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7.1 Time evolution of the change in energy density of particles and elec-
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third (blue) the energy density of the electrostatic field Ex; fourth

(cyan) the change in kinetic energy density of the minority energetic

fusion-born protons, which are not initialised until t = 10τcD; fifth

(magenta) the change in kinetic energy density of the minority ener-

getic NBI deuterons. Time is normalised to the deuteron gyro period. 143
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7.6 The spectral intensity of the fluctuating Bz field energy density from

a simulation with ξNBI = 10−2 and ξp = 10−2. Power is obtained by
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with initial NBI deuteron energies 80keV, 140keV, and 200keV (rows),
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7.10 Time evolution of the change in energy density of particles and electric

and magnetic fields as a function of time in a PIC simulation in
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Abstract

In this thesis I present particle in cell (PIC) simulations of ion cyclotron
emission (ICE). ICE comprises suprathermal radiation in the ion cyclotron fre-
quency range, whose spectrum peaks at successive local cyclotron harmonics of
the emitting energetic ion population. ICE has previously been observed in all large
toroidal MCF plasmas [Dendy and McClements, 2015; McClements et al., 2015].
ICE is caused by a collective instability, which in its linear phase corresponds to
the magnetoacoustic cyclotron instability (MCI). The passive, non-invasive char-
acter of ICE measurements, suggest ICE is an attractive way forward for future
energetic ion measurements in ITER. In the simulations in this thesis we use the
EPOCH particle-in-cell code to solve the self-consistent Maxwell-Lorentz system of
equations for fully kinetic electrons and thermal background ions, together with the
minority energetic ion distribution that drives the primary ICE.

We first perform a detailed quantitative comparison between fusion born pro-
ton driven chirping ICE observed during KSTAR ELM crashes and fully nonlinear
direct numerical simulations of the MCI. We find good quantitative agreement be-
tween the simulated and observed spectra, to the extent that the simulations can be
used to infer fast (∼ µs) time scale dynamics of the local electron number density
in the emitting region. We then extend this study to determine the origin of a faint,
time delayed proton chirping feature observed in one of the KSTAR plasma pulses.
We do this using bicoherence analysis of both experimental and simulation data. We
then run MCI PIC simulations of the pre ELM crash “steady state” ICE observed on
KSTAR, which is believed to be driven by neutral beam injected (NBI) deuterons.
PIC simulations of MCI excited ICE in JET and ASDEX Upgrade (AUG) plas-
mas are then discussed, and we show that AUG observations of the fundamental
ICE harmonic can only be explained in terms of the MCI if nonlinear wave-wave
interactions between higher harmonics are taken into account. Motivated by recent
observations of ICE in the core region of several tokamaks, including AUG and DIII-
D, we then compare MCI simulations using two types of energetic ion distribution
function, a spherical shell of varying thickness, and a ring beam of varying width.
It is found that both distribution functions lead to MCI excited waves, and their
nonlinear properties are discussed.

xxix



Chapter 1

Introduction

1.1 Nuclear Fusion

The most ubiquitous example of nuclear fusion is stellar nucleosynthesis, whereby

main sequence stars are created due to the fusion of light elements into heavier

ones. The Sun is our closest natural thermonuclear reactor, providing Earth with a

seemingly limitless supply of energy. The aim of fusion energy research is to be able

to reproduce these reactions and harness this energy on Earth.

In the past few decades, multiple approaches have been employed in an at-

tempt to obtain terrestrial fusion power. Four common methods of achieving this

which still benefit from contemporary research are:

1. Magnetic Pinches,

2. Inertial Electrostatic confinement,

3. Inertial confinement fusion,

4. Magnetic confinement fusion.

The focus of this thesis is magnetic confinement fusion, I will therefore only briefly

discuss methods one to three.

In a magnetic pinch, a strong current is sent in a particular direction through

a gas which is then ionised. The current forms a strong magnetic field which

“pinches” the plasma forming filamentary current strands. Eventually, these fil-

aments bunch together, forming dense, magnetically confined hot spots which result

in fusion. In inertial electrostatic confinement, a voltage difference focuses charged

particles radially in either a spherical or cylindrical geometry. Ions accelerate down
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the electrostatic potential well and converge at the origin, creating a high-density

fusion core.

Inertial confinement fusion (ICF) is one of two main branches of fusion re-

search. Energy from a laser is deposited on the outer layer of a target, which is

typically a pellet containing a mix of deuterium and tritium. The heated outer

layer ionises and ablates, the reaction drives a pressure shock wave into the centre

of the pellet. If a set of shock waves are sufficiently powerful, the fuel at the center

can be compressed and heated so much that fusion reactions occur.

Magnetic confinement fusion (MCF) is the other main branch of fusion re-

search. It relies on powerful magnetic fields to confine the plasma within a chamber.

Since the 1950s, several devices have been created in the attempt to achieve sufficient

magnetic confinement. Much of the early research was focused around the magnetic

mirror device. Confinement of plasma within this device relies on the invariance of

the magnetic moment µ

µ =
1

2

mv2
⊥

B
, (1.1)

where m is the mass of the charged particle, v⊥ is the perpendicular component of

its velocity, and B is the magnitude of the magnetic field strength. As a particle

moves from a region of weak magnetic field to strong magnetic field, it experiences

an increasing B. To conserve µ, the perpendicular component of the velocity must

increase. Since the total energy of the particle must remain constant, the parallel

component of the velocity v‖ must decrease. If B is high enough at the far end of the

mirror, then v‖ → 0 and the particle is reflected back [Chen, 1984]. This concept is

illustrated in Fig. 1.1.

Figure 1.1: A plasma trapped between magnetic mirrors [Hutchinson, 2001].
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There are problems with confining a plasma using this method, the result is that

the confinement time is not sufficiently long enough for fusion energy production.

However, some of the basic principles of this configuration are still used in magnetic

confinement devices today. This concept is not directly relevant to this thesis, but is

here to provide the reader with a simple picture of a magnetic confinement device.

Other magnetic confinement devices include the reverse field pinch, and the

stellarator; but the most well studied, and arguably the most successful to date,

is the Tokamak. This is a toroidal “doughnut” shaped chamber in which helical

magnetic field lines, their vector pointing predominantly in the toroidal direction,

confine the plasma in a stable equilibrium. This concept will be discussed in more

detail in later sections.

The choice of reactants in a thermonuclear fusion device is an important

issue. One requires the fusion reaction to produce a significant amount of energy,

but also that the probability of the reaction occurring is sufficiently high, for a range

of temperatures that can be achieved in the laboratory. The fusion of deuterium

with tritium has been identified as the most efficient fusion reaction in magnetic

confinement devices as it fulfils the above requirements. The reaction is

2
1D +3

1 T →4
2 He+1

0 n+ 17.6MeV. (1.2)

The neutron carries away 14.1MeV of the energy, while the alpha particle carries

3.5MeV of energy. Not only is this reaction promising in terms of its energy yield,

it is also economically viable. Deuterium is not radioactive, occurs naturally in

nature, and is a virtually inexhaustible resource. Tritium does not occur naturally

in nature, as it has a half-life of approximately 12.3 years. However, the neutrons

in the above reaction are electrically neutral so are not confined by magnetic fields.

They escape the plasma and are absorbed by a blanket surrounding the container

walls. In future tokamak devices such as the International Thermonuclear Experi-

mental Reactor (ITER) [Hawryluk et al., 2009], these blankets will contain lithium,

a relatively abundant resource, which can capture the neutron and breed tritium.

The remainder of this chapter is designed to give the reader an overview of the main

elements of plasma physics used in the work presented in this thesis. Fundamentals

of plasma physics including particle motion and plasma waves are introduced in Sec.

1.2, followed by a brief account of Tokamak plasmas including instabilities in Sec.

1.3. In Sec. 1.4 I will discuss Ion cyclotron emission (ICE) and the magnetoacoustic

cyclotron instability (MCI) which form the basis of the work in this thesis.
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1.2 Plasma physics

1.2.1 Single particle effects

Plasma dynamics can be described in various ways depending on the temporal and

spatial scales at which the plasma phenomena under study occur. The theory of

ideal magnetohydrodynamics (MHD) is used when one wishes to treat the plasma

as a magnetised fluid.

Ideal MHD is a single fluid model of the plasma such that Te = Ti. The

plasma is assumed to be quasi-neutral and sufficiently collisional so that the par-

ticle distribution function can be represented by a Maxwellian. Such collisions fre-

quently occur in magnetically confined plasma and the mean free path is often large

compared to the system length. This treatment is valid only on spatial scales L

longer than the single-particle characteristic scales, that is the Debye length λD

(the typical distance over which the electric field in a plasma is shielded), and the

electron and ion Larmor radii rL,e and rL,i. Similarly, the temporal scales of the

problem must be longer than the inverse plasma frequency ω−1
p and the electron

and ion gyro-periods τe/i = Ω−1
e/i (see Eq. 1.4 and Eq. 1.5. Note that assuming

L� λD amounts to assuming quasi-neutrality. If one would like to account for the

dynamics of individually charged particles then the approximations of ideal MHD

do not apply. In this instance it is more appropriate to use a kinetic description to

model the plasma. The work presented in this report is carried out using the latter

description, in which a particle with charge q experiences the Lorentz force

F = m
dv

dt
= q (E + v×B) , (1.3)

where m refers to the mass of the particle, and v the velocity of the particle.

In the absence of an electric field E, and with a magnetic field B that is uniform along

the z-axis, it is straightforward to decompose Eq. 1.3 into its spatial components

and obtain a description of a particle’s velocity and position. Upon doing so, it is

the case that the motion of the particle consists of circular motion perpendicular to

the magnetic field, and a uniform velocity along it. Therefore, a particle follows a

helical orbit, gyrating around a guiding centre which follows the magnetic field lines

for a homogeneous, straight magnetic field and no electric field. The frequency of

the perpendicular motion is known as the cyclotron/gyro frequency

Ωc =
qB

m
, (1.4)

this type of orbit is known as a Larmor orbit and has a radius (from the guiding
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centre) known as the Larmor radius

rL =
v⊥
Ωc

=
mv⊥
qB

. (1.5)

In a tokamak, the magnetic field configuration is not straight, nor is the plasma

homogeneous. This, among other things, gives rise to a plethora of particle drifts,

which are briefly discussed in Sec. 1.2.

In the kinetic theory of plasmas, the electromagnetic fields are evolved self-

consistently using the complete set of Maxwell’s equations

∇ ·E =
σ

ε0
, (1.6)

∇ ·B = 0, (1.7)

∇×E = −∂B
∂t
, (1.8)

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (1.9)

where σ is the total charge density, and J is the total current density. It is often

more convenient to adopt a statistical approach to describe the plasma. To do so,

one requires a velocity distribution for each species. Such a distribution has several

independent variables and is given by: f(r,v, t) = f(x, y, z, vx, vy, vz, t). This gives

rise to the so-called Vlasov equation

∂fj
∂t

+ vj · ∇rfj +
qj (E + vj ×B)

mj
· ∇vfj = 0. (1.10)

Equations 1.6 through to 1.10 are collectively known as the Vlasov-Maxwell system

of equations. By taking the moments of these equations for each particle species,

one can derive the MHD equations for each plasma component. If we consider a

plasma consisting only of two plasma species, electrons and one ion species, we

can combine the multispecies fluid equations to derive the ideal MHD equation.

The chief simplification, among others, is that me � me, such that terms of order

∼ me/mi can be neglected.
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1.2.2 Plasma waves

With the aid of the dielectric tensor ε, Maxwell’s equations can be solved for plane

wave solutions [Stix, 1992; Dendy, 1990]. We first define the convenient dimension-

less vector n = kc
ω , and θ to be the angle between z-axis and the direction of wave

propagation, which is assumed to lie in the x-y plane. Under these conditions, the

plasma wave solutions for a cold, collision-less plasma, with density and magnetic

field static in time and homogeneous in space, are given by the following determinant

∣∣∣∣∣∣∣
S − n2cos2 (θ) −iD n2cos (θ) sin (θ)

iD S − n2 0

n2cos (θ) sin (θ) 0 P − n2sin2 (θ)

∣∣∣∣∣∣∣ = 0. (1.11)

Denoting the cyclotron frequency for a particle of species “s” by Ωcs, and the plasma

frequency for a particle belonging to the same species by ωps, we have

D =
1

2
(R− L) ,

S =
1

2
(R+ L) ,

P = 1−
∑
s

ω2
ps

ω2
,

R = 1−
∑
s

ω2
ps

ω (ω + Ωcs)
,

L = 1−
∑
s

ω2
ps

ω (ω − Ωcs)
. (1.12)

It can be shown that the solutions are given by

n2 =
B ± F

2A
, (1.13)

where

B = RLsin2 (θ) + PS
(
1 + cos2 (θ)

)
F 2 = (RL− PS)2 sin4 (θ) + 4P 2D2cos2 (θ)

A = Ssin2 (θ) + Pcos2 (θ) . (1.14)

Using the above, one is able to obtain a dispersion relation between ω and k, which
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is not necessarily single valued. The dispersion relation of a deuterium plasma with

ne = 2.5 × 1019m−3 and B = 2.5T, typical of a tokamak plasma, is plotted in

Fig. 1.2 for frequencies in the ion cyclotron range only. The red trace shows waves

propagating parallel to the magnetic field (θ = 0), while the blue trace shows waves

propagating perpendicular to the magnetic field (θ = 90).
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Figure 1.2: Cold plasma dispersion relation for parallel propagating (red) and perpendicularly

propagating (blue) waves. Only waves in the ion cyclotron range of frequencies are shown. The

y-axis is normalised to the deuteron cyclotron frequency, while the x-axis is normalised to the

deuteron cyclotron frequency divided by the Alfvén speed. The horizontal dashed line denotes the

deuteron cyclotron frequency, the diagonal dashed line denotes the Alfvén speed, and the horizontal

solid line denotes the lower hybrid frequency for perpendicular propagation.

In the case of perpendicular propagation, there is a resonance frequency shown by

the horizontal solid black line. For this set of plasma parameters, this frequency

is at ω ∼ 33ΩcD where ΩcD is the deuteron cyclotron frequency. This is known as

the lower hybrid frequency and for strictly perpendicular propagation in the cold
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plasma limit, it is given by

ωLH ≈
(
ω−2
pi + (ΩceΩci)

−1
)−1/2

, (1.15)

when ωpi >> Ωci. Here ωpi is the ion plasma frequency and Ωci and Ωce are the ion

and electron cyclotron frequencies respectively. The frequency range between ωLH

and the higher frequency

ω2 = −Ωce

2
+

√
Ω2
ce

4
+ ω2

pe, (1.16)

defines a region of evanescence, that is, waves with frequency ωLH < ω < ω2 cannot

propagate. Note that ω2 is in the electron cyclotron frequency range and hence

not shown in Fig. 1.2. See Fig. 4.4 of Ref. [Cairns, 1985] for a helpful diagram.

For propagation angles such that cos2 (θ) . me
mi

, the corresponding “lower-hybrid”

frequency for waves propagating at oblique angles is given by [Verdon et al., 2009]

ω = ωLH

(
1 +

mi

me
cos (θ)2

)1/2

. (1.17)

The above statement of evanescence only applies strictly to electrostatic, cold, lin-

ear, perpendicularly propagating waves. We shall see later that there are cases in

which waves can exist in this region of frequency space.

Table 1.1 contains information about the cold plasma waves whose dispersion

relation can be obtained by solving Eq. 1.11. It is useful to note that electrostatic

waves are purely longitudinal, that is k ‖ E, and therefore if an electrostatic wave is

propagating along the x-direction, its properties can be deduced by examining the

Ex field component. Electromagnetic waves are predominantly transverse (some-

times with a longitudinal component), with k ⊥ E, and consequently, they manifest

themselves in the Ey, Ez, By, and Bz field components (in both cases the perturba-

tion to the plasma motion is in the direction of E). Here, B0 refers to the uniform

background magnetic field, not the total magnetic field including the perturbation.

All electromagnetic waves shown in table 1.1 are transverse, with the exception of

the X-wave which has a longitudinal component.

1The dispersion relation of this wave is modified by the inclusion of warm plasma effects.
2The dispersion relation is identical to that of a light wave in a magnetised plasma.
3The dispersion relation for this wave splits into two branches.
4The dispersion relation for this wave splits into two branches, the lower of which is commonly

referred to as the “whistler” branch/wave.
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Table 1.1: Waves in cold uniform plasmas.

Name Particle species Character and Conditions

Plasma oscillation1 Electrons Electrostatic, B0 = 0 or k ‖
B0

Upper hybrid oscillation Electrons Electrostatic, k ⊥ B0

Light wave Electrons Electromagnetic, B0 = 0

O-wave2 Electrons Electromagnetic (Plane po-
larised with E ‖ B), k ⊥ B0

X-wave3 Electrons Electromagnetic, Transverse
and Longitudinal, E ⊥ B,
k ⊥ B0

R-wave4 Electrons Electromagnetic (Right circu-
lar polarisation), k ‖ B0

L-wave Electrons Electromagnetic, (Left circu-
lar polarisation), k ‖ B0

Lower hybrid oscillation Ions Electrostatic, k ⊥ B0

EM Ion cyclotron wave Ions Electromagnetic, k ‖ B0

The terminology surrounding waves with frequencies well below the ion cy-

clotron frequency is often misunderstood. These waves have been omitted from

table 1.1, and we discuss them in more detail here instead.

We first define k = |k| as the magnitude of the wavevector, and the Alfvén

velocity vA = B/
√
µ0ρ where B = |B| is the magnitude of the magnetic field, and

ρ is the mass density of the plasma. Sticking with the cold plasma picture, and

deriving wave modes using the dielectric tensor, one can prove the existence of two

other low frequency wave modes which are associated with ion dynamics. Assuming

vA � c (which is true for most conventional tokamak plasmas), we have the slow

Alfvén wave, with dispersion relation ω ' vAkcos (θ) = vAk‖, and the fast Alfvén

wave with ω ' vAk. The “fast” and “slow” terminology refers to the relative phase

speeds of the waves. For parallel propagation, the fast and slow Alfvén waves are

indistinguishable from one another, and are commonly referred to as “shear” Alfvén

waves. For perpendicular propagation, the slow wave ceases to exist, while the

fast wave remains with dispersion relation ω = vAk⊥ (we have k = k⊥) and is com-

monly referred to as the “compressional” Alfvén wave. Thus, readers of Alfvén wave

literature may often find that the words “slow” and “shear” are used interchange-
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ably, as are the words “fast” and “compressional”. Physically, the perturbation of

the magnetic field associated with shear Alfvén waves is directed perpendicular to

the background magnetic field, meaning they perturb the magnetic field direction.

In contrast, the magnetic field perturbation associated with compressional Alfvén

waves is directed parallel to the background magnetic field, meaning they perturb

the magnetic field strength. Incidentally, for parallel propagation, the shear Alfén

wave smoothly changes into the ion cyclotron wave discussed above.

Alternatively, one can derive the dispersion relations for these low frequency

waves using the equations of MHD instead of the cold plasma dielectric tensor. The

key difference is that the MHD picture includes the effects of finite plasma pressure.

Mathematically, the inclusion of plasma pressure leads to terms involving the ion

acoustic sound speed vs. There are three different types of Alfvénic waves that can

propagate through an MHD plasma. The first is the shear Alfvén wave, which is

identical to the shear/slow Alfvén wave described in the preceding paragraph, having

the same dispersion relation ω ' vAkcos (θ). The second two waves are known as

the fast magnetosonic wave and the slow magnetosonic wave and have dispersion

relations ω = kv+ and ω = kv− respectively, where

v± =

(
1

2

(
v2
A + v2

s

)
± 1

2

√(
v2
A + v2

s

)
− 4v2

sv
2
s

)1/2

. (1.18)

Again, the ‘fast” and “slow” terminology refers to the relative phase speeds

of the waves. The word “magnetoacoustic” is sometimes used in place of “magne-

tosonic”, and, confusingly, the word magnetosonic/magnetoacoustic is often dropped

altogether, meaning the waves are frequently referred to as the fast and slow waves.

It is important to note that under these circumstances, the fast and slow waves

here differ from the fast and slow waves identified in the previous paragraph, by the

inclusion of finite pressure (thermal) effects. The relationship between these two in-

stances of fast and slow waves, and the reason for the confusing terminology can be

easily understood in the limit of zero plasma pressure, in which the MHD description

reverts to the cold plasma dialectic description. As the pressure tends to zero, the

ion acoustic speed vs also tends to zero, and the slow magnetosonic wave ceases to

exist. The dispersion relation for the fast magnetosonic wave reduces to ω ' kvA,

which is that of the fast wave in the cold plasma description. If we substitute

θ = 90◦ into Eq. 1.18, we obtain ω2 =
(
v2
s + v2

A

)
k2
⊥ (we have k = k⊥). This is the

cold plasma compressional Alfvén wave modified by the presence of plasma pressure.
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By now hopefully it is clear why the names fast/fast magnetoacoustic/fast

magnetosonic/compressional are used almost synonymously to describe perpendic-

ularly propagating low frequency waves, and why the names slow/slow magnetoa-

coustic/slow magnetosonic/shear are used almost synonymously to describe parallel

propagating low frequency waves. Finally, in an attempt to clear up any remain-

ing confusion surrounding the literature, it should be noted that the expression for

the dispersion relation of the perpendicularly propagating fast magnetosonic wave,

ω2 =
(
v2
s + v2

A

)
k2, assumes vA � c. If one doesn’t assume this, we arrive at a

slightly different expression for the dispersion relation: ω2

k2 = c2 v
2
s+v2

A

c2+v2
A

. It is easy to

see how this reverts back to our previous expression in the limit vA � c.

Using kinetic theory, the study of plasma waves can be taken even further

by calculating the warm plasma dielectric tensor, which leads to waves such as: the

ion acoustic/sound wave, electron and ion Bernstein waves, and the electrostatic ion

cyclotron wave (not to be confused with its cold plasma electromagnetic counter-

part). The properties of these three waves are summarised in 1.2. For this thesis, it

is sufficient to say that harmonics of the ion cyclotron frequency are a warm plasma

(finite Larmor radius) effect. Finally, the inclusion of inhomogeneities, geometrical

effects, and nonlinear effects, can result in many more plasma waves, as well as

modifying the properties of some of the waves described above.

Table 1.2: Waves in warm uniform plasmas.

Name Particle species Character and Conditions

ES Ion cyclotron wave Ions Electrostatic, k ⊥ B0 (nearly)

Ion acoustic/sound wave Ions Electrostatic, B0 = 0 or k ‖
B0

Electron/Ion Bernstein modes electrons/ions Electrostatic, k ⊥ B0

11



1.3 Tokamak plasmas

This section is intended to give the reader an overview of the elements of tokamak

physics required to understand and interpret this work. It starts with a discussion

of the tokamak with an explanation of how the plasma is confined. Then, a breif

introduction to particle orbits in a tokamak is presented, ending with a summary of

“Edge Localized Modes” (ELMs), which is relevant to the work presented in chapter

4.

1.3.1 Confinement

In conventional tokamaks, such as JET, the plasma is confined by surrounding the

chamber with a series of toroidal magnetic field coils. These coils carry a current

Iθ which circulates in the poloidal direction, creating a toroidal component to the

magnetic fieldBφ ∝ 1/R, where R is the major radius of the tokamak. Alternatively,

the plasma can be confined by passing a current-carrying rod up through the centre

of the torus. The rod current creates a toroidal component of the magnetic field

Bφ ∝ 1/R. This is known as a spherical tokamak, e.g. MAST [Chapman et al.,

2015]. Due to particle drifts, a toroidal magnetic field alone is insufficient to maintain

pressure in the plasma. As Bφ ∝ 1/R, there is a gradient ∇B pointing towards the

symmetry axis. This generates a “grad B” drift which is perpendicular to both B

and ∇B, which means it is directed upwards for ions, and downwards for electrons.

Charge separation gives a vertical electric field E, which gives rise to an “E cross B”

drift, causing both ions and electrons to drift towards the vessel wall. This results

in a loss of confinement, but can be remedied by introducing a poloidal field Bθ.

Such drifts are not directly relevant to this work which is why they have only been

mentioned in passing. A wealth of information regarding these drifts can be found

in Ref. [Wesson, 2004].

With a poloidal field at the top of the tokamak cross-section, the trajectory

of a charged particle in the poloidal plane follows a B field line, but grad B drifts

upwards away from the flux surface. At the bottom of the cross section, the grad B

drift is still upwards, but this takes the particle back to the flux surface, meaning

there is no net drift, no E, and hence no loss of confinement.

The poloidal magnetic field is produced by a solenoid in the centre of the

tokamak. Currents in the solenoid windings produce an internal vertical magnetic

field. Changing the current in these windings changes the vertical magnetic field;

this induces a toroidal electric field in the plasma, which leads to a change in flux

and hence a toroidal current Iφ in the plasma. This current generates the poloidal
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magnetic field Bθ as well as providing for Ohmic heating.

The poloidal magnetic field is larger on the inside of the tokamak and hence

the magnetic pressure there is larger. This steers the plasma ring towards an in-

creased major radius [Wesson, 2004]. For this reason, a third set of stabilising coils

are needed. These coils wrap around the outside of the tokamak in the toroidal

direction and produce a vertical magnetic field which adds to the poloidal magnetic

field produced by the plasma current, contributing slightly to the overall poloidal

magnetic field. If the toroidal magnetic field is sufficiently high, only a small vertical

magnetic field is required to stabilise the plasma.

The use of the solenoid to provide the poloidal magnetic field highlights one

drawback of the tokamak: one cannot ramp the coil/solenoid current indefinitely, so

with this way of operating, the current is pulsed. The total magnetic field is given

by the vector sum of all magnetic field components. This results in magnetic field

lines that twist around the torus. The electromagnetic coil arrangement and the

resulting fields in a conventional tokamak are shown in Fig. 1.3.

Figure 1.3: The electromagnetic coil configuration of a conventional tokamak showing the result-

ing magnetic field [EuroFusion].
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1.3.2 Fast particles

There are three main sources of fast particles in tokamak plasmas:

1. Fusion born products.

2. Neutral beam injected ions.

3. Ion cyclotron resonance heated (ICRH) ions.

Ion cyclotron resonance heating occurs when a compressional Alfvén / fast mag-

netosonic wave is launched into the plasma using an external antenna. This wave

has a dominantly radial (∼ perpendicular) wavenumber and must tunnel through a

vacuum layer at the edge of the tokamak until it reaches a region of plasma with a

sufficiently high density so it can propagate and heat the plasma [Wesson, 2004]. It

is possible to choose the frequency of this wave such that it is in the ion cyclotron

range of frequencies (ICRF), and therefore able to resonate and transfer energy to

plasma ions [Cairns, 1996].

In neutral beam injection (NBI), energetic neutral atoms are injected into the

plasma and then become ionised through collisions. The resulting ions and electrons

have the same velocity and are now both confined by the tokamak magnetic field.

As the ions are much more massive, almost all the initial energy carried by the

neutral is now carried by the ions. These ions (and electrons) can then collide with

other particles in the plasma transferring energy.

Fusion born ions are perhaps the most obvious source of fast ions in a ther-

monuclear fusion reactor. These ions are born in the core of the plasma where the

density and temperature is at its highest. In many cases, particularly in small aspect

ratio devices, these are promptly lost from the plasma, diffusing rapidly across the

magnetic field lines towards the vessel wall. Ideally, these ions would impart their

energy on the slower, “bulk” ions before they are lost [Cook et al., 2017].

In some cases, the fast ions described above can release their energy in the form of

electromagnetic waves. This will be important in the next section, but first we take

a moment to discuss the orbits of such fast ions.

The fast ions discussed above are subject to the tokamak drift effects outlined

in Sec. 1.3.1. The orbits of the ions can be broadly categorised as being either

trapped, in which the toroidal velocity of the ion reverses direction at a turning

point [Heidbrink and Sadler, 1994; Gorelenkov et al., 2014], similar to what is shown

in Fig. 1.1; or passing, in which the orbits travel in one toroidal direction only.
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Figure 1.4: Poloidal cross section showing the cylindrical coordinate system used to model a

tokamak. [Freidberg, 1987; Sauter and Medvedev, 2013]

Using a right handed cylindrical coordinate system (R,ϕ, z) shown in Fig.1.4, the

equilibrium magnetic field can be defined in terms of a poloidal flux function ψ (R, z)

B =
1

R

∂ψ

∂z︸ ︷︷ ︸
BR

eR +Bϕ (R, z) eϕ−
1

R

∂ψ

∂R︸ ︷︷ ︸
Bz

ez. (1.19)

The equations of motion in cylindrical coordinates are given by

dvR
dt

=
q

m
(vϕBz − vzBϕ) +

v2
ϕ

R
,

dvϕ
dt

=
q

m
(vzBR − vRBz) +

vϕvR
R

,

dvz
dt

=
q

m
(vRBϕ − vϕBR) , (1.20)

where q and m are the charge and mass of the particle respectively. Provided the

poloidal flux function ψ is specified, the orbit of a given particle can be calculated.

In general, ψ must be computed numerically using the Grad-Shavarnov equation

[Wesson, 2004], which solves the static equilibrium force balance condition ∇P =

J × B; where the current density J, the magnetic field B, and the pressure P all

depend on the poloidal flux function. Under certain conditions, it is possible to

specify ψ analytically. One such solution is that obtained by Solov’ev [Solov’ev,

1968], and is written in a convenient form proposed by Freidberg [Freidberg, 1987]

ψ = ψ0

[
γ

8

{
(R2 −R2

0)2 −R4
b

}
+

1− γ
2

R2z2

]
. (1.21)

15



Where R0 is the plasma major radius, Rb is related to the minor radius, a,

by Rb =
√

2R0a, γ is related to the plasma elongation κ by γ = κ2

1+κ2 , and ψ0 is

a constant which can be approximated by ψ0 ≈ B0/2q. The central magnetic is

denoted by B0 and q = dΦ
dΨ is the plasma safety factor which is defined as the rate

of range of toroidal flux Φ with poloidal flux Ψ (the ratio between the number of

times a magnetic field line traverses the toroidal direction to the number of times it

traverses the poloidal direction). This analytical solution is typically applied to tight

aspect ratio devices such as the MAST tokamak [Chapman et al., 2015; McClements

and Fredrickson, 2017], however it is still useful as a means of demonstrating ion

orbital behaviour in devices with larger aspect ratios, such as JET. Using the above

equations, the orbit of a particle can be computed with relative ease, and is done here

using the “CUEBIT” orbit code [Hamilton et al., 2003]. Figure 1.5 plots 3.5MeV

alpha particle orbits corresponding to a JET-like equilibrium. The central magnetic

field is set to 3T and the safety factor set to 2.5. In the left panel, the alpha particle

was launched with initial position (R,Z) = (3.1m,0m), and an initial velocity vector

such that the component of velocity perpendicular to the local magnetic field is

greater than the velocity component parallel to the magnetic field. The right panel

shows the orbit of an alpha particle launched at (R,Z) = (3.1m,1.0m), but this

time, its parallel velocity component is greater in magnitude than its perpendicular

component. The right panel shows a passing orbit, while the left panel shows a

trapped, deeply passing, “banana” orbit. That is, its poloidal projection traces

out a banana-like shape, and its radial excursion is such that it passes close to the

tokamak edge. Such trapped particles are of great importance to this thesis, as

they are responsible for ICE in the tokamak edge [Dendy and McClements, 2015;

McClements et al., 2015; Gorelenkov, 2016].

16



2.0 2.5 3.0 3.5 4.0

R(m)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Z
(m

)

2.0 2.5 3.0 3.5 4.0

R(m)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 1.5: Left: Trapped orbit of a 3.5MeV α particle in a JET-like equilibrium. Right: Passing

obit of a 3.5MeV α particle in a JET-like equilibrium.

1.3.3 Edge Localized Modes (ELMS)

Understanding the physics of edge localised modes (ELMs) [Zohm, 1996; Loarte

et al., 2003; Kamiya et al., 2007; Leonard, 2014] in MCF plasmas is crucial for the

design of future fusion power plants such as ITER [Kessel et al., 2009]. ELMs are

periodic burst of ejected plasma and heat associated with high confinement, “H-

mode” plasmas [Wagner et al., 1982]. ELMs are detrimental to plasma confinement

because of the large heat fluxes to the vessel walls. At the same time, because H-

mode inevitably leads to the increased confinement of impurities within the plasma,

which can dilute the fuel, ELMs offer an attractive mechanism for flushing out said

impurities.

The filamentary nature of ELMs, that is, the tendency of a ELM to be

accompanied by bursts of plasma and heat locally aligned with a magnetic field

line [Kirk et al., 2006; Yun et al., 2011], and the consequences this has on the

“crash” phase of an ELM event, is of particular relevance to this thesis. In recent

years, the KSTAR tokamak has performed a series of experimental campaigns aimed

at advancing the current understanding of ELMs. A thorough account of ELM

dynamics in KSTAR can be found in Refs. [Yun et al., 2011; Thatipamula et al.,

2016; Kim et al., 2018], in which three distinct stages of ELM filament evolution in
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KSTAR are detailed:

1. The initial growth of the ELM filaments near the last closed flux surface

(LCFS), which grow to a saturated state in ∼ 300µs.

2. The interim quasi-steady state of saturated filaments typically persisting for

∼ 100µs.

3. The collapse of the H-mode pedestal through multiple toroidally and poloidally

localised filament bursts occurring over a time-scale of ∼ 100µs.

The third and final stage of the ELM dynamics is referred to henceforth as the

“ELM crash”. It is this ELM crash phase which is of relevance to this thesis, and

will be revisited in Chapter 4.

1.4 Ion cyclotron emission and the Magnetoacoustic cy-

clotron instability

A consequence of the reaction shown in Eq. 1.2 is the production of fusion-born

alpha particles. Once they are produced, the alpha particles must transfer their

energy to the bulk plasma (the deuterium and tritium), in order to provide the

plasma heating necessary to achieve self-sustained nuclear burning. Instabilities

within the plasma that arise on time-scales smaller than the the time-scales on

which the alpha particles deliver their energy to the bulk plasma through collisional

processes, could either reduce the efficiency of this energy transfer, or perhaps even

enhance it through “alpha-channelling” concepts [Fisch, 1995a; Herrmann and Fisch,

1997; Fisch, 1995b]. An inverse ion cyclotron emission concept for alpha-channelling

was recently explored by [Cook et al., 2017]. To this end, it is imperative that

diagnostics are developed to monitor the confinement and evolution of fusion born

ions. One such method to do so is by exploiting the plasma instabilities themselves.

In this section I will discuss a candidate for such treatment, the experimen-

tally observed ion cyclotron emission “ICE”, which comprises strongly suprathermal

emission having spectral peaks at multiple fast ion cyclotron harmonic frequencies.

ICE is a passive, non-invasive diagnostic that can be detected by the antennae used

for ICRH, or a dedicated RF frequency probe [McClements et al., 2015]. I will first

begin with an account of experimental ICE observations in MCF experiments and

follow with a discussion of the analytical linear theory developed to interpret these

observations. This section then ends with an overview of recent simulation results

which turn out to be indispensable in the quest to understand ICE.
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1.4.1 Ion cyclotron emission (ICE)

Before going any further, it is convenient to distinguish between the three main

types of ICE observed experimentally:

1. ICE resulting from fusion products - “FP ICE”.

2. ICE resulting from neutral beam injection - “NBI ICE”.

3. ICE due to ICRF wave-accelerated minority ions (see Sec. 1.3.2) - “ICRF

ICE”.

Some of the earliest accounts of ICE were seen in pure deuterium JET plas-

mas and are detailed in [Cottrell and Dendy, 1988; Schild et al., 1989] and references

therein. In [Cottrell and Dendy, 1988], ICE was observed during both Ohmic and

neutral beam heated JET plasmas. It was concluded that the peak frequency of

emission corresponded to harmonics of suprathermal fusion-born protons in the

outer edge plasma. It is noted here that the large radial excursions of protons

trapped on banana orbits similar to that shown in Fig. 1.5 result in a significant

fraction of protons with a large perpendicular velocity in the edge region. The work

of Ref. [Schild et al., 1989] detailed observations of ICE inverted sawtooth oscilla-

tions in the edge of a JET plasma. These oscillations were correlated with both a

soft X-ray signal and Dα emission during the discharge, and confirmed the origin of

ICE as the outer region of the plasma, paving the way for future analytical mod-

els. Around the same time, ICE was observed in TFTR [Greene and TFTR, 1990],

however this ICE was shown to be the result of fast particles arising from deuterium

neutral beam injection - NBI ICE, as opposed to the fusion driven FP ICE observed

in JET.

It was not long before FP ICE from alpha particles in deuterium-tritium

(DT) reactions was observed on both devices [Cottrell et al., 1993; Cauffman et al.,

1995]. In perhaps the most significant experimental ICE result of the era, it was

found that the measure neutron flux is linearly proportional to ICE intensity over six

orders of magnitude [Cottrell et al., 1993]. The same work noted that the ICE signal

disappeared within 0.5ms whenever there was a large amplitude ELM, due to the

expulsion of energetic ions from the edge emitting region. It is worth remembering

this last result, later in chapter 4, the conjunction between ELM physics and fast

ion physics is explored further with the help of modern plasma diagnostics [Thatipa-

mula et al., 2016; Kim et al., 2018]. Similar results were reported in TFTR plasmas

[Cauffman et al., 1995], in which it as observed that in some TFTR discharges, the

emission was brief when compared with its JET counterpart. This difference was
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explained in terms of the Alfvénic nature of ICE - the TFTR alpha particles respon-

sible for the brief ICE signal had a speed less than the local Alfvén speed, whereas

the JET alpha particles had a speed greater than the local Alfvén speed. These

JET DT experiments were heated both Ohmically and by NBI. Two years later,

FP ICE during JET ICRH discharges was detected for the first time [McClements

et al., 1999]. Figure 1.6 shows example ICE spectra from both JET and TFTR in

which a sequence of peaks at multiples of the alpha cyclotron frequency can be seen.

Figure 1.6: Left: ICE intensity as a function of frequency for fusion born ICE in JET. Reproduced

from [Cottrell et al., 1993]. Right: ICE intensity as a function of frequency for fusion born ICE in

TFTR. Reproduced from [Cauffman et al., 1995]. In both plots, evenly spaced sequential harmonics

of the alpha particle cyclotron frequency can be seen.

ICRF ICE was reported for the first time in the JET tokamak [Cottrell,

2000]. After switching on the ICRH, emission at the first harmonic of the proton

cyclotron frequency was observed with a ∼ 0.4s time delay. The ICRH protons

were accelerated to MeV energies by the applied wave giving them a distribution

function, and hence orbital structure, similar to the fusion products responsible for

the previously observed FP ICE. The similar nature of the ICRF ICE to the more

familiar FP ICE opened up the possibility of stimulating ICE so as to study the

physics experimentally.

The ICE discussed thus far was detected at the outer midplane edge of the

tokamak, the first instance of FP ICE originating from the centre of the tokamak

was reported on JT-60U [Kimura et al., 1998]. This ICE was also observed to corre-

late temporally with ELMs, in particular, the associated change in density. In Ref.

[Shalashov et al., 2003], the properties of NBI ICE were investigated on the W7-AS

stellerator. These W7-AS experiments used both radial (approximately perpendicu-

lar) and tangential NBI and observed ICE in both cases. It was found that radially
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injected beams increased the intensity of the low ICE harmonics already present

during tangential beam injection, as well as increasing the number of observed ICE

harmonics. The spatial structure of ICE at the outer midplane edge due to both

fusion products (tritium and helium three) and NBI (deuterium) was investigated

in JT-60U by [Ichimura et al., 2008] and [Sato et al., 2010]. Curiously, FP ICE

was only excited during tangential NBI, and was strongly dependent on the plasma

density. More stellerator results, this time from hydrogen plasmas in LHD, were

reported by [Saito et al., 2009]. The ICE had spacing equal to the proton cyclotron

frequency and was synchronised with perpendicular proton NBI, suggesting that the

latter might drive the ICE. Two different types of ICE were detected in LHD some

years later [Saito et al., 2013]. The first, was again perpendicular NBI ICE. The

second was synchronised with bursts of toroidal Alfvén eigenmodes (TAEs) [Hei-

dbrink and Sadler, 1994; Duong et al., 1993], and thought to be the result of the

bursts selectively transporting energetic ions from the core to the outer region of

the plasma. Interestingly, the fast particles responsible for the NBI ICE in LHD

described above do not exist on confined orbits and are lost from the plasma.

In the DIII-D tokamak, the fidelity of ICE as a fast ion diagnostic was again

demonstrated when it was found to give a reliable measurement of the timing and

magnitude of fast ion losses during off-axis fishbones [Heidbrink et al., 2011]. ICRF

ICE was again detected in the JET using the SHAD detection system and first

reported in Ref. [Jacquet et al., 2011]. The interpretation of these results is a subject

of this thesis and is examined more in chapter 5. A thorough account of recent ICE

measurements on ASDEX Upgrade (AUG) was carried out by [D’Inca, 2014] in which

all three types of ICE outlined above were observed, with FP ICE being observed

both the outer-midplane edge and the core plasma. Recent measurements of NBI

ICE on DIII-D were reported in [Pace et al., 2016] and were found to correlate with

the losses of neutral beam injected ions, which again further strengthens the case

for an ICE diagnostic in future fusion devices. Observations of ICE in the spherical

tokamak NSTX-U were reported in [Fredrickson et al., 2017]. This ICE signal was

assumed to originate from deuteron NBI, and its frequency is such that appears to

originate from within the bulk plasma, at approximately half minor radius.

Recently, both NBI and FP ICE have been observed in the KSTAR tokamak

[Thatipamula et al., 2016; Kim et al., 2018]. It is these KSTAR ICE observations

that are the dominant focus of this thesis, and they are discussed in great detail in

chapter 4. Core FP ICE with spacings equal to both the local proton, deuteron,

and tritium cyclotron frequencies has recently been observed in AUG deuterium

plasmas [Ochoukov et al., 2018, 2019]. This ICE was commonly observed during
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the NBI start up phase, and also under steady state conditions, persisting for more

than one second. Recent DIII-D experiments have observed core ICE from the 2nd,

3rd, and 4th harmonics of the deuteron cyclotron frequency, which is believed to

be NBI ICE, with FP ICE possibly contributing to the overall ICE signal [Thome

et al., 2018]. Finally, ICE has recently been observed in both hydrogen and deu-

terium NBI heated plasmas in the TUMAN-3M device [Askinazi et al., 2018]. The

fusion reactivity is low in the hydrogen plasmas, and if all the fusion products are

unconfined in the deuterium plasmas, this would exclude the possibility of FP ICE.

Multiple ICE signals with frequency spacing equal to the proton and deuteron cy-

clotron frequencies were observed in both the high and low field sides of the torus,

as well as in the core. The physical origin of these ICE signals is unclear, but it

seems reasonable to suppose it is NBI ICE.

Table 1.3 summarises the experimentally observed ICE discussed above. For each

entry the nature of the ICE - FP, NBI or ICRF - is given, along with a reference and

year of publication (not necessarily the year in which the ICE was first detected).

Asterisks denote ICE that was observed at a location other than, or in addition to,

the plasma edge. This list is by no means comprehensive, but is intended to provide

an approximate timeline of the experimental research related to ICE, hopefully

providing more context to the rest of this thesis.
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Table 1.3: Timeline of experimental ICE observations in MCF plasmas.

Device Nature of ICE Year Reference

JET FP 1988 [Cottrell and Dendy, 1988]

JET FP 1989 [Schild et al., 1989]

TFTR NBI 1990 [Greene and TFTR, 1990]

JET FP 1993 [Cottrell et al., 1993]

TFTR FP 1995 [Cauffman et al., 1995]

JT-60U FP∗ 1998 [Kimura et al., 1998]

JET FP 1999 [McClements et al., 1999]

JET ICRF 2000 [Cottrell, 2000]

W7-AS NBI 2003 [Shalashov et al., 2003]

JT-60U NBI 2008 [Ichimura et al., 2008]

LHD NBI 2009 [Saito et al., 2009]

JT-60U NBI+FP 2010 [Sato et al., 2010]

DIII-D ?1 2011 [Heidbrink et al., 2011]

JET ICRF 2011 [Jacquet et al., 2011]

LHD NBI+TAE2 2013 [Saito et al., 2013]

ASDEX U NBI+FP∗+ICRF 2014 [D’Inca, 2014]

DIII-D NBI 2016 [Pace et al., 2016]

KSTAR NBI+FP 2016 [Thatipamula et al., 2016]

NSTX-U NBI∗ 2017 [Fredrickson et al., 2017]

DIII-D NBI∗+FP∗3 2018 [Thome et al., 2018]

TUMAN-3M NBI∗4 2018 [Askinazi et al., 2018]

ASDEX U NBI∗ 2018 [Ochoukov et al., 2019]

1The origin of the emission is unclear. Refer to the original manuscript for further details.
2This is not one of the three main types of ICE defined at the beginning of this section. It is

thought to be due to the motion of particles from the core of the plasma to the edge resulting from
TAE bursts.

3FP ICE may contribute to the overall ICE signal.
4The origin of the emission is not completely clear.
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It is worth noting that ICE is an ubiquitous plasma phenomenon, and not

just observed in magnetic fusion devices. ICE has been detected in solar-terrestrial

plasmas [McClements and Dendy, 1993; Dendy and McClements, 1993; McClements

et al., 1994; Dendy et al., 2002], and is possibly present downstream of supernova

remnant shocks [Rekaa et al., 2014]. A contemporary example of ICE observed in

the Earth’s Van Allen belts is shown in [Posch et al., 2015]. Figure 4a from this

paper has been reproduced below. Plotted is a spectrogram of the y-component of

the electric field in the radiation belt as the Van Allen probes spacecraft executed

an eccentric orbit through a region of varying magnetic field. The vertical axis

plots the frequency of excited waves while the horizontal axis plots the time during

this particular orbit. Excitation of compressional waves at several low hydrogen

cyclotron harmonics of hydrogen is apparent.

Figure 1.7: Spectrogram of Ey component of the field measurement by the Van Allen Probes

spacecraft. Reproduced from [Posch et al., 2015].

1.4.2 The Magnetoacoustic Ion cyclotron instability (MCI)

The emission mechanism behind ICE is thought to be the magnetoacoustic cy-

clotron instability (MCI) which was originally formulated theoretically by [Belikov

and Kolesnichenko, 1976]. The MCI occurs when a minority fast ion population en-

ters into cyclotron resonance with a fast Alfvén wave supported by the bulk plasma

propagating nearly perpendicular to the background magnetic field. As the frequen-

cies of the MCI lie along the fast Alfvén branch, for purely perpendicular propagation

it is therefore a transverse wave which is polarised in the binormal (poloidal) direc-

tion. The distribution of collectively radiated energy between different cyclotron

harmonics depends on the character of the MCI. A key dimensionless parameter

which determines the threshold for instability is the ratio of energetic ion perpen-

dicular velocity to the Alfvén speed, which can be inferred from both linear theory

and fully nonlinear self-consistent PIC simulations. Motivated by the plethora of
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ICE measurements in the early 90’s, the development of the theory was catapulted

forward. The work of [Dendy et al., 1992] under the local, straight magnetic field,

homogeneous plasma approximation captured many of the features of the early JET

and TFTR experiments and is applicable for scenarios in which the drift motion of

the ions across magnetic field lines is slow compared to the growth rate of the insta-

bility - “rapid instability”. For this first work, an isotropic, infinitesimally thin shell

distribution was adopted for the energetic fusion born ions. This was subsequently

extended in Ref. [Dendy et al., 1993] to shell distributions of finite thickness. The

dispersion relation of the MCI under these conditions can be found in Eq. 31 of

Ref. [Dendy et al., 1993]. The theory of the MCI was later extended further to

include waves with finite parallel wavenumber, under the approximation that the

electric field is polarised in the plane perpendicular to the magnetic field, thereby

excluding Landau damping effects, this time using a drifting ring beam distribution

for the energetic ions [Dendy et al., 1994a]. The inclusion of this effect is especially

important, because the resulting Doppler shift allows for wave growth even in the

presence of majority ion cyclotron damping. The preceding works were motivated

by observations of super-Alfvénic FP ICE in JET. This expression was analysed in

the context of sub-Alfvénic FP ICE observed in TFTR [McClements et al., 1996].

In addition, another emission mechanism was proposed to explain the sub-Alfvénic

NBI ICE observed in TFTR, in which electrostatic ion cyclotron harmonic waves

can be destabilised by the minority NBI ions [Dendy et al., 1994b, 1995].

The effect of toroidal drift effects on the MCI was investigated in Refs. [Fülöp

et al., 1997; Fülöp and Lisak, 1998], in which the authors found a significant en-

hancement to the instability growth rate. In the “weak instability” limit, in which

the drift motion of ions is fast compared to the growth rate, theories involving the

excitation of Compressional Alfvén eigenmodes (CAEs) have been developed which

include the associated toroidal eigenmode structure [Fülöp et al., 2000; Gorelenkov

and Cheng, 1995; Gorelenkov, 2016; Gorelenkov et al., 2014; Kolesnichenko et al.,

1998, 2000; Smith et al., 2003; Hellsten and Laxaback, 2003; Hellsten et al., 2006;

Smith and Verwichte, 2009]. Recently, linear analysis of ICE due to the MCI has

successfully been applied to JT-60U [Sumida et al., 2017], along with a detailed

study of the characteristics of the energetic ion velocity distribution responsible for

driving the ICE [Sumida et al., 2018].

In this thesis the instability is considered under the local, straight field,

homogeneous plasma approximation. By considering the instability in this locally

uniform or slab-like limit, it becomes computationally practical to carry out fully
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nonlinear, fully kinetic, and fully self-consistent simulations of the MCI. In addition,

this approach enables benchmarking of computational results at early times in the

simulations against analytical linear theory. The nonlinear effects that are accessible

only through direct numerical simulation turn out to be very important for the

understanding of ICE. After all, the ICE spectra observed in fusion devices, and

indeed elsewhere, are likely to represent the saturated nonlinear regime.

Recent advances in computational physics have enabled further study of the

MCI and ICE. PIC simulations, described in [Cook et al., 2013], carried the MCI

instability into its non-linear regime for the first time. Using the PIC code EPOCH,

fully kinetic ions and electrons, together with self-consistent electric and magnetic

fields were modelled for plasma parameters aligned relevant to JET conditions.

These PIC results were reinforced by subsequent “Hybrid” simulations of the MCI

over longer physical time scales, facilitating further exploration of the nonlinear

regime of the MCI [Carbajal et al., 2014; Carbajal, 2015]. In the hybrid approxi-

mation, ions are treated as particles and electrons as a massless neutralising fluid

[Winske et al., 2003]. Preliminary work has begun on a hybrid version of EPOCH,

which borrows many ideas from the code used in the work of [Carbajal, 2015].

Details of this can be found in Appendix A. More recently, [Cook et al., 2017] in-

vestigated a stimulated emission counterpart to the MCI under JET-like conditions.

An applied wave resulted in the extraction of energy from a minority alpha particle

population to a majority deuteron population, “alpha particle channelling”. The

pioneering result of [Cottrell et al., 1993], which showed that the intensity of ICE in

JET was found to scale linearly with neutron flux and minority ion concentration,

found its simulation counterpart in the work of [Carbajal et al., 2017], in which the

observed scaling was reproduced using hybrid-PIC simulations. Finally, the first

nonlinear MCI simulations of NBI proton driven ICE in the LHD stellerator have

been successful in reproducing the observed spectrum [Reman et al., 2016; Dendy

et al., 2017].

In the analytical formalism of the MCI, the minority energetic ion particle

population is usually modelled as a drifting ring beam distribution in velocity space

according to

f
(
v‖, v⊥

)
∝ exp

(
−

(v‖ − vd)2

v2
r

)
exp

(
−(v⊥ − u0)2

u2
r

)
, , (1.22)

where v⊥ and v‖ are the minority ion velocity components perpendicular and par-

allel to the background magnetic field respectively. The magnitude of the initial

perpendicular velocity and initial drift along the background magnetic field are de-
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noted by u0 and vd respectively, and the perpendicular and parallel velocity spreads

are given by ur and vr respectively. Variants of this distribution function are used

throughout the simulations described in the preceding paragraph and those of this

thesis. Without a velocity spread in the perpendicular direction Eq. 1.22 reduces

to

f
(
v‖, v⊥

)
∝ exp

(
−
(
v‖ − vd

)2
v2
r

)
δ (v⊥ − u0) . (1.23)

This simplifies further in the case of no parallel spread

f
(
v‖, v⊥

)
∝ δ(v‖ − vd)δ(v⊥ − u0). (1.24)

Finally, in the case of no parallel spread, no perpendicular spread, and no parallel

drift, the distribution is given by

f (v⊥) ∝ δ(v‖)δ(v⊥ − u0). (1.25)

It is helpful to view the structure of these distribution functions in 3D phase space,

as shown in Fig. 1.8.

The distribution function given in Eq. 1.25 is one predominantly used in

previous simulations of the MCI as well as chapters 3, 4, 5, and 7 of this thesis.

In chapter 6 we show results from simulations in which the minority energetic ions

are initialised as a ring beam distribution with zero parallel velocity and a finite

perpendicular velocity spread, according to

f
(
v‖, v⊥

)
∝ exp

(
− (v⊥ − u0)2

u2
r

)
δ
(
v‖
)

; (1.26)

along with simulations in which the minority energetic ions are initialised

according to a spherical shell distribution with

f (v) ∝ exp

(
− (v − v0)2

v2
T

)
. (1.27)

Here v is the magnitude of the total velocity vector, v0 is the magnitude of

the initial velocity, and vT is the velocity spread, corresponding to the thickness of

the shell in velocity space.
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Figure 1.8: Phase space plots showing the variants of the distribution function used to represent

the minority ion species in MCI simulations. All distributions have identical values of the initial

perpendicular velocity u0. The parallel drift velocity vd, parallel spread vr, and perpendicular

spread ur are expressed as multiples of u0. Top left: Corresponds to Eq. 1.22. Top right: Cor-

responds to Eq. 1.23. Bottom left: Corresponds to Eq. 1.24. Bottom right: Corresponds to Eq.

1.25.
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Chapter 2

Computational methods:

Particle-In-Cell codes and

higher order spectra

The following chapter will give an overview of the particle-in-cell (PIC) simulation

technique used in this thesis, as well as bicoherence analysis, a higher order spectral

technique used to obtain some of the results in chapters 4, 6, and 5.

2.1 Particle-In-Cell codes

Particle in cell (PIC) codes, provide a basis with which to fully resolve the kinetic

profiles of all particles. The plasma is represented by a distribution function f of

plasma species, and the evolution of the positions and velocities of these particles is

governed according to the Maxwell-Lorentz system of equations described in section

1.2.

In order to make simulations computationally tractable, pseudo/macro par-

ticles are used to represent collections of real plasma particles, each computational

particle contributes a small amount ∆f to the overall probability density function

of the plasma species. The physical domain is defined by a grid, with the electro-

magnetic fields being specified at each grid cell, as opposed to at the location of

every particle. Such macro particles have the same charge to mass ratio (and hence

the same orbit) as real particles, but much larger values of charge and mass. As

they represent an ensemble of real particles, they occupy a finite volume and have

a shape, which is unchanged under normal motion. These macro particles are free

to move from the grid, often traversing several grid cells.
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To put this into context, a typical tokamak simulation may have a physical

particle density of 1020m−3, but, in a PIC simulation, this will be represented by

an ensemble of macro particles, having a number density of say, 1012m−3. Thus,

each macro particle represents 108 physical particles, carrying 108 times as much

current and charge density as their physical counterparts. At this point one may be

concerned with the problem of self-consistently evolving the electromagnetic field

equations, this is achieved by using the charge and current of the macro-particles,

which are interpolated from particles positions to their nearest grid points, as source

terms in Gauss’s and Ampere’s law.

The “EPOCH” PIC code is used for the simulations described in the following

chapters. It follows an explicit integration scheme, is fully relativistic, second order

accurate and MPI parallelised [Arber et al., 2015]. We first start with a statement

of the PIC procedure. To advance the system from a time level n to a time level

n+1 we:

1. Update the electromagnetic fields by half a timestep

En → En+1/2

Bn → Bn+1/2.

2. Update the particle positions and velocities by a full timestep

vn → vn+1

xn → xn+1.

3. Update the particle current by a full timestep

Jn → Jn+1.

4. Update the electromagnetic fields by another half a timestep

En+1/2 → En+1

Bn+1/2 → Bn+1.

In practice steps 2 and 3 are performed concurrently in the same block of code, but

have been separated here for clarity. Each of the above steps will now be explained

in more detail.
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2.1.1 Field update

The electromagnetic fields in a PIC code are updated using Faraday’s law for the

magnetic field and Ampere’s law for the electric field. The electromagnetic fields

are defined on a Yee staggered grid [Yee, 1966], which simplifies the calculation of

the field derivatives to second order accuracy. The use of the Yee grid also means

provided ∇ ·B is initially 0, it remains so throughout the simulation. The current

J is calculated using the Villasenour-Buneman method [Villasenor and Buneman,

1992], which means Gauss’s law is always satisfied, this is discussed in more detail

in section 2.1.4. This means only two of the four Maxwell’s equations are needed to

evolve the system. Figure 2.1 shows how the fields are defined on the Yee grid in one

spatial dimension. The quantities By, Bz, and Ex are defined on the cell edge, so

that their spatial derivative in the x-direction is automatically defined at the correct

location. For instance, By ∝ ∂xEz, and the derivative of Ez is automatically defined

at the location of By. Note, the derivatives in the y and z directions are always

zero in a 1D PIC code. In a 1D scheme, the components of current are defined

at the same locations as the corresponding electric field component to enable easy

computation of the discrete form of Ampere’s law. Quantities such as density and

temperature, “bulk” quantities, are defined at the cell centre. Figure 2.1 shows

schematically the macro particles on the grid, occupying a finite volume of the grid

cell, with velocity vectors, denoted by arrows of varying length, pointing in arbitrary

directions - whilst the code has only one spatial dimension, the full phase space is

represented. The discretised field equations are

En+1/2 −En =
∆t

2

(
c2∇×Bn − Jn

ε0

)
, (2.1)

Bn+1/2 −Bn = −∆t

2

(
∇×En+1/2

)
. (2.2)

At this point the particle position and velocity are updated to find Jn+1.

Bn+1 −Bn+1/2 = −∆t

2

(
∇×En+1/2

)
, (2.3)

En+1 −En+1/2 =
∆t

2

(
c2∇×Bn+1 − Jn+1

ε0

)
. (2.4)
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T, n, Ey, Ez, Jy, Jz, Bx

(i,j,k)

Ex, Jx, By, Bz

Figure 2.1: Schematic of the 1D Yee grid used in the 1D3V version of the EPOCH PIC code.

2.1.2 Particle Push

The relativistic particle trajectories are modelled along the grid using an explicit

finite difference method known as the Boris scheme. Other finite difference schemes

such as the Leapfrog method can be used, but because of its long term accuracy,

the Boris method has become the de-facto standard for PIC codes. Such codes rely

on interpolating the electromagnetic fields from the grid to the particle position

to provide the Lorentz force. Once this force is known, the particle velocities and

positions are updated from time n to time n+1, this is known as the particle push

[Birdsall and Langdon, 1985]. It should be noted that for highly relativistic plas-

mas, the Boris push can lead to a spurious force, and an alternative “Vay” push

has been proposed to remedy this [Vay, 2008]. The plasmas simulated in this thesis

are non-relativistic, meaning the Boris push still works extremely well. For a given

particle, the Boris method is as follows.

First, the particle position is updated by half a time-step from time t = n∆t to

t = (n+ 1/2)∆t

xn+1/2 = xn +
∆t

2
vn. (2.5)

The relativistic Lorentz force law is discretised according to

un+1 − un

∆t
=

q

m

(
En+1/2 +

un+1/2

γn+1/2
×Bn+1/2

)
. (2.6)

where the relativistically correct velocity is u = γv. The relativistic factor is given

by γ =

[(
|u|
c

)2
+ 1

]1/2

where m is the rest mass. As γ is a function of u, it changes

with time and one must be careful to update it properly. Equation 2.6 presents a

problem as the velocity at the half time step is not known. To overcome this, it is
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set to be an average of the velocities at the two known time levels

un+1 − un

∆t
=

q

m

(
En+1/2 +

(
un+1 + un

)
γn+1/2

×Bn+1/2

)
. (2.7)

This, however, presents another problem, the velocity we are trying to find, appears

on both the left and right side of the equation and is “tangled up” with En+1/2. To

handle this, we use the Boris rotation algorithm. This splits Eq. 2.6 into two parts

[Birdsall and Langdon, 1985]. The first is responsible for the acceleration due to the

electric field. We define

un = u− − q∆t

2m
En+1/2, (2.8)

un+1 = u+ +
q∆t

2m
En+1/2. (2.9)

These can substitute the following equations into Eq. 2.9 to give

u+ − u−

∆t
=

q

2mγn+1/2

(
u+ + u−

)
×Bn+1/2. (2.10)

Note that the term u+ + u− on the right side of Eq. 2.10 can be replaced with

un+1 +un. The above is thus a rotation of u+ +u− about an axis parallel to B. No-

tice how in the above equations γ has remained defined at time level n+1/2. It can be

shown that γ is constant throughout the step and we can say γn+1/2 = γ− = γ(u−).

The procedure for the rotation is now:

1. Add half the electric field acceleration to un using Eq. 2.8 to obtain u−.

2. Apply the rotation according to 2.10 to get u+.

3. Add the remaining half of the electric field acceleration to u+ using Eq. 2.9

to obtain un+1.

Finally, now that the velocity has been updated, we can advance the particles posi-

tion by a further half timestep according to

xn+1 = xn+1/2 +
∆t

2
vn+1 = xn+1/2 +

∆t

2γn+1/2
un+1 (2.11)

This yields a particle push which is second order accurate in time. The current

J is updated using the the Villasenor and Buneman current calculating scheme
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[Villasenor and Buneman, 1992], by solving the following additional equation

∂ρ

∂t
= ∇ · J. (2.12)

At the end of the particle push, once the velocity and position are defined at

time level n+ 1, the particle position is updated by a further half timestep, to time

level n+3/2. This is used with the particle position at time level n+1/2, which was

stored previously at the beginning on the particle push, to obtain a time centred

evaluation of ∂ρ/∂t, which is then used to update Jn to Jn+1. The current update

is thus second order accurate in time, but one sided space [Esirkepov, 2001]. For

spatial directions not captured by the PIC code, e.g. y and z in the 1D3V version of

EPOCH, the current is obtained by taking moments of the particles, this is detailed

in the next section.

2.1.3 Particle shape functions

The finite volume of macro-particles, which may be larger than the volume of a grid

cell, has implications when calculating the electric and magnetic fields at the location

of the particles during the particle push. Typically, particle weighting functions are

used to interpolate the fields from the grid to the particles. The higher the order

of the weight function, the smoother the fields are at the particles location, and the

less noisy the final solution is. A simple, first order, weighting function is one in

which the particle fills the cell uniformly, a top-hat function. A better approach

would be to assume the particle occupies a triangular shape in configuration space.

The peak of the triangle is located at the position of the centre of mass of the macro

particle, and the triangle has a width 2∆x, twice the grid cell width ∆x. This second

order triangular weighting function requires a summation over three cells, the cell in

which the particle lies, and its two nearest neighbours. Higher order shape functions

using splines to interpolate the fields to the particles position also exist. EPOCH

is able to use third order spline interpolation, which involves a sum over five cells.

In general, higher order particle shape functions yield better results, but with an

increased computational cost.

A particle that lies somewhere in cell j experiences contributions to its own

field from the fields surrounding it which are defined at fixed points on the grid. For

a given weighting function Sm(x) of order m, the field Fi of a particle at position xi,

where xi lies in the cell centred at xj , and this cell has a field Fj which is constant
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over the cell, is given by

Fi =
1

∆x

∑
j

Fj

∫ xj+
∆x
2

xj−∆x
2

Sm(xi − x)dx. (2.13)

Where the range of the summation depends on the order of the weighting function.

The triangular shape function, shown in Fig. 2.2 along with the tophat shape

function, is given by

S1 (xi − x) =

1− |xi−x|∆x , |xi − x| ≤ ∆x

0 , otherwise.
(2.14)

This gives the total field experienced by the particle as

Fi =
1

2
Fj−1

(
1

2
+
xj − xi

∆x

)2

+Fj

(
3

4
− (xj − xi)2

(∆x)2

)
+Fj+1

(
1

2
− xj − xi

∆x

)2

(2.15)

For the third order splines used in EPOCH, these three terms have a different form

and there are an additional two terms corresponding to Fj−2 and Fj+2. The same

procedure is used to extract particle quantities such as density and current to the

grid. With the exception of some of the resolution testing simulations discussed in

chapter 3, all the PIC results shown in this thesis use third order splines.

Figure 2.2: Schematic of the first order tophat (blue) and second order triangular (red) shape

functions used in the EPOCH PIC code. This figure has been reproduced from page 21 of the most

recent EPOCH developers manual (at the time of writing).

2.1.4 Practical and computational considerations

Due to the nature of explicit finite difference schemes, the time-step must be chosen

such that the CFL condition is satisfied in order to maintain stability. The CFL
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condition in a 3D PIC code is:

∆t <

(
(∆x)2 + (∆y)2 + (∆z)2

)1/2
c

, (2.16)

where ∆x etc are the grid spacings in their respective grid directions, and c is the

speed of light. In this work, only one dimension is considered, so Eq. 2.16 can be

simplified. In practice, EPOCH implements this condition automatically, but it is

the responsibility of the user to choose an appropriate grid spacing. A further time

step restriction arises from the need to resolve the plasma frequency ωpe. EPOCH

selects the most restrictive of these timesteps, which in an MCF plasma, is usually

that specified by the CFL condition. The user just needs to make sure it is small

enough to resolve the physics of interest. Another serious issue one must consider

when running a PIC code is the resolution of the Debye length λD within a warm

plasma

λD =

√
ε0kbTe
nee2

. (2.17)

If λD is not resolved by the grid spacing, the code will exponentially heat, increasing

the Debye length until it equals the width of the cell ∆x (which is specified by the

user). This exponential heating is due to the acceleration of particles by a restoring

electric field which is produced by charge density fluctuations resulting from the

thermal noise. The relative change to a particles velocity is larger for plasma par-

ticle with lower thermal speeds, and can cause serious problems, particularly if the

growth rate of the physics under study is large, because the exponential heating may

dominate the plasma dynamics in the initial stage of the simulation. For simulations

using periodic boundary conditions, the resolution between successive modes in k-

space is ∆k = π/L. If the modes of interest in a simulation are very close together

in wavenumber space, one requires a small ∆k, hence a large simulation domain L,

so as to resolve the relevant physics. For a given L, to resolve λD we require the

number of grid cells nx to be at least L/λD. For a plasma such as that found in the

centre of a tokamak, where ne is large, nx can therefore be very large. This restric-

tion is even more serious when we also consider the CFL condition. The timestep

is directly proportional to ∆x in a 1D PIC code, meaning it must decrease as ∆x

decreases. So for a given grid length L, if we can justify increasing the cell size by

a factor two, we may get a factor four speed up in the computation of our problem.

As we need to simulate less cells, and our timestep automatically doubles (assuming

the CFL timstep is the most restrictive). It is easy to see why it may be tempting to

push the cell size to be as large as possible, or conversely, reduce the plasma density
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as much as possible. In practice, this effect can be ameliorated by using higher order

particle shape functions (at increased computational cost), and/or smoothing the

current J in the simulation [Arber et al., 2015]. Another consideration is the number

of particles per cell. The finite size and the number of macro particles means there

is noise in the electro-magnetic fields. This noise acts to heat the plasma, and must

therefore be kept to a minimum. The noise scales as N−1/2, where N is the number

of macro-particles per cell. Ideally, the number of macro-particles per cell would be

equal to the number of physical particles, however this is not tractable. Doubling

the number of particles per cell significantly increases the computational cost, but

only reduces the noise in the simulation by a factor of
√

2. It is possible to reduce

the noise levels by using higher order particle shape-functions, and/or by using the

delta-f method, in which only changes in an equilibrium particle distribution are

considered, as opposed to the entire distribution function. [Sydora, 1999].

There are certain practical limitations one must consider when running a

PIC simulation. It is unfeasible to write all available simulation data to disk at

each time-step. To this end, data is written to disk periodically in “dumps”, it is

the responsibility of the user to choose this period such that the physics can be

resolved. If a simulation runs for say, ten ion gyroperiods, and we want to resolve

100 ion cyclotron frequencies in a temporal Fourier transform, then, because of the

Nyquist theorem, there must be at least 2000 data dumps equally spaced in time. In

general, the time between output dumps ∆tout will never be an exact multiple of the

simulation timestep ∆tsim. Output dump 1 may correspond to time t = 10∆tsim in

the simulation, whereas dump 2 is at time t = 21∆tsim, not t = 20∆tsim like we had

hoped. If we want to take temporal Fourier transforms, this can be problematic,

leading to spurious artefacts because not only are we approximating our signal as

a periodic, but our “dt” in our Fourier transform integral is effectively changing.

This problem becomes less of an issue if ∆tsim << ∆tout, which can result in an

odd situation in which the user needs to force the timestep to be artificially small,

increasing their computational expense significantly, just so they can get a reliable

Fourier transform. This rarely happens in practice, and if it does, it is better to

take a weighted average of data from multiple simulation timesteps and output this

to disk. EPOCH does not currently have the functionality to do a weighted average

of outputs, but it can do regular averages, which is usually sufficient. Aliasing is

another important issue that must be considered before running a simulation. It is

helpful to think of the 2D discrete Fourier transform as a box of frequencies and

wavenumbers with finite area. The height of the box is the maximum resolvable

frequency, and the width of the box is the maximum resolvable wavenumber. If
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there is a wave in the simulation propagating with a large, positive group velocity,

and this wave has no cut-off frequency, it will hit the top of the box and reflect

back down into a region of lower frequency and higher wavenumber. Even if this

wave is of no interest to us, it may then interact with some of the higher k modes,

producing non-physical spectrally dense regions modes in the dispersion relation. It

is then possible for said modes to further interact with other modes in the simulation.

Before we know it, there is non-physical Fourier power everywhere. Data averaging

between output dumps can help with this, or we can just make our box taller, by

resolving a higher frequency, in the hope that when our uninteresting wave bounces

back down, it does so in a region of k space of no interest to us. Even if the data is

only written periodically and not at every time-step, the amount of disk space used

when outputting particle data is often too much. The usual procedure is to write

out the values of the field variables every chosen user time period, and to write out

the particle quantities less frequently.

With all the above in mind, it is clear that to run PIC codes requires a kind

of balancing act, between being able to accurately simulate the problem of interest,

and being able to do so in a feasible amount of time, such is the case with most

computational physics problems. The challenges associated with these problems are

discussed in chapter 3.

2.1.5 Cold plasma dispersion relation

The thesis’ of [Cook, 2011],[Gingell, 2013] and [Irvine, 2018] show multiple EPOCH

benchmarking simulations for a wide range of plasma phenomena including electron

Bernstein waves, the two stream instability, and waves in a thermal plasma. As

such, here only benchmarks of a thermal plasma are shown and discussed. Figure

2.3 shows the results of two EPOCH simulations of a thermal deuterium plasma in

which the background magnetic field was aligned along the z-axis perpendicular to

the simulation domain (left) and along the x-axis parallel to the simulation domain

(right). The parameters were chosen to be representative of the JET tokamak, with

a magnetic field |B| = B = 2T , density ne = 1 × 1019m−3, and Te = TD = 1keV.

The simulation domain was chosen to be 2m, and the cell size chosen to be 0.95

times the Debye length, meaning 28,500 cells were needed. The number of particles

per cell was set to 100 and both simulations used periodic boundary conditions

and ran for 20 deuteron gyro-periods. In each panel, the cold plasma dispersion

relation is over plotted in black and is seen to closely match the warm plasma

result produced by the PIC simulation. In both cases, the resolution in frequency

and wavenumber space is the same, but the right panel, corresponding to parallel
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wave propagation, is not well resolved due to the sharply increasing gradient of the

whistler wave. This is perhaps not an issue for this demonstration of EPOCH, but if

say, we wanted to impose an extra wave in our simulation, with a frequency around

14ωcp, and investigate how it interacts with the main whistler branch; we would

miss this interaction, because our ∆k is so large that we have effectively “skipped”

this mode in our simulation, as is evidenced by the large gap between ∼ 13ωcp and

∼ 15ωcp. It is therefore recommended to calculate ∆k in advance when running a

PIC simulation with periodic boundary conditions to make sure all the modes of

interest are captured.
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Figure 2.3: Warm plasma dispersion relation as simulated by EPOCH. Left: Perpendicularly

propagating waves. Right: Parallel propagating waves. Shading indicates the spectral power in Bz

field component and is plotted on a log10 scale.

2.2 Bicoherence and Bispectral analysis

Significant portions of this thesis examine nonlinear wave coupling in both simula-

tions and experiment. One method with which to quantify this coupling is by using

bispectral analysis. There is extensive literature which describes higher order spec-

tral techniques including bispectral analysis. For general information see [de Witt,

2003; Kim et al., 1980; Kaup et al., 1979; Kravtchenko-Berejnoi et al., 1995] and

for plasma-specific applications see, for example, Holland et al. [2002]; Moyer et al.

[2001]; Yamada et al. [2008]; Itoh et al. [2017]. For a KSTAR plasma specific appli-

cation, directly relevant to the work in this thesis, see [Lee et al., 2016]. An early

account of the application of higher order spectral techniques to plasma physics is

given in Ref. [Kim and Powers, 1979]. Bispectral analysis has been previously been

successfully applied to the MCI [Carbajal et al., 2014].
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Any three waves interacting nonlinearly must satisfy, to good approximation, the

frequency and wavenumber matching conditions

f3 = f1 + f2,

k3 = k1 + k2,

where waves “1” and “2” interact to produce wave “3”. To measure the amount

of phase coherence between three modes that obey the above resonance conditions,

one can compute the bispectrum. Defining F (f1) as the complex Fourier transform

of a quantity (for instance an electromagnetic field component) at frequency f = f1,

and F ∗(f1) as its conjugate, the bispectrum is defined as

b2s (f1, f2) =| 〈F (f1)F (f2)F ∗ (f1 + f2)〉 |2, (2.18)

where the brackets 〈·〉 denote averaging over time. One can normalise the bispec-

trum to obtain the bicoherence. This can be done in several ways [de Witt, 2003;

Kravtchenko-Berejnoi et al., 1995], one of which is to use Schwartz’s inequality

b2c (f1, f2) =
| 〈F (f1)F (f2)F ∗ (f1 + f2)〉 |2

〈| F (f1)F (f2) |2〉〈| F ∗ (f1 + f2) |2〉
. (2.19)

In practice, an ensemble average can replace the average over time. One

thus computes several successive Fourier transforms of the same signal, sliding the

Fourier transform window along the signal as we do so. These windows can overlap

to some extent, which allows us to obtain improved spectral resolution, provided one

is careful not to induce correlation where there is none. The number of independent

Fourier transforms M , must be large enough so that the value of the bicoherence

bc is statistically significant. For significant coupling the variance of bc is given by

[Kim and Powers, 1979]

V ar (bc) '
1

M

(
1− b2c

)
. (2.20)

Some accounts differ slightly in that there is a factor 4 in the numerator of the right

hand side of Eq. 2.20. Regardless of this factor, we can safely say that if bc > 1/M ,

we have a statistically significant result. All bicoherence dependant conclusions in

this thesis satisfy this condition.

The bispectrum/bicoherence can either be an “auto” quantity, in which in-

teractions between waves in one signal are computed, or a “cross” quantity, in which

interactions between waves from two different signals are considered. The bispec-

trum, Eq. 2.18, measures the extent of phase coherence due to the nonlinear coupling
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between three waves that satisfy the frequency and wavenumber matching criteria

above. The bicoherence, Eq. 2.19, is a normalised bispectrum bounded between 0

and 1, and quantitatively measures the fraction of the Fourier power of a signal that

is due to nonlinear (specifically quadratic) interaction.

Thus, the bicoherence sheds light on nonlinear coupling; whereas the bis-

pectrum yields information regarding the energy flow due to nonlinear coupling,

given the wave amplitudes in the system; although it does not by itself tell use the

direction of the energy flow. It is therefore useful to compute them both when diag-

nosing possible nonlinear wave physics. A large value of bicoherence (close to unity)

may reveal waves which have significant coupling, but do not drive additional waves

in practice due to their relatively low amplitudes. This becomes apparent if one

supplements the information given by the bicoherence with the bispectrum, because

the latter also incorporates information about relative wave amplitudes. Conversely,

plotting the bispectrum alone does not necessarily yield information about the in-

trinsic strength of coupling between waves.

In a 1D3V PIC simulation, in which information on both the frequency and

one dimensional wavenumber spectrum is readily available, one must decide how

best to calculate and display the results of bispectral analysis. In section 4.3 of

chapter 4 and section 6.3 of chapter 6, the auto-bispectrum/auto-biocherence are

calculated. The signal is first Fourier transformed in space and then the bispectral

analysis is performed by successive Fourier transforms in time. For purely perpen-

dicular propagation and restricting the frequencies of interest to be below the lower

hybrid frequency, there is approximately a one-to-one mapping between frequency

and wavenumber. This allows one to select the frequency for which the spectral

power of a given wavenumber is at its maximum, which, for ICE, lies along the

fast Alfvén branch. This is repeated for all wavenumbers, allowing one to calculate

the bicoherence using successive Fourier transforms in time, while displaying the

results of the calculation as a function of wavenumber [Irvine, 2018]. In general,

PIC simulations, and certainly PIC simulations of the MCI, have much better spec-

tral resolution in the wavenumber domain than they do in the frequency domain.

The resulting bispectrum/bicoherence plot is significantly less coarse than if we had

plotted it as a function of frequency.

A different approach is adopted in section 5.2 of chapter 5, in which the

cross-bicoherence between two signals is calculated. First, a small segment of the

total time series is selected and its average calculated. The result is a 1D signal

containing the quantity of interest at a given time, as a function of position. The

successive Fourier transforms are then performed in the spatial domain only. The
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result is again a plot of the bispectrum/bicoherence as a function of wavenumber,

but this is more coarse than the plot resulting from the other method of computing

the bispectrum/bicoherence described in the preceding paragraph. The advantage

of this approach, is that it is easier for one to diagnose at what time a nonlinear

feature of interest “switches on”, which of course could be achieved by looking at

the dispersion relation alone, but using this method one can ascertain what switched

it on.
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Chapter 3

Simulations of the MCI -

Resolution testing and

Parameter scans

Issues arising from the discrete nature of finite difference schemes and PIC codes

were highlighted in Sec. 2.1.4. This chapter is dedicated to discussing some of

these issues in more detail, aided by the results of multiple EPOCH simulations.

We begin by studying how the size of the simulation domain can affect simulation

results, followed by an exercise in pushing the cell size to its limits, seeing how large

it can be made before the electron self-heating produces non-physical results.

The problem chosen for this investigation is similar to that of Refs. [Cook

et al., 2013] and [Carbajal et al., 2014], which detail simulations of the MCI with

parameters characteristic of the JET outer midplane edge using 1D3V PIC and

hybrid-PIC codes respectively. The simulations consist of three plasma species,

majority thermal deuterons and electrons, which are represented by Maxwellian

velocity distributions, and minority suprathermal 3.5MeV alpha particles whose

velocity distribution is that of the ring-beam found in Eq. 1.25. The following pa-

rameters are constant for all simulations in this chapter: electron number density

ne = 1.0 × 1019m−3, equal deuteron and electron temperatures TD = Te = 1keV,

magnetic field B = 2.1T oriented at 88◦ to the simulation domain, x. The minority

alpha distribution function is oriented along the magnetic field, and the concentra-

tion of alpha particles is ζ = nα/nD = 10−3. The simulation domain length is varied

in the simulations in this chapter, which leads to a variation in wavenumber reso-

lution. In all cases, 200 output files are “dumped” every alpha gyro-period, leading

to a maximum resolvable frequency of 100ωcα.

43



3.1 Domain size

This section focusses on the impact of varying the length of the simulation do-

main. For a grid of length L, the discretisation combined with the imposed periodic

boundary conditions means only wavenumbers with |k| = n2π
L are represented in the

simulation; where n is an integer corresponding the cell number. As the simulations

presented throughout this thesis are in one spatial dimension only, henceforth the

vector notation will be dropped. The Nyquist criterion restricts the maximum re-

solvable wavenumber in the simulation to be nπ/L. So, for a simulation with n grid

cells, there are n/2 positive wavenumbers with spacing ∆k = 2π/L and n/2 nega-

tive wavenumbers with the same spacing. This spacing ∆k must be small enough

to resolve the modes of interest (see Sec. 2.1.5), meaning for a periodic simulation,

a large L is often required. To study the MCI, we must also be sure to resolve

individual cyclotron harmonics. Let us consider an example based on the dispersion

plots shown in Refs. [Cook et al., 2013] and [Carbajal et al., 2014]. For modes at

low frequencies in the range, say, ω . 6ωcα, the fast Alfvén branch, along which

the cyclotron resonances occur, has an approximately linear dispersion relation, i.e.

ω ∼ VAk. For these plasma parameters, we have VA/ωcα ∼ 0.1m, meaning for ev-

ery ∆k we move along the wavevector axis, we move ∼ 0.1∆kωcα up the frequency

axis along the fast Alfvén branch. Before even considering temporal resolution, we

already need to be careful to choose our L to be large enough, and hence ∆k to be

small enough, so as not to “skip over” cyclotron harmonics. It is clear that we can

choose plasma parameters such that the ratio VA/ωcα is minimised to improve our

result.

Figures 3.1, 3.2, and 3.3 show how the energy, dispersion relation, and power

spectra respectively of three different simulations of the MCI under JET like condi-

tions vary with L. The number of particles per cell was kept constant at 100, and

all simulations use higher order spline shape functions. The size of the domain was

altered and the number of grid cells was altered accordingly such that the width of

the cell ∆x remained ∼ 0.95λD ∼ 0.95 × 7.44 × 10−5m. The sizes of the domains

given as multiples of the alpha particle Larmor radius rL = 0.129m are displayed at

the top of each subplot, and for each figure, the subplot axis span the same range

of values. The energy transfer in each simulation, from the minority energetic ions

to the thermal particles and electromagnetic fields, is near identical, and we see the

oscillation of energy between the majority ions (red) and the z-component of the

magnetic field (green) becomes more coherent as L increases. The dispersion plots

all reveal two main clusters of excited modes along the fast Alfvén branch, one at
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intermediate (k,ω) between l = 9 and l = 16 (where ω = lωcα), and one at high

(k,ω) between l = 23 and l = 26. The difference between the left most and right

most plots is striking. The former has ∆k ∼ 0.72 [ωcα/VA], leading to a pixelated

looking dispersion plot. In the middle plot we can just about distinguish between

neighbouring cyclotron harmonics, and the right plot is very well resolved. Figure

3.3 shows the Fourier power in the z-component of the magnetic field as a function

of frequency. This type of plot is arguably the most revealing, and the most relevant

for comparison with experiment. Here, only the Fourier power in intermediate (k,

ω) modes is shown. In the left most panel, we see a double peak at around l = 10

and l = 10.5. This is because the mode that should be excited does not exist in the

simulation, so instead the power is partitioned between the two closest modes. In

the middle panel, we see this double peak merging into one, and in the panel on the

far right, we see sharply defined peak, at a location somewhere inbetween l = 10 and

l = 10.5 - the mode the simulation wanted to access now exists. This peak is by no

means insignificant, it has around one order of magnitude more Fourier power than

its neighbour at l = 9, and a large two orders of magnitude more Fourier power than

its counterpart in the under resolved simulation displayed in the left panel. We can

see a similar effect for modes at around l = 14 and l = 15. The right most plot with

largest L is much smoother than the other two, owing to an increased number of

data points between neighbouring modes in wavenumber space. Crucially, increas-

ing our frequency resolution would not have helped us improve the result shown in

the left panel of Fig. 3.3.
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Figure 3.1: Change in energy density of particles and electromagnetic fields as a function of

time. Time is plotted in units of the alpha particle gyro period. The initial energy densities of the

Ex, By, and ∆Bz field component are all zero; while the initial energy densities of the electrons,

thermal deuterons, and NBI deuterons are ∼ 2.4×103Jm−3, ∼ 2.4×103Jm−3, and ∼ 5.6×103Jm−3

respectively.
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Figure 3.3: Spectral intensity of the Bz field component of the MCI simulations. Power is

obtained by integrating between 0[ωcα/VA] < k < 35[ωcα/VA].

3.2 Cell size

We have just seen the importance of having a large domain size L, and hence a

small ∆k. In early PIC codes this could often pose a problem, because the cell

size was essentially fixed as it was required to be some fraction of the Debye length

λD so as not to produce non-physical self-heating. This means that if one doubles

L, one must also double the number of grid cells nx, which approximately doubles

the computational expense. In more modern PIC codes, it has been shown that

the electron self-heating can be ameliorated through the use of higher order shape

functions and/or current smoothing [Arber et al., 2015; Buneman, 1993]. In this

section we will examine the effect of increasing the cell size to multiples of the Debye

length, in conjunction with two shape functions of different order.
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In the following figures, panels in the left column, labelled a), b) and c),

correspond to simulations using triangular shape functions, the default in EPOCH.

Plots in the right column, labelled d), e) and f), correspond to simulations using

higher order splines, which in EPOCH, can be turned on in the Makefile. Each row

plots the results of simulations with the same cell size ∆x. In row one, panels a)

and d), ∆x ∼ λD. In row two, panels b) and e), ∆x ∼ 3λD, and in row three, panels

c) and f), ∆x ∼ 5λD. In all simulations the simulation domain length is constant,

and is set to L ∼ 28rL, which also fixes ∆k. The number of cells nx thus reduces

as ∆x increases. The number of particles per cell is constant at 100. This means

panel d) in the following plots is identical to the right most plots in the preceding

section.

First, we turn our attention to the transfer of energy, shown in Fig. 3.4. In

all panels, the black line, corresponding to the change in electron energy density,

increases with time. We might expect some increase in this energy, as there are

electrostatic waves in the simulation with a finite parallel wavenumber, and hence

the possibility of Landau damping [Cook et al., 2010; Cook, 2011]. However, we

expect the evolution of this change in energy to broadly follow the evolution of the

electrostatic Ex component of the field energy. In panel d) this is approximately the

case, and the electron energy seems to saturate by the end of the simulation, but in

all other panels, which correspond to simulations that either do not resolve the Debye

length or use triangular shape functions, the electron energy has an initial increase.

In panels e) and f), it looks as though the electron energy is approaching saturation

by the end of the simulation, and in panels b) and c), the change in electron energy

density is so rapid and large that it is not shown. This kind of behaviour can be

expected in simulations using triangular shape functions and having such large cell

sizes. When studying the MCI, electrons often have little to no bearing on the

dynamics of the dominant field components and the ions, hence the use of hybrid-

PIC codes [Carbajal et al., 2014]. So perhaps we can forgive the increase in electron

energy provided the rest of the field and particle energy components evolve as we

expect. However, it is clear from panels b) and c) that this is not the case. In

both panels, the final energy of the Bz field component is lower than in panel a)

(although its saturation energy is roughly the same), and the majority deuteron

energy is much higher than in panel a). In panel c), the majority deuteron energy is

still growing. Plots d), e), and f) show that using higher order shape functions is of

tremendous benefit as far as the electron self-heating is concerned. The ion physics

remains largely unchanged in panel f), despite the cell size being an enormous five

Debye lengths.
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Figure 3.4: As Fig. 3.1. Panels a), b) and c) correspond to simulations using triangular simu-

lations, panels d), e) and f) correspond to simulations using higher order spline shape functions.

Row one, panels a) and d): ∆x ∼ λD. Row two, panels b) and e): ∆x ∼ 3λD. Row three, panels

c) and f): ∆x ∼ 5λD.

We will now examine the power spectrum as a function of frequency, which

is shown in Fig. 3.5 for a large frequency range. In the following discussion, it

is important to bear in mind that ∆k is constant across all six simulations, they

have access to the same modes. The overall mode structure is the same across all

simulations, but there are a few notable differences. The high frequency modes

become less distinct as the cell size is increased. Looking at modes in the range

l = 9 to l = 16, the structure is surprisingly robust as the cell size increases, with

some changes in the relative heights of the peaks. The most striking difference is the

structure of the modes with l . 6. These are modes that, in general, arise from the

nonlinear stage of the MCI due to nonlinear interacts between modes with higher

frequencies [Carbajal et al., 2014; Carbajal, 2015]. The structure is clear in panel a),

becoming less so as the cell size is increased in panels b) and c). These low modes

are also visible in panel d), e) and f), showing that the use of higher order shape

functions helps preserve the mode structure as the cell size is increased.

48



3

4

5

6

7

8 (a)

3

4

5

6

7

8

M
C

I 
In

te
n
si

ty
 (

lo
g
1
0
 s

ca
le

)

(b)

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Frequency [ωcα]

3

4

5

6

7

8 (c)

(d)

(e)

2 4 6 8 10 12 14 16 18 20 22 24 26 28

(f)

Figure 3.5: Spectral intensity of the Bz field component of the MCI simulations. Subplots are

the same as in Fig. 3.4.

It is natural to consider the energy conservation properties of the code as

we increase the cell size, and hence knowingly increase the amount of electron self-

heating. The percentage change in the total energy of the simulations is shown

in Fig. 3.6. Here, only changes in energy associated with the fluctuating part

of the applied magnetic field are included in the calculation. When the applied

magnetic field energy is included, the change is always a fraction of a percent. We

can clearly see that simulations using triangular shape functions suffer greatly from

a lack of energy conservation as the cell size further exceeds the Debye length.

Panels a) and d) look very similar, the latter showing a slight improvement in

energy conservation. Panels b) and c) show the total simulation energy is increasing

approximately linearly. Panels e) and f) look almost identical to panels a) and

d), making it abundantly clear that at least for this problem, higher order shape

functions must be used if one is to have any hope of replicating the physics “cheaply”

by increasing the cell size.
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Figure 3.6: Percentage change in total simulation energy as a function of time. Time is plotted

in units of the alpha particle gyro period. The applied magnetic field |B| = 2.1T has been excluded

from the calculation. Subplots are the same as in Figs. 3.4 and 3.5.

3.3 Summary

In this chapter we have investigated the importance of the domain and cell sizes

for an example 1D3V PIC simulation of the MCI. We found that the length of the

simulation domain must be large enough to have a sufficiently small ∆k in order to

resolve individual cyclotron harmonics along the fast Alfvén branch. Practically, this

poses a problem, as halving ∆k requires us to double the domain length L, which, if

we want to make sure the Debye length is resolved, requires us to double the number

of grid cells nx, thus approximately doubling the computational expense. A “cheap”

way to halve ∆k would be to simply double the cell size, and risk the resulting

electron self-heating negatively impacting our simulation. As in Ref. [Arber et al.,

2015], we have found that using higher order particle shape functions greatly reduces

the electron self-heating effect in this simulation, and for this particular problem,

did not have a huge impact on the ICE spectra. From this we can tentatively
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conclude that it is possible to increase the cell size beyond the Debye length as

long as higher order shape functions are used, at least for this particular problem.

As with any computational physics problem, resolution tests such as the ones in

this section must be carried out. It should also be noted that in a PIC code, due

to the CFL condition, the timestep is directly proportional to the cell size, which

means that doubling the cell size doubles the timestep. So if L is already fixed,

halving the number of cells in theory speeds up the simulation by a factor four (if

we crudely assume perfect scaling), because there are half as many particles to push

in the simulation, and we can push them twice as fast. Such PIC simulations, even

those in only one spatial dimension, necessarily run on multiple processors using

MPI. In general, PIC simulations with larger domains scale better across multiple

processes (the MPI parallelisation is achieved via domain decomposition), because

what is gained through the efficient division of work outweighs the communication

overhead. So practically, if one has a large number of processors at their disposal,

there is often no benefit to be gained by running a “cheap” simulation, that is, one

in which the wavenumber spectrum is under resolved, because such a simulation

may not be able to fully exploit the processors given to it.
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Chapter 4

Simulations of ICE in KSTAR

In this chapter we shall examine ICE observed in KSTAR deuterium plasmas during

the third terminal stage of the ELM cycle described in Sec. 1.3. Three different

categories of ICE have been observed in KSTAR, all of them at the outer midplane

edge: 1) proton chirping ICE, 2) deuteron chirping ICE, and 3) deuteron steady-

state ICE. In this chapter we discuss simulations pertaining to proton chirping ICE

and deuteron steady-state ICE, leaving the deuteron chirping ICE as an avenue for

future work.

4.1 Fusion born proton frequency chirping

4.1.1 ELMs and ICE in KSTAR

Figure 4.1 shows an example of downward ICE chirping from a KSTAR plasma that

has with toroidal magnetic field at the magnetic axis B0 ' 1.99 T, plasma current

Ip ' 600 kA, and total stored energy W ∼ 380kJ. The upper panel displays the

measured RF burst spectra as a function of time while the lower panel displays the

Fourier transform of this signal. In the lower panel of Fig. 4.1, and all subsequent

figures of this type, horizontal white lines denote successive proton cyclotron har-

monics evaluated for the magnetic field strength at the outer mid-plane edge of the

plasma, while t = 0 refers to the centre of a 200µs segment of RF data. This data is

obtained when the RF signal amplitude exceeds a threshold voltage during KSTAR

pulse operation, with the acquisition times corresponding roughly to a spike in the

Dα signal [Thatipamula et al., 2016]. For further details of the fast RF spectrometer

system used on KSTAR see for example Fig. 1 of [Thatipamula et al., 2016].

The frequency chirping observed in KSTAR is often, as in Fig. 4.1, in dis-

crete steps coinciding with the local proton cyclotron frequency. The only energetic
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Figure 4.1: Temporal evolution of ICE amplitude (upper plot) and spectrum (lower
plot) during an ELM crash in KSTAR plasma 11513. Time is measured relative to
the moment chirping bursts are observed to begin during the ELM crash (∼ 100µs
after the start of the crash). The horizontal dashed lines in the spectrogram indicate
proton cyclotron harmonics.

protons in KSTAR plasmas are those produced in deuteron-deuteron (D-D) fusion

reactions, hence it is likely that ICE at spectral peaks separated by proton cyclotron

harmonics is driven by fusion-born protons. If this ICE is driven by the MCI of con-

fined fusion-born protons with spatially localised population inversion, it is necessary

to identify a candidate population. The KSTAR experiment is not built on a scale

sufficiently large to confine the majority of the energetic ions that are born in fusion

reactions within pure deuterium plasmas: 3.0 MeV protons, 0.82 MeV He-3 nuclei,

and 1.0 MeV tritons. To drive ICE in KSTAR via the MCI, there must nonetheless

exist a collectively unstable subset of fusion-born protons whose orbits are confined

within the plasma and traverse the excitation region in the outer midplane edge.

The distribution in velocity space of this population must differ qualitatively from

that driving ICE in other MCF plasmas such as JET and TFTR, because the fusion-

born ions on the marginally trapped orbits that give rise to ICE in these two larger
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experiments are promptly lost from KSTAR during their first drift excursion.

4.1.2 Single particle orbits

We first calculate orbits of 3.0 MeV protons in equilibrium magnetic fields resembling

those of a KSTAR plasma with major radius R0 = 1.8 m, toroidal magnetic field

B0 = 2.27 T, and plasma current Ip = 611 kA. Our orbit calculations show that

almost all centrally-born fusion protons are lost promptly from the plasma on their

first drift orbit. However, a small fraction of these protons are born onto deeply

passing orbits which remain confined at the plasma edge to which they are carried

by their radial drift excursion. Figure 4.19 shows example orbits of 3.0 MeV protons

born in the midplane at initial major radii R(0) equal to (a) 1.85 m and (b) 1.90 m,

and with initial velocity vectors slightly offset from the co-current toroidal direction.

These orbits pass through the outer midplane plasma edge, and could give rise there

to a localised population in velocity space. We show below that such a distribution

can radiate collectively through the MCI and is thus capable of driving ICE at proton

cyclotron harmonics characteristic of the outer midplane. We conjecture that when

the ELM crash starts, confinement of all energetic ions at the edge is lost; the edge

is then rapidly re-populated on a drift orbit timescale by this subset of the energetic

fusion-born protons. This leads to the sharp local population inversion that drives

ICE. We note that an instance of positive correlation between ELMs and ICE was

also seen on JET, see Fig. 9 of [Cottrell et al., 1993].

The spatial location from which ICE is emitted is inferred from the observed

frequency interval between successive spectral peak features, which corresponds to

the local proton cyclotron frequency. This fixed proton cyclotron frequency implies

that the radial location of the emitting region does not change. The full spectral

evolution takes place on a microsecond timescale which is very short compared to

any characteristic timescale of evolution of the energetic ion distribution in velocity

space; thus we do not attempt to model any changes in the energetic ion distribution

function. The KSTAR magnetic field strength uniquely defines a radial location for

the protons driving the ICE, to high accuracy, at the outer mid-plane.

4.1.3 Self consistent simulations of the MCI

To simulate the excitation of ICE by fusion protons in KSTAR we use the EPOCH

PIC code as described in chapter 2. As the simulations are set up in planar geom-

etry, they do not incorporate realistic toroidal geometry and the associated com-

pressional Alfvén eigenmode structure [Fülöp et al., 2000; Gorelenkov and Cheng,
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Figure 4.2: Poloidal projection of 3.0 MeV fusion proton orbits in the model KSTAR
equilibrium with initial velocity vectors slightly offset from the co-current toroidal
direction. The blue boxes in both the left and right panels designate the emitting
region for the ICE and are centred on the radial location that corresponds to the
proton cyclotron frequency whose harmonics are excited in the chirping ICE spec-
trum. The horizontal extent of these boxes corresponds to the local Larmor radius
of cyclotron gyration of an emitting proton.

1995; Gorelenkov, 2016; Gorelenkov et al., 2014; Kolesnichenko et al., 1998, 2000;

Smith et al., 2003; Hellsten and Laxaback, 2003; Hellsten et al., 2006; Smith and

Verwichte, 2009]. Nevertheless this approach has been shown to be successful in

capturing most of the underlying physics [Cook et al., 2013; Carbajal et al., 2014,

2017], and aligns with the original slab-geometry analytical theory of the MCI de-

scribed in Sec. 1.4, against which it has been benchmarked, see Fig. 1 of [Cook

et al., 2013] and Fig. 1 of [Carbajal et al., 2014]. The simulations capture the rapid

self-consistent time-evolution of the ion velocity distributions under the MCI, but

do not attempt also to capture the much slower (by orders of magnitude) effects of

collisional slowing-down.

The deeply passing subset of the fusion-born proton population in the KSTAR

plasma edge discussed above has a speed perpendicular to the magnetic field (v⊥0)

much smaller than the magnitude of their speed at birth. It is therefore justifiable to

represent this by the approximate model of a delta-function ring distribution. Previ-

ous analytical and first principle, fully self-consistent simulation studies of the MCI
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showed that strong driving of the MCI is enabled if the perpendicular component

of the energetic ion velocity is at least comparable to the local Alfvén velocity. In

all our simulations, v⊥0 corresponds to an energy 150 keV ' 5% of the birth energy

consistent with the orbit calculations shown in Fig. 4.19. This is comparable to

the local Alfvén speed cA, hence high enough to drive the MCI. The large parallel

velocities v‖ of these passing fusion protons are not represented in the simulations

since the parallel dynamics of the fast ions play no role in perpendicular wave propa-

gation. The ratio of proton number density to deuteron number density is 10−3 and

the total simulation duration is 10 proton cyclotron periods, carrying the MCI into

its saturated nonlinear regime. The spatial (x) direction is orthogonal to the uni-

form magnetic field B = Bcyc ez, so that the propagation direction of waves excited

in the system is perpendicular to B. Bcyc denotes the edge magnetic field inferred

from the spacing between successive proton cyclotron harmonics observed in the ex-

perimental spectrograms. The bulk plasma comprises electrons and deuterons with

initial temperature 1 keV.

The distribution of collectively radiated energy between different cyclotron

harmonics depends on the character of the instability (the MCI) driving the ICE.

A key dimensionless parameter in the analytical theory of the MCI is the ratio

of energetic ion perpendicular velocity to the Alfvén speed. Changing the density

changes the Alfvén speed, which in turn changes the numerical value of this ratio.

This ratio determines the threshold for instability which can be inferred from both

linear theory and fully nonlinear self-consistent PIC simulations. These nonlinear

simulation results have many good points of contact [Cook et al., 2013; Carbajal

et al., 2014, 2017] with the linear instability theory of the MCI, see in particular,

Figs. 1-3 in Ref. [Carbajal et al., 2017]. This means the character of the MCI

depends strongly on the local density so that if the local density changes, the set of

cyclotron harmonics which are excited by the MCI also changes. Thus the spectral

character of the ICE at any time reflects the density-dependence of the MCI.

To enable comparison with observations of ICE chirping during the ELM

crash in KSTAR plasmas, we run multiple simulations to determine the density-

dependence of the MCI in the fully nonlinear saturated regime. These simulations

are carried out with initial electron number densities in the range 0.2× 1019 m−3 to

2.5 × 1019 m−3. This range reflects Thomson scattering measurements in the edge

pedestal (see the last paragraph of section 3 in Ref. [Thatipamula et al., 2016]).
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4.1.4 ICE intensity as a function of frequency and electron number

density

Figures 4.3 and 4.4 show the spectra of saturated ICE intensity obtained from

EPOCH simulations with successive values of electron number density (lower pan-

els), along with the corresponding experimentally-measured spectrograms for down-

ward chirping ICE during ELM crashes in plasmas with B0 = 1.7T and B0 = 1.99T

(upper panels). The lower left and lower right panels correspond to the high and

low frequency ranges respectively. Electron number density decreases from left to

right, and each vertical strip corresponds to an independent MCI simulation at

the density shown. The arrows labelled (a)-(d) denote a mapping between exper-

imentally observed and simulation proton cyclotron harmonics. The boundary of

evanescence in the cold plasma limit, defined by the lower hybrid frequency ωLH , is

clearly visible. As the electron number density, and subsequently ωLH decrease, the

number of modes available for excitation also reduces. For ne . 1.1× 1019m−3, the

spectrum is dominated by a single cyclotron harmonic, with the harmonic number

falling monotonically as ne decreases. It is apparent that for both values of central

magnetic field B0 shown in Figs. 4.3 and 4.4, the trend in ICE spectral power as a

function of frequency and ne is the same.

The variation of simulated ICE intensity with electron number density resem-

bles the experimentally-observed variation of ICE intensity with time. We address

this in greater detail in the next section, meanwhile we note that the striking agree-

ment between the highest and lowest intensity regions in the upper and lower panels

of both Figs. 4.3 and 4.4 reinforces the choice of simulation electron number den-

sity values which reflect Thompson scattering measurements. There is a “missing

harmonic” in the lower panels of Figs 4.3 and 4.4 at f ' 323MHz and f ' 375MHz

respectively. This could be due to periodic boundary conditions, as well as the

limitations of a 1D3V model.

4.1.5 Mapping between computational results and KSTAR obser-

vations

Our simulations suggest that the downward chirping of ICE observed during the

KSTAR ELM crashes detailed above is likely to be a direct consequence of a rapid

local decline in electron number density associated with an ELM filament. An im-

portant corollary of this result is that measurements of the ICE spectra can be used

to infer the locally declining electron number density as plasma is transported out

of the ICE-emitting region by one of the multiple filament bursts that are associated
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Figure 4.3: Top panel: experimentally-measured fast RF burst spectrogram from
KSTAR plasma 11462 with B0 = 1.7T and average electron number density before
the ELM crash 〈ne〉 = 2.5× 1019m−3. Downward step-wise frequency chirping with
proton cyclotron frequency fcp ∼ 21.5MHz is apparent. Lower panels: frequency
versus electron number density plots for the nonlinear stage of MCI simulations
where Bz = Bcyc ≈ 1.41T has been inferred from the data in the top panel. Shading
indicates the log10 of the spectral power in the fluctuating part of the Bz field
component of each simulation.

with the ELM crash.

In Fig. 4.4 (upper panel), a given ICE spectral feature at a particular cy-

clotron harmonic in KSTAR can be seen to arise at a time tstart and end at a time

tfinish. For this downward chirping case, a neighbouring spectral feature at a lower

cyclotron harmonic arises at a slightly later tstart and persists until a slightly later

tfinish. In the lower panels of Fig. 4.4, a succession of simulated ICE spectra are

shown. Each vertical strip represents an ICE simulation run at a different, neigh-

bouring, density. These simulated spectra are arranged in sequence with number

density declining from left to right. A particular cyclotron harmonic spectral feature

(e.g. in the lower right of Fig. 4.4) is excited by simulations in a relatively narrow

range of densities between nupper and nlower. Remarkably, the pattern of spectral
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Figure 4.4: Top panel: experimentally-measured fast RF burst spectrogram from
KSTAR plasma 11513 with B0 = 1.99T and average electron number density before
the ELM crash 〈ne〉 = 2.6× 1019m−3. Downward step-wise frequency chirping with
fcp ∼ 25MHz is apparent. Lower panels: as the lower panel of Fig. 4.3 but with
Bz = Bcyc ≈ 1.64T.

features in the sequence of simulated spectra, depending on number density n, has

much in common with the pattern of spectral features in the experimental ICE

spectra, depending on time. Hence we can construct a simple mapping from time

to density by exploiting these similarities. Essentially, for a given spectral feature,

we identify nupper with the density at tstart, and nlower with the density at tfinish.

The foregoing describes the overall approach. It yields, we argue, sub-

microsecond time resolution for the ELM filament burst. This is shown in Fig.

4.5, the left panel corresponding to Fig. 4.3, and the right panel corresponding to

Fig. 4.4. Our sequence of simulations at different electron number densities, to-

gether with the chirping ICE observations, reflect a phase of the ELM crash during

which individual, toroidally and poloidally localised filament bursts lasting < 10µs

(Fig. 4, Ref. [Thatipamula et al., 2016]) are known to be present. In greater detail,

the procedure for obtaining Fig. 4.5 (left) from Fig. 4.3 is as follows:
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1. Corresponding experimental and computational spectral features are identi-

fied, e.g. the feature denoted by arrow (a) in the upper panel of Fig. 4.3 is

compared with the feature denoted by (a) in the lower left panel of Fig. 4.3.

2. The most intense regions of the experimental and simulation spectral features

are identified and quantified with respect to time and density, respectively.

3. If a spectral feature arises intensely in “N” simulations that have different

(neighbouring) values of electron number density, the corresponding experi-

mental feature is then divided into N time points.

4. One of these N time points is matched with its corresponding density point,

and a coordinate is plotted in Fig. 4.5. The vertical error bars in this plot

reflect the finite steps in density between simulations, and as such are always

0.1 × 1019m−3. The width of the horizontal error bars is determined by the

difference in the successive time-intervals outlined in iii).

5. In the case where we only have one density point corresponding to one spec-

trally dense feature, e.g. arrows (d) in Fig. 4.3, the time is taken to be the

centre of the spectrally dense region in the experimental spectrogram. The

width of the temporal error bars is then half the width of the spectrally dense

region in the upper, experimental plot. Hence the larger error bars at low

densities in Fig. 4.5.

A slightly more detailed explanation, with accompanying plots, can be found

in Appendix B. This yields an available time resolution of the density decrease of

order ∼ 0.1µs. Fig. 4.5 shows that the density decreases approximately linearly on

a timescale of about 2.5µs.

4.1.6 Upward chirping

Upward chirping is occasionally observed during ELM crashes in KSTAR. For logical

consistency with the above, we should attribute this to a rare locally rising density

due to the rapid motion of an ELM filament transporting additional plasma into

the ICE-emitting region during the ELM crash. We test this hypothesis as follows.

The time evolution of the corresponding electron number density for the case of

upward chirping shown in Fig. 4.6 (left panel) has been inferred from the saturated

MCI simulations at different electron number densities (Fig. 4.6 right panel), and

is shown in Fig. 4.7.

In Fig. 4.6, the separation between successive spectral peaks in the ICE is

fcp ∼ 28MHz, which corresponds to a local magnetic field strength of 1.84T and
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thus implies that the ICE source is localised to the outer midplane of this KSTAR

plasma. The absolute value of each spectral peak frequency is at integer multiples of

28 MHz plus, systematically, 10 MHz. We conjecture that this systematic frequency

shift may be a Doppler shift. If, as we suggest, the source plasma for the upward

chirping ICE in Fig. 4.6 is a moving ELM filament, this Doppler shift would be a

consequence of filament motion. Testing and exploitation of this particular aspect

of the phenomenology would require information of the k‖ spectrum of the ICE,

which is not at present available.
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Figure 4.7: Rising electron number density during an ELM crash inferred from up-
ward chirping ICE measurements in KSTAR plasma 11474 combined with saturated
MCI simulations at different densities, see Fig. 4.6. The green fit suggests electron
number density rises approximately linearly with time during the early stages of the
ELM crash.

4.2 The effect of the lower hybrid frequency

In the previous section, a series of PIC simulations at successive neighbouring fixed

values of plasma electron number density ne were used to model the chirping of the

primary ICE features in Fig. 4.1. The results of this section show a clear dependence

on the lower hybrid frequency ωLH = 2πfLH (see Sec. 1.2), whereby the number of

modes available for excitation decreases rapidly as the electron number density ne,

and hence ωLH , decreases. We now address the role of ωLH , and in particular the

question of evanescence for cold plasma waves at frequencies above ωLH . As a guide

to the reader, Fig. 4.8 shows how the lower hybrid frequency varies as a function of

density and magnetic field. We see that as ne decreases, ωLH decreases rapidly.

Several more simulations were run using different values of the magnetic field,

in an attempt to quantify the effects of changing the magnetic field strength B0 as

well as density ne, and the effects of ωLH on the simulation output. The magnetic
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Figure 4.8: Left: The lower hybrid frequency ωLH as a function of electron particle
density ne for the KSTAR plasma parameters used in the PIC simulations. ωLH
is normalised to the proton cyclotron frequency ωcp while ne is normalised to 1019.
Each line denotes ωLH for different values of central magnetic field B0 spanning
1.7T at the top (blue) to 2.3T at the bottom (black) in steps of 0.1T. Right: ωLH
as a function of B0 calculated for different values of ne spanning 2.4 × 1019m−3 at
the top (blue) to 0.2× 1019m−3 at the bottom (magenta) in steps of 0.2× 1019m−3.

field strength in these simulations was taken to be that of the toroidal magnetic

field component in KSTAR using different values of B0, i.e Bz = Bϕ = B0
R0

R0+a and

the small poloidal contribution is neglected. As such, the following have no exact

experimental counterparts to date, but the range of B0 simulated are applicable to

KSTAR operating regimes. A total of 84 new simulations are performed, varying B0

and ne, the former from 1.7T to 2.3T in steps of 0.1T, the latter from 2.4×1019 m−3

to 2.0 × 1018 m−3 in steps of 2.0 × 1018 m−3. The results of these simulations are

shown in Figs. 4.9, 4.10 and 4.11, in all panels ne decreases from left to right. The

domain length of each simulation for a given B0 is reduced from 50rL,p (as was the

case in Sec. 4.1) to 20rL,p where rL,p is the proton Larmor radius, and the number of

grid cells is in turn reduced whilst still resolving the Debye length. This reduction in

the number of grid cells allows for quicker, and hence many more simulations, whilst
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still ensuring the particle dynamics are well resolved. With the exception of ne and

B0, all other plasma parameters are constant and the same as those in the previous

section, and the total simulation time is again 10 proton cyclotron periods in all

cases. As before, the magnetic field of each simulation is oriented entirely along

the z-axis meaning we restrict the study to strictly perpendicular wave propagation

along the x-axis, which is the spatial domain of our 1D3V PIC simulations. As

before, each vertical strip corresponds to an independent simulation which yields

the spectrum of MCI-excited waves at the value of ne shown; and shading indicates

the log10 of the Fourier power in the Bz component of the simulation.
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Figure 4.9: Spectral power as a function of plasma density obtained from multiple
PIC simulations for several values of magnetic field strength corresponding to the
nonlinear saturated phase of the MCI. Shading indicates the log10 of the spectral
power in the Bz field component of each simulation. All panels comprise a series
of simulations, each contributing a vertical strip at a different density. The white
lines denote successive proton cyclotron harmonics, while the black lines denote the
value of the lower hybrid frequency (in units of ωcp) for each value of density.
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Figure 4.9 shows the variation of ICE intensity as a function of frequency

and density for several values of B0 which are stated in the lower centre of each

panel. Frequency is in units of the proton cyclotron frequency, the white lines

denote successive proton cyclotron harmonics, and the black line denote the value

of the lower hybrid frequency (in units of ωcp) for each value of density.

Figure 4.9 highlights several striking features, the first being that the general

trend in the ICE spectral power as a function of frequency and electron particle

density is the same for all values of magnetic field. It is apparent that the number

of modes that can be excited for a given value of ne reduces as the magnetic field

increases, this may be due to the lower value of ωLH (when in units of ωcp) restricting

the number of available modes for excitation. It can also be seen that the difference

between the highest and lowest excited proton cyclotron harmonics reduces as the

value of the magnetic field increases. In all panels, there is value of density for which

only one frequency is excited at this density and all below it, this value of density

increases as the magnetic field increases. We note in passing the extremely narrow

range of frequencies that can be excited for B0 = 2.3T, which provides further

justification for attributing the results of Fig. 4.6 to upward frequency chirping. In

all panels, one can see a blue region in which the spectral power falls to zero. The

boundary of this region at each value of ne lies close to the corresponding value of

ωLH .

An alternative way to analyse the data shown in Fig. 4.9 is to plot the vari-

ation of ICE intensity as a function of frequency and B0 for each value of density.

This is shown in Fig. 4.10, in which each panel displays the results of seven simu-

lations each with the same density and different values of magnetic field. The black

lines denotes ωLH in units of the ωcp for each value of B0. It is important to note

that while the vertical frequency axis is common to all adjacent vertical strips when

plotted in units of ωcp, it is different when plotted in MHz, and adjacent strips can

no longer share the same axis. This alternative view helps to reinforce some of our

previous observations.

Figure 4.10 makes it clear that the number of frequencies available for exci-

tation for a given density reduces as magnetic field increases. It also highlights that

the number of excitable frequencies rapidly reduces as density decreases, regardless

of the magnetic field. Finally, it enables us to see that when a certain value of ne is

reached, for this value and all below it, only one frequency can be excited regardless

of the magnetic field present. This is approximately 8× 1018 m−3.
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Figure 4.10: Simulated frequency vs magnetic field plots for the non-linear stage
of the MCI. Frequency is in units of the proton cyclotron frequency. Each panel
shows the variation of the log10 of the spectral power in the Bz field component
with frequency and magnetic field at constant density. The black and white lines
indicate the position of the lower hybrid frequency (in units of the proton cyclotron
frequency) and successive proton cyclotron harmonics respectively.

Figure 4.11 provides a further alternative with which to view the above data.

Each panel displays the log10 of the average spectral power in the fluctuating part

of the Bz field component of each simulation harmonic as a function of ne and B0.

For each simulation with a given B0 and ne, the power in each harmonic is averaged

over ±l/2 where l is the harmonic number. For instance, the shading in the 6th

harmonic (top left panel) for a given B0 and ne, corresponds to the average spectral

power between ω/ωcp = 5.5 and ω/ωcp = 6.5, the 7th harmonic corresponds to

the average power between ω/ωcp = 6.5 and ω/ωcp = 7.5, and so on. The black

dots denote the values of B0 and ne for which the lower hybrid frequency is within

±l/2 of the harmonic in question. This plot enables us to pinpoint the values of B0

and ne for which the spectral intensity of a given harmonic is highest. Combining

this with future simulations which include effects such as wave dissipation could
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Figure 4.11: The variation of the log10 of the average spectral power in the Bz
field component of a given harmonic as a function of magnetic field and electron
particle density. Each panel corresponds to a different simulation harmonic. Black
dots denote the values of B0 and ne for which the lower hybrid frequency is within
±l/2 of the harmonic in question, where l is the harmonic number.

yield valuable information. For instance if one is certain they are observing say, the

14th proton cyclotron harmonic at a given time, one could conjecture that B0 must

lie somewhere between 1.9T and 2.2T, and that the electron particle density lies

somewhere between 6× 1018 m−3 and 8× 1018 m−3.

4.3 Nonlinear wave-wave interactions

The KSTAR RF signal shown in Fig. 4.1 also includes chirping features with sharply-

defined spectral structure in the frequency range up to ∼900 MHz. If our downward

density chirping interpretation holds, then this is above the local lower hybrid fre-

quency at the top of the main chirping branch, fLH ∼ 529 MHz. This “ghost”

chirping feature above ∼500 MHz is shown in Fig. 4.12, here we show that this is a

real physical phenomenon, which is generated by strong nonlinear wave-wave cou-
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pling between different spectral peaks within the primary chirping ICE feature below

∼500 MHz. We demonstrate this by direct bicoherence analysis of: first, the KSTAR

data files for field magnitudes; and second, analysis of the EPOCH simulation data

used to make up the lower panels of Fig. 4.4. We show that the “ghost” spectral

features are able to exist and grow in the higher-frequency, potentially evanescent,

region because they are nonlinearly driven by coupled MCI-excited waves that lie

within the lower-frequency, propagating (non-evanescent), region. The “ghost” fea-

ture thus owes its existence to both a minority suprathermal ion population - here,

the confined subset of fusion-born protons that relax through the MCI in KSTAR

deuterium plasmas - and on the capacity of the plasma to nonlinearly couple together

the modes initially driven by these protons.
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Figure 4.12: Temporal evolution of ICE amplitude during an ELM crash in KSTAR
plasma 11513. Time t = 0 refers to the centre of a 200 µs segment of radio-
frequency data. The horizontal dashed lines in the spectrogram indicate energetic
proton cyclotron harmonics fcp at the low field side plasma edge. In addition to the
main chirping feature . 500 MHz ≈ 20 fcp discussed in section 4.1, we also observe
a second, faint (“ghost”), feature at frequencies above the lower hybrid frequency
fLH ≈ 529MHz ≈ 21 fcp. This additional, spectral feature is delayed in time by
approximately 1µs with respect to the main chirping feature.
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4.3.1 Bicoherence analysis

We first examine the extent of nonlinear wave-wave coupling within the experimental

dataset that spans the primary and “ghost” chirping ICE features in Fig.4.12. The

best quantitative evidence for this coupling, and characterisation of its magnitude as

a function of wave frequency, is obtained from bispectral analysis, whose properties

are detailed in section 2.2. The bicoherence and bispectrum corresponding to the

entire KSTAR signal shown in Fig.4.12 are plotted in the left and right panels

respectively of Fig.4.13. In the bicoherence panel, shading indicates the intrinsic

strength of nonlinear coupling, 1 (dark red) being completely coupled and 0 (dark

blue) completely uncoupled. The shading of the bispectrum panel is displayed on

a logarithmic scale. Here the averages denoted by 〈·〉 in Eq.(2.19) are taken over

a time window ∆t ∼ 0.5µs within a signal which is 5µs long, corresponding to the

data displayed in Fig. 4.12. This choice enables us to construct ten independent

realisations. In consequence, the threshold for significance is comfortably below the

observed coupling strength “b” for a wide range of relevant frequencies.

We note three distinct regions of strong intrinsic nonlinear wave coupling in

the left panel of Fig. 4.13:

1. 200MHz (8fcp) < f1 , f2 < 500MHz (20fcp): Coupling between neighbouring

modes within the main chirping feature shown below f ≈ 450 MHz in Fig.

4.12. We argue that this coupling enables formation of the faint higher fre-

quency “ghost” chirping feature that appears above f ≈ 450 MHz in Fig. 4.12.

2. 500MHz (20fcp) < f1 , f2 < 850MHz (34fcp): Weaker coupling between the

newly formed modes in the “ghost” feature above f ≈ 450 MHz.

3. 500MHz (20fcp) < f1 < 850MHz (34fcp) and 200MHz (8fcp) < f2 < 500MHz (20fcp):

Weaker coupling between the newly formed modes in the “ghost” feature above

f ≈ 450 MHz, and modes within the main chirping feature below f ≈ 450

MHz.

We are primarily concerned with point (i), which strongly suggests the “ghost”

feature is a real plasma physics phenomenon. The right panel of Fig.4.13 indicates

why it is only waves in the frequency range below f ≈ 450 MHz that can drive the
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Figure 4.13: Left: Bicoherence of the observed fast RF signal displayed in Fig.
4.12, plotted as a function of frequency in MHz. The colour scale indicates intrinsic
nonlinear coupling between waves with frequencies f1 and f2, which takes values
between 0 and 1. There is significant coupling in three distinct regions, discussed
as (i) to (iii) in this section. Right: Bispectrum of the same RF signal. Bicoherence
measures the intrinsic strength of nonlinear wave coupling, while the bispectrum
measures actual nonlinear transfer of energy. Colour is plotted on a log scale.

observed “ghost” features: these are the waves that are not only significantly non-

linearly coupled, but also have sufficiently large amplitude. The nonlinearly driven

features that could in principle arise due to the strong coupling of waves described in

points (ii) and (iii) would lie below the Nyquist frequency; however, they are never

observed in practice because their amplitude is lower by several orders of magni-

tude. We note that the auto-bispectrum and auto-bicoherence of the KSTAR RF

data, that is, bispectra computed from a single time series, cannot by themselves

yield information on the direction of energy transfer. To do so would require two

point measurements [de Witt, 2003; de Wit et al., 1999] which at present, are not

available.

Having inferred from bispectral analysis of the KSTAR data that the nonlin-

ear wave coupling between cyclotron peaks below f ≈ 500 MHz drives the “ghost”

chirping feature, the question now arises: can the same physics be inferred from

analysis of the outputs of the corresponding PIC simulations? The simulations have

a propagation angle θ = 90◦, for which, as noted above, the region fLH < f < f2 is

evanescent. In order to explore the hypothesis that the observed waves in this region

arise from nonlinear wave coupling, let us focus on the simulations which make up

the lower panels of Fig. 4.4.

Figure 4.14 shows the bicoherence plots along with the corresponding spatio-
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Figure 4.14: Upper panels: Normalised bicoherence (Eq. (2.19)) of the oscillatory
part of the Bz field component in three PIC simulations. This is plotted as a function
of wavenumber normalised to fcp/Va where Va is the Alfvén speed. From left to
right the number density ne in the simulations is 2.4× 1019m−3, 1.3× 1019m−3, and
0.8× 1019m−3. In all three plots the most significant coupling is observed between
neighbouring k values near the k1 = k2 boundary. Lower panels: Corresponding
spatio-temporal Fourier transform for the three simulations. The y-axis is plotted
in units of fcp while the x-axis is plotted in units of fcp/Va. The horizontal black
line denotes the lower hybrid frequency fLH for each simulation. In addition to the
expected cold plasma waves below fLH , spectrally intense regions above fLH can
be seen in the range of frequencies corresponding to the observed “ghost” feature in
Fig. 4.12.

temporal Fourier transform of Bz for each of three different simulations in the lower

panels of Fig. 4.4. Shading indicates the log10 of the spectral density of the oscilla-

tory part of the Bz field component. From left to right the simulations have electron

number densities ne = 2.4 × 1019m−3, 1.3 × 1019m−3, and 0.8 × 1019m−3. In the

lower panels, the y-axis is plotted in units of proton cyclotron frequency fcp, while

the x-axis is plotted in units of fcp/VA where VA is the Alfvén speed. The value of

VA differs significantly between the simulations because it is inversely proportional

to the square root of the majority ion (deuteron) mass density, and hence to ne. The

71



0 10 20 30 40 50 60

0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

 [
ω
cp

]

106

107

108

109

1010

1011

1012

Figure 4.15: Spatio-temporal Fourier transform of he Ex field component of the
simulation which makes up the left panels of Fig. 4.14, in which ne = 2.4×1019m−3.
The y-axis is plotted in units of fcp while the x-axis is plotted in units of fcp/Va. The
horizontal black line denotes the lower hybrid frequency fLH for each simulation.

horizontal black line denotes fLH , below which we see excitation of the fast Alfvén

wave with resonances at consecutive proton cyclotron harmonics. For frequencies

less than but approaching fLH , the waves gain an electrostatic component, as is

evidenced by Fig. 4.15, which shows the spatio-temporal Fourier transform of the

Ex field component of the simulation that makes up the left column of Fig. 4.14

in which ne = 2.4 × 1019m−3. Above fLH there are several weaker but significant

spectrally intense regions. The location of these regions in (k, f) space is at posi-

tions (k3, f3) such that k3 = k1 + k2 and f3 = f1 + f2 where (k1, f1) and (k2, f2) are

the locations of strong resonances on the fast Alfvén branch below fLH . We also

note that the most dominant nonlinear spectral features above f = fLH move to

increasingly high values of normalised k as density increases.

If the spectrally dense regions with co-ordinates (k3, f3) above fLH are indeed

the result of wave-wave coupling between modes below fLH , this should be borne
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out by bicoherence analysis of the simulated field component Bz. The corresponding

bicoherence plot for each simulation is shown in the upper panels in Fig. 4.14. These

plots show clearly defined sets of (k1, k2) pairs which have strong coupling, the most

striking of which are near the k1 = k2 (and hence f1 = f2) boundary. These are

modes close to each other in k space on the fast Alfvén branch. If we pick a region

of strong coupling near the k1 = k2 boundary for the upper leftmost panel, say

k1 ≈ 15fcp/VA and k2 ≈ 18fcp/VA, and read off the corresponding f1 ≈ 12fcp and

f2 ≈ 14fcp, then we should be able to see a spectrally dense region at k3 ≈ 33fcp/VA

and f3 ≈ 26fcp in the lower leftmost plot above the f = fLH line. This is indeed

the case, and a similar correspondence is seen across all panels of Fig. 4.14.

Bicoherence analysis of both experimental data (Fig. 4.13) and simulation

outputs (Fig. 4.14) thus demonstrates strong coupling between modes near the

f1 = f2 boundary below fLH . This supports our conjecture that nonlinear coupling

is responsible for the faint spectral “ghost” feature in Fig. 4.1, since this is also

captured by our simulations. This lends further credence to our interpretation in

Ref. [Chapman et al., 2017] that the downward ICE chirping is due to declining lo-

cal plasma density, which is perhaps associated with the motion of an ELM filament.

4.3.2 Density dependence of downward chirping

Let us now investigate in greater depth the hypothesis that the local decline of den-

sity on submicrosecond timescales may be responsible for the downward chirping

characteristics of the “ghost” ICE feature in Fig. 4.1. Due to the abundance of

waves in the simulation there are many spectrally dense regions with f > fLH in

Fig. 4.14. Accordingly, we adapt and extend the technique which was previously

applied in Ref. [Chapman et al., 2017] to ICE chirping at frequencies less than fLH

in KSTAR. Key to this approach is analysis of the spectral properties of multiple

PIC simulations, each of which is run into the nonlinear regime of the MCI at dif-

ferent, fixed, neighbouring values of ne.

1. Using the experimental bicoherence plot (Fig. 4.13) along with the experi-

mental spectrogram (Fig. 4.12), we identify spectral features “f1” and “f2”

with f < fLH , that are able to combine to produce the faint spectral features

“f3” with f > fLH .

2. The simulation with number density ne, which in Sec. 4.1 was found to give

rise to strong spectral features with frequencies f1 and f2, see the left panel
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of Fig. 4.16, is examined. In cases where f1 and f2 are present across a range

of ne values, the procedure is repeated for each simulation.

3. From this simulation, the range of values of k1 and k2 corresponding to f1 and

f2 is selected. We refer to a range of values because of the finite resolution of

the simulation in both wavevector and frequency space.

4. This range of k1 and k2 then defines the minimum and maximum values of k3

which correspond to the f3 observed in Fig. 4.12.

5. The spectral power as a function of frequency shown in a given vertical strip in

the lower right panel of Fig. 4.16 is then obtained by integrating and averaging

between the minimum and maximum possible values of k3.

6. As there is a one-to-one mapping between k1 and f1, and between k2 and f2,

there is an approximate one-to-one mapping between k3 and f3. Therefore the

spectral power in k3 corresponds to the power in the vicinity of f3.

Fig. 4.4 is reproduced here as the left set of panels in Fig. 4.16. In the

lower panels of Fig. 4.16, the spectral power in the output of multiple simulations

is plotted as a function of frequency and ne, and compared with the experimental

RF spectrum (upper left panel). If the faint chirping features in Fig. 4.12 are a

result of wave-wave interactions between modes with f < fLH , driven by the MCI

at different densities, we expect the spectral power of the newly formed modes with

f > fLH to exhibit a similar dependence on frequency and electron number density.

To this end, the power in these modes for each simulation has been calculated, and

the results are shown in the right panels of Fig. 4.16. The procedure is as follows:

The lower left and lower right panels in Fig. 4.16 have much in common.

First, in each case the dominant spectral features of the simulations chirp down in

frequency as electron number density decreases. Second, the density values over

which this occurs declines from the pre-crash pedestal density to much smaller val-

ues, in both cases.

4.4 Steady state deuterium NBI ICE

In addition to the proton chirping ICE during KSTAR ELM crashes discussed in

this chapter, “steady state” ICE consisting of spectral lines at multiple harmonics

of the deuteron ion cyclotron frequency at the outer midplane edge pedestal of the

KSTAR plasma, at times ∼ 10µs to 100µs before the ELM crash, are also observed

on KSTAR. These two phases can be seen in Fig. 4.17, which has been adapted
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Figure 4.16: Left panels: reproduction of Fig. 4.4. Right, top panel: expanded view
of the upper region of Fig. 4.12 in which f ≥ fLH . Right, lower panels: chirping is
apparent in frequency versus number density plots for the nonlinear stage of MCI
simulations. Shading indicates the log10 of the spectral power in the fluctuating
part of the Bz field component of each simulation.

from Fig. 2 of [Kim et al., 2018]. Time intervals A and B broadly correspond to the

steady state phase, and C and D to chirping phase.

Here we turn to the phenomenon of ICE spectra from KSTAR that are

characterised by deuteron, as distinct from proton, cyclotron harmonic structure.

In the two KSTAR deuterium plasmas that we consider, beams of 80keV to 100keV

deuterons were injected tangentially with NBI heating power in the range 2.8MW

to 3.8MW. Detailed calculations of NBI ion losses suggest that some of these NBI

deuterons can remain confined on trapped orbits [Kim et al., 2016]. We therefore

investigate whether this small subset of NBI deuterons can give rise to ICE via the

MCI in the outer midplane edge plasma. In particular we study the fast collective

relaxation of these NBI deuterons by means of a direct numerical kinetic treatment

using the EPOCH PIC code. The velocity-space distribution of the energetic ions is

initialised as a ring-beam distribution, and in these computations, we consider only

perpendicular spatial propagation
(
k‖ = 0

)
, so that the distribution of the parallel

velocity v‖ is immaterial and can be simplified to a delta function.
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Figure 4.17: Upper panel: 200MHz RF (black) and Dα (red) signals around the
ELM crash during KSTAR plasma 16176. Lower panel: Temporal evolution of ICE
amplitude during an ELM crash in KSTAR plasma 16176. Time t = 0 denotes the
time at which the first derivative of the RF signal is almost discontinuous, which co-
incides with the peak in the RF signal, the bursting phase [Kim et al., 2018]. During
windows A and B, the ICE signal shows spectral peaks at successive harmonics of
the deuterium cyclotron frequency. The ICE signal during windows C and D shows
more complex burst phenomena, which are discussed in Refs. [Thatipamula et al.,
2016; Kim et al., 2018; Chapman et al., 2017, 2018].
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4.4.1 Identifying NBI deuterons in KSTAR that could relax via

the MCI

In order to carry out direct numerical simulations using the PIC self-consistent

kinetic approach, it is first necessary to identify a population of NBI deuterons

that could give rise to ICE at the outer midplane edge. To inform this search,

we first calculate analytical linear growth rates of the MCI given by Eq. 8 of

Ref. [McClements et al., 1996] across a range of NBI injection energies and pitch

angles φ = arcsin (v⊥/|v|). When calculating the analytical linear growth rates

using this equation, it is necessary to use an angle of wave propagation that is not

strictly perpendicular to the magnetic field, and we select θ = 89◦. This very closely

resembles our simulation set-up for the v‖ � v⊥ cases considered in this paper, as

the Doppler shift due to the finite parallel wave-number k‖ is minimal. The results

are shown as a contour plot in Fig. 4.18. The colour scale represents the log10 of the

growth rate of the fastest growing mode in both wavevector and frequency space.

We see that NBI deuterons with higher energy and pitch angle have the stronger

growth rates. This is expected, since previous studies show that the MCI is more

readily excited for v⊥/vA ∼ 1, where vA is the local Alfvén speed; and, of course,

v⊥ increases with both energy and pitch angle.

We now calculate orbits for deuterons with an energy of 100keV and large

initial pitch angles. The choice of 100keV reflects the initial energy of KSTAR NBI

deuterons. If this energy is primarily perpendicular, it corresponds to v⊥/vA ∼ 0.68

in the KSTAR outer midpane edge plasma. This choice is also helpful from a

computational physics perspective: previous PIC and PIC-hybrid simulations have

shown that a value of v⊥/vA close to unity allows excitation of the MCI in a feasible

amount of computational time, while maintaining high signal-to-noise ratios. The

deuteron orbit calculations are carried out using the CUEBIT test particle code

[Hamilton et al., 2003]. Defining poloidal flux ψ such that the poloidal magnetic field

is equal to ∇ψ ×∇ϕ, where ϕ is toroidal angle in (R,ϕ,Z) cylindrical coordinates,

we set ψ according to the Solov’ev solution given in Eq. 1.21 of Sec. 1.3.2. This

is applicable to a plasma in which the pressure depends linearly on ψ, and RBϕ is

uniform, Bϕ being the toroidal magnetic field.

ψ = ψ0

[
γ

8

{
(R2 −R2

0)2 −R4
b

}
+

1− γ
2

R2Z2

]
. (4.1)

We use the following parameters to approximate typical KSTAR equilibria:

R0 = 1.8 m, Rb = 1.31 m, γ = 0.7, and ψ0 = 0.36 Tm−2. Motivated by experiment

[Kim et al., 2018], we first set B0 = 1.8T.

77



We initialise particles near the core with a range of pitch angles, and find

that some of these lead to orbits that traverse the edge region while remaining

confined. The results of some of these calculations are shown in Fig. 4.19. Each

panel represents a different initial pitch angle, and is accompanied by an enlarged

plot of the edge region. By matching deuteron cyclotron harmonic ICE spectral peak

frequencies to the known spatial dependence of magnetic field strength in KSTAR,

we know that the emitting region is at R = 2.21 ± 0.023m [Kim et al., 2018]. We

therefore discard orbits that do not reach this far out in radius, in addition to orbits

that cross the plasma boundary. In principle not all of the fast ions that cross the

plasma boundary will impact on the first wall, and some will remain ionised in the

plasma. While such particles could contribute in part to the ICE drive, they are

likely to be much less abundant than particles within the plasma boundary, and

as such are excluded in this initial study. We find that an initial pitch angle of 80

degrees results in an orbit that crosses the plasma boundary, while an initial pitch

angle of 84 degrees results in an orbit which does not traverse the location of ICE

emission. Initial pitch angles between these two values result in orbits that are both

within the plasma boundary, and traverse the ICE emitting region for the given

values of NBI injection energy and magnetic field. We also consider B0 = 2.27T,

for which KSTAR deuterium ICE was also observed [Thatipamula et al., 2016], and

arrive at similar conclusions: only NBI deuterons with energy close to the injection

energy and within a narrow range of high pitch angles, are capable of driving the

MCI. Now that we have isolated the subset of NBI deuterons that is in principle

capable of driving the observed ICE at deuterium harmonics, in the following section

we simulate their relaxation using the EPOCH PIC code and analyse the outputs.

4.4.2 Comparison between kinetic simulations and experiment

We have carried out three PIC simulations with parameters corresponding to two

KSTAR plasmas that exhibit deuterium ICE leading up to the ELM crash. These

simulations use an initially uniform electron number density ne = 2.5 × 1019m−3,

corresponding to the density at the top of the edge pedestal before the ELM crash, as

inferred from Thompson scattering measurements [Thatipamula et al., 2016]. This

value of ne was the upper bound of the multiple simulations at different fixed density

that were used previously [Chapman et al., 2017, 2018] to show that the frequency

chirping of KSTAR proton ICE is due to the density collapse. Our simulations

use 2,000 particles per cell, with over 50,000 cells so as to adequately resolve the

Debye length λD. This means the simulations evolve the dynamics of over 108

computational particles with physically correct electron-to-ion mass ratios. Each
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Figure 4.18: Contour plot displaying the analytical linear MCI growth rate of
the fastest growing mode as a function of pitch angle and particle energy, using
a log10 colour scale. Motivated by experimental observations, these calculations
are restricted to frequencies below the 30th deuteron cyclotron harmonic. The
linear MCI growth rate is exponentially strongest for pitch angles in the range
78◦ < φ < 85◦. For a given pitch angle, the linear MCI is strongest at higher NBI
deuteron energy; the strength of this dependence increases with pitch angle. The
range of pitch angles displayed reflects the range for which the CUEBIT test particle
code predicts orbits which are within the plasma boundary and traverse the ICE
emitting region, see also Fig. 4.19.

simulation lasts 10 deuteron gyro-periods τcD, by which time the instability is well

into its nonlinear saturated regime, which is crucial for comparison with experiment

[Cook et al., 2013; Carbajal et al., 2014; Chapman et al., 2018]. The temperatures

of the initially Maxwellian background thermal deuterons and electrons are set to

1keV. The beam deuterons are initialised with a pitch angle of 72.4◦; this is a value

in the edge region which corresponds to a core value within the range 80◦ < φ < 84◦

identified by the CUEBIT orbit calculations in the preceding section. We denote

the bulk and beam deuteron number densities by nD and nNBI respectively, and

the fast ion concentration by ξ = nNBI/nD.
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a) b)

c) d)

Figure 4.19: Poloidal projection of 100keV NBI deuteron orbits calculated using
the CUEBIT test particle code using a Solov’ev approximation to a typical KSTAR
equilibrium. Particle orbits are initialised near the core for four different pitch
angles within the range 80◦ ≤ φ ≤ 84◦. Plots of full orbits are labelled a)-d) with
corresponding insets to the right of each panel. Panels a), b), c), and d) show orbits
with initial pitch angles of 80◦, 81◦, 83◦, and 84◦ respectively.

Figure 4.20 shows the time evolution of the different particle and field contri-

butions to the energy density in a PIC simulation with ξ = 10−3 and B0z = 1.44T;

this value corresponds to the magnetic field in the ICE emitting region of a KSTAR

plasma which has central B0 = 1.8T. The energy transfer between particles and

fields qualitatively resembles that of previous work [Cook et al., 2013; Carbajal

et al., 2014], with the minority NBI deuterons transferring their energy to the bulk

plasma and to the fields on timescales of the order of several ion gyro-periods. It

is interesting to note that the energy density of the electrostatic component of the

fields excited by the simulation is slightly larger than that of the electromagnetic

component. This approximate equipartition of energy is common when the speed
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of the minority ions is significantly less than vA [Reman et al., 2016; Dendy et al.,

2017]. Confident that the energy transfer resembles that which is characteristic

of the MCI, we now run two more simulations with ξ = 10−2. This concentra-

tion is unrealistically large compared to that expected in KSTAR, and leads to an

unrealistically short saturation time, but is necessary computationally in order to

obtain reasonable signal-to-noise ratios. This choice is not expected to affect our

conclusions, because the simulated ICE power due to the MCI has been found to

scale linearly with fast particle concentration [Carbajal et al., 2017]. Increasing ξ

in the simulations thus acts to shift the simulated signal above the noise, but with

no significant consequences for the underlying physics. Even with this choice of ξ,

the noise level for the higher, experimentally relevant, cyclotron harmonic spectral

peaks that are excited in the PIC simulations still poses a challenge; this we address

by using an unusually high number of computational particles. To provide a base-

line which quantifies the effect of the noise, we have run two additional simulations

which correspond to a thermal background plasma without the minority energetic

NBI deuterons. These “background” simulations have parameter sets which are

otherwise identical to their MCI counterparts, and give rise to the green traces in

Fig. 4.22 below. The residual spectral structure in the green traces reflects the con-

centration of noise energy at normal modes in line with the fluctuation-dissipation

theorem [Birdsall and Langdon, 1985].

Figure 4.21 shows the distribution of energy in the fluctuating z-component

of the magnetic field, ∆Bz, across frequency-wavenumber space, obtained from a

simulation identical to that of Fig. 4.20, except for the larger value of ξ = 10−2.

This plot is a spatio-temporal Fourier transform of ∆Bz over the intervals 0 ≤
x ≤ 50, 000λD and 0 ≤ t ≤ 5τcD. The vertical axis of Fig. 4.21 is normalised

to the deuteron cyclotron frequency fcD, while the horizontal axis is normalised to

fcD/VA, where VA is the Alfvén speed. The solid blue diagonal line denotes the

initial velocity of the minority NBI deuterons, and the ratio of the perpendicular

component of the NBI deuteron velocity to the Alfvén speed is ∼ 0.66. This sub-

Alfvénic value highlights a computational challenge associated with resolving the

high harmonics that are excited by the MCI.

The phase velocity of the fast Alfvén wave is significantly greater than the

perpendicular velocity of the minority NBI deuterons vNBI , which is plotted as a

blue diagonal line in Fig. 4.21. For a given perpendicular wave-number k⊥, this

causes a divergence between the value of ω = l (2πfcD) ≈ k⊥VA and the closest

value of k⊥vNBI . The size of this divergence increases with harmonic number l. It

follows that the phase velocity of MCI-excited waves with high wavenumbers, and
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hence high frequency, is further from that of the fast Alfvén wave than it is for

low frequency MCI excited waves; in consequence, they have much lower growth

rates. The spectral power is greatest at locations in (ω, k) space where the deuteron

cyclotron harmonic waves intersect the fast Alfvén wave, and these are visible at

lower harmonics in Fig. 4.21. At higher wavenumbers and frequency, this effect is

less striking, but can be distinguished from the background noise.

The spatiotemporal Fourier transform shown in Fig. 4.21 has been integrated

across the domain k > 0 to obtain the power spectrum as a function of frequency.

This spectrum is show as the blue trace in Fig. 4.22 (c). Its counterpart from a

simulation with Bz = 1.84T which corresponds to a KSTAR plasma with central

magnetic field B0 = 2.27T, is show in Fig. 4.22 (d). These power spectra consti-

tute the PIC simulation counterparts of the experimentally measured ICE spectra.

Panel (a) of Fig 4.22 displays the power spectrum of the experimental counterpart

to the PIC simulation which gives rise to panel (c): KSTAR plasma 16176, in which

the spacing between deuteron cyclotron harmonics fcD ∼ 11.1MHz. In all panels,

the vertical axis is plotted on a log10 scale while the horizontal axis is normalised

to the deuteron cyclotron frequency. We see that the deuteron cyclotron harmonic

ICE spectral peaks observed in the KSTAR plasmas are all excited by the collective

relaxation of the energetic deuteron population in the PIC simulations. Across all

deuteron harmonics the intensity of the MCI-excited waves (blue traces) is one or

two orders of magnitude higher than that of the thermal plasma noise (green traces).

It can be seen that the spectral peaks in the simulations are less well resolved in

frequency than in the experimentally measured signal. This is because the insta-

bility in the simulation reaches saturation so rapidly, owing to the unrealistically

large value of ξ which is necessary to achieve a sufficient signal-to-noise ratio. It is

encouraging to see the broadening and diminishing amplitude, of spectral peaks at

l & 21 in both experiment and simulation.

Panels (b) and (d) of Fig. 4.22 show similar traces corresponding to KSTAR

plasma 11474 with central magnetic field B0 = 2.27T and corresponding fcD ∼
14.0MHz at the outer midplane edge. The agreement between PIC simulation out-

puts and the measured experimental ICE spectrum is good for harmonics l & 11.

However several spectral peaks with l < 11 are present in the simulation but are

not observed in the experiment. We consider that these peaks may well have been

excited, but were not detectable because the antenna used to measure the RF data

whose power spectrum is plotted in panel (a) of Fig. 4.22 was a spiral antenna,

optimised for circularly polarised waves. A different, Bowtie antenna, optimised for

linearly polarised waves, was used for KSTAR plasma 11474, corresponding to panel
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Figure 4.20: Time evolution of the change in energy density of particles and electric
and magnetic fields as a function of time, from a PIC simulation with ξ = 10−3. The
traces, ordered from top to bottom at their peak (and in colour online) are: Top
(red) the change in kinetic energy density of the thermal bulk plasma deuterons; sec-
ond (black) change in energy density of the electrons; third (blue) the energy density
of the electrostatic field Ex; fourth (green) the energy density of the magnetic field
perturbation ∆Bz; fifth (cyan) the change in kinetic energy density of the minority
energetic NBI deuterons. Time is normalised to the deuteron gyro period. The pri-
mary energy flow from the NBI deuterons is to the thermal deuterons, whose kinetic
oscillation helps support the field oscillations excited by the MCI. These field oscil-
lations include, with comparable magnitude, an electromagnetic component (∆Bz)

2

and an electrostatic component E2
x. The electrostatic component involves electron

kinetics which are fully captured in our PIC model. The MCI saturates within five
deuteron gyroperiods. The initial energy densities of the Ex field component and
the fluctuating ∆Bz field component are both zero; while the initial energy den-
sities of the electrons, thermal deuterons, and NBI deuterons are ∼ 6 × 103Jm−3,
∼ 6× 103Jm−3, and ∼ 360Jm−3 respectively.

(b) of Fig. 4.22. The S11 return loss [Bird, 2009] of these two antennas is plotted in

Fig. 4.23. For frequencies less than 150MHz (l < 11), the return loss of the Bowtie

antenna is close to 0dB. This implies a high degree of reflectivity for an incoming

signal, which would therefore be undetectable. Combined with the linear or circular

optimisations of the two antenna polarisations, this offers a likely explanation of

83



0 5 10 15 20 25 30

Wavenumber [ωcD/VA]

0

5

10

15

20

25
Fr

e
q
u
e
n
cy

 [
ω
cD

]

10-4

10-3

10-2

10-1

100

101

102

Figure 4.21: Distribution of energy in the fluctuating z-component of the magnetic
field ∆Bz across frequency-wavenumber space from a PIC simulation with ξ = 10−2,
Te = TD = 1keV, B0z = 1.44T, ne = 2.5 × 1019m−3, and a 100keV minority NBI
deuteron population. This plot is a spatio-temporal Fourier transform of the Bz field
over the intervals spanning 0 ≤ x ≤ 50, 000λD and 0 ≤ t ≤ 5τcD. Shading indicates
the log10 of the spectral density of the oscillatory part ∆Bz of the Bz field component
in frequency-wavenumber space. The sweep of the fast Alfvén wave from bottom
left to top right is intersected by cyclotron harmonic waves at successive deuteron
harmonics. The phase velocity of the fast Alfvén wave ' vA, and this exceeds the
speed vNBI of the NBI deuterons which is plotted as a blue diagonal line. Wave
excitation is strongest in the wedge between vA and vNBI , and in particular where
cyclotron harmonic waves intersect the fast Alfvén wave. Simulated ICE frequency
spectra, such as the lower panels of Fig. 4.22, are obtained by integrating plots such
as Fig. 4.21 over wavenumber.

the mismatch between experimental and simulation spectral peaks at low harmonic

numbers seen in panels (b) and (d) of Fig. 4.22.
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Figure 4.22: Panels (a) and (b): measured spectral intensity of the ICE signal
from KSTAR deuterium plasmas with 100keV deuteron NBI heating: (a) [Kim
et al., 2018] plasma 16176 with B0 = 1.84T, (b) [Thatipamula et al., 2016] plasma
11474 with B0 = 2.27T. In both panels the FFT was performed using data from t =
−150µs to t = −100µs relative to t0 (see, for example, Fig. 4.17). Panels (c) and (d):
Blue traces are outputs of PIC simulations of the spectral intensity of the fluctuating
Bz field energy density, resulting from relaxation of a minority 100keV deuteron ring-
beam population in thermal deuterium plasma. The simulation parameters of (c)
and (d) map to (a) and (b) respectively, corresponding to the local ICE-emitting
plasma in the two KSTAR experiments: ne = 2.5 × 1019m−3, Te = TD = 1keV.
Green traces provide a noise baseline for the blue traces. They are obtained from
the thermal plasma without a ring-beam, so that any spectral structure arises from
the fluctuation-dissipation theorem and identifies normal modes.

4.5 Conclusions

We have shown that harmonic ICE with spacing equal to fcp in KSTAR deuterium

plasmas can be driven by a small subset of the fusion-born proton population origi-

nating in the core of the plasma. The drift orbits of these protons have large radial

excursions to the outer midplane edge. We have compared the nonlinearly saturated

field spectra obtained from multiple MCI simulations at different plasma densities
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Figure 4.23: The return loss (S11) as a function of frequency of the Spiral (blue)
and Bowtie (red) antennas used for the detection of signals in panels (a) and (b)
respectively. The y-axis denotes the return loss and is on a log scale. For frequencies
less than 150MHz, the return loss of the Bowtie antenna is close to 0dB, offering
a likely explanation of the mismatch between experimental and simulation spectral
peaks at low harmonic number (l ≤ 11) seen in panels (b) and (d) of Fig. 4.22.

with experimentally observed time evolving ICE spectra. These results suggest that

downward chirping of ICE occurs when the emitting fusion-born protons ions are

embedded in a local plasma with rapidly falling density. These results also show

that the much rarer upward chirping of ICE occurs when the local density is rapidly

rising. By combining different simulation spectra with the chirping ICE observed

during KSTAR ELM crashes, we have obtained sub-microsecond time resolution

measurements of the evolving electron number density in the emitting region. We

conjecture that the time-evolution of the electron number density on such rapid

timescales in this region results from the motion of an ELM filament; for a detailed

account of the experimental set-up and the detection of chirping ICE in conjunction

with ELM filaments, see Refs. [Thatipamula et al., 2016; Kim et al., 2018].

The “ghost” ICE feature in Fig. 4.12 is a real plasma physics phenomenon.

Its existence is due to a combination of energetic particle physics with linear and

nonlinear wave physics, which is so far observed only in KSTAR tokamak plasmas.

Here we have shown that the separate, fainter (“ghost”) chirping ICE feature ob-

served in the frequency range 500 MHz (20fcp) to 900 MHz (36fcp) is driven by

nonlinear wave coupling between different neighbouring cyclotron harmonic peaks

in the main ICE feature below 500 MHz. This is evident from bispectral analy-

sis of: first, the measured KSTAR fields, where we benefit from exceptionally high

(up to 20 GS s−1) sampling rates; and second, field amplitudes output from first
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principles particle-in-cell code simulations of the KSTAR fusion-born proton relax-

ation scenario. This reinforces the MCI interpretation of chirping proton ICE in

KSTAR. It also provides a novel demonstration of nonlinear wave coupling on very

fast timescales in a tokamak plasma.

By combining the linear analytical theory of the MCI, energetic particle or-

bit studies, and first principles PIC simulations, we have been able to provide an

explanation for the origin of steady-state ICE at multiple deuterium cyclotron har-

monics, which is observed in KSTAR deuterium plasmas heated by deuteron NBI.

We first identified a small subset of the NBI deuteron population that could be

responsible for the emission. This was done by performing test particle calculations

for deuterons with a range of NBI-relevant energies and pitch angles. We identi-

fied those that are confined, pass through the outer midplane edge region where

the ICE originates, and have the largest analytical MCI growth rates. We then

carried out two high resolution PIC simulations with parameters corresponding to

the ICE emitting region at the outer mid-plane edge of two KSTAR plasmas. The

initial velocity distributions of the kinetic thermal deuterons and electrons in these

PIC simulations is Maxwellian. In addition, there is an initial minority energetic

deuteron population, whose velocity distribution reflects NBI parameters and our

orbit studies. The collective relaxation of the NBI deuteron population in these

two PIC simulations generates electric and magnetic field oscillations whose power

spectra substantially resemble the measured ICE spectra. Some low harmonic peaks

in one simulation frequency spectrum were not detected in its experimental coun-

terpart. A probable explanation for this is that the S11 return loss of the Bowtie

antenna used to measure this RF signal was close to 0dB, implying very high reflec-

tivity in this low frequency range.

We have now explained the main features of two distinct types of ICE from

KSTAR plasmas: steady-state ICE due to NBI deuterons; and highly dynamic chirp-

ing ICE due to fusion-born protons. We note that upward and downward chirping

ICE with spacing fcD has been observed in Refs. [Thatipamula et al., 2016; Kim

et al., 2018], and this is a phenomenon under investigation.

This work opens unexpected lines of research linking fusion-born ion physics

with ELM crashes in medium size tokamaks such as KSTAR, which generated the

ICE observations studied here. It also provides a new, very high time resolution,

method of quantifying the experimental phenomenology. The discovery that one can
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investigate collective fusion-born ion physics in medium size tokamaks, the connec-

tion to ELM phenomenology, and the high time resolution, are all new. Because of

the relatively wide access that exists to medium-size tokamaks worldwide, combined

with the centrality of fusion reactivity and ELMs to tokamak plasma physics, wider

exploitation of these results should be possible. The successful interpretation of this

unexpected phenomenon spontaneously driven by fusion-born ions, helps establish

interpretive capability for ICE from future deuterium-tritium plasmas in JET and

ITER. Modelling of the plasma physics underlying ICE signals yields information

on two key features of the ICE-emitting energetic ion population. First, the values

of key parameters, notably the ratio of the characteristic perpendicular velocity of

the energetic ions to the local Alfvén speed. This needs to be of order unity. Second,

the structure of the distribution of the energetic ions in velocity space, which needs

to be strongly non-Maxwellian in order to excite the MCI which underlies ICE. A

drifting ring distribution, i.e., the product of two delta-functions in parallel and per-

pendicular velocity, has been found to be the best few-parameter way of capturing

this structure for ICE applications. This approximation has proven fruitful across

more than two decades, spanning ICE measurements from deuterium-tritium plas-

mas in JET [Cottrell and Dendy, 1988] and TFTR [Cauffman et al., 1995] during

the mid-1990s to the most recent measurements reported from ASDEX-Upgrade in

2014 [D’Inca, 2014] and JT-60U in 2017 [Sumida et al., 2017, 2018]. The new results

presented here confirm the fidelity of the output of first principles PIC simulations

in relation to measured ICE signals, alongside the validity of the model for ICE that

is implemented in the PIC code. The agreement between the bispectral analysis of

the simulation outputs and the observations of an unexpected, strongly nonlinear,

transient ICE feature provides fresh validation of the ICE model, in a challenging

regime. The ICE physics addressed here would have gone unnoticed had it not been

for KSTAR’s sophisticated RF system and high speed digitizer [Leem et al., 2012].

Their uniquely high time resolution has yielded new insights into the dynamics of

ELMs, energetic ions, and wave phenomena in tokamak plasmas. The present re-

sults further strengthen the case for the use of ICE as a diagnostic [McClements

et al., 2015; Dendy and McClements, 2015; Gorelenkov, 2016] on ITER [Hawryluk

et al., 2009; Kessel et al., 2009], from both an operational and a fundamental physics

perspective.
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Chapter 5

Simulations of ICE in JET and

ASDEX Upgrade

In this chapter we discuss simulations of the MCI relevant to two tokamaks. Firstly,

we consider recent JET results [Jacquet et al., 2011; McClements et al., 2018] in

which ICRF ICE was detected at the edge region of the plasma corresponding to

the first harmonic of ionized 3He. We then discuss the possibility of the MCI being

the driving mechanism behind the core ICE reported in Ref. [Ochoukov et al.,

2018], in which emission was observed at the fundamental proton/second deuterium

harmonic.

5.1 JET

In Refs. [Jacquet et al., 2011; McClements et al., 2018], measurements of ICE in

JET plasmas heated by waves in the ion cyclotron range of frequencies were re-

ported. Hydrogen was the majority ion species in all of the plasma pulses and the

measurements were obtained using ICRF antennas. In most cases the energetic

ions can be clearly identified as ICRF wave-accelerated minority 3He ions, and orbit

calculations using the CUEBIT code [Hamilton et al., 2003] support the hypoth-

esis that the observed emission at the fundamental 3He cyclotron harmonic was

produced by energetic 3He ions undergoing drift orbit excursions to the outer mid-

plane plasma edge. In this section we perform multiple simulations using plasma

parameters corresponding to edge plasma conditions in these JET pulses, and en-

ergetic particle parameters inferred from the cyclotron resonance location. In all of

the following simulations, the temperature of the background protons and electrons

Tp = Te = 100eV, and the electron number density ne = 1 × 1019m−3, consistent
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with Thompson scattering measurements [McClements et al., 2018]. The magnetic

field is set to 1.995T consistent with experiment, and the minority ions are repre-

sented by a ring beam distribution with the ratio of minority 3He ions to majority

protons ξ = n3He/np = 10−3.

In Ref. [McClements et al., 2018], the parallel and perpendicular velocities

of the 2MeV minority 3He ions were calculated to be v‖ = 5 × 106ms−1 and v⊥ =

1 × 107ms−1 respectively. We first run three simulations to examine the effect

of a parallel velocity drift in the minority 3He distribution. One simulation uses

a wave propagation angle of θ = 90◦, and an initial parallel velocity v‖0 = 0,

as the parallel velocity is not expected to play a role for strictly perpendicular

propagation. The other two simulations use θ = 89◦, one with v‖0 = 0, and another

with v‖0 = 5×106ms−1. In all three of these simulations, and subsequent simulations

in this section, the initial perpendicular velocity of the minority 3He ions is set to

v⊥0 = 1× 107ms−1. These three simulations use 70,000 grid cells each resolving the

Debye length and with the number of particles per cell set to 100. The simulations

were run for 9 He3 gyro periods τgHe3 , well into the nonlinear regime. Only the

first six minority 3He gyroperiods of the simulation are shown in the following plots

of energy density as a function of time. Beyond 6τgHe3 , there is little change in

the energy transfer, but the extended data set allows for a larger Fourier transform

window and hence better resolved power spectra and dispersion relations.

Figure 5.1 plots the change in energy density of two simulations with θ = 90◦

on the left, and θ = 89◦ on the right. In both panels, we see the characteristic MCI

energy exchange between the minority 3He ions, the background plasma, and the

electromagnetic fields. The linear stage of the MCI instability saturates quickly at

around 3τgHe3 , with the θ = 90◦ simulation taking slightly longer to reach linear

saturation. In the linear stage, the amount of energy transfer for the minority ions

to the majority ions is larger in the θ = 90◦ than in the θ = 89◦. In the nonlinear

stage of the simulation, the amount of re-energisation [Carbajal et al., 2014] of the

minority ions is noticeably less for θ = 89◦ than in the θ = 90◦ simulation, which

may influence the character of the nonlinearly driven spectral features present in

the simulations.
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Figure 5.1: Left: time evolution of the change in energy density of particles and
electric and magnetic fields as a function of time for a PIC simulation of the MCI
with JET like plasma parameters and a wave propagation angle of θ = 90◦. Right:
as left but using θ = 89◦. In both cases the parallel component of the 3He ring beam
velocity v‖0 is set to 0 and time is normalised to the 3He gyro-period.

The dispersion relation of the z-component of the magnetic field in these

simulations is plotted in Fig. 5.2 and the spectral intensity as a function of fre-

quency is plotted in Fig. 5.3. The temporal Fourier transform is calculated between

0τgHe3 ≤ t ≤ 9τgHe3 , well into the nonlinear regime. The spatial Fourier transform

is calculated across the entire simulation domain. The dispersion relation of the two

simulations look very similar, a noticeable feature being the strong low frequency

nonlinear feature below the third cyclotron harmonic spanning full range of dis-

played wavevectors. In the right panel of Fig. 5.2, this low frequency feature has

a strong resonance with the third harmonic. Fig. 5.3 shows that the fundamental

harmonic is excited in both cases, consistent with experimental observations. Both

panels also show excitation of harmonics above the fundamental, but the low l har-

monics are sharper in the left panel, while the high l harmonics are sharper in the

right panel. The right panel of Fig. 5.3 shows a more intense third harmonic than

that of the left panel, which is due to the aforementioned resonance shown in the

right panel of Fig. 5.2.

Figure 5.4 compares the time evolution of the energy density between the

two θ = 89◦ simulations. The left panel is from a simulation with v‖0 = 0, while the

right panel is from a simulation with v‖0 = 5 × 106ms−1. The right panel with a

finite minority ion parallel velocity reaches linear saturation slightly later than the

v‖0 = 0 simulation. The only other noticeable difference is the degree of oscillation

between the fields and particles, with the right panel being less oscillatory than the
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Figure 5.2: Distribution of energy in the Bz field component across frequency-
wavenumber space. Shading indicates the log10 of the spectral density. The temporal
Fourier transform is calculated between 0τgHe3 ≤ t ≤ 9τgHe3 , while the spatial
Fourier transform is calculated across the entire simulation domain. The vertical axis
is normalised to the 3He cyclotron frequency while the horizontal axis is normalised
to the 3He cyclotron frequency divided by the Alfvén speed. Left: θ = 90◦. Right:
θ = 89◦.
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Figure 5.3: Spectral intensity of the Bz field component of the MCI simulation
using a temporal Fourier transform window spanning data from 0τgp ≤ t ≤ 9τgp.
The vertical axis is on a log10 scale while the horizontal axis is normalised to the
3He cyclotron frequency. Left: θ = 90◦. Right: θ = 89◦.

left, but the overall levels of energy transfer are almost identical at all points in

the simulation. The dispersion relations corresponding to these two simulations are

shown in Fig. 5.5, and the power spectrum using data Fourier transformed between

0τgp ≤ t ≤ 9τgp is shown in Fig. 5.6. We can see from the right panel of Fig. 5.6

that the spectral structure is slightly clearer than that of its v‖0 = 0 counterpart,
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and overall the intensity of the instability is reduced, with the exception of the l = 3

and l = 8 harmonics.
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Figure 5.4: Left: time evolution of the change in energy density of particles and
electric and magnetic fields as a function of time for a PIC simulation of the MCI
with JET like plasma parameters and θ = 89◦. The parallel component of the ring
beam velocity v‖0 = 0 and time is normalised to the 3He gyro-period. Right: as left
except v‖0 = 5× 106ms−1.
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Figure 5.5: Spectral intensity of the Bz field component of the MCI simulation
with θ = 89◦ and using a temporal Fourier transform window spanning data from
0τgp ≤ t ≤ 9τgp. Left: the parallel component of the 3He ring beam velocity v‖0 = 0.
Right: v‖0 = 5× 106ms−1.
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Figure 5.6: Spectral intensity of the Bz field component of the MCI simulation
with θ = 89◦ and using a temporal Fourier transform window spanning data from
0τgp ≤ t ≤ 9τgp. The vertical axis is on a log10, scale while the horizontal axis is
normalised to the 3He cyclotron frequency. Left: the parallel component of the 3He
ring beam velocity v‖0 = 0. Right: v‖0 = 5× 106ms−1.

We now run four additional simulations with wave propagation angles of

90◦, 92◦, 94◦ and 96◦ with respect to the simulation domain, each with v‖0 = 0.

Due to the symmetrical nature of our ring-beam distribution for the minority ions

(and the Maxwellian distributions for the thermal species), results from simulations

using θ = 92◦, 94◦ and 96◦ are the same as those from simulations using θ = 88◦, 86◦

and 84◦ respectively. The simulation set-up is the same as the other simulations in

this section, apart from the number of particles per cell which has been increased

to 900, thus reducing the numerical noise levels in the simulations by a factor of√
900/100 = 3. The energy dynamics of these simulations are shown in Fig. 5.7,

in which panel a) is nearly identical to the simulation displayed in the left panel of

Fig. 5.1, differing only in the number of particles per cell. Reassuringly, panel a)

of Fig. 5.7 is qualitatively the same as the left panel of Fig. 5.1, with the linear

stage of the former lasting slightly longer than that of the latter, most likely due to

the reduced particle noise which acts to seed the initial linear growth. As the angle

of wave propagation θ increases to 92◦, the amount of energy transfer between the

minority ions and the background ions and fields decreases by ∼ 50%. Interestingly,

the majority of the energy transfer is to the x-component of the electric field, as

well as a large portion to the electrons, suggesting the instability is predominately

electrostatic in this regime. At θ = 94◦, the MCI is barely excited, if at all, with

almost all the energy from the minority ions going directly into the thermal electrons.

At θ = 96◦, the instability is most certainly not excited, the thermal electrons are
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gradually extracting all the energy from the minority ions.
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Figure 5.7: Time evolution of the change in energy density of particles and electric
and magnetic fields as a function of time for four PIC simulations of the MCI with
JET like plasma parameters. Panels a), b), c) and d) correspond to simulations
with wave propagation angles equal to 90◦, 92◦, 94◦ and 96◦ respectively. In each
panel the parallel component of the ring beam velocity v‖0 is set to 0 and time is
normalised to the 3He gyro-period.
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5.2 ASDEX Upgrade

As discussed in Sec. 1.4, a variety of ion cyclotron phenomena have been observed

in the ASDEX-Upgrade (AUG) tokamak, including FP ICE from both the core and

edge regions, NBI ICE, and ICRF ICE [D’Inca, 2014; Ochoukov et al., 2018, 2019].

In this section, we discuss the possibility of the MCI being the driving mechanism

behind the core ICE reported in Ref. [Ochoukov et al., 2018], in which emission was

observed at the fundamental proton/second deuterium harmonic. The only protons

in these pulses were those due to fusion reactions, while the energetic deuterons were

due to neutral beam injection (NBI). The Alfvén velocity in the core AUG plasma

was 5−6×106m−3, which, while below the proton birth velocity
(
2.4× 107ms−1

)
, is

a factor of two above the NBI deuteron velocity
(
2.4× 106ms−1

)
. Previous studies

have shown that ICE is more readily excited when the energetic ions are super-

Alfvénic. For this reason, it was concluded that the most likely driver of the ICE

emission is fusion-born protons. As discussed in previous sections, a key parameter

for MCI excitation is the ratio of the perpendicular component of the energetic ion

velocity v⊥0 to the local Alfvén velocity vA. Defining the perpendicular component

of the energetic proton velocity as v⊥0, if we assume equipartition of energy, we have

v⊥0 = 1.96 × 107ms−1. Using the upper bound of the estimate for vA in the core,

we have v⊥0/vA ∼ 3.26. Using this value of v⊥0, a PIC simulation of the MCI in

which the background plasma was that of a typical AUG plasma was carried out.

A thin spherical shell distribution was used for the energetic proton ions, as this

closely resembles the actual particle distribution in the experiment, that of freshly

born fusion ions in the core. After running the simulation for more than 120 proton

gyro-periods, the MCI was not excited and there was no energy transfer between any

of the particle species and fields. As discussed in chapters 2 and 3, PIC simulations

essentially approximate particle phase space by a series of delta functions in the

form of computational macro particles or “markers”. It seems reasonable to assume

that as ICE is observed in AUG experiments, and the distribution function of the

fusion-born protons in the simulations closely resembles that of the experiment,

ICE should be excited in the simulation, provided the phase space of the energetic

protons is adequately resolved. It is possible that by modelling the entire shell

distribution functions of energetic protons, we are resolving huge areas of phase

space with v⊥0/vA � 1 that do not contribute to the excitation of the MCI. To test

this, one could sample the areas of phase space with v⊥0/vA ∼ 1 to a given tolerance

using more computational macro particles, thereby more accurately representing the

energetic proton distribution function in this region of phase space.
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As a first approximation to this, we suppose that a thin spherical shell dis-

tribution can be approximated by multiple thin ring distributions which span the

perpendicular plane in velocity space, and are stacked on top of one another such

that their position in the stack denotes the parallel component of their velocity. If

we stack an infinite amount of these rings on top of one another, making their radius

infinitely small at the extrema of the stack, we recover our shell distribution. In the

discretised version of this picture, only a select few of these rings satisfy v⊥0/vA ∼ 1.

In this spirit, we have run another simulation of the MCI using the same AUG plasma

parameters, however, this simulation uses a ring beam distribution to represent the

minority energetic protons, with v⊥0 ' 7.58× 106ms−1, giving v⊥0/vA ∼ 1.16. The

simulation uses a background magnetic field Bz = 2.62T oriented at 89◦ to the

simulation domain. The parallel component of the energetic proton velocity v‖0 is

neglected as it does not contribute to the largely perpendicular wave propagation.

To aid with frequency resolution, a 10% perpendicular velocity spread is introduced.

This has the effect of decreasing the linear growth rate of linearly unstable modes,

resulting in a slightly longer simulation time and slightly better frequency resolu-

tion. The thermal plasma comprises deuterons and electrons, with temperature

TD = Te = 5keV. The electron number density ne = 3.8× 1019m−3, and the ratio of

energetic to background ions ξ = np/nD = 10−3. In the discharge considered here,

see Fig. 5 of Ref. [Ochoukov et al., 2018], only the fundamental proton cyclotron

harmonic at around fcp = 40MHz was observed as the frequency response rate of

the B-dot probe used in the ICE measurements is limited to 10−50MHz [Ochoukov

et al., 2015]. Resolving the fundamental harmonic in PIC simulations can be diffi-

cult, as the fundamental, along with other harmonics with l . 5, are often driven

exclusively by non-linear interactions among MCI excited modes with l > 5 [Car-

bajal et al., 2014; Carbajal, 2015]. In simulations of the MCI, this nonlinear drive,

while essential to understand the full extent of ICE in simulations and experiment, is

usually weaker than the linearly unstable modes in the simulation. This, combined

with the particle noise present in the low frequency region of PIC simulations, means

that the PIC simulation here must be incredibly well resolved. In this simulation,

a total of 38,000 grid cells and 4,000 particles per cell are used while resolving the

Debye length and using higher order particle weighting functions. The simulation

is run for 20 proton gyro-periods τgp, reaching linear saturation by t ≈ 10τgp. To

quantify the effect of particle noise, a companion simulation is performed without

the minority energetic protons.

As a first check, the energy transfer in the MCI simulation is plotted in Fig.

5.8. This looks very much like the “standard” ICE simulations shown in chapter
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3, the minority protons transfer their energy predominantly to the z-component of

the background magnetic field, as well as the thermal deuterons. The simulation

takes almost 10 gyro-periods to reach linear saturation, after which the nonlinear,

re-energisation stages takes over the dynamics [Carbajal et al., 2014; Carbajal, 2015].
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Figure 5.8: Time evolution of the change in energy density of particles and electric
and magnetic fields as a function of time. The traces, ordered from top to bottom
at their peak are: Top (red) the change in kinetic energy density of the thermal
bulk plasma deuterons; second (green) the energy density of the magnetic field
perturbation ∆Bz; third (blue) the energy density of the electrostatic field Ex; fourth
(magenta) the energy density of the magnetic field By; fifth (cyan) the change in
kinetic energy density of the minority energetic protons. Time is normalised to the
proton gyro-period. The MCI saturates within ten proton gyro-periods.

The power spectra of the Bz field component as a function of frequency ω

is shown in Fig. 5.9 and is plotted on a log10 scale. This plot is obtained by a

temporal Fourier transform of the first 10 gyro-periods of the simulation, so just

into the nonlinear phase, and integrating across the entire spatial domain. Here,

the blue trace denotes the power in the simulation of the MCI, while the green trace

denotes the power in the background thermal plasma. Energetic proton cyclotron
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harmonics are easily excited in the range 7 ≤ l ≤ 15, with the strongest harmonics

at l = 11 and l = 12 being more than five orders of magnitude more powerful

than the background plasma signal. Modes with l ≤ 6 appear to be linearly stable.

The Fourier power as a function of time t and the wavevector k is plotted in Fig.

5.10. For (approximately) perpendicular wave propagation in the ion cyclotron

range of frequencies, we benefit from an approximately one-to-one mapping between

wavevector and frequency, meaning Fig. 5.10 yields information about the spectral

content in the proton cyclotron harmonics as a function of time. Modes with k ≥ 8

are clearly linearly unstable, and are the most dominant modes in the simulation.

These correspond to the peaks with ω ≥ 8 in Fig. 5.9. There are three more striking

features of this plot. These are nonlinearly driven modes at k ' 1.2, 2.5, and 7.1,

which correspond to ω ' 1, 2, and 7. These modes are purely non-linearly driven,

with the mode at (k, ω) ≈ (7.1, 7) being clearly visible in Fig. 5.9, meaning this

mode was “switched on” very soon after the end of the linear phase.
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Figure 5.9: Blue trace: spectral intensity of the Bz field component of the MCI
simulation using a temporal Fourier transform window spanning data from 0τgp ≤
t ≤ 10τgp. The green trace shows the power in a background thermal plasma without
a minority energetic proton ring beam. Power is obtained by integrating across the
entire spatial domain and is plotted on a log10 scale.
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Figure 5.10: Spectral intensity of the Bz field component of the MCI simulation as
a function of time and wavevector plotted on a log10 scale. Linearly unstable modes
with k > 8 can be seen evolving in time. Three nonlinearly driven modes at k ' 1.2,
2.5, and 7.1, which correspond to ω ' 1, 2, and 7 can be seen to evolve from the
nonlinear stage of the simulation at t ≈ 9τgp.

A spatio-temporal Fourier transform calculated between 0τgp ≤ t ≤ 18τgp

and across the entire simulation domain is shown in Fig. 5.11. Both forward and

backward propagating waves are plotted. The left panel shows a wide range of

frequencies and wavenumbers, and a wealth of nonlinear interactions manifesting

themselves as orange spectrally dense regions close, but not quite along, the fast

Alfvén branch and spread across a wide range of Fourier space. The right panel

of Fig. 5.11 magnifies the low frequency modes in the simulation. We can see the

two nonlinear modes at k = 1 and k = 2.5 lie just to the right (left) of the forward

(backward) propagating fast Alfvén wave.

We now plot the power spectra as a function of frequency in the low frequency,

linearly stable modes for Fourier transform windows of different duration. This is

shown in Fig. 5.12, in which panels a), b), c), and d) correspond to temporal Fourier

transform windows of duration 10τgp, 12.5τgp, 15τgp, and 17.5τgp respectively. It is
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Figure 5.11: Distribution of energy in the z-component of the magnetic field across
frequency-wavenumber space. Shading indicates the log10 of the spectral density.
The temporal Fourier transform is calculated between 0τgp ≤ t ≤ 18τgp, while
the spatial Fourier transform is calculated across the entire simulation domain. The
vertical axis is normalised to the proton cyclotron frequency while the horizontal axis
is normalised to the proton cyclotron frequency divided by the Alfvén speed. Left:
forward and backward propagating waves across a wide range of frequencies and
wavenumbers. Right: an expanded view of the low frequency region of the dispersion
plot. We see regions of high spectral density at proton cyclotron harmonics lying
just to the right (left) of the forward (backward) propagating fast Alfvén wave.

clear that proton cyclotron harmonics l = 1 and l = 2 increase in power as the

simulation progresses deeper into the nonlinear stage, with l = 1 showing the most

pronounced effect. The Fourier power in proton cyclotron harmonics with l > 2

does not change substantially as the simulation progresses. It should be noted

that the power in the background plasma is increasing slightly as the simulation

progresses, but this increase is approximately constant and consistent across the

whole range of frequencies (including proton cyclotron harmonics with l > 6 not

shown here) for the entire duration of the simulation. In the linear stage of the

simulation, any increase in Fourier power in modes with l ≤ 6 exactly follows that

of the background thermal plasma simulation, and is therefore due only to thermal

noise. Due to the excellent resolution of the simulation, we can also see structure

in the deuteron cyclotron harmonics of the background plasma, half of which are

degenerate with the proton cyclotron harmonics. The spectral structure seen here

reflects the concentration of noise power at normal modes through the fluctuation

dissipation theorem. To further convince ourselves that the observed spectral power

at l = 1 is a result of nonlinear interactions between MCI excited modes of higher

frequency, we plot the evolution in the difference between MCI and thermal plasma

Fourier power as a function of time. This is shown in Fig. 5.13 starting from t = 7τgp
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up to t = 17.5τgp. We observe a gradual increase from t = 7τgp to t = 9τgp, followed

by a small decrease occurring at t = 9.5τgp, around the transition from the linear

to nonlinear regime. After this, the difference in power remains almost constant

until t = 12.5τgp, after which it is followed by an approximately linear increase until

t = 17.5τgp, by which point the power in the l = 1 proton cyclotron harmonic is

almost an order of magnitude greater than that of the background.
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Figure 5.12: Spectral intensity of theBz field component of the MCI simulation using
temporal Fourier transform windows of increasing duration. Panels a), b), c), and d)
correspond to temporal Fourier transform windows of duration 10τgp, 12.5τgp, 15τgp,
and 17.5τgp respectively. All panels show data corresponding to the nonlinear stage
of the simulation. The green trace shows the power in a background thermal plasma
without a minority energetic proton ring beam, and hence without the excitation of
the MCI. Power is obtained by integrating across the entire spatial domain and is
plotted on a log10 scale.

To satisfy the frequency and wavenumber matching conditions discussed in

Sec. 2.2, the linearly excited waves responsible for producing the nonlinear fea-

ture at ω = 1ωcp must be between waves travelling in opposite directions. Looking

closely at Fig. 5.11, we see that there is not an exact symmetry between forward
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Figure 5.13: The difference in Fourier power of the Bz field component between the
ω = 1ωcp mode of an MCI simulation and the ω = 1ωcp mode of a corresponding
thermal plasma simulation as a function of time.

and backward propagating waves. The dominant features of the dispersion plot

are due to MCI excited waves, that is, the minority proton population entering

into cyclotron resonance with the Alfvén wave supported by the bulk plasma. The

asymmetry in the dispersion relation must therefore be borne out by the minority

ion distribution function. The evolution of this distribution as a function of time

is plotted in Fig. 5.14. The data is obtained from the particle momenta as output

by the PIC simulations. The upper, middle, and lower rows plot the minority pro-

ton distribution function for the x, y, and perpendicular component of momentum

respectively. The time at which the distribution functions are computed increases

from left to right. In each case, the x-axes are normalised to the maximum value of

the relevant component of momenta at that time, while the y-axes are normalised

to the maximum value of the distribution function after it has been computed. For

instance, in the top left panel, the distribution function of the x-component of the

minority proton momenta px is calculated at that given time in the simulation. The

x-axis is then normalised to the maximum value of px, and the y-axis is normalised
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to the maximum value of the resulting probability density function before plotting.

The magnitude of the perpendicular momentum of the momentum in the equation

is calculated using p⊥ =
√
p2
x + p2

y, which means the bottom row does not contain

any information regarding the direction of motion.

Considering the upper row of Fig. 5.14, we see that the distribution function

of the px component of the minority proton momentum develops a slight asymmetry

as the simulation progresses towards the linearly saturated stage which occurs at

around t ∼ 9.5τgp. This asymmetry seems to have mostly disappeared shortly

after t ∼ 9.5τgp. The py distribution function shows a similar trend, however, the

asymmetry is more pronounced just before the linearly saturated stage, and persists

for longer into the nonlinear stage of the simulation. Considering the distribution

function of p⊥ shown in the bottom row of Fig. 5.14, we see that the skew of the

distribution function changes as the simulation passes through the point of linear

saturation. At late times in the simulation, deep into the nonlinear re-energisation

stage, we can see a second bump forming in the distribution function as the minority

protons begin to gain energy, a feature that was previously reported in the JET

relevant simulations of Ref. [Carbajal et al., 2014].

To further visualise this asymmetry, we plot the x and y components of the

bulk velocity of the energetic protons as a function of time. These are shown in the

left and right panels of Fig. 5.15 respectively, and are obtained by averaging over all

the particle momenta at a given instant in time then dividing by the mass. In both

panels the time is normalised to τgp and the velocity is normalised to the electron

thermal velocity vth,e. The x-component of the bulk velocity Vx is initially zero,

followed by a decrease until t ∼ 10τgp, approximately the point of linear saturation.

The y-component of the bulk velocity Vy follows the same trend, however, its bulk

velocity increases until t ∼ 10τgp. The decrease in Vx and the increase in Vy are

approximately the same. At t ∼ 10τgp, both components sharply reverse their

direction, but this change is slightly more noticeable for Vy, which is in line with

the features of the distribution functions shown in Fig. 5.14. This asymmetry in

the minority energetic proton distribution functions, as well as their bulk velocities,

allows for the possibility of backward propagating waves with a different spectral

structure to the forward propagating waves. Of course this asymmetry could be

purely due to numerical noise and further simulations would have to be done to

quantify this, but as mentioned previously, these simulations are extremely well

resolved.

We now turn to our attention to bicoherence plots. In Figs. 5.16, 5.17, and

5.18 we plot the cross bicoherence between two signals comprised of the forward
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Figure 5.14: Minority proton probability density distribution functions at different
times in the simulation. The y-axis of each is normalised to its own maximum prob-
ability density and the x-axis each is normalised to its own maximum momentum.
Top: px probability density function as a function of px. Middle: py probability

density function as a function of py. Bottom: p⊥ =
√
p2
x + p2

y probability density

function as a function of p⊥.

and backward propagating waves at times t = 7τgp, t = 10τgp, and t = 13τgp

in the simulation. The bicoherence is calculated in wavevector space for a small

time-slice in each case. The result is then averaged around this time slice. For

example the bicoherence as a function of k is calculated for all times around t =

7τgp±0.25τgp and is then averaged over this time interval. Nine independent Fourier

transforms were used to calculate the bicoherence, giving a significance level of

1/
√

9 ∼ 0.33. Interactions to the right of the vertical white line are between positive

modes only. Interactions below the horizontal white line are between negative modes

only. Interactions between these lines, in the upper left region of the plot, are

between positive and negative modes. If the positive and negative modes were

exactly equal in structure, the modes around the diagonal white line would be

symmetric, i.e. |k1| − |k2| = |k2| − |k1|. In Fig. 5.16, the instability is still in its
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Figure 5.15: Minority energetic proton bulk velocity as a function of time. If the
distribution was perfectly symmetric, this would always be zero. Left: Bulk velocity
in the x-direction. Right: Bulk velocity in the y-direction. Velocity is normalised to
the electron thermal velocity vth,e. In both cases we see a distinct change in the bulk
velocity to either a net negative or net positive flow at the time of linear saturation
(just before t = 10τgp. This net flow in a preferred direction persists through the
non-linear stage, gradually tending to 0.

linear regime and the interactions amongst modes are weak. The dominant nonlinear

interactions in the simulation are those between the intense linearly unstable modes

in the region of (k, l) ≈ (10, 10) and themselves, as well as with a group of modes

around |k| = 25 (and their backward propagating counterparts). Figure 5.17 plots

the bicoherence shortly after linear saturation has been reached at t = 10τgp. The

nonlinear interactions between the modes identified above are much stronger here,

and we see a new weaker, but still significant, group of interactions at the forward-

backward propagating wave boundary (denoted by the diagonal dashed white line).

Figure 5.18 plots the bicoherence well into the nonlinear stage of the simulation at

t = 13τgp. The strongest interactions in the simulations are now less intense, but

the interactions at the forward-backward propagating wave boundary are slightly
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more intense. The interactions in this region are the most likely cause of the strong

nonlinearly driven modes (both forward and backward propagating) that we see at

ω = 1ωcp in Fig. 5.11.
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Figure 5.16: Bicoherence for a time t = 7τgp before linear saturation. Strong inter-
actions are not observed and there is almost no asymmetry.

To summarise, we conclude that the peak at ω = 1ωcp in the power spectrum

shown in Fig. 5.12 is likely caused by nonlinear wave-wave interactions between the

strongest linearly unstable modes of forward and backward propagating waves. This

mode is linearly stable in the simulation, driven entirely by nonlinear interactions.

This could be the origin of the ion cyclotron emission observed at the fundamental

proton cyclotron emission frequency as reported in [Ochoukov et al., 2018].
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Figure 5.17: Bicoherence for a time t = 10τgp, shortly after linear saturation. Very
strong interactions are observed in several regions, as well as a weaker, but still sig-
nificant group of interactions at the forward-backward propagating wave boundary.
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Figure 5.18: Bicoherence for a time t = 13τgp, well into the nonlinearly saturated
regime of the simulation. The same strong modes as in Fig. 5.17 can be seen, but
the strength of the interaction between modes at the forward-backward propagating
wave boundary is stronger.
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5.3 Conclusions

In this chapter, we first examined the MCI instability in relation to the ICRF ICE

JET observed in multiple JET plasma pulses reported in Refs. [Jacquet et al., 2011;

McClements et al., 2018]. By running simulations of the MCI in a proton plasma

with a minority helium-3 ring beam population we have successfully reproduced the

experimentally observed ICE feature at the 3He fundamental. In addition to this,

we examined how different wave propagation angles θ and the inclusion of a finite

parallel drift v‖0 in the 3He ring beam distribution affect the simulation dynamics.

In the simulations with θ close to 90◦, a strong low frequency feature was observed to

span a large range of numbers, and deviating away from purely perpendicular wave

propagation resulted in this feature being strong enough to resonate with the l = 3
3He harmonic, thereby increasing its spectral intensity. Other than this, the spectral

structure of the simulations remained largely unchanged. The inclusion of a finite

v‖0 in a simulation with θ = 89◦ had little effect on the power spectra, reducing

the intensity of some of the harmonics only slightly. It did however, reduce the

amplitude of the energy oscillations in the fields and particles, but the overall levels

of energy transfer remained approximately the same. We found that for these plasma

parameters, increasing θ to 92◦ led to a predominantly electrostatic instability, and

increasing it further beyond 92◦ meant the instability was no longer excited. We

can expect the inclusion of a finite v‖0 to be magnified for θ further away from 90◦,

provided we are still close enough for the MCI to be excited strongly (factoring in

computational limitations). This is a potential avenue for future work.

We then analysed the results of a single MCI simulation of the core ICE at

the fundamental proton cyclotron frequency in AUG deuterium plasmas [Ochoukov

et al., 2018] which may be due to fusion-born protons. The distribution function of

freshly born ions in the core is expected to resemble that of a spherical shell. In this

simulation, we approximated this as a proton ring beam whose width and position

in phase space are initialised using a specific velocity vector v =
(
v⊥0, v‖0

)
. Our

justification for doing this is that one can think of a spherical shell comprising an

infinite number of ring beam distributions each of varying width (v⊥0) and position

in the v‖0 direction. Only ring beam distributions with v⊥0/vA ∼ 1 are expected

to contribute strongly to the MCI resonance. It was found that the fundamental

proton cyclotron harmonic was linearly stable in the simulation, but there were many

strong MCI excited modes with l > 5. Using bicoherence analysis, it was shown

that these modes, on both the forward and backward propagating branches of the

dispersion relation, couple together nonlinearly to produce many additional spectral
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features, including a strong feature at l = 1. This l = 1 feature was observed to grow

in amplitude as the simulation progresses deeper into the nonlinear re-energisation

regime, and the strength of the nonlinear coupling was observed to follow a similar

pattern. Asymmetries in the components of the minority ion distribution function,

as well as the components of the minority proton bulk velocity, lead to asymmetries

in the dispersion relation, and hence slight differences in both the linearly and

nonlinearly driven modes.
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Chapter 6

Simulations of core ICE

The ICE emission considered in the simulations described in chapter 4 was localised

to the outer edge region of the KSTAR tokamak, in which drift orbit, local ionisation,

and prompt loss effects typically give rise to the highly non-Maxwellian minority ion

velocity distributions required for ICE excitation via the MCI. In this region of the

plasma, it is appropriate to represent the minority energetic ions as a ring-beam

distribution in velocity space [Dendy et al., 1994a,b, 1995]. In this chapter, we turn

our attention to ICE emission via the MCI driven by a spherical shell distribution

of minority ions [Dendy et al., 1992, 1993], which is appropriate for emission in core

tokamak plasmas due to fusion-born ions. Whilst the driving population of the core

ICE observed in ASDEX-Upgrade [Ochoukov et al., 2019, 2018], DIII-D [Thome

et al., 2018; Heidbrink et al., 2011], and TUMAN-3M [Askinazi et al., 2018] plasma

is not completely clear, it seems appropriate to anticipate that some of these ICE

signals are driven by fusion-born ions in the core plasma, and examine the feasibility

of these ions driving ICE via the MCI.

This chapter is organised as follows: we first describe our simulation set-up,

including details of the two non-thermal distribution functions used to represent the

minority energetic ions. In Sec. 6.2, we show the results of fourteen independent

simulations of the MCI, comparing and contrasting results from ring-beam simula-

tions, typically used in modelling the plasma edge, and spherical shell distributions,

typically used in modelling the core plasma. A discussion of the nonlinear aspects

of these simulations is presented in Sec. 6.3, with a demonstration of how some

minority ion cyclotron harmonics, which are often observed in experiment, can only

be explained through nonlinear interactions.
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6.1 Description of simulations

We simulate the excitation of ICE by fusion protons using the 1D3V version of the

EPOCH PIC code. We simulate fourteen plasmas with parameters closely resem-

bling those used in the calculation of the linear MCI growth rates in Ref. [Dendy

et al., 1993], which are relevant to medium-sized tokamak plasmas such as DIII-

D and ASDEX-Upgrade. All simulations use an initially uniform electron number

density ne = 1.0×1019m−3, and a background magnetic fieldBz = 3.1T oriented per-

pendicular to the simulation domain. The temperatures of the initially Maxwellian

background thermal deuterons and electrons are set to 1keV. We denote the bulk

deuteron and minority proton number densities by nD and np respectively, and use

a fast ion concentration ξ = np/nD = 10−3 in all simulations.

In seven of our simulations, the velocity-space distribution of the energetic

protons is initialised as a ring-beam distribution according to Eq. 1.26, the paral-

lel velocity and parallel spread have been set to zero, as they are not expected to

influence the strictly perpendicularly propagating waves used in this initial study.

The value of the initial perpendicular velocity v0⊥ corresponds to the 3.02MeV birth

speed of fusion-protons produced via D-D reactions. These seven simulation vary

the perpendicular spread vT⊥ from 0 to 0.3v0⊥ in steps of 0.05v0⊥. Note that the

vT⊥ = 0.0v0⊥ distribution function is the same form as that used in previous PIC

and hybrid simulations of the MCI [Carbajal et al., 2014; Cook et al., 2013; Chap-

man et al., 2017, 2018; Carbajal et al., 2017].

Our remaining seven simulations initialise the velocity space distribution

of energetic protons according to a spherical shell distribution according to Eq.

1.27. In a similar fashion to the ring-beam simulations, the initial particle speed v0

corresponds to the 3.02MeV birth speed of fusion-protons, and we vary the velocity

spread vT (shell thickness) from 0 to 0.3v0 in steps of 0.05v0. Note that most of

the figures contained within this chapter do not display the results of simulations

with vT = 0.05v0 and vT⊥ = 0.05v0⊥, as they are similar in nature to simulations

with vT = 0.1v0 and vT⊥ = 0.1v0⊥. They are however shown in figures in which

contour plots are used, ensuring uniform interpolation between results from different

simulations. Each of the seven ring-beam simulations lasts 40 proton gyro-periods

τcp, by which time the instability is well into its nonlinear saturated regime. The

seven spherical shell simulations last for varying lengths of time, from 70τcp to 130τcp,

depending on the time it takes the instability to reach linear saturation.
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6.2 Linear physics

Let us first examine the variation in the energies of the fields and particles in our

simulations. Fig. 6.1 displays the change in energy density as a function of time for

six MCI simulations using a ring-beam velocity distribution for the minority pro-

tons. The perpendicular velocity spread vT⊥ expressed as a fraction of the initial

perpendicular velocity v0⊥ is shown at the top of each panel. The energy transfer

between particles and fields qualitatively resembles that of previous work [Carbajal

et al., 2014; Cook et al., 2013], with the minority protons transferring their en-

ergy to the bulk plasma and to the fields. However, the timescale of the instability

(normalised to the minority proton gyro-period τcp = 2π/ωcp) is almost four times

longer than anything previously reported. This can be explained in terms of analyt-

ical growth rates of the MCI for these simulation parameters, which are discussed

later in the section and are of the order ∼ 10−2ωcp, much lower than that of previ-

ous simulations [Carbajal et al., 2014; Cook et al., 2013]. The simulation with no

perpendicular velocity spread vT⊥ reaches linear saturation the earliest, at around

25τcp, and displays the lowest level of collective oscillation between the bulk plasma

and the fields. As vT⊥ is increased, this oscillation becomes larger in amplitude,

and the linear phase of the instability saturates at a later time. Once vT⊥ is in-

creased beyond 0.1v0⊥, the amount of energy transferred from the minority proton

population to the fields and bulk plasma drops off rapidly and affects both the field

components in the same way, with the peak changes in Ex and Bz energy densities

being approximately five times less in the vT⊥ = 0.3v0⊥ simulation than they are

in the vT⊥ = 0.1v0⊥ simulation. In all panels we see a nonlinear re-energisation

stage shortly after linear saturation which persists for the remainder of the simu-

lation. This stage is least pronounced for the vT⊥ = 0.0v0⊥ simulation, and most

pronounced for the vT⊥ = 0.1v0⊥ simulation, lasting for a smaller fraction of the

total simulation time as vT⊥ increases further.

The corresponding six plots for simulations in which the minority protons

were initialised according to a spherical shell distribution are shown in Fig. 6.2.

The top three panels are qualitatively the same as their ring-beam counterparts,

providing the first direct simulation evidence that ICE can be excited via the MCI

when the minority ions are represented by a spherical shell distribution. All three of

these panels show a distinct linear saturation phase, followed by re-energisation, the

amount of which decreases substantially as the velocity spread vT increases. The

amount of energy transfer shown in all panels of Fig. 6.2 is more than ten times
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less than that of their ring-beam counterparts, and in all cases the field amplitude

saturation time is at least double that of the ring-beam simulations. The bottom

three panels differ from the top three in that they do not enter a re-energisation

stage. Instead, the magnetic field amplitude saturates at about t = 80τgp in all

cases, and the minority protons continue transferring the remainder of their energy

solely to the bulk plasma deuterons, for what appears to be an indefinite amount of

time.
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Figure 6.1: Time evolution of the change in energy density of particles and electric
and magnetic fields as a function of time from six PIC simulations in which the
minority energetic protons are initialised using ring-beam velocity distributions with
varying perpendicular velocity spreads. The perpendicular spread vT⊥ as a fraction
of the initial perpendicular velocity v0⊥ is shown at the top of each panel. The
traces, ordered from top to bottom at their peak (and in colour online) are: Top
(red) the change in kinetic energy density of the thermal bulk plasma deuterons;
second (green) the energy density of the magnetic field perturbation ∆Bz; third
(blue) the energy density of the electrostatic field Ex; fourth (cyan) the change in
kinetic energy density of the minority energetic protons. Time is normalised to the
proton gyro period. Note the different scales on the y-axis of each plot.
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Figure 6.2: Time evolution of the change in energy density of particles and electric
and magnetic fields as a function of time from six PIC simulations in which the
minority energetic protons are initialised using spherical shell velocity distributions
with varying velocity spreads (shell thickness). The spread vT as a fraction of the
initial velocity v0 is shown at the top of each panel. The ordering of the traces and
the normalisation is the same as in Fig. 6.1

The advantage of the long duration of both sets of simulations is that we

are able to obtain exceptional frequency resolution when performing Fourier trans-

forms, and are able to see clearly, without any ambiguity, that in all cases the MCI

is excited under these conditions. Figure 6.3 shows the distribution of energy in

the z-component of the magnetic field in frequency-wavenumber space, where the

Fourier transform has been performed over the entire duration of the simulation

and the full simulation domain. Each panel is plotted using the same log10 scale,

and the maximum displayed frequency is approximately equal to the lower hybrid

frequency ωLH ≈ 9ωcp, where ωcp is the proton cyclotron frequency. Each panel

shows a series of well defined resonances along the magnetoacoustic branch at inte-

ger multiples of ωcp. These resonances are strongest for the simulations with little

or no perpendicular spread, which is expected as Fig. 6.1 shows these simulations
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have the greatest energy transfer from the minority protons to the magnetic field.

In addition to the resonances along the magnetoacoustic branch, we see regions of

high spectral density at ω = 7ωcp and ω = 8ωcp at lower wavenumber. The intensity

of these regions decreases as vT⊥ increases. These additional modes are nonlinear

in origin, and arise because of intense phase coupling between modes on the main

magnetoacoustic branch. We will revisit this later in this section, but for now it is

important to note that these modes have similar intensity to their linearly excited

counterparts, so any spectrally structured ICE at these high frequencies is due at

least in part to strong nonlinear interactions. The power spectrum for these simu-

lations is shown in Fig. 6.4. We see a strong mode at ω = 4ωcp in all panels except

for the one with vT⊥ = 0.3v0⊥. At low values of vT⊥, we see only a very weak

ω = 5ωcp mode, which becomes more powerful as vT⊥ increases, in conjunction with

a decrease in the amplitude of a mode at ω = 4ωcp.
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Figure 6.3: Distribution of energy in the fluctuating z-component of the magnetic
field ∆Bz across frequency-wavenumber space from six PIC simulations in which
the minority energetic protons are initialised using ring-beam velocity distributions
with varying perpendicular velocity spreads. The spread vT⊥ as a fraction of the
initial perpendicular velocity v0⊥ is shown at the top of each panel. The plots are a
spatio-temporal Fourier transform of the Bz field component and in each case span
the entire spatial domain and the length of time shown in their Fig. 6.1 counterparts.
Shading indicates the log10 of the spectral density of the oscillatory part ∆Bz of
the Bz field component. The vertical axes are normalised to the minority proton
cyclotron frequency ωcp, while the horizontal axes are normalised to ωcp divided by
the Alfvén speed VA.
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Figure 6.4: Spectral intensity of the fluctuating Bz field energy density, from six
PIC simulations in which the minority energetic protons are initialised using ring-
beam velocity distributions with varying perpendicular velocity spreads. The spread
vT⊥ as a fraction of the initial perpendicular velocity v0⊥ is shown at the top of each
panel. The vertical axes are plotted on a log10 scale while the horizontal axes are
normalised to the minority proton cyclotron frequency ωcp. The range of both axes
is identical in all panels.
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The corresponding dispersion relation and power spectrum plots for the

spherical shell distribution simulations are shown in Figs. 6.5 and 6.6 respectively.

The frequency resolution of these plots is much greater than that of their ring beam

counterparts, owing to a longer simulation time. As such it is perhaps difficult for

one to pick out the strong, highly localised resonances in the dispersion relation.

We can however see that in the vT = 0.0v0 simulation, there is a faint mode at

ω = 8ωcp to the left of the main dispersion branch, just as in its ring-beam coun-

terpart. It is much more informative to look at the power spectrum shown in Fig.

6.6, in which the spectral structure is slightly different from that of the ring-beam

simulations. As before the ω = 1ωcp and ω = 2ωcp modes are not present, and

the ω = 4ωcp is by far the most dominant for the the simulations with low or zero

vT . There is no gap at the ω = 5ωcp mode in these simulations, and by the time

vT has been increased to 0.2v0, all modes are roughly equal in magnitude. As vT

increases further, the dominant mode shifts to the ω = 6ωcp mode, much like the

dominant mode in the ring-beam simulations shifts upwards to ω = 5ωcp. Unlike

the ring-beam simulations, the ω = 7ωcp and ω = 8ωcp modes are more similar in

magnitude to the spectrally intense modes at lower frequencies.

We now turn our attention to the linear growth rates of modes in both sets

of simulations, which are plotted as a function of cyclotron harmonic number and

thermal spread in the right panels of Fig. 6.7. The left panels display the analytical

linear growth rates computed numerically using a first principles kinetic dispersion

solver [Irvine, 2018, 2019]. The upper panels of Fig. 6.7 correspond to a spherical

shell distribution, and the growth rates are plotted as a function of the shell spread

vT , while the lower panels correspond to a ring-beam distribution, and are plotted

as a function of the perpendicular velocity spread vT⊥. To obtain uniform spacing of

the contours two additional PIC simulations were run, corresponding to vT = 0.05v0

in the case of a spherical shell distribution and vT⊥ = 0.05v0 in the case of a ring-

beam distribution. These two simulations are not shown in the other figures of this

paper, and do not alter any conclusions drawn. In all panels the growth rates are

normalised to the proton cyclotron frequency ωcp, and the eight harmonic is not

displayed as both its analytical and PIC linear growth rates are either zero or tiny

in all cases - this mode is almost entirely driven by nonlinear interactions, as we will

show later.

119



0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
vT = 0. 0v0

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
vT = 0. 10v0

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
vT = 0. 15v0

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
vT = 0. 20v0

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
vT = 0. 25v0

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9
vT = 0. 30v0

10-3

10-2

10-1

100

101

102

103

104

105

Fr
e
q
u
e
n
cy

 [
ω
cp

]

Wavenumber [ωcp/VA]

Figure 6.5: Distribution of energy in the fluctuating z-component of the magnetic
field ∆Bz across frequency-wavenumber space from six PIC simulations in which the
minority energetic protons are initialised using spherical shell velocity distributions
with varying velocity spreads (shell thickness). The spread vT as a fraction of the
initial velocity v0 is shown at the top of each panel. The plots are a spatio-temporal
Fourier transform of the Bz field and in each case span the entire spatial domain
and the length of time shown in their Fig. 6.2 counterparts. All other details are
the same as Fig. 6.3.
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Figure 6.6: Spectral intensity of the fluctuating Bz field energy density, from
six PIC simulations in which the minority energetic protons are initialised using
spherical shell velocity distributions with varying velocity spreads (shell thickness).
The spread vT as a fraction of the initial velocity v0 is shown at the top of each
panel. All other details are the same as Fig. 6.4.
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The ring-beam growth rates in the simulations are qualitatively identical

to their analytical counterparts; strikingly, the absence of the fifth harmonic in

PIC simulations with low vT⊥ is accurately predicted by the analytical growth rate

solver. The growth of the sixth harmonic at low values of vT⊥ is also consistent,

as is the tendency for the power to shift from the fourth harmonic to the fifth as

vT⊥ increases. There is a discrepancy in the magnitude of the growth rates, with

the maximum value in the simulation being ∼ 1.7 times larger than the maximum

analytical value. This is due to the overwhelmingly large growth rate of the fourth

harmonic in the simulation, which is not predicted by the analytical solver. The

spherical shell distribution growth rates in the PIC simulations are both qualitatively

and quantitatively consistent with their analytical counterparts. Both analytical

theory and simulation predict that the growth is concentrated around the fourth

proton cyclotron harmonic at low values of vT , and shifts towards the sixth harmonic

as vT increases. The numerical solver predicts that the fourth and fifth modes

have growth rates which are similar in magnitude, which is not born out by the

simulation results. It also predicts that the largest growth rate at vT = 0.3v0

occurs at the fourth harmonic, while it is the sixth harmonic in the simulations.

These discrepancies between analytical and simulation growth rates could be due

to slightly different wave propagation angles. As discussed in section 6.1, all our

simulation are initialised with a propagation angle of θ = 90◦, whereas the numerical

solver calculates growth rates at θ = 89.9◦, owing to the pole at θ = 90◦ which

must be avoided. Even with these discrepancies, the similarity between analytical

and simulation growth rates across fourteen simulations with two different energetic

proton velocity distributions is excellent.

The linear growth rates for the spherical shell distribution have also been

calculated according to Eq. 31 of [Dendy et al., 1993] and are shown in Fig. 6.8. This

analytical expression predicts the same trend in the magnitude of the growth rate

as a function of vT , however the peak growth rate is located at the sixth harmonic

as opposed to the fourth harmonic in the simulations and analytical solver. We note

that the tendency of the fastest growing mode in the simulations to shift from the

fourth, to the fifth, and finally to the sixth proton cyclotron harmonic as the velocity

spread increases is qualitatively the same in both the ring-beam and spherical shell

simulations. The only major difference in the simulation growth rates is the presence

of faster growing ω = 6ωcp modes in the ring-beam simulations.
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Figure 6.7: Contour plot displaying the linear growth rates of the MCI as a func-
tion of velocity spread and proton cyclotron harmonic number. Left panels: Linear
growth rates are calculated numerically from a kinetic dispersion solver. Right pan-
els: Linear growth rates calculated directly from PIC simulations. Upper panels:
Linear growth rates corresponding to a minority proton ring-beam distribution func-
tion with varying perpendicular velocity spread vT⊥. Lower panels: Linear growth
rates corresponding to a minority proton spherical shell distribution function with
varying velocity spread vT . The colour bar above each panel shows the magnitude
of the growth rate γ normalised to the proton cyclotron frequency ωcp. In all panels
the eighth proton cyclotron harmonic is omitted, as it is found to have a zero or
very small linear growth rate in all cases. In the upper panels, corresponding to
the ring-beam distribution, the numerical and PIC growth rates differ slightly in
their maximum and minimum values, but the left and right plots are qualitatively
almost identical. In the lower panels, corresponding to the spherical shell distribu-
tion, the numerical and PIC growth rates have the same maximum and minimum
values, but the left and right plots are not as qualitatively similar as their ring-beam
counterparts.
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Figure 6.8: Contour plot displaying the linear growth rates of the MCI as a function
of velocity spread vT and proton cyclotron harmonic number. The minority protons
are represented using a spherical shell distribution and the growth rate, calculated
according to Eq. 31 of [Dendy et al., 1993], is normalised to the proton cyclotron
frequency ωcp. This analytically calculated growth rate is maximum around the
sixth proton cyclotron harmonic and decreases as the shell thickness increases.
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6.3 Nonlinear physics

We now discuss the nonlinear aspects of the simulations. The evolution of the fluc-

tuating part of the z-component of the magnetic field ∆Bz as a function of time and

wavenumber is shown in Fig. 6.9 for two simulations of the MCI. The left panel of

Fig. 6.9 is from a ring-beam simulation with vT⊥ = 0.0v0, while the right panel of

Fig. 6.9 is from a spherical shell simulation with vT = 0.0v0. In both panels time

is normalised to τcp, wavevector is normalised to ωcp/VA, and shading indicates the

log10 of the spectral density of ∆Bz. In both panels we see the strongest modes

around k ∼ 4.35ωcp/VA and k ∼ 7.8ωcp/VA, which begin growing in the linear stage

of the simulation and correspond to the fourth and sixth proton cyclotron harmonics

respectively. In addition, we see a strong, linearly driven mode at k ∼ 5.9ωcp/VA

in the right panel, corresponding to the fifth cyclotron harmonic. This mode also

appears in the left panel, but weaker and at a later time, in the nonlinear phase of

the simulation. In both panels we see a relatively strong nonlinearly driven mode at

k ∼ 8.7ωcp/VA mode, which contributes to the eighth harmonic in both simulations,

along with a k ∼ 15.5ωcp/VA mode, which is entirely nonlinearly driven in the left

panel, and is linearly driven but incredibly weak in the right panel. Other modes

occurring at late times can be seen growing in both panels, mostly the left panel.

The evolution of B2
z as a function of time for the k ∼ 8.7ωcp/VA and k ∼ 15.5ωcp/VA

modes in the vT⊥ = 0.0v0 ring-beam simulation is shown in Fig. 6.10. The traces

were obtained by averaging over a narrow range of wavevectors in the vicinity of

these modes, being careful not to have any overlap with any other, clearly distinct

modes shown in Fig. 6.9. A moving average was also applied in time to smooth out

the field oscillations. The k ≈ 8.7ωcp/VA mode reaches a slightly higher saturation

energy and grows slightly later in time than the k ≈ 15.5ωcp/VA mode. The up-

per left panel of Fig. 6.3 shows that both these modes have a strong resonance at

ω = 8ωcp, along the eighth proton cyclotron harmonic, and thus both contribute in

comparable magnitude to the ω = 8ωcp peak shown in the top left panel of Fig. 6.4.

We now quantify the extent of this nonlinear wave-wave coupling in the simu-

lations. The best quantitative evidence for this is obtained from bispectral analysis,

which is described in detail in Sec. 2.2 of chapter 2. Figure 6.11 plots the square

of the bicoherence b2 for six MCI simulations in which the minority protons were

initialised according to a ring-beam distribution. The squared bicoherence is plot-

ted as a function of wavenumber, which, for the strongest modes, maps directly to

frequency. Shading indicates the intrinsic strength of nonlinear coupling, 1 (dark
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Figure 6.9: Distribution of energy in the fluctuating z-component of the magnetic
field ∆Bz across time-wavenumber space. Left: From a PIC simulation in which
the minority energetic protons are initialised using a ring-beam velocity distribution
with no perpendicular velocity spread. Right: From a PIC simulation in which the
minority energetic protons are initialised using a spherical shell velocity distribution
with no velocity spread. Both plots show the spatial Fourier transform of the Bz
field and span the entire spatial domain. Shading indicates the log10 of the spectral
density of the oscillatory part ∆Bz of the Bz field component. The vertical axes
are normalised to the minority proton cyclotron frequency ωcp while the horizontal
axes are normalised to ωcp divided by the Alfvén speed VA.

red) being completely coupled and 0 (dark blue) completely uncoupled. In each plot

b2 was calculated using the full 40 proton gyro periods τcp of simulation data, the

width of each successive Fourier transform was 1.25τcp, and the overlap of each suc-

cessive Fourier transform was 0.25τcp. The number of independent samples is thus

32, giving a significance level of b2 > 1/
√

32 & 0.177, which is far lower than the

coupling strength of the modes of interest. For simplicity, in the following we refer

to frequencies by their proton cyclotron harmonic number l, e.g. ω = 4ωcp becomes

l = 4. We will also assume that it is implicit that the wavenumbers are normalised,

e.g. “k = 4.35” actually refers to k = 4.35ωcp/VA. We refer to parent modes using

the subscripts 1 and 2, and child modes using the subscript 3, as in Sec. 2.2. Note

that a child mode (k3, l3) can subsequently interact with other modes and become

the parent to new child modes, in which case we then refer to the old child modes,

now parent modes, using the subscripts 1 and 2.
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Figure 6.10: Time evolution of the k ≈ 8.7ωcp/VA and k ≈ 15.5ωcp/VA field com-
ponents of a PIC simulation in which the minority energetic protons are initialised
using a ring-beam distribution with no perpendicular velocity spread, corresponding
to the left panel of Fig. 6.9. A moving average has been applied in time in order to
smooth out the field oscillations (see the green trace in Fig. 6.1). Both modes begin
to gain energy close to the start of the nonlinear stage of the simulation, meaning
they are likely is driven by nonlinear interactions.
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All six panels of Fig. 6.11 display multiple regions of strong nonlinear wave-

wave coupling, and, in general, the strength of this coupling decreases as vT⊥ in-

creases, perhaps in part due to the shorter duration of the nonlinear re-energisation

stage of the simulation. In all panels a mode at (k1, l1) ≈ (4.35, 4) interacts with

all other modes strongly, and the strength of this interaction decreases rapidly with

increasing vT⊥. This mode interacts strongly with itself, and is the origin of the

(k3, l3) ≈ (8.7, 8) mode. This child mode is also phase coupled with all other modes,

and can in theory produce “3rd generation” child modes. The strength of coupling

between the (k, l) ≈ (8.7, 8) and other modes drops off rapidly as vT⊥ increases,

following the behaviour of its parent. The strength of the phase coupling between

(5.9, 5) and other modes (the vertical line from k2 = 5.9 and the horizontal line from

k2 = 5.9) is weak at low vT⊥, and greatly increases as vT⊥ increases and this mode

becomes linearly unstable. The same can be said of the (10.5, 7) mode (see Figs.

6.7 and 6.4).

We can further characterise the nature of nonlinear interactions in these six

ring-beam simulations by examining the summed bicoherence Σb2. This is plotted

in Fig. 6.12 for each ring-beam simulation. The vertical axis sums all the squared

bicoherence contributions from modes k1 and k2 which add vectorially to produce

modes with k3 = k1 +k2. If a wave k = k3 has a large value of Σb2, then there are, in

general, multiple combinations of k1 and k2 with large values of b2 that contribute

to the formation of k3. Note this does not necessarily mean a wave with k = k3

is observed in the simulation, it could be the case that all its parents have a low

amplitude so that in practice, the child mode is never observed. One must also re-

member that any combinations that satisfy k3 = k1+k2 must also satisfy l3 = l1±l2,

where the positive and negative signs refer to forward and backward propagating

waves respectively. Combinations of k1 and k2 such that b2 < 0.8 are not included in

the sum, meaning only modes with the strongest nonlinear couplings are considered.

Considering, for example, the vT⊥ = 0.0v0 panel of Fig. 6.12, we see spikes

at k3 ≈ 8.7, 12.2, 13.1, 15.5, and 18.7. The k3 ≈ 8.7 spike is the nonlinearly driven

mode which contributes to the l = 8 proton cyclotron harmonic and is present in

all but the vT⊥ = 0.3v0⊥ panel. The large spike at k3 ≈ 12.2 corresponds to a

mode that can be clearly seen in the left panel of Fig. 6.9. Its parent modes can be

identified as (k1, l1) ≈ (7.8, 6) and (k2, l2) ≈ (4.35, 4). Interestingly, this k3 ≈ 12.2

mode corresponds to two different waves, one at l3 = l1 + l2 = 6 + 4 = 10, and

l3 = l1 − l2 = 6 − 4 = 2, the latter can be clearly seen in the top left panel of Fig.
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6.3. We will return to the (k3, l3) ≈ (12.2, 10) mode presently. Another noticeable

spike occurs at k3 ≈ 15.6. Perhaps the most intuitively obvious combination of k1

and k2 that contributes to this spike is a self interaction between the strong linearly

stable (7.8, 6) mode. To satisfy energy conservation this would have to manifest

itself as an (k3, l3) ≈ (15.6, 12) mode. This is indeed the case, and is shown in the

top left panel of Fig. 6.13 along with the (k3, l3) ≈ (12.2, 10) discussed earlier, and

other modes that are the result of nonlinear phase coupling. These modes are above

the lower hybrid frequency ωLH ≈ 9ωcp, a region where linearly excited modes are

evanescent [Chapman et al., 2018; Cairns, 1985; Verdon et al., 2009]. The same high

frequency regions in ring-beam simulations with finite vT⊥ show similar nonlinearly

driven modes, whose existence can be explained in terms of the corresponding finite

vT⊥ panels of Fig. 6.12. The number of these high frequency non-linearly excited

modes decreases as vT⊥ increases, reflecting the decreasing strength of nonlinear

coupling. A plot of the MCI intensity as a function of frequency for this high fre-

quency region is shown in Fig. 6.14. Considering the top left panel, only the l = 10

and l = 12 are above the noise level of ∼ 4 orders of magnitude, which is deduced

from Fig. 6.4. The l = 10 mode is over two orders of magnitude above the noise

level, and is of comparable magnitude to the linearly unstable mode at l = 7 in

the same simulation. This l = 10 mode persists in the simulations with finite vT⊥,

albeit to a lesser degree.

While nonlinear self interaction between the strong linearly stable (7.8, 6)

mode certainly contributes to the k3 ≈ 15.6 spike in the top left panel of Fig. 6.12,

it does not explain the (k3, l3) ≈ (15.6, 8) mode which is nonlinearly driven in the

vT⊥ = 0.0v0 simulation (it is very weakly linearly unstable in the finite vT⊥ sim-

ulations). It is difficult to find a combination of k1 and k2 which sum to ∼ 15.6,

whilst satisfying the frequency matching requirement. A candidate pair of modes

is the two nonlinearly driven modes (k1, l1) ≈ (12.2, 10) and (k2, l2) ≈ (3.4, 2), such

that l3 = 10− 2 = 8. The (k2, l2) ≈ (3.4, 2) mode can be seen in the top left panel

of Fig. 6.3, and in wavevector space is just about distinguishable from the linearly

unstable (k, l) ≈ (3.3, 3) mode - if we look closely in this region of the left panel of

Fig. 6.9, we can see a mode evolving during the nonlinear stage of the simulation

which is directly adjacent to the linearly stable mode at k ≈ 3.3. This is a clear

example of two nonlinearly driven modes interacting with each other to produce

another nonlinearly driven mode which is in the range of frequencies below ωLH ,

which are often detectable in experiment. The spike at k3 ≈ 13.1 can also be ex-

plained in terms of secondary interactions between nonlinearly driven modes. This
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is due to the nonlinearly excited k1 ≈ 8.7 mode interacting with the linearly unstable

k2 ≈ 4.35 mode; the latter being the parent of the former. This manifests itself as

a weak but clearly visible (k, l) ≈ (13.1, 12) mode in the upper left panel of Fig. 6.12.
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Figure 6.11: The square of the bicoherence b2 of the oscillatory part of the Bz field
component as a function of normalised wavenumber k from six PIC simulations in
which the minority energetic protons are initialised using ring-beam velocity distri-
butions with varying perpendicular velocity spreads. The spread vT⊥ as a fraction of
the initial perpendicular velocity v0⊥ is shown at the top of each panel. The colour
scale indicates intrinsic nonlinear coupling between waves with wave numbers k1

and k2, which takes values between 0 and 1. In each plot b2 was calculated from
the full 40 proton gyro periods τcp of simulation data, the width of each successive
Fourier transform was 1.25τcp, and the overlap of each successive Fourier transform
was 0.25τcp. The number of independent samples is thus 32, giving a significance
level of b2 > 1/

√
32 & 0.177.
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Figure 6.12: The sum of the square of the bicoherence b2 as a function of normalised
wavenumber k3 from six PIC simulations in which the minority energetic protons are
initialised using ring-beam velocity distributions with varying perpendicular velocity
spreads. The spread vT⊥ as a fraction of the initial perpendicular velocity v0⊥ is
shown at the top of each panel. The sum is calculated from corresponding data
shown in Fig. 6.11, and k3 = k1 + k2 is the child mode resulting from strong linear
coupling between two parent modes k1 and k2. Only combinations of k1 and k2

yielding a value of b2 ≥ 0.8 (see Fig. 6.11) are included in the sum. A large value
of Σb2 indicates that a child mode in the vicinity of k3 arises from strong nonlinear
coupling between multiple distinct parent modes k1 and k2.
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Figure 6.13: As Fig. 6.3, except only the region with frequency ω greater than the
lower hybrid frequency ωLH is shown. In this region we see the child modes with
wavenumber k3 = k1 + k2 and frequency ω3 = ω1 + ω2 that arise from the strong
nonlinear wave-wave interactions shown in Figs. 6.11 and 6.12.
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Figure 6.14: As Fig. 6.4, except only the region with frequency ω greater than the
lower hybrid frequency ωLH is shown. This plot is obtained by integrating over the
region shown in Fig. 6.13. In each panel, not all the peaks are uniform in height,
suggesting that some of the more intense spectral peaks, e.g. ω = 10ωcp in the top
left panel, owe their existence to the strong nonlinear wave-wave interactions shown
in Figs. 6.11 and 6.12. This mode in particular, which is driven entirely by nonlinear
wave-wave interactions, has a spectral intensity of comparable magnitude to some
of the linearly driven modes shown in Fig. 6.4. Thus this mode and others like it
are the direct result of the minority energetic proton population relaxing under the
MCI, and not merely normal modes of the system.
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The squared bicoherence for six MCI simulations in which the minority pro-

tons were initialised according to a spherical shell distribution is shown in Fig. 6.15

and their nonlinear characteristics closely resemble their ring-beam counterparts.

Unlike the ring-beam simulations, the duration of the spherical shell simulations

is highly variable, so the bicoherence shown in each panel of Fig. 6.15 has to be

computed using time series of different length. In each panel, b2 was calculated

using time series spanning the range of data displayed in the corresponding panels

shown in Fig. 6.2. For instance, the bicoherence shown in the top left panel is

calculated using 73 proton gyroperiods of data, the bicoherence shown in the top

middle is calculated using 80 proton gyroperiods of data, and so on. The minimum

significance level is thus b2 & 0.13.

In the top row of simulations, the k3 ≈ 8.7 mode interacts strongly with all

modes, again owing to its strong parent mode at (k, l) ≈ (4.35, 4). This coupling is

barely evident in the vT = 0.2v0 simulation, and is non existent in the two vT > 0.2v0

simulations. This is because the parent (k, l) ≈ (4.35, 4) is not strongly coupled to

anything in these simulations, owing to a characteristically different nonlinear stage,

see panels vT = 0.25v0 and vT = 0.3v0 of Fig. 6.2. It is immediately obvious that

the vT = 0.0v0 simulation has the weakest (but still statistically significant) cou-

pling of all the spherical shell simulations. Despite this, the nonlinearly excited

(k, l) ≈ (8.7, 8) mode is still strongest in the vT = 0.0v0 simulation, evidenced by

the top left panel of Fig. 6.5. This is because its parent, the (k, l) ≈ (4.35, 4) mode is

most powerful in this simulation, almost an order of magnitude more powerful than

the simulations with finite vT . It is important to remember that even weak phase

coupling between linearly excited modes of high amplitude can produce noticeably

strong nonlinearly driven modes.

As vT increases, the (k, l) ≈ (5.8, 5) mode becomes more strongly coupled

to other modes in the simulation, mirroring the evolution of its amplitude with vT .

This is almost exactly the behaviour of the ring-beam simulations, as the veloc-

ity spread increases, the mode grows, as does the strength of its coupling to other

modes. This shift towards high l modes continues as vT is increased further, again

exhibiting similar behaviour to the ring-beam simulations. As before, we plot the

sum of the squared bicoherence as a function of wavenumber for these spherical shell

simulations. This is shown in Fig. 6.16, in which only combinations of k1 and k2

yielding a value of b2 ≥ 0.6 are included in the sum for all simulations except the

vT = 0.0v0. This simulation exhibits significantly weaker coupling than its finite vT
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counterparts, so instead values with b2 ≥ 0.4 are included in the sum. The range

of wavevectors plotted in Fig. 6.16 is less than that of Fig. 6.12, owing to a more

narrow range of wavevectors that satisfy the criteria detailed above. One must also

bear in mind that the scale of the y-axis is shorter than in Fig. 6.12.
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Figure 6.15: The square of the bicoherence b2 of the oscillatory part of the Bz field
component as a function of normalised wavenumber k from six PIC simulations in
which the minority energetic protons are initialised using spherical shell velocity
distributions with varying velocity spreads. The spread vT as a fraction of the
initial velocity v0 is shown at the top of each panel. In each panel b2 was calculated
using time series spanning the range of data displayed in the corresponding panels
shown in Fig. 6.2. For instance, the bicoherence shown in the top left panel is
calculated using 73 proton gyroperiods of data, the bicoherence shown in the top
middle is calculated using 80 proton gyroperiods of data, and so on. The minimum
significance level is thus b2 & 0.13. We note that the strength of coupling in the
simulation with vT = 0.0v0 shown in the top left panel is significantly less than the
rest of the simulations.
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Figure 6.16: The sum of the square of the bicoherence b2 as a function of normalised
wavenumber k3 from six PIC simulations in which the minority energetic protons are
initialised using spherical shell velocity distributions with varying velocity spreads.
The spread vT as a fraction of the initial perpendicular velocity v0 is shown at
the top of each panel. The sum is calculated from corresponding data shown in
Fig. 6.15, and k3 = k1 + k2 is the child mode resulting from strong linear coupling
between two parent modes k1 and k2. For the upper left panel, which corresponds
to a simulation with vT = 0.0v0, only combinations of k1 and k2 yielding a value of
b2 ≥ 0.4 (see Fig. 6.15) are included in the sum. For the rest of the panels, that is
the simulations with finite velocity spread, only combinations of k1 and k2 yielding
a value of b2 ≥ 0.6 are included in the sum.

As expected, we see spikes at k3 ≈ 8.7 in simulations with vT < 0.25v0, much

like the ring-beam simulations. We also see spikes at k3 ≈ 12.2, 13.1, 15.5, and 18.7

across a wide range of simulations. These spikes are also seen in the ring-beam

simulations, albeit with stronger coupling. In the vT = 0.0v0 simulation, we see the

same example of nonlinearly driven modes interacting to produce other modes as in

the corresponding ring-beam simulation, that is, k3 ≈ 13.1 = k2 + k1 ≈ 4.35 + 8.7.

Unlike the ring-beam simulation, no strong modes above the noise level are observed

above the lower hybrid frequency, likely because the intensity of the parent modes

136



is significantly less than that of their ring-beam counterparts. It is possible that a

simulation with more computational macro-particles could improve upon this result

by decreasing the noise level, but at present this would require a tremendous amount

of computing resources.

6.4 Conclusions

In this chapter we have performed the first PIC simulations of the MCI due to

the collective relaxation of minority energetic protons modelled using an isotropic

spherical shell distribution. These first principles PIC simulations self-consistently

solve the Maxwell-Lorentz equations for fully kinetic thermal ion, energetic ion, and

electron populations, and are allowed to progress deep into the nonlinear regime.

This choice of distribution function is significantly different from the delta-function

minority ion distributions used in the works of [McClements et al., 2018; Carbajal

et al., 2014; Cook et al., 2013; Carbajal et al., 2017; Cook et al., 2017; Chapman

et al., 2017, 2018], and is a possible model distribution function for fusion-born ions

in the core of tokamak plasmas [Dendy et al., 1992, 1993; D. J, 1979]. We have

analysed six simulations of the MCI under these conditions, varying the velocity

spread in each one, as well as six additional simulations of the MCI in which the

minority protons were initialised using ring-beam distribution functions of varying

perpendicular velocity spread.

We found that the MCI was excited in all cases, and the spherical shell sim-

ulations took around twice as long to saturate as their ring beam counterparts, with

around ten times less energy transfer from the minority ions to the bulk plasma

and electromagnetic fields. In general, the time to linear saturation was found to

increase as the velocity spread increased in both the spherical shell and ring-beam

simulations. However, at thermal spreads vT ≥ 0.2v0, the spherical shell simulations

exhibited a fixed linear saturation time of approximately 80 proton gyro-periods,

with the saturation energy decreasing as vT increased, and the remainder of the free

energy in the minority ion distribution being transferred approximately monotoni-

cally to the bulk deuterons.

The mode structure in both sets of simulations was found to be qualitatively

similar, with the intensity of ICE in the ring-beam simulations sometimes two or-

ders of magnitude more than that of the spherical shell simulations, owing to the

increased energy transfer between the minority protons and the fields. In each case,
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increasing the velocity spread led to the most spectrally intense mode gradually

shifting from the fourth proton cyclotron harmonic, to the fifth, and finally to the

sixth. This suggests that by observing the mode structure in experiments, one may

be able to deduce the spread of the minority ion distribution, an important pa-

rameter as it determines how much energy is transferred to the bulk plasma and

electromagnetic fields due to the MCI. The linear growth rates of modes in all twelve

simulations were found to closely resemble the analytical linear growth rates, which

were calculated using a first principles kinetic dispersion solver [Irvine, 2018, 2019].

The nonlinear aspects of each simulation were discussed, and many signifi-

cant nonlinear wave-wave couplings were identified. In general, there are many more

wave-wave interactions in the ring-beam simulations than in the spherical shell sim-

ulations, however, the strongest nonlinearly driven modes of practical interest, i.e.

those that contribute significantly to the ICE signal, are present among both sets

of simulations. In particular, both sets of simulations exhibit a strong nonlinearly

driven (k, l) ≈ (8.7, 8) mode which does not lie along the magnetoacoustic dispersion

branch, and in the case of the ring-beam simulation with zero velocity spread, con-

tributes to approximately half of the total intensity of the eighth proton cyclotron

harmonic. Other nonlinear couplings gave rise to modes above the lower hybrid fre-

quency ωLH , and in the ring-beam simulations, some of these modes had intensities

comparable to low intensity linearly unstable modes. In the vT⊥ = 0.0v0⊥ ring-beam

simulation, it was suggested that one of these modes at (k, l) = (12.2, 10) couples

to another nonlinearly driven mode at (k, l) ≈ (3.3, 2), providing a second source

of energy to the eighth proton cyclotron harmonic, which is thus entirely driven by

nonlinear interactions. This demonstrates how indispensable the nonlinear physics

is when simulating ICE and interpreting experimental observations. The key to

identifying mode couplings was to first fulfil the wavenumber matching criterion,

followed by the frequency matching criterion. These two requirements highlight

that a modest experimental effort to detect both the perpendicular wavenumber

and high frequency ion cyclotron harmonics would enable us to better understand

the measured frequency spectrum, and hence the character of the energetic ion dis-

tribution function.

The similarity between: the variation of energy density with spread, the

linearly excited mode structure, and the nonlinear characteristics of both sets of

simulations, suggests that a ring-beam velocity distribution for the minority ener-

getic ions serves as a close approximation to an isotropic spherical shell distribution,
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provided the velocity spread isn’t too large. From a resource perspective this is cru-

cial. In this paper, both sets of simulations used large numbers of computational

macro particles and ran for a long time, resulting in high quality spectra. Firstly,

the ring-beam simulations are already around half as computationally demanding as

their spherical shell counter parts, as they take half as long to reach linear satura-

tion. Secondly, the intensity of ICE harmonics in the ring-beam simulations is much

higher than that of the spherical shell simulations, meaning in future simulations,

significantly less computational particles could be used whilst still maintaining a sat-

isfactory signal-to-noise ratio. The diagnostics with which to measure core ICE in

tokamaks are becoming more widespread, and the computing resources with which

to simulate it are becoming increasingly more sophisticated; we are thus at a junc-

ture in which it will soon be feasible for PIC simulations of the MCI to be used for

predictive modelling of tokamak plasma phenomena, as opposed to only interpretive

modelling. The “cheaper” ring-beam simulations offer a way to realise this.
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Chapter 7

Simulations with multiple

minority ion species

In this chapter we discuss PIC simulations of the MCI in which there are two

minority ion species. In section 7.1 we analyse the results of two simulations relevant

to the KSTAR tokamak that have both a minority fusion-born proton population,

and a minority neutral beam injected (NBI) deuteron population. The purpose of

this is to provide a link between the fusion-born proton ICE discussed in Sec. 4.1

and Sec. 4.3, and the deuteron NBI ICE discussed in Sec. 4.4.

In section 7.2, we discuss preliminary simulations of the MCI in JET toka-

mak plasmas in which both a minority NBI deuteron population and a minority low

temperature helium ash population are present. These simulations describe a mech-

anism that might enable us to pump out the alpha particle ash in deuterium-tritium

tokamak plasmas, which can be detrimental to plasma confinement [Wesson, 2004].

7.1 Simulations of KSTAR ICE with NBI deuterons

and fusion-born protons

Chapter 4 addresses two distinct types of ICE that are observed in KSTAR plasmas:

1. Steady-state ICE in steps of the deuteron cyclotron frequency preceding the

pedestal collapse through multiple ELM filament bursts, discussed in Sec. 4.1

and Sec. 4.3.

2. Highly dynamic downward frequency chirping ICE in steps of the proton cy-

clotron frequency during the pedestal collapse, discussed in Sec. 4.4.
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The MCI simulations in chapter 4 which pertain to these two phenomena,

consider them to be distinct, and model each type of ICE with two separate sets

of MCI simulations. Each set of simulations uses a single minority ion species rep-

resented by a ring-beam distribution function: NBI deuterons in the case of 1),

and fusion-born protons in the case of 2). This is valid because these two types of

ICE are seldom observed in the same KSTAR pulse. On the rare occasions when

they are, the steady-state deuteron ICE occurs ∼ 50µs before the chirping proton

ICE, which is approximately 100 times longer than the duration of a typical PIC

simulation of the MCI. It seems appropriate to conjecture that these two types of

ICE events naturally follow each other during ELM crashes, at least in some of the

KSTAR pulses. The steady-state NBI ICE exists before the ELM crash and can

be reproduced with PIC simulations using a background electron number density

similar to that found at the top of the pedestal. As the pedestal collapses through

multiple filament bursts, the local density changes, so the ICE is no longer steady-

state and instead chirps down, which can be reproduced by running PIC simulations

with a range of electron number densities. It is therefore possible that both types of

ICE exist simultaneously at the moment before the pedestal collapse, which we refer

to as t = t0 = 0 following the convention of chapter 4. The purpose of this section

is to test this hypothesis by simulating these two types of ICE simultaneously, and

to ascertain to what extent one effect influences the other, making sure that any

conclusions are consistent with our previous results in chapter 4.

We run a PIC simulation of the MCI using one spatial dimension and three

velocity dimensions. Both energetic deuterons and energetic protons are present in

our simulation, and are represented by ring-beam distribution functions. The mag-

netic field B0z = 1.44T is oriented along the z-axis, perpendicular to our simulation

domain, and the background plasma density ne = 2.5× 1019m−3 reflects that found

at the top of the pedestal in a typical KSTAR plasma. We set the background

electron and thermal deuteron temperatures Te = TD = 1keV, the ratio of NBI

deuterons to bulk plasma ions ξNBI = 10−3, and the ratio of fusion-born protons

to bulk plasma ions ξp = 10−3. The NBI deuterons are initialised as a 100keV

ring-beam with initial pitch angle of 72.4◦, zero drift, and no thermal spread, and

are therefore identical to the NBI deuteron population used in the simulations de-

scribed in Sec. 4.4. The fusion-born protons are initialised as a 300keV ring-beam

with zero drift and no thermal spread, and are therefore identical to the fusion-

born proton population used in the simulations of Sec. 4.1 and Sec. 4.3. The NBI

deuterons are allowed to evolve independently of the fusion-born protons for the first
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10 deuteron gyro-periods τcD of the simulation. At t = 10τcD, the NBI deuterons

have reached both linear and nonlinear saturation, and the fusion-born protons are

“switched on” and evolved in tandem with the NBI deuterons for a further 8τcD.

The simulation uses 50500 grid cells, and 800 particles per cell, meaning that for

the first 10 deuteron gyro-periods, the simulation is identical to the B0z = 1.44T

simulation discussed in Sec. 4.4, the only difference being this new simulation has

less computational macro-particles. At t = 10τcD, when the protons are initialised,

the simulation set-up very closely resembles that which makes up the left-most strip

of the lower left panel of Fig. 4.3 of Sec. 4.1. The key difference is that instead of

the fusion-born protons being initialised in a thermal plasma as in Sec. 4.1, they are

initialised in a plasma in which the wave and particle processes due to a minority

NBI deuteron population relaxing under the MCI have already been established.

Figure 7.1 shows the change in energy density as a function of time, nor-

malised to τcD, for this simulation. At early times, before the protons are initialised,

the primary energy flow from the NBI deuterons is to the thermal deuterons, whose

kinetic oscillation helps support the field oscillations excited by the MCI. These

field oscillations include, with comparable magnitude, an electromagnetic compo-

nent (∆Bz)
2, and an electrostatic component E2

x. This stage of the instability

reaches linear saturation by t ≈ 2τcD and nonlinear saturation by t ≈ 7τcD. At

t = 10τcD, the minority fusion-born protons are initialised, and they begin to “re-

excite” the MCI in what appears to be a two-stage process. From t = 10τcD to

t ≈ 13τcD, the fusion-born protons transfer their energy to the fields and bulk

plasma in a manner similar to the NBI deuterons, characteristic of ICE excitation

via the MCI. In addition, some of this energy is transferred to the now dormant

NBI deuterons. From t ≈ 13τcD until the end of the simulation at t ≈ 18.5τcD,

there is a second excitation stage, in which the magnetic field component Bz and

the bulk deuterons gain energy, further exciting the MCI. Unlike the first stage of

this process, there is no more energy transfer to the Ex field component. The NBI

deuterons continue to be energised by the fusion-born protons, resulting in signifi-

cantly less field excitation than was present in the purely fusion-born proton driven

ICE discussed in Sec. 4.1.
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Figure 7.1: Time evolution of the change in energy density of particles and electric
and magnetic fields as a function of time, from a PIC simulation with ξNBI = 10−3

and ξp = 10−3. The traces, ordered from top to bottom at their first peak (t ≈ 2τcD),
are: Top (red) the change in kinetic energy density of the thermal bulk plasma
deuterons; second (green) the energy density of the magnetic field perturbation
∆Bz; third (blue) the energy density of the electrostatic field Ex; fourth (cyan)
the change in kinetic energy density of the minority energetic fusion-born protons,
which are not initialised until t = 10τcD; fifth (magenta) the change in kinetic energy
density of the minority energetic NBI deuterons. Time is normalised to the deuteron
gyro period.

The spatiotemporal Fourier transform of this simulation using data from the

first 10 deuteron gyro-periods (20 proton gyro-periods τcp) is shown in Fig. 7.2. The

y-axis is normalised to the deuteron cyclotron frequency ωcD (= 0.5× ωcp), and the

x-axis is normalised to ωcD divided by the Alfvén speed vA. All other frequencies

and wavenumbers in the rest of this section use the same normalisation. Figure

7.2 shows no clear ICE excitation and the dispersion relation resembles that of a

thermal plasma. This was the case in Sec. 4.4, in which a higher value of ξNBI was

required to raise the signal above the noise level.
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Figure 7.2: Distribution of energy in the fluctuating z-component of the magnetic
field ∆Bz across frequency-wavenumber space from a PIC simulation with ξNBI =
10−3 and ξp = 10−3. This plot is a spatio-temporal Fourier transform of the Bz
field over the intervals spanning 0 ≤ x ≤ 50500λD and 0 ≤ t ≤ 10τcD (20τcp), before
the fusion-born protons have been initialised. Shading indicates the log10 of the
spectral density of the oscillatory part ∆Bz of the Bz field component in frequency-
wavenumber space. It is apparent that no visible ICE excitation is present, due to
the high levels of noise (see Sec. 4.4). As such, this dispersion relation resembles
that of a thermal plasma.

In Fig. 7.3, we re-plot the dispersion relation using data from the entire

duration of the simulation, 18.5τcD (37τcp). The corresponding power spectrum,

obtained by integrating over wavenumber, is shown in Fig. 7.4. We can see mul-

tiple spectral peaks at integer multiples of ωcp (the even integer multiples of ωcD),

including the ω = 17ωcp peak that is present in the left-most strip of the similar

simulation shown in the lower left panel of Fig. 4.3.
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Figure 7.3: As Fig. 7.2, except the temporal part of the Fourier transform of
the Bz field is over the interval spanning the full range of the simulation 0 ≤ t ≤
18.5τcD (37τcp). Spectrally intense regions at harmonics of the proton cyclotron
frequency (even harmonics of the deuteron cyclotron frequency) are present.

To try overcome the simulation noise present in the first 10τcD of the simula-

tion, before the protons are initialised, we now run a second simulation, increasing

both minority ion fractions to ξNBI = 10−2 and ξp = 10−2. As in Sec. 4.4, this

is not expected to affect our conclusions, because the simulated ICE power due to

the MCI has been found to scale linearly with fast particle concentration [Carbajal

et al., 2017]. The energy dynamics for this simulation are shown in the left panel of

Fig. 7.5. This plot looks rather peculiar because of huge amount of energy transfer

between the minority protons and minority deuterons at late times in the simula-

tions. A close up of this plot, focussing on the magnetic field excitation, is shown

in the right panel of the same figure. The first 10τcD are similar to that of Fig. 7.1,

however, the instability is much more rapid due to the large value of ξNBI = 10−2,

yielding a larger linear growth rate than that of the simulation with ξNBI = 10−3.

Despite the rapid saturation of the instability, this NBI deuteron-only portion of the

simulation ran for 10τcD, allowing us to obtain the frequency resolution necessary to
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Figure 7.4: The spectral intensity of the fluctuating Bz field energy density obtained
by integrating Fig. 7.3 over wavenumber. Strong spectral peaks at harmonics of the
proton cyclotron frequency (even harmonics of the deuteron cyclotron frequency)
are present.

distinguish the closely spaced deuteron cyclotron harmonics. As before, the protons

are initialised at t = 10τcD and excite the z-component of the magnetic field, the

thermal deuterons, but transfer the majority of their energy to the NBI deuterons,

mediated by the magnetic field. The overall energy transfer to the magnetic field

at t > 10τcD is again much greater than that at t < 10τcD, and also takes place in

two stages, up to t = 15τcD. Beyond t = 15τcD, the simulation has reached linear

saturation, and the energy oscillates between the magnetic field, the bulk deuterons,

and the energetic deuterons for the remainder of the simulation.
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Figure 7.5: Left: As Fig. 7.1 but from a simulation with ξNBI = 10−2 and
ξp = 10−2. Right: An inset of the left panel, focussing on the evolution of the
z-component of the magnetic field Bz.

We know from panel c) of Fig. 4.22, that ICE at deuteron cyclotron harmon-

ics is observed under these conditions, but for completeness, the power spectrum

as a function of frequency corresponding to the first 10τcD (20τcp) from our new

simulation is shown in Fig. 7.6. Deuteron cyclotron harmonics above ω = 14ωcD

are lost in the simulation noise and hence are not shown here. We can confidently

say that despite the lower number of computational macro-particles in comparison

to the simulation whose results are shown in Fig. 4.22, we observe ICE with spacing

ωcD in our new simulation. As in Sec. 4.1, it becomes difficult to distinguish the

high frequency harmonics from the background noise.

The power spectrum using data from the full 18τcD (36τcp) of the simulation

is shown in Fig. 7.7. The deuteron cyclotron harmonics are difficult to distinguish

at low frequencies, and at high frequencies, which are experimentally relevant [Kim

et al., 2018; Thatipamula et al., 2016], the spectrum is completely dominated by

ICE with spacing equal to the proton cyclotron frequency. The spectral peaks at

multiples of the proton cyclotron frequency are up to three orders of magnitude

greater than ICE at harmonics of the deuteron cyclotron frequency, and in some

cases, slightly shifted from integer multiples of ωcp. The cause of this shift is un-

known, and would require more simulations and analysis to understand, but it could

be due to nonlinear wave-wave interactions between deuteron and proton cyclotron

harmonics, or simply the result of doing a Fourier transform on what is essentially a

composite, highly non-stationary signal. These questions are left for future studies.

These tentative results may suggest that in a situation in which both en-

ergetic NBI deuterons and fusion-born protons are present, both types of ICE are

also present, but fusion-born proton ICE is by far the most spectrally intense, so
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Figure 7.6: The spectral intensity of the fluctuating Bz field energy density from
a simulation with ξNBI = 10−2 and ξp = 10−2. Power is obtained by performing a
spatio-temporal Fourier transform of the Bz field over the intervals spanning 0 ≤
x ≤ 50500λD and 0 ≤ t ≤ 10τcD (20τcp) and then integrating over wavenumber. The
temporal range of simulation data corresponds to times before the initialisation of
the minority fusion-born protons.

much so that NBI deuteron ICE is barely observed. These results may therefore

explain the apparent absence of ICE with spacing ωcD in KSTAR spectrograms that

exhibit downward frequency chirping with spacing ωcp. These results may also ex-

plain the apparent side-band features present at high frequencies in the upper panel

of Fig. 4.4 of Sec. 4.1 (repeated here as Fig. 7.8 for convenience), although without

many more simulations of higher quality than those presented in this section, it is

impossible to draw any reasonable conclusions as to the extent of this effect.
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Figure 7.7: As the Left panel of Fig. 7.6, except the temporal part of the Fourier
transform of the Bz field component is over the interval spanning the full range
of the simulation, 0 ≤ t ≤ 18τcD (36τcp), after the fusion-born protons have been
initialised. ICE at harmonics of the proton cyclotron frequency (even harmonics
of the deuteron cyclotron frequency) is more intense than ICE at harmonics of the
deuteron cyclotron frequency.

7.2 Preliminary simulations of helium ash pumping in

JET core plasmas

In future deuterium-tritium plasmas, such as those in ITER, some of the α-particles

produced in fusion reactions may accumulate in the core region in the form of

helium ash. The presence of this ash is highly undesirable for two main reasons;

one, it increases radiation losses via bremsstrahlung radiation due to the increased

acceleration of electrons in the presence of ions with high charge numbers [Wesson,

2004]; and two, it dilutes the plasma fuel, limiting the maximum achievable plasma

density and hence the fusion power. The removal of helium ash is therefore of

tremendous practical interest for future burning plasmas. There are a variety of

mechanisms under consideration for the removal of helium ash, including transport
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Figure 7.8: Experimentally-measured fast RF burst spectrogram from KSTAR
plasma 11513 with B0 = 1.99T and average electron number density before the
ELM crash 〈ne〉 = 2.6× 1019m−3. The white dashed lines denote successive proton
cyclotron harmonics. Downward step-wise frequency chirping with ωcp/2pi = fcp ∼
25MHz is apparent, and some of the features are accompanied by side-band features
of lesser intensity.

from the core to the edge via Sawtooth oscillations [Chapman, 2010], pumping

via ion cyclotron resonance heating (ICRH) [Hamamatsu et al., 1998], and using

resonant magnetic perturbations (RMPs) to control the helium entry into the core

plasma at the edge [Schmitz et al., 2016]. In addition, ELMs in H-mode plasmas

may offer a natural way to expel impurities, such as helium ash from the exhaust

region [Kamiya et al., 2007; Zohm, 1996].

In this section, we discuss preliminary simulation results which may pave the

way for another method with which to pump out the helium ash. The basic idea

is to use high energy perpendicular NBI to “kick” helium ash particles in the core

plasma onto a new trajectory with a larger perpendicular velocity component. In a

tokamak plasma, helium ash particles with v⊥ � v‖ may then lie on orbits which

take them outside of the plasma and into the exhaust region. We run a series of

1D3V PIC simulations using plasma parameters typical of JET core plasmas. The

temperature of the thermal electrons and deuterons is set to Te = TD = 5keV, the

background plasma density ne = 9.8 × 1019m−3, and the magnetic field Bz = 2.7T

is oriented along the z-axis, perpendicular to the simulation domain. Each simula-

tion uses 10,150 grid cells with 1,000 particles per cell. We represent our minority

NBI deuterons using a ring-beam velocity distribution with zero parallel velocity

and zero thermal spread. Helium ash is represented using a Maxwellian velocity

distribution. We set the ratio of helium ash to bulk ions ξα = 10−3, and the ratio

of NBI deuterons to bulk ions ξNBI = 10−3.
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Figure 7.9: Time evolution of the change in energy density of particles and electric
and magnetic fields as a function of time in multiple PIC simulations with initial
NBI deuteron energies 80keV, 140keV, and 200keV (rows), and initial helium ash
temperatures 0.1MeV, 0.5MeV, and 1.0MeV (columns). The traces, ordered from
top to bottom in the upper left panel are: Top (magenta) the change in kinetic
energy density of the minority helium ash; second (red) the change in kinetic energy
density of the thermal bulk plasma deuterons; third (green) the energy density of the
magnetic field perturbation ∆Bz; fourth (blue) the energy density of the electrostatic
field Ex; fifth (cyan) the change in kinetic energy density of the minority energetic
NBI deuterons. Time is normalised to the deuteron gyro period.

A total of nine simulations were run using a combination of three initial NBI

deuteron energies: ENBI = 80keV, 140keV, and 200keV; and three values for the

temperature of the helium ash: Tth,α = 0.1MeV, 0.5MeV, and 1.0MeV. The change

in energy density as a function of time for these nine simulations is shown in Fig.

7.9, in which rows correspond to a fixed value of ENBI and share the same range

of x and y axis values, and columns correspond to a fixed value of Tth,α. In all

simulations, the helium energy density, denoted by the magenta trace, increases as

time progresses. This additional energy comes directly from the NBI deuterons,

whose velocity is entirely in the perpendicular direction, and the energy transfer is
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mediated by the bulk ions and the electromagnetic fields. The amount of energy

transfer to the helium ash increases as the NBI deuteron energy increases, as does the

time for the simulation to reach linear saturation. Crucially, the influence of the NBI

deuterons is greatest for low temperature helium ash - those which contribute most

to the dilution of the plasma and the reduction in the maximum achievable fusion

power. The most extreme example of this is the simulation with ENBI = 80keV

and Tth,α = 1.0MeV shown in the top left panel of Fig. 7.9, in which the simulation

largely behaves as if the helium ash were absent.

For completeness, Fig. 7.10 shows the results of a simulation with ENBI =

140keV and Tth,α = 0.1MeV, but with a helium ash concentration ξα = 10−6, a

thousand times less than the deuterium NBI concentration. Under these conditions,

there is no energy transfer to the helium ash, the energy dynamics resemble those

typical of the MCI.
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Figure 7.10: Time evolution of the change in energy density of particles and elec-
tric and magnetic fields as a function of time in a PIC simulation in which the ini-
tial NBI deuteron energy is 140keV, the initial helium ash temperature is 0.1MeV,
ξNBI = 10−3, and ξα = 10−6. Time is normalised to the deuteron gyro period. No
appreciable energy transfer takes place between the NBI deuterons and the helium
ash.
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We now turn our attention to the perpendicular velocity distribution func-

tions of the helium ash in the nine simulations which make up the panels of Fig.

7.11. These distribution functions are calculated from particle data at the time

shown in the top right corner of each panel, which is approximately equal to the

time of linear saturation in each simulation. The x-axes have been normalised to

the ensemble average of the magnitude of the initial perpendicular velocity of the

NBI deuterons. For the simulations with Tth,α = 0.1MeV, shown in the first column,

there is a distinct bump in the distribution function at v⊥,α ≈ v⊥NBI , meaning at

the time of linear saturation, the momentum transfer is localised in velocity space.

This bump in the velocity distribution is present in the bottom two panels of the

middle column, but is much less pronounced. Thus, only NBI deuterons with high

energy are able to affect significant change in a helium ash population which has

not yet fully cooled. There are no bumps present in the right column corresponding

to Tth,α = 1.0MeV, meaning the most energetic helium particles are left unaffected

by this process.

7.3 Conclusions

In this chapter we have carried out simulations of the MCI relevant to two novel

scenarios in which there are two minority ion species present. The first of these

pertains to ICE observed during KSTAR plasmas, where the pedestal is observed

to collapse through multiple filament bursts during ELM crashes. We ran two sim-

ulations with different minority ion concentrations, initialising both minority NBI

deuterons and minority fusion-born protons using ring-beam velocity distributions,

the latter being time delayed with respect to the former. We found that in both

simulations the fusion-born proton ICE was much more spectrally intense than the

NBI deuteron ICE, offering a potential explanation as to why steady-state ICE in

steps of the deuteron cyclotron frequency, and highly dynamic downward frequency

chirping ICE in steps of the proton cyclotron frequency, are not observed at the same

time during the KSTAR ELM crash process. We note in passing that given enough

computational resources, it may be possible to show that faint deuteron ICE at high

frequencies is observed alongside the dominant proton ICE, which could provide an

explanation for existence of the side-band features observed in some KSTAR plasmas

that exhibit downward frequency chirping in steps of the proton cyclotron frequency.

We then discussed preliminary results of PIC simulations pertaining to he-

lium ash pumping in JET core plasmas. We identified a novel mechanism in which
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Figure 7.11: Perpendicular velocity distribution function of the helium ash popula-
tion in multiple PIC simulations with initial NBI deuteron energies 80keV, 140keV,
and 200keV (rows), and initial helium ash temperatures 0.1MeV, 0.5MeV, and
1.0MeV (columns). The y-axes are normalised to 10−7, while the x-axes are nor-
malised to the ensemble average of the magnitude of the initial velocity of the NBI
deuteron population. In each panel, the distribution function was calculated using
particle data outputted directly from the PIC simulation at the time of linear satu-
ration, which corresponds to the troughs of the cyan traces shown in Fig. 7.9, and
is displayed in the top right inset of each panel.

perpendicular deuteron NBI can be used to selectively target helium ash in the core,

transferring a considerable amount of perpendicular momentum to a subset of the

ash population, which may alter its orbit in way which carries them out of the core

plasma. For an initial NBI deuteron energy of 140keV, the highest energy that can

be realistically used to heat JET plasmas, only low temperature helium ash is tar-

geted by this mechanism, leaving the still mildly energetic helium unaffected. This

means that it may be possible to modify existing NBI systems to pump out helium

ash in the core, and it may even be worthwhile to have a dedicated perpendicu-

lar NBI system whose sole purpose is for helium ash pumping, and not necessarily

plasma heating. This effect is also observed at a comparatively low NBI injection
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energy of 80keV, meaning it may be possible to observe using the current NBI sys-

tems in place on medium sized tokamaks such as KSTAR or ASDEX-Upgrade. The

simulations presented in this section are the subject of ongoing research, and further

work is underway to quantify the effect of NBI beams on helium ash populations in

core tokamak plasmas.
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Chapter 8

Summary

In this thesis we have used particle in cell (PIC) simulations for the numerical study

of Ion cyclotron emission (ICE) excited by the magnetoacoustic cyclotron instabil-

ity (MCI) in the context of three tokamak devices. In chapter 4 we investigated

two distinct types of ICE in the KSTAR tokamak, fusion product (FP) driven ICE

at spacing of the proton cyclotron frequency, and ICE with spacing equal to the

deuteron cyclotron frequency driven by neutral beam injection (NBI) [Thatipamula

et al., 2016; Kim et al., 2018]; and two preliminary simulations attempting to es-

tablish a synergy between these two types of ICE were analysed in chapter 7. In

chapter 5, we carried out simulations of ICE in the JET tokamak, which was ex-

cited by a minority 3He population heated by ICRF waves. We then performed a

single simulation of the MCI with ASDEX Upgrade (AUG) plasma parameters to

ascertain if the MCI could explain the FP ICE with spacing equal to the proton

cyclotron frequency [Ochoukov et al., 2018], concluding that it is indeed a likely

emission mechanism. Motivated by the contemporary core ICE results [Ochoukov

et al., 2018, 2019], in chapter 6 we carried out a numerical study of MCI excitation

due to both ring beam and spherical shell distributions of varying thicknesses, pro-

viding the first precedent for ICE excitation due to the MCI from spherical shell

distributions, which arise in core plasmas. I will now offer brief summaries of the

main findings in each chapter.

8.1 KSTAR ICE

During Edge Localised Mode (ELM) crashes in KSTAR deuterium plasmas, bursts

of spectrally structured ICE are detected. We first examined KSTAR chirping ICE

with spacing equal to the proton cyclotron frequency. This frequency chirping was
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observed on sub-microsecond timescales near the plasma edge. By first using orbit

calculations, we were able to prove that a subset of fusion born protons in KSTAR

remain on confined, deeply passing orbits. We then carried out multiple simulation

runs for different, adjacent, values of the plasma density under KSTAR edge condi-

tions, which enabled us to infer the theoretical dependence of ICE spectral structure

on the local electron number density. By matching this density dependence to the

observed time-dependence of chirping ICE spectra in KSTAR, we obtained sub-

microsecond time resolution of the evolving local electron number density during

the ELM crash.

It was clear from this analysis that the lower hybrid frequency ωLH was

playing a substantial role in the simulation dynamics. To this end, we undertook

a numerical study to quantify to what extent ωLH influenced the dynamics of the

simulation and experiment. We found that, for several values of magnetic strength,

decreasing the density below a certain critical value resulted in a simulation in which

only one cyclotron harmonic was excited.

We then analysed a novel spectrally structured ICE feature in the range 500

MHz to 900 MHz, which also exhibited chirping on sub-microsecond timescales.

The spectral peaks of this feature correspond to harmonics l of the proton cyclotron

frequency ωcp at the outer midplane edge, where l = 20 to 36. This frequency

range exceeded estimates of ωLH from our previous analysis. This new feature

was time-shifted with respect to the brighter lower-frequency chirping ICE feature

previously analysed. By carrying out bispectral analysis of the measured KSTAR

fields and of the field amplitudes output from the PIC simulations, we showed that

the new, fainter, higher-frequency chirping ICE feature, was driven by nonlinear

wave coupling between different neighbouring spectral peaks in the lower-frequency

ICE feature. This reinforces the identification of the MCI as the plasma physics

process underlying proton harmonic ICE from KSTAR, while providing a novel

instance of nonlinear wave coupling on very fast timescales.

We then turned our attention to the “steady state” deuterium ICE which

is observed in multiple KSTAR pulses, usually ∼ 50µs − 100µs prior to the ELM

crash and in some KSTAR pulses, immediately before the chirping features described

above. Using the linear analytical theory of the MCI, energetic particle orbit stud-

ies, and first principles PIC simulations, we were able to provide an explanation

for the origin of steady-state ICE at multiple deuterium cyclotron harmonics. The

collective relaxation of a minority energetic population of NBI deuterons in two PIC

simulations generated electric and magnetic field oscillations whose power spectra

substantially resemble the measured ICE spectra. Some low harmonic peaks in one
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simulation frequency spectrum were not detected in its experimental counterpart.

A probable explanation for this is that the S11 return loss of the Bowtie antenna

used to measure this RF signal was close to 0dB, implying very high reflectivity in

this low frequency range.

We have now explained the main features of two distinct types of ICE from

KSTAR plasmas: steady-state ICE due to NBI deuterons; and highly dynamic

chirping ICE due to fusion-born protons. It seems appropriate to conjecture that

these two types of ICE events naturally follow each other during ELM crashes, at

least in KSTAR. The “steady state” NBI ICE exists before the ELM crash and can

be reproduced with PIC simulations using a background electron number density

similar to that found at the top of the pedestal. As the pedestal collapses through

multiple filament bursts, the local density changes, so the ICE is no longer “steady

state” and instead chirps down, which can be reproduced by running PIC simula-

tions with a range of electron number densities. We investigated this conjecture

by running two additional simulations with different minority ion concentrations,

initialising both minority NBI deuterons and minority fusion-born protons using

ring-beam velocity distributions, the latter being time delayed with respect to the

former. We found that in both simulations, the fusion-born proton ICE was much

more spectrally intense than the NBI deuteron ICE, offering a potential explana-

tion as to why steady-state ICE in steps of the deuteron cyclotron frequency, and

highly dynamic downward frequency chirping ICE in steps of the proton cyclotron

frequency, are not observed at the same time during the KSTAR ELM crash process.

This tentative result does not explain why the ICE spacing is ωcD before the crash,

and sometimes changes to ωcp during the crash. For the ICE spacing to change, the

driving populations of energetic particles must be different - NBI deuterons prior to

the crash, and fusion born protons during the crash. We should note that downward

frequency chirping with spacing equal to ωcD is also observed during some KSTAR

plasmas. Further multiple ion species simulations may shed light on the existence

of the side-band features observed in some KSTAR plasmas that exhibit downward

frequency chirping in steps of the proton cyclotron frequency. Reconciling these

three ICE observations and putting them into the context of the overall ELM crash

cycle is the subject of future work.
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8.2 JET and AUG ICE

This chapter started by first examining the MCI instability in relation to the ICRF

ICE JET observed in multiple JET plasma pulses reported in Refs. [Jacquet et al.,

2011; McClements et al., 2018]. Simulations of the MCI in a proton plasma with a

minority helium-3 ring beam population were run, and successfully reproduced the

experimentally observed ICE feature at the 3He fundamental. We then went on to

examine how different wave propagation angles θ and the inclusion of a finite parallel

drift v‖0 in the 3He ring beam distribution affect the simulation dynamics. It was

found that the simulations were somewhat sensitive to a small change in θ from 90◦

to 89◦, but that the inclusion of a finite parallel drift v‖0 had little effect on the

dynamics of simulations with θ = 89◦. We found that for these plasma parameters,

increasing θ to 92◦, led to a predominantly electrostatic instability, and, increasing

it further beyond 92◦, meant the instability was no longer excited. Future work

could investigate the role of a finite v‖0 in simulations with θ further away from 90◦,

as the effects of parallel dynamics will become more important, provided we are still

close enough to θ = 90◦ for the MCI to be excited strongly.

We then analysed the results of a single MCI simulation of the core FP ICE

observed at the fundamental proton cyclotron frequency in AUG deuterium plas-

mas [Ochoukov et al., 2018]. We approximated the expected proton spherical shell

distribution function as a proton ring beam, on the basis that only a narrow region

of phase space contributes to the excitation of ICE via the MCI. Using bicoherence

analysis, it was shown the linear stable modes with l > 5, on both the forward and

backward propagating branches of the dispersion relation, couple together nonlin-

early to produce many additional spectral features, including the experimentally

observed l = 1 mode and other linearly stable modes with l ≤ 5. This l = 1 fea-

ture was observed to grow in amplitude as the simulation progresses deeper into

the nonlinear re-energisation regime, and the strength of the nonlinear coupling was

observed to follow a similar pattern.

In both the JET and AUG relevant simulations described above, the nonlin-

ear aspects of the MCI and ICE excitation were shown to be indispensable to the

interpretation of the observed ICE phenomena in both devices. Future devices such

as ITER would benefit from an effort to detect high cyclotron harmonics, such as

those observed in KSTAR (see Refs. [Thatipamula et al., 2016; Kim et al., 2018]

and chapter 4). Provided the temporal resolution is sufficiently high, it would then

be possible to use bicoherence analysis as a first step to quantifying the nonlinear

interactions which may lead to low l modes, which could then be used to confirm
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the hypothesis set out in chapter 5.

8.3 Core ICE

In this chapter, we performed the first PIC simulations of the MCI due to the collec-

tive relaxation of minority energetic protons modelled using an isotropic spherical

shell distribution. We analysed six simulations of the MCI under these conditions,

varying the velocity spread in each one, as well as six additional simulations of the

MCI in which the minority protons were initialised using ring-beam distribution

functions of varying perpendicular velocity spread. The MCI was excited in all

cases, and the spherical shell simulations took around twice as long to saturate as

their ring beam counterparts, with around ten times less energy transfer from the

minority ions to the bulk plasma and electromagnetic fields.

The mode structure in both sets of simulations was found to be qualitatively

similar, and, in each case, increasing the velocity spread led to the most spectrally

intense mode gradually shifting from the fourth proton cyclotron harmonic, to the

fifth, and finally to the sixth. This suggests that by observing the mode structure in

experiments, one may be able to deduce the spread of the minority ion distribution,

an important parameter as it determines how much energy is transferred to the bulk

plasma and electromagnetic fields due to the MCI. The nonlinear aspects of each

simulation were discussed and many significant nonlinear wave-wave couplings were

identified. In general, there are many more wave-wave interactions in the ring-beam

simulations than in the spherical shell simulations, however, the strongest nonlin-

early driven modes of practical interest, i.e. those that contribute significantly to

the ICE signal, are present among both sets of simulations. In particular, both sets

of simulations exhibit a strong nonlinearly driven (k, l) ≈ (8.7, 8) mode which does

not lie along the magnetoacoustic dispersion branch, and in the case of the ring-

beam simulation with zero velocity spread, contributes to approximately half of the

total intensity of the eighth proton cyclotron harmonic. Other nonlinear couplings

gave rise to modes above the lower hybrid frequency ωLH , and in the ring-beam

simulations, some of these modes had intensities comparable to low intensity lin-

early unstable modes. This demonstrates how indispensable the nonlinear physics

is when simulating ICE and interpreting experimental observations. The key to

identifying mode couplings was to first fulfil the wavenumber matching criterion,

followed by the frequency matching criterion. These two requirements highlight

that a modest experimental effort to detect both the perpendicular wavenumber
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and high frequency ion cyclotron harmonics would enable us to better understand

the measured frequency spectrum, and hence the character of the energetic ion dis-

tribution function.

The similarity between: the variation of energy density with spread, the

linearly excited mode structure, and the nonlinear characteristics of both sets of

simulations, suggests that a ring-beam velocity distribution for the minority ener-

getic ions serves as a close approximation to an isotropic spherical shell distribution,

provided the velocity spread is not too large. From a resource perspective, this is

crucial. The diagnostics with which to measure core ICE in tokamaks are becoming

more widespread, and the computing resources with which to simulate it are be-

coming increasingly more sophisticated; we are thus at a juncture in which it will

soon be feasible for PIC simulations of the MCI to be used for predictive modelling

of tokamak plasma phenomena, as opposed to only interpretive modelling. The

“cheaper” ring-beam simulations offer a way to realise this.

8.4 Preliminary simulations of helium ash pumping in

JET core plasmas

In this short section, we analysed preliminary results of PIC simulations pertaining

to helium ash pumping in JET core plasmas. We identified a novel mechanism in

which perpendicular deuteron NBI can be used to selectively target helium ash in

the core, transferring a considerable amount of perpendicular momentum to a subset

of the ash population, which may alter its orbit in a way which carries them out

of the core plasma. Only low temperature helium ash populations were affected by

this process, meaning that it may be possible to modify existing NBI systems, or

implement new ones, to pump out this core ash, with negligible consequences for

the helium ions that are still energetic and can be used for plasma heating. The

simulations presented in this section are the subject of ongoing research, and further

work is underway to quantify the effect of NBI beams on helium ash populations in

core tokamak plasmas.
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Appendix A

Hybrid version of EPOCH

A.1 Introduction to hybrid codes

I have begun work on a hybrid counterpart to the 1D3V version of the EPOCH

PIC code detailed in chapter 4. This code can be used in conjunction with the PIC

version of EPOCH, requiring only a compiler flag to be switched on, along with the

specification of some additional input parameters which are discussed in Sec. A.3.1.

In this context, a “hybrid” code is one in which the electrons are treated as a massless

neutralising fluid, while the ions are represented as computational macro-particles

like in a regular PIC code. This approximation is relevant to phenomena in which

the typical length scales are larger than the ion inertial length, and the time scales

are of the order of the ion gyro-period [Winske et al., 2003]. Hybrid codes allow

us to study plasma phenomena occurring on long time-scales, whilst retaining the

full gyro-motion of the ions. Of course, one must take care to avoid neglecting any

electron effects that play a role in the structure of waves supported predominantly

by the thermal motion of the ions. An example of this is given in Sec. 4.2, where it

was observed that the lower hybrid frequency, which depends on the electron mass

(see Eq. 1.15), curtails the number of modes that are available for excitation via

the energetic-ion driven magnetoacoustic cyclotron instability (MCI). Hybrid PIC

codes have been successfully applied to a wide range of plasma physics phenomena,

particularly those relevant to space and solar wind physics, see Ref. [Winske et al.,

2003] and references therein. Recently, hybrid codes have been successfully applied

to MCF physics, such as the formation of filamentary structures “plasma blobs”

in the edge region of tokamak plasmas [Gingell, 2013; Gingell et al., 2012, 2014,

2013], and simulations of Ion cyclotron emission (ICE) via the MCI in a range of

tokamak operating regimes [Carbajal et al., 2014; Carbajal, 2015; Carbajal et al.,
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2017; Dendy et al., 2017; Reman et al., 2016]. In Sec. A.2, we discuss the equations

used to advance the electromagnetic fields in Hybrid EPOCH, and follow this by a

discussion of the numerical scheme in Sec. A.3. Most of the technical aspects of

Hybrid EPOCH, such as the particle shape functions, the particle loading, and the

I/O, are identical to that of the standard PIC version of EPOCH. As such, only

major differences are discussed in this appendix, and we refer the reader to chapter

2 for more details.

It should be stressed to the reader that at the time of writing, the 1D3V version

of Hybrid EPOCH is not yet functional, and suffers from poor energy conservation.

This appendix is here to serve as a record of the code development thus far, to aid

in the future development of Hybrid EPOCH.

A.2 Hybrid field equations

We start with the electron momentum equation, and let the me
dve
dt term on the left

side of the equation equal 0

0 = ene

(
E +

Ve ×B

c

)
−∇ ·Pe. (A.1)

Here, E is the electric field, B is the magnetic field, Ve is the electron fluid

velocity, and Pe is the electron pressure tensor. We assume quasi-neutrality such

that ne = ΣN
j Zjnj , where ne is the electron density, N is the total number of ion

species, nj is the number density of an ion belonging to species j, and Zj is the

atomic number of an ion belonging to species j. To simplify the algebra, we will

assume that there is only one ion species in the following derivation, it is then

straightforward to extend the equations to multiple ion species. Here we will take

the pressure as a scalar such that Pe = peI where I is the unit dyadic and pe is

the scalar electron pressure. We set pe = nekbTe, where Te is assumed constant

throughout the simulation.

In its present form, the hybrid version of EPOCH assumes no resistivity.

This can easily be implemented later by adding the term eneη · J to the right side

of Eq. A.1, where η is the resistivity tensor and J is the total current; along with a

slight modification to the particle push routine to add −eη · J to acceleration term

in ion equations.
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We use Ampère’s law in low frequency limit

∇×B = µ0J = µ0qini (Vi −Ve) , (A.2)

where Vi is the ion bulk velocity

Vi =

∑N
j=1 (Zjnjuj)∑N
j=1 (Zjnj)

. (A.3)

N is the number of ion species, uj and nj are the bulk velocity and number density

of species j. The bulk velocity of an ion belonging to species j is

uj =

∑M
k=1 ∆wk (r)vk∑M
k=1 ∆wk (r)

(A.4)

Where ∆wk(r) is the contribution of the ion to the grid cell at position r. Combining

to eliminate variables gives

E =
1

µ0ene
((∇×B)×B)−Vi ×B− kbTe

ene
∇ne , (A.5)

where ne is given by the quasi-neutrality condition. Equation A.5 and Faraday’s law

are the equations used to evolve the electromagnetic fields in Hybrid EPOCH. The

position and velocity are updated in the same way as the PIC version of EPOCH,

which is detailed in chapter 2. To summarise, the only change to the equations is

that Ampère’s law has been swapped out for the the generalised Ohm’s law derived

here. Note that Eq. A.5 is independent of time, only grid quantities defined at the

appropriate times are required to evolve the electric field.

A.3 Numerical implementation

Two variations of a similar algorithm have been implemented in Hybrid EPOCH,

and their usage is controlled by a compiler flag. In both variants of the algorithm,

the particle’s positions and velocities are staggered in time, such that the particles

positions are defined at time level “N”, and the particle’s velocities are defined at

time level “N − 1
2”. The particle push is identical to that used in the PIC version of

EPOCH, the only difference is that we no longer need the extra half timestep position

update to get the current using the Villasenour-Buneman method [Villasenor and

Buneman, 1992], and there are two additional function calls to get ni and Vi on

the grid. In the following, the functions: F,G,H, and L denote components of: the

Lorentz force law used to update the velocities, the equation of motion, Faraday’s
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law, and the generalised Ohm’s law. The default algorithm can be summarised by

the following steps:

1. Update the particle velocity by a full timestep: vN+1/2 = vN−1/2+F
(
EN ,BN

)
.

2. Update the particle position by a full timestep: xN+1 = xN + G
(
vN+1/2

)
.

→ Gather the ion bulk velocity Vi at time level N + 1/2, as well as the total

ion density ni at time levels N + 1/2 and N + 1.

3. Update the magnetic field by half a timestep: BN+1/2 = BN + H
(
EN
)
.

4. Update the electric field by half a timestep: EN+1/2 = L
(
BN+1/2, n

N+1/2
i ,V

N+1/2
i

)
.

5. Update the magnetic field by a further half timestep: BN+1 = BN+1/2 +

H
(
EN+1/2

)
.

6. Use 4th-order Bashford-Adams extrapolation to obtain the ion bulk velocity

at time level N + 1 (details below): VN+1
i .

7. Update the electric field by a further half timestep: EN+1 = L
(
BN+1, nN+1

i ,VN+1
i

)
.

The bulk velocity at time levelN+1 is unknown, once the simulation has advanced at

least two timesteps, this is estimated using 4th-order Bashford-Adams extrapolation

VN+1
i = 2V

N+1/2
i − 3

2
V
N−1/2
i +

1

2
V
N−3/2
i . (A.6)

For the first timestep, we necessarily use 2nd-order extrapolation

VN+1
i =

3

2
V
N+1/2
i − 1

2
V
N−1/2
i . (A.7)

The second variant of this algorithm uses 4th-order Runge-Kutta subcycling, in

which the magnetic field is advanced from time level N to time level N + 1 by

dividing the update into θ smaller timesteps of duration ∆t
′

= ∆t/θ. This has been

shown to ameliorate the effects of the short wavelength whistlers that plague most

hybrid codes [Terasawa et al., 1986; Winske et al., 2003]. We will denote a subcycled

time-level by s = N/θ. The magnetic field at time level N + s is given by

BN+s = BN +
∆t
′

6

(
KN

1 + 2KN
2 + 2KN

3 + KN
4

)
, (A.8)

where

KN
1 = −∇× L

(
BN
)
,
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KN
2 = −∇× L

(
BN +

∆t
′

2
KN

1

)
,

KN
3 = −∇× L

(
BN +

∆t
′

2
KN

2

)
,

KN
4 = −∇× L

(
BN + ∆t

′
KN

3

)
, (A.9)

and L is the function we defined earlier to represent the electric field update, and

takes n
N+1/2
i and V

N+1/2
i as inputs throughout the entire magnetic field update.

This alternative algorithm can be switched on by setting the “SUBCYCLING”

compiler flag in the Makefile (in addition to the “HYBRID” flag), and works in the

following way:

1. Update the particle velocity by a full timestep: vN+1/2 = vN−1/2+F
(
EN ,BN

)
.

2. Update the particle position by a full timestep: xN+1 = xN + G
(
vN+1/2

)
.

→ Gather the ion bulk velocity Vi at time level N + 1/2, as well as the total

ion density ni at time levels N + 1/2 and N + 1.

3. Update the magnetic field by a full timestep using 4th order Runge-Kutta

subcycling: BN+1 = BN+ Loop over θ iterations:

→ BN+s = BN+s = BN + ∆t
′

6

(
KN

1 + 2KN
2 + 2KN

3 + KN
4

)
where K{1..4} are

given by Eq. A.9.

4. Use 4th order Bashford-Adams extrapolation to obtain the ion bulk velocity

at time level N + 1: VN+1
i .

5. Update the electric field by a full timestep: EN+1 = L
(
BN+1, nN+1

i ,VN+1
i

)
.

Note that both schemes require only one loop through the particles. Regardless of

which scheme is used, both schemes still suffer from a lack of energy conservation

due to short wavelength whistler modes. This can be ameliorated by smoothing the

grid variables B,E,Vi, and ni at each iteration. For a given quantity H located at

grid point p a weighted average is calculated

Hp =
1

4
Hp−1 +

1

2
Hp +

1

4
Hp+1. (A.10)
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The final value of H is given by

Hp = (1− αs)Hp + αsHp, (A.11)

where αs is a user specified smoothing parameter controlling the level of numerical

diffusion.

A.3.1 Additions to the EPOCH input deck

A new block called “hybrid” has been added to the EPOCH input deck. There are

only three new values for the user to set:

Te x - The electron temperature in the x-direction, the only relevant direction in the

current 1D3V version of EPOCH. The default value is 0, which is equivalent

to not including the pressure gradient term in Eq. A.1.

alpha - The smoothing parameter defined above. The default value is 0, but, if

this is not set, the program provides a warning telling the user that this is ill

advised.

rk4 steps - The number of subcycling steps to do if the code was compiled using the

“SUBCYCLING” flag. The default and value is 1, which is also the minimum

value allowed. If the code was not compiled with the “SUBCYCLING” option,

this entry is ignored.

All default values of these three quantities are all valid under the right physical con-

ditions, meaning Hybrid EPOCH can in theory be run with no changes to the input

deck, and only one change to the Makefile. Of course, this may have implications

for the physics, if electron pressure is important, or if the simulation is sensitive to

short wavelength whistler modes.

A.4 Summary and future

In this appendix we have provided documentation pertaining to the implementation

of a hybrid 1D3V version of the EPOCH PIC code, in which the electrons are

treated as a massless neutralising fluid and the ions are treated as particles. This

version of the code is finished, but still suffers from poor energy conservation and

instability. This will be addressed in the future. Once the 1D3V version of the code

is numerically stable, it is straightforward to extend the code to 2D3V and 3D3V,

and to add other physics effects such as finite plasma resistivity and finite electron

mass.
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Appendix B

Mapping between experimental

and simulation harmonics

The following shows an example procedure for computing the empirical relationship

between the electron particle density ne and time t which has been calculated for

three KSTAR pulses shown in Figs. 4.5 and 4.7. This example corresponds to

KSTAR pulse 11462, and the result of this analysis is shown in the left panel of

4.5. The Fourier power is plotted using a log10 scale in all figures. The general

idea is to compare experimentally observed harmonics, with those observed in the

simulation, noting the value of ne in the simulations which excite waves at the

frequencies observed experimentally. It should be noted that there is significantly

more resolution in frequency space experimentally, than there is computationally.

The procedure is as follows.

Step 1 A corresponding experimental and computational frequency range are iden-

tified and sectioned off from the rest of the plot for comparison. This is shown

in Fig. B.1.
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Figure B.1: Top: Experimental spectrogram showing the power in the 17th proton
cyclotron harmonic as a function of frequency and time. Bottom: The result of
several independent simulations of the MCI which shows the power in the 17th
harmonic as a function of frequency and ne.

Step 2 Only the most powerful simulation modes are considered in the construction

of the ne(t) points for a given harmonic. For instance, the section of of the

bottom plot in Fig. B.1 with 1.3 × 1019m3 ≤ ne ≤ 1.4 × 1019m3 is not

considered to contribute to the Fourier power in its experimental counterpart,

as the power in the simulation is comparatively weaker than the power in

the simulation at ne > 1.4 × 1019m3. The experimental spectrogram is also

curtailed along the time axis, so only the most powerful sections of the mode

remain. This is shown in Fig. B.2.
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Figure B.2: Top: Experimental spectrogram showing the power in the 17th har-
monic as a function of a narrow range of frequency and time. Bottom: The result
of several independent simulations of the MCI which shows the power in the 17th
harmonic as a function of a narrow range of frequency and ne.

Step 3 The feature is then divided into N data points of equal width in ne and t.

The lower panel in Fig. B.2 shows 10 different values of ne corresponding to to

the experimental feature. Thus, the time axis of the upper plot is divided into

10 equidistant time points. In Fig. B.2, the start of the experimental feature is

at ti ' −0.59µs, this corresponds to ne = 2.4×1019m3 in the simulation. The

end of the feature is at tf ' 0.47µs, this corresponds to ne = 1.5 × 1019m3

in the simulation. Dividing the experimental feature into 10 time points,

gives a time width ∆t =
tf−ti
N−1 '

0.47−(−0.59)
9 µs ' 0.117µs. Thus the point

ne = 2.3 × 1019m3 corresponds to a time ti + ∆t ' (−0.59 + 0.117)µs '
−0.47µs, the point ne = 2.2 × 1019m3 corresponds to a time ti + 2∆t '
(−0.59 + (2× 0.117))µs ' −0.36µs, and so on. The error in time for each

data point is taken to be ∆t, always rounded up to 2 decimal places, while

the error in density is taken to be the difference between 2 successive density
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points, which remains constant at 0.1×1019m3. Note, while ∆t is calculated to

3 decimal places, all resulting time points are rounded up to 2 decimal places.

Fig. B.3 demonstrates the above pictorially.

Figure B.3: Top: Experimental spectrogram showing the power around the 17th
harmonic as a function of a narrow range of frequency and time. The black boundary
to the left of the letter indicates the associated time point, the black boundaries to
the left of ti and tf indicate the first and last time points respectively. Bottom:
Power in the simulations around the 17th harmonic as a function of a narrow range
of frequency and ne. ∆t indicates the width between successive time points, the
letters (a) to (j) denote a mapping between ne and t.
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Step 4 As ne decreases, and the lower hybrid frequency ωLH starts to play a more

dominant role in the simulation dynamics, the number of simulations, and

hence the number of ne points corresponding to a given experimental feature

drastically reduces. A similar procedure to the one described in step 3 is

followed, leading to larger error bars in time. An example of this is shown

in Fig. B.4, in which there are only two values of ne corresponding to a

given feature in the experimental spectrogram. This experimental feature is

around the same width in time as the others, (due to the finite window used

in the Fourier transform), as such, the time error bars in this region of (t, ne)

parameter space are much larger. In this case, the time points ti and tf are

taken to be the start and end of the very brightest part of the feature. The

error in ti, which we call ∆ti, is estimated as either the difference in time

between ti and the left edge of the feature, or the spacing between ti and tf ,

whichever is larger. The error in tf , which we call ∆tf , is found in the same

way, but using the right edge of the feature. In this example, ∆ti is estimated

as the difference in time between ti and the left edge of the feature, while ∆tf

is estimated as the spacing between ti and tf , as these provide the largest error

estimate in both cases. These points are marked on Fig. B.4.

172



Figure B.4: Top: Experimental spectrogram showing the power in the 12th har-
monic as a function of frequency and time. Bottom: Power around the corresponding
12th harmonic as a function of frequency and ne. ti and tf denote the time points
corresponding to ne = 0.5× 1019m−3 and ne = 0.4× 1019m−3 respectively. ∆ti and
∆tf indicate the estimated errors in ti and tf respectively. The labels (a) and (b)
denote a mapping between ne and t.

Step 5 As ne decreases further, a value is reached at which only one mode in the

simulation can be excited. In this case, the value of t for a given ne is estimated

to be the centre point of the bright region of the corresponding experimental

feature. The error in this is estimated as half the width of the feature, often

yielding the largest error in time from the entire mapping procedure. Fig. B.5

demonstrates this. As this corresponds to just one value of ne, there is only

one panel showing the relevant section of the experimental spectrogram.
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Figure B.5: Experimental spectrogram showing the power in the 11th harmonic
as a function of frequency and time. t denotes the time point which in this case
corresponds to ne = 0.5× 1019m−3. The approximate width of the bright region of
the harmonic is denoted by 2∆t, where ∆t is the estimated error.
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Scholer, and C. T. Dum. Berlin: Springer, 2003.

R. O. Dendy. Plasma dynamics. Oxford: Clarendon Press, 1990.

R. O. Dendy and K. G. McClements. Ion cyclotron wave emission at the quasiper-

pendicular bow shock. Journal of Geophysical Research: Space Physics, 98

(A9):15531–15539, 1993. doi: 10.1029/93JA01386. URL https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1029/93JA01386.

R O Dendy and K G McClements. Ion cyclotron emission from fusion-born ions in

large tokamak plasmas: a brief review from JET and TFTR to ITER. Plasma

Physics and Controlled Fusion, 57(4):044002, 2015. URL http://stacks.iop.

org/0741-3335/57/i=4/a=044002.

R. O. Dendy, C. N. LashmoreDavies, and K. F. Kam. A possible excitation

mechanism for observed superthermal ion cyclotron emission from tokamak

plasmas. Physics of Fluids B: Plasma Physics, 4(12):3996–4006, 1992. doi:

10.1063/1.860304. URL https://doi.org/10.1063/1.860304.

178

https://link.aps.org/doi/10.1103/PhysRevLett.60.33
http://stacks.iop.org/0029-5515/33/i=9/a=I10
http://stacks.iop.org/0029-5515/33/i=9/a=I10
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999JA900134
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999JA900134
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93JA01386
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93JA01386
http://stacks.iop.org/0741-3335/57/i=4/a=044002
http://stacks.iop.org/0741-3335/57/i=4/a=044002
https://doi.org/10.1063/1.860304


R. O. Dendy, C. N. LashmoreDavies, and K. F. Kam. The magnetoacoustic cyclotron

instability of an extended shell distribution of energetic ions. Physics of Fluids

B: Plasma Physics, 5(7):1937–1944, 1993. doi: 10.1063/1.860781. URL https:

//doi.org/10.1063/1.860781.

R. O. Dendy, C. N. LashmoreDavies, K. G. McClements, and G. A. Cottrell. The

excitation of obliquely propagating fast alfvn waves at fusion ion cyclotron har-

monics. Physics of Plasmas, 1(6):1918–1928, 1994a. doi: 10.1063/1.870647. URL

https://doi.org/10.1063/1.870647.

R. O. Dendy, K. G. McClements, C. N. LashmoreDavies, R. Majeski, and S. Cauff-

man. A mechanism for beamdriven excitation of ion cyclotron harmonic waves in

the Tokamak Fusion Test Reactor. Physics of Plasmas, 1(10):3407–3413, 1994b.

doi: 10.1063/1.870489. URL https://doi.org/10.1063/1.870489.

R. O. Dendy, B. C. G. Reman, T. Akiyama, S. C. Chapman, J. W. S. Cook, H. Igami,

S. Inagaki, K. Saito, and G. S. Yun. Proc. 44th EPS Conf. Plasma Phys. EPS

Conference Proceedings, P5.145, 2017.

R.O. Dendy, K.G. McClements, C.N. Lashmore-Davies, G.A. Cottrell, R. Majeski,

and S. Cauffman. Ion cyclotron emission due to collective instability of fusion

products and beam ions in TFTR and JET. Nuclear Fusion, 35(12):1733, 1995.

URL http://stacks.iop.org/0029-5515/35/i=12/a=I38.

R.O. Dendy, K.G. McClements, M.E. Dieckmann, and N.C. Woolsey. Energetic

particles in magnetic confinement systems: synergies beyond fusion. Nuclear

Fusion, 42(8):986, 2002. URL http://stacks.iop.org/0029-5515/42/i=8/a=

307.

Rudolph D’Inca. Ion Cyclotron Emission on ASDEX Upgrade. PhD thesis, Ludwig-

Maximilians-Universitat, 2014.

H.H. Duong, W.W. Heidbrink, E.J. Strait, T.W. Petrie, R. Lee, R.A. Moyer, and

J.G. Watkins. Loss of energetic beam ions during TAE instabilities. Nuclear

Fusion, 33(5):749, 1993. URL http://stacks.iop.org/0029-5515/33/i=5/a=

I06.

T.Zh. Esirkepov. Exact charge conservation scheme for Particle-in-Cell sim-

ulation with an arbitrary form-factor. Computer Physics Communica-

tions, 135(2):144 – 153, 2001. ISSN 0010-4655. doi: https://doi.org/10.

1016/S0010-4655(00)00228-9. URL http://www.sciencedirect.com/science/

article/pii/S0010465500002289.

179

https://doi.org/10.1063/1.860781
https://doi.org/10.1063/1.860781
https://doi.org/10.1063/1.870647
https://doi.org/10.1063/1.870489
http://stacks.iop.org/0029-5515/35/i=12/a=I38
http://stacks.iop.org/0029-5515/42/i=8/a=307
http://stacks.iop.org/0029-5515/42/i=8/a=307
http://stacks.iop.org/0029-5515/33/i=5/a=I06
http://stacks.iop.org/0029-5515/33/i=5/a=I06
http://www.sciencedirect.com/science/article/pii/S0010465500002289
http://www.sciencedirect.com/science/article/pii/S0010465500002289


EuroFusion. The electromagnetic coil arrangement at JET. URL https://www.

euro-fusion.org/glossary/poloidal-field-coils/.

N. J. Fisch. Alpha power channeling using ionbernstein waves. Physics of Plasmas,

2(6):2375–2380, 1995a. doi: 10.1063/1.871454. URL https://doi.org/10.1063/

1.871454.

N. J. Fisch. Alpha power channeling using ionbernstein waves. Physics of Plasmas, 2

(6):2375–2380, 1995b. doi: 10.1063/1.871454. URL https://doi.org/10.1063/

1.871454.
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