A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/134755

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

Bifurcation Problems with

Octahedral Symmetry

Ian Melbourife

Thesis presented for degres of Ph.D. at University of Varwick.

Mathematics Insiftute,
Unt versity of Warwick,
Coventry, CV4 7AL,
England.
July, 1987.

Contents

Introduction. 1
\$1. Bifurcations in the Presence of Octahedral Symmetry- 14
1.1. The Octahedral Group and Lattice of Isotropy Sutgroups. 17
1.2. Calculation of Invariants and Equivariants. 21
1.3. Branching and Stabilities. 27
52. The Equivarlant Recognition Problem. 33
2.1. Background Singularity Theory. 35
2.2. Unipotent Actions and the Recognition Problem. 39
2.3. Linearly Determined Bifurcation Problems. 47
2.4. Tools for calculating Maximal U-Intrinsic Subspaces. 51
2.5. Examples with Γ acting Absolutely Irreducibly. 58
2.6. An Example with Γ not acting Aosolutely Irreducibly. 72
53. Singularity Theory Classification of Bifurcation Froblems
with Octahedral Symmetry. 60
3.1. Tabulation of Results. 83
3.2. Application to Barium Titanate Crystals. 91
3.3. Tangent Space Calculations for the Linearly Determined Bifurcalion Problems. 101
3.4. The Recognition Problem for the Linearly Determined Bifurcation Problems. 109
3.5. The Degeneracy $\alpha(0)-0$. 116
3.6. Qualltativa Equivalence. 122
Appendix: Tangent Space Generators and Change of Coordinates. 129
Referenices. 142

Acknowledgement

I should like to thank both my supervisor lan Stewart for many heipful suggestions and comments, and for his encouragement throughout, and Mark Roberts for bringing to my attention several possible applications including the one in this thesis.

I am grateful to CTC Wall for pointing out a clearer proof of Theorem 2.3.4 in a more natural setting-

My thanks also to SERC for my grant.

Declaration

Except where explictily stated to the contrary, the results in this thesis are the result of original work of the author.

It is intended to publish the contents of this thesis as three papers:

1. A singularity theory analysis of bifurcation problems with octahedral symmeiry-
(Accepted hy: Dynamics and Stability of Systems.)
2. The recognition problem for equivariant singularities.
(Submitted Io: Nonlinearlty.)
3. Classification of tifurcation problems with octahedral symmetry.
(In preparation.)

Summary

We analyse local bifurcation problems with octahedral symmetry using results from singularity theory. The thesis is split up into three sections. §i comprises the bifurcation theory, and $\$ 3$ contains a full singularity theory classification up to topological codimension one. The classification relles heavily upon new results about the recognitiori problem. These resuits are presented In 52 together with several examples drawn from equivariant bifurcation theory. Thess examples illusirate the new methods more clearly than the work in $\mathbf{\$ 3}$.

In §1 we look at nondegenerate bifurcation problems equiveriant with respect to the standard action of the octahedral group on \mathbb{R}^{3}. We find thres branches of symmetry-breaking bifurcation corresponding to the three maximal isolropy subgroups of the symmetry group with ona-dimensional fixed-point subspaces. Locally, one of these branches is never stable, but precisely one of the other branches is stable if and only if all three branches bifurcate supercritically-

In $\$ 2$ we simplify the recognition problem by decomposing the group of equivalences into a unipotent group and a group of matrices. Building upon results of Bruce, du Plessis 8 Wall, wa show that in many cases the unipotent problem can be solvad by just using linear algebra. We give a necessary and sufficient condition for this, namely that the iangent spaca be invariant under unipotent equivalence. In addition we develop methods for checking whether the tangent space is invariant.

The classification theorem in $\$ 3$ gives a Ilst of seven normal forms together with racognition problem solutions and universal unfoldings. Certain anomalies arise when comparing these results with those in $\mathbf{5 1}$. We reconcile the anomalies by giving a qualitalive classification in addition to the standard classification. An application to barium titanate crystals is considered briafly-

Introductton.

In this thesis, we apply the methods of singularity theory to sfudy the local bifurcations of steady-state solutions to a three-dimensional system of equations in the presence of a group of symmetries, namely that of the cube. Many of the techniques required are those developed by Golubitsky \& Schaeffer [1979a,h]. In these papers mary explicit examples are considered: n-dimensional systems with no symmetry, the line with \mathbf{Z}_{2} acting as reflections (see also Golutitsky \& Langford [1981]), and the plane under actions of $\mathbf{Z}_{\mathbf{2}}$ with ona-dimensional fixed point set (see Armbruster, Dangelmayr \& GOIttinger [1985]), $\mathbf{z}_{\mathbf{2}} \mathbf{O z}_{\mathbf{2}}$ and \mathscr{O} (2). Subsequently the actions of the family of symmetry groups of the n-gon D_{n} on \mathbf{R}^{2} nave been studied (see Buzano, Geyamonat \& Poston [19e5]). These investigations essentially exhaust the possibilities for actions on \mathbf{R} and \mathbb{R}^{2}. The natural next step is to look at the group of symmetries of a three-dimensional solid, giving an irreducitle action on $\mathbf{R}^{\mathbf{3}}$. We have selected the cube, for which there is a particulariy easy choice of coordinates. In addition, the action is absolutely irreatcible (the only IInear maps commuting with the action are real multiples of the identity) and this simplifies the analysis.

Apart from the mathematical naturality of the cube, there is also the question of applications. Many physical phenomena may be modalled by an
idealisation with cubic symmairy. Then the results in this paper would go some way towards predicting the qualitative behaviour of steady state solutions. For example, it should be possible to apply our results to elastic deformations of a cube. Indeed, Ball \& Schaeffer [1983] have already looked at a problem in elasticity where cubic symmetry is assumed. However, they make furiher assumptiong which first factor out the reflectional symmetry of the cube and then reduce the systern of equations from three dimensions to two dimensions. They are then teft with D_{3} acting on R2 and are able to call on the resuits of Golubltsky \& Sctraeffer [1982]

Our aim here is to set up the mathematical generalities of bifurcation with octaheoral symmetry, and applications are not emphasised. However, in $\$ 3$ we indicate how the rasults might be applied to model the phenomenological changes in the crystal form of barium titanate as temperature is varied, Devonshire [1949]

The iraditional name for the symmetry group of the cuba is the octaheat-9! group because it is also the symmetry group of the octahedron, the dual of the cuhe. Wa shall be interested throughout in the standard absolutely irrectucible representation of 0 as the symmetry group of the cuote acting on R^{3} by orthogonal transformations and acting trivially on all other variables (for example, λ in (2) below). The group 0 has 48 elements
and is generated by

$$
x_{x_{1}}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), A_{x_{1}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), R_{x_{2}}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) .
$$

These elements represent reflection in the $\boldsymbol{x}_{1}=0$ plane and $\pi / 2$ rotations about the x_{1} - and x_{2}-axes respectively. The symmetric group S_{3} is a subgroup of \mathbf{O} and other elements include $\mathrm{K}_{\boldsymbol{x}_{2}}, \boldsymbol{N A}_{3}, \boldsymbol{A}_{\boldsymbol{x}_{3}}$ with the obvious matrix representations. Note that we are including reflectional symmetries of the cube. As mentioned above, Ball \& Schaeffer [1983] use a different representation of \mathbf{D}. on $\mathbf{R}^{\mathbf{2}}$, with kernel $\mathbf{Z}_{\mathbf{2}} \mathbf{\omega} \mathbf{Z}_{\mathbf{2}} \mathbf{e} \mathbf{Z} \mathbf{Z}$.

Consider the sleady state solutions of the system of ODEs

$$
\begin{equation*}
i+g(x, \lambda)=0 \tag{1}
\end{equation*}
$$

where λ is a distinguished real bifurcation parameter, $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}$ and $g: \mathbb{R}^{\mathbf{3}} \times \mathbf{R} \rightarrow \mathbf{R}^{\mathbf{3}}$ is a smooth map-garm at 0 commuting with the symmetry group of the cube $\mathbf{0}$, that is, satisfying

$$
\begin{equation*}
g(\gamma x, \lambda)-\gamma g(x, \lambda) \text { for all } \gamma \in 0 . \tag{2}
\end{equation*}
$$

Such g are said to be D-equivariant. We denote by $\vec{E}_{x+\lambda}(\mathbb{0})$ the set of all O-equivariant mappings g. The set $E_{x, 2}(\mathbb{D})$ is a module over $E_{x-\lambda}(0)$, the ring of all 0 - invariant $\mathrm{C}^{\infty 0}$ function-germs f at 0 ; that is, those f satisfying $f(x, \lambda)=f(x, \lambda)$ for all $\varepsilon \in \mathbb{0}$. (See Golubitsky, Stewart \& Schaoffer [1989].)

A bifurcation problem with \mathbf{D}-symmatry is an equation $(x, \lambda)=0$
where $f \in E_{x_{2}}(0)$ and $\left(\alpha_{n} f\right)_{0}=0$. Clearly, if g in (1) satisfies $\left(\alpha_{R} g\right)_{0}=0$
or in other words has a singularity at the origin, then the steady state solutions of (1) define a bifurcation problem with D-symmetry. Note that since we work wlth germs, the entire analysis is local.

Following the ideas iniroduced in Golubitsky \& Schaeffer [1979a,b] we apply singularity-theoretic methods io analyse the qualitative nature of bifurcation problems with 0 -symmatry. Two germs g and n in $\mathbb{E}_{x, \lambda}(0)$ are said to be 0 -equivalent if there exist smooth germs at 0

$$
S:\left(R^{4}, 0\right) \rightarrow L\left(R^{3}, R^{3}\right), X:\left(R^{4}, 0\right) \rightarrow R^{3}, \wedge:(R, 0) \rightarrow R
$$

such that

$$
\begin{align*}
& h(x, \lambda)=S(x, \lambda) g(\lambda(x, \lambda), \Lambda(\lambda)), \tag{3}\\
& \gamma(0)=0, \Lambda(0)=0, \tag{4}\\
& \left.S(0)=\mu l,\left(\alpha_{x} \gamma\right)_{0}=v\right], \mu, \nu>0, \Lambda^{\prime}(0)>0, \tag{5}\\
& x(\gamma x, \lambda)=\gamma(x, \lambda), \gamma^{1} S(\gamma x, \lambda) \gamma=S(x, \lambda) \text { for all } \gamma \in 0 . \tag{6}
\end{align*}
$$

Here $<\left(R^{3}, R^{3}\right)$ is the space of Inear maps $R^{3} \rightarrow R^{3}$. Thid definition is analogous to that of contact equivalence in singularity theory, tut the pureity λ dependence of $\boldsymbol{\Lambda}$ in (3) preserves the special nature of the distinguished parameter, whilst (6) ensures that \boldsymbol{h} is D-equivariant pracisely when g is. The sign conditions (5) are a special case of a
refinement of the original definition put forward by Golubitsky \& Schaeffer; see Golutitsky. Stewart \& Scnaeffer [1988]. They are imposed in order to preserve the asymptotic stabilities of solutions. In general this is not always possible, but for a group acting absolutely irresucibly the conditions reduce to those in (5) and the asymptotic stabilities of many solutions are preserved, we say that x_{0}, λ_{0} is /fnearly sfab/e if every eigenvalue of $(a))_{r_{0}, \lambda_{0}}$ nas posilive real pari, and /inearly unstable if at least one eigenvalue of $(\alpha g)_{\gamma_{0}} \lambda_{0}$ has a negative real part. Provided none of the eigenvalues lie on the imaginary axis, inear stability is a necessary and sufficient condilion for asymptotic stability.

Notice that the condition on Y in (6) just says that $X \in \mathbb{E}_{ \pm 2}(0)$. We denote by $E_{x \alpha-1}(D)$ the $\varepsilon_{x \alpha}(D)$-module of all smooth matrix-valued germs at 0 satisfying the conaition on $S \operatorname{in}(6)$. Finally ε_{∞} is just the ring of \mathbf{C}^{∞} function-germs at 0 in the variable(s) α.

In $\mathbf{5 1}$ we obtain nondegeneracy conditions under which we can predict the directions and stabilities of branching from the trivial solution $x=0$ for a bifurcation problem $g \in E_{x, 2}(\mathbb{O})$. Our resulta are consistent with a theorem of Vanderhauwheds [1982] and Cicogra [1981], the Equivariant Branching Lemma. For $\boldsymbol{x} \in \mathbb{R}^{\mathbf{3}}$ we def ine the isotroay sugrap Σ_{x} of \mathbf{O} to
be

$$
\Sigma_{x}=\{Y \in \cap \mid Y x=x\}
$$

and its /ixed-point suaspace $\mathrm{Fix}\left(\Sigma_{x}\right)$ to the

$$
F i x\left(\Sigma_{x}\right)=\left\{y \in \mathbb{R}^{3} \mid \gamma y=y \text { for all } \gamma \in \Sigma_{x}\right\}
$$

Then subject to certain hypotheses, the Equivariant Branching Lemma states that corresponding to each isotropy sutgroup with one-dimensional fixed-point subspace there exists locally a unique branch of solutions with the symmetry of that subgroup. It turns out that there are three conjugacy classes of isotropy subgroups of 0 with one-dimensional fixed-point subspacas. Tha sign conditions in (5) ensure that the stabilitios of the three corresponding branches and the trivial solution are indeed preserved by 0-equivalences. Assuming the trivilal solution to be stable subcritically (in order to normalize signs), we show that of the three guaranteed branches, one is naver stable and one of the others is stable only if all threa branches bifurcate supercritically. Fur ther, in the situation where all three tranches are supercritical, it is one non-vanishing coafficient in the Taylor expansion that determines stabilities. This sama coeffictent ensures that no eigenvalue of dg evaluated on a branch has a vanishing real part so that linearised stability is a nacessary and sufficient condition for asymptotic stability. Finally wa use the condition that this
coefficient is non-zero to prove that no other branches are possible.

In $\boldsymbol{5} \mathbf{2}$ we widen our field of study to the situation where Γ is ary compact Lie group acting on $\mathbb{R}^{\text {e. Definitions (1) and (2) are the same but }}$ With \mathbb{R}^{3} replaced by $\mathbb{R}^{\boldsymbol{n}}$ and 0 repiaced by Γ. Similarly wa dafine Γ-equivalences in a way analogous to (3) - (6). Tha Γ-equivalences ($S, X_{,} \Lambda$) form a group $X(\Gamma$). Since Golubitsky \& Schaeffer [1979a, b] introduced the idna of applying singularity-thaoretic mathods to the study of equivariant bifurcation problems, many authors have produced classifications up to some codimension in a given contart. These classifications include the following three components:
(1) A list of normal forms, with the property that all bifurcation problems up to the given codimension are equivalent to precisely one normal form.
(ii) The universal unfolding of each normal form.
(111) The solution to the recognition problem for each normal form.

The recognition problem is one of the least explored facets of singularity theory and It is with this third component that we deal in this thesis. We are interested in knowing precisaly when a bifurcation problem Is equlvalent to a given normal form. Hence we must find a characterisation of the orbit of the normal form under the group of equivalences $3(\Gamma)$. This problem can often be reduced to one of finite dimensions via a key idea from singularity theory; that of finife
determinacy. Many smooth map-gorms are determined up to Γ-equivalence Dy finitely many coefficients in their Taylor expansion. Modulo other mign order farms $\mathbb{D}(\Gamma)$ acts as a Lie group. It Is wall known that the orbits under the resulting Lle group are semialgebralc sets, so we can characterise the orblt as comprising those germs whose Teylor coefficlents satisfy a finite number of polynomial constralnts in the form of equalities and inequalities. This characterisation is the solution to the recognilion problem.

We will always assume that the bifurcation problems under discussion are finitely determined. Indeed, finite codimension implies finite determinacy, and so for the purpose of classifying bifurcation problems up to low codimension, this essumption is always valid. The next step is to discover precisely which terms are high order terms. Gaffney [1986] uses results ifon Bruce, ou Plessis \& Wall [19B5] In providing the answer to this problem. However an additional assumption is required, namely that D(r) acts linearily. The group of (contact) equivalences used in studying bifurcation problems does indeed act linearly and the results in this thesis requirs the same assumption. In fact, the Itnearity of the group action is the key hypothesis in our results which hold equally well for the recognition problem under right equivalence and contact equivalence in classical singularity theory.

Because of the Lie group structure of $D(\Gamma)$, we can speak of the tengent space to the orbit of a bifurcation problem f, or the L / E algeors at f

$$
\begin{equation*}
T(f, D(\Gamma))=\left\langle D(\Gamma) f=\left\{\left.\frac{1}{A}\left(\delta_{i} f\right\rangle_{t=0} \right\rvert\, \delta_{i} E D(\Gamma), \delta_{0}=1\right\}\right. \tag{7}
\end{equation*}
$$

Most of the low codimension classifications in the literature have been performed In the presence of a group of symmetries Γ acting absolutely irreducibly. Such classifications include blfurcation problems in one state variable with no symmetry up to codimension seven (Keyfitz [1986]) and with $\mathbf{Z}_{\mathbf{2}}$-symmetry up to codimension three \{Golubitsky \& Schaef fer [1984]), and in two state variables with D_{4}-symmetry up to topological codimension two (Golubitsky \& Roberts [1986]). We 1ackle the case of three state variables with D-symmetry up to topological codimension one in $\$ 3$ of this thesis. Apart from these, the most exhaustive classification in the literature is that performed by Dangelmayr \& Armbruster [1983] who consider an action of \mathbf{Z}_{2} on \mathbf{R}^{2} which is not irreducible. They go up to codimension four.

It is shown in 52 that provided Γ acts absolutely irreducibly, then the group of equivalences $D(\Gamma)$ can be decomposed into a group $\langle(\Gamma)$ of equivalences whose linear parts are the identity and a group $S(\Gamma)$ of linear equivalences (which hence must be scalar multiples of the identity). We refer to these as the group of unipotent equivalences and the group of scalings and define the unipotent tangent space $7(f, \mathcal{U} \Gamma)$ in an analogous
way to $T(T, D(\Gamma))$ in (7).
Examination of the solutions of the recognition problem in the aforementioned classifications leads to the following observations:
(1) Catculating the effect of the scailings alone is easy, although the results look complicated and ars often very nonlinear.
(2) If we consider the recognition problems with respect to unipotent equivalences alone, the solutions consist only of equalities.
(3) in many cases, thess equalities are innear.
(4) The linearity of these equalities is usually disquised when the effect of the scalings are included.

The following romarks on these observations are in ordar:
(1) If Γ does not act absolutely irreatucibly then it is possible for the effect of the linear equivalences to be rather complicated (for axample, iwo state vartaole problams with no symmetry, Golubltsky \& Scheelfer [1984]). This complexity does not occur provided linear equivalencas are forced by the action of Γ to be alagonal matrices. In this thesis we study only such examples.
(2) This property is in fact always true and is stated algebraicality in Proposition 3.3 of Bruco, du Plessis \& Wall [1995] and Theorem 2.2.2(a) of this thesis.
(3) The main result of S2, Theorem 2.3.4, gives a necessary and sufficient
condition for this property of linear determinary to hold. The condition is that $T(f, \mathcal{U} \Gamma)$) should be invariant under UГ). In this case the orbit of f under $U(\Gamma)$ is simply the affine space $/ \cdot r(f, U \Gamma)$.
(4) In the light of the examples in this thesis, it seems reasonable to solve the unipotent part of a recognition problem separataly, whether or not the bifircation problem is lineariy determined.

In $\mathbf{\$ 3}$ we return to the setting of $\mathbf{\$ 1}$ and, with the aid of $\mathbf{\$ 2}$, perform the classification of bifurcation problems with octaneoral symmetry up to topological codimansion 1. The classification consists of seven normal forms together with their recognition problem solutions and universal unfoldings. We would axpact that one normal form would encapsulate the nondegenerate bifurcation problems of $\mathbf{\$ 1}$ and that the remaining normal forms would reflect each of the possible dageneracies. It turns out, nowever, that we need two infinite familias of germs in order to represent all 0 -orbits of nondegenerate bifurcation problems. These families are

$$
\begin{aligned}
& g_{2}=\left(8 m\left(x^{2}+y^{2}+z^{2}\right)+\varepsilon \lambda+\sigma\left(x^{2}+y^{2}+z^{2}\right)^{2}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\delta\left(\begin{array}{l}
x^{3} \\
y^{3} \\
z^{3}
\end{array}\right) . \\
& n_{2}=\left(8 m\left(x^{2}+y^{2} \cdot z^{2}\right)+\varepsilon \lambda\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\delta\left(\begin{array}{l}
x^{3} \\
y^{3} \\
z^{3}
\end{array}\right),
\end{aligned}
$$

Where $6, \varepsilon, 0= \pm 1, m \neq-1,-4,-1$.
Now, the results of $\mathbf{S 1}$ show that the different assigrments for δ and ε
do indeed lead fo different branching directions and stabilities. This is also true of the interval

$$
(-\infty,-1),\left(-1,-\frac{1}{2}\right),\left(-\frac{1}{2},-1\right),(-1,+\infty),
$$

In which m lies. According to $\mathbf{5 1}$, these possiblitiles should give rise io all distinct qualitative behaviour. The local branching and stability does not depend on the precise value of m. However m is a moda/ parameter and as such is invariant under D-equivalence.

We also have the parameter o whose sign (positiva, negative or zero) is invariant under 0 , and yet which again has no qualitative relevance. The smooth singularity theory suggests that η_{0} is more degenerate than g_{0} but for the purposes of bifurcation theory they are the same. Unfortunately, there is at present no good mathematical theory for studying qualitative equivalence of bifurcation problems; even a slight weakening of the smoothness properties of the equivalences throws away large amounis of structure. Nevertheless, wihth the bounds of our low codimension classification we are able to deal with qualtiative considerations simply by inspection of tha bifurcation diagrams.

Hence $\mathbf{\$ 3}$ consists of both a smooth and a qualliailve classification. Under the latter, the modal families g_{0} and h_{0} collapse into ona family. The recognition problems are correspondingly mora siraightiorward since much of the fine detail can now be omitted.

The calculations are simitarly simplified in the application to the changes in structure of barium titanate crystals with temperalure. Devonshire [1949], noted that as temperature is decreased from above $120^{\circ} \mathrm{C}$, the structure of a Darium itianate crysial undergoes successive changes from one having the full group of symmetries of the cube to three structures with less symmetry. These states are referred to in the Physics Ifterature as czbic, fetragonal, orthorthonbic and rhanhohectal respectively, the last three corresponding to the three conjugacy classes of isotropy subgroups of 0 with one-dimensional fixed-point subspaces. Our resulis in $\$ 1$ say that the orthorhombic stale cannot be stable locally. but this is not a contradiction since we do not precluda the possibility of stability away from the origin. By analysing the urfolding of a sultatu degenerate normal form, wa are able to reproduce exactly the scenario described above.
51. Bifurcations in the Presence of Ociahadral Symmatry-

In this section we consider the general bifurcation problem with the symmetry group of the cube, $g \in \vec{E}_{x, y, r, \lambda}(0)$ and show that generically there are three different fypes of solution to $g=\mathbf{0}$ branching from the trivial solution $x=y=z=0$ at the origin. The symmetry of a solution (x, y, z) is defined in terms of its isotrapy sugrap

$$
\Sigma_{x, y, z}=\{\gamma \in \mathbb{O} \mid \gamma(x, y, z)=(x, y, z)\},
$$

Which is a subgroup of D. An isotropy subgroup H is called merimal if H is a proper subgroup of 0 and the onty isotropy subgroups of 0 containing H are 0 and H themselves.

The trivial solution has the full symmetry group of the ciba so that
$\Sigma_{900}=0$. However, in accordance with a general phenomenon called spontaneous symmetry breaking, each branch of solutions corresponds to a proper isotropy subgroup of D, and so has less symmetry. Furthermore the three isotropy sutigroups of these solutions turn out to be the three maximal isotropy sutgroups. Thus tha losses of symmetry are in some sense the least possible. This situation is fairly general though examples of submaximal isotropy subgroups with generic branches of solutions can be found in Chossat [1983] and Lauterbach [1986].

We follow the standard procedure (see Golubitsky [1983], Golubitsky,

Stewart \& Schaeffer [1988]) of finding the lattice of isotropy subgroups. and seeing whether branches of solutions exist for each isotropy subgroup. In fact a result of Vanderbauwhede [1982] and Cicogna [1991], the Equivariant Branching Lemma, guarantees under certain mpotheses the existence of a unique branch corresponding to each maximal Isotropy subgroup. We impose nondegener acy conditions on g enabiling us to decide Whather each branch bifurcates subcritically or supercritically (that is whether the branch of solutions exists for $\boldsymbol{\lambda}$ Iess than or greater than zero). A further nondegeneracy condition allows us to defermine slabilities, and we use this condition to show that no nondegenerate branching other then that guarantesd by the Equivariant Branching Lemma, 13 possible locally-

In $\$ 1.1$ we give the lattice of conjugacy classes of Isotropy subgroups of O together with their fixed-polnt subspaces. Then a simplified form for an 0-equivariant bifurcation problem is found in \$1.2. This simplifies further on flxed-point subspaces and we are able to solve the branching equations in $\mathbf{\$ 1 . 3}$. We also compute the stabllities.

Fig. 1.3.1 Illusirates eight of the possible blfurcation diagrams for a nondegenarate bifurcation problem. There ara In fact sizteen distinct diagrams in all but we draw only those in which the trivial solution is stable subcritically and unstable supercritically. These are the diagrams
of interest in applications. We sae that there exists a stable branch if and onity If all three branches bifurcate supercritically. However, there is one maximal isotropy subgroup for which the corresponding branch is naver stable.

S1.1. Tha Octahodral Group and Lattice of Isotropy Subgroups.

In this section we obtain the lattice of isotropy sungroups of 0 . This is a standard part of the procedure for analysing equivariant bifurcation problems, see Golublisky [1983] and Golubitsky, Stewari \& Schaeffer [1988]. First, we give a brief review of the approach.

Suppose we have an equivariant map-germ $g \in E_{x_{0} p_{4}, x_{2}}(0)$. Then

$$
g(\gamma(x, y, z), \lambda)=\gamma g(x, y, z, \lambda) .
$$

Hence, given g at (x, y, z, λ), we know the value of g at $(\gamma(x, y, z), \lambda)$ for all $\gamma \in \mathbb{D}$. In other words, the 0 -orbit of g is determined by the value of g on a representative of that orbit. Furthermore, solutions to $g=0$ come in orbits: If the value of g on an orbit representative is zero then g is zero on the whole ortit.

The isotrapy seogroup $\Sigma_{x, y, \lambda \lambda}$ of a solution $(x, y, 2, \lambda)$ is given by

$$
\Sigma_{x, y, z, \lambda}=\{\gamma \in \cup \mid \gamma(x, y, z)=(x, y, z)\}
$$

It is an easy calculation to see that

$$
\begin{equation*}
\Sigma_{x\left(x_{2} y_{0} r\right) \lambda}=\gamma \Sigma_{x_{4} \mu_{1} x \lambda \gamma^{-1} .} . \tag{1}
\end{equation*}
$$

We have seen that solutions to $g=0$ come in orbits. It follows from (1) that each solution has isotropy subgroup con|ugate to that of its orbit representative.

The fixed-poinf suaspace of an isotropy sugroup Σ is given bu

$$
F i x(\Sigma)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid \sigma(x, y, z)-(x, y, z) \text { for all } \alpha \in \Sigma\right\} \text {. }
$$

An easy but fundamental fact is that

$$
\begin{equation*}
g(F i x(\Sigma) \times R) \in F i x(\Sigma) \tag{2}
\end{equation*}
$$

since

$$
\sigma g(x, y, z, \lambda)=g(\sigma(x, y, z), \lambda)=g(x, y, z, \lambda)
$$

for all $(x, y, z) \in \operatorname{Fix}(\Sigma), \sigma \in \Sigma$.
Our strategy is to ohtain a list of orbit representatives and to find the isotropy subgroup of this representalive and the fixed-point subspace of the isotropy subgroup. We can then find zeroos of g hy restriciting g to orbit representatives. Simultaneously we know the symmatry of the solution

Table 1.1.1 lists the different orbit representatives, the isotropy subgroup of 0 fixing that representative, and the satespace of RJ fixed by the isotropy subgroup. The entribs in Table 1.1.1 are easy to verifyElements of 0 can only permute and/or change sigre of the x, y, z variables. Thus we have ordered the variables so that the nonzero elements come first and elements of the same magnituda are grouped together and equal. We could have insisted that all atements were nornegative and in descending order of magnitude but this is no simpler and actually leads to an extra case to consider: case (f) would split up into (x, x, z) and (x, y, y).

Table 1.1.1. Isotropy Subgroups for 0 and thair Fixed-Point Subspaces.
Orbil Rep Isotropy Sungroup Fixed-Point Spaca

(a) $(0,0,0)$	0	$(0,0,0)$
(b) $(x, 0,0)$	Q (generated by R_{k}, k_{2})	$(x, 0,0)$
(c) $(x, x, 0)$	$\mathrm{z}_{2} \mathrm{raz}_{2}{ }^{\text {l }}$	($x, x, 0)$
(d) (x, x, x)	S_{3}	(x, x, x)
(e) $(x, y, 0)$	$\mathrm{I}_{2}{ }^{\text {a }}=\left\{1, \mathrm{x}_{2}\right\}$	($x, y, 0)$
(f) (x, x, z)	$Z_{2}{ }^{t}=\{1,(12)\}$	(x, x, z)
(g) (x, y, z)	1	(x, y, z)
$\|x\|+\|\leq 1\| z \mid$ otstinct and non-zero		$x, y, z \in \mathrm{R}$

We have used r and f in $\mathbf{Z}_{\mathbf{2}} \boldsymbol{r}$ and $\mathbf{Z}_{\mathbf{2}} \boldsymbol{t}$ to denote reflection and Iransposition respectively. In Fig. 1.1.1, we sketch the Isotropy subgroups with one-dimensional fixed-point subspaces, to show that they are geometrically very natural. Fig- 1.1.2 illustrates the lattice of isotropy subgroups up to conjugacy. In this lattice, A c B if a mamber of the conjugacy class of A is a subgroup of B. The inclusions are all trivial. The most difficult thing to check in Fig. 1.1 .2 is that $\mathbf{Z}_{\mathbf{z}}$ is not included in S_{3}. However, let $K=\left\{x_{x}, x_{y}, K_{x}\right\}$. Then it is easy enough to check that

$$
\begin{equation*}
\gamma K \gamma^{-4}=K \tag{3}
\end{equation*}
$$

for $Y=x_{x}, R_{x}$ and R_{y}. But these generate 0 and so (3) holds for all
$X \in \mathbb{O}$. In particular, $X x_{\boldsymbol{y}} \boldsymbol{X}^{-1} \leqslant S_{3}$ for any $X \in \mathbb{D}$. It follows that $\mathbf{Z}_{2} r$ is not included in S_{3}.

Note that the three maximal isotropy subgroups $a_{4}, \mathbf{Z}_{2}{ }^{r e Z_{2}}{ }^{i}, S_{3}$, aro precisely those instances (b).(c).(d) In Table 1.1.1 where ine dimension of the fixed-point subspace is minimal, that is one. In general the latter condition implies maximality of the isotropy subgroup (see Golubitsky [1983]) but not vice versa (ihrig \& Golubitsky [1984]).

Fig 1.1.1 The maximal isotropy subgroups of 0 .

Fig. 1.1.2. The lattice of isotropy subgroups of 0.

51.2. Calculation of Invarianta and Equivariants.

Our alm in this section is to arrive at a simplified expression for a general D-equivariant bifurcation problem $g \in \vec{E}_{x, g, z, \lambda}(0)$. In particular, we will prove the following result.

Theorem 1.2.1 Let $g \in \vec{E}_{m_{1}, y_{n}, \lambda}(0)$. Then therz erist $P, Q, R \in E_{v_{1}, n, n \lambda}$ such that

$$
\begin{equation*}
g\left(x_{1} y, z, \lambda\right)=P\left(u_{1} v_{1}, w_{1} \lambda\right) x_{1}+Q\left(u, v_{0}, w_{1} \lambda\right) x_{2} \cdot R\left(u_{0} v_{1}, w_{0} \lambda\right) x_{3} \tag{1}
\end{equation*}
$$

unere

$$
u=x^{2}+y^{2}+z^{2}, v=x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}, w=x^{2} y^{2} z^{2}
$$

and

$$
x_{1}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), x_{2}=\left(\begin{array}{l}
x^{3} \\
y^{3} \\
z^{3}
\end{array}\right), x_{3}=\left(\begin{array}{l}
y^{2} z^{2} x \\
z^{2} x^{2} y \\
x^{2} y^{2} z
\end{array}\right)
$$

Further, all cogfficients in the Taylor axpansions of P, Q, A ot 0 are uniqualy telermined.

Pamark 1.2.2 As a consequence of Theorem 1.2.1 we can adopt the inveriant coarctingte notation

$$
\begin{equation*}
g \equiv[P, \theta, A] \tag{2}
\end{equation*}
$$

for g givan as in (1). This reprasentation is assentially unique for our
purposes: up to any given order in the Taylor expansion of $g \mathrm{wa}$ hava P, Q and \boldsymbol{R} given uniquely. Note that an equivariant germ g is automatically zero at the origin. The other condition that g must satisfy in order to be a bifurcation problem becomes $\boldsymbol{P}(0)=0$.

The remainder of this section is devoted to proving Theorem 1.2.1. In Lemma 1.2.3 we show that the ring of invariant function germs $E_{x, y, z}(0)$ is generated in some sense by ν, v and w. Then Lemma 1.2.4 demonstrates that X_{1}, X_{2} and X_{3} generate the $E_{x_{0}, f, r}(0)$-module, $E_{x_{2}, y, r}(0)$, of equivariant map germs. Finally we prove uniquaness.
 exists P e $\mathrm{E}_{\mathrm{w}, \mathrm{ve}}$ such that

$$
f(x, y, z)=f(u, v, w)
$$

where

$$
u=x^{2}+y^{2}+z^{2}, v=x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} . w=x^{2} y^{2} z^{2}
$$

Proof Using a result of Schwarz [1975] It is sufficient to show that $U_{1} v$ and w ganerate the ring of 0 -invariant polynomials and that there is no
relation between these generators. Now the x_{x}, K_{x} and x_{x} invariance tells us that f is even in r, y and z. Apart from this f is just S_{3} inveriant. The result follows as it is well known that the ring of $\boldsymbol{S}_{\mathbf{3}}$-invariant polynomials is generated by the elementary symmetric polynomials. (For example, see \mathbf{T} heorem 268, page 442 of Redei [1967].)

In the following, let $a=x^{2}, b=y^{2}, c=z^{2}$ and let

$$
\langle\varphi(a, b, c)\rangle=\left(\begin{array}{l}
\varphi(a, b, c) x \tag{3}\\
\varphi(b, c, \theta) y \\
\varphi(c, a, b) z
\end{array}\right)
$$

Lemma 1.2.1 The modelo of aquivariant maps E E xill (D) is ganeratad
over $E_{x_{3}, g_{2}}(0)$ by x_{1}, x_{2} and x_{3} where

$$
x_{1}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\langle 1\rangle, x_{2}=\left(\begin{array}{l}
x^{3} \\
y^{3} \\
z^{3}
\end{array}\right)=\left\langle x^{2}\right\rangle, x_{3}=\left(\begin{array}{l}
y^{2} z^{2} n \\
z^{2} z^{2} y \\
x^{2} y^{2} z
\end{array}\right)=\left\langle y^{2} z^{2}\right\rangle
$$

Flurlhermarg

Proof Applying Lemma 1.4.1, paga 106 of Poénaru [1976], wa restrict attention to polynomials. We start by verifying expression (4). In other woros we show that an equivariant polunomial g is characierised bu being
of the form

$$
\begin{equation*}
g(x, y, z)=\sum_{i, k} g_{i j}\left\langle A^{\prime}\left(D \dot{C}^{*}+C b^{k}\right)\right\rangle, \tag{5}
\end{equation*}
$$

where the $g_{i t}$ are real numbers. Observe that such a map satisfies

$$
\begin{equation*}
g(\gamma(x, y, z))=\gamma g(x, y, z) \tag{6}
\end{equation*}
$$

for $\boldsymbol{\gamma}=K_{x}, R_{x}$ and R_{y} and henca for all $\gamma \in \mathbb{0}$, so a mep of the form (5) is indeed 0 -equiveriant. Now suppose that $g=\left(g^{1}, g^{2}, g^{3}\right)$ is an equivariant polynomial map satisfying (6) for all γ. Setting $\gamma-x_{x}, x_{y^{\prime}}, x_{z^{\prime}}$ we find that g^{1} is ood in x, even in y and z, g^{2} is odd in y, even in z and x, and g^{3} is odd in z, aven in x and y. Hence we cen write

$$
g(x, y, z)=\sum_{i / k} a^{i b k}\left[\begin{array}{l}
g_{i}^{2} x \tag{7}\\
g_{j}^{2} y \\
g_{i j}^{\prime} z
\end{array}\right]
$$

Now set γ to be the transpositions (12), (23), (31) to find

Hence (7) becomes

Using $\gamma=(12)$ and (13) in (B) yields the required form (5).
Now we show that the general term $\left\langle a^{\prime}\left(\right.\right.$ oft, $\left.\left.c b^{\prime}\right)\right\rangle$ of (5) can be
written in the form

$$
\begin{equation*}
\left\langle s^{\prime}\left(D c^{t}+c D^{*}\right)\right\rangle=P(8,0, c)\langle 1\rangle \cdot \theta(a, b, c)\langle s\rangle+P(a, 0, c)\langle\Delta c\rangle \tag{9}
\end{equation*}
$$

where P, Q and R are symmetric polynomials in θ, b and c. First note that

$$
\begin{aligned}
& \left\langle a^{2}\right\rangle=v\langle a\rangle-v\langle 1\rangle \cdot\langle a c\rangle \\
& \left\langle a^{n}\right\rangle=u\left\langle a^{n-1}\right\rangle-v\left\langle a^{-2}\right\rangle \cdot w\left\langle a^{n-3}\right\rangle ; n \geq 3,
\end{aligned}
$$

so $\left\langle a^{n}\right\rangle$ can be writien in the form (9) for $n \geq 0$. Also

$$
\left\langle a^{n}\left(b^{n}+c^{n}\right)\right\rangle=\left(a^{n}+b^{n}+c^{n}\right)\left\langle a^{n}\right\rangle-\left\langle a^{n+} a\right\rangle ; m, n \geq 0 .
$$

Furthermore,

$$
\left\langle b^{n} c^{n}\right\rangle=\left\langle a n+n+b c^{n}+c a^{n}\right\rangle\langle 1\rangle-\left\langle a n\left(a^{n}+c^{n}\right)\right\rangle
$$

and for $m \geq n \geq 0$, setting $k=m-n$, we have

Finalty

$$
\begin{aligned}
& =\omega *\langle a p(b q+c q)\rangle ; k \text { is not least, say } m \leq k_{1} / \\
& p=k-m, q=1-m \text {. }
\end{aligned}
$$

Proof of Theoram 1.2.1 We have to show that the uniqueness condition nolds. Theorem 1.2.1 then follows tmmediately from Lemmas 1.2.3 and 1.2.4 by the triviality of the \mathbf{O} ection on the λ veriable. Now Theorem 2GB, page 44\% of Hedel [196\%] shows that at the level of polynomials, there is no nontrivial relation between u, v and w. This is not enough to guarantee
that there is no relation at the level of germs, but it does give uniqueness up to arbitrarily high order in the Taylor expansion.
$1 t$ only remains to show that X_{1}, X_{2} and x_{3} generate $\vec{E}_{x, y_{2}}(0)$ ireely
over $E_{x_{0}, n, p}(0)$. Suppose that $P, Q, R \in E_{\alpha_{1}, w_{0}}$ salisfy

$$
\begin{equation*}
P X_{1}+\theta X_{2}+A X_{3}=0 \tag{10}
\end{equation*}
$$

We must show that each of P, Q and A is identically zero. Now for x, y, z nonzero, (10) raduces to

$$
\left.\begin{array}{l}
P(u, v, w) \cdot x^{2} Q(u, v, w)+y^{2} z^{2} B(u, v, w)=0 \tag{11}\\
P(u, v, w) \cdot y^{2} Q(u, v, w)+z^{2} x^{2} B(u, v, w)=0 \\
P(u, v, w) \cdot z^{2} Q(u, v, w)+x^{2} y^{2} B(u, v, w)=0
\end{array}\right\}
$$

and by continuity, the identities (11) hold for all x, y, z. Eliminating P from these identities, wa obtain

$$
\left.\begin{array}{l}
\theta-z^{2} A=0 \tag{12}\\
\theta-z^{2} A=0,
\end{array}\right\}
$$

holding everywhere by continuity. Eliminating Q from (12) and appealing once again 10 continuity yitelds $A=0$, and so by (12) and (11) we have $Q=0, P=0$, as required.

S1.3. Branching and Slability.
In $\$ 1.1$ we obtatned the lattice if isotropy subgroups of $\mathbf{0}$ together with a list of ortit representatives and fixed-point subspaces. In this section we look for zeroes of the general 0-equivariant tifurcation problem restricted to each fixed-point subspace. The analysis is greatly simplified due to the spectal form that an equivariant germ must take, see

- Theorem 1.2.1.

Our main result of $\mathbf{\$ 1}$, Theorem 1.3.1, is in accordance with the Equivariant Eranching Lemma. This result due to Vanderbauwhede [1982] and Cicogna \{ 1981] predicts, under certain hypotheses, the existence locally of a unique branch corresponding to each isotropy group with one-dimenstonal fixec-point subspace. The first mypothesis is that the group of symmetries should act absolutely irreductbly. Then for a bifurcation problem

$$
g=[P, Q, A], P(0)=0,
$$

the only other hypothesis is that the nondegeneracy condition $P_{\mathbf{2}}(0) \nsim 0$ holds.

Thaoram 1.3.1. Syppose that g is as in Remark 1.2.2 and that $P(0)=0 . P_{1}(0)=0$. Suppose further that the following nondegeneracy
conctitions are salisfiact

$$
\begin{equation*}
O(0)=0 . P_{0}(0) / \sigma(0)=-1,-\frac{i}{2}-\hat{t} \tag{1}
\end{equation*}
$$

Then (i) the branches of solutions corresponding to the thres maximal
isotroay subgraps sallsty the following equations:
$a_{4}: \quad \lambda=-\frac{P_{\alpha}(0)+\varphi(0)}{P_{\lambda}(0)} x^{2}+O\left(x^{4}\right)$,
$Z_{2} r \bullet Z_{2}$ i: $\lambda=-\frac{2 P_{\rho}(0)+\varphi(0)}{P_{2}(0)} x^{2}+\alpha\left(x^{4}\right)$.
$S_{3}: \quad \lambda=-\frac{3 P_{d}(0)+Q(0) x^{2}}{P_{\lambda}(0)}+\phi\left(x^{4}\right)$.
(ii) There are no other branches of solutions locally.
(iii) The A branct is stable if and only if $P_{\mathcal{L}}(0) \cdot \varphi(0)>0$, $\varphi(0)<0$.

The S_{3} brench is stable if and only if $3 P(0)+Q(0)>0, Q(0)>0$.
The $\mathbf{Z}_{2}{ }^{5} \mathbf{Z}_{2}{ }^{t}$ branch is never stable

Remarks 1.3.2 (a) The results of theorem $\mathbf{1 . 3 . 1}$ are summarised in
Figure 1.3.1. The tranches here represent 0 -orbits. We consider the case
E<0 where the trivial solution is stable subcritically and unstsole supercritically.
(b) One of the bifurcating solutions can be stable if and only if all three branches bifurcate supercritically. The others are then unstable. The sign

Fig-1.3.1. Branching and stability for the different types of solution branch in the 0 -symmetric context. The $\left(Q(0), P_{0}(0)\right)$ plane divides into θ regions: for values interior to these the schematic bifurcation diagrams are as shown for $\mathrm{E}<0$. (Solid lines correspond to stable branches, dotted ones to unstable branches.)

of $Q(0)$ determines which of the \mathcal{Q}_{4} and S_{3} tranches is stable whilst a stable $\mathbf{Z}_{\mathbf{2}} \mathbf{r} \mathbf{0} \mathbf{Z}_{\mathbf{2}}{ }^{\mathbf{1}}$ branch would require $\boldsymbol{O}(0)$ to be simultaneously posilive and negalive, and hence camot occur.

Proof of theorem 1.3.1 (i) Wa only need look at g evaluated at points $(x, 0,0), x>0$ when looking for D_{4}-solutions to $g=0$, since g vanishes on n-orbits by the equivariance of g. The equation $g=0$ becomes

$$
\begin{equation*}
P\left(x^{2}, 0,0, \lambda\right) \cdot x^{2} \emptyset\left(x^{2}, 0,0, \lambda\right)=0 . \tag{5}
\end{equation*}
$$

Now $P(0)=0$ and $P_{2}(0) \neq 0$ so by the Implicit Finction Theorem,

$$
P\left(x^{2}, 0,0, \lambda\left(x^{2}\right)\right) \cdot x^{2} Q\left(x^{2}, 0,0, \lambda\left(x^{2}\right)\right)=0,
$$

Where $\lambda(0)=0$ and $\left.\lambda\left(x^{2}\right)=\lambda_{2} x^{2}+\alpha x^{4}\right)$. Therefore

$$
P_{0}(0) \cdot P_{1}(0) \lambda_{2} \cdot Q(0)=0
$$

yielding equation (2). Evaluated on ($x, x, 0$) and (x, x, x), the equation $g=0$ becomes

$$
\begin{equation*}
P\left(2 x^{2}, x^{4}, 0, \lambda\right)=x^{2} \emptyset\left(2 x^{2}, x^{4}, 0, \lambda\right)=0 \text {. } \tag{6}
\end{equation*}
$$

and
$P\left(3 x^{2}, 3 x^{4}, x^{6}, \lambda\right)+x^{2} Q\left(3 x^{2}, 3 x^{4}, x^{5}, \lambda\right)+x^{4} A\left(3 x^{2}, 3 x^{4}, x^{6}, \lambda\right)=0$,
respectively. These lead by the Implicit Function Theorem to (3) and (4) as required.
(ii) Case (a) in Table 1.1 .1 is just the trivial solution. In case (e) $\boldsymbol{g}=\mathbf{0}$
reduces to

$$
P+x^{2} \theta=0, P+y^{2} \theta=0,|x| \nmid y, x, y=0
$$

Subiracting one equation from the other and dividing by $x^{2}-y^{2}$ gives $\varphi=0$ on the supposed branch which contradicts the nondegeneracy condition $\phi(0)=0$. Hence there are no solution tranches with $\mathbf{Z}_{\mathbf{2}}{ }^{r}$ symmetry that do not have at least a_{1} or $\mathbf{Z}_{2} \mathbf{r e Z} \mathbf{Z}_{2}$ isqmmetry. Cases (f) and (g) of fer stmilar contradictions.
(1ti) A solution branch of g is stable if alt the real parts of the eigenvalues of (dg) evaluated at points on the branch are positive, and is unstable if one of the real paris is negative. Now $g=(A, B, C)$ where

$$
A=P x+Q x^{3}, A y^{2} z^{2} x, \quad B=P y \cdot Q y^{3} \cdot A z^{2} x^{2} y, \quad C=P z \cdot Q z^{3} \cdot R x^{2} y^{2} z
$$

We consider the three cases in turn.

Case 1: Q. When evaluated at $(x, 0,0, \lambda), \partial B / \partial x, \partial C / \partial x$ and $\partial C / \partial y$ all vanish. Hence ($\alpha 7)_{x, 0,0}$ is an upper triangulter matrix with eigenvalues

$$
\frac{\partial A}{\partial x}(x, 0,0, \lambda), \quad \frac{\partial \theta}{\partial y}(x, 0,0, \lambda), \quad \frac{\partial}{\partial} \frac{C}{z}(x, 0,0, \lambda) .
$$

Now

$$
\begin{aligned}
\frac{\partial g}{\partial y}(x, 0,0, \lambda)=\frac{\partial C}{\partial z}(x, 0,0, \lambda) & =P\left(x^{2}, 0,0, \lambda\right) \\
& =-x^{2} \theta\left(x^{2}, 0,0, \lambda\right)
\end{aligned}
$$

by (5). Also

$$
\begin{aligned}
\frac{\partial A}{\partial x}(x, 0,0, \lambda) & =P\left(x^{2}, 0,0, \lambda\right)+2 x^{2} P_{u}\left(x^{2}, 0,0, \lambda\right)+3 x^{2} Q\left(x^{2}, 0,0, \lambda\right)+\alpha\left(x^{4}\right) \\
& =2 x^{2}\left(P_{u}\left(x^{2}, 0,0, \lambda\right)+\theta\left(x^{2}, 0,0, \lambda\right)\right)+\alpha\left(x^{4}\right) .
\end{aligned}
$$

To use the characterisation of stability stated in the introduction, we ensure that the elgenvalues do not vanish near the origin by demanding that $Q(0) \neq 0$ and $P(0) \cdot Q(0) \neq 0$. Note that the latter condition corresponds to that needed to predict direction of brancing.

$$
(\partial g)=\left(\begin{array}{ccc}
\frac{\partial A}{\partial x} & \frac{\partial A}{\partial y} & \cdots \\
\frac{\partial A}{\partial y} & \frac{\partial A}{\partial x} & \\
0 & 0 & P+x^{4} A
\end{array}\right)
$$

Therefore, one eigenvalue is positive if $\varnothing(0)<0$. The other eigenvalues are the eigenvalues of a $\mathbf{2 \times 2}$ matrix and so the signs of their real parts ars determined by the signs of the trace and determinent of the matrix. We have staollity if

$$
\theta(0)<0, \frac{\partial A}{\partial x}>0 \text { and }\left(\frac{\partial A}{\partial x}\right)^{2}-\left(\frac{\partial A}{\partial y}\right)^{2}>0 .
$$

and instability if at least one of these expressions is negative. Now

$$
\frac{\partial A}{\partial x}=2 x^{2}\left(P_{v^{4}} Q\right)+O\left(x^{4}\right)
$$

using (6), and

$$
\frac{\partial A}{\partial y}=2 x^{2} P_{u}+\alpha\left(x^{4}\right)
$$

Hence

$$
\left(\frac{\partial, 4}{\partial x}\right)^{2}-\left(\frac{\partial A}{\partial y}\right)^{2}=4 x^{4} \varphi\left(2 P_{v}+Q\right)+o\left(x^{6}\right)
$$

The conditions

$$
Q(0)<0, P_{\psi}(0)+Q(0)>0,2 P_{\mathcal{\prime}}(0)+Q(0)<0
$$

cannot hold simultaneousily, and so the $\mathbf{Z}_{\mathbf{2}} \mathbf{r} \mathbf{a Z}_{\mathbf{2}}$ t branch is always unstable.

Case 3: S_{3}. The eigenvalues of $(d g)_{x_{1} x_{1}, x_{2}}$ satisfy the equation

$$
\left|\begin{array}{ccc}
E-\lambda & F & F \tag{8}\\
F & E-\lambda & F \\
F & F & E-\lambda
\end{array}\right|=0
$$

where, using (7),

$$
\begin{aligned}
& E=\frac{\partial A}{\partial x}=2 x^{2}\left(P_{v}+\theta\right)+O\left(x^{4}\right) \\
& F=\frac{\partial A}{\partial y}=2 x^{2} P_{v}+\alpha\left(x^{4}\right)
\end{aligned}
$$

By parforming column and row operations, (B) can be reduced to

$$
\left|\begin{array}{ccc}
0 & 0 & E-F-\lambda \\
0 & E-\Gamma-\lambda & 0 \\
E+2 F-\lambda & F & F
\end{array}\right|=0
$$

Therefore we require $E-F$ and $E+2 F$ to be non-zero for nondegeneracy and posilive for stability. This yields tha required rasults.

S2. The Equivariant Recognition Problem.

In this section we explors more effictent ways of solving the recognition problem. Recall that we wish to characterise the orbit of a bifurcation problem g under the group of equivalences $D(\Gamma)$ in terms of the Taylor coeffictents of g. We show that this problem can be simplified bu decomposing $X(\Gamma)$ into a group $\mathcal{U}(\Gamma)$ of equivalences whose linear parts are the identity and a group $S(\Gamma)$ of linear equivalences. Then the $\mathrm{g}\left(\mathrm{r}^{-}\right)$-recognition problem can be solved by combting the solutions of the U(Г)- and $5(\Gamma)$-recognition problems.

For many Γ-acitions the $S(\Gamma)$-recognition problem is trivial and so we concentrate on the $U(\Gamma)$-recognition problem. In particular, we give a criterion for this prodem to rentuce to linear algebra, namely that the unipotent tangent space $T(F, U(\Gamma))$ of the bifurcation problem f should be Invariant under $\mathcal{U} \Gamma$). In this case the orbit of r under $U \Gamma$) is stmply the affine space

$$
r+r(f, u(\Gamma))
$$

and we say that f is $/ i n a s t l y$ determined.
The organisation of this section is as follows. $\mathbf{5} 2.1$ sets up the necessary singularity theory backgrourd. In $\mathbf{\$ 2 . 2}$ wa show that $\mathbf{D}(\Gamma)$ can be decomposed tinto $U(\Gamma)$ and $S(\Gamma)$, and that the recognttion problem can ba simtlerly decomposed. We then give a theory for $\mathcal{U} \Gamma$)-equivalence that is
almost identical to that developed by Gaffney [1986] for $\mathrm{D} \times$ ()-equivalence. In particular, results by Bruce, du Plessis \& Wall [1985] Iead to a characterisation of a modula of high order terms. $\$ 2.3$ contains our main result which gives the criterion for a bifurcation problem to be linearly determined. In $\$ 2.4$ we give results which make it easter to check whather or not this criterion holds. Even if the bifurcation problem in question is not linearly determined, the calculations discussed in \$2.4 are atill necessary in order to determine the module of high order terms.

In $\$ 2.5$ wa solve the recognition problem for many lineariy datermined bifurcation problems. A common link between these examples is that Γ acts absolutely irreducibly. We concluda by discussing briefly in $\$ 2.6$ the complications that can be introouced into boith the $\mathcal{U}(\Gamma)$ and the $S(\Gamma)$ recognition problems when Γ does not act absolutely irreducibly.

52.1. Background Singularity Theory.

We summarise the main concepts that will be needed, and esteblish notation. This notation is the same as that used in Golubitsky \& Schaeffer [1984], Golubitsky. Stewart \& Schaeffer [1988], Golubitsky \& Roberts [1986] and Stowart [1997], and generalises that used in $\$ 1$.

Let Γ de a compact Lis group acting on R. A smooth map-germ at 0 , $g: \mathbb{R}^{\mathbf{x}} \times \mathbf{R} \rightarrow \mathbf{R}^{\mathrm{n}}$ is sald to be $\mathrm{\Gamma}$ - equiveriant if

$$
g(\gamma x, \lambda)=\gamma g(x, \lambda) \text { for all } \gamma \in \Gamma, x \in \mathbb{R} ; \lambda \in \mathbb{R} .
$$

We denote the space of all such mappings by $\vec{E}_{x_{2}}(\Gamma)$. The variable $x=\left(x_{1}, \ldots, x_{n}\right)$ is called the sfate varisile and λ is the bifurcation perametor. Let $E_{x, 2}(\Gamma)$ be the ring of all Γ-invariant smooth function-germs at $0, f: R^{\prime} \times \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ that is, those $/$ satisfying

$$
n(\gamma x, \lambda)=f(x, \lambda) \text { for all } \gamma \in \Gamma, x \in \mathbb{R}^{n}, \lambda \in \mathbb{R} .
$$

Then $\vec{E}_{x, 0}(\Gamma)$ is a module over $\varepsilon_{x, 2}(\Gamma)$. We must also consider the $E_{x \lambda \lambda}(\Gamma)$-module $E_{x \lambda}(\Gamma)$, which consists of the germs at 0 of all smooth matrix valued maps $S: \mathbf{R} \times \mathbf{R} \rightarrow \angle\left(\mathbf{R}^{\prime}, \mathbb{R}^{\prime \prime}\right)$ satisfying the condition

$$
\gamma^{-1} S(\gamma x, \lambda) \gamma=S(x, \lambda) \text { for all } \gamma \in \Gamma, x \in \mathbb{R}, \lambda \in \mathbb{R} \text {. }
$$

A resull of Schwarz [1975] ensures that there exists a finite set of invariant generators $u_{1}, \ldots, 4 \mathrm{E}_{\boldsymbol{x}, \boldsymbol{\lambda}}(\Gamma)$ such that any element $f \mathrm{E}_{\mathrm{E}_{x, \lambda}}(\Gamma)$
can be written as a function of $u_{1}, \ldots, 4$. In other words $E_{x, ~}(\Gamma)=\varepsilon_{\mu, ~}$.

The ring $\mathrm{E}_{\mu, \lambda}$ has a unique maximal ideal $\mu_{o, \lambda}=\left\langle\nu_{1}, \ldots, 4, \lambda\right\rangle$ comprising all invariant functions that vanish at the origin. The k th power of the maximal ideal $\boldsymbol{m}_{\mu, \lambda}$ consists of all invariant functions whose derivatives In u and λ up to any degree less than k vanish at the origin. Similarly we can define $\overrightarrow{\boldsymbol{M}}_{x_{2}}(\Gamma)$ to be the space of equivariant maps whose derivalives in x and λ of degree less than k vanish at the origin. A bifurcalion aroblem with Γ symmetry is an equation $g(x, \lambda)-0$ where $g \in \overrightarrow{\boldsymbol{H}}_{x, \lambda}(\Gamma)$ and $\left(\alpha_{x} g\right)_{0}=0$.

Tha group of Γ-equivalencess acting on $\vec{M}_{n, 2}(\Gamma)$ is defined in the following way. Let $\mathcal{I}(\Gamma)^{*}$ denote the connected component of
 space of all Γ-equivariant linear mappings on \mathbb{R}^{n}. Then $g_{1} h \in \overrightarrow{\mathbb{M}}_{x, \lambda}(\Gamma)$ are Γ-equivelent if there exists a tripla $(S, x, \Lambda) \in \mathrm{E}_{x, \lambda}(\Gamma) \times \overrightarrow{\mathrm{H}}_{x, 2}(\Gamma) \times \mu_{2}$ such that

$$
\begin{aligned}
& M(x, \lambda)=S(x, \lambda) g(x(x, \lambda), \Lambda(\lambda)), \\
& S(0)_{1}\left(\phi_{x} \gamma\right)_{0} \in \mathcal{I}(\Gamma)^{\prime}, \Lambda^{\prime}(0)>0 .
\end{aligned}
$$

Let

$$
S(\Gamma)=\left\{(S, x, \Lambda) \in E_{x, \lambda}\left(r^{-}\right) \times \vec{M}_{x \lambda}(\Gamma) \times m_{2} \mid S(0)_{1}\left(\alpha_{x}, x\right)_{0} \in I\left(I^{-}\right)^{0}, \Lambda^{\prime}(0)>0\right\} .
$$

Then under a suitable multiplicalion, the group action of $D(\Gamma)$ on $\overrightarrow{\mathbb{M}}_{x, \mathrm{a}}(\Gamma)$ induces the required equivalence relation. If we write $\varphi_{j}=\left(\lambda_{j}, \Lambda_{j}\right) /=1,2$, then the multiplication is given by

$$
\left(S_{2}, \varphi_{2}\right) \cdot\left(S_{1}, \varphi_{1}\right)=\left(S_{2} \cdot\left(S_{1} \cdot \varphi_{2}\right), \varphi_{1} \cdot \varphi_{2}\right)
$$

where

$$
\begin{aligned}
& S_{2}-\left(S_{1}-\varphi_{2}\right)(x, \lambda)=S_{2}(x, \lambda), S_{1}\left(\varphi_{2}(x, \lambda)\right), \\
& \varphi_{1} \cdot \varphi_{2}(\lambda, \lambda)-\left(x_{1}-\varphi_{2}(x, \lambda), \Lambda_{1} \cdot \Lambda_{2}(\lambda)\right) .
\end{aligned}
$$

Recall that the tangent space $T(f, D(\Gamma)$ is given by

$$
\begin{equation*}
T(f, D(\Gamma))-\left\{\frac{A}{(}\left(\delta, f \|_{1,0} \mid \delta, \in D(\Gamma), \delta_{0}=1\right\} .\right. \tag{1}
\end{equation*}
$$

A calculation shows that

$$
\begin{equation*}
T(f, D(\Gamma))=\bar{\Gamma}(f, D(\Gamma)) \cdot E_{\lambda}\left(\lambda f_{2}\right\} \tag{2a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{r}(r, D(\Gamma))=\left\{S r+(\sigma r) x \mid(s, x) \in E_{x, \lambda}(\Gamma) \times \vec{M}_{x, 2}(\Gamma)\right\} \tag{20}
\end{equation*}
$$

Note that $\tilde{\tilde{T}}\left(\mathrm{f}, \mathrm{D}(\Gamma)\right.$) is an $\mathrm{E}_{x, 2}(\Gamma)$-module, but this is not necessarily so for $T(f, D(\Gamma))$. (2) gives an alternative 'formal' definition for $\Gamma(f, D(\Gamma))$. Unitike in (1) we do not require $g(\Gamma)$ to be a lie group. The following result is a fundamental lemma from singularity theory relating the concepts of finite determinacy and finite codimensiun.

Lemma 2.1.1 The following are equivalent:
(a) $T\left(\mathrm{f}, \mathrm{X}(\Gamma)\right.$ has finite coctimersion in $\mathbb{E}_{x, \lambda}(\Gamma)$, inat is

$$
r(r, D(\Gamma)) \bullet V=E_{x, \lambda}(\Gamma)
$$

for some finila chimensional mactor sascs V.
(b) II finitely determined, that is thers is same $k>0$ such inat

$$
f+\rho \in D(\Gamma) . f \text { for } a l / \rho \in \vec{x}_{x_{2}}(\Gamma) \text {. }
$$

If (a) and (b) hold then $D(\Gamma)$ cen be considered as acling modtlo
$\vec{M}_{n+\lambda}(r)$. Tha incticad action is that of a Lie group acting algatraically
The tengent sasce cifinitions in (1) and (2) coincidte

Definition 2.1.2 A bifurcation problem $f \in \overrightarrow{\boldsymbol{M}}_{x \lambda}(\Gamma)$ has $/ / n i t s$
Γ-codimension if $T(\Gamma, D(\Gamma))$ has finile codimension in $\vec{E} x_{x \lambda}(\Gamma)$.

52.2 Unipotant Actions and the Recognilion Problom.

Let $\mathfrak{D}(\Gamma)$ be the following group of Γ-equivalences acting on $\vec{M}_{\mu, \lambda}(\Gamma)$:

$$
g(\Gamma)=\left\{(S, x, \Lambda) \in \varepsilon_{x \lambda}(\Gamma)_{\times} \vec{\mu}_{x \lambda}(\Gamma)_{x \mu_{\lambda}} \mid S(0),\left(\sigma_{x} x_{0} \in Z(\Gamma)^{\bullet}, \Lambda^{\prime}(0)>0\right\}\right.
$$

Consider the map projecting equivalences onto their linear parts

$$
\begin{aligned}
& \pi: \mathbb{E}_{x, \lambda}(\Gamma) \times \vec{M}_{x, \lambda}(\Gamma) \times \mu_{\lambda}+\frac{\tilde{E}_{x, \lambda}}{}(\Gamma)_{\mu} \vec{M}_{x, \lambda}(\Gamma) \times \mu_{\lambda}= \\
& \pi(S, x, \Lambda)=\left(S(0),\left(a_{x} n_{0,} \Lambda^{\prime}(0)\right) .\right.
\end{aligned}
$$

Let $S(\Gamma)=\mathcal{I}(\Gamma)^{0} \times \mathcal{Z}(\Gamma)^{4} \times \mathbb{R}^{20}$ where $\mathbb{R}^{>0}$ is the set of positive real numbers.
It ts easy to check that

$$
\left.\pi\right|_{\mathscr{D}(\Gamma)}: D(\Gamma) \rightarrow S(\Gamma)
$$

is a group epimorphism. Its kernel

$$
\begin{equation*}
u(\Gamma)=\left\{(S, x, \Lambda) \in \mathbb{D}(\Gamma) \mid S(0)=1,\left(d_{x}, x_{0}=1, \Lambda^{\prime}(0)=1\right\}\right. \tag{1}
\end{equation*}
$$

Is therefore a normal subgroup of $\mathrm{D}(\Gamma)$. We can occompose $\delta \in \mathbb{I}(\Gamma)$ as

$$
\delta=s u_{1}=U_{2} s
$$

where $s \in S(\Gamma), u_{1}, U_{2} \in U(\Gamma)$. To do this sat

$$
s=\pi(\delta), u_{1}=\pi(\delta)^{-1}, u_{2}=\delta \pi(6)^{-1} .
$$

Furthermore the decomposition is unique since

$$
\pi(\delta)=\pi(s) \pi\left(u_{1}\right)=s
$$

Note nowover that in general $\nu_{1} \oplus u_{\mathbf{2}}$.
The group $\mathcal{C}(\Gamma)$ consists of unipotent diffeomorphisms, whose IInear
parts are unipotent matrices. (A unipotent matrix is one that in some coordinate system can be written as an upperirianguiar matrix with ones on the diagonal). In consequence we can use the methods of Bruce, du Plessis \& Wall [19e5], from algetraic geometry.

Remark 2.2.1 (a) the decomposittion descrited above allows us to solve a $\mathrm{D}(\Gamma)$-recognition problem by combining the solutions of the corresponding U(Γ)- and $S(\Gamma)$-recognition problems in the following way. Or method is to compute $S(\Gamma)$. n for a given normal form n, and then to calculate $u f$ for all fe S(I). \boldsymbol{n}. Since

$$
s(r) \cdot n=u(\Gamma) \cdot s(\Gamma) \cdot n
$$

wa have $g \in D(\Gamma)$. n if and only if $g \in \mathcal{U}(\Gamma)$. for some $f \in S(r)$. n.
The elemests of $S(\Gamma)$ ara linear, hence wa might hope to solva the $S(\Gamma)$-recognition proolem without too much difficulty. This hope is not always realisad; see Chapter IX of Golubitsky \& Schealfer [1984] for the case of two state variaoles without symmetry. However, in the examples which we consider in this paper, Γ acts in such a way that $S(\Gamma)$ is scalar. that is $\boldsymbol{I}(\Gamma)^{*}$ contains only diagonal matrices (in some coordinate system). In $\$ 2.6$ we give a criterion for $S(r)$ to be scalar in terms of the action of Γ_{-}In these cases solving $S(\Gamma)$-recogntion problems is a trivial matter. In the remainder of this section we concentrate on the $(\underset{\sim}{\text { (}}$-recognition
problem. From now on we usually suppress the Γ dependence.
(b) Our results require bifurcation problems $f \in \vec{M}_{x, \lambda}$ to have finite codimension. it is not necessary to specify whether this is finite codimenston with respect to D or U. A calculation shows that

$$
\begin{equation*}
T(f, u)=\tilde{r}(f, u)+E_{\lambda}\left[\lambda^{2} f f_{\lambda}\right] \tag{2a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{r}(f, U)=\left\{s f+(\Delta n) x \mid(S, x) \in E_{x, \lambda} \vec{M}_{x, x}, S(0)=(d x)_{0}=0\right\} \tag{2b}
\end{equation*}
$$

Comparing the derinitions of $T(f, D)$ and $T(J, U$, we see that

$$
\begin{equation*}
T(f, D)=T(f, n)+W \tag{3}
\end{equation*}
$$

where

$$
W=R\left\{S f+\left(d_{x} \cap\right) x+\lambda f_{2} \mid S, d_{x} x \in \operatorname{Hom}\left\{R^{n}\right)\right\}
$$

Now $\overrightarrow{\mathrm{H}}_{x_{p} \lambda}$ and $\overrightarrow{\mathrm{E}}_{x_{x} \lambda}$ are finitaly generated as modules over $\vec{E}_{x_{r} \lambda^{*}}$ say by

$$
x_{1} \ldots x_{f}, s_{1}, \ldots, s_{s}
$$

(Theorems XII,5.2 and XII,5.3, and Exercise XIV,1.3 of Golublisky, Stewert
8. Schaeffer [1988]) and so Hom(R-) is spanned by

$$
\left(d_{x} x_{1} d_{0}, \ldots,\left(d_{x} x_{H_{0}}: S_{1}(0), \ldots, S_{s}(0)\right.\right.
$$

Thersfors W is a finite dimensional vector space and hence, by (3), it
follows that the two tangent spaces have finite or infinite codimension in
$\mathbb{E}_{x, \text { a }}$ together.
(c) The results in $\mathbf{\$ 2 . 2}$ and $\mathbf{\$ 2 . 3}$ hold in a more general setting. In particular U and S can be any sugroups of D satisfying the following three proparties:

```
for all \(6 \in \mathbb{D}, \boldsymbol{\varepsilon}=\mathrm{su}\) for some \(u \in U, s \in S\).
\(U\) acts unipotently,
the codimension property (3) nolds with \(W\) finite-dimensional.
```

We will require the following two resul is from algehraic geometry. They deal with actions of unipotent groups and ara Proposition 3.3 and Corollary 3.5 respectively of Bruce, ou Plessis \& Wall [1985].

Theoren 2.2.2 Let Uoe a cmipotent affine algatralc group over R acting algotraically on an affine veriely V. Then
(a) The orolts of Uare Teristi-closed in V.
(b) If x E Vand W is a U-invariant subspace of V then $x+W$ is contained in an arth of $U / /$ and only If $\angle U \times$ دW.

Theorem 2.2.2 is restated in our particular context in Corollery 2.2.6.

Definition 2-2.3 For $f \in \vec{X}_{x, \lambda}$.

$$
\begin{aligned}
M(f, U) & =\left\{\rho \in \boldsymbol{\lambda}_{x, \lambda} \mid f+\rho \in U f\right\} \\
& =\{u f-f \mid u \in U\} .
\end{aligned}
$$

Remark 2.2.4 Notice that $g \in$ Uf if and only if $g-f \in M(f, U)$. Hence, solving the U-recognition problem amounts to computing $\mathcal{M}(f, U)$.

Definition 2.2.5 A subspace of $\vec{\mu}_{x, \lambda}$ is U intrinsic if it is invariant under the action of U. If a sumset M of $\vec{M}_{x, \lambda}$ contains a unique maximal U-intrinsic subspace, then this subspace is called the \langle-intrinsic pert of M and is denoted $1 \mathrm{it}_{\mu} \boldsymbol{M}$.

Note that a U-intrinsic subspace of $\overrightarrow{\mathrm{x}}_{x, \lambda}$ is automatically an $\varepsilon_{x_{\mu} \lambda^{-s}}$ submodule of $\overrightarrow{\boldsymbol{M}_{x, x}}$ since it is closed under multiplication on the left
by $S=$ hl for any $h \in E_{x, 0}$.
Clearly $1 t r_{\mu} M$ exists for any subspace M. In Proposition 2.2. ${ }^{\text {B we see }}$ that $\operatorname{li}_{4} \mathcal{M}(\mathcal{C}, U)$ aiways exists provided f has finita codimension.

Corollary $\mathbf{2} 2.6$ suppose f e $\overrightarrow{\mathbf{M}}_{x_{p}, ~}$ is of finite codimension Then
(a) The arbil UI is determined by a finite system of polynomial equetions.
(b) Slpanase M is a U-intrinsic sutispascy of $\vec{M}_{x, \lambda}$. Then $M=M(f, U)$ if and orly if $M=T(f, U)$.

Proof By Lemma 2.1.1 we can work modulo $\overrightarrow{X_{x} k}$, , some $k>0$, and so regard U as an algebraic group acting algebraically. Now (a) and (b) are then just rewordings of Theorem 2.2.2 (a) and (b) respectively.

We now define the analogue to the module P of high order terms in the \mathbf{D} context (see Gaffney [19E6]).

Proposition 2.2.日 If f has finite cootimansion then

$$
\rho(f, U)=\operatorname{It}_{4} M(f, U)
$$

Proof We have to show that $P(f, U)$ is the unique maximal U-intringic subspace contained in $M(f, U)$. The proof is identical to that of Proposition 1.7 in Gaffney [1986] with one exception. Closure under
addition ita still siraightforward: If $\rho_{1}, \rho_{2} \in P(f, U)$ and $g \in U f$ then $g+\rho_{1} \in U /$ and so $\left(g+\rho_{1}\right)+\rho_{2} \in U /$ by definition. The prothem is closure under scalar multiplication. However, considar tha set

$$
T=\{t \in \mathbb{R} \mid g+t \rho \in U /\}
$$

whers $\rho \mathrm{E} P(f, U), g$ e Uf. By the property of closure under addition, wa have N e r. But by Corollary 2.2.6(a), Ur is determined by finitely many polynomials. Therefore /E T If and only if $/$ is a simultaneous zero of a finite set of polynomials. But T contains N, en infinite set, and so $T=R$ as requirad. Therafora $P(f, U)$ is a subspace.

The rest of the proof proceeds as expected. Suppose $g \in P(H, U), \psi \in U$.
Then $g+\varphi=थ\left(\nu^{-1} g+\rho\right)$ е \mathscr{U}, so φp E $P(f, U)$. Tharefore $P(f, U)$ is a U-intininic subspace. Clearly $P(f, U) \in M(f, U)$. Suppose $P \subset M(O, U)$
where ρ is U-inirinsic. Lat $\rho \in P$ and $g=u f, u \in U$. Then

$$
\left.g+p=\Delta r+p=u r+U^{2} \rho\right) \in u r .
$$

Thus P E $P(f, U)$ and $P(f, U)$ is maximal and unique.

Corollary 2.2.9 /f f has finite cootimension than

$$
P(f, U)=\operatorname{ltr}_{u} T(f, U)
$$

Proof Taking U-inirinsic parts in Corollary 2.2.6(b) and applying

Proposition 2.2.8 yields
$M \subset 9(f, U)$ if and only if $M=J \operatorname{lr}_{u} T(f, U)$.
for any U-intrinsic subspace M. Setting $M=P(F, U)$ and $M=\operatorname{ltr} r_{U} T(f, U)$
in turn gives the result.

52.3. Linearly Determined Eifurcalion Probleme.

In Remark 2.2.4, wa observed that the computation of $M(f, M)$ would solve the U-recognition problem. By Corollary 2.2.6(a), $M(f, U)$ is determined by a finite set of polynomial equations. Wa concentrate on the simplest case when these equations are linear, so that $M(\mathcal{U}, U)$ is a vector subspace of fintte codimension. Note that this codimension is the same as that of $7(r, U)$, because

$$
\text { codim } r(f, U)=\text { number of dafining equations for } U r
$$

Definition 2.5.1 A bifurcation problem $f \in \vec{M}_{x, A}$ of finite codimension Is linearly determined if $M(H, U)$ is a vector subspace of $\overrightarrow{\mathcal{M}}_{x, \lambda}$.

Remark 2.3.2 Linearly determined bifurcation problems ara by no means rare. Indeed in examples that have been studied up to now, the majority of bifurcation problems are linearly determined. In the context of one state variable with no symmetry, nine out of the thirteen bifurcation problems of codimension ≤ 4 are linearly determined, whilsi if $\Gamma=\mathbf{Z}_{2}$ all problems up to at least codimension 3 are linearly determined. In this section we give a simple criterion for linear determinacy. If this is satisfied, then
$M(f, C)$ is immedtataly known.

Proposition 2.3.3 I is linasarly determinad If and only if

$$
M(f, l)=g(r, U)
$$

Proof We have to show that $M(f, U)$ is a subspace if and only if it is a U-inirinsic subspace. One implication is trivial. To prove the converse suppose $p \in M(f, U)$ and $g \in U$, so that there exist $U, U \in U$ such that

$$
r+p=\mu, g=U f
$$

Then

$$
(g+p)-f=(u f-f) \cdot\langle u f-\cap) \in M(f, U)
$$

Therefore $g+\rho \in U /$ and so $\rho \in P(f, U)$.

Thaorem 2.3.4 $/$ is imearly delermined if and only If $\Gamma(f, U)$ is U-infrinsic, in which cass

$$
m r, n)=r(r, n)
$$

Proof Suppose that f is IInearly determined. Than by Proposition 2.3.3,

$$
M(r, U)=P(r, U)=r(r, U)
$$

But $M(f, U)$ is a subspace with the same codimension as $T(F, U)$.

Theref ore

$$
T(f, U)=M(r, U)=P(f, U) .
$$

the latter being a U-intrinsic subspace. Tha converse can be proved directly in the case when $U(\Gamma)$ is defined as in (2.1). However the proof is quite unwieldy. C.T.C. Wall found a more natural setting for the result in Lemma 2.3.5. The upshot of this Lemma is that $T(F, M)=M(T, U)$. But $T(f, U)=P(f, U)$ and so f is linearly determined by Proposition 2.3.3. \square

In the romainder of ths section we revert to the notation of Theorem 2.22. Recall that the Lie abgero LU at f and the tangent swe $T(F, U)$ are the same object

Lemma 2.3.5 Let U be a unipotent group acting linearly on a vector sascis
V and let v \in vich that LU is a U-invariant subsaace of V. Than Uv is the affine sumpace $v+L u v$.

Proof (C.T.C Wall, private comminication.) Let $N_{1}, \ldots, \mathcal{N}_{4}$ be a basis of the Lie algebra \mathbb{U}. Since this is nilpotent, there is an integer r such that any product of more than r of the N is zero. The tangent space $/ U V$ is spanned by the $N_{i} v$. Since it is invariant, any $N_{N} N / v$ also belongs to $\angle U V$ (see Proposition 2.4.1).

It suffices to show that Uve vaLUV for thase have the same dimension. As μv is closed, it follows that it is the whole space. Because the exponenttal map for U is surjective, it is enough to show that for any $N=\Sigma \lambda_{i} N_{j}$ in $\angle U, \mathrm{e}^{N} \nu$ belongs to $\nu+\angle U V$. But
and since any $N_{/} N_{\boldsymbol{\prime}} \nu$ is a linear combination of the $N_{\mathcal{L}} \cup$ it follows by induction that each term except the first lies in L.U.v. \square

Corollary 2.3.6 Let Ube a unipotent group acting linaarly on a vector sasce Vand let ve W. than LUV is a U-inveriant subspasce of VIf and only /f

$$
u v=v+\angle u v .
$$

Proof it remains to prove that If $\langle v=v+\langle U v$ than $\mathcal{L}\langle v$ is
U-inveriant. Suppose that $M \in \angle U, U \in U$. We must show that $\not \subset v \in \mathbb{Z}$

The hypothesis implies that $v+\angle U v$ is invarianl under U and so

$$
u(v \cdot H v) E v \cdot L U v .
$$

Therefore
$U N+\langle N v-v \in L U v$.

But uve Uv and so $u v-v e \lll v$. Hence we have

LWUELUV
as required.

S2.4. Toots for Calculating Mayimal \boldsymbol{U}-Intrinsic Subspacas.

In order to calculate $\boldsymbol{P}(\boldsymbol{\prime}, \varrho)$ we need an efficient method for calculating the U intrinsic part of a subspace. The first result gives a necessary and sufficient condition for a subspace to be U-intrinsic.

Propasilition 2.4.1 /f $M \subset \overrightarrow{\boldsymbol{M}}_{x, \lambda}$ is a subspace of finite codimension then M is U-intrinsic if and only if $L U M \subset M$.

Proof By the finite codimension of M we can work modulo $\overrightarrow{\mathbb{M}}_{x, \lambda}^{k}, t>0$, and so regard ψ as a Lie group or as an algebraic group aciling algebraically. For a unipotent group U, the exponential map

$$
\exp : \angle U \rightarrow U
$$

is continuous and surjective (Lemma 3.1 of Bruce, du Plessis \& Wall
[1985]), so U is the continuous image of a connected space. Therefore U is a connected Lie group acting smoothiy on $\overrightarrow{\mathbf{M}}_{\text {ras }}$. Hence by Lernma 2.2 of Bruce, du Plessis \& Wall [1985] wa obtain the required result.

In general verifying the condition in Proposition 2.4.1 is a laborious task. A better method is to recognise that a 'large part' of a subspace is U-intrinstc and then apply Proposition 2.4.1 as a last resort on whatever
is remaining.
It is clear that applying a Γ-equivalence to a monomial $\rho \in \vec{X}_{x a}(\Gamma)$
cannot reduce the overall degree of ρ. Furthermore, becauss the \wedge part of a Γ-equivalence is only allowed to depend on λ, the degree of ρ in λ alone can also not be reduced. Hence for all $k_{1} />0$, the subspace

$$
\begin{equation*}
\vec{M}_{x, \lambda}^{\mu}(\Gamma)\left\langle x^{\prime}\right\rangle \tag{1}
\end{equation*}
$$

Is both D -intrinsic and \boldsymbol{U}-intrinsic. By the linearity of the action of D . sums of subspaces such as in (1) are also intrinsic.

In the examples considered in $\mathbf{\$ 2 . 5}$, the action of Γ is irreducible.
Suppose further that the action is nontrivial. The fixed point subspace

$$
V^{J}=\{v \in R \mid \gamma V=v \text { for all } \gamma \in \Gamma\}
$$

is a Γ-Invariant subspace of R and so is just (0). Now suppose $x \in \vec{E}_{x, 2}(\Gamma)$. Then

$$
\gamma X(0, \lambda)=X(\gamma .0, \lambda)=X(0, \lambda) \text { for all } \gamma \in \Gamma .
$$

Hence $X(0, \lambda) \in V^{\Gamma}$ and so $X(0, \lambda)=0$. Thus the following useful thypothesis is of ten satisfied.

$$
\begin{equation*}
x(0, \lambda)=0 \text { for all } x \in \vec{E}_{x, \lambda}(\Gamma) . \tag{2}
\end{equation*}
$$

Condition (2) implies that the degree in x is preserved by Γ-equivalence in the same way as the degree in λ is preserved. Therefore it is useful to define a space of germs vanishing up to some specifted degree in x. For
$k \geq 1$, we define

$$
\vec{M}_{k}(\Gamma)=\left\{r \in \vec{E}_{x}(\Gamma) \left\lvert\, \frac{d^{m} f(0)-0}{d r^{m}} \quad\right. \text { for all multi-indices }\right\}
$$

The following result is elementary.

Proposition 2.4.2 Suppase (2) holds. Then sums of suaspaces of the form

$$
\vec{M}_{k}(\Gamma\rangle\left\langle x^{\prime}\right\rangle, k \geq 1, l \geq 0
$$

are D-intrinsic and U-intrinsic.

Note that

$$
\vec{E}_{3}(\Gamma)=\vec{M}_{1}(\Gamma)=\overrightarrow{\mathbb{M}}_{2}(\Gamma)=\overrightarrow{\mathrm{M}}_{3}(\Gamma) \geq \ldots
$$

These inclusions need not be strict. for example, consider $\Gamma=\mathbf{Z}_{\mathbf{2}}$ acting on R. Then $\vec{E}_{\boldsymbol{x}}\left(\mathbf{Z}_{\mathbf{2}}\right)$ consisis only of odd functions and so

$$
{\overrightarrow{H_{2 k}}}_{2 k}\left(Z_{2}\right)=\vec{M}_{2 k+1}\left(Z_{2}\right) \text { for all } k \geq 1
$$

For $k>1$, let k^{-}denote the largest Integer less than k such that $\vec{M}_{k}(\Gamma)$ is sirictly contained in $\overrightarrow{\mathbb{M}}_{k}-(\Gamma)$.

Remark 2.4.5 (a) \boldsymbol{k}^{-}is alther $k-1$ or $k-2$. This is due to the fact that Γ is a compact Lie group acting on \mathbf{R}^{n} and so is a subgroup of $a(n)$. Hence
there is always an invariant of degree two, the norm \|| $\boldsymbol{x} \|$. In consequence, there is an equivariant of degree r for any odd number r. Furthermore,
the existence of an equivariant of degree two would guarantes the existence of an equivariant of any given degree. Hence we have the following.

$$
\text { Elther } k^{-}=k-1 \text { for all } k>1 \text {, or } 3^{-}=1
$$

(b) Both cases in (3) can obtain for $v^{\Gamma}=\{0\}$. The examples in $\$ 2.5$ and $\$ 3$ all satisfy $3^{-}=1$ but if $\Gamma=S_{3}$ acting on C as the symmetries of an equilateral triangle, then $\overline{\boldsymbol{z}}^{\mathbf{2}}$ is an equivariant of degree two. (See Golubitsky \& Schaeffer [19e3].)

Theorem 2.4.4 suppose (2) holas 1 af Vhe a subspace of

$$
\vec{M}_{k_{1}}(\Gamma)\left\langle\lambda^{e-1}\right\rangle+\ldots+{\overrightarrow{M_{k}}}^{-}(\Gamma)\left\langle\lambda^{1}-1\right\rangle, k_{i}>1, I_{i}>0, i=1, \ldots, s .
$$

Then

$$
\vec{M}_{k_{1}}(\Gamma)\left\langle\lambda^{n}-1\right\rangle+\vec{M}_{k_{1}}(\Gamma)\left\langle\lambda^{\prime}\right\rangle+\ldots+\vec{M}_{k_{1}}(\Gamma)\left\langle\lambda^{4}-1\right\rangle+\overrightarrow{\mathbf{M}}_{\mu_{j}}-(\Gamma\rangle\left\langle\lambda^{n}\right\rangle+V
$$

is U-intrinsic.

Proof By Proposition 2.4.2

$$
H=\vec{M}_{k}(\Gamma)\left\langle\lambda^{t}-1\right\rangle+\vec{\mu}_{k_{*}}(\Gamma)\left\langle\lambda^{\prime}\right\rangle+\ldots+\vec{M}_{A}(\Gamma)\langle\lambda \epsilon-1\rangle+\vec{M}_{k_{j}^{-}}(\Gamma)\left\langle\lambda^{\prime}\right\rangle
$$

is U-intrinsic. Hence by Proposition 2.4.1 it suffices to show that

$$
\text { UU.Ve } H_{0}
$$

We show that if $\left.\rho \in \vec{H}_{k}-(\Gamma)<\lambda-1\right)$ then

$$
T\left(\rho_{0}, \cup\right)=H_{0}={\overrightarrow{M_{4}}}_{4}(\Gamma)\left\langle\lambda(-1)+\vec{x}_{k}(\Gamma)\left\langle\lambda^{\ell}\right\rangle\right.
$$

The result follows by innarity of the 1 -action. Now

It is easy enough to see that

$$
S p \in H_{0}, \wedge \rho_{2} \in \vec{M}_{k}(\Gamma)\left\langle\lambda^{\prime}\right\rangle \subset H_{0}
$$

To show that (Δ) $X \in H_{0}$ we have to use Remark 2.4.3(a). By (5) we have two cases to consider.

Case 1. $k^{-}=k-1$ for all $k>1$.
Now ρ is of degree al least $k-1$ in x and at least $/-1$ in λ, and so $\boldsymbol{q} \boldsymbol{p}$ is of degree at least $t-2$ in r and at least $/-1$ in λ. Also we have $X \in \vec{M}_{2}(\Gamma) E_{A}+\vec{H}_{1}(\Gamma\rangle\langle\lambda\rangle$ since $\vec{X}(0, \lambda)=0$ and $(\alpha X)_{0}=0$. Thus

$$
(\phi) X \in \vec{M}_{k}(\Gamma)\left\langle x^{\prime-1}\right\rangle+\vec{X}_{k-1}(\Gamma)\left\langle\lambda^{\prime}\right\rangle-H_{0}
$$

as required.

Case' $2.3^{-}=1$.

This time $X \in \overrightarrow{\boldsymbol{A}}_{3}(\Gamma) E_{\lambda} \cdot \overrightarrow{\boldsymbol{A}}_{\mathbf{1}}(\Gamma\rangle\langle\lambda\rangle$. Hence
$(\phi) x \in \vec{M}_{x-2}(\Gamma)\langle\boldsymbol{A}-1\rangle+\vec{M}_{x}(\Gamma)\langle x\rangle$.

By Remark 2.4.2(a), $k^{-}+2 \geq k$ and so the result is proved.

If (2) does not hold then the property of 'preservation of degree in x ' does not stand. However we can prove a weak analogue of Theorem 2.4.4 which holds true for all compact Lie group actions. Note that

$$
\vec{E}_{x, 2}(\Gamma)-\vec{M}_{x+2}^{c}(\Gamma)=\vec{M}_{x \lambda}^{\prime}(\Gamma)=\vec{M}_{x, 2}^{2}(\Gamma)=\ldots
$$

This time each inclusion is strict.

Theorem 2.4.5 Lat W be a subspace of

$$
\vec{E}_{x, 2}(\Gamma)\left\langle\lambda^{\prime}\right\rangle+\vec{M}_{j, 2}^{k_{j}}(\Gamma)\left\langle\lambda^{\ell-1}\right\rangle+\ldots+\vec{R}_{x, \lambda}^{k}\left(\Gamma\left\langle\lambda_{1}^{\prime}-1\right\rangle, k_{j}>0, I_{j}>0 .\right.
$$

Then

is U-intrinsic

Proof This is similar to that of theorem 2.4.4. However we have only

$$
x \in \vec{X}_{x, \lambda}(\Gamma)+\vec{E}_{x \lambda}(\Gamma)\langle\lambda\rangle
$$

rather than $\vec{M}_{x \lambda}(\Gamma)+\overrightarrow{\boldsymbol{M}}_{x \lambda}(\Gamma)\langle\lambda\rangle$ as in case 2 of the proof of

Thaorem 2.4.4. In particular

$$
x(x, \lambda)=\Delta \lambda, z \in \mathbb{R}^{n}
$$

Is a possibility now that the restriction $X(0, \lambda)=0$ no longer holds in ganeral. This accounts for the slightly weaker result.

S2.5. Eyamplas with Γ acting Absolutaly Irraducibly-
 1. One state variable, No summetru (Keufitz [1986].)

Up to codimension ≤ 4, all bifurcation problems fall into one of the following families:

$$
\begin{array}{lll}
\mathrm{c} x^{k}+\delta \lambda, & k \geq 2 ; & \operatorname{codim}=k-2, \\
\varepsilon x^{k}+\delta r \lambda, & k \geq 3 ; & \operatorname{codim}=k-1, \\
\varepsilon x^{2} \cdot \delta x^{k}, & k \geq 2 ; & \operatorname{codim}=k-1, \\
\varepsilon x^{3}+8 \lambda^{2}, & \operatorname{codim}=3 .
\end{array}
$$

(Ses Table IV2.2 and Exercise IV2.1 of Golubitsky \& Schaef fer [1594].) Our methods apply to all the above germs except those in the third familyIndead even the solutions to the full recognition problems consist of linear defining and nondegeneracy condilions. Furthermore, in these cases the unipotent tangent spaces are invariant not only under unipotent equivalences but under the full group of equivalences. For this reason, the solution of thesa recognition problems is almost irivial even without making use of tha results in this paper. Therefore it is necessary to go up to higher codimension to find instructive axamples. First howevar we must calculata the unipotent tangent space $T(f, U)$. By definition

$$
\begin{aligned}
& \qquad T\left(r_{0} U n=\left\{\left.\left.\frac{4}{\lambda} u_{t}\right|_{t=0} \right\rvert\, u_{t} \in U, u_{0}=1\right\}\right. \\
& =\left\{S f+\left(d_{x} \cap x+\Lambda f_{\lambda} \mid\left(S, x_{0} \Lambda\right) \in E_{x, \lambda} x \vec{M}_{x, \lambda} x \mu_{\lambda}, S(0)=\left(d_{x} n_{0}=\Lambda(0)=0\right\}\right.\right. \\
& \text { Therefors }
\end{aligned}
$$

$$
\begin{equation*}
r(f, u)=\tilde{r}(f, U)+E_{2}\left\{\lambda^{2} f_{\lambda}\right\} \tag{1a}
\end{equation*}
$$

whers

$$
\begin{equation*}
\tilde{T}(f, U)=E_{x, 2}\left\{x f, \lambda f, x^{2} f_{x}, \lambda f_{x}\right\} \tag{1b}
\end{equation*}
$$

The tangent space $T(f, l)$ is the same as $\mathcal{L m x}_{\text {max }}$ in Corollary 1.9 of Gaffney [1906]

Eremple 2.5.1(1) e $x^{k}+\delta x \lambda^{2}, k \geq 4$; codim $=2 k-1$.
Ihis is the family II. 5,2 in Table 1 of Keyfitz[1986]. The lowest
codimension in the family is 7 . First we calculate the orbit of $\varepsilon x^{*} \cdot \delta x^{2}$
under scaling equivalences (S, X, \mathcal{A}) where

$$
S(x, \lambda)=\mu, x(x, \lambda)=v x, \Lambda(\lambda)=/ \lambda_{i} \mu, v, / \geq 0 .
$$

It is easy to ascertain that the orbit is

$$
\left\{\mu \nu \operatorname{vex} x^{k}+\mu v / 2 \delta \times \lambda^{2} \mid \mu, v, / \geq 0\right\},
$$

and that f is contained in this orbit if and only if

$$
\begin{equation*}
f=\operatorname{art}+\operatorname{br} \lambda^{2}, \operatorname{sign} a=\varepsilon_{1} \operatorname{sign} b=\delta \tag{2}
\end{equation*}
$$

Now consider the unscaled germ

$$
f(x, \lambda)=a x^{k}+\text { or } \lambda^{2}, a, b=0, k \geq 4 \text {. }
$$

By (1) we have

$$
r(f, u)=\tilde{r}(f, u)+E_{\lambda}\left(\lambda, 2 f_{2}\right)
$$

where

$$
\tilde{r}(f, u)-\varepsilon_{x, \lambda}\left\{x^{2} f_{x}, \lambda f_{x}, x, \lambda f\right\}
$$

$$
\begin{array}{r}
=E_{x, \lambda}\left[k a x^{k+1}+b r^{2} \lambda 2, k g x^{k}-1 \lambda+b \lambda^{3},\right. \\
\left.a x^{k}+1+b x^{2} \lambda 2, a x k \lambda+b \lambda^{3}\right] .
\end{array}
$$

The first and third generators simplify to x^{k+1} and $x^{2 \lambda 2}$ and then it is easy to obtain

$$
T(f, U)=m * \cdot 1+m^{2}\left\langle\lambda^{2}\right\rangle+\mathbb{R}\left\{k g \mu^{t}-1 \lambda+b \lambda^{3}\right\}
$$

where $\boldsymbol{m}=\overrightarrow{\mathcal{M}}_{x, \lambda}=\langle x, \lambda\rangle$ is the maximal ideal in $E_{x, \lambda}$.

Note that

$$
P(/, D)=\mu k+1+M^{2}\left\langle\lambda^{2}\right\rangle .
$$

Now kaxt-1 $\boldsymbol{*}$ - $\Delta \lambda^{3} \& P(f, D)$, for if we apply the scaling

$$
\lambda \mapsto 2 \lambda,
$$

then

$$
\operatorname{kgy} k-1 \lambda+b \lambda^{3}-2\left(\text { kax }-1 \lambda+4 b \lambda^{3}\right) 4 T(f, U)
$$

Hence $T(f, U)$ is not D-intrinsic. However

$$
\mathbb{R}\left\{\text { kant }-1 \lambda+b \lambda^{3}\right\} \subset \operatorname{H}^{4-1}\langle\lambda\rangle \cdot\left\langle\lambda^{3}\right\rangle
$$

and

$$
T(r, U)=m^{4}\langle\lambda\rangle+m k-2\left\langle\lambda^{2}\right\rangle \cdot \mu\left\langle\lambda^{3}\right\rangle .
$$

and so by Theorem 2.4.5

$$
\because(r, n)=T(f, U)
$$

Hence by Theorem 2.3.4, f is Iinearly determined and

```
UF}=f\cdotT(f,U
    = axk+bx\lambda2 + A(kaxk-1\lambda + b\mp@subsup{\lambda}{}{3})+|k+1+M2\langle\mp@subsup{\lambda}{}{2}\rangle.
```

Further, g E U, if and only if

$$
\begin{align*}
& g=g_{x}=\ldots=g_{x-1}=0, g_{2}=g_{x 2}=\ldots=g_{x k-2 x}=0, g_{\mu 2}=0, \tag{3a}\\
& g_{x k}=k!a, g_{x a t}=2 b, \tag{3b}\\
& g_{x k-1_{2}}=k l_{A B} g_{2 \lambda x}=6 A b . \tag{3c}
\end{align*}
$$

The equations in (3c) are equivalent to the condition

$$
\begin{equation*}
k 18 g_{2 \mu x}-6 \Delta g_{x x+12}=0 \tag{3d}
\end{equation*}
$$

We have now solved both the unipotent recognition problem ($3 a, b, d$) and the scaling recognition problem (2). Combinting the two solutions gives the solution to the full recognition problem. Hence we see that g is D-equivalent to $e x^{k}+\delta x \lambda^{2}$ If and only if

$$
\left.\begin{array}{l}
g=g_{x}=\ldots=g_{x k-1}=0, g_{\lambda}=g_{x a}=\ldots=g_{x k-2 \lambda}=0, g_{\lambda a}=0 \\
\operatorname{sign} g_{x k}=6, \operatorname{sign} g_{x \lambda a}=8_{1} \\
g_{x h 2} g_{2 \lambda a}-3 g_{x k-12} g_{x a 2}=0
\end{array}\right\}
$$

Although the defining conditions for the unipotent problem are linear, the defining and nondegeneracy conditions for the corresponding full problem are not linear.

Example 2.5.1(ii) $\varepsilon\left(x^{2}+6 \lambda\right)^{2} \cdot \sigma x^{5}$, codim $=5$.
(See Table 3.5 of Keyfitz [1986] and Example 1.13 of Gaffney [1986].)
It is easy to check that f is equivalent by scalings to $E\left(x^{2}+5 \lambda\right)^{2} \cdot \sigma x^{5}$ if
and only $1 f$

$$
\begin{equation*}
f=a\left(x^{2}+D \lambda\right)^{2}+c x^{5}, \operatorname{sign} a=\varepsilon_{1} \operatorname{sign} B=\delta_{1} \operatorname{sign} C=0 \tag{4}
\end{equation*}
$$

Consider

$$
f(x, \lambda)=a\left(x^{2}+b \lambda\right)^{2} \cdot c x^{5}, a, b, c=0
$$

Computations show that

$$
T(f, U)=\tilde{F}(f, U)=H \cdot R\left\{x^{5}+B x^{3} \lambda_{1} x^{3} \lambda+B r \lambda^{2}\right\}
$$

where

$$
H=M^{6} \cdot M^{4}\langle\lambda\rangle \cdot M^{2}\left\langle\lambda^{2}\right\rangle \cdot\left\langle\lambda^{3}\right\rangle
$$

and that

$$
P(r, U)=r(f, U)
$$

However $P(f, D)$ is only H. Gaffney shows that in this case a sufficient condition for g to be D-equivalent to f is that $g=f \bmod r(f, U)$. In fect

Theorem 2.3.4 shows that this condition is necessary and sufficient for
U-equivalence. Hence

$$
\begin{aligned}
& U f=a x^{4}+2 a b x^{2} \lambda+a A^{2} \lambda^{2}+c x^{5} \\
& \quad+A\left(x^{5}+O x^{3} \lambda\right)+B\left(x^{3} \lambda+b x^{2}\right)+H
\end{aligned}
$$

and $g \in U f$ if and only If

$$
\left.\begin{array}{l}
g=g_{x}=g_{x x}=g_{x a x}=0, g_{\lambda}=g_{x a}=0, \\
g_{x a o a r}=24 a, g_{x a \lambda}=4 a b, g_{\mu A}=2 a b^{2}, \tag{5}\\
g_{x a o c o r}=120(c+A), g_{x o a x}=6(A b+B), g_{x a \lambda}=2 B b .
\end{array}\right\}
$$

Conditions (5) are equivalent to

$$
\begin{aligned}
& g=g_{x}=g_{x x}=g_{x a x}=0, g_{\lambda}=g_{x \lambda}=0 \\
& g_{x a c o x}=24 g, 6 g_{x a x}=b g_{x a c x}=g_{x \times o a r} g_{\lambda \lambda}-3 g_{x a x \lambda}^{A}=0 \\
& \frac{g_{x a c o o x}}{120}-\frac{g_{x o o \lambda}}{6 b}+\frac{g_{x A \lambda}}{2 b^{2}}=c .
\end{aligned}
$$

Combining ints with (4) ytelds the required result: $g \in \operatorname{D} f$ if and only if

$$
\begin{aligned}
& g=g_{x}=g_{x x}=g_{x a x}=0, g_{\lambda}=g_{x a}=0,
\end{aligned}
$$

Note that example 2.5.1(it) is the firsi member of the infinite family

$$
\varepsilon\left(x^{2}+\delta \lambda\right)^{2}+\sigma x^{\prime}, / \geq 5, \text { codim }=1
$$

in Keyfitz [1986]. In fact it is the only member of the family that is linearly determined.
2. One state yariable Γ - \mathbf{Z}_{2} (Golubitsky \& Scheaffer [1994], VI.)

Here Γ acts on R as multiplication by -1 . The ring of Γ-invariant
polynomials in x is merely the ring of even polynomials, while the module of Γ-equivariant polynomials just consists of odd polynomials. Every odd polynomial can be written as an even polynomial multiplied by x, and so the module of Γ-equivariant polynomials is generated over the ring of Γ - Invariant polynomials by the single element x. Aesults of Schwarz [1975] and Poenaru [1976] state that these properties are shared by smooth germs. Thus if we let $\boldsymbol{\nu = x ^ { 2 }}$, than

$$
\begin{aligned}
& E_{x, \lambda}\left(Z_{2}\right)-E_{\mu, \lambda} . \\
& E_{x, \lambda}\left(Z_{2}\right)-\varepsilon_{\mu, \lambda} \cdot x .
\end{aligned}
$$

Suppose $r \in \vec{E}_{x, \lambda}\left(\mathbf{Z}_{2}\right), f(x, \lambda)=r(u, \lambda), x, r \in E_{a, \lambda}$. The unipotent tangent space is given by

$$
\begin{equation*}
T\left(f, u, z_{2}\right)=\tilde{f}\left(f, u, z_{2}\right)+E_{\lambda}\left(\lambda 2 r_{2}, x\right) \tag{7a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{f}\left(\tau, u, \mathbf{z}_{2}\right)=\varepsilon_{\mu, \lambda}\left(u r_{0} \lambda r_{0}, u^{2} r_{2}, v \lambda r_{\psi}\right) \cdot x . \tag{7b}
\end{equation*}
$$

A list of $\mathbf{Z}_{\mathbf{2}}$-equivariant germs up to codimension $\mathbf{3}$ is given in
Table V,5.1 of Golubitaky \& Scheeffer [1984]. It turns out that all but one of the eleven bifurcation problems satisfy

$$
P\left(f, 0, \mathbf{z}_{2}\right)=P\left(f, U_{1} \mathbf{z}_{2}\right)=T\left(f, U, z_{2}\right) .
$$

The missing problem is linearly determinad but $P\left(f, y, Z_{2}\right)$ is strictly contained in $\quad \boldsymbol{f},\left(, U_{1} \mathbf{Z}_{2}\right)$. This means that there is a distinct advantage in considering the unipotent recognition problem separately and we choose this as our next example:

Eyample 2.5.2 $\left(\varepsilon(u+\delta \lambda)^{2}+\sigma u^{3}\right) x_{1} \operatorname{codim}_{Z_{2}}=3$.
Now f is equivalent by scalings to $\left(\varepsilon(u+6 \lambda)^{2}+\sigma U^{3}\right) x$ if and only if

$$
\begin{equation*}
f=\left(a(u+b \lambda)^{2}+c \nu^{3}\right) x, \operatorname{sign} \theta=E_{1} \operatorname{sign} b=6, \operatorname{sign} C=0 . \tag{8}
\end{equation*}
$$

Consider the germ

$$
f(x, \lambda)=r(u, \lambda) x
$$

where

$$
r(u, \lambda)=a(\nu+\Delta \lambda)^{2}+c u^{3}, P_{1} b, c \neq 0 .
$$

A computation using (7) shows that

$$
T\left(f, U, z_{2}\right)=\bar{T}\left(f, U, z_{2}\right)=H+V
$$

where

$$
H=E_{0, \lambda}\left[\nu^{4}, \nu^{3} \lambda_{1}, \nu^{2} \lambda^{2}, \nu^{3}, \lambda^{4}\right]-x_{1}
$$

and

$$
V=R\left\{\|^{3} \cdot \Delta t^{2} \lambda, u^{2 \lambda}+\Delta u \lambda^{2}, \Delta^{2}+\Delta \lambda^{3}\right\} . \lambda
$$

Notice that $U^{4} . x \in H$ and hence H contains any monomial of order ≥ 9 in
x. Therefore $H=\overrightarrow{\mathbb{M}}_{g}\left(\mathbf{Z}_{2}\right) E_{\lambda}$. In this way we see that

$$
H=\vec{M}_{9}\left(Z_{2}\right) E_{2}+\vec{M}_{7}\left(Z_{2}\right)\langle\lambda\rangle+\vec{M}_{5}\left(Z_{2}\right)\left\langle\lambda^{2}\right\rangle+\vec{M}_{3}\left(Z_{2}\right)\left\langle\lambda^{3}\right\rangle \cdot \vec{M}_{1}\left(Z_{2}\right)\left\langle\lambda^{4}\right\rangle
$$

and so by Proposittion 2.4.2

$$
P\left(f, D, \mathrm{Z}_{2}\right)=H
$$

Now

$$
V=\vec{H}_{7}\left(Z_{2}\right) e_{\lambda}+\vec{H}_{5}\left(Z_{2}\right)\langle\lambda\rangle \cdot \vec{M}_{3}\left(Z_{2}\right)\langle\lambda 2\rangle \cdot \vec{H}_{1}\left(Z_{2}\right)\left\langle\lambda^{3}\right\rangle .
$$

and since there are no equivariants of even order

$$
9^{-}=7.7^{-}=5,5^{-}=3 \text { and } 3^{-}=1 .
$$

Thus, by Theorem 2.4.4

$$
T\left(f, U, z_{2}\right)=H+V
$$

is U-intrinsic and so f is linearly determined. Theref ore

$$
\begin{aligned}
& u^{\prime}=\left(a u^{2} \cdot 2 a b u \lambda+a b^{2} \lambda^{2} \cdot c u^{3}\right) \cdot x \\
& \cdot\left(A\left(u^{3}+b u^{2} \lambda\right)+B\left(u^{2} \lambda+a u^{2}\right)+C\left(u \lambda^{2}+b \lambda^{3}\right)\right) \cdot x+H .
\end{aligned}
$$

Hence $g(x, \lambda)=s(\nu, \lambda) x$ is U-equivalent to f if and only if

$$
\begin{align*}
& s=s_{0}=s_{2}=0_{1} \\
& s_{\omega \omega}-2 \theta, s_{A M}=2 a b, s_{\mu}=2 a b^{2}, \tag{9}\\
& s_{m o v}=6(C+A), s_{\text {max }}=2(A D+B), s_{m a}=2(B D+C), s_{x \mu \lambda}=6 C b \text {. \} }
\end{align*}
$$

Equations (9) can be replaced by

$$
\left.\begin{array}{l}
s=s_{\infty}=s_{M}=0, \tag{10}\\
s_{m}-2 s_{,} s_{M}=b s_{m}, s_{m} s_{M A}-s_{\Delta M}^{2}=0, \\
s_{m e}-3 \frac{s_{m A}}{D} \cdot 3 \frac{s_{m M}}{D^{2}}-\frac{s_{m M}}{b^{3}}-6 c .
\end{array}\right\}
$$

Together with (8) inis gives the necessary and sufficient conoltions for g
to he $\mathbf{Z}_{\mathbf{2}}$-equivalent to $\mathrm{c}(\nu+\Sigma \lambda)^{2} \cdot \sigma \nu^{\mathbf{3}}$, namely

$$
\begin{aligned}
& s=s_{u}=s_{\lambda}=0, \\
& \operatorname{sign} s_{m}=E_{1} \operatorname{sign} s_{\Delta A}=E 6, s_{m} s_{\lambda A}-s_{\Delta \lambda}^{2}=O_{1}
\end{aligned}
$$

3. Twa state varifoles. $\Gamma=a_{\text {. }}$ (Golublisky \& Roberts [1986].)

Here D_{4} is taken to be acting on \mathbf{R}^{2} as the symmetry group of the square and is generated by the symmetries

$$
(x, y) \leadsto(x,-y), \quad(x, y) \rightarrow(y, x)
$$

The ring of D_{4}-invariant germs is given by

$$
E_{x, y, \lambda}\left(D_{4}\right)=E_{N, \Delta, \lambda}
$$

where

$$
N=x^{2}+y^{2} \text { and } \Delta=\left(x^{2}-y^{2}\right)^{2}
$$

$\mathbb{E}_{x_{4} \mu_{2}}\left(D_{4}\right)$ is generated as a module over $E_{x_{4}, y_{i}}\left(O_{4}\right)$ by

$$
\binom{x}{y} \cdot\left(y^{2}-x^{2}\right)\binom{x}{-y}
$$

Hence every D_{4}-equivariant map germ can be written as

$$
f(x, y, \lambda)=p(N, \Delta, \lambda)\binom{x}{y} \cdot r\left(N, \Delta, \lambda \lambda\left(y^{2}-x^{2}\right)\binom{x}{-y} \cdot\right.
$$

We adopt the 'Invariant coordinate' notation

$$
r=[\rho, r]
$$

Table 2.1 of Golubiteky \& Fobarts [1986] gives a list of the fifteen bifurcation problems with D_{4} symmetry of topological codimension ≤ 2. of these, ten are linearly determined. We remark that these are precisely those bifurcation problems satisfying the nondegeneracy condition $r(0) \neq 0$. An analogous situation exists in the 0-symmetric context; see $\mathbf{\$ 3}$. Of the Itnearly determined germs, $P\left(, U, O_{4}\right)$ is strictly larger than $P\left(f, U, D_{4}\right)$ for all but cases I and II. We treat problem XII:

Erample 2.5.3 $\left[\varepsilon N+\sigma \lambda^{2} \cdot \sigma \Delta+m N \lambda, \varepsilon\right], m^{2}+450,100 . \operatorname{codim} D_{D_{4}}=2$.

Tha scaling problem is not quite as trivial as in the previous examples. f
is equivalent by scalings to $[E N+\delta \lambda 2+\sigma \Delta+m N \lambda, E]$ if and only if

$$
\begin{equation*}
f=[a V+b \lambda 2+c \Delta+\Delta N A, s] \tag{11a}
\end{equation*}
$$

and there are positive numbers $\mu_{1} v_{1} /$ such that

$$
\varepsilon \mu \nu^{3}=a, \delta \mu \nu / 2=0, \sigma \mu \nu 5=c, m \mu \nu^{3} /=\alpha .
$$

Clearly we require

$$
\begin{equation*}
\operatorname{sign} a=\varepsilon, \operatorname{sign} b=\delta, \operatorname{sign} C=\sigma . \tag{11b}
\end{equation*}
$$

A short computation shows that in addition we require

$$
\begin{equation*}
m=\frac{d}{\sqrt{|b c|}} \tag{11c}
\end{equation*}
$$

As usual we now consider the unscaled germ

$$
f=\left[a N \cdot \Delta \lambda^{2}+c \Delta+a \Delta \lambda, a\right], d^{2}+4 \Delta c .
$$

In Example 9.2 of Golubitsky \& Roberts [1986] it is shown that

$$
T\left(f, U_{1} D_{4}\right)=H_{0}
$$

where

$$
H=\left[m^{3}+M\langle\Delta\rangle, m^{2}+\langle\Delta\rangle\right]
$$

M being the maximal tdeal $\langle N, \Delta, \lambda\rangle$ in $\mathbf{E}_{\text {_nt. }}$ In fact

$$
\begin{equation*}
T\left(r, U, D_{4}\right)=H \cdot \mathbb{R}\left\{\left[N^{2}, N\right],[\Delta, N]_{0}[N, \lambda]\right\} . \tag{12}
\end{equation*}
$$

In order to translate (12) into the notation of $\mathbf{\$ 2 . 4}$, we first note that H is generated as an $\mathrm{E}_{\mathrm{m}_{\mathrm{s}, \mathrm{A}, 2}}$-module by

$$
\begin{align*}
& {\left[N^{3}, 0\right],\left[\Delta^{2}, 0\right],\left[\lambda^{3}, 0\right]_{,}\left[N^{2} \lambda, 0\right]_{0}[N \Delta, 0],[\Delta \lambda, 0]} \tag{13}\\
& {\left[0, N^{2}\right],[0, \Delta],\left[0, \lambda^{2}\right],[0, N \lambda] .}
\end{align*}
$$

Ignoring factors of λ we start to list monomials in $\vec{E}_{x_{1}, y_{2}}\left(O_{4}\right)$ in order of degree in (x, y). Note that N and Δ have degrees 2 and 4 and that $[1,0]$ and [0,1] have degrees 1 and 3 .

Ordar	$[\pm, 0]$	$[0, \pm]$	
1	1		
3	N	1	
5	N^{2}, Δ	N	
7	$N^{3}, N \Delta$	$N^{2, \Delta}$	etc.

Glancing at (13) we note that the only monomials in (x, y) which are missing are

$$
[1,0],[N, 0],[N, 0],[\Delta, 0],[0,1],[0, N]
$$

These are all terms of degres $\leq 5 \mathrm{in}(x, y)$ and hence

$$
H=\vec{M}_{7}\left(D_{4}\right) E_{2} .
$$

In this way it is easily seen that

$$
H=\vec{M}_{7}\left(D_{4}\right\rangle E_{2}+\overrightarrow{\mathrm{A}}_{5}\left(D_{4}\right\rangle\langle\lambda\rangle+\overrightarrow{\mathrm{M}}_{3}\left(O_{4} K \lambda^{2}\right)+\overrightarrow{\mathrm{M}}_{1}\left(O_{4} K \lambda^{3}\right\rangle
$$

Thus by Proposition 2.4.2 H is U-intrinsic and so is contained in $P\left(f, U, D_{4}\right)$. Furthermors

$$
\mathbf{R}\left[\left[N_{2}, N_{0},[\Delta, N],[N \lambda, \lambda]\right\}=\vec{X}_{5}\left(D_{4}\right) E_{2}, \vec{H}_{3}\left(D_{4}\right)\langle\lambda\rangle\right.
$$

and so by Theorem 2.4.4, $P\left(f, U, O_{4}\right)=T\left(\Gamma, U, O_{4}\right)$. Therefore by
Theorem 2.3.4 we have

$$
\begin{aligned}
& U F= {[a N} \\
&\left.+b \lambda^{2}+c \Delta+a N \lambda, a\right] \\
&+A\left[N_{2}, M\right]+E[\Delta, N]+C[N, \lambda]+H .
\end{aligned}
$$

Hence $[\rho, r] \in U, r$ if and only if

$$
\begin{aligned}
& \rho=\rho_{\lambda}=0, \rho_{n}=A, \rho_{\lambda \lambda}=2 \Delta, \rho_{A}=c+B \\
& \rho_{m}=\sigma+C_{i} \rho_{N v}=2 A, r=a_{i} r_{n}=A+B, r_{\lambda}=C
\end{aligned}
$$

that is if and only if

$$
\begin{align*}
& \rho=\rho_{\lambda}=0, \rho_{N}=a_{1} \rho_{M A}=2 b, \rho_{N}-r=0, \tag{14}\\
& \rho_{M}-r_{\lambda}=\sigma_{1} \rho_{A N}+2 \rho_{\Delta} \cdot 2 r_{N}=2 c .
\end{align*}
$$

Combining (14) with (11) we see that $[\rho, r]$ is O_{4}-equivalent to $\left[\varepsilon N+\sigma \lambda^{2}+\sigma \Delta * m N \lambda, \varepsilon\right]$ If and only if

$$
p=p_{\lambda}=0, \operatorname{sign} \rho_{N}=\varepsilon, \operatorname{sign} \rho_{\lambda \lambda}=\delta_{1}, \rho_{N}-r=0
$$

$\operatorname{sign}\left(\rho_{A}+2 \rho_{\Delta}-2 r_{N}\right)=\sigma$,

$$
m=\frac{2\left(p_{M A}-r_{\lambda}\right)}{\sqrt{\left|\rho_{\lambda A}\left(p_{A W}+2 \rho_{A}-2 r_{N}\right)\right|}}
$$

S2.6. Examples with $\mathbf{\Gamma}$ not acting Absolutaly Irreducibly-

In $\$ 2.5$ we considered examples where Γ acts irreducibly. Using
Theorem 2.4.4 or Theorem 2.4.5, we were able to show that the unipotent tangent spaces of certain blfurcation problems are U-intrinsic. Then by Theorem 2.3.4 the unipotent recognition problems can be solved using only Inear algebra. Furthermore it is then trivial to recover the solution to the full recogntion problem because the group $S(\Gamma)$ of linear Γ-equivalences just consists of scalar multiples of the identity. In other words, ithe triviality of the $\boldsymbol{S (\Gamma)}$-racognition problems in $\mathbf{\$ 2 . 5}$ relies on the absolute irreducibility rather than the irreducibility of the Γ action.

Schur's Lemma (Theorem 2, p. 119 of Kirillov [1976]) states that if Γ acts irreducibly on V and Hom ${ }^{\prime}(V)$ denotes the space of linear maps on V that commute with Γ, then

$$
\operatorname{Hom}_{r}\left(И \approx R_{1} E \text { or } H .\right.
$$

If $\operatorname{Hom}_{\Gamma}($ И $\cong \mathbf{R}$, then Γ acts absolutely irreducibly, whereas if
 consists only of diagonal matrices.

Dafinition 2.6.1 Supose Γ is a compact Lie group acting on $\mathbb{R}^{\text {r }}$. We say that $S(\Gamma)$ is sca/ar if in some coordinate system

$$
\operatorname{Hom}_{r}\left(\mathbb{R}^{\infty}\right) \in\{\text { diagonal matrices }\}
$$

Proposition 2.6.2 Supoose Γ acts irreactibly on \boldsymbol{R}^{A}. Then S(Г) is
scalar if and only If Γ acts absolutoly irrectucibly

Suppose now that Γ does not act irreducibly. By Theorem 3.20 of Adams [1969], $\mathbb{R}^{\mathbf{c}}$ can be decomposed into irreductble subspaces

$$
\mathbf{R}^{n}=V_{1} \oplus \ldots \odot V_{t}
$$

Lemma 2.6.3 S(I) is scaler if
(i) The actions of Γ on V_{i} and V_{j} ane not isomarphic for i if
(ii) $\operatorname{Hom}_{\Gamma}\left(V_{i}\right) \geq R, i=1, \ldots, k$.

Proof Supose $/$ e $\boldsymbol{L}(\Gamma)^{\bullet}$ e $\operatorname{Hom}_{\Gamma}\left(\mathrm{R}^{n}\right)$. Then, as in Proposition 4.2 of Stewart [1997],

$$
L\left(V_{i}\right)=V_{i}, t=1_{m, n} k_{\text {, }}
$$

and so \angle has the block matrix structure

where each L_{i} e $\operatorname{Hom}_{r}\left(V_{i}\right)$. Furthermore, since each Homr $\left(V_{i}\right) \cong R$ wh have

$$
L_{i}=\mu_{i} I, \mu_{j} \in R_{0} /=1_{, \ldots,} k
$$

In this paper we consider only examples where $S(\Gamma)$ is scalar. A nonscalar problem is studied hy Golititsky \& Schaeffer [1984], Chapter 1x. They look at the nondegenerate bifurcation problems in two state varlables with no symmetry. Their result for high order terms is easily recovered using Corollary 2.2.9; indeed the problems are linearly determinad. However it is in the S-recognition problem that all the difficulties lie.

In the remainder of this section we look at a straightforward example Where Γ does not act irreducibly but where $S(\Gamma)$ is scalar.

1. $\Gamma=Z_{\text {, acting on } R^{2} \text { bureflection on one cony of R.trivially on the }}$ other. (Dangelmayr \& Armbruster [1993].)

The $\mathbf{Z}_{\mathbf{2}}$ action is generated by

$$
(x, y) \mapsto(x,-4) .
$$

Every $\mathbf{Z}_{\mathbf{2}}$-equivariant germ can be written in the form

$$
f(x, y, \lambda)=\binom{f_{1}(x, y, \lambda)}{f_{2}(x, y, \lambda)}
$$

where

$$
\begin{aligned}
& f_{1}(x, y, \lambda)=\rho(u, v, \lambda), f_{2}(x, y, \lambda)=r(u, v, \lambda) y, \\
& u=x, v=y^{2} .
\end{aligned}
$$

In the invariant coordinate notation

$$
f=[\rho, r]
$$

In inis notation the unipotent tangent space

$$
T\left(f, U, \mathbf{z}_{2}\right)=\tilde{T}\left(f, U_{2} \mathbf{z}_{2}\right)+E_{\lambda}\left[\lambda \tau\left[\rho_{\lambda}, r_{\lambda}\right]\right]
$$

where $\tilde{f}\left(f_{0} U_{1} \mathbf{Z}_{2}\right)$ is generated as a $\varepsilon_{e, v, 2}$-module of

$$
\begin{aligned}
& z[\rho, 0], z[0, r], z\left[p_{\omega} \cdot r_{\nu}\right], z=u, v \text { or } \lambda,
\end{aligned}
$$

Let $\boldsymbol{\mu}=\langle\nu, v, \lambda\rangle$ denote the maximal ideal in $\mathcal{E}_{\mu, v, \lambda}$. Let J and J consist of sums and products of ideals of the form

$$
M,\langle\nu\rangle \text { and }\langle\lambda\rangle \text {. }
$$

Then it is easily seen from the tangent space generators that ($/, \mathcal{N}$) is an intrinsic module if and only if

$$
W /=/=J .
$$

This characterisation of 'obvious' intrinsic modules proves more useful in this particular case than the more general Theorem 2.4.5.

It turns out that the mathods of this papar simplify calculations for relatively few of the blfurcation problems. Linear determinacy holds for three out of the five problems of topological codimension ≤ 1, but for only three of a further twelve problems of topological codimension 2. There are two types of equivalence that restrict the number of intrinstc sudspaces:

$$
x \mapsto x \cdot \lambda \text { and }[\rho, 0] \mapsto[0, \rho] .
$$

The first of these types also occurs when there is one state variable without symmetry and causes bifurcation problems of low codimension to fall to be linearly determined. This does not happen when there is reflectional symmetry present. For example in our present context we do not have equivalences of the form

$$
y^{\omega} y+\lambda \text { or }[0, q] \leftrightarrow[9,0]
$$

We would expect the action of $\mathbf{Z}_{\mathbf{2}} \mathbf{e} \mathbf{Z}_{\mathbf{2}}$ on $\mathbf{R}^{\mathbf{2}}$

$$
(x, y) \mapsto(-x, y),(x, y) \mapsto(x,-y)
$$

to behave far better, in much the same way that \mathbf{Z}_{2} behaves better than 1 when acting on R.

Eyample 2.6.4 [$\left.\mu \omega+\varepsilon_{1} \lambda+\varepsilon_{3} v, \varepsilon_{2} \nu^{2}+v\right], m \geq 3$, top. codim $z_{2}=m-1$. .

This is family (3) of Dangelmayr \& Armbruster [19日3]. First we solve
the $\boldsymbol{S}\left(\mathbf{Z}_{2}\right)$-recognition problem. Note that $\boldsymbol{S}\left(\mathbf{Z}_{2}\right)$ is scalar:

$$
\operatorname{Hom}_{Z_{2}}\left(\mathbb{R}^{2}\right)=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \right\rvert\, a, b \in \mathbf{R}\right\}
$$

We usually require that

$$
S(0),(\alpha X)_{0} \in Z\left(Z_{2}\right)^{\circ}, \Lambda^{\prime}(0)>0
$$

 identify (see Chapter XIV, §i of Golubitsky, Stewart \& Schaeffer [1989]). Then

$$
z\left(Z_{2}\right)^{\circ}=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \right\rvert\, a, b>0\right\}
$$

Dangelmayr \& Armbruster [1983] impose the alternative restrictions

$$
\operatorname{det} S(0) \not 0,(\alpha r)_{0}>0, \Lambda^{\prime}(0)>0
$$

In other words $(S, X, \Lambda) \in S\left(Z_{2}\right)$ must satisfy

$$
S(x, y, \lambda)=\left(\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{2}
\end{array}\right), x(x, y, \lambda)=\left(\begin{array}{cc}
\nu_{1} x & 0 \\
0 & \nu_{2} y
\end{array}\right), \Lambda(\lambda)=/ \lambda
$$

where $\mu_{1}, \mu_{2} \sim 0, v_{1}, v_{2}, I>0$. It can be shown that $/$ is $S\left(Z_{2}\right)$-equivalent to $\left[\nu=\varepsilon_{1} \lambda+\varepsilon_{3} v_{4} \varepsilon_{2} u^{2}+v\right]$ sutpect to the following conditions:

$$
\begin{align*}
& f=\left[a v=b \lambda_{0} \cdot c v_{1} a t^{2}+B v\right], \tag{1a}\\
& \operatorname{sign}(\alpha a)=\varepsilon_{2}, \operatorname{sign}(a c)=\varepsilon_{3}, \operatorname{sign}(a b)=\varepsilon_{1}, \text { If } m \text { even. } \tag{10}\\
& \operatorname{sign}(\alpha a)=\varepsilon_{2}, \operatorname{sign}(a c)=\varepsilon_{1} \varepsilon_{3}, \text { if } m \text { odd. } \tag{1c}
\end{align*}
$$

As always we now consider the unscaled bifurcation problem

$$
\zeta=\left[a v, a \lambda+c v, a v^{2}+a v\right]_{0} m \geqslant 3, a, b, c, a, a \neq 0
$$

A simple calculation reveals that

$$
T\left(f, U, \mathbf{Z}_{2}\right)=[I, J]+\mathbb{R}[[0, b \lambda+C V]\}
$$

where

$$
I=M^{p+1}+M\left\langle v_{0} \lambda\right\rangle, J=M^{3}+M\left\langle v_{0} \lambda\right\rangle
$$

Clearly $W \in I \subset J$ and so $P\left(f, U, \mathbf{Z}_{2}\right) \supset[I, \Omega$. Furthermore it is easily
checked from the tangent space generators that if $p \in \mathbf{R}\{[0, b \lambda+C V]\}$ then

$$
T\left(\rho, U, \mathbf{Z}_{2}\right) \subset[I, J]
$$

By Theorem 2.3.4

$$
U . f=f+A[0, b \lambda+C V]+[f, \Omega]
$$

Thus $[\rho, r] \in U, f$ if and only if

$$
\begin{aligned}
& p=p_{U}=\ldots=p_{U}-1=0, r=r_{U}=0 \\
& p_{U}=m \mid a, p_{\lambda}=b, p_{V}=c, r_{U U}=2 d \\
& r_{V}=e+A C, r_{\lambda}=A b
\end{aligned}
$$

These conditions are equivalent to

$$
\left.\begin{array}{l}
\rho=\rho_{U}=\ldots=\rho_{U}=-1=0, r=r_{U}=0 \\
\rho_{U}=m!a, p_{\lambda}=b, p_{V}=c, r_{U}=2 a \\
\rho_{\lambda} r_{V}-r_{\lambda} \rho_{V}=\rho_{\lambda} e
\end{array}\right\}
$$

Hence by (1) $[\rho, r]$ is Z_{2}-equivalent to [$\left.u \neq+\varepsilon_{1} \lambda+\varepsilon_{3} v_{1} \varepsilon_{2} \nu^{2}+\nu\right]$ if and only if

$$
\begin{aligned}
& \rho=\rho_{U}=\ldots=\rho_{U}-1=0, r=r_{U}=0 \\
& \operatorname{sign}\left(r_{w} \rho_{\lambda}\left(\rho_{\lambda} r_{V}-r_{\lambda} \rho_{V}\right)\right)=\varepsilon_{2},
\end{aligned}
$$

and $\operatorname{sign}\left(\rho_{\mu^{\prime}} \rho_{V}\right)=\varepsilon_{3} \cdot \operatorname{sign}\left(\rho_{\mu} \rho_{\lambda}\right)=\varepsilon_{1}$, if m even. $\operatorname{sign}\left(\rho_{\lambda} \rho_{\psi}\right)=\varepsilon_{1} \varepsilon_{3}$, if m odd.

S3. Singularity Thaory Classification of Bifurcation Problama with Octahedral Summetry.

We give a singularity theory classification of bifurcation problems with octahedral symmetry up to topological codimension one. This consists of a list of seven normal forms with the property that any 0-equivariant bifurcation problem on R3 with topological codimension ≤ 1 is D-equivalent to precisely one of the germs represented by the normal forms. In addition we give the univarsal unfolding of each normal form and solve the recognition problems where possible. The results are displayed In Table 3.1.1.

The recognition problem was discussed in S2. We now explain briefly the concepts of universal unfolding and codimension. For a more cetalled discussion see Golubitsky \& Schaeffer [1984] and Golutitsky, Stewart \& Schaeffer [198日].

Roughly speaking, a universal unfolding of a garm gives us all possibla local behaviour in the bifurcation diagram under small perturbation. More
 D-unfolding to emphasise the role of the group 0) of $\int \mathrm{E} \vec{E}_{x, y, n, \lambda}(0)$ if $f(x, y, z, \lambda, 0)=f(x, y, z, \lambda)$. The unfolding F facfors ifrough another

$$
\begin{aligned}
& f(x, y, z, \lambda, \alpha)=S(x, y, z, \lambda, \alpha) G(x(x, y, z, \lambda, \alpha), \Lambda(\lambda, \alpha), A(\alpha)), \\
& S(x, y, z, \lambda, 0)=1, x(x, y, z, \lambda, 0)=(x, y, z), \Lambda(\lambda, 0)=\lambda, A(0)=0 .
\end{aligned}
$$

An 0 -unfolding f of f is versgl if all other \mathbb{D}-unfoldings of f factor inrough f. A necessary and sufficient condition for versality is given in terms of the exfended tengent saace $T_{e}(f, D(D))$ defined as follows.

$$
T_{\theta}(f, D(D))=\left\{S f \bullet(\alpha r) x+\wedge \mathcal{I}_{\lambda} \mid S \in E_{x_{0}, v, \lambda}(0), x \in E_{x_{0}, \beta, r_{\alpha}}(D), \wedge \in E_{\lambda}\right\} .
$$

There is a simple relation between $T_{e}(f, D(0))$ and the tangent space $T(f, D(0))$ defined in the introduction, namely

$$
r_{\theta}(f, D(0))=T(f, D(0))+\mathbb{R}\left(f_{2}\right)
$$

Then the Equivariant Universal Unfolding Theorem (Golubitsky \& Schaeffer [19790], Golubitsky, Stewart \& Schaeffer [1988]) states that f is a versal D-unfolding of f if and only if

A universal unfolding is a versal unfolding with the minimum number of unfolding parameters $\alpha_{1} \ldots, \alpha_{k}$. It follows from (1) that k is the coctmension of $J_{e}(f, D(\mathbb{U}))$ in $\vec{E}_{x, y, y, A}(0)$. This same number we call the 0 -codimension of the germ f.

The codimension of a germ gives a rough measure of the complexity of the bifurcation diagram. The ingher the codimension the greater the
number of degeneracies that can he unfolded. However we saw in the Introduction that some degeneracies are irrelevant from the qua/ifative point of view. Evan in the nondegenerate situation of \$1, we have a mocta/ paraneter that is invariant under D-equivalence. This parameter must theref ore be an unfolding parameter and yet it coes not change the qualitalive behaviour. To deal with this wa slightly alter our definition of codimension by considering the lopological codimension: top. $\operatorname{codim}_{0} f=\operatorname{codim} f-($ modal parameters $)$.

This definition is not totally satisfactory; we still have two modal families corresponding to nondegenerate bifurcation problems, one of topological codimension zero and the other of topological codimension one. Hence in addition to our standard classification we produce a qualitative classification. This gives the right answers but only becsuse it is defined to do sol In particular, the two modal families described above collapse into one famity of codimension zero.

Thus $\$ 3.1$ comprises both a standard (smooth) classification and a qualitative classification up to (topological) codimension one. S3.2 daals briefly with an application to barium titanate crysiais. The calculations for the smooth classification are presented in $\$ \mathbf{\$ 3 . 3}$ to $\mathbf{3 . 5}$, and the qualitative classification is discussed in §3.6. Many of the tangent space calculations are reserved for the Appendix.

53.1. Tabulation of Results.

In this section we present the results of our classification. Thers is one normal form of topological codimension zero, normal form 1(i).

Associated with this normal form are six nondegeneracy conditions.
Breaking each of these conditions in the least degenerate marner leads to the six topological codimension one normal forms 1 (it), 2 to 6. Normal forms 1(1) and 1(11) corraspond to the nondegenerate bifurcation problams of $\$ 1$. The reason for the strange numbering is that the qualitafive hehaviour of these two normal forms is the same. The other five normal forms all lead to distinct qualtiative behaviour.

Fig. 3.1.1 gives a flow diagram for the classification up to topological codimension one. Then in Table 3.1.1 the recognition problem is solved for the first six normal forms. In other words, polynomial restraints are imposed on Taylor coefficients at the origin in order to determine whether a bifurcation problem is 5 -equivalent to a normal form. We also give the additional terms required to obtain a universal unfolding of each normal form. Note however that for example normal form 3 has codimension thres but that we only give one unfolding term corresponding to the topological codimension. The other unfolding terms correspond to the two modal parameters and are omitted.

The full solution to the recognition problem for normal form 6 is not
given as the calculations involved are far more difficult. Howaver, wa are able to solve a slightly different recognition problem. Here wa look only for qualitative differences belween germs; that is topological differances between blfurcation dlagrams and furthermore differences between unfolded diagrams. We say that germs belonging to distinct smooth equivalence classes are qualitativaly equivalent If they are the same in the above sense.

Tabla 3.1.2 gives the same information as Table 3.1.1 but for qualitative equivalence. Note that the entries are far simpler than those in Table 3.1.1. For a stert, normal forms 1(i) and 1(i) coincide as promised. Also we see that the modal parameters denoted by p and q have no qualitative bearing. Hence (usually complicated) expressions that had to be evaluated precisely for smooth equivalence can he ignored complately for qualitative equivalence. In practical terms, this simplification does not make a great deal of difference when recognising to which normal form a given blfurcation problem corresponds. However, actually solving the simplified recognition problem is much easier. In particular the recogntition problem for normal form 6 can be solved with relatively little trouble. (In fact, a good mathematical theory for qualltative equivalence would make the solution quite easy.)

Some notation in Table 3.1 .2 has to be explained. For example, in the
case of normal form 6, one of the nondegenaracy conditions is

$$
\begin{equation*}
J \in(m) \tag{1}
\end{equation*}
$$

Tha modal paremster m hes four intervals of possible values

$$
(-\infty, 0),(0,1),(1,1) \text { and }(1, \infty)
$$

Each range of values gives rise to distinct qualitative behaviour. However It is not necessary to specify the precise value of \mathcal{J} but merely the interval into which the value felle. Thus if m had the value $\frac{1}{4}$, then condition (1) would read $J \in(0,1)$.
553.3-3.5 are concerned with oblaining the information in Table 3.1.1; a sample of ine calculations for normal forms 1 to 5 are given in $5 \$ 3.3$ and 3.4 and the datalls for normal form 6 are presented in \$3.5. Then we deal with Table 3.1 .2 in §3.6.

Thaorem 3.1.1 (Classification Theorem)

Supoose $f=[P, O, f] \in \vec{E}_{x, y, \pi, y}$ of rapoiagical coctimension ≤ 1. Then f is equivalant to pracisely one of the normel forms in Table 3.1 .1 in which case il safisfies tha defining equefions and nondeganeracy conotitions
(where given). The universal unfolding is abtained by adding the unfolding

$$
\alpha_{1} \tilde{m}-m, \tilde{a}-n_{1} \bar{\rho}-\rho, \bar{\phi}-q,
$$

are arbitrarily clase 10 zero.

Remark 3.1.2 An analogous result to Theorem 3.1.1 exists for qualitative equivalence. The codimension in Table $\mathbf{3 . 1 . 2}$ is the least topological codimension of germs in the same qualitative equivalence class.

Proof of Theorem 3.1.1 Most of the work is done in verifying the entries in Tables 3.1.1 and 3.1.2. Then the flow chart in Fig. 3.1.1 all but constitutes a proof of the theorem. It only remains to show that the 'top. codim $\geqslant 2$ hoxes are accurate. Now
top. codm $f=$ (topological defining equations for $\boldsymbol{n - 1}$. Hence wa must show that each box corresponds to at least three independent topological defining equations for f. Or strategy rests on the following observation: If wa go along an arrow that says ' $\varphi=a^{\prime}$ and if $' \varphi=\boldsymbol{a}$ ' is an invariant of equivalence by that stage of the flow diagram. then ' $\varphi=a$ ' must be a defining condition from then on. For example, Q is invariant whilst in general A is not. However, ince we have $P=\theta=0$, then A is invariant. Thereforo if we go along the arrows which say ' $\theta-0^{\prime}$ and ' $R=0$ ' then we have already reached germs of codimension at least two. Special caution must be paid to expressions involving modull. For example, if $\rho, 0$, then we define $m=\rho_{\rho} / Q$. This is a smooth defining condition but not necessarily a topological defining condition. Indeed If we

87

have $m-1 .-1,-1$, then $m=P_{v} / O$ is a topological nondegeneracy condition. of course, if we have $m=-1,-4,-1$, then $m-P_{F} / Q$ is both a smooth and a topological defining condition.

Hence it remains to prove that all expressions in the flow chart are invariant (once they appear). Now if $\theta * 0$, then it is clear from the calculations in $\mathbf{\$} \mathbf{3 . 3}$ and 3.4 that all subsequent expressions such as $T(m)$ are invariant. Also, if $Q=0$, then it is clear that P_{m}, P_{2}, and R are all invariant. This leaves J and \mathcal{K}. This time, the calculations in $\mathbf{\$ 3 . 6}$ lead us to the required conclusion.

* $m=P_{v} / \rho_{,} T(m)=P_{t w}+(m+1) P_{\psi}-2 m Q_{\varepsilon} \cdot(m+1)(2 m+1) R$

Fig 3.1.1. Flow Chart for Classificalion Theorem.
89
Table 3.1.1. Solution of the Smooth Recognition Problem for 0 -Equivariant Singularittes of Top. Codimension ≤ 1.

$$
\text { suollenba jaulanj ams ous } \quad \ddagger 0 \neq u
$$

$$
N
$$

17

$$
\frac{R_{1} x_{d} d r}{\sqrt{1} z^{2}}=d \quad+-7-\tau-\neq w
$$

Normal Form	(Top.) Codim.	Defining Equaltong	Nondegeneracy Conditions	Unfolding Terms	
$\begin{aligned} & \text { 1(i) }\left[\varepsilon m u+6 \lambda+\sigma \nu^{2}, \varepsilon_{2}, 0\right] \\ & m \neq-1,-1,-i] \end{aligned}$	(0) 1	$P=T_{1}=0$	$\begin{aligned} & \operatorname{sign} \theta=\varepsilon_{1} \operatorname{sign} P_{2}=8 \\ & \operatorname{sign} T_{2}=0 \end{aligned}$	0	
$\begin{aligned} & 1(11) \quad\left[\varepsilon, m+\delta \lambda_{,},, 0\right] \\ & m \neq-1,-\frac{1}{1},-1 \end{aligned}$	(1) 2	$\rho=T_{1}=T_{2}=0$	$\operatorname{sign} \theta=c_{,} \operatorname{sign} P_{\lambda}=8$	$\left[\alpha \\|^{2}, 0,0\right]$	

Codimension s 1.

[$00^{\prime \prime} 0$]		$0=0=0$	τ		9
[$00^{\prime} 0 \sim \mathrm{x}$]		$0=(w)^{1} / 2=d$	τ		S
[$0^{\prime} 0^{\prime} \mathrm{Y} 0$]	 	$0=x^{\prime} d=d$	τ	$\begin{gathered} f-7-\tau-\neq w \\ {\left[0^{\prime} 3 \cdot 2 \cap D+2 \times \rho+n \omega 3\right)} \end{gathered}$	τ
\varnothing	$(w) 301^{n} d$ 	$0=d$	0	 	1
cwsop Bulplojun	suollipuos 	suollento Bululsao	W1003	WJod limuon	

53.2. Application to Barium Titanate Crystals.

One possible application for equivariant bifurcation theory is the phenomenological theory of crystals. The theory deals with the change in structure of a crystal with temperature and the resulting polarisation along an axis. This behaviour corresponds to spontanoous symmetry treaking from a trivial solution with full symmetry to a bifurcation with a smaller isotropy subgroup of symmetries. An example of a crystal with cubic symmetry is the barium titanate crystal. This has a barium ion at each vertex, an oxygen ion at each face centre, and a titanium ion at the centre of the crystal. Our following analysis should work equally well for other crystals with cubic symmatry. However different parameter values corresponding to differing properties of crystals could lead to strikingly different bifurcation diagrams.

Devenshire [1949] noted that as temperature is decreased from above $120^{\circ} \mathrm{C}$, the structura of a barium titanate crystal undergoes successive changes from one having the full group of symmetries of the cube to three structures with less symmetry. These states are referred to in the Physics literature as cubic, tetragonal, orthornombic and rhombohedral respactivaly, the last threse corresponding to $\mathbf{A}_{\mathbf{4},} \mathbf{Z}_{\mathbf{2}} \mathbf{a} \mathbf{Z}_{\mathbf{2}}$, and $S_{\mathbf{3}}$, the three maximal isotropy subgroups of 0 . Furthermore, the axes of polarisation are the corresponding one-dimensional fixed-point subspaces.

Our results say that in the nongeneric situation the orthorhombic state cannot be stable locally but this is not a contradiction since we do not preclude the possibility of stability away from the origin. In fact by considering the universal unfolding of a suttably degenerate normal form We are able to produce precisely the scenario described above. (Our unfolding corresponds to the derivative of a free energy polynomial. Employing Landau theory, Devonshire [1949] minimisad sucn a polynomial in order to explain the transitions.) Our dioice of normal form must peomit local. submaximal brenching and according to Theoren $1.3 .1(1)$ finis is mpossible with $Q(0)$ nonxero Hence the normal form in question is the sixth in our list:

$$
\begin{aligned}
& {\left[\varepsilon u * \delta \lambda \cdot \sigma \pi v, \sigma m u * \rho u^{2} \bullet q u^{3}, \sigma\right]} \\
& \varepsilon, \delta, \sigma= \pm 1, m \neq 0, i, 1, \pi \neq 0, \frac{3}{3} .
\end{aligned}
$$

Our analysis is simplified by choosing suitable values and ranges of values for the various parameters. As mentioned in $\mathbf{S 3 . 1}$, the qualitative nature of the bifurcation diagrams is not affected by the values of ρ and q. Accordingly, wa set $\rho=q=0$. Then, as is standard for physical applications, we set $\varepsilon=* 1, \delta=-1$. These values are necessary to ensure that the trivial solution is stable suboritically and unstable supercritically, thus allowing spontaneous symmetry breaking as λ passes through zero. The qualitative effect of tha modal parameter n is almost negligible and in order to simplify calculations we will set $\boldsymbol{\pi = 0}$. This is a critical value for n and will thus lead to degenaracies in the blfurcation
diagrams. However we will keep track of the rare occastons when we should not have taken n to be zero and will indicate the true picture at these 'degeneracies'. Finally, we will postpone a choice of value for a and range of values for m. These choices are far more sensitive and lead to a wide range of interesting scenarios including the one required for the intended application.

Thus wa analyse the unfolding

$$
\begin{aligned}
& G(\alpha)=\left[\nu-\lambda_{0} \alpha+\sigma m u, \sigma\right] \\
& \sigma= \pm 1, m \neq 0,1, i
\end{aligned}
$$

The branching and stability data are summarised in Table 3.2.1. We notice that there are four λ values at which an eiganvalue on a maximal branch changes sign giving rise to a submaximal secondary bifurcation. Thase infarsections values are
$\lambda_{1}=-\frac{1}{\sigma m} \alpha, \quad(x, 0,0),(x, y, 0)$ and (x, y, y) branches.
$\lambda_{2}=-\frac{1}{\sigma m} \alpha, \quad(x, y, 0)$ and $(x, y, 0)$ branches.
$\lambda_{3}=\frac{2}{\sigma(1-2 m)} \alpha+\frac{\sigma}{(1-2 m)^{2}} \alpha_{2}^{2} \quad(x, x, 0)$ and (x, x, z) branches,
$\lambda_{4}=\frac{3}{\sigma(1-3 m)} \alpha \cdot \frac{2 \sigma}{(1-3 m)^{2}} \alpha^{2}, \quad(x, x, x),(x, x, z)$ and (x, y, y) oranches .

It would appear that $\lambda_{1}=\lambda_{2}$. In fact, the coafficient of α^{2} in $\lambda_{1}-\lambda_{2}$ is not
identically zero. This is the artificial degeneracy introduced by satting $n=0$. We shall draw the bifurcation diagrams as if $\lambda_{1}=\lambda_{2}$ but it should be remembered that one of the λ-values occurs slightly before the other (α^{2} is small compared with α). Which value occurs first depends on the sign of n.

The order of occurrence of $\lambda_{1}, \lambda_{3}, \lambda_{4}$ is indicated in Table 3.2.2 logether with the stablitity assignments on the maximal branches and the existence of submaximal branching. The e and - signs indicate the signs of the three eiganvalues on a branch. The branch is stable if and only if the signs are ***.

It is now possible to plck out the sequence of events corresponding to the results in Devonsnire [1949]. In particular, the ($x, x, 0$) tranch must start unstable, stabilise, and then become unstable again. Hence we must have elther

$$
\begin{equation*}
\alpha<0, \sigma m>0, \sigma(2 m-1)>0, \sigma=+1, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha>0, \sigma m<0, \sigma(2 m-1)<0, \sigma=-1 . \tag{2}
\end{equation*}
$$

However, if condition (2) holds then it is impossible for the ($x, 0,0$) branch to ba stable from the origin. Hence we must have condition (1). Finally, we need

$$
\sigma(3 m-1)>0
$$

in order for the (x, x, x) branch to restabilise. Henco we have the following independent requirements:

$$
\begin{equation*}
\alpha<0, \sigma=1, m>1 . \tag{3}
\end{equation*}
$$

The parameter values in (3) lead to Fig. 3.2.1. We have included the submaximal branches in the diagram even though it is not clear that thay are relevant to the application. What appears to happen in practice is that a mixturs of say $(x, 0,0)$ and $(x, x, 0)$ states occurs for a short time between the two pure states. For this reason we have not performed the complicated calculations that would give us the stabillites of the submaximal branches. In any case, these stabilities are not necessarily invariant under the equivalence relation.

Fig. 3.2.1 could equally wall model the behaviour of other crystals with cubic symmetry and similar characteristics to barium titanate, or even totally different physical systems. (Note that for certain ranges of parameter values, it might be possible for the $(x, x, 0)$ state to be hypassed via the (x, y, y) secondary bifurcation). On the other nand, a better model might be given by Fige. 3.2.2-3.2.8.

We have only drawn the blfurcation diagrams that arise from the unfolding of normal form 6. Thite is because the diagrams associated to the other normal forms are not very interesiling. In garticular, no mode interactions are possible.

Maximal Branching Equations

($x, 0,0$)	$\lambda=x^{2}+\sigma m x^{4}+\alpha x^{2}$	$\begin{aligned} & \mu_{1}>0 \\ & \operatorname{sign} \mu_{2}=\operatorname{sign} \mu_{3}=-\operatorname{sign}\left(\alpha+\sigma m r^{2}\right) \end{aligned}$
$(x, x, 0)$	$\lambda=2 x^{2}+2 \sigma m x^{4}+\alpha x^{2}$	$\begin{aligned} & \operatorname{sign} \mu_{1}=\operatorname{sign}\left(\alpha+2 \sigma m x^{2}\right) \\ & \mu_{2}>0 \\ & \operatorname{sign} \mu_{3}=-\operatorname{sign}\left(\alpha+\sigma(2 m-1) x^{2}\right) \end{aligned}$
(x, x, x)	$\lambda=3 x^{2}+\sigma(3 m+1) x^{4}+\alpha x^{2}$	$\begin{aligned} & \operatorname{sign} \mu_{1}=\operatorname{sign} \mu_{2}=\operatorname{sign}\left(\alpha+\sigma(3 m-1) x^{2}\right) \\ & \mu_{3}>0 \end{aligned}$
	Submaximal Branching Equations	Intersection with Maximals
$(x, y, 0)$	$\begin{aligned} & \sigma m \lambda=-\alpha \\ & \sigma m y^{2}=-\alpha m x^{2}-\alpha \end{aligned}$	$\begin{array}{ll} y=0 & \alpha m \lambda=\sigma m x^{2}=-\alpha \\ y=x & \sigma m \lambda=2 \sigma m x^{2}=-\alpha \end{array}$
(x, x, z)	$\begin{aligned} & \alpha m \lambda=\sigma x^{2}-\alpha+(1-m) x^{4}-\sigma \alpha x^{2} \\ & \sigma m z^{2}=\sigma(1-2 m) x^{2}-\alpha \end{aligned}$	$\begin{aligned} z=0 \quad \sigma(1-2 m) \lambda & =2 \sigma(1-2 m) x^{2}+o\left(x^{4}\right) \\ & =2 \alpha \cdot o\left(\alpha^{2}\right) \end{aligned}$
		$\begin{aligned} z=x \quad \sigma(1-3 m) \lambda & =3 \sigma(1-3 m) x^{2}+\alpha\left(x^{4}\right) \\ & =3 \alpha+0\left(\alpha^{2}\right) \end{aligned}$
(x, y, y)	$\begin{aligned} & \lambda=x^{2}+2 y^{2}+\sigma y^{2}\left(x^{2}+y^{2}\right) \\ & \alpha(2 m-1) y^{2}=-\sigma m x^{2}-\alpha \end{aligned}$	
(x, y, z)	No solution	

$\begin{array}{ll}(x, y, 0) & \sigma m \lambda=-\alpha \\ & \sigma m y^{2}=-\sigma m x^{2}-\alpha\end{array}$
$(x, x, 2) \quad \sigma m \lambda=\sigma x^{2}-\alpha+(1-m) x^{4}-\sigma \alpha x^{2} \quad z=0 \quad \sigma(1-2 m) \lambda=2 \sigma(1-2 m) x^{2}+\alpha\left(x^{4}\right)$
$\sigma m z^{2}=\sigma(1-2 m) x^{2}-\alpha$
$z=x \quad \sigma(1-3 m) \lambda=3 \sigma(1-3 m) x^{2}+\alpha\left(x^{4}\right)$

- $3 \alpha+0\left(\alpha^{2}\right)$
$y=0 \quad \sigma m \lambda=\sigma m x^{2}=-\alpha$
$y=x \sigma(1-3 m) \lambda=3 \sigma(1-3 m) x^{2}+\alpha\left(x^{4}\right)$
$=3 \alpha \cdot 0\left(\alpha^{2}\right)$
(x, y, z) No solution

Table 3.2.1. Branching Equations and Eigenvalues of Normal Form 6.
Table 3.2.2. Order of Branching and Stability Assignments for Normal Form 6.

$\begin{aligned} & \left({ }^{b} y^{+} \cdot x^{\prime} x^{\prime} x\right. \\ & \left(x^{\prime} x^{0} \cdot x^{\prime} x\right) \end{aligned}$		
$\begin{aligned} & \left(b x^{\prime} x^{\prime} x^{\prime} x\right)+\left(8 x^{\prime} 0^{+} x^{\prime} x\right) \\ & \left(8 x^{\prime} 0^{\prime} x^{\prime} x\right)+\left(x^{0} x^{\prime} x^{\prime} x^{\prime} x\right) \end{aligned}$	x	$\sum_{T=0}^{T=0} 0$
$\left(3 x^{\prime} 0^{\prime} x \cdot x\right)+\left({ }^{5} y^{\prime} 0^{\prime} 0^{\prime} x\right)^{x}$		$\begin{aligned} & 0<\omega D \\ & 0>\omega D \quad(0, f, x) \end{aligned}$
		$\begin{aligned} & 0<(T-\omega \xi)^{0} 0 \\ & \left.0>(T-\omega)^{2}\right) D\left(x^{\prime} x^{\prime} x\right) \end{aligned}$
$\begin{aligned} & +\cdots+\Sigma y^{\prime}-++ \\ & -+{ }^{\top} y^{\prime}-++ \end{aligned}$		
	-	
$\ldots+{ }^{-\cdots+-\cdots}$		$\begin{aligned} & 0<\omega \rho \\ & 0>\omega 0 \quad\left(0^{\prime} 0^{\prime} x\right) \end{aligned}$

Fig 3.2.1. $\alpha>0, m>1, \alpha<0$.

Fig. 3.2.2. $\sigma>0, m<0, \alpha>0$.

Fig. 3.2.3. $\sigma>0, i<m<i, \alpha<0$.

Fig. 3.2.4. $\sigma>0,0<m<1, \alpha<0$.

Fig. 3.2.5. $\sigma<0, m<0, \alpha<0$.

Fig. 3.2.6. $\sigma<0, m>\frac{1}{2}, \alpha>0$.

Fig. 3.2.7. $\sigma<0,1<m<\frac{1}{2}, \alpha>0$.

Fig. 3.2.8. $\alpha>0,0<m<1, \alpha>0$.

53.3. Tangent Space Calculations for the Lineariy Determined

 Bifurcation Problems.In this section, we obtain the information displayed in Table 3.3.1. In particular, we show that all but one of the low codimension bifurcation problems are Inearly determined; that is their unipotent tangent spaces are invariant under the group of unipotent equivalences. It is convenient to work throughout under the coordinate change in the Appendix. We split the calculations up into three stages.
 have a $\varepsilon_{u_{1} r_{3} \omega_{y} x^{-m o d u l e}}$ we can use Nakayama's Lemma (Lemma 3.10 of Golubitsky \& Schaeffer [1979a]). In order to verify that $\tilde{f}(f, 4)$ contains a finitely generated $E_{\mu_{1} v_{1} v_{j} \lambda}$-submodule $/$, we need only show

$$
\operatorname{lc\tilde {F}}(f, U)+M /
$$

where M is the maximal tdeal in $E_{\psi_{1} r_{0}, \lambda}$.
Step 2 Calculate the unipotent tangent space,

$$
r(f, U)=\tilde{r}(r, U)+E_{2}\left\{\lambda^{2} f_{2}\right]
$$

Step 3 Find the high order term module,

$$
\phi(f, U)=\operatorname{Itr}_{4} T(f, U)
$$

If $P(f, i)=T(f,()$, then f is linearly determined.

Step 1 This is just an application of Nakayama's Lemma. As an example,
we give the details for the fwo infinite families

$$
\begin{equation*}
f=\left\langle b \lambda+c U^{k}+c t^{k}+1, a, 0\right\rangle_{g} ; m=-1 \text { or }-\frac{1}{j} k \geq 2 . \tag{1}
\end{equation*}
$$

we have to prove that

$$
\tilde{T}(r, v)=r+W_{0}
$$

where, suppressing subscript m ' $s_{,} /$is generated as an $\mathrm{E}_{\mu_{1} v_{2}, \boldsymbol{n}^{\prime}}$-module by

$$
\begin{array}{lll}
(L u+2,0,0) & (\nu 2,0,0) & (w, 0,0) \\
\left(0, L^{2}, 0\right) & (0, v, 0) & (0, w, 0)(0, \lambda, 0) \\
(0,0, u) & (0,0, v) & (0,0, w)(0,0,0)\left(u^{2} \lambda, 0,0\right)(v \lambda, 0,0) \\
\hline
\end{array}
$$

and

$$
W=\mathbb{R}\left\{\begin{array}{l}
((k-1) c u k+1-b u \lambda, 0,0)(k c u k+1-2 a v, 0,0) \\
(2 v, u, 0)((4 m+3) v, 0,-1)
\end{array}\right\}
$$

To prove this it suffices by Nakayama's Lemma to work modulo M/. Moduto

M/the generators in Corollary A.4 reduce to
$\left(v^{2}, 0,0\right)(0, v, 0)(0,0, v)(v \lambda, 0,0)(\omega, 0,0)(0, w, 0)(0,0, w)(0,0, \lambda)(0,0, v)$
$\left(B x \lambda+C U^{k+1}+C t^{t+2}, a v, 0\right)\left(k C u^{k+1}+(k+1) d A k+2, a u, 0\right)$
$(b \lambda 2+c u(\lambda, a \lambda, 0) \quad(k \subset L \mu \lambda, a \lambda, 0)$
$\left(b u \lambda+C v^{t}+1+\Delta t h t+2-2 \Delta v, 0,0\right)$
$(-a v-a m u \lambda-c m u *+1-c m u *+2, a(m+1) u+b \lambda+c y *, a)$
$(-\Delta m u \lambda+(k-1) c m u t+1+k O m u k+1+2 a m v+2 k c \nu *-1 v, a m u+b \lambda+c u k, 0)$
$\left(B U^{2} \lambda+C U N^{2}+2, O U^{2}, 0\right) \quad\left(\right.$ KCLU $\left.+2, A U^{2}, 0\right)$
$\left(b L^{2} \lambda+c L^{+}+2-2 a U V, 0,0\right)\left(-a U V+b m u^{2 \lambda}-c m L^{t+2}, 8(m+1) \iota^{2}, 0\right)$
$\left(-b u^{2} \lambda+(k-1) c z k+2+2 a u v, a u^{2}, 0\right)$.

The last five generators yield ($\left.u^{*} \cdot 2,0,0\right),\left(\mu^{2} \lambda, 0,0\right),(\omega \nu, 0,0)$ and
$\left(0, L^{2}, 0\right)$ since the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
k & 0 & 0 & 1 \\
1 & 1 & -2 & 0 \\
m & m & 1 & -(m+1) \\
(k-1) & -1 & 2 & 1
\end{array}\right)
$$

has full rank. The required result now follows easily.

Step 2 This siep is trivial. Indeed, for the normal forms 1 (it), 3, 4 and 5 $T(r, U)=\tilde{7}(f, U)$. In the cases of the normal forms $1(1)$ and 2.
$\tilde{F}(r, 0)$ contains $E_{2}\left[\lambda^{3} f_{\lambda}\right]$, but the iniroduction of the term $\lambda^{2} f_{\lambda}$ simplifies the form of the tangent space quite considerably.

Step 3 Our method is to find as big a U-intrinsic part as possible by Theorem 2.4.4 and then to use Proposition 2.4.1 on what is left over. For example, consider normal form $\mathbf{1 (1 t)}$ in Table 3.3.1. In this case $T(f, U)=\tilde{T}(f, U)$. We claim firstly that $T(f, U)$ has the alternative characterisation given in the third column of the table. The following table gives all monomials in (x, y, z) of a given degree. (Recall that u, v, w have degree 2,4,6 and the equivariant generators x_{1}, x_{2}, x_{3} have degrees $1,3,5$. Also note that our coordinate changes in the Appendix preserve these degrees:)

Order	$(n, 0,0)$	$(0, m, 0)$	$(0,0, n)$
1	1		
3	u	1	
5	u^{2}, v	u	1
7	$u^{3}, u v, w$	u^{2}, v	u

We see from Table 3.3.1 that ignoring terms with λ we are only missing

$$
(1,0,0),(\nu, 0,0),\left(\nu^{2}, 0,0\right),(0,1,0)
$$

Hence we have all terms of order ≥ 7 and so

$$
T(r, \cup)=\vec{H}_{7} E_{\lambda}
$$

Similarly

$$
T(f, U)=\vec{M}_{3}\left\langle\lambda^{k}\right\rangle, \vec{M}_{1}\left\langle\lambda^{k+1}\right\rangle
$$

We are left with

$$
\begin{aligned}
\left(v \lambda^{r}, 0,0\right),\left(0, v \lambda^{r}, 0\right),(0,0, \lambda) ; r & =0, \ldots, k-1 \\
\left(0, \lambda^{r}, 0\right) ; & r=1, \ldots, k-1 .
\end{aligned}
$$

Hence we have verified the entry in Table 3.3.1. It remains to show that $T(f, U)$ is U-intrinsic. By Proposition 2.4.2 we have

$$
P(r, U)=\vec{M}_{7} E_{2}+\vec{M}_{3}\left\langle\lambda^{n}\right\rangle \cdot \vec{M}_{1}\left\langle\lambda^{t+1}\right\rangle
$$

Now consider the set

$$
\begin{aligned}
V & =\{(v, 0,0)(0, u, 0)(0,0,1)\} \\
& =\vec{M}_{6} E_{2} \cap T(f, v) .
\end{aligned}
$$

It is a simple application of Lemma 2.4.1 to see that

$$
P(f, n)=\left(\vec{M}_{7}+V\right)_{2} \cdot \vec{M}_{3}\langle N\rangle \cdot \vec{M}_{1}\left\langle N_{k+1}\right\rangle
$$

Hence it remains only to show that

$$
P(f, L)=W
$$

where

$$
W=\mathbb{R}\left\{(0, \lambda, 0)_{E}, \ldots,\left(0, \lambda^{k-1,0)_{E}}\right\}\right.
$$

Using Corollary A.4, it is easy to check that

$$
\tilde{r}(w, U) \in P(f, U) \text { for all we } W .
$$

Also $\lambda^{2} W /$ is clearly contained in $P(f, U) \cdot W$ for all $W \in W$. Hence by Proposition 2.4.1 we have

$$
P(f, l)=T(f, L)
$$

The calculations for normal forms 1(1) and 2 are even more straightforward. $\Gamma(f, O)$ can be written as in Table 3.3.1 and it is then immediate by Proposition 2.4.2 that it is U-intrinsic. However normal forms 3,4 and 5 present more difficulties. Again there are no problems in obtaining the results in Table 3.3.1. Now suppose $k=2$. By Theorem 2.4.4 we have

$$
\begin{aligned}
& P(f, U)=\left(\vec{\mu}_{g}+\mathbb{R}\left\{(u v, 0,0),(w, 0,0),\left(0, u^{2}, 0\right),(0, v, 0),(0,0, u)\right) E_{\lambda}\right. \\
& \cdot\left(\vec{\mu}_{5}+\mathbb{R}(0,1,0)\right)\langle\lambda\rangle+\vec{\mu}_{1}\left\langle\lambda^{2}\right\rangle+\mathbb{R}\left(c u^{3}-b u \lambda, 0,0\right) .
\end{aligned}
$$

It remains to show that $P(f, U)$ contains W where

$$
W=\mathbf{R}\left\{\left(c u^{3}-8 v, 0,0\right),(2 \nu, \nu, 0),((4 m+3) v, 0,-1)\right\}
$$

It suffices by Proposition 2.4.1 to show that

$$
r(\rho, U)=P(r, U)
$$

for $\rho=(v, 0,0),(0, u, 0),(0,0,1)$. This is an awkward calculation. We
cannot use the tangent space generators in Corollary A.4 since ρ does not
satisfy the conditions $P_{v}, Q_{w}, R=0$. We have to write ρ in the original coordinates, work out the tangent space generators using Theorem A.3, and then change coordinates again to verify that the generators are contained in $P(f, U)$. Great care must be taken with these calculations. For example, consider $\rho=\left(v_{y}, 0,0\right)_{2}$ and T_{12}. In the original coordinates

$$
\rho-\left[v+\frac{1}{}(m+1) \angle 2,0,0\right]
$$

We have
$T_{12}=\left[-\left(u^{2}-2 v\right)(m+1) u+\Delta v-3 w,\left(1(m+1) u^{2}-v, 0\right]\right.$
$=\left[-(m \cdot 1) u^{3}+(2 m \cdot 3)<N-3 w, 1(m+1) \iota^{2}-v, 0\right]$
$=\left[-\{m+1) u^{3}+(2 m+3) \cup\left(v+d(m+1) u^{2}\right)-3\left(w_{m}+\frac{1}{(m+1)}(2 m+1) u^{3}\right),-v_{m}, 0\right]$
$=\left[1(m+1)(-2+2 m+3-2 m-1) u^{3}+(2 m+3) c v_{m}-3 w_{m},-v_{a}, 0\right]$

- [(2m+3) $\left\langle m_{m}-3 w_{m},-v_{m}, 0\right]$
$=\left((2 m+3)\left\langle v_{j}-3 w_{g},-v_{g}, 0\right)_{g} \subset P(f, U)\right.$.

The third and aixth equalities are the sacond and first coordinate changes respectively. T_{12} is the most difficult generator for ($v, 0,0$) and eventually we do obtain the required result when $k=2$.

When $\boldsymbol{x}>2$ even nore work is required, although ine fact that we exclude the case $m=-1$ simplifies things slightly. In particular. $w_{m}=w$
and $(0,0, R)_{g}=[0,0, R]$. We can see immediately that

$$
\begin{aligned}
P(f, U) & =\vec{M}_{2 k+5} E_{2}+\vec{\mu}_{5}\langle\lambda\rangle+\vec{M}_{1}\left\langle\lambda^{2}\right\rangle \\
& +R\{((k-1) c u k+1-b / \lambda, 0,0)\} .
\end{aligned}
$$

Also, a glance at the tangent space generators in Theorem A. $\mathbf{3}$ reveals that factors of w cannot be removed and so

$$
P(r, U)=E_{m, r, w, j}\{(w, 0,0)(0, w, 0)(0,0, w)\}
$$

Furthermore, if $\rho=(0,0, B)$, then

$$
T(\rho, U) \subset E_{\omega, n, \cdots \lambda}\{(w R, 0,0)(0, w A, 0)(0,0, R)\}
$$

Hence all the hard work lies in checking that

$$
r(\rho, U)=P(r, U)
$$

for $\rho \in \mathbb{E}_{\mu, v}\{(\nu, 0,0)(0, u, 0)(0, v, 0)\}$. We omit these details.
Table 3.3.1. Algebraic Data for the Unipotent Recognition Problem.

53.4. The Recognition Problem for the Linearly Determinad Bifurcation Prothems.

In this section, we verify the entries in Tables 3.1.1, 3.4.1 and 3.4.2 for the normal forms 1 to 5 . We showed In $\$ 3.3$ that the unipotent tangent space was U-Intrinsic for each of these normal forms and hence the solution of the unipotent recognition problems only requires linear algebra. The solution of the full recognition problem falle naturally into three stages.

Step 1 Solution of the unipotent recognition problem in the preferred coordinates (Table 3.4.1).

Step 2 Solution of the full recognition problem in the preferred coordinates (Table 3.4.2).

Step 3 Solution of the full recognition problem in the original coordinates (Table 3.1.1).

Step 1 Suppose F is one of the normal forms 1 to 5. Then $\Gamma(f, U)$ is U-intrinsic, and hence by Theoram 2.3.4 we have

$$
g \text { is } U \text {-equivalent to } f \text { if and only if } g=r \bmod r(f, \ell) \text {. }
$$

Now, for the normal forms $1(1), 1(11)$ and 2, $T(f, U)$ is generated by monomials and so the linear algebra is vary straightforward. For example, consider normal form 1(1),

$$
f=\left(b X^{k}+c z^{2}, a, 0\right) ; * \geq 1
$$

Notice that the unipotent tangent space contains all monomials except

$$
\begin{aligned}
& (1,0,0),(\lambda, 0,0), \ldots\left(\lambda^{k}-1,0,0\right) \\
& (u, 0,0),(u \lambda, 0,0), \ldots,\left(u \lambda^{k}-1,0,0\right) \\
& \left(u^{2}, 0,0\right),\left(\lambda^{k}, 0,0\right),(0,1,0)
\end{aligned}
$$

Hence (P, Q, R) is U-equivalent to r if and only if

$$
\begin{aligned}
& P_{=}=P_{\lambda}=\ldots=P_{\lambda_{k}-1}=0 . \\
& P_{U}=P_{U \lambda}=\ldots=P_{U \lambda k-1}=0, \\
& P_{U U}=2 c, P_{\psi *}=k 1 b, Q=g .
\end{aligned}
$$

Normal forms 3, 4 and 5 do not cause many more problems. In the
preferred coordinates, each normal form is represented by

$$
f=(b \lambda+c v k+a u k+1, a, 0)_{z} ; m=-1 \text { or }-\frac{1}{2}, k \geq 2 ; \text { or } m=-\frac{1}{4}, k=2 .
$$

The unipotent tangent space contains all monomials except for

$$
\begin{aligned}
& (1,0,0),(\nu, 0,0), \ldots(u *, 0,0),(\lambda, 0,0),(0,1,0) \\
& (\langle+t 1,0,0),(u \lambda, 0,0),(v, 0,0),(0, u, \nu),(0,0,1)
\end{aligned}
$$

In addition $T(f, U)=W$ whers

$$
W=\mathbb{R}\left\{\left((k-1) c v^{k+1}-\Delta v \lambda, 0,0\right)\left(k c u^{k+1-2 ~ a v, 0,0)} \begin{array}{c}
(2 v, u, 0)((4 m+3) v, 0,-1)
\end{array}\right\}\right.
$$

Hence (P, Q, R) is U-equivalent to f if and only if

$$
P=P_{U}=\ldots=P_{U *-1}=0 . \quad P_{L *}=k!C, P_{\lambda}=0, Q=\Delta
$$

and there exist $A, B, C, D \in R$ such that

$$
\begin{aligned}
& P_{\angle k+1}=(k+1)\{\sigma+(k-1) C A+k C B], \\
& P_{U A}=-D A, \\
& P_{V}=-2 a B+2 C+(4 \pi+3) D \\
& O_{U}=C \\
& A=-D .
\end{aligned}
$$

These equations yield the required relation between $P_{\nu \mu+1}, P_{\nu \lambda}, P_{v}, Q_{\nu}$ and \boldsymbol{R}.

Step 2 Suppose n is a one of the normal forms 1 to 5 in Table 3.4.2. By Remark 2.2.1(a), a germ $f \in \vec{E}_{x, y, F_{0}}$ is D-equivalent to n if and onily if f is U-equivalent to the corresponding normal form In Table 3.4.1 and If that normal form is equivalent by scalings to π.

For example, (P, Q, B) is U-equivalent to normal form 2 in Tabla 3.4.1
if and only if

$$
\begin{aligned}
& \rho=a_{1} P_{\lambda \lambda}=2 b, P_{\nu}=2 c, P_{\nu \lambda}=\sigma \\
& P_{\nu}=P_{\lambda}=P_{\nu}=0 .
\end{aligned}
$$

This normal form is equivalent by scalings to

$$
\left(6 \lambda^{2} \cdot \sigma^{2} \iota^{2} \cdot p u \lambda, \varepsilon, 0\right)
$$

If and only if there exist positive numbers μ, v and $/$ such that the equivalence

$$
s(x, y, z, \lambda)=\mu, x(x, y, z, \lambda)=v(x, y, z), \Lambda(\lambda)=/ \lambda .
$$

iransforms one normal form into the other. In other words $\mu_{1} v$ and / must satisfy
$\left(6 \mu \nu /^{2} \lambda^{2}+\sigma \mu \nu^{5} \mu^{2}+\rho \mu \nu^{3} / \Delta \lambda, \varepsilon \mu \nu^{3}, 0\right)=\left(\Delta \lambda^{2}+c \nu^{2}+o t / \lambda, g, 0\right)$.

The equations

$$
\begin{aligned}
& \varepsilon \mu v^{3}=a, \\
& \delta \mu v / 2=b, \\
& \sigma \mu \nu 5=c \\
& \rho \mu v^{3} /=\sigma,
\end{aligned}
$$

can be solved for $\mu, \nu, />0$ If and only if

$$
\begin{equation*}
\operatorname{sign} a=\varepsilon_{1} \operatorname{sign} b=\delta, \operatorname{sign} c=\sigma \text { and } \frac{\sigma}{\sqrt{|b C|}}=\rho . \tag{1}
\end{equation*}
$$

But from the unipotent recognation prodiem we have

$$
a=0, b=\$ P_{\lambda \lambda}, c=\dagger P_{U}, \quad d=P_{U \lambda}
$$

so (1) becomes

$$
\begin{gathered}
\operatorname{sign} Q=\varepsilon, \operatorname{sign} P_{\lambda \lambda}=6, \operatorname{sign} P_{U w}=\sigma \text { and } \\
\frac{P_{\Lambda \lambda}}{\sqrt{P_{\lambda \lambda} P_{\nu N}}}=d .
\end{gathered}
$$

In addition, the unipotent recognition problem gives

$$
P=P_{\lambda}=P_{U}=0
$$

as required.

Step 3 it remains to recover the necessary and sufficient conditions of
Table 3.4.2 in the original coordinates. Note that in Table 3.1.1 we have given these results only up to topological cadimension one. The results needed to do this are summarised in Proposition A.7. In fact we could recover the results for the infintte families $\mathbf{1 (1)}$ and $1(1 i)$ since high partial derivatives with respect to $\boldsymbol{\lambda}$ are allowed for in Proposition A.7. Also we could deal with the infinite family 3. Here m-1 and the second coordinate change is the identify, so we need only use Proposition A.5
which allows for all partial derivatives. It is the second coordinate change whith causes more problems and our results in the Appendix do not suffice for the infinite family 4.

Normal Form
Defining Equations

	$\begin{aligned} & \varphi_{1}=a_{1} P_{\lambda^{k}}=k!b, P_{U W}=2 c \\ & P_{X}=P_{\lambda}=\ldots=P_{\lambda_{k}-1}=0 \\ & P_{U}=f_{U \lambda}=\ldots=P_{U \lambda_{k-1}}=0 \end{aligned}$
$\text { 1(ii) } \begin{aligned} &\left(b \lambda^{k}, a, 0\right) \\ & k \geq 1 ; a, b \neq 0 \\ & m \neq-1,-1,-4 \end{aligned}$	$\begin{aligned} & Q=a_{1} P_{U}=k \mid B \\ & P_{\lambda}=P_{\lambda}=\ldots=P_{\lambda k-1}=0 \\ & P_{U}=P_{U \lambda}=\ldots=P_{U \lambda_{k-1}}=0 \\ & P_{U U}=P_{U \lambda \lambda}=\ldots=P_{U U \lambda}-1=0 \end{aligned}$
$2 \quad \begin{aligned} & \left(b \lambda^{2}+c y^{2}+a t \lambda, a, 0\right) \\ & \\ & \\ & \\ & m, b, c \neq 0 \\ & m,-1,-1,-i \end{aligned}$	$\begin{aligned} & Q=g_{1} P_{\lambda \lambda}=20 . P_{\omega}=2 c \\ & P_{U \lambda}=P_{\lambda}=P_{U}=0 \\ & P_{U \lambda}=\theta \end{aligned}$
$\begin{array}{cl} \text { 3-5 } \quad & (a \lambda+c u r+a, k+1, s, 0)_{m} \\ & a, b, c \neq 0 \\ m=-1 \text { or }-1, k \geq 2 \\ & \text { or } m=-1, k=2 \end{array}$	$\begin{aligned} & Q=g_{1} P_{\lambda}=0, P_{u k}=k I C \\ & P_{U}=P_{U}=\ldots=P_{u k-1}=0 \\ & \frac{P_{u^{k}+1}}{(k+1) \mid}+c\left(\frac{k H}{2 g}+(k-1) \frac{P_{U \lambda}}{b}\right)=\sigma \end{aligned}$

$H(m)=P_{v}-2 Q_{u}+(4 m+3) R$

Tahle 3.4.1. Unipotent Equivalence.

	$\begin{array}{r} \left(\omega^{\prime} x\right) g=d \\ 0=1-x n_{d}=\cdots=n_{d}=d \end{array}$	$\begin{gathered} x \\ (1-x) \end{gathered}$	
	$\begin{aligned} & \frac{\sqrt{n n_{d}} \times x_{d} \mid 人}{V n_{d z}}=d \\ & 0=n_{d}=x_{d}=d \end{aligned}$	$\underset{(\downarrow)}{\mathcal{E}}$	

		$\begin{gathered} \tau-\not-y \varepsilon \\ (z-\neq \varepsilon) \end{gathered}$		(11)
	$\begin{array}{r} 0=1-Y \sum_{d}=\cdots=V_{d}=n_{d} \\ 0=1-K_{d}=\cdots=K_{d}=d \end{array}$	$\begin{gathered} \tau-x z \\ (z-x z) \end{gathered}$		(1) 1
suollipuos fioe u auaßapuon	suolurnby 6uluifeo	$\begin{aligned} & \text { wipoo } \\ & \left(\cdot \mathrm{dO}_{1}\right) \end{aligned}$	WJof limson	

S3.5. The Degeneracy $0(0)-0$.

From Table 3.1.1 we see that a bifurcation problem [P, Q, F] has lopological codimension zero provided six nondegeneracy conditions are satisfied, namely

$$
\rho(0) \neq 0, P_{2}(0) \neq 0, r_{2}(0) \neq 0, m \neq-1,-1,-1
$$

where

$$
\begin{aligned}
& m=\rho_{g}(0) / Q(0) \\
& T_{2}(0)=P_{m}(0)+(m+1) P_{V}(0)-2 m Q_{0}(0)+(m+1)(2 m+1) F(0)
\end{aligned}
$$

Normal forms 1 (ii), 2, 3, 4 and 5 correspond to the degeneracies

$$
T_{2}(0)=0, P_{2}(0)=0, m=-1,-1,-1
$$

respectively. Further nondegeneracy conditions are imposed where necessary in order to ensure the only degeneracy is the required one.

In this section wa show that normal form 6

$$
\begin{aligned}
& {\left[c u+\delta \lambda+\sigma \pi v, \sigma m u+\rho u^{2}+q u^{3}, o\right]} \\
& m \neq 0,1,1, \pi+0, \frac{2}{7}
\end{aligned}
$$

possesses only the degeneracy $O(0)=0$ and so has topological codimension one.

First we consider the germ

$$
\begin{aligned}
& f-\left[a v \cdot \Delta \lambda \cdot c \pi v_{,} c m u \cdot \Delta v^{2} \& \theta u^{3}, c\right] \\
& a, b, c \neq 0, m \neq 0,1,1, n \neq 0, \frac{1}{3}
\end{aligned}
$$

Lemma 3.5.1 $\tilde{f}(f, C)=f+J$, whers
$f=[M\langle w\rangle, M\langle w\rangle,\langle w\rangle]$.
$J=\left[\mu^{3}, \mu^{4} \cdot m^{2}\langle\nu\rangle, \mu^{3}, \mu\langle\nu\rangle\right]$.

Proof By Theorem A.3, $\tilde{f}(f, C)$ is generated by

$$
\begin{aligned}
& z T_{1}=z\left[a U+b \lambda \cdot c \pi \nu, c m U+c t t^{2}+E U^{3}, c\right] \\
& z T_{13}=z\left[a u+2 b \lambda_{1}-\Delta t^{2}-2 \theta u^{3}, 0\right] \quad z=U, v, w \text { and } \lambda \\
& T_{3}=\left[c(m-1) u w+c \neq 2 w+e u^{3} w, c w, a u+b \lambda+c(n+1) v\right] \\
& \text { /i4 }=\left[c(m+2 n+1) c w+c t^{2} w+\varepsilon v^{3} w+3 s w, c(3 m-1) w+6 a t w+9 e u^{2} w, 0\right] \\
& T_{5}=\left[a u^{2}+D u \lambda \cdot c(n-2 m) u v+c m u^{3}+d U^{4}+B L^{5}-2 d U^{2} v-2 a u^{3} v+3 c w, 0,0\right] \\
& T_{6}=\left[0, a u^{2}+b u \lambda+c(n-2 m) u v+c m u^{3} \cdot d t t^{4}+e v 5-2 d t^{2} v-2 e v^{3} v+3 c w, 01\right. \\
& T_{1}=\left[0,0, \partial u^{2}+b \nu \lambda+c(n-2 m) u v+c m u^{3}+d u^{4}+e u^{5}-2 d t^{2} v-2 e u^{3} v+3 \mathrm{cw}\right] \\
& T_{8}=\left[3 \Delta x w+3 \Delta w \lambda+c(3 n+1) w+c m u^{2} w+c t^{3} w+e u^{4} w, 0,0\right] \\
& T_{9}=\left[0,32 u w+30 w \lambda+c(3 \pi+1) w+c m \nu^{2} w+\pi c^{3} w+e u^{4} w, 0\right] \\
& \Gamma_{10}=\left[0,0,3 x v \cdot 3 b \lambda+c(3 n+1) v \cdot c m u^{2}+c L^{3} * e u^{4}\right] \\
& J_{11}=\left[-c m u v-d U^{2} v-e u^{3} v+c w_{1} a v+b \lambda \cdot c n v+c m u^{2}+d t^{3}+e u^{4}\right. \text {, } \\
& \left.c m u \cdot C^{2} \cdot e^{3}\right] \\
& T_{15}=\left[c(n-m) L v-a u^{2} v-\theta u^{3} v+a u^{2}-2 a v-c(3 n \cdot 1) w_{1}\right. \\
& \left.-2 c m v+2 c m u^{2} \cdot 3 d u^{3}+4 e u^{4}-4 d N-6 e u^{2} v, c(m \cdot 1) u \cdot d u^{2} \cdot \varepsilon u^{3}\right]
\end{aligned}
$$

where $\Gamma_{13}=i\left(5 I_{1}-T_{2}\right), r_{14}=i\left(r_{4}-\Gamma_{3}\right), \Gamma_{16}=3\left(r_{12}-\Gamma_{11}\right)$.
First we show that $\tilde{f}(f, C)$ contains /. By Nakayama's Lemma we may work modulo M/. Now

$$
w T_{5}=\left[3 c w^{2}, 0,0\right], w T_{6}=\left[0,3 c w^{2}, 0\right] \bmod \boldsymbol{M} / .
$$

and then $w r_{11}, r_{9}$ giteld $[0, w w, 0],[0, \Delta u w+\Delta w \lambda, 0] . v r_{14}$ gives $[w, 0,0]$ and so T_{8} and $w T_{13}$ give $\left[\nu w_{1}, 0,0\right]$ and $[\omega \lambda, 0,0]$. Multiplying T_{14} by u

118

and λ gives $[0, u w, 0]$ and $[0, w \lambda, 0]$ respectively since $m+1$. Finally $w T_{1}$ yields $[0,0, w]$ Similarly $\tilde{r}(f, U)$ contains J provided $m \neq 0,1$.

We can now wrile

$$
\tilde{f}(r, u)-(1, n) v_{0}
$$

where \boldsymbol{V} is a finite dimensional vector space. In fact

$$
\lambda^{2} / f_{\lambda}=\left[8 \lambda^{2}, 0,0\right]
$$

and so

$$
r(f, U)=\left(f+N \oplus W \in R\left\{\left[\lambda^{2}, 0,0\right]\right\}\right.
$$

Where W is the real vector space generated by

$$
\begin{aligned}
& A_{1}=\left[a u^{2}+2 a u \lambda_{1}-\alpha \Delta^{3}, 0\right] \quad A_{2}=\left[a u \lambda_{0}-\alpha U^{2} \lambda_{0}, 0\right] \\
& A_{3}=[a v \sim \cdot 2 b V \lambda, 0,0] \quad A_{4}=\left[a L^{2}+b u \lambda+c n \nu N, c m L^{2}+a L^{3}, a \nu\right] \\
& A_{5}=[\partial \lambda+c n v \lambda, c m u \lambda+c t / 2 \lambda, c \lambda] \quad A_{6}=\left[a v N+b V \lambda+c O N^{2}, c m u v_{1} c v\right] \\
& A_{j}=\left[0, m u^{3}, \nu^{2}\right] \quad A_{\mathrm{g}}=\left[0, m u^{2 \lambda}, u \lambda\right] \\
& A g=[0, m L \lambda 2, \lambda 2] \\
& A_{10}=\left[-c m u v+c w, a U+b \lambda+c m v+c m L^{2}+c t^{3}, c m u+d L^{2}\right] \\
& A_{11}=\left[0, a u^{2}+b u \lambda+c \pi u v \cdot c m u^{3}, c m v^{2}\right] \\
& A_{12}=\left[0, a v \lambda+b \lambda 2+c \pi v \lambda+c m u^{2} \lambda, c m u \lambda\right] \\
& A_{13}=[0, B V V+b V \lambda \cdot c \pi V 2,0] \quad A_{14}=\left[0, a V^{3}+b U^{2} \lambda, 0\right] \\
& A_{15}=\left[0, z u^{2} \lambda+a u \lambda^{2}, 0\right] \quad A_{16}=\left\{0, a v \lambda^{2}+b \lambda^{3}, 0\right] \\
& A_{17}=\left[c(n-m) u v+2 u^{2}-2 a v-c(3 n+1) w_{0}-2 c m v+2 c m u^{2}+3 d t^{3}-4 c t v,\right. \\
& \left.c(m \cdot 1) u \cdot d^{2}\right] \\
& A_{1 g}=\left\{-2 a v v_{0}-2 c m u v+2 c m u^{3}, c(m+1) u^{2}\right] \\
& A_{1 g}=\left[-2 a v \lambda,-2 c m v \lambda+2 c m u^{2} \lambda, c(m+1) \nu \lambda\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{20}=\left[a V^{2}, c m N^{2}, 0\right] \\
& A_{32}=\left[0,0, \Delta U^{2}+a u \lambda\right] \\
& A_{21}=[0, c w, a v+b \lambda+c(n+1) v] \\
& A_{23}=\left[0,0, a u \lambda \cdot b \lambda_{2}\right] \\
& A_{24}=[3 \mathrm{sw}, c(3 m-1) w, 0] \\
& A_{25}=\left[x^{2} \cdot \alpha \cup \lambda \cdot d n \cdot 2 m\right)(N+3 c w, 0,0] \\
& A_{26}=\left[0, d u^{2}+b u \lambda+c(n-2 m) u v+c m \nu^{3}+3 c w, 0\right] \\
& A_{27}=[0,0,3 a v+3 b \lambda+c(3 n \cdot 1) v \cdot c m u 2]-
\end{aligned}
$$

Our first task is to cast out redundancies. Inspecting the generators

$$
A_{7} \text { to } A_{9}, A_{14} \text { to } A_{16}, A_{22}, A_{23}
$$

we see that A_{8} and A_{g} are redundant. Now replace A_{19} and A_{6} by
$\left.A_{26}=g(-\}\left(a A_{18}+b A_{19}\right)+C m A_{14}+i c(m+1) A_{22}-c m A_{13}+C n A_{20}\right\}$
$=\left[\right.$ avr $\left.+b V \lambda+C O V^{2}, 0,0\right]$,
$A_{29}=A_{6}-A_{2 g}=[0, m u v, V]$.
Also replace Ass by
$A_{30}=A_{11}-A_{28}=\left\lfloor 0,2 \mathrm{muv}-3 \mathrm{w} . \mathrm{mu}^{2}\right\rfloor$.
We can now see that A_{27} is a linear combination or A_{21}, A_{29} and A_{30-} it is also possible to check that A_{11} can be written in terms of A_{1} to A_{5}, A_{14}. $A_{18}, A_{21}, A_{24}, A_{25}, A_{29}$ and A_{30} !

By Theorem A. 3 the extended tangent space

$$
\begin{aligned}
T_{e}(f, D) & =\Gamma(f, U)+\mathbb{R}\left\{T_{1}, T_{13}, f_{\lambda}, \lambda F_{\lambda}\right\} \\
& =(/+J) \bullet W_{1} \in R\{[1,0,0],[\lambda, 0,0],[\lambda 2,0,0]]
\end{aligned}
$$

whers

$$
W_{1}=W \cdot \mathbb{R}\left[\left[3 u+c N v_{1} \Delta m u_{+}+t^{2}, \varepsilon u^{3}, c\right],\left[s u_{1}-\alpha t^{2}-2 \pi u^{3}, 0\right]\right] .
$$

Wo have cost out saven redundancies from W and so have at most 25 independent tangent space generators in 30 variables. Hence the codimension of $T_{e}(f, D)$ is at least 5 . We claim that

$$
U=\mathbb{R}\left[[0,1,0],[v, 0,0],[0, u, 0],\left[0, u^{2}, 0\right],\left[0, u^{3}, 0\right]\right]
$$

Is the roquired tangent space complement and so

$$
\operatorname{codim} /=5
$$

The claim is easy to verify. We must show that

$$
\begin{equation*}
T_{e}(f, D)+U=\bar{E}_{x, y, x, \lambda} \tag{1}
\end{equation*}
$$

It is immediate that the left hand side of (1) contains

$$
\begin{aligned}
& {[u, 0,0],\left[u^{2}, 0,0\right],\left[u^{2}, 0,0\right],\left[0, u^{2} \lambda, 0\right],\left[0, u^{2}, 0\right],\left[0, \lambda^{3}, 0\right]} \\
& {[0,0,1],\left[0,0, u^{2}\right],[0,0, u \lambda]_{,}\left[0,0, \lambda^{2}\right]}
\end{aligned}
$$

in addition to the generators of U. Then the four simplified generators

$$
A_{18}, A_{24}, A_{25}, A_{30}
$$

give

$$
[u v, 0,0],[w, 0,0],[0, u v, 0],[0, w, 0]
$$

since $m \neq 0$ and $n * \xi$. The rest is easy with $n * 0$. Hence we have proved the following.

Theorem 3.5.2 LEIf $\in \vec{M}_{x, y, v, \lambda}$ ar the germ

$$
r=\left[\varepsilon U+\delta \lambda+\sigma \pi v, \sigma m \nu \cdot \rho U^{\prime 2}+\sigma^{\prime 3}, \sigma\right]
$$

untere

$$
\delta, c, \sigma= \pm 1, m \neq 0,1,1, n \not 0, \frac{1}{2} .
$$

Then m, np, q are modal paramelers and f has codimension 5, but
ropolagical codimension 1. A universal unfolding of f is

$$
F=\left[\varepsilon u+\delta \lambda+\sigma \tilde{n} v, \alpha+\sigma \tilde{m} u+\tilde{\rho} u^{2}+\tilde{q} u^{3}, \sigma\right]
$$

where $\alpha, \tilde{m}, \tilde{n}, \tilde{p}, \overline{4}$ are close to $0, m, n, p, q$.

s3.6. Qualitative Equivalonce.

It is generally recognised that the equivalence relation used in this thesis is too strong. Two blfurcation problems can exhibit the same qualliative behaviour and yet not be related by a smooth change of coordinates. On the other hand if wa replaced 'smooth' by 'continuous' then the resulting equivalence relation would be too weak. For example, the germs

$$
\begin{aligned}
& f_{1}(x, \lambda)=x^{2}-\lambda_{1} \\
& f_{2}(x, \lambda)=x^{4}-\lambda_{1}
\end{aligned}
$$

are related by a continuous change of coordinates, yel behave quite differently under small perturbations. A more subtle example is the $\mathbf{Z}_{\mathbf{2}}$-equivariant 'nondegenerate quadralic' discussed in V1 $\mathbf{\$ 7}$ of Golubitsky \& Schaeffer [1984]:

$$
\begin{align*}
& g_{n}\left(x_{1} \lambda\right)=\varepsilon x^{5}+2 m \lambda x^{3}+5 \lambda^{2} x_{1} \tag{1}\\
& \varepsilon_{1} \delta= \pm 1, m^{2}-\varepsilon \delta .
\end{align*}
$$

Hera m is a modal parameter determining a distinct smooth equivalence class for each value of m satisfying $m^{2} * \in \delta$. However if ε E $=-1, g_{0}$ only represents one topological equivalence class, while if $\mathbf{e 6}=+1, g_{0}$ represenis three equivalence classes depending on whether m falls in the range $(-\infty,-1),(-1,+1),(+1,+\infty)$. Moreover on studying the universal unfolding of g_{0} it is revealed that $m=0$ is also a special value of the
modal paramoter. See Fig. V1 7.3 of Golthilsky \& Schaeffer [1994]. We will say that two germs ars qual/falfvaly gqulvalenf if their zero sets exhibit the same topological behaviour under amall perturbations. Wa have not attempled to make this definition precise. However it is clear that under tha general dafinition, tha germ in (1) should represent precisoly iwo equivalence classes when c\& - - 1 and four equivalence classes when c $\delta=-1$.

We use barehand techniques to deal with tha bifurcation problems considered in this paper. For example, consider the normal forms $1(1) \quad g_{e}=\left[\varepsilon m u \cdot 5 \lambda \cdot \sigma U^{2}, \varepsilon, 0\right]$

$$
\varepsilon, 6, \sigma= \pm 1, m-1,-1,-1 .
$$

These are the nondegenerate bifurcation problems of $\mathbf{\$ 1}$. We saw in

Fig. 1.3.1 that the only qualitatively imporiant factors are
$\operatorname{sign} \theta(0), \operatorname{sign} P_{2}(0)$ and m.

Furthermore the importance of m only lay in the question of wheither its value was in the range $(-\infty,-1),(-1,-4),\left(-1,-\frac{1}{2}\right)$ or $(-1,+\infty)$. In other words the two modal farnilies g_{0} and h_{0} collapse into prectsely 16 different bifurcation problems, the different problems corresponding to ine various permutations of

$$
\varepsilon=-1 \text { or }-1,6=-1 \text { or }-1, m \in(-\infty,-1),(-1,-1),(-1,-1) \text { or }(-1, \infty) \text {. }
$$

Note that the value of the expression r_{2} in rable 3.1 .1 has no bearing on the qualitative question. Similarly the expressions relating to the modal par ameters p in normal forms $\mathbf{2}$ to 5 have no qualitative relevance. Henca the simplified recognition problem solutions in Table 3.1.2. Tha arguments are quite simple for normal forms 1 to 5 . Since $~(O)$ is bounded away from zero wa have no submaximal branching (see Theorem 1.3.1(ii)). Hence we need only consider the subspaces

$$
(0,0,0),(x, 0,0),(x, x, 0),(x, x, x)
$$

On $(0,0,0)$ we just have the trivial solution, while on each of the other subspaces we have the zeroes of one polynomial in x and λ. One nonvanishing lerm in each of x and $\boldsymbol{\lambda}$ is suffictent to give all local behaviour. Hence in normal form 3 the term

$$
\left[\sigma U^{2}, 0,0\right]=\sigma\left(x^{2}+y^{2}+z^{2}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

gives a nonvanishing x^{5} term and so ρu^{3} is unnecessary. However the term $\left[\sigma U^{2}, 0,0\right]$ is needed because the cubic terms vanish on the $(x, 0,0)$ subspace:

$$
[-\varepsilon u, \varepsilon, 0]=0 \text { when } y=z=0 .
$$

As usual, the arguments for normal form 6 are much harder. However on inspection of branching and stability equations it becomes clear that the
values of the modal parameters p and q are irrelevant. Hence the normal form given in Table 3.1.2. Now since the value of q does not malter $\left[0, \nu^{3}, 0\right]$ is qualitatively a high ordor term. Instead of choosing $\left[0, \nu^{3}, 0\right]$ in the complement to the extended tangent space, we could just as well have chosen any of

$$
\left[0, u^{2} \lambda, 0\right],\left[0, \nu^{2}, 0\right],\left[0, \lambda^{3}, 0\right],\left[0,0, u^{2}\right],[0,0, u \lambda],\left[0,0, \lambda^{2}\right]
$$

Hanco to solve the unipotent qualitative recognition problem, we can work
modulo the U-intrinsic space

$$
M=\left[m^{3}+M\langle w\rangle, M^{3}+M\langle w\rangle, M^{2}+\langle\nu, w\rangle\right],
$$

which is contained in the U-intrinsic part of

$$
I \cdot J+\left[0, M^{3}, \mu^{2}\right]
$$

Define $T_{m}\left(f_{0}, U\right)=\pi\left(T_{,} U\right)+M_{m} g_{m}(f, U)=\operatorname{ltr}_{u} T_{m}(f, U)$. Then

$$
r_{w}(r, v)=\left[\mu_{2}+\langle w\rangle, M 3+M\langle v\rangle \cdot\langle w\rangle, M 2 \cdot\langle v, w\rangle\right]
$$

- $\left\{\begin{array}{c}{\left[0, m u^{2}, u\right][0, m u \lambda, \lambda][0, a u \lambda+b \lambda 2,0][0,0, a v \cdot \Delta \lambda]} \\ \left\{0, a v+b \lambda+c N v+c m(1-m) U^{2}, 0\right]\left[2 a v, 2 c m v+c m(m-1) u^{2}, 0\right]\end{array}\right\}-$

Repeating the argument with the modal parameter ρ we can work mooulo

$$
N=\left[M_{2}+\langle w\rangle, M^{2}+\langle w\rangle, M\right]
$$

We might hope that

$$
P_{N}\left(r_{1} l\right)=T_{m}(f, l)
$$

working modulo N, but unforfunately

$$
r_{\omega}(f, U)=N, \mathbb{R}\{[0, a u+B \lambda+C n v, 0][a v, c m v, 0]\}
$$

Applying Γ_{12} of Theorem A. 3 to [av,cmv,0] gives

$$
[0,-a v, 0] \bmod g_{N}(f, U)
$$

and claarly $[0, v, 0] \not 9_{N}(f, U)$. Hence by Proposition 2.4.1,

$$
P_{w}(f, l)+T_{w}(f, u)
$$

and so f is not qualitatively linearly determined.
However, we can still solve the unipotent recognition problem working modulo N. First note that $\varepsilon_{2}\left[\lambda^{2}\right] \subset N_{1}$ and so without loss of generality, the A part of an 0 -equivalence can be taken to te the identity. Now consider the X part, $X \in \vec{X}_{x, y, 2, \lambda},(\Delta X)_{0}=I$, so

$$
x=\left[x_{1}, x_{2}, x_{3}\right], x_{1}(0)=1, x_{2}(0)=A .
$$

Lemma 3.6.1 Modulo N x has the following effect:

$$
\begin{aligned}
& \lambda \cdots \lambda_{1}, u H v-4 A v, v \rightarrow v_{1} \\
& {\left[z_{1}, z_{2}, k\right] \mapsto\left[z_{1}, z_{2}, k\right] ; z_{1}, z_{2}=u, v, w \text { or } \lambda, k \in \mathbb{R}}
\end{aligned}
$$

Proof As an example, we show that $u \rightarrow u-4 A v$. Notice that N contains all invarlants except for u and v. In particular, we can work modulo terms of order 6. Now x sends x onto

$$
x\left(x_{1}+x^{2} x_{2}+y^{2} z^{2} x_{3}\right)
$$

similarly y and z. Therefore modulo N

$$
\begin{aligned}
u & =x^{2}+y^{2}+z^{2} \omega x^{2}\left(x_{1}+x^{2} x_{2}\right)^{2}+y^{2}\left(x_{1}+y^{2} x_{2}\right)^{2}+z^{2}\left(x_{1}+z^{2} x_{2}\right)^{2} \\
& =u x_{1}^{2}+2 x_{1}(0) x_{2}(0)\left(x^{4}+y^{4}+z^{4}\right) \\
& =u+2 A\left(u^{2}-2 v\right) \\
& =u-4 A v .
\end{aligned}
$$

The effect of general S with $S(0)=1$ is easier to compute. The generators of $E_{\text {rubura }}$ are given in Lemma A. 1. From theorem A. 3 it can be seen that

$$
S f=\Sigma^{*} S_{l} T_{l}
$$

where $S_{j} \in E_{\mu, w_{m, n}}$ with $S(0)=1$, and Σ^{*} denotes summation over the set

$$
\{1, \ldots, 12\},\{2,4,6\}
$$

It turns out in the same way that under general 5 .

$$
\left[z_{1}, z_{2}, k\right] \rightarrow\left[z_{1}, \theta z_{1}+z_{2}, k\right], \bmod N
$$

where $S_{11}(0)=B$. We can now prove the following.

Corollary $3.6 .2[P, Q, B]$ is unipotently 0 -equivalent to
[au•bi •cnv, cmu, c] moctlo $N / /$ and only if

$$
\begin{aligned}
& P=Q=0, P_{u}=a_{1} P_{A}=0, R=c \\
& \Delta Q_{u}-a Q_{R}=a c m, Q_{u} P_{r}-a Q_{r}=c^{2} m n .
\end{aligned}
$$

Proof Using the results of Lemma 3.6.1, we see that Under a general equivalence ($5, x, \Lambda$) we have
$[a v \cdot b \lambda+c m, c m u, c] \mapsto_{\wedge}[a U+b \lambda+c \pi v, c m u, c] \bmod N$

$$
\rightarrow N[a(u-4 A v)+b \lambda+c n v, c m(u-4 A v), c] \bmod N
$$

${ }^{-}{ }_{s}[s(u-4 A V) \cdot \Delta \lambda+C n v, B(s(u-4 A V) \cdot D \lambda \cdot C n v) \cdot c m(u-4 A V), c] \bmod N$
$=\left[a U+b \lambda+(c n-4 a A) v_{1}(a B+c m) u+a B \lambda+(c B B-4 a A B-4 c A m) v_{1} c\right]$.
Hence $[P, O, R]$ is contained in the orbit if and only If there exist $A, B \in R$
such that

$$
\begin{aligned}
& P_{v}=a, P_{2}=D_{1} A=C_{1} P_{v}=C n-4 a A_{1} \\
& Q_{v}=a B+c m, Q_{1}=\Delta B, Q_{v}=C B n-4 a A B-4 C A m .
\end{aligned}
$$

Rearrangement gives the required conditions.

Corollary 3.6.3 [$P, Q, f]$ is 0 -equivalent $10[\varepsilon u \cdot \delta \lambda+\sigma \pi v, \sigma \pi u, \sigma]$
moctlo A if and only if
$P=\phi=0, \operatorname{sign} P_{v}=\varepsilon, \operatorname{sign} P_{R}=\delta, \operatorname{sign} A=\sigma$,
$\frac{P_{\lambda} Q_{u}-P_{u} Q_{\lambda}}{P_{\lambda} A}=m, \frac{P_{v} Q_{u}-P_{u} Q_{v}}{A^{2}}=m n$.

Proof Combine the effect of scalings with Corollary 3.6.2.

Appendix to 53. Tangent Space Generators and Change of Coordinates.

Iangent space generators.

In order to calculate the tangent space of a germ we first need to find

$$
S:\left(R^{3}, 0\right) \rightarrow C\left(R^{3}, R^{3}\right)
$$

satisfying

$$
\begin{equation*}
\gamma^{-1} S(x(x, y, z)) \gamma=S(x, y, z) \tag{1}
\end{equation*}
$$

for all $\boldsymbol{\gamma} \in \mathrm{D}$.

Lemma A. 1 E $_{x_{1}, h_{2},}$ is generated over $E_{x_{1}, y, z}$ oy S_{1}, \ldots, S_{9} where

$$
\begin{aligned}
& S_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad S_{4}=\left(\begin{array}{ccc}
0 & x y & x z \\
y x & 0 & y z \\
z x & z y & 0
\end{array}\right), \quad S_{7}=\left(\begin{array}{ccc}
0 & x^{3} y z^{2} & x^{3} y z^{2} \\
x^{3} y z^{2} & 0 & x^{3} y z^{2} \\
x^{3} y z^{2} & x^{3} y z^{2} & 0
\end{array}\right), \\
& S_{2}=\left(\begin{array}{ccc}
x^{2} & 0 & 0 \\
0 & y^{2} & 0 \\
0 & 0 & z^{2}
\end{array}\right), \quad S_{5}=\left(\begin{array}{ccc}
0 & x y z^{2} & x y^{2} \\
y x z^{2} & 0 & y z x^{2} \\
z x y^{2} & z y x^{2} & 0
\end{array}\right), \quad S_{0}=\left(\begin{array}{ccc}
0 & x y^{3} z^{2} & x z^{3} y^{2} \\
y x^{3} z^{2} & 0 & y z^{3} x^{2} \\
z x^{3} y^{2} & z y^{3} x^{2} & 0
\end{array}\right), \\
& S_{3}=\left(\begin{array}{ccc}
y^{2} z^{2} & 0 & 0 \\
0 & z^{2} x^{2} & 0 \\
0 & 0 & x^{2} y^{2}
\end{array}\right), S_{6}=\left(\begin{array}{ccc}
0 & x^{3} y & x^{3} z \\
y^{3} x & 0 & y^{3} z \\
z^{3} x & z^{3} y & 0
\end{array}\right), S_{9}=\left(\begin{array}{ccc}
0 & x^{5} y z^{2} & x^{5} z y^{2} \\
y^{5} x z^{2} & 0 & y^{5} z x^{2} \\
z^{5} x y^{2} & z^{5} y x^{2} & 0
\end{array}\right),
\end{aligned}
$$

Proof As in the proof of Lamma 1.2.4, we exploit Lemma 1.4.1 of Poênaru
[1976] to restrict attention to matrix maps with polynomial entries
satisfying (1). Again we sat

$$
a=x^{2}, b=y^{2}, c=z^{2}
$$

It is easy to check that the following two spaces contain such maps.

We show that $D \in A$ contains all such maps. Suppose that S is a diagonal matrix with polynomial entries satısfying (1), with diagonal entries S1, S_{2}, S^{3}. Then setting $X=K_{x^{+}} K_{y^{*}} x_{z}$ shows that aach S^{r} is even in x, y, z. Hence we can write S in the form

$$
S(x, y, z)=\sum_{i j i b i}\left[\begin{array}{ccc}
s_{i} & 0 & 0 \tag{4}\\
0 & s_{i}^{i} & 0 \\
0 & 0 & s_{i}
\end{array}\right]
$$

As in the proof of Lemma 1.2.4, taking $\boldsymbol{\gamma}$ to be the Iranspositions (12), (23) and (31) shows first inat

$$
s_{j}^{\prime}=s_{i y}^{*}, s_{i j}^{x}=s_{j y}^{*}, s_{y j}^{7}-s_{j, k}^{7}
$$

and then that

$$
s_{i j}^{j}=s_{i j}^{2}=s_{i j}^{7}
$$

Now suppose that S is an antidiagonal matrix satisfying (1) with

Sor is odd in the q ih and r th variaties and even in the other. Thus we can write

$$
s(x, y, z)=\sum_{i j} a i b k^{k}\left[\begin{array}{ccc}
0 & s_{i j}^{\prime 2} x y & s_{i j}^{\prime 2} x z \tag{5}\\
s_{i j}^{2,} y x & 0 & s_{j y}^{\prime j} y z \\
s_{i j}^{1 j} z x & s_{i k}^{32} z y & 0
\end{array}\right] \text {. }
$$

By choosing $\gamma=(12)$ we oblain the relations
and (5) becomes

Now choosing $\gamma=(13)$ yields

$$
s_{i k}^{2 x}=s_{k j}^{2 v}=s_{k j}^{2 y},
$$

as required.
It is clear hy analogy with Lemma 1.2.4 that S_{1}, S_{2}, S_{3} generate D and so it remains to show that $S_{4} \ldots \ldots, S_{9}$ generate A. We use the notation

Then

$$
\begin{aligned}
& \left\langle a^{2}\right\rangle=u\langle a\rangle-v\langle 1\rangle+\langle b c\rangle, \\
& \left\langle a^{n}\right\rangle=u\left\langle a^{n-1\rangle}-v\left\langle a^{n-2\rangle}+w\left\langle a^{n-3\rangle} ; n \geq 3,\right.\right.\right.
\end{aligned}
$$

and
$\left\langle\Delta C^{n}\right\rangle=\left(a^{n-1} a^{-1} \cdot b^{-1} c^{n-1} \cdot c^{-1} a^{-1}\right)\langle a C\rangle$

$$
-m\left(a^{n-1}+b^{n-1}+c^{n-1}\right)\left\langle a^{n-2\rangle}+w\left\langle a^{n-3}\right) ; n \geq 2\right.
$$

Hence 《an＞and 《brcn＞，and similarly 《Dn＞，《cn＞，《ambn＞and《arcn＞，are generated by $S_{4, \ldots, .} S_{8}$ ．We claim that $\left\langle a^{n+1} b^{n}\right\rangle$ and $\left\langle a^{n+2} b^{n}\right\rangle$ can be generated．When $n=1$

$$
\left\langle a^{2} b\right\rangle=S_{g} \text { and }\left\langle a^{3} b\right\rangle=u\left\langle a^{2} b\right\rangle-\left\langle a^{2} b^{2}\right\rangle-w\langle b\rangle .
$$

while for $\Omega \geq 2$ ．

```
\(\left\langle a^{n+1} b^{n}\right\rangle=V\left\langle a^{n} b^{n-1\rangle}-W\left\langle a^{n} b n-2\right\rangle-w\left\langle a^{n-1} b^{n-1\rangle}\right.\right.\),
\(\left\langle a^{n+2} b^{n}\right\rangle=u\left\langle a^{n+1} b^{n}\right\rangle-\left\langle a^{n+1} b^{n+1}\right\rangle-w\left\langle a^{n} b^{n-1}\right\rangle\).
```

thus verifying the claim．It is now easy to see that we have 《anba》：we know this for anaron＞，$n=0$ or $r=0,1,2$ ．For $n \geq 1, r \geq 3$ we have

$$
\left\langle a^{\left.\left.n+b^{n}\right\rangle\right\rangle}=\left\langle\left\langle a^{n+1}-1 b^{n}\right\rangle-\left\langle a^{n+r-1} b^{n+1}\right\rangle-w\left\langle a^{n+r-2} b^{n-1\rangle} .\right.\right.\right.
$$

Finally，the general term is $\left\langle g^{2} D \mathcal{C}^{*}\right\rangle$ ．Without loss of generality
$i \leq / \leq x$ ，and 50
$\left.\left\langle a^{\prime} B L\right\rangle=W / 《 D^{\prime} C^{a}\right\rangle: 1=f-1, n=k-1$.

We recall some notation from §1．2．In Theorem 1．2．1 It was shown that every equivariant germ $f \in \vec{E}_{x_{4} y_{y}, x, x}$ can be written in invariant coordinates as

$$
\begin{equation*}
f=[P, Q, A] \tag{7}
\end{equation*}
$$

where $P, Q, R \in E_{x, y, r, i}$ ．It was also shown（Theorem 1.2 .4 ）that f can be
written as

$$
f \equiv\langle\varphi(a, b, c)\rangle=\left(\begin{array}{l}
\varphi(a, b, c) x \tag{8}\\
\varphi(b, c, a) y \\
\varphi(c, a, b) z
\end{array}\right)
$$

for some function-germ φ. In the notations (7) and (日) we have the following useful identities.

Lemma A. 2 (a) $x^{4}+y^{4}+z^{4}=u^{2}-2 V$,

$$
x^{6}+y^{6}+z^{6}-u^{3}-2 u v+3 w
$$

(b) $\left\langle d^{4}\right\rangle=[-1, u, 1]$, $\left\langle x^{6}\right\rangle=\left[-u v+w, u^{2}-v, u\right]$, $\left\langle y^{4} z^{4}\right\rangle=[-u w, w, v]$. $\left\langle y^{2} z^{4} \cdot z^{2} y^{4}\right\rangle=[-w, 0, u]$, $\left\langle y^{2} z^{6}+z^{2} y^{6}\right\rangle=\left[0,-w, u^{2}-2 v\right]$.

Proof (a) Can be checked directly.
(b) These are straightforward consequences of the inductive
arguments used in the proof of Lemma 1.2.4.

I theorem A. 3 suppose $f=[P, O, R] \in \vec{E}_{x, y, z, x}$. Then tine unipotent tangent
space is given by

$$
r(f, u)=\tilde{r}(r, U) \cdot E_{x}\left[\lambda^{2} f_{2}\right\}
$$

Here $\tilde{\mathrm{r}}(\mathrm{f}, \mathrm{U})$ is generated as an $\mathrm{E}_{v, v, v, \lambda}$ motile by

$$
\begin{aligned}
& z T_{1}, z T_{2}, z=u, v, w \text { or } \lambda_{1}, T_{3}, \ldots, T_{12} \text {, where } \\
& T_{1}=[P, Q, P],
\end{aligned}
$$

$$
\begin{aligned}
& \left.5 R+2 \mu R_{v}+4 \omega A_{*}+6 w R_{s}\right]_{v} \\
& T_{3}=[\omega Q-v \omega P, \omega R, P+v i] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \left.m\left(3 R_{*}+2 \omega F_{v}-v P_{\psi}\right)\right], \\
& T_{5}=\left[\omega P \cdot\left(U^{2}-2 v\right) Q+3 \omega R, 0,0\right] \text {, } \\
& T_{6}=\left[0, L P^{\circ}\left(U^{2}-2 v\right) 0+3 w R, 0\right] \text {, } \\
& T_{7}=\left[0,0, w w_{4}\left(u^{2}-2 v\right) 0.3 w f\right] \text { 。 } \\
& T_{0}=[3 \omega p+u \omega \theta+v \omega P, 0,0] \text {. } \\
& T_{9}=\left[0,3 w P+L w O+n \omega A_{3} 0\right], \\
& T_{10}=[0,0,3 P+10+v P]_{0} \\
& T_{11}=\left[-\omega+\omega R_{1} P+10,0\right],
\end{aligned}
$$

$$
\begin{aligned}
& -\rho_{+} v\left(\omega \theta_{0}+\theta_{v}+w \theta_{v}\right)-2 \omega \theta_{*}-3 w \theta_{v} \text {, } \\
& \left.u F+v\left(u P_{v}+v P_{v}+w R_{v}\right)-2 v A_{*}-3 w A_{v}\right] .
\end{aligned}
$$

The extended tangent space is given by

$$
r_{0}(r, D) \cdot T(f, U), R\left\{T_{1}, T_{2}, T_{\lambda}, \lambda T_{2}\right\}
$$

Proof Recall from $\$ 2.2$ that $\bar{r}(r, U$ is given by

$$
\bar{r}(f, U)=\left\{S f+\left(\sigma \cap X \mid(S, x) \in E_{x, y, 2, \lambda} x \vec{\mu}_{x, y, x, \lambda}, S(0)=(\sigma x)_{0}=0\right\}\right.
$$

$$
\begin{aligned}
& 2 S_{1} f_{1}, z(d f) x_{1}, z=u_{1} v_{1} w \text { or } \lambda_{1} \\
& S_{2} f_{,} \ldots, S_{2} f,(d f) x_{2},(d f) x_{3} .
\end{aligned}
$$

We obtain the sat of generators in the statement of this Theorem by the
following rules:

$$
\begin{aligned}
& r_{1}=S_{1} f, T_{2}=(d f) x_{1}=T_{3}=S_{3} f, T_{4}=(d f) X_{2}, \\
& T_{5}=S_{4} f+S_{2} f, T_{6}=S_{6} f+u S_{2} f+S_{3} f-v S_{1} f, \\
& T_{7}=S_{8} f+w S_{1} f, T_{8}=S_{7} f+w S_{1} f \\
& T_{g}=S_{8} f+w S_{2} f, T_{10}=S_{5} f+S_{3} f, \\
& T_{11}=S_{2} f, T_{12}=(d f) x_{2} .
\end{aligned}
$$

 so must te of the form (B) for some $\varphi \in E_{x_{2}}, y^{2}, z^{2}$. Hence wa need only find φ. Then using the resulis in Lemma A. 3 we write the generators in the invariant coordinates (7). Suppose for example we wish to calculate T_{11}.

Then

$$
\begin{aligned}
T_{11}=S_{2} f & =\left(\begin{array}{ccc}
x^{2} & 0 & 0 \\
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{c}
x\left(P+x^{2} Q+y^{2} z^{2} P\right) \\
* \\
*
\end{array}\right) \\
& =\left(\begin{array}{c}
x\left(x^{2} P+x^{4} Q+x^{2} y^{2} z^{2} R\right) \\
* \\
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle x^{2} P+x^{4} Q+w P\right\rangle \\
& =[0,1,0] P \cdot[-v, v, 1] \theta+[w, 0,0] R \\
& =[-w+w R, P+\angle 0,0]
\end{aligned}
$$

Similerly, 10 find the ($\Delta \eta X_{j}$ it suffices to consider the first row of of, namely

$$
(A, x B(y, z), \times B(z, y))
$$

where

$$
\begin{aligned}
A=\frac{\partial I_{1}}{\partial x} & =x\left(2 x P_{v}+2 x\left(y^{2}+z^{2}\right) P_{v}+2 x y^{2} z^{2} P_{v}\right) \\
& +x^{3}\left(2 x Q_{\psi}+2 x\left(y^{2}+z^{2}\right) Q_{v}+2 x y^{2} z^{2} Q_{v}\right) \\
& +x y^{2} z^{2}\left(2 x R_{\psi}+2 x\left(y^{2}+z^{2}\right) R_{v}+2 x y^{2} z^{2} A_{\varphi}\right) \\
& +P+3 x^{2} Q+y^{2} z^{2} R_{v}
\end{aligned}
$$

and

$$
\begin{aligned}
x B(y, z)=\frac{\partial f_{1}}{\partial y} & =x\left(2 y P_{*}+2 y\left(x^{2}+z^{2}\right) P_{v}+2 y x^{2} z^{2} P_{v}\right) \\
& \cdot x^{3}\left(2 y O_{*}+2 y\left(x^{2}+z^{2}\right) \theta_{v}+2 y x^{2} z^{2} \theta_{v}\right) \\
& +x y^{2} z^{2}\left(2 y A_{*}+2 y\left(x^{2}+z^{2}\right) R_{v}+2 y x^{2} z^{2} R_{v}\right) \\
& +2 x y^{2} z^{2} .
\end{aligned}
$$

We exploit the symmetry of the partial derivatives of P, Q, R in A and $x B$ by splitting up the calculations as follows. We have

$$
\left(o n x_{1}=\langle A+y B(y, z)+z B(z, y)\rangle\right.
$$

and so $P_{0}, P_{\%}$ and P_{0} contribule

$$
\begin{align*}
& 2\left\langle x^{2} P_{v}+x^{2}\left(y^{2}+z^{2}\right) P_{v^{+}} x^{2} y^{2} z^{2} P_{v}+\left(y^{2}+z^{2}\right) P_{\psi}\right. \\
& \left.\quad-\left(y^{2}\left(x^{2}+z^{2}\right) \cdot z^{2}\left(x^{2}+y^{2}\right)\right) P_{v}+2 x^{2} y^{2} z^{2} P_{v}\right\rangle \\
& -2\left[P_{v}+2 \varphi_{v}+3 w P_{v}, 0,0\right] . \tag{9}
\end{align*}
$$

To computa the Q_{p}, Q_{v} and Q_{p} terms, multiply (9) by x^{2} and change $\rho^{\prime} \mathrm{s}$ to σ s. Similarly, multiply (9) by $y^{2} z^{2}$ and change P^{\prime} s to $\not{ }^{\prime}$'s to yieid the A_{μ}, R_{v} and A_{v} terms. Ignoring the parlial derivative terms, $\langle A\rangle$ is $[P, O, R]$ and $\langle y B(y, z)+z B(z, y)\rangle$ is $[0,0,4 R]$. The calculation of $(d n) x_{2}$ and $(d f) x_{3}$ is similar.

Finally the relation between the unipotent tangent space and the extended tangent space follows immediately from their respective definitions in \$2.2 and §3.

0

Change of coordinales.

It turns out that many of the calculations in this thesis are best performed in a different set of coordinates. Six out of the seven normal forms in our classification have $O(0) \neq 0$. It is the calculafions for these germs that are simplified. These germs all have the modal parameter

$$
m=P_{s}(0) / \rho(0)
$$

and the coordinate change is also parametrised by m. In the remainder of the Appendix, we describe the coordinate change and give resuits enabling us to recover some solutions in the original coordinates.

The change of coordinates is performed in two stages. Firstly we set

$$
(P, \theta, R)_{z}=[P, Q, A]_{1}
$$

where

$$
\begin{equation*}
P^{n}=P-m u \varphi \cdot \frac{1}{(m+1)(2 m+1) u^{2} R, \quad \emptyset=O, F^{\prime}=R, ~} \tag{10}
\end{equation*}
$$

The subscript m shows the dependence of the change of coordinates on m.

Secondly, we set

$$
P^{\prime}\left(\nu, v_{0}, w_{\mu}, \lambda\right)=P^{\prime}(\nu, v, w, \lambda) \text {, similarly } \sigma^{\prime} \text { and } \mathcal{P}^{\prime}
$$

where

$$
\begin{equation*}
v_{m}=v-\frac{1}{1}(m+1) \iota^{2}, \quad \omega_{m}=w-\frac{1}{6}(m+1)(2 m+1) \nu^{5} \tag{11}
\end{equation*}
$$

For the bifurcation problems that we consider in this paper, the partial
derivatives $P_{N}, P_{g}, Q_{0}, Q_{\infty}, Q_{\%}$ and R are identically zero. Using inis
simplification we write the generators $T_{1} \ldots . . T_{12}$ in the new coordinates.

Corollary A. 4 Leif $=(P, 0,0)_{\text {, }}$ where $P_{v}, P_{w}, Q_{w}, Q_{v}, Q_{p}$ are 0. Then If the coordinates of (10) and (11), $\overline{\boldsymbol{T}}(\mathrm{r}, 4$ is generated by

$$
\begin{aligned}
& z T_{1}=z(P, Q, 0)_{g} \\
& z T_{2}=z\left(P+2 \omega \omega_{w}, 3 Q, 0\right)_{E} \quad z=u, v_{2}, w_{f} \text { or } \lambda \\
& r_{3}=\left(i(m+1)(2 m+1) \mu^{2} P+\left(w_{m}+f(m+1)(2 m+1)(3 m+1) u^{3}\right) Q_{1}\right. \\
& 0, P+m u P)_{a} \\
& T_{4}=\left(\left(w_{m}+d(m+1)(2 m+1) \nu^{3}\right)\left(3 \rho_{*}+(3 m+1) \varphi\right), 0,0\right){ }_{m} \\
& T_{5}=\left(\omega \rho-2 v_{a} Q, 0,0\right)_{c} \\
& T_{6}=\left(0, \omega p-2 v_{\mu} Q, 0\right)_{m} \\
& T_{7}=\left(0,0, L p-2 v_{a} \rho\right)_{\mu} \\
& T_{0}=\left(\left(w_{\infty}+\frac{1}{6}(m+1)(2 m+1) \nu^{3}\right)(3 \rho+(3 m+1) \omega 0), 0,0\right)_{g} \\
& T_{9}=\left(0,\left(w_{m}+4(m+1)(2 m+1) c^{3}\right)(3 P+(3 m+1) \omega 0), 0\right)_{m} \\
& r_{10}=\left(3(m+1)(2 m+1) \mu^{2}(3 P+(3 m+1) \angle P), 0,3 P+(3 m+1) \angle 0\right)_{\mu} \\
& T_{11}=\left(-m \omega P-v_{g} Q_{,} P+(m+1)\left\langle Q_{0} Q\right)_{\Delta}\right. \\
& r_{12}=\left(m u\left(L P_{\Delta}-P\right)+2 v_{z}\left(P_{v}+m O\right), P \cdot m L O, 0\right)_{-}
\end{aligned}
$$

The following three results tell us how partial derivatives in the original coordinates can be recovered. The first of these results deals with the coordinate change (10).

Proposition A. 5 Let

$$
\frac{i^{\prime}}{\partial u^{\prime}}=\left\{\begin{array}{cc}
\frac{a^{\prime+} / I_{1}+I_{2}+i / 3}{\partial u^{\prime} \partial r^{\prime} 1 \partial w^{\prime} 2 \partial \lambda_{3}} & i / \geq 0 \\
0 & i /<0
\end{array}\right.
$$

Then, af the arigin, for $1 \geq 0$, we havg

$$
\begin{aligned}
& \frac{a^{\prime} P}{a u^{\prime}}=\frac{a^{\prime} P}{a u^{\prime}}-I m \frac{a^{\prime-1} Q}{a u^{\prime-1}}+3(/-1) /(m+1)(2 m+1) \frac{\partial^{\prime}-2}{\partial u^{\prime} R}, \\
& \frac{a^{\prime} \sigma}{a u^{\prime}}=\frac{a^{\prime} Q}{\partial u^{\prime}}, \quad \frac{a^{\prime} R}{a u^{\prime}}=\frac{a^{\prime} B}{a u^{\prime}} .
\end{aligned}
$$

Proaf By induction wa have

$$
\begin{aligned}
& \frac{a^{\prime} P}{\partial u^{\prime}}=\frac{a^{\prime} p}{\partial u^{\prime}}-I m \frac{\partial^{\prime-1} q}{\partial u^{\prime-1}}+i(f-1) /(m+1 \times 2 m+1) \frac{a^{\prime-2} \beta}{\partial u^{\prime-2}} \\
& -m u \frac{a^{\prime} \theta}{\partial u^{\prime}}+1(m+1)(2 m+1) u \frac{\partial^{\prime-1} A}{\partial u^{\prime-1}}+1(m+1)(2 m+1) u^{2} \frac{\partial^{\prime} A}{\partial u^{\prime}}, \\
& \frac{\partial^{\prime} \sigma^{\prime}}{\partial u^{\prime}}=\frac{a^{\prime} \theta}{\partial u^{\prime}}, \quad \frac{a^{\prime} r^{\prime}}{\partial u^{\prime}}=\frac{a^{\prime} R}{a u^{\prime}} .
\end{aligned}
$$

The result at the origin follows.
\square

The next result gives a series of identities for obtaining partial derivatives of $P^{\prime \prime}$ in terms of partial derivatives of \boldsymbol{P}^{\prime}. Similar results exist for σ^{*} and \boldsymbol{F}^{\prime}.

Propositlon A.6 At the origin, we have, suparassing v, w, λ pertials

$$
P^{\prime \prime}=P_{0}^{\prime} P_{ \pm}=P_{u}
$$

end, suparessing i parlials

$$
\begin{aligned}
& P_{m=0}=P_{m}+(m+1) P_{v} \\
& \left.P_{m o n}=P_{m o n}+3(m+1) P_{u v}+(m+1) \times 2 m+1\right) P_{\infty} \\
& \text { and so an. }
\end{aligned}
$$

Proof Straightforward.

Finally we combine the two results.

Proposition A. 7 at the origin, we have, suporessing viwi parlials

$$
\begin{aligned}
& \rho^{\prime}=P_{v}, \varphi^{\prime}=Q_{0} \quad R^{\prime}=R_{1} \\
& P_{\psi}=P_{\psi}-m Q_{i} Q_{\psi}=Q_{\psi}, R_{\psi}=R_{\psi}
\end{aligned}
$$

and, suparessing λ parlials,

$$
\begin{aligned}
& P_{\infty}=P_{\infty} \cdot(m+1) P_{v}-2 m \theta_{\infty} \cdot(m+1 \times 2 m+1) R_{v} \\
& Q_{\omega}+Q_{\omega}+(m+1) Q_{\omega} . \\
& P_{w v}=P_{m e v}+3(m+1) P_{w}+(m+1)(2 m+1) P_{v}-3 m Q_{0} \\
& -3 m(m+1) Q_{\mu}+3(m+1)(2 m+1) A_{\mu},
\end{aligned}
$$

References.

Adams. J.F. [1969]. Lectures on $1 / 8$ Groups, Benjamin, New York.
Armbruster, D., Dangalmayr, G. \& Gültinger, W. [1985]. Imparfaction sensitivity of interacting Hopf and steady-state bifurcations and thair classification. Physica 0, 16, 99-123.

Ball, J.M. \& Schaeffer, D.G. [1983]. Bifurcation and stabllity of homogeneous equilibrium configurations of an slastic body under dead-load iractions. Math. Proc. Camb. Phil. Sac. . 94. 315-339.

Bruce, J.W., du Plessis, A.A. \& Wall, C.T.C. [1995]. Determinacy and unipotency, preprint, Univ. of Liverpool.

Buzano, E., Geymonat G. \& Poston, T. [1985]. Post-buckling behavior of a non-linearly hyperelastic thin rod with cross-section invariant under the dihedral group D_{n}. Archive for Rational Mochanics and Analysis, 89, 307-388.

Buzano, E. 8. Golubitsky, M. [1993]. Bifurcation on the hexagonal laftice and the planar Bénard problem. Phil. Trans Roy. Soc Lond A. 308. 617-667.

Chossat, P. [1983]. Solutions avec symétrie diéorale dans les problêmes de bifurcation invariantes par symétrie spherique. C. A. Acead Sc.

Parls, Serle 1, 297. 639-642.

Cicogna, G. [1981]. Symmatry breakdown from bifurcation. Lattare al Nuove Cimento, 31, 600-602.

Dangalmayr, G. \& Armbruster, D. [1983]. Classification of Z(2)-equivariant imperfect bifurcalions with corank 2. Proc. Landan Malh. Sac. . 46. 517-546.

Devonshire, A.F. [1949]. Theory of Barium Titanate. Part 1. Fhil. Maz. 40. 1040-1063.

Gaffney, T. [1986]. Some new results in the classification theory of bifurcation problems. Multiparameter bifurcation thoory (M. Golubitsky \& J. Guckenheimer ed.) Contemporary Math, 56, A.M.S., Providence R1, 97-118.

Golubitsky, M. [1983]. The Benard problem, symmetry and the lattice of isolropy subgroups, in Bifurcation Theoryh Mochanics and Physics, Reidel, Dortrecht, 225-256.

Golubitsky, M. \& Langford, W.F. [1981]. Classification and unfoldings of degenerate Hopf bifurcations. α Differential Equalions. 41. 375-415.

Golubitsky, M. \& Roberts, R.M. [1986]. A classification of degenerate Hopf bifurcations with $O(2)$ symmetry, preprint, Univ. of Warwick.

Golubitsky, M. \& Schaeffer, D.G. [1979a]. A thaory for imperfoct bifurcation via singularity theory. Commun Pure Agol. Math. 32. 21-99.

Golubitsky, M. \& Schaeifer, D.G. [19790]. Imperfect bifurcation in the presence of symmetry. Commun. Math. Fhys. , 67, 205-232.

Golubitsky, M. \& Schaeffer, D.G. [1982]. Blfurcations with O(3) symmetry including applications to the Bénard problem. Commun Pure Aapl. Math. 35. B1-111.

Golubitsky, M. \& Schaeffer, D.G. [1993]. A discussion of symmetry and symmetry breaking. Prac. Sympos/a In Pure Maih, 40, part 1. 499-515.

Golubitsky. M. \& Schaeffer, D.G. [1984]. Singutarifies and Groups in Bifurcation Theory, Vol. /. Springer-Verlag, New York. Golubitsky, M., Stewart, I.N. \& Schaeffer, D.G. [1988]. Singularities and Grayps in Bifurcation Theory, Vol. II. Springer-Verlag, New York, (to appear).

Irrig, E. \& Golubltsky, M. [1984], Pattern solection with O(3) symmetry. Physica D. Nonlinear Phenomeng, 13. 1-33.

Keyfitz, B.L. [1986]. Classification of one state variable bifurcation problems up to codimension seven. Dymamics and Staility of Systens, 1.1-142.

Keyfitz, B.L., Golubitsky, M., Gorman, M. \& Chossat, P. [19B6]. The use of symmetry and bifurcation techniques in studying flame stability. (Preprint, Houston).

Kirillov, A.A. [1976]. Elements of Ihe Theary of Representatlons. Springer-Verlag, Berlin.

Lauterbach, R. [1986]. An example of symmetry breaking with submaximal isotropy subgroup. Multiporaneter bifurcation thaory (M. Golubitsky \& J. Guckenheimer ed.) Contomporary Moih, 56. A.M.S., Providence RI, 217-222.

Poénaru, V. [1976]. Singularilés $\mathrm{C}^{e \infty}$ en frésence de Symétrie. Lecture Notes in Mathematics, 510. Springer.-Verlag, Barifn. Rédel, L. [1967]. Algeara, vol. /. Pergamon, Oxford. Schaeffer, D.G. [1983]. Topics in bifurcation theory, in Systems of Nonlinear Partial Differential Equations. (J.M. Ball ed.), Reidel. Dordrecht 1983, 219-262.

Schwarz, G. [1975]. Smooth functions invariant under the action of a . compact Lie group, Topology, 14, 63-68.

Stewart. I.N. [1987]. Bifurcations with symmetry. New Direcfions in Gyamical Systoms, Cambridge Univ. Press, (10 appear).

Vanderbauwhede. AL. [1992]. Lacel Difurcelfon and symmeiry Research notes in Mathematics, 75, Pilman, Boston.

