( ) ( )| ) = ,* o np
1

−(1− (1)) ≠ ∈

(ii) ψ u d u e( ( ) ( )) = ,* o np−(1− (1)) ≠

(iii) ψ u d u ψ v d v np e( ( ) ( ) or ( ) ( )) 2 + ,o np2 −(1− (1)) ≠ ≠ ≤

(iv) ψ u d u ψ v d v e( ( ) ( ) or ( ) ( )) = ,* * o np
2 2 2 2

−(1− (1)) ≠ ≠

(v) ψ u d u ψ v d v n p e O n p( ( ) ( ) or ( ) ( )) 4 + + ( ).o np
2 2 2 2

3 4 −(1− (1)) 2 3 ≠ ≠ ≤
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Proof.
Item (i): Run u vMBFS( , { , }) and let x I1∈ . By the definition (20) of ψ x( ), if d x D(˜) >* for
all x x˜ Γ ( )*1∈ then φ x d x( ) = ( )* , where D is bounded (21). Hence for x I1∈ ,

( )φ x d x d x D x x d x D( ( ) ( )| ) = (˜) for some ˜ Γ ( )| ( (˜) | ).* * * *
x x

2 1 2

˜ Γ ( )

2

*1

F F F  ∑≠ ≤ ∈ ≤ ≤
∈

(32)

If x x x I˜ Γ ( ),*1 1∈ ∈ then x I˜ 2∈ . Knowing the parent of x̃ does not affect the
d*‐distribution conditioned on x I{˜ }2∈ , so by Lemma 3.1 (iii) as S I| | , | |2 2 2F∈ we have

φ x d x d x Bin S p p D S I( ( ) ( )| ) ( ) ( (| | , (1 − ) ) || | , | |).* * I
2 2

| |−1
2 2

2F ≠ ≤ ≤

Let I np d x np S n np{| | 12( ) } { ( ) 6 } {| | − 12( ) }*x
j

j
j

j
j ≔ ≤ ∩ ≤ ∩ ≥ for x Ij−1∈ and observe

( )( ) B u np B x np o e2 (| ( )| > 6( ) ) + (| ( )| > 6 ) = ( ),x
j c

j
j np

1
−2   ≤ (33)

by Lemma 3.2 with α = 6. Now by Lemma A.1 (ii) and Bernoulliʼs inequality (A1)

φ x d x d x e
e S p p

D
e1 1( ( ) = ( )| ) ( )

| | (1 − )
,* * S p p

I D

o np
2

−| | (1− ) 2
| |

−(1− (1))
x

I

x
1 2

| 2 |
2

1F  

⎛
⎝⎜

⎞
⎠⎟≤ ≤

the result follows by taking expectation of the above and using (33) with j = 1.
Item (ii): for u I˜ 1∈ the distribution of d u( ˜)* conditioned on S I| | , | |1 1 is known by 3.1 (iii).
Thus using the bound p np(1 − ) exp(− )n ≤ we obtain the following for u I˜ 1∈ ,

d u Bin S p p S p p( *( ˜) = 0| ) = ( (| | , (1 − ) ) = 0| ) exp(−| | (1 − ) ).I I
1 1

| |−1
1 1

1 1F F  ≤ ∣ ∣ (34)

Recall the definition (22) of uΨ ( )1 . If u u˜ Γ ( )*1∈ then u I˜ 1∈ and knowing the parent
of ũ does not affect the d*‐distribution conditioned u I{ ˜ }1∈ . Thus, similarly to (32),
for u u˜ Γ ( )*1∈ ,

ψ u d u φ u u u d u φ u( ( ) ( )| ) = ( ( ˜) = 0 for some ˜ Γ ( )| ) ( ) ( ( ˜) = 0| ).* * *1 1 1 1F F F  ≠ ∈ ≤ ⋅

Now using the coupling inequality (A3), yields the following for u I˜ 1∈ :

ψ u d u d u d u d u φ u d u( ( ) ( )| ) ( ) ( ( ˜) = 0| ) + ( ) ( ( ˜) ( ˜)| ).* * * * *1 1 1F F F  ≠ ≤ ≠ (35)

Recall u
1 from (33) and observe d u e1( ( ˜) = 0| )* o np

1
−(1− (1))

x
1F  ≤ by (34). Thus

ψ u d u e np φ u d u u I o e e( ( ) ( )) + 6 ( ( ˜) ( ˜)| ˜ ) + ( ) = ,* *o np np o np−(1− (1))
1

−2 −(1− (1)) ≠ ≤ ≠ ∈

by taking the expectation of (35) conditioned on u
1 then using the bound on

d u( ( ˜) = 0| )* 1F above and bounds on φ u d u u I( ( ˜) ( ˜)| ˜ )* 1 ≠ ∈ and (( ) )u
c1  from Item (i)

and (33) respectively.
Item (iii): let I u v= { , }0 and d u d u d v d v{ ( ) = ( ), ( ) = ( )}* * ≔ . By Item (ii)
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ψ u d u ψ v d v ψ u d u ψ v d v

ψ u d u ψ v d u

e

( ( ) ( ) or ( ) ( )) ({ ( ) ( ) or ( ) ( )} ) + ( )

( ( ) ( )or ( ) ( )) + ( )

2 + ( ).

* *

c

c

o np c−(1− (1))

  
 



 





≠ ≠ ≤ ≠ ≠ ∩

≤ ≠ ≠

≤
(36)

To calculate ( )c  in the above recall the definition (17) of d u( )* and observe

uv E xu E xv E x V I

uv E xu E xv E p n p

( ) = ({ } { and for some \ })

( ) + ( and ) = + ( − 2) .

c

x V I

0

\

2

0

 
 



∑

∈ ∪ ∈ ∈ ∈

≤ ∈ ∈ ∈
∈

(37)

Finally, combining (36) and (37) yields the bound

ψ u d u ψ v d v e p n p np e( ( ) ( ) or ( ) ( )) 2 + + ( − 2) 2 + .o np o np−(1− (1)) 2 2 −(1− (1)) ≠ ≠ ≤ ≤

Item (iv): Define the following events

φ x d x d u d v c np{ ( ) = ( )}, = { ( ), ( ) (1 + 9/min{ , 1}) }.*
x I1

 ≔ ⋂ ≤
∈

Notice ψ u d u ψ v d u ψ u d u ψ v d u{ ( ) ( )or ( ) ( )} = { ( ) ( ) or ( ) ( )}* * * * c
2 2 2 2 ≠ ≠ ≠ ≠ ∪ . Now

I φ x d x O npe n1 1( ) [| | ( ( ) = ( )| )( + )] ( ) + ( ),*c o np c
1 1

−(1− (1))cF     ≤ ≤
(38)

which is o e( )np o− (1− (1)) by Item (i) and since o e n( ) = ( / )c np−  by Lemma A.1 (i).
Item (v): Let I u v= { , }0 and d u d u d v d v{ ( ) = ( ), ( ) = ( )}* *2 2 2 2 ≔ . Then

xy E x I xz E{ } {|{ : }| 1} ,
x d u y d v z S( ), ( )

1

1

 
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟≔ ⋂ ∉ ∩ ⋂ ∈ ∈ ≤ ∩

∈ ∈ ∈

(39)

by the definition (17) of d u( )*2 . Observe that by the Bernoulli inequality (A1),

x I xz E x I xz E a

p I p p I p I p I p I p

(|{ : }| > 1| ) = 1 − (|{ : }| = | )

= 1 − (1 − ) − | | (1 − ) 1 − (1 − | | ) − | | (1 − | | ) = (| | ) .

a

I I

1 1

=0,1

1 1

| |
1

| |−1
1 1 1 1

21 1

F F ∑∈ ∈ ∈ ∈

≤

By (39), the above estimate on x I xz E(|{ : }| > 1| )1 1F ∈ ∈ and 1F ∈ , we have

xy E x I xz E

d u d v p S I p

( | ) ( | ) + (|{ : }| > 1| ) + ( | )

( ) ( ) + | |(| | ) + ( | ).

c

x d u y d v z S

c

c

1

( ), ( )

1 1 1 1

1 1
2

1

1

F F F F

F

   



 



∑ ∑≤ ∈ ∈ ∈

≤

∈ ∈ ∈

Then by the bound on ( | )c
1F  above, the tower property and Cauchy Schwartz inequality,

p d u d v p S I n p O n p( ) [ ( ) ] [ ( ) ] + [| | ] [| | ] + ( ) = 4 + ( ),c c2 2 2
1

2
1

4 3 4 2 3      ≤ (40)
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the last equality holds by (37) and as S| |1 ∼Bin n p( − 2, (1 − ) ),2 I| |1 ∼

Bin n p p( − 2, 2 (1 − )) by Lemma 3.1, then applying the bound on moments of binomial
r.v.ʼs from (A4).

Finally let ψ u d u ψ v d v{ ( ) = ( ), ( ) = ( )}2 2 2 2 ≔ . Then by the definitions (22) and (23)
of the vertex sets uΨ ( )1 and uΨ ( )2 we have  ≔ ψ u d u ψ v d v{ ( ) = ( ), ( ) = ( )}  ∩ ∩ . Thus

ψ u d u ψ v d u n p e O n p( ) ( ( ) ( ) or ( ) ( )) + ( ) + ( ) 4 + + ( ),c c c o np3 4 −(1− (1)) 2 3     ≤ ≠ ≠ ≤

by Item (iii), (40) and (38). □

Recall from Definition (24) that u v, is the event that n p( , ) satisfies the strong
path property for u v V, ∈ and some k np nlog( )/(2 log ) + 2≤ . Recall also Definition (25)
of u v, which is the event the pruned first neighbourhoods u vΨ ( ), Ψ ( )1 1 are both
nonempty.

Lemma 3.5. Let n p( , ) ∼ , where c n np n< 1/10≤ , c > 0. Then for u v V u v, ,∈ ≠ ,

o e e(( ) ) = ( ) and (( ) ) = .u v
c np n

u v
c o np

,
−7 min{ ,log }/2

,
−(1− (1))  

Proof. Run u vMBFS( , { , }) , u v V, ∈ . For k 0≥ let =u v k, , 1 2   ≔ ∩ , where

{ }S n n x y n x y u v{| | − }, |Γ ( ) × Γ ( )| 4 , for all ( , ) Ψ ( ) × Ψ ( ) .* *k k k1 +2
5/6

2 2 2 ≔ ≥ ≔ ≥ ∈

On the event 1 when u vMBFS( , { , }) has run for k + 2 iterations there is still a lot of the
graph yet to explore and the algorithm will run for at least one more iteration. The k in
the definition of  will be the one occurring in the description of u v, . Set the value of k
to be

k k n p

n
np np c n c

n
np np ω n

( , ) =

log
4

(15)
/(2 log( )) + 1, if = log where > 0,

log
400

81
/(2 log( )) , if = (log ).

2

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎥⎥

⎡
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎥⎥

≔ (41)

Thus k np nlog( )/(2 log ) + 2≤ for large n. It remains to show that for k given by (41):

( ) ( )A o e= .u v
n k np n
,
, −7 min{ , log }/2  ∉

Let u v, ≔ be the event u v np{|Ψ ( ) × Ψ ( )| (12( ) ) }2 2
2 2≤ . Since ψ u d u( ) ( )2 2≤ for any

u V∈ , we have o e( ) = ( )c np−4  by Lemma 3.2 with α = 12. Thus by the tower property

( )
( )

( ) ( ) ( ) ( )B u n B u np

ψ u ψ v d w n w

1

1

( ) + + 2 ( ) > /2 + 2 ( ) > 12( )

+2 ( ) ( ) *( ) < 2 { Ψ }, ,

c c c c
k

k

1 2 3 +2
5/6

2
2

2 2
1/2

2 3

F

F

      

 

    



⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

≤ ≤

∈
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as d x d y k d x d y k{ ( ) ( ) < } { ( ) or ( ) < }* * * *⋅ ⊆ . Provided np n1 10≤ ∕ the choice of k given
by (41) satisfies the conditions of Lemma 3.3. Thus by Lemmas 3.2, 3.3 (i), and 3.3 (ii) we have

( ) ( ) ( )o e O np d w n w o e( ) + ( ) *( ) < 2 Ψ = ,c np
k

np n−9 /2 4 1/2
2

−7 min{ ,log }/2  ≤ ⋅ ∈ (42)

where the bound d w n w e( ( ) < 2 | Ψ )*k
np n1/2

2
−4 min{ ,log } ∈ ≤ above covers the different

values of np and comes from amalgamating Lemmas 3.3 (i) and (ii), with K = 4 in the
latter.

Let x y, be the following event indexed by x y u v( , ) Ψ ( ) × Ψ ( )2 2∈ ,

x y E x y x y{ ′ ′ , for every pair ( ′, ′) Γ ( ) × Γ ( )}.* *x y k k, ≔ ∉ ∈

This is independent of k+2F as each x y′ ′ has not been checked up to iteration k + 2, thus

x y E p e1 1( ) = ( ′ ′ ) (1 − ) .x y k
d x d y n np

, +2
( ) ( ) 4 −4* *k kF   ∣ ∉ ≤ ≤ (43)

Recall Definition 2.4 of the strong path property Au v
n k
,
, which we can express as

{ } { } { }A x y= Γ ( ) = Γ ( ) = .* *u v
n k

x y u v
k k x y,

,

( , ) Ψ ( )×Ψ ( )
,

2 2

 ∉ ⋃ ∅ ∪ ∅ ∪
∈

Observe that for each i j, 0≥ the random variables d w{ ( )}*j w Ii∈ are identically distributed.
Recall also that u vΨ ( ), Ψ ( ),1 1 3F ∈ . Let P denote A({ } )u v

n k
,
,   ∉ ∩ ∩ . By the union

bound, tower property and since ψ u ψ v np( ) ( ) 12 ( )1 1
2 4≤ on , we have

np

1 1 1

1 1 1 1 1

[( ) | ]

[12 ( ) [( + + ) | ]].

x y u v

d x d y

d x d y

( , ) Ψ ( )×Ψ ( )

{ ( )=0} { ( )=0} 3

2 4
{ ( )=0} { ( )=0} 3

* *

* *

x y k k

x y k k

2 2

,

,

P F

F

 

 

  

  

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑≤

≤

∈

∪ ∪

Now since x y, Ψ2∈ and d x d y( ), ( )* *j j are identically distributed for any j 0≥ :

( )O np d w w1 1( ) + 2 ( ) = 0 { Ψ } .*k k
4

+2 2x y,
P F   ⎜ ⎟

⎛
⎝

⎡
⎣⎢ ⎡⎣ ⎤⎦⎤

⎦⎥
⎞
⎠≤ ⋅ ∈

By Lemma 3.3 (i), (43) and since k+2F ∈ we have

O np e o e1( ) ( [ ( | ) ] + 2 ) = ( ).x y k
np n np n4

, +2
−4 min{ ,log } −7 min{ ,log }/2P F   ≤ ⋅

Recall o e( ) = ( )c np−4  , so by (42) and the bound on A({ } )u v
n k
,
,   ∉ ∩ ∩ above,

( )( ) ( ){ }A A o e+ ( ) ( ).u v
n k

u v
n k c np n

,
,

,
, −7 min{ ,log }/2       ∉ ≤ ∉ ∩ ∩ ∩ ≤

For (( ) )u v
c

,  we apply the coupling inequality (A3) to the ψ and d*‐distributions:

ψ u ψ v d u ψ u d u(( ) ) ( ( ) = 0) + ( ( ) = 0) 2 ( ( ) = 0) + 2 ( ( ) ( )).* *u v
c

, 1 1 1     ≤ ≤ ≠
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Then since ψ u d u( ( ) ( ))*1 ≠ is known by Lemma 3.4 we have

d u d v np d v np e

p o e e e

(( ) ) 2 ( ( ) = 0| ( ) 6 ) + 2 ( ( ) > 6 ) + 2 .

2(1 − ) + ( ) + = ,

* *u v
c o np

n np np o np o np

,
−(1− (1))

−6 −1 −2 −(1− (1)) −(1− (1))

   ≤ ≤

≤

by applying Lemma 3.1 (ii) to the first term and Lemma 3.2 (i) with α = 6 to the second. □

The following crude but resilient bound on R i j( , ) is useful when conditioning on i j
c
, .

Lemma 3.6. Let n p( , ) ∼ be such that np n− log → ∞. Then for i j V, ∈ ,

R i j n np o n( ( , ) > 3 log /log( )) = ( ).−4

Proof. SinceG ∈ the effective resistance between two points is bounded from above by
the graph distance. Let B i B j n{| ( )| | ( )| 4 }i j k k, ≔ ⋅ ≥ , where k ≔ nplog( )/(2 log ) + 5.

n4

152⌈ ⌉

Using Lemma 3.3 (iii) to bound ( )i j
c
,  , since k n np5 log( )/log( ) − 5≤ ≤ ⌊ ⌋ when n

large:

( )R i j k d i j k

xy E x y B i B j B i B j

B j n p o n o n

( ( , ) > 2 + 1) ( ( , ) > 2 + 1| ) +

( , ( , ) ( ) × ( ), ( ) ( ) = | )/ ( )

+ 2 (| ( )| < 2 ) 2(1 − ) + 2 ( ) = ( ).

i j i j
c

k k k k i j

k
n

, ,

,

4 −4 −4

  
 



    

 



≤

≤ ∉ ∀ ∈ ∩ ∅

≤

The result follows since k np2 + 1 = 2( log( )/(2 log ) + 5) + 1
n n

np

4

15

3 log

log( )2⌈ ⌉ ≤ for large n. □

4 | PROOF OF THEOREMS 1.1, 1.3 , AND 1.6

Most of our main theorems result from Corollary 2.5, Lemma 4.1 below simplifies this
application.

Lemma 4.1. Let n p( , ) ∼ , where n n np o nlog + log log log < ( )1/3≤ . Let α 1≥

and u vΨ ( ), Ψ ( )1 1 be defined with respect to u v u v VMBFS( , { , }), , ∈ . Then

(i) O[( sup ) ] = ( )
x u

φ x
α α

np

1

Ψ ( )
( )

1/ 1u
u v

1

, 

∈

.

(ii) If c n np nlog 1/10≤ ≤ , for any fixed c > 0, then

R u v
ψ u ψ v

ε o e o n( , ) >
1

( )
+

1

( )
(1 + 9 ) = ( ) + ( ).n

np− /4 −7/2
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

Proof.

Item (i): Let φ x K(inf ( ) < )u x u pΨ ( )1
P ≔ ∈ and K np np(1 − 3 /2) (1 − 66 )p

2≔ .

Recall u IΨ ( )1 1⊂ for u I0∈ and observe that,

d x K φ x d x x I[ (inf ( ) < | )] + [ ( ( ) ( ) for some | )],* *u
x I

p 1 1 1
1

P F F   ≤ ≠ ∈
∈
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by the tower property. Applying the union bound since I1 1F∈ yields

I d x K x I I φ x d x x I[| | ( ( ) < | , )] + [| | ( ( ) ( )| , )].* *u p1 1 1 1 1 1P F F   ≤ ∈ ≠ ∈

Let a c13/min{ , 1}≔ , where c > 0 is the largest real number such that np c nlog≥ .
Separate the expectations into parts I anp{| | }1 ≤ and I anp{| | > }1 to give

anp d x K x I anp φ x d x x I n I anp[ ( ( ) < | , )] + ( ( ) ( )| ) + 2 (| | > ).* *u p 1 1 1 1P F   ≤ ∈ ≠ ∈

Since d x Bin S x p( ) (| ( )| , )* 1∼ by Lemma 3.1, S x( )1 2F∈ , and by Lemma 3.4 (i) we have

anp Bin S x p K a np e n d u anp[ ( (| ( )| , ) < | )] + ( ) + 4 ( ( ) > /2).u p
o np

1 2
−(1− (1))P F  ≤

Applying Lemma A.1 to the first term and Lemma 3.2 with α a= to the last yields

anp e anp e n o e[ ] + + 4 ( ).u
S x p K S X p o np anp−(| ( ) | − ) /(2 | ( ) | ) −(1− (1)) − /6p1

2
1P ≤ ⋅ ⋅

Once again by separating the expectation into the two disjoint parts S x n{| ( )|1 ≤ np−12( ) }2

and S x n np{| ( )| > − 12( ) }1
2 the applying Lemma 3.2 with α = 6 we have the following:

anp e B u np o e o e+ 2 (| ( )| > 6( ) ) + ( ) = ( ).u
np np np− /3

2
2 − − /4P ≤ ⋅ (44)

Recall φ x D1sup / ( ) < 1/
x uΨ ( )

u
u v

1

,


∈

, see (20) and (22). Bernoulliʼs inequality (A1) provides

( )

φ x K D
φ x K

K
K e D O

np

1
sup

( )

1

( )
+

1

( )
inf ( ) <

1

( )
1 + ( ) / ( ) =

1
.

x u

α α

p
α α x u

p

α

p
p
α np α

α

Ψ ( )

1/

Ψ ( )

1/

− 4
1/

u
u v

1

,

1

  










⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≤

≤

∈ ∈

∕

(45)

Note that the bound (44) on uP holds for any np c nlog≥ , c > 0 fixed. The restriction on
np to np nlog≥ comes from (45), where we need ( )  bounded below by a constant.

Item (ii): Observe that K np np np= (1 − 3 /2) (1 − 66 ) /9p
2 ≥ for large n and k npεn≤

in the definition of event u v, (24). Thus conditional on φ x K x{ ( ) forall Ψ }p u v1 ,≥ ∈ ∩ ,

R u v ψ u ψ v k K ψ u ψ v ε( , ) (1/ ( ) + 1/ ( ))(1 + ( + 2)/ ) (1/ ( ) + 1/ ( ))(1 + 9 ),p n≤ ≤

by Corollary 2.5. The result follows since we have φ x K o e(inf ( ) < ) = ( )x u p
np

Ψ ( )
− /4

1
 ∈ by

(44) and o n(( ) ) = ( )u v
c

,
−7/2  by Lemma 3.5. □

4.1 | Proof of Theorems 1.1 and 1.3

To begin let i j V, ∈ and define the following three functions for ease of notation:

r d i d j f d i d j g ε r1/ ( ) + 1/ ( ), 1/ ( ) + 1/ ( ) , .i j i j i j n i j, ,
2 2

, ,≔ ≔ ≔ ⋅
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Define the four events ,   , and  as follows, where event  is w.r.t. i jMBFS( , { , }) ,

R i j
np

n

np
R i j r f g

R i j
ψ i ψ j

ε
d z d z d z

( , ) −
2 7 log

( )
, {| ( , ) − | 9(2 + )},

( , )
1

( )
+

1

( )
(1 + 9 ) ,

1

( )

1

( )
+

16

( )
.

*

i j V
i j i j i j

n
z i j

{ , }
3/2 , , ,

{ , }
2

 

 

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭

≔ ⋂ ≤ ≔ ≤

≔ ≤ ≔ ⋂ ≤

⊆

∈

(46)

Lemma 4.2. Let c n np nlog 1/10≤ ≤ , where c > 0. Then o n o e( ) = (1/ ) + ( )c np3 − /3 

Proof. Let I i j= { , }0 and recall that i i j jΓ ( ) = Γ( ) \({ } Γ( ))* ∩ , see (17) and (19). Let
d v d v a= { ( ) ( ) − }*a ≤ . For each z j y{ } Γ( )∈ ∩ , provided z i≠ , we have iz E∈

independently with probability p. Thus ij E d j k Bin k p a( | , ( ) = ) = ( ( , ) )a  ∉ ≥ and
similarly ij E d j k Bin k p a( | , ( ) = ) = ( ( − 1, ) − 1)a  ∈ ≥ . Thus we have

Bin k p a d x k( ) ( ( , ) − 1) + ( ( ) ).a   ≤ ≥ ≥

Let k a n np= 3 max{log , } and apply Lemma A.1 (ii) and (i), respectively to give

e
ekp

a
e

e np

n
n n( )

− 1
+

2 ( )
+ = .a

kp
a k

np k

a
a a−

−1
−

2( + /3)
2 −1

−3 /2 − /2
2

2  ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≤ ≤ (47)

Conditional on the event d v a{ ( ) 2 }j
c ∩ ≥ we have

d x d x j d x

j

d x jd x d x

j

d x

1

( )

1

( ) −

1

( )
+

( ) − ( )

1

( )
+

2

( )
.

* 2 2
≤ ≤ ≤

If we let a = 8 then d v o e( ( ) < 16) ( )np− /3 ≤ by Lemma A.1 and o n( ) = (1/ )8
3  by

(47). □

Proof of Theorem 1.1. To begin, by Lemma 2.1 we have

R i j r
d i d i d j d j d i d j

f( , ) − −
1

( ) + ( )
+

1

( ) + ( )
> −

1

( )
+

1

( )
= − .i j i j, 2 2 2 2 ,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≥

Let  be the event ψ i d i ψ j d j{ ( ) = ( ), ( ) = ( )}* * . Conditional on   ∩ ∩ we have

R i j r
d i d j d i d j d i d j

ϵ f g( , ) −
16

( )
+

16

( )
+

1

( )
+

1

( )
+

16

( )
+

16

( )
9 9(2 + ).i j n i j i j, 2 2 2 2 , ,

⎛
⎝⎜

⎞
⎠⎟≤ ≤

Bounding ( )c  , ( )c  , and ( )c  using Lemmas 3.4 (ii), 4.2, and 5.1 (ii), respectively:

e o n o e o e o n( ) 2 + (1/ ) + ( ) + ( ) + ( ),c o np np np−(1− (1)) 3 − /3 − /4 −7/2  ≤

which is o e o n( ) + ( )np− /4 −3 as required. □
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For S V⊆ and λ λ n o np( ) = ( )≔ let S λ( , ) be the event

S λ d u np λnp( , ) {| ( ) − | },
u S

 ≔ ⋂ ≤
∈

(48)

for which we have S λ S e( ( , ) ) 2| |c λ n− ( )/  ≤ by the union bound and Lemma A.1.

Proof of Theorem 1.3.
Item (i): Conditional on the event i j ε np({ , }, /19)n

2 ∩ we have

R i j
np

R i j r r
np

ε

np

λ n

np

ε

np
( , ) −

2
| ( , ) − | + −

2 19

2
+

2 ( )

( )

10
,i j i j

n n
, , 3/2

≤ ≤ ≤ (49)

since f g ε np9(2 + ) 19 /(2 )i j i j n, , ≤ on i j λ({ , }, ) ∩ . Thus by Theorem 1.1

R i j np ε np e e(| ( , ) − 2/( )| > 10 /( )) (( ) ) ( ) + 4 .n
c c λ n ε np− ( )/3 − /60n

2    ≤ ∩ ≤ ≤

Item (ii): Recall the definition of from (46) and notice we suppressed dependence on i j,

that is i j, ≔ . Similarly to (49), conditional on V n( ) ( , 9 log )i j v i j{ , } , ∩ ∩⊆ we have

R i j
np

n

np

ε

np

n

np
( , ) −

2
2

3 log

( )
+

19

2

7 log

( )
.n

3/2 3/2
≤ ⋅ ≤

Recall event  from (46). The result now follows since by Theorem 1.1 and (48) we have

n o e o n ne o
n

( ) ( ( ) + ( )) + 2 =
1

.c np n2 − /4 −3 −3 log  ⎜ ⎟
⎛
⎝

⎞
⎠≤

Item (iii): Recall that m E| |≔ and let be the event m p n p{| − ( ) | 3 log( )( ) }
n n

2 2
≤ .

Conditional on V n( , 9 log )  ∩ ∩ we have the following for any i j V{ , } ⊆ :

mR i j n n
n

np

d u
R j u R u i n

n

np
| ( , ) − | 4

log
, and

( )

2
[ ( , ) − ( , )] 8

log
,

u V

∑≤ ≤
∈

thus h i j n n np| ( , ) − | 12 log( )/≤ by Tetali’s formula (3) and the Triangle inequal-
ity. Now

V n o n o n o n o n(( ( , 9 log ) ) ) = (1/ ) + (1/ ) + (1/ ) = (1/ )c 3 3   ∩ ∩

by (48), Lemma A.1, since m Bin p(( ), )
n

2
∼ and Theorem 1.3 (ii) respectively. □

4.2 | Proof of Theorem 1.6

Recall that paths i j l( , , )2 is the maximum number of paths of length at most l between vertices i
and j that are vertex disjoint on V B i B j\( ( ) ( ))1 1∪ of a graph G.
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Proof of Theorem 1.6.
Item (i): For i j V, ∈ let i j, be the event that there is no path from i to j of length less than
4. Then by over‐counting the number of paths we have

( ) i j l p n p
n

p n p(path from to of length ) + ( − 2) +
− 2

2
.i j

c

l

,

=1

3

2 3 2 3  ⎜ ⎟
⎛
⎝

⎞
⎠∑≤ ≤ ≤ (50)

Conditional on i j, every path between i and j must pass through at least one vertex from each
of d i( )2 and d j( )2 , though these vertices may not be distinct. So there cannot be more than

d i d jmin{ ( ), ( )}2 2 paths between i j V, ∈ which are vertex disjoint onV V B i B j\( ( ) ( ))* 1 1≔ ∪

since i j VΓ ( ) Γ ( ) *2 2∪ ⊆ . Thus conditional on i j, for any l 0≥ we have

paths i j l d i d j( , , ) min{ ( ), ( )}.2 2 2≤ (51)

To bound paths i j l( , , )2 from below we construct ψ i ψ jmin{ ( ), ( )}2 2 vertex disjoint paths
between i and j conditional on i j, , Definition 2.4, then couple ψ i( )2 to d i( )2 and ψ j( )2

to d j( )2 .
For the path construction condition on i j, and w.l.o.g. assume ψ i ψ j( ) ( )2 2≤ .

Take any subset j jΨ ( ) Ψ ( )*2 2⊆ with ψ i( )2 elements and any bijection M between iΨ ( )2

and jΨ ( )*2 . Given any pair x y( , ) in M , conditional on i j, , there is some k and
some pair x y x y( , ) Γ ( ) × Γ ( )* *k k k k∈ such that x y Ek k ∈ . We define the path
P i i x x x y y y j j, , , , …, , , , …, , ,x y x k k k y, 1 −1≔ , where x x x, , …, k1 is the unique path from x

to xk in the treeT x x( ) Γ ( )*k i
k

i=0≔ ∪ and ix is the unique vertex in iΓ ( )*1 connected to x. The
equivalent descriptions hold for y y y T y, , …, ( )k k1 ∈ and j jΓ ( )y 1∈ with respect to y and j.
The paths P{ }x y x y M, ( , )∈ are all vertex disjoint onV * since the trees T u{ ( )}K u Ψ2∈ are all vertex
disjoint. Each path in Pi j, has length l k2 + 5≔ , where the k is given by the event i j, .
Thus conditional on the event i j, we have

paths i j l P ψ i ψ j( , , ) { } = min{ ( ), ( )}.x y x y M2 , ( , ) 2 2≥ ∈ (52)

Exchanging the ψ2 and d2 distributions on the event ψ i d i ψ j d j{ ( ) ( ) or ( ) ( )}2 2 2 2≠ ≠ yields

paths i j l d i d j ψ i d i ψ j d j

paths i j l ψ i ψ j paths i j l d i d j

( ( , , ) min{ ( ), ( )}) ( ( ) ( ) or ( ) ( ))

+ ( ( , , ) < min{ ( ), ( )}) + ({ ( , , ) > min{ ( ), ( )}}).

2 2 2 2 2 2 2

2 2 2 2 2 2

P  
 

≔ ≠ ≤ ≠ ≠

Now by (52) and (51) we have the following:

ψ i d i ψ j d j

n p o e

( ( ) ( ) or ( ) ( )) + (( ) ) + ( )

5 + ( ),

i j
c

i j
c

np n

2 2 2 2 , ,

3 4 −7 min{ ,log }/2

P    ≤ ≠ ≠

≤

by Lemma 3.4 (v), Lemma 3.5 and (50), respectively. On the event i j, the strong path
property is satisfied for some k + 2

n

np

log

2 log( )
≤ ⌊ ⌋ , thus l k= 2 + 5 + 9

n

np

log

log( )
≤ .

Item (ii): Observe that d u Bin n d u p( ) ( − 1 − ( ), 1 − (1 − ) )d u
2

( )∼ , conditional on d u( )

for any u V∈ . Notice that p kp kp(1 − ) 1 − + ( )k 2≤ when kp kp( ) ( )i i+1≥ for all i by the
Bernoulli inequality (A1). Thus conditional on i j np({ , }, 3 log( )) , see (48), we have the
following:
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( ) ( )Bin n np np p np np d i d j Bin n np p np np− 2 , − 2 log( ) ( ), ( ) , + 3 log( ) .2
1 2 2 1

2≼ ≼

Let i j, be the event d i d j np np np{| min{ ( ), ( )} − ( ) | 3( ) log }2 2
2 3/2≤ . Observe that

we have

( )( ) i j np i j np o np({ , }, 3 log( )) + ( ({ , }, 3 log( )) ) = (1/ ),i j
c

i j
c c

, ,     ≤ (53)

by (48) and applying Chernoff bounds to d i( )2 conditional on i j np({ , }, 3 log( )) . We
now have

( )
paths i j l np np np paths i j l d i d j

n p o e o np o np

(| ( , , ) − ( ) | > 3( ) log ) ( ( , , ) min{ ( ), ( )})

+ 5 + ( ) + (1/ ) = (1/ ),i j
c np n

2
2 3/2

2 2 2

,
3 4 −7 min{ ,log }/2

 
 

≤ ≠

≤

by Item (i) and the bound on ( )i j
c
,  from (53). □

5 | PROOF OF THEOREMS 1.2, 1.4 , 1.7 , AND 1.9

Recall εn
n

np np

log

log( )
≔ from (2), that m E= | | and Tetaliʼs formula (3), which is given by

h i j mR i j
d u

R j u R u i( , ) = ( , ) +
( )

2
[ ( , ) − ( , )].

u V

∑
∈

Our results on hitting times and other random walk indices come from applying our bounds
on resistance to Tetaliʼs formula (3) to obtain moments hitting times. The following two
Lemmas help us calculate the terms arising during these computations.

Lemma 5.1. Let n p( , ) ∼ , where n n np o nlog + log log log < ( )1/3≤ . Let α 1≥

and u vΨ ( ), Ψ ( )1 1 be defined with respect to u v u v VMBFS( , { , }), , ∈ . Then

ψ u

O ϵ

np

1

( )
=

1 + ( )
.

α

α
n

1/
u
u v,

 ⎡
⎣⎢

⎤
⎦⎥

Proof. We restrict to the event u
u v, to ensure the expectation is bounded,

ψ u k
ψ u k

k

ψ u k1

( )
=

1
( ( ) = ) =

1 ({ ( ) = } )

( )
.

α
k

n

α
k

n

α
=1 =1

u
u v,

E   







⎡
⎣⎢

⎤
⎦⎥ ∑ ∑≔

∩

Applying the coupling inequality (A3), and then Lemma 3.4 to bound d u ψ u( ( ) ( ))* ≠ gives

k

d u k d u ψ u

k

d u k e1 ( ( ) = ) + ( ( ) ( ))

( )
=

1 ( ( ) = ) +

( )
.

* * *

k

n

α
k

n

α

o np

=1 =1

−(1− (1))

E
 




 
∑ ∑≤

≠
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Let d v v S Bin n p˜ ( ) |Γ ( ) | ( − 2, )1 1 0≔ ∩ ∼ . By Lemma 3.1 we have d u Bin n( ) ( −* ∼ h p2 − , )

conditional on d v h{ ˜ ( ) = }1 . By the law of total expectation and the generalised harmonic
series,

k

d u k d v h d v h
O

n e1 ( ( ) = | ˜ ( ) = ) ( ˜ ( ) = )

( )
+

(log )

( )
.

*

k

n

α

h

n o np

=1

=0

−2
1 1

−(1− (1))

E
 

  

⎛
⎝⎜

⎞
⎠⎟∑≤

∑

Now by writing out d u k d v h d v h( ( ) = | ˜ ( ) = ) ( ˜ ( ) = )* 1 1  explicitly we have

( ) ( )
k

p p p p
e

n

h

p p

k

n h

k
p p e

1 (1 − ) (1 − )

( )
+

=
− 2 (1 − )

( )

1 − 2 −
(1 − ) + .

k

n

α

h

n n h

k
k n h k n

h
h n h

o np

h

n h n h

k

n h

α
k n h k o np

=1

=0

−2 − 2 − −2− − − 2 −2−

−(1− (1))

=0

−3 −2−

=1

−2−

−2− − −(1− (1))

E 






⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

∑
∑

∑ ∑

≤
⋅

Applying Proposition A.3 to the bracketed sum above where we let Bh be a random
variable with distribution Bin n h p( − − 3, ) yields

np n

h
p p

B
e

( )

− 2
(1 − )

1

( + 1)
+ .

h

n

h n h

h
α

o np

=0

−3

−2−
+1

−(1− (1))E  


⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥∑≤

The weight in front of the expectation term is the density of a Bin n p( − 2, ) random
variable. Split the sum at t np α np3 ( + 2)log( )≔ and bound the expectation to give

np
Bin n p t

B
Bin n p t e

( )
( ( − 2, ) )

1

( + 1)
+ ( ( − 2, ) > ) + .

t
α

o np
+1

−(1− (1))E    


⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟≤ ≤

Bounding Bin n p t( ( − 2, ) > ) by Lemma A.1 using Lemma A.3 to calculate
B

1

( + 1)t
α+1⎡⎣ ⎤⎦:

np

n t p
O

n t p
O

np
e

np
O

np

( )

1

(( − − 3) )
+

1

(( − − 3) )
+

1

( )
+

=
1

( )

1

( )
+

1

( )

α α α
o np

α α

+1 +2 +2
−(1− (1))

+1

E 







⎡
⎣
⎢⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

≤

Applying Bernoulliʼs inequality (A1) yields

np
O

np np
O

np

O

np

1

( )

1

( )
+

1

( )
=

1

1 − ( )
1 +

1
=

1 + (ϵ )
,α

α α

α

c

α
n1/

+1

1/ 1/

E   

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟≤

as (10) gives O ε( ) ( )c
n  ≤ whenever np n nlog + log log log≥ . □
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Lemma 5.2. For any set A V⊂ of size a0 3≤ ≤ and any set of vertex pairs B ( )
V

2
⊂ of

size b0 3≤ ≤ then

d v R x y
np

O ε( ) ( , ) =
2

( )
(1 ± ( )).

v A x y B

b

a b n

{ , }
−


⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥∏ ∏

∈ ∈

Proof. We shall prove the case A u v w= { , , } and B a a b b c c= {( , ), ( , ), ( , )}1 2 1 2 1 1 , this is
the “largest” case and the other cases are proved in exactly the same way. Let

.a a
n

b b
n

c c
n

a a b b c c, , , , , ,1 2 1 2 1 2 1 2 1 2 1 2
      ≔ ∩ ∩ ∩ ∩ ∩

For ease of notation we define

A d v B R x y( ) ( ) and ( ); = ( , ).
v A x y B{ , }

Deg Res∏ ∏≔
∈ ∈

Recall the bound on R x y( , ) from Corollary 2.5, conditional on x y, , this yields

B
ψ x ψ y

k

ψ x φ a

k

ψ y φ b

a k b k c k d

1 1Res( )
1

( )
+

1

( )
+

+ 2

( )
sup

1

( )
+

+ 2

( )
sup

1

( )

= + [( + 2) + ( + 2) ] + ( + 2)

x y B a x b y

x a a

y b b

z c c

x y z

f g h

x y z

f g h

f g h f g h x y z

{ , } Ψ ( ) Ψ ( )

{ , }

{ , }

{ , }

, ,

, ,

{ , , }

, ,
2

, ,
3

, ,

1 1

1 2

1 2

1 2

 

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

∏

∑ ∑

≤

⋅ ⋅ ⋅

∈ ∈ ∈

∈

∈

∈

∈

≠ ≠

(54)

where the summands are given by

a
ψ x ψ y ψ z

b
ψ f ψ g ψ h φ a

c
ψ f ψ w φ a

d
ψ w φ a

1 1

1
1

=
( ) ( ) ( )

, =
( ) ( ) ( )

sup
1

( )
,

=
( )

1

( )
sup

1

( )
, =

1

( )
sup

1

( )
.

x y z f g h
a h

f g h

w g h a w
x y z

w f g h a w

, , , ,
Ψ ( )

, ,

{ , } Ψ ( )
, ,

{ , , } Ψ ( )

1

1 1

 


∏ ∏

∈

∈ ∈ ∈ ∈

By Hölderʼs inequality (A2), it follows that A a 1[ ( ) ]x y z, , Deg ⋅ ⋅ is at most

d u d v d w
ψ x ψ y ψ z

np O np
O ε

np
O ε

1 1 1
[ ( ) ] [ ( ) ] [ ( ) ]

( ) ( ) ( )

= (( ) + (( ) ))
1 + ( )

= 1 + ( ),n
n

6 6 6
6 6 6

6 5

3

1
6

1
6

1
6

1
6

1
6

1
6

1
2

        








⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟⋅

where we applied (A4) and Lemma 5.1 to the expectations, then Bernoulliʼs inequality (A1).
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Similarly by Hölderʼs inequality (A2) and collecting similar terms

A b d u
ψ f φ c

np O np
O ε

np
O

np
O

np

1
1 1

[ ( ) ] [ ( ) ]
( )

sup
( )

= (( ) + (( ) ))
1 + ( ) 1

=
1

.

f g h
c h

n

, ,
7

7
Ψ ( )

7

7 6

3

3
7

1

3
7

1

1

1
7

3
7

      





Deg
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ ≤

⋅ ⋅

∈

where in addition we applied Lemma 4.1. By a near identical calculation we have

A c O
np

A d O
np

1

1

[ ( ) ] =
1

( )
,

[ ( ) ] =
1

( )
.

f g h

x y z

, , 2

, , 3





 

 

Deg

Deg

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅

⋅ ⋅

Now by linearity of expectation, (54), and since k O n np= (log( )/log( )), we have

A B O ε O
k

np
O

k

np
O

k

np

O ε

1[ ( ) ( ) ] = 2 + ( ) + +
( )

+
( )

= 2 + ( ).

n

n

3
2

2

3

3

3

 Deg Res
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟⋅ ⋅

(55)

We shall now consider what happens on c , let be the event d u np{ ( ) 8 }u A∩ ≤∈ . By
Chernoff bounds Lemma A.1 and the bound (10) on ( )  we have o n( ) = (1/ ).c 7  Let

i j, be the event R i j n np{ ( , ) 3 log /log( )}≤ and recall o n( ) = ( )i j
c
,

−4  by Lemma 3.6.
Observe that conditional on ˜ = c

x y B x y1 { , } ,   ∩ ∩ ∏
∈

the following inequalities
hold for all v A∈ and x y B{ , } ∈ : d u np( ) 8≤ and R x y n np( , ) 3 log( )/log( )≤ . Thus

A B O np
n

np
o n1[ ( ) ( ) ] = ( )

(log )

log( )
( ) = (1/ ).c˜ 3

3
4/5

1
    Deg Res

⎛
⎝⎜

⎞
⎠⎟⋅ ⋅ ⋅ ⋅ (56)

We shall now consider conditioning on the event ˜ = ( )c
x y B x y

c
2 { , } ,   ∩ ∩ ∏

∈
where

we instead use the worse case resistance bound R i j n( , ) − 1≤ , this gives

A B O np n o n1[ ( ) ( ) ] = (( ) ) ( ) = (1/ ).x y
c

˜ 3 3
,

4/5
2

    Deg Res⋅ ⋅ ⋅ ⋅ (57)

Finally we consider the event c c ∩ and we observe that since o n( ) = (1/ )c 7 
we have

A B O n o n1[ ( ) ( ) ] = ( ) ( ) = (1/ ).c6
c c     Deg Res⋅ ⋅ ⋅∩

(58)

The upper bound on A B[ ( ) ( )] Deg Res⋅ follows by combining (55), (56), (57),
and (58).

We now consider the lower bound. Recall that B a a b b c c= {( , ), ( , )( , )}1 2 1 2 1 2 , in the case
we are considering. Lemma 2.1 states R x y d x d y( , ) 1/( ( ) + 1) + 1/( ( ) + 1)≥ , thus
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A B
d u

d x d y d z
[ ( ) ( )]

( )

( ( ) + 1)( ( ) + 1)( ( ) + 1)
,

x y z

u A

, ,

  Deg Res
⎡
⎣⎢

⎤
⎦⎥∑⋅ ≥

∏
∈ (59)

where the sum is over x y z a a b b c c( , , ) { , } × { , } × { , }1 2 1 2 1 2∈ . Let  be the event given by

d u np a np d x d y np a np{ ( ) − } { ( ), ( ) + } ,
u A x y B{ , }


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏ ∏≔ ≥ ⋂ ≤

∈ ∈

where a n= 3 log log if np O n= (log ) and a n= 3 log if np ω n= (log ). Then,

d u

d x d y d z

np a np

np a np
O ε

( )

( ( ) + 1)( ( ) + 1)( ( ) + 1)

( − )

( + )
( ) = 1 − ( ),u A

n

3

3
   

⎡
⎣⎢

⎤
⎦⎥

∏
≥∈

where the bound on ( )  is by Lemma A.1. The lower bound follows from (59). □

5.1 | Proof of Theorem 1.2

Equipped with Lemma 5.2, the proofs of the main “moment theorems” are straightforward.

Proof of Theorem 1.2. Observe that R i j O ε np[ ( , )] = (2 ± ( ))/n follows directly from
Lemma 5.2 with A = ∅ and B i j= {( , )}. For hitting times we have the following by (3):

h i j mR i j d u R u j d u R u i mR i j[ ( , )] = [ ( , )] +
1

2
( [ ( ) ( , )] − [ ( ) ( , )]) = [ ( , )],

u V

       ∑
∈

when i j≠ , by symmetry. Thus, we have

h i j d u R i j O n O ε[ ( , )] =
1

2
[ ( ) ( , )] =

1

2
(2 ± (ϵ )) = (1 ± ( )),

u V u V

n n  ∑ ∑
∈ ∈

by Lemma 5.2 with A u= { } and B i j= {( , )}. □

5.2 | Proof of Theorem 1.7

Theorems 1.4 and 1.9 shall be proved by Chebychevʼs inequality, thus we need second
moments.

Lemma 5.3. Let n p(, , ) ∼ satisfy (4) and i j V, ( )∈ , where i j≠ . Then h i j[ ( , ) ] =2
O ε n(1 ± ( )) ,n

2 cc O ε n[ ( ) ] = (1 ± ( ))i n
2 2  and K O ε n p[ ( ) ] = (1 ± ( )) /n

2 2 2  .

Proof. Let g a b c d d u d v R a b R c d( , , , ) [ ( ) ( ) ( , ) ( , )]≔ . Using Tetaliʼs formula (3) we can
expand h i j h i a[ ( , ) ( , )] to give the following for any i j a V, , ∈ :
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d u
R i j R j u R u i

d v
R i a R a v R v i

g i j i a g i w v z g w j i v

g u j w a g w a i u d u d v R i j R i a

( )

2
( ( , ) + ( , ) − ( , ))

( )

2
( ( , ) + ( , ) − ( , ))

=
1

4
( , , , ) + ( , , , ) − ( , , , )

+
1

4
( ( , , , ) − ( , , , )) =

1

4
[ ( ) ( ) ( , ) ( , )].

u V v V

u v V w z

u i j a

w i u

u v V w i v u v V

, ( , )

{( , ),( , )}

{ , }

, { , } ,









⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

⋅
∈ ∈

∈ ∈ ∈

∈ ∈ ∈

(60)

To see the above, observe that R a b R c d( , ) ( , ) = 0 if and only a b= or c d= . Thus only
the first term, g i j i a( , , , ), will always be non‐zero. All the other terms contain one or
more input from u v{ , } so will be zero at different times. Of the eight other terms there are
two positive and two negative terms containing one of u v{ , }, then two positive and two
negative terms containing both u and v as inputs. Thus by symmetry when the sums are
expanded everything apart from the first term g i j i a( , , , ) cancels.

Thus by (60) and Lemma 5.2 with A u v= { , } and B i j i a= {( , ), ( , )} we have

h i j h i a O n O ε[ ( , ) ( , )] =
1

4
(4 ± (ϵ )) = (1 ± ( )).

u v V

n n

,

2 ∑
∈

(61)

Now by the definition (6) of cc G( )i and (61) we have,

cc
n

h i j
n

h i j h i k[ ( ) ] =
1

( − 1)
( , ) =

1

( − 1)
[ ( , ) ( , )],i

j V j k V j k i

2
2

2

2
, ; ,

    

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥∑ ∑

∈ ∈ ≠

which is equal to O ε n(1 ± ( ))n
2. Finally observe that by (6) we have

K R i j R w z
O

np

n

p
O ε[ ( ) ] = [ ( , ) ( , )] =

4 ± (ϵ )

( )
= (1 ± ( )),

i j V w z V i j V w z V

n
n

2

{ , } { , } { , } { , }
2

2

2
  ∑ ∑ ∑ ∑

⊆ ⊆ ⊆ ⊆

where we applied Lemma 5.2 with A = ∅ and B i j w z= {( , ), ( , )}. □

Proof of Theorem 5.2. Recall (5), the definitions of H G( )i for i V∈ and T G( ):

H G
d j

m
h j i T G

d j

m
h i j( )

( )

2
( , ), ( )

( )

2
( , ),i

j V j V

∑ ∑≔ ≔
∈ ∈

where m E Bin p| | (( ), )
n

2
≔ ∼ . To begin, let m Bin p k k(( ) − 1, ), , 1*

n

2
∼ ∈ ≥ .

Proposition A.3 and the fact that m{ 1} ⊂ ≥ yields the following:

( )
m m m

p

m n p
O

np

1 11
( ) = =

( + 1)
=

2
1 +

1
,

*k k

m

k

n

k

k

k k

{ 1} 2

+1 2
    

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟≤

≥

34 | SYLVESTER



where in the last step we used Lemma A.3 to bound the expectation term. Observe that by
(10), O ε( ) ( )c

n  ≤ whenever np n nlog + log log log≥ . Thus by the Bernoulli inequality
(A1) for any given a k a k, , , 1∈ ≥ we have

m n p
O

np n p
O εn

1
=

2
1 +

( )

( )
+

1 2
(1 + ( )).

k

a k a

k a k a

c
a

k a

k a k a

1/ /

2 / /

1/
/

2 / /
 






⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ ≤ (62)

Using Hölderʼs inequality to break the product of random variables in the expectation:

T d j m h i j[ ( )] (1/2) [ ( ) ] [1/ ] [ ( , ) ] .
j V

4 1/4 4 1/4 2 1/2      ∑≤
∈

Then applying (A4), (62) and the upper bound on h i j[ ( , ) ]2 from Lemma 5.3 yields

T n np O np O ε n p n O εn n O εn[ ( )] ( /2)(( ) + (( ) )) [(2 + ( ))/ ] (1 + ( )) = (1 + ( )).n
4 3 1/4 2  ≤ ⋅ ⋅

The same upper bounds for H[ ( )]i  follows by identical steps. By (3) we have

T G
d j

m
mR i j

d u
R u j R u i( ) =

( )

2
( , ) +

( )

2
[ ( , ) − ( , )]

j V u V

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑

∈ ∈

forG connected. Applying the effective resistance bound, Lemma 2.1, and reducing yields

T G
m

d i

d i

d i

d j

d j

d j d u

m d u

d u d j

m
R u i

( )
( ( ) + 1)

−
( )

2( ( ) + 1)
+

( )

2( ( ) + 1)
+

( ) ( )

2 ( ( ) + 1)

−
( ) ( )

4
( , ).

j V

j i

j u V

j u

j u V

,

,

∑ ∑

∑

≥
∈

≠

∈

≠

∈

Applying d i d i d i( )/( ( ) + 1) = 1 − 1/( ( ) + 1) and the bound d i d i( )/( ( ) + 1) 1≤ yields

T G
m

d i

n

d u

d u
R u i( )

( ) + 1
+

3

2
− 2 −

3

2( ( ) + 1)
−

( )

2
( , ).

u V u V

∑ ∑≥
∈ ∈

Again by a similar procedure we have the following for the stationary hitting time H G( )i

H G
d j

m
mR j i

d u
R u i R u j

n

d j

m

d i

d u

d i d u

d u d j

m
R u j

n
m

d i d u

d u d j

m
R u j

( ) =
( )

2
( , ) +

( )

2
[ ( , ) − ( , )]

− 1

2
−

1

2( ( ) + 1)

+
− 1

( ( ) + 1)
− 1 +

( )

2

1

( ) + 1
+

1

( ) + 1
−

( ) ( )

4
( , )

+
2 − 2

( ) + 1
−

1

( ) + 1
−

7

2
−

( ) ( )

4
( , ).

i

j V u V j V

u V u i j u V

u V j u V

, ,

,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

∑ ∑ ∑

∑ ∑

∑ ∑

≥

≥

∈ ∈ ∈

∈ ≠ ∈

∈ ∈
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Let  be the event m n p a n p d j np a np{ /2 − /2 } { ( ) + }2 2≥ ∩ ≤ , where
a n= 3 log log if np O n= (log ) and a n= 3 log if np ω n= (log ). Now by Lemma A.1
we obtain

a a a np o np( ) = (1 − exp(− /2) ( ) − exp(− /2(1 + /3 ))/ ( )) = 1 − (1/ ).2 2     ∕

By Hölderʼs inequality (A2), 11 ≥ and the bound on ( )  in the line above we have

( ) ( )
H n

p a p

np a np
n

d u

n d j m d u R u j n O εn

[ ( )] + 2
− − 1

+ + 1
( ) −

1

( ) + 1
−

7

2

−( /4) [ ( ) ] [1/ ] [ ( ) ( , ) ] = (1 − ( )).

i

n n

2 2

4 1/4 4 1/4 2 2 1/2

  

  

   

  

⎡
⎣⎢

⎤
⎦⎥≥ ⋅

The last equality comes from applying estimates to the expectation terms which are given
by Lemma A.3 in Appendix A and (A4), (62), and Lemma 5.2, respectively. Similarly
we have

( ) ( )
T

p a p

np a np

n n

d u

n
d u R u i

[ ( )]
− 2

+
( ) +

3

2
− 2 −

3

2

1

( ) + 1

−
2

[ ( ) ( , ) ] ,

n n

2 2

2 2 1/2

  



   



⎡
⎣⎢

⎤
⎦⎥≥

which also evaluates to n O εn(1 − ( )). □

5.3 | Proof of Theorems 1.4 and 1.9

Lemma 5.4. Let n p(, , ) ∼ satisfy (4). Then H T n O ε[ ( ) ], [ ( ) ] = (1 ± ( ))i n
2 2 2    .

Proof. We will first bound h i j[ ( , ) ]3 from above. Now similarly to Lemma 5.3,

h i j d x d y d z R i j O[ ( , ) ] =
1

8
[ ( ) ( ) ( ) ( , ) ] =

1

8
(8 ± (ϵ )),

x y z V x y z V

n
3

, ,

3

, ,

  ∑ ∑
∈ ∈

(63)

which equals n O ε(1 ± ( ))n
3 —where above we applied Tetaliʼs formula (3), cancelled

terms by symmetry and then applied Lemma 5.2 with A x y z= { , , } and the multi-
set B i j i j i j= {( , ), ( , ), ( , )}.

By the definition (5) of T( ) and Hölderʼs inequality (A2) we have

T
d j

m
h i j

d j d k

m
h i j h x y

d j d k m h i j h x y

[ ( ) ] =
( )

2
( , ) =

( ) ( )

(2 )
( , ) ( , )

( [ ( ) ] [ ( ) ] [1/(2 ) ]) ( [ ( , ) ] [ ( , ) ]) .

j V j k V

j k V

2

2

,
2

,

9 9 18 1/9 3 3 1/3

  

    

  

    

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑

∑≤

∈ ∈

∈
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Applying the bounds (A4), (62), and (63) respectively then Bernoulliʼs inequality (A1)
gives

T
n

np O np
O ε

n p
n O εn n O εn[ ( ) ]

2
(( ) + (( ) ))

2 + ( )
( (1 + ( ))) = (1 + ( )).n2

2

2
9 8

18

36 18
6 22

9

1
9

1
3 

⎛
⎝⎜

⎞
⎠⎟≤

Then by Jensenʼs inequality and the lower bound on T[ ( )]  proved earlier we
have

( ) ( )T T n O εn n O εn[ ( ) ] [ ( )] ( 1 − ( ) ) = 1 − ( ) .2 2 2 2   ≥ ≥

The exact same calculations yield the same bounds for H[ ( ) ]i
2  . □

We prove Theorems 1.4 and 1.9 (together) by Chebychevʼs inequality and our moment
bounds.

Proof of Theorems 1.4 and 1.9. Let X h i j H T cc{ ( , ), ( ), ( ), }i i ∈ where i j V, ∈ and
recall [ ] = [ | ]   ⋅ ⋅ . We have the following for these X by Theorem 1.2

X n O εn n O εn O n εVar( | ) = (1 + ( )) − ( (1 + ( ))) = ( ).n
2 2 2

We can also calculate the conditional variance of K ( ) by Theorem 1.2, this yields

K n p O εn n O εn p O nε pVar( ( )| ) = ( / )(1 + ( )) − ( (1 + ( ))/ ) = ( / ).n
2 2 2 

By the Chebyshev inequality [2, Theorem 4.1.1] for each of the above

X X λ n X λ n(| − [ | ]| ( ) Var( | ) | ) 1/ ( ) .2    ≥ ≤

For X above we have X O X εVar( | ) = ( [ | ] )n2  by Theorem 1.2, thus there exists some
K independent of n and X such that X X KεVar( | ) < [ | ] ,n  for large n. By choosing
λ n f n K( ) = ( )/ for any function f n( ) we have

X X X f n ε K f n O f n(| − [ | ]| > [ | ] ( ) | ) / ( ) = (1/ ( )).n     ≤

The result follows since ( ) ( ) + ( )c     ≤ ∣ , for any event  . □
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APPENDIX A
We make frequent use of the following inequalities. Bernoulli: Let x −1≥ , then

x rx r x rx r(1 + ) 1 + for 0 1 and (1 + ) 1 + for 1.r r≤ ≤ ≤ ≥ ≥ (A1)

Hölder: For k n1 ≤ ≤ let Xk be r.v.ʼs and p [1, )k ∈ ∞ , where p1/ = 1
k

n
k=1

∑ and X[ ]k
pk ex-

ists, then

X X X X[ ] [ ] [ ] .n
p p

n
p p

1 1
1/ 1/n n1 1  ⋯ ≤ ⋯ (A2)

Coupling: If X Y, are real random variables on a probability space (Ω, , )F  , then for
any B ⊂ ,

X B Y B X Y| ( ) − ( )| ( ).  ∈ ∈ ≤ ≠ (A3)

Lemma A.1 (Chernoff bounds). If X Bin n p( , )∼ , then for any a > 0, b np< , and c np>

(i) X np a X np a[ < − ] exp(− ), and [ > + ] exp(− )
a

np

a

np a2 2( + 3)

2 2 ≤ ≤
∕

,
(ii) X b e X c e[ < ] ( ) , and [ > ] ( )np enp

b
b np enp

c
c− − ≤ ≤ .

Proof. For (i) see [9, Theorem 2.4] and [9, Theorem 2.15] with ϵ = 1 −
b

np
for (ii). □

We also have the following closed form for moments of binomial random variables,

Theorem A.2 (Knoblauch [21, Theorem 4.1]). Let X Bin n p( , )∼ , n n n( − 1)i ≔

n i…( − + 1) and S d i( , ) be the Stirling partition number of d items into i subsets. Then
for d 0≥ ,

X S d i p n S d i
i

i

k
k[ ] = ( , ) , where ( , )

1

!
(−1) .d

i

d

i i

k

i

k i d

=0 =0

+ ⎜ ⎟
⎛
⎝

⎞
⎠∑ ∑≔

Let X Bin n p( , )∼ , p p n0 < ( ) < 1≔ and d 0≥ fixed. Then by Theorem A.2 we have

X S d d p n O p n np O np[ ] = ( , ) ± ( ) = ( ) ± (( ) ).d d d d d d d−1 −1 −1 (A4)

Proposition A.3. Let X Bin n p Y Bin n p α α( , ), ( − 1, ), , 1.∼ ∼ ∈ ≥ Then
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X k

n

k
p p

k

n

k
p p

np

k

n

k
p p

np

Y

1 1
(1 − ) =

1

( + 1) + 1
(1 − )

=
( + 1)

− 1
(1 − ) =

( + 1)
.

X

α
k

n

α
k n k

k

n

α
k n k

k

n

α
k n k

α

{ 1}

=1

−

=0

−1

+1 −1−

=0

−1

+1
( −1)−

+1





⎜ ⎟⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

∑ ∑

∑

≔
≥

Lemma A.3. Let X Bin n p( , )n ∼ for p p n( )≔ with np → ∞, a ∈ b, , ∈
a b, > 0. Then

a np a X a np
O

np

1

( + )

1

( + )

1

( + )
+

1

( )
.

b
n
b b b( +1)


⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟≤ ≤

Proof. Let f x f x a x( ) ( ) = ( + )a b
b

,
−≔ for any constants a b, > 0. The lower bound

follows from Jensenʼs inequality since f x( ) is convex for a b, > 0.
Let μ X np= [ ] =n n . When np → ∞ it is possible to find some r r n( )≔ such that

r ω np np= ( log( ) ) and r o np= ( ). The Chernoff bound, Lemma A.1 (i), then yields

X μ r r μ o np( − ) exp(− /2 ) = (1/ ).n n n
2 ≤ ≤

With this r we can achieve the following a priori upper bound for any b 1≥ :

f X
a

X μ r f μ r X μ r o f μ[ ( )]
1

( − ) + ( − ) ( > − ) = (1 + (1)) ( ).n b n n n n n n  ≤ ≤

(A5)

By Taylorʼs theorem there is some ξn between Xn and μn such that

f X f μ f μ X μ f ξ X μ( ) = ( ) + ′( )( − ) + ″( )( − ) .n n n n n n n n
2

Using Hölderʼs inequality (A2) and the fact f x( ) is decreasing when x > 0, we have

f X f μ f μ X μ f ξ X μ

f ξ X μ f X X μ

f μ X μ o f μ X μ

1

1

( [ ( )] − ( )) ( ′( ) [ − ] + [ ″( )( − ) ])

[ ″( ) ] [( − ) ] [ ″( ) ] [( − ) ]

+ [ ″( ) ] [( − ) ] (2 + (1)) ″( ) [( − ) ].

n n n n n n n n

n n n n X μ n n

n X μ n n n n n

2 2 2

2 4 2
{ }

4

2
{ > }

4 2 4

n n

n n

  
   
  

≤

≤ ≤

≤

≤
(A6)

The last inequality follows by (A5) since f μ b b a μ″( ) = ( + 1) ( + )n n
b−( +2)⋅ ⋅ . Observe

X μ np p p n p n O np[( − ) ] = (1 − )(3 ( − 2) − 3 ( + 2) + 1) = (( ) ),n n
4 2 2 (A7)

this can be calculated using the binomial moment generating function or by Theo-
rem A.2. Hence by (A6), (A7), and f x b b f x( ( ))″ = ( + 1) ( )a b a b, ,( +2) , we have

( )( )f X f μ O a μ O np
a np

O
np

[ ( )] ( ) + ( + ) (( ) ) =
1

( + )
+

1

( )
.n n n

b
b b

−2( +2) 2
1/2

+1


⎛
⎝⎜

⎞
⎠⎟≤ ⋅ □
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Finally we shall prove Proposition 1.5 which shows tightness for the concentration results.

Proof of Proposition 1.5. Let Xd be the number of vertices with degree d. For the
first case:

X n
n

p p n pe
n

n
[ ] =

− 1

1
(1 − ) =

log

(log log )
.n n O n

O1
−2 2 −log − (log log log )

(1)
 ⎜ ⎟

⎛
⎝

⎞
⎠⋅ ≥

This implies that, for any fixed t , X tlim (| | ) = 1n 1 ≥→∞ by [4, Theorem 3.1]. Thus w.h.p.
there is at least one pair of vertices i j, both with degree 1 and so R i j( , ) 1≥ by Lemma 2.1.
Since the number of edges m is distributed Bin p(( ), )

n

2
there are n p o/2(1 − (1))2 edges

w.h.p by Lemma A.1. Thus by the Commute time formula (9) we have
κ i j m R i j o n n( , ) = 2 ( , ) (1 − (1)) log( )⋅ ≥ and since κ i j h i j h j i( , ) = ( , ) + ( , ) at least one of
h i j( , ) of h j i( , ) is greater than n nlog( )/3 w.h.p.

For the case np c o n= ( + (1)) log( ) let k k ε ε np: ( ) (1 − )≔ for some ε0 < < 1 and
observe

X n
n

k
p p

n

πk

e

ε
e o[ ] =

− 1
(1 − )

2 (1 − )
(1 − (1)).k

k n k
ε np

np−1−
(1− )

− ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟≥

Recall t t t−log(1 − ) + /22≥ for t < 1. In a similar vein to the proof of [20, Theorem 2.2]:

X
n

k
e

n

k
e

ne

k
[ ]

3 3 3
.k

εnp ε ε np εnp ε ε ε np− −(1− ) log(1− ) − +(1− )(+ + /2)
−
ε ε np

2

2(1+ )
2 ≥ ≥ ≥

So for any ε0 < < 1 satisfying < 1
ε ε c(1 + )

2

2

we have that X[ ]k → ∞ (a concrete
example would be ε c= 1/( + 1) ). Thus again by [4, Theorem 3.1] there are at least
two vertices i j, with degree less than ε np(1 − ) w.h.p. Thus, as before,
κ i j m R i j n p( , ) = 2 ( , ) = .

ε np

n

ε
2 2

(1 − )

2

1 −
⋅ ≥ Thus one or both of h i j( , ) or h j i( , ) must be

greater than a n(1 + ) for some a > > 0
ε

ε2(1 − )
w.h.p. □
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