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SUMMARY
In the first and dominant part of the thesis, a recently developed theory for Crystal Fields 

(CFs) in metals has been used, in its first order, to investigate the microscopic origin of CF split­
tings for the dilute Er**:Am alloy. To first order there are three contributions to the CF splitting of 
the Rare Earth (RE) 4 / -electron ground state. One is due to penetration effects with ligand ions, 
another due to a 5d semi -localised state about the RE site, the so called virtual bound state (vbs), 
and the third .arises from the interaction of the 4f(RE) electrons with a discrete band state, 
denoted by lco>, which is split off from the s-like majority conduction band of Gold. The cou­
pling between the 5d-vbs and the conduction band has been assumed weak. We find, within the 
limitations of our calculations, that the model used is quite capable of explaining the CF splitting 
of the ground level for Er3*:Au. In particular we have found that the penetration effects, in the 
limit o f no screening, considerably enhance the Crystal Field Parameters (CFPs) over their Point 
Charge Model (PCM) values, which consist of a fourth order CFP of the wrong sign, three times 
smaller than the experimental value and a sixth order CFP of the right sign but five times smaller 
than the observed. Contributions to CFPs directly from neighbours may be described in terms of a 
Coulomb interaction using different effective total charges (which we call pseudo-Point Charges) 
on the ligands for the fourth and sixth order CFPs. The sixth order CFP is much more affected by 
such effects. When screening is introduced, in an approximate way, we find that it tends to 
increase (over the unscreened PCM values) the magnitude of the CFPs by as much as 20% princi­
pally by screening out the sizable contribution, of opposite sign, from the next nearest neigh­
bours. We also find that the probability of having a reversal in sign for the fourth order CFP, with 
respect to PCM values, is small since in the regime of the screening constant where we might 
expect this effect the energy of the 5d-vbs is negative corresponding to a bound state. We also 
estimate the CFPs of Er3*:Ag, within the same model. It becomes clear that the model fails to 
explain the observed CFPs, at least within the approximations made in our first order investiga­
tion, unless a basic assumption, concerning the nature of the conduction band, is modified.

In the second part of the thesis we study the Zero Field Splitting (ZFS) of Gd3*-doped lan­
thanum ethylsulphate. On-site excitations of the Gd3* in this particular salt have recently been 
shown to produce a Spin Correlated Crystal Field (SCCF) which results in a ZFS of the same 
sign as those from experiment but, approximately, two times too large. Inter-site one-electron 
excitations have been invoked to produce additional contributions to the SCCF and so produce a 
ZFS which compensatdthe ZFS of the on-site mechanisms to finally produce ZFS in good agree­
ment with experiment. The resultant ZFS is thus a delicate balance between a number of on-site 
mechanisms i.e. from the Gd3* ion itself, and a contribution from the host in which it is embed­
ded.





PREFACE

The Crystal Field (CF) splitting of otherwise degenerate low-lying ion states significantly 

modifies the low-temperature magnetic and thermal properties of solids containing such ions (for 

instance Van Vleck 1932^Bleaney and Stevens 1953). A determination of the CF states is an 

essential prerequisite for the analysis of low-temperature heat capacity, magnetic susceptibility, 

electron paramagnetic resonance and inelastic neutron scattering experiments. In spite of the 

importance of the CF splitting in the above cases and its practical importance in general (for 

instance rare earth lasers, Prokhorov 1986) very little is known about the physical origin of the 

Rare Earth (RE) CF splitting in metals. Many efforts have been undertaken in the last few 

decades (see for instance the proceedings of the five international conferences on CF effects listed 

in the beginning of the References section) to study such CF splittings. Most of these are based 

on phenomenological arguments and pay a great deal of attention to the local symmetry by speci­

fying that 4f-electrons are localised about particular sites. Such treatments do not reveal much 

about the origin of CFs and also their physical validity is questionable since they distinguish elec­

trons (see our discussion in section 2.5.1). In order to circumvent the latter problem and to clarify 

the microscopic origin of a seemingly unrelated problem namely exchange interactions in mag-
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netic insulators, Stevens (1976) developed a specific method of calculating such interactions. 

The method is very general and may be applied not only to study exchange interactions but also 

other physical phenomena, like CF interactions (see section 2.5).

Recently, Dixon and Wardlaw (1986a, hereafter DW) used the ideas of Stevens to develop a 

model for substitutionally dissolved REs in non-magnetic metals. The starting point of DW’s 

investigation was a very general Hamiltonian of interacting electrons and nuclei. They per­

formed a series of unitary transformations on the starting Hamiltonian and, with the aid of a par­

ticular form of operator degenerate perturbation theory, second quantisation techniques and a 

separate study of conduction band states (Dixon and Wardlaw 1986b), they were able to incor­

porate a type of dynamic screening (Raimes 1957), the many-body character of the problem and 

calculate Crystal Field Parameters (CFPs) building in all the rotational and other symmetries of 

the general starting Hamiltonian.

The objective of this thesis is twofold. The first and dominant part is a study of the micros­

copic origin of CFs for a particular heavy RE dilute in a non-magnetic metal, namely £r**:Au. 

We have chosen Er3* since it has both a simple stable configuration (eleven 4f electrons) and a 

sufficiently large spin-orbit interaction to make the effects of intermediate coupling generally 

small (section 1.1). As a non-magnetic host, we have chosen Gold since the CFPs for dilute Er3* 

in Gold are some of the most accurately determined from experiment (Williams and Hirst 1969) 

and the fee structure o f Gold considerably simplifies calculations. We discuss, within DW's first- 

order perturbation theory, some possible contributions to CF splittings for the simple case where 

one Er3* magnetic heavy RE ion is substitutionally dissolved and surrounded by a rigid regular 

array of non-magnetic Gold ions in an otherwise perfectly periodic metallic host Secondly. 

using similar techniques, an attempt has been made to improve agreement between theory and 

experiment for the observed Zero Field Splitting (ZFS) of the S-state ion Gd3* substitutionally 

dissolved in lanthanum ethylsulphate. To do this we have first calculated the magnitude of the 

Spin Correlated Crystal Field (SCCF), a mechanism proposed by Newman (1970), and then the 

resulting ZFS. This is a long standing problem and it is only recently that Tuszyriski et al 

(1984,1986) have calculated this ZFS and obtained a result of the correct sign. However they
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found a value which was a factor of two times too large when compared with experiment.

One factor which is common in these seemingly unrelated investigations is the use they 

both make of methods developed by Stevens (1976). For Cd*♦ we have used the second order of a 

particular projector form of degenerate perturbation theory (Bates et al 1968) whereas for £/•*♦:Au 

we have only so far incorporated the first order components of DW. Both also study energy split­

tings of REs in their particular hosts. In the Gadolinium doped lanthanum ethylsulphate the 

energy separations are within the intermediate coupling (sometimes called spin-orbit mixed cou­

pling) ground state whereas in the other investigation they are splittings of the ground total angu­

lar momentum manifold by "crystal fields”, arising from a number of sources, in a non-magnetic 

metal.

The thesis begins with an outline history of CF studies. In the subsequent two chapters an 

account is presented of the background literature on which the investigation in the thesis depends.

In CHAPTER 1 we present a brief description of free ion spectra and the idea of CFs is 

introduced for ions in solids. By assuming, for simplicity, a Point Charge Model (PCM) some 

qualitative aspects of CFs are discussed. The failure of the PCM, at least for CFs in metals, 

becomes clear and by recalling and discussing some of the assumptions made by the PCM we 

point out possible improvements of it and consider some of the origins of CFs in solids.

In CHAPTER 2 the main features of various theoretical models for calculating CFPs are 

represented and the validity of the different approaches is briefly discussed. A large portion of 

this chapter is devoted to the method of Stevens (1976). This enables the reader to understand 

how effective operators are found using this method and why in its original form at least, it is 

valid only within a particular configuration of electrons. The CF operator is shown to be a partic­

ular form of such an effective operator. When the method is applied to REs in metals the DW 

model results and this is described and first order results are given.

From Chapter 3 to Chapter 8 we present and discuss our calculations. For the first part of 

the thesis we are working within DW's first-order perturbation theory, as we have already men­

tioned earlier, which involves three interactions. These are the interaction of the RE 4f-electrons
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with: (i) the ligand electrons and nuclei, (ii) a Sd virtual bound state (vbs) and (iii) an A r like state 

split off from the majority conduction band states denoted by lco>- For purposes of comparison 

we use the theoretically predicted PCM values of CFPs which give a fourth order CFP for 

£r**:Au which is of the wrong sign and about three times smaller than the experimental value and 

a sixth order CFP of the right sign but about five times too small in comparison with experiment.

In CHAPTER 3 we discuss the interaction (in the limit of no screening) between the RE 

4f-electrons with the ligand Gold ions, treated as ionic entities with extended charge distributions. 

It is shown that the ligand Gold ions can be effectively treated as pseudo-Point Charges (pseudo- 

PCs) different for each of the fourth and sixth order CFPs. The values of these pseudo-PCs are 

determined by comparing contributions to CFPs from the 4f/ligand penetration mechanism and a 

naive PCM. In comparison with unscreened PCM values we find a considerable improvement in 

the agreement with experiment for the sixth order CFP but the fourth order CFP does not change 

sign and its magnitude enhances by about 21%.

In CHAPTER 4 approximative methods, which are used to investigate the effect of screen­

ing on the above 4f/ligand interaction, are introduced and discussed (since computational 

difficulties arise in the exact calculation of screening). We conclude that screening of the 

4f/ligand interaction does not significantly affect the magnitude of the CFPs resulting from this 

particular mechanism. We also find that the probability that this interaction will produce a rever­

sal in sign of the fourth order CFP is small. As a consequence, because we did not include screen­

ing in Chapter 3, the use of the pseudo-PCs, which we introduced there, should still be reasonably 

accurate even when screening is incorporated.

In CHAPTER 5 the contribution from a 5d-vbs (its existence is discussed in section 2.2) to 

CFPs is studied. In a cubic environment such a state splits into two et  and three i j, states and 

subsequently, via the interaction between the 4f electrons and the Sd-vbs, the 4f splitting reflects 

the cubic symmetry. A partial occupancy of the low lying Sd-states is assumed following a 

number of authors in the literature. We find that good agreement for the fourth order CFP with 

experiment can be obtained, especially when screening effects are taken into account. Mixing of
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the Sd-vbs with neighbouring Sd(Au) ligand orbitals has been found quantitatively insignificant 

as far as contributions to CFPs are concerned although a qualitatively interesting contribution to 

the sixth order CFP is found. At this stage a short qualitative comparison between the fourth 

order CFP of £r J*:Ag and the fourth order CFP of ErJ*:Au is presented and discussed.

In CHAPTER 6 estimations of the contributions to CFPs from the interaction between the 

RE 4f-electrons and a split off discrete state from the s-like majority conduction band of Gold are 

presented. Only admixtures of 6s states on ligands were considered in lco> although smaller 

contributions might be expected from the 5d, 5p and 5r ligand states and further admixtures from 

the rest of the band states. The overlap between the 6s on the central site and these 5d, 5p and 5s 

states is smaller than the <6soff \6s°*> overlap but not small enough to be neglected entirely. 

Terms incorporating admixtures from the rest of the band states have been dropped, for Er**:Au, 

because we expect their effect to be small. The numerical computation necessary to incorporate 

these soon becomes far too time consuming. However, results using the <6s0,t \6s°*> overlap 

produces small contributions to both the fourth and sixth CFPs so components, which are 

expected to be smaller because of smaller overlaps from 5d . 5p and 5s have not been fully con­

sidered.

In CHAPTER 7 we begin the study of ZFS of the S-state Gd** ion which is assumed to 

enter substitutionally into the host lanthanum ethylsulphate. By considering each of the most 

important components of the Hamiltonian H in turn, in second quantised form, it becomes 

apparent, when applying Stevens’s first order perturbation theory, that the ZFS of the studied 

Gd** ion cannot be explained. We point out the difficulties involved in obtaining a complete 

theoretical understanding of the ZFS. A brief review of the most important mechanisms contri­

buting towards the ZFS of this particular Gd**-doped salt is given and the importance of 

Newman’s (1970) SCCF mechanism is remarked.

In CHAPTER 8 we extend the intra-site mechanism of Tuszyriski et al (1984,1986) to 

include inter-site contributions to the SCCF and subsequently to the ZFS (or Gd** in lanthanum 

ethylsulphate. We find that by adding our contribution to all other different mechanisms, the
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agreement with experiment is improved. We conclude that our inter-site mechanism could play 

an important role for the determination of ZFSs of S-state ions in various hosts.

In the CHAPTER 9 we briefly present our concluding remarks. We find that the DW 

model, in first order, is quite capable of accounting for both size and sign of the CFPs of Er**:Au. 

It is also clear that it cannot explain the size of the observed CFPs for Er3*:Ag, at least within the 

assumptions made in our calculations of the DW's first order components. A specific mechanism 

is proposed towards the explanation of the observed C4 CFP for Er3*-.Ag namely, a  further admix­

ture of conduction band states to the lc0>. used in Chapter 6. A formula is proposed for the calcu­

lation of CFPs which incorporates the results from the DW model. Remarkably, it is similar in 

form with one given earlier in the literature (for instance Dixon 1973 and section 2.2) from a 

phenomenological OPW model where different contributions to the CFPs were difficult to inter­

pret physically but which provided agreement with a  wide range of experiments (see relevant dis­

cussion in section 2.2). The current study enables a specific physical interpretation to be given for 

the different components arising.

We have shown that if inter-site parts of the SCCF are incorporated as well as components 

from all other mechanisms, including the important on-site Tuszyriski et al (1984,1986) mechan­

ism, it is possible to obtain quite good agreement with experiment. This strongly supports the 

idea that the ZFS of Gd3* are made up of on-site components delicately balanced by inter-site 

ones thus explaining why in some hosts of a similar structure the ZFS may be opposite in sign 

(Newman and Urban 1972 and references therein). The importance of our inter-site contributions 

to the SCCFs and so to the ZFSs of S-state ions dissolved in various hosts is discussed.
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AN OUTLINE HISTORY OF CRYSTAL FIFA Ti THEORY

The birth of CF theory must be credited to Becquerel (1929) and Bethe (1929). Becquerel in 

a review article on RE spectra in 1929 proposed that an ion dissolved in a crystal is subjected to 

an electric field originating from the ligands. The same year, in a now classic paper, Bethe formu­

lated this proposal into an exact theory. In particular, he showed how the observed splitting of the 

electronic terms of an ion in the CF is connected with the symmetry of this field. In so doing, he 

laid down the foundation for all further work in this field.

Another decisive step towards the understanding of the observed phenomena was taken by 

Kramers (1930) who succeeded in proving that in the presence of any electric field the electronic 

levels in molecules containing an odd number of electrons must retain an even degeneracy pro­

vided that no magnetic field is present. This is called Kramers degeneracy.

The first application of the new theory was made by Van Vleck (1932a) who was able to 

account quantitatively for the behaviour of the susceptibility of various ions in the 3d group. By 

realising that the quenching of the orbital angular momentum would be a consequence of the CF 

model, he succeeded in explaining why the paramagnetism of complexes of the first transition 

series corresponds to a "spin-only” value. Furthermore, the CF model was able to predict those
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cases in which there would be small deviations from this empirical rule (Van Vleck 1932b). 

Schlapp and Penney (1932) and Jordahl (1934) applied the theory in detail to a number of salts 

and directly confirmed the basic idea of the CF approach. A note by Goiter (1932), in which it is 

shown that the CF from ligands forming a regular tetrahedron will produce the same levels as 

those produced by a regular octahedron but with the level order inverted concluded the pioneer 

papers.

Little reliable quantitative experimental work on the REs could be carried out at that time. 

The main limitation in the work of the pre-war period was to be found in the fact that, as we see 

now, the purity of the REs available then was considerably less than assumed at the time. How­

ever, several qualitative steps were taken. Freed (1931) identified the optical spectroscopic transi­

tions in trivalent REs as transitions between levels within the 4f configuration. Tomaschek and 

Deutscbein (1933), Joos (1938), Spedding (1940) and Tomaschek (1942) contributed consider­

ably to the understanding of absorption spectra phenomena.

Since RE CFs appear as small perturbations on the free ion levels, a theoretical interpreta­

tion of free ion spectra was a necessary prerequisite to the development of CF theory. This 

interpretation was provided by Condon and Shortley (1935), but was cumbersome for systems 

having more than two electrons in a /  -shell. Racah (1942a,b, 1943,1949) provided the theoreti­

cal techniques to deal with more complicated structures. He developed a virtually complete 

classification scheme of the states of/"-configurations.

Just before the outbreak of World War II considerable progress in obtaining good optical 

spectra of open shell ions in crystals was made by K H Hellwege (for instance Hellwege 1939a,b) 

at Darmstadt. This effort was continued after the war (for instance Hellwege 1947) and concen­

trated mainly on REs. At about the same time (early fifties) Bleaney’s electron spin resonance 

group at Oxford began to work on the properties of RE ions (for instance Bleaney and Stevens 

1953, Elliot and Stevens 1952, 1953a,b, Bleaney et al 1954). This quickly stimulated a new 

theoretical approach, the so-called “Stevens's operator equivalents" method (Stevens 1952). A 

little later Judd (1955) began to employ optical spectra to determine RE Crystal Field Parameters
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(CFPs). Meanwhile, G H Dieke started to develop an important Laboratory for optical spectros­

copy at Johns Hopkins University. The work of this school has been presented in a monograph 

(Dieke 1968). In the meantime the theoretical methods of Stevens. Elliot and Judd were used to 

reduce the raw data to CFPs.

This brings us to the present period of CF studies. The period of CFs in RE metals, dilute 

RE alloys and intermetallics. RE metallic compounds have received little attention compared 

with the large amount of work which exists for insulators. One reason perhaps was that conduc­

tion electrons were thought to bring about inherent difficulties in the theoretical analysis. 

Another reason may lie in the fact that optical absorption and fluorescence techniques which were 

used for RE insulators cannot be easily used for metallic compounds (Fulde 1979). The first 

experimental results for metallic RE compounds were reported in the late sixties (for instance 

Griffiths and Coles 1966. Ulrich and Barnes 1967, Hirst et al 1968. Rainford et al 1968. Vogt and 

Cooper 1968, Williams and Hirst 1969).

Progress in both theoretical and experimental studies was rapid and as result five Interna­

tional Conferences on Crystal Reid effects (ICCF) have been held up to 1985 (ICCF-1 in Mont­

real 1974, ICCF-2 in Zurich 1976. ICCF-3 in Philadelphia 1979, ICCF-4 in Wroclaw 1981 and 

ICCF-5 in Sendai 1985) and another one is planned for 1988 in Germany. The current stage of 

CF studies in RE metals, dilute RE alloys and intermetallics recognises that the conduction-4f 

electron mixing (hereafter c-f mixing) plays a vital role in determining the CF splittings. 

Depending on the degree of this c-f mixing some very interesting classes of compounds, with 

rather exotic properties may result e.g. the Heavy Fermion Compounds (for instance Stewart 

1984).
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CHAPTER 1

DESCRIPTION AND DETERMINATION OF CRYSTAL FIELDS

1.1. Free Ion Hamiltonian

Because RE CFs appear as small perturbations on the free ion energy levels a brief resume 

of free ion spectra is instructive.

A Hamiltonian operator designed to describe the behaviour of any "outer" (single electron 

moving outside closed core shells) electron is given by:

i.e. a sum of its kinetic energy and its potential energy. Z,Jf is an effective charge which attempts 

to take into account the screening of the nuclear charge by the core electrons. The solutions of 

this one-electron Hamiltonian (including spin) are called spin-orbitals. The situation becomes 

more difficult to analyse in the more general case of n-electrons outside the core. In this case an 

interelectronic coupling between electrons becomes important which arises from the electrostatic 

interaction between electrons and is called the Coulomb Term (//,). For n-electrons this is con­

ventionally written as:

( 1 1 )

( 1.2)
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In the one-electron case an additional potential energy arises, magnetic in origin, which is called 

spin-orbit coupling. This interaction derives from a relativistic treatment of the electrons (Dirac 

1958) and arises as a consequence of the fact that the magnetic field produced by the orbital 

motion of a single charged particle interacts with the spin of the same particle. For one electron it 

takes the form i,L l  where l  and £ are the orbital and spin angular momentum operators for 

the electron and £ is a quantity, with units of energy, called the one-electron spin-orbit 

coefficient. For n-electrons this is conventionally written as:

(1-3)
i-l

with £(ri) the spin-orbit coefficient for the i-th electron. By inclusion of these two coupling 

mechanisms we obtain the dominant terms in the free ion Hamiltonian. For the n -outer electrons 

of an ion it takes the form:

i f  * » .  ♦ « »  (>•«)i-i i-i

where m is the electron mass. It is useful exercise (in view of later perturbation methods) to 

have an approximate quantitative picture o f the hierarchy of splittings due to the terms appearing 

in Hmny. The sum of the kinetic energy term and the attraction to the nucleus term -which is usu­

ally called shell energy (Orton 1968)- leads to a classification of the gross structure of the energy 

levels in which different shells have energy separations between 105 and 10scm_,(*) (for instance 

Orton 1968, Herman and Skillman 1963). The Coulomb repulsion term Hc is a smaller effect and 

will result in a splitting of the "shell energies" to new components with energy separations of the 

order of lOMO^m-1 (Orton 1968). Finally, the spin-orbit interaction H„ splitleach of the He- 

split energy components into further additional components whose separations are of the order of 

lO-HPcm-' (Orton 1968). For REs the spin-orbit coupling is typically of the order of lO,cm~l 

while for the 3d-transition ions is of the order of 102c»i_1 (Abragam and Bleaney 1970). Of 

course this scheme of the order of magnitudes just given is not always as clear-cut as we have 

made out, but it is realistic enough to give us a starting point for the application of perturbation

(•) 219520cm-' = 1 (e2/a0) = 2 Rydberg = 27.2 ev
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methods.

In atomic theory there are two limiting cases for the relative size of the electrostatic interac­

tion between the electrons Hc and the spin-orbit interaction H„ terms of the Hamiltonian (1.4). 

When the spin-orbit interaction H„ is much weaker than the the electrostatic interaction between 

the electrons (He) the appropriate coupling scheme is the one called Russell-Saunders(RS) cou­

pling (Russell and Saunders 1925, Schiff 1968 p.434, Atkins 1983 p.241). This is based on the 

view that if the spin-orbit interaction is weak it is effective only when all the orbital angular 

momenta are operating in concert similarly to all spin angular momenta. Therefore the orbital 

angular momenta of the individual electrons are supposed first to couple into the total orbital 

angular momentum L and the spin angular momenta of the individual electrons to some overall 

total spin angular momentum £ , and only then do these two momenta interact by the H„ interac­

tion to form the final total angular momentum Strictly speaking, this coupling is appropriate 

for light elements (e.g. ions of the first transition series) and begins to fail quantitatively as we 

move to heavier elements.

In the other limiting case the electrostatic interaction between electrons Hc is much weaker 

than the spin-orbit interaction H„ . Now the orbital and spin angular momenta of individual elec­

trons, i 's  and i ’s, couple together and give rise to resultant angular momenta ¿ ’s. These resul­

tants interact weakly via electrostatic coupling between the electrons they represent and so form a 

resultant This is the so-called jj-coupling scheme (for instance Schiff 1968 p. 436). This cou­

pling scheme is appropriate wherever //*, » H c. However, nowhere in the periodic table of ele­

ments does the use of jj-coupling offer a marked advantage over the RS-coupling. It is simply an 

empirical fact that the RS-coupling picture provides a reasonably accurate basis for discussion 

throughout so much of the periodic table (Abragam and Bleaney 1970 p.593). Both of them are 

qualitatively correct but quantitatively are just limiting cases. The wavefunctions resulting from 

the coupling schemes ( RS and j j ) yield eigenfunctions for J 2 and J, but otherwise differ from 

one another in the intermediate stages o f coupling.

In the case of REs the electrostatic interaction between the electrons Hc and the spin-orbit
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interaction Hm can be much closer in magnitude which makes both coupling schemes quantita­

tively inappropriate (except sometimes when we are interested in the Ground Level where the 

RS-coupling can be used). It is therefore not difficult to see that an energy level calculation, in 

this case, is mathematically more involved since a matching up procedure is required between the 

two coupling schemes; this situation is called intermediate coupling. Before explaining this cou­

pling scheme it is instructive to clarify what is meant by die names: Spin-orbital. Configuration, 

free-ion Term, free-ion Level, State and list Hund’s rules.

A Spin-orbital of an atom or ion is any eigenfunction of the appropriate one-electron 

Hamiltonian operator -see equation (1.1)- whose spin and space parts are both 

included.

The Configuration of an atom or ion is the specification of the orbitals the electrons 

occupy. For k electrons in a shell characterised by the principal quantum number n 

and the orbital angular momentum quantum number f we use the notation: nl*. So 

the configuration of Gd** is: 1j j2j  J2p‘3j23/>63d,04jz4p64d,0(4 /T)S*i5p6. For reasons 

of convenience, we normally omit all filled shells and we write down only the open 

shells Le. in this description the configuration of Gd*• is represented by 4 /7.

A free ion Term, within RS-coupling, is a set of many-electron wavefunctions sharing 

common total spin £ and total orbital angular momentum L- A term is represented 

by either IL£>  or For historical reasons the term symbol ***lL is used. The 

term u *lL is (2S+lX2L+l)-fold degenerate. In some configurations there will be more 

than one term having the same 5 and L values and additional quantum numbers 

must be introduced to distinguish these terms (for instance, such a classification 

scheme has been derived by Racah (1949) for any /■ configuration). Usually, when 

we introduce spin-orbit coupling the degeneracy of a Term is lifted. The resultant 

components are now characterised by J . Customarily, each component \L S J >  or 

v *xLi of the Term **lL is called a Level (Condon and Shortley 1935 p.122). For 

historical reasons a Level is represented by u *'Lj and is (2J+l)-fold degenerate with
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rcspect to M j.

States are one-electron or many-electron wavefunctions that are completely specified 

by the eigenvalues of a complete set of commuting observables e.g. within the RS- 

coupling a state is labelled by total spin S, total orbital L, the resultant J , the z- 

component Mj of the total angular momenta J  and any other necessary labels (see dis­

cussion by Wyboume 1965 p.12).

We can now give Hund’s rules. These rules concern the determination of the Ground Level 

of an atom or ion, whose configuration is given, within RS-coupling. According to these rales, 

the Ground Level is characterised by performing the following procedure in order (Kittel 1976 

p.442):

[1] Form the maximum value of the sum 5 of the spin angular momentum components m,, 

S = %m, allowed by the Pauli’s principle (Atkins 1983 p.230).

[2] With the maximum value of S fixed by [1] maximise the sum L of the orbital angular

momentum components consistent again with Pauli's principle. The resulting

total spin S and total orbital L angular momentum determine the Ground Term.

[3] The value J  of the total angular momentum i  is equal to IL -S  I when the shell is less 

than half full and to L+S when the shell is more than half full. When the shell is just half 

full, the application of the first rale gives L=0 so that J=S.

Consider two examples of the Hund’s rales: The ion Gd*+ has an electronic configuration 4f 1. 

From the first rale we have S = ^ m ,  = 7xy as the maximum value of S consistent with Pauli's 

principle. The second rale then gives L = £m / = 3+2+1+0-1-2-3 = 0. The third rale gives 

/= S = y . So the Ground Level of Gd^+'Af1 within the RS-coupling is represented by lSm- Simi­

larly, for Er**:4fu we find that the Ground Level is given by 4/iva-

We are now able to give a brief description of the intermediate coupling scheme. To calcu­

late the energy levels in the intermediate coupling scheme we have to calculate the matrix ele­

ments (MEs) for He + Hm in a well defined basis scheme (usually the RS-coupling scheme).
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These MEs are then rearranged in energy submatrices one for each value of J, since H„ is diago­

nal in J (Wyboume 1965 p.38) and Hc is independent of J  (Wyboume 1965 p.17) i.e. He +H„ 

is diagonal in J. These submatrices are such that the number of rows (or columns) is equal to the 

number of states -within the specific configuration that interests us- having the same total angular 

momentum J but different L and S. These submatrices are now diagonalised to yield a set of 

eigenvalues and their corresponding eigenvectors. A theoretical energy level scheme may then be 

constructed. The eigenvectors will indicate the different admixtures o f the basis states of the well 

defined basis coupling scheme used to construct the submatrices (for details see Wyboume 1965 

p.36-39). For example the Ground Level wavefunction o f Gd3* (Wyboume 1966) and Er3* 

(Dieke 1968 p.74) is now, in the intermediate coupling approximation:

Er3* : l4/js/2» = 0.982l4/iM >-0.186liATis/2> + smaller admixtures

Gd3* : \*Sia»  = 0.987l*S7/2> + 0.16216/*7/2> + smaller admixtures

where the 1 • • • »  symbol denotes the intermediate coupling wavefunction and the I • • • > 

denotes the RS-coupling wavefunction.. In the above cases we see that the intermediate coupling 

Ground Level wavefunctions are mainly spanned by the pure RS Ground Level wavefunctions. 

We shall see later that the admixtures are very important for Gd3* (S-state ions) whereas, for our 

purposes at any rate, of little significance for Er3* (non S-state ions). This is not the case for the 

excited terms, for instance (Dieke 1968 p.74):

Er3* : I*1 *2»  = -0.4I6I4F*2>-0.342IjGm > + 0.276I2G£2>
-  0.21912H»i > + 0.4381 > + 0.627 I4/ m >
+ smaller admixtures.

where \ "  distinguish the two ^G^i and 2H^2 Levels for the 4 / n configuration.

In this section we have attempted to provide a brief description of the dominant interactions 

which determine the free ion spectra. There are several texts on this subject e.g. Woodgate 

(1980), Gerloch (1986). A thorough analysis has recently been given in an excellent review arti-



- 1 6 -

cle by Judd (198S) and references therein.

1.2. Ions in a  Crystalline Environment

So far we have considered free ions i.e. the environment of these ions has been assumed iso­

tropic (for Instance ions in a gas at very low pressure). When an ion enters a crystal it either 

occupies an interstitial or substitutional position. In this thesis we shall consider that the ion sub­

stitutes for another in the host and it is well separated from any other ion of the same type. The 

environment is no longer isotropic but has the point symmetry of the substituted ion provided the 

substitute does not distort its environment to lower this symmetry. As a result, a further splitting 

of the ffee-ion energy levels is expected. The order of magnitude of this further splitting depends 

on the ion dissolved in the crystal and also the host in which it is embedded.

In the case of RE ions the CF interaction Her is quite small in comparison with the spin- 

orbit interaction H„ and the electrostatic interaction between the electrons He. This case 

(H Cf  <H„ <Hc) is called the weak crystal field case and the total angular momentum l  is a 

good quantum number to a very good degree of approximation (Abragam and Bleaney 1970 

p.303, p.713). Actually, the CF interaction is of the order of lO-KFc/n-1. One reason for the small 

magnitude of the CF is that, at the commencement of the RE series, a deep potential develops 

near the nucleus and the 4 /  -electrons are drawn from the outer part of the atom into the interior 

(Wyboume 1965a p.2). This effectively reduces the intemuclear distances and hence considerably 

the CF interactions. This is actually an electrostatic argument and contributions to CFs can arise 

from other sources as we see later (for instance Chapter 2), but this gives a qualitative feel for 

why the CF becomes smaller in the RE series.

In the iron group the CF interaction is of the order of 104cm-1, much stronger than that in 

the RE group. This can be qualitatively understood by noticing that the open 3d-shell is the 

outermost shell and so experiences fully its environment. Note that here the Her is stronger than 

the H„ but not as strong as the Hc. This situation {H,0 < HCr < Hc) is called the intermediate cry­

stal field case and l  is not a good quantum number any more. Instead of the total angular 

momentum the total orbital L and total spin £ angular momentum are good quantum



numbers (Abragam and Bleaney 1970 p.372).

In the Platinum and Palladium groups the HCr  interaction can be comparable or stronger 

than both H„ and He. This is known as the strong crystal field case. In this case, Hso <Mcf and 

Hĉ Hcf. none of the Z .4 .£  provide good quantum numbers. Details can be found in Abragam 

and Bleaney 1970 p.377. Of course, there is no real distinction between the three cases; they go 

over into each other. For example iron group ions belong to the strong CF case, particularly in 

strongly covalent compounds such as Co2* in TiOi and in A l& i (Orton 1968 p.15). The reason we 

distinguish between them is simply in order to specify our starting point.

In this thesis we shall concentrate on the RE group which belongs to the weak CF case. This 

implies that to a first approximation the free ion calculation is valid the CF being a small pertur­

bation on the free ion energy levels. To clarify this we present observed energy levels (in RS- 

coupling formalism) together with the centers of gravity for Er3* in a number of host materials in

Table 1.1.
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Table 1.1 : Energy levels*in cm~1 for Er3* (Dieke 1968).

Level Free ion LaF j ErES” ErClytHjO LaClj LaBrj YjOi

4/,w 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*I\V2 6486 6481 6482 6475 6458

*hia 10124 10123 10113 10109 10111 10073

4/ m 12346 12351 12367 12349 12352 12339 12288

V « 13183 15236 15207 15182 15176 15150 15071

4Sw 18300 18353 18327 18284 18291 18261 18072

2H11/2 19011 - 19087 19056 - 18931

*Fv 2 20494 20492 20458 20426 • - 20268

*F* 2 22182 20162 22122 22078 22068 22022 21894

*Fy2 22453 22494 22461 22436 22409 22369 22208

2H9I2 24475 24527 24516 24464 24434 24304

*011/2 26377 26369 26349 26298 26271 26180 26074

*0*2 27319 27412 - 27285 - 27159 -

2K\H2 27585 - - 27649 - - -

2Gv2 27825 28082 - - - - -

2F 3/2 31414 31501 - • 31385 31285 31186

* Since we are interested solely in relative splittings we put the energy of the Ground Level equal 
to 0  cm~l.
** Er(CiHsSO 4)3 9« 20

We note immediately from Table 1.1 that the positions of the free ion energy levels, in various 

ionic hosts, are approximately the same to within a few hundred wavenumbers (rarely more than 

100cm-'). The same is true for all trivalent REs (Dieke 1968, Hiifner 1978). This finding had been 

anticipated from the electronic structure of the REs and is nicely confirmed by experiment. It 

means that the centers of gravity of the energy levels in a "typical" ionic host is representative of
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that in all other ionic crystals. So a typical energy level scheme for trivalent RE ions in ionic cry­

stals will be similar to that in Figure 1. A similar energy level scheme is also expected when a RE 

ion becomes part of any metallic matrix (for instance Fulde LoevjenWaupl I'M6, p.59lV

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 
Figure 1 : Observed energy levels of the RE ions. The thickness of each level 
represents the total CF splitting in LaCly A pendant semicircle indicates that this level 
fluoresces in the LaCh structure (from Dieke 1968 p.142).

For a direct comparison between theory and experiment we present in Figure 2 the energy levels 

of Er** from: (i) an intermediate coupling theoretical calculation, (ii) a RS-coupling theoretical
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calculation, (iii) experiment - free ion and (iv) experiment - Er(C2HsSOt )} ■ 9H& .

Figure 2: Comparison of energy levels of £ rJ+ from theory (intermediate coupling); 
experiment - free ion; crystal spectra - Er(C2H ¡SO 4)3 \ approximate theory
(RS-coupling). For instructive purposes a few examples are shown (from Hiifner 1978 
P-17).

Notice the very good agreement between intermediate coupling predictions and experiment for 

thediole range of the plotted energy (up to 50000 cm*1)- It is worthwhile to note that the RS- 

coupling gives a quite reasonable description of the Ground Level Al\sa and the first excited Level 

*113/2 (as one should expect since I4/ 1*2» = 0.995\*l\3,2>+smaller admixtures). The RS-coupling 

starts to break down as one moves to higher energy levels.

1.3. Parametrisation of the Crystal Field Interaction

Up to now we have attempted to give a qualitative insight of the CF interaction for REs. A 

quantitative calculation of CF splittings involves two considerations: the first concerns the 

number of levels into which the free ion energy levels are split and the second concerns the actual 

size of the CF splitting. Whereas the first topic is completely understood (for instance Tinkham
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1964 p.67-78) the second is being actively researched and the various mechanisms that determine 

the magnitude of the CF splitting are by no means completely understood (for instance Newman 

1971, Fulde 1979). As we have already pointed out in our outline history of CF studies the 

Stevens’s operator equivalents parametrisation scheme has been, almost universally, adopted to 

characterise a measured CF spectrum. A remarkable tribute to the usefulness of the parametrisa­

tion scheme is illustrated by the fact that, for instance, it is possible to fit up to 100 CF levels to a 

four-parameter expression for the HCr with a standard deviation as low as lcm_l (e.g. see Rajnak 

and Krupke 1967, Dieke 1968). This remarkable success is due to the fact that in deriving the 

parametrisation scheme we make no specific assumptions about the origin of the CF, such as 

using a point charge model (see section 1.3.1), and only invoke the point symmetry of the substi­

tutional ion. The two main restrictions entering the scheme are first that we assume that the CF 

acts on all 4 / -electrons independently and equally, and second that the 4 / -electrons are 

equivalent in the sense that they have the same radial dependence. Both these approximations 

seem justifiable for 4 / -electrons and therefore make the scheme's success qualitatively under­

standable. Before going into the details of this method we would like to discuss the CF potential 

energy, VCf . For the time being we shall discuss it in a very simple manner. The so-called point 

charge model (PCM).

13.1. The Point Charge Model

In this most naive picture, a crystal can be visualised as built up of point charges at the crys­

tallographic positions of the ions. The potential energy VCf at the site of the RE ion is then 

entirely due to the electrostatic field generated by the "point-ions” in the crystal. Without any loss 

of generality we suppose that our coordination system is sited on the RE ion site. So the VCf(l ) of 

a charge q at a point r  near the origin, due to the surrounding point charges at Rj is given by:

V c w  -  z - t ^ V r  <>-5>

where qj is the charge at the j-th neighbouring ion at a distance g, from the origin. This poten­

tial satisfies Laplace’s equation V2VCf(l ) = 0 since it is produced by charges outside the region of 

interest (i.e. r <Rj). This implies that VCf(l ) can be expanded in terms of spherical harmonics
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YgH0,0) (for the definition of spherical hannonics see Arfken 1970 p.569):

Vc f(l ) ■ I  Z r- yr(0.9) - Z  y • (1 6 )

where

(1.7)

For a derivation of equation (1.7) see Hutchings (1964). It turns out that for the determination of 

the CF energy levels only a small number of terms in the infinite sum (1.7) are of significance. 

We firstly assume that the atomic orbitals involved are written, in polar coordinates, as 

V»fc.(r,0,6) = *«/(/• )K"(e,$) where n , l ,m  are the principal, angular momentum and magnetic 

quantum numbers respectively. The radial function R*i(r) is not easy to compute. Freeman and 

Watson (1962) provide data for the trivalent free ions of the RE group but the orbits should be 

expected to be modified when the ions are situated in a crystal lattice. On this ground it is usual 

to regard R*i (r) as an undetermined function. We now determine which terms of the series in 

(1.7) are non-zero.

[1] The triangular condition for the evaluation of MEs -which states that if in a ME an operator 

of rank n connects angular momenta l\ and h  then the ME is non-zero only if the condi­

tion I /1-/2! 5 n £li+li holds (Arfken 1970 p.586)- shows that for d -electrons 0£n£4 and for 

/  -electrons 0£nS6.

[2] All terms for which n is odd have zero MEs. This can be understood on the grounds of 

parity. The MEs of the potential terms V", which are of the form Jx*lCvdT with x. V being 

/  (or d )-electron wave functions, should be invariant under a change in sign of all three coor­

dinates x ,y , z  (principle of parity conservation). Since the product x*V has even parity it is 

necessary that the potential V"  should also has even parity in order to have non-zero ME.

[3] The term for n=Q can also be dropped since it produces a constant shift in all energy levels 

and we are interested solely in their splittings by the CF.

[4] The number of terms is further reduced by the symmetry of the environment. In general the
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CF potential must be invariant under the operations of the point group of the surroundings 

of the substitutionally dissolved impurity ion. The terms occurring depend also on the 

choice of the quantisation axis. Prather (1961) has listed the non-vanishing terms for dif­

ferent point groups.

The CF Hamiltonian of all the 4 / -electrons of a RE ion is then given by:

Her “  LV crto) 0-8)

where the £  *s over ^  electrons in the open 4 / -shell. We must now evaluate the MEs of the

perturbing Hamiltonian HCf between free ion states. The matrix thus formed can be diagonalised 

to find the energy levels and eigenfunctions of the ion in the CF. The free ion wavefunctions used 

will depend on the size of HCf relative to the Hc and H„  as we explained in detail in section 1.1 

and 1.2. For the RE group. J is a good quantum number and we shall denote the free-ion 

wavefunctions by l e t w i t h i n  RS-coupling, where a  denotes any extra quantum 

numbers needed to characterise the state in a unique way. The most obvious way to obtain the 

sought MEs is by direct integration. The free ion wavefunctions are expanded into determinantal 

product states involving one-electron wavefunctions on which the corresponding terms vCF(rj) in 

Her act. It is an irksome process because each time we have to go back to one-electron wavefunc­

tions. We shall not go into details since it is outside the scope of this thesis. A full description is 

given by Bleaney and Stevens (1953 p.129). Instead we shall briefly describe Stevens's operator 

equivalents method.

This method relies largely on the result that within a manifold of states for which J  is con­

stant, there are simple relations between the MEs of potential operators and appropriate angular 

momentum operators. In order to proceed one replaces the "cartesian" Hamiltonian 

Hcf(*<.y. A ) = Y y Cp fa ,y,a, ) by an equivalent operator as follows: x .y .z  are replaced by JxJ yJ ,
i

respectively, always allowing for the noncommutation of JxJy and J,. This is done by replacing 

products of x ,y  and z by an expression consisting of all possible different combinations of J, Jy 

and divided by the total number of combinations (e.g. zx should be replaced by
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y ( / , / ,  + / ,/ ,) ) .  In this way an operator is formed with the same transformation properties under 

rotation as the potential. This construction is not at all trivial when the noncommutation effects 

cannot be immediately taken into account (see Hutchings 1964 p.265). Some simple examples are

X & ' 2 -ri*) ■ Oj <r2> (3/(* -S (/+ l)] -  <*J <r2> Oj (1.9a)
i

Z  C*i2 -  y,2) m Oj <r2> * 0tj< r2> o i  (1.9b)
i

where <r*> = J[/?(r)]2r " r2dr and R(r) is the radial part of the one-electron wavefunction. Details 
o

concerning the multiplication factor a/ will be given later. Fortunately, the most commonly 

occurring operator equivalents have been listed once and for all (for instance Hutchings 1964 

Table VIII). Once these equivalences have been established, it is matter of simple inspection to 

find the equivalent operator of the cartesian Hamiltonian HCf -

Finally, the CF Hamiltonian can be written (Hutchings 1964 p.255) in its most common

form:

HCf = Z  AT <r"> a . OZ (1.10)

Some frequently encountered expressions of OZ have been given e.g. by Smith and Thomley 

(1966). Abragam and Bleaney (1970 p.863) ( note the difference in normalisation). The multipli­

cative factors a , 's ,  have been listed for REs for instance by Abragam and Bleaney (1970 p.874) 

-the current practice is to write a/.Pv.y/ for ct2.a4.a6. Relations between the KZ of equation (1.6) 

and the AZ of equation (1.10) have been also given by Abragam and Bleaney (1970 p.862) 

(within the PCM).

The quantities AZ<r"> are known as Crystal Field Parameters. Since neither the 

coefficients AZ nor the radial parts of the atomic wavefunctions are known with accuracy, it is 

customary to regard these as adjustable parameters determined by the experiment. For complete­

ness, we also give another notation frequently met in the literature:
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H cf ■ Z  B Z O Z  (1.11)

where

BT = A? <r* > On = C? cu (1.12)

(Sometimes, if m=0, we drop the 0 from the notation e.g. instead of C° we write C4). As an 

example, we now give the most general operator equivalent potential with cubic point symmetry, 

within a manifold of angular momentum J_ composed of /-electron wavefunctions where the 

z -axis of quantisation has been chosen along a four-fold axis:

Her -  «.“ (O i+SO.*) + B g io !  - 2 1 0 i)

-  C .fr  (O S+ SO i) *  C i tr io S -2 lO i )  (1.13)

(Lea et al 1962). The eigenvalues and eigenfunctions of Her. as given by equation (1.13), have 

been tabulated by Lea et al (1962) for J = -y. 3. • • •, 8. They did this by rewriting equation (1.13) 

in the form:

Her -  ^  [■)?&)-<°«"+5°*<> + (1.14)

where B+F(A) = and B%F(6 ) = W (l-l^l) with -1<jj<1 and listing the eigenvalues and eigen­

functions as function of x • The factors F(4) and F (6) depend only on J  and are also listed in Lea 

et al (1962).

We can now compare theoretical PCM results and experiment for some dilute REs in noble 

metals. Before this, we should make clear that the operator equivalent Hamiltonian given by 

(1.10), and its equivalent forms, can be derived, as we shall discuss later, by using a completely 

different approach to the above and without imposing any of the restrictions of the PCM. This 

new derivation has been given again by Stevens (1974,1976,1977).

In Table 1.2 we present susceptibility, inelastic neutron scattering, EPR measurements and 

theoretical PCM results on samples of RE ions in noble metals. It is clear that the PCM does not 

apply very well for dilute RE alloys.
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Table 1.2:
neutron scan 
theoretical 
performed on

Comparison between experimental results obtained from EPR, inelastic 
ering and susceptibility measurements on samples o f  RE ions in Ag and Au and 
suits obtained from a lattice-sum PC calculation. A ll measurements have been 
dilute alloys except those o f ref[d] which refer to the intermetallic compound.

Sample Source Experimental
c4

cm’ 1

results
c*

cm-1

Source Theoretical
c«

cm’ 1

results
c*

cm~l

TbAg a -48.65 9.04 b 10.43 1.11

DyAg a - 48.65 9.04 b 9.73 1.11

b - 9 ± 3 3.8 ±0.2

c -42.7 9.4

HoAg a - 48.65 9.04 b 9.04 0.97

ErAg a - 48.65 ± 1.39 9.04 ±0.14 b 8.3 0.83

d -51 - 6.5

TmAg a -20.85 to -27.5 3.79 b 7.65 0.765

ErAu a - 22.24 ± 2.78 4.17 ±0.35 b 8.3 0.83

TmAu a - 12.86 ± 1.04 1.39 b 7.65 0.765

YbAu
*

-18.77 ± 2.1 3.13 ±0.21 b 6.95 0.695

[a] Williams G and Hirst L L 1969, Phys Rev 185.407-15
[b] Kikkert P J W 1980, PhD thesis, "Crystal Fields of Dy in non-magnetic metals". University of
Groningen, The Netherlands
[c] Oseroff S, Passeggi M, Wohlleben D and Schultz S 1977, Phys Rev B U , 1283-90
[d] Furrer A 1975, J Phys C:Solid State Phys 8. 824-38

This is not surprising in view of the simplicity o f the model used. Let us recall and discuss some

of the assumptions made.

[1] The charges giving rise to the VCf are assumed to lie entirely outside the RE ion i.e. there is 

no overlap of the RE ion wavefunctions onto the ligands. A quick inspection of the ionic 

radii for the involved ions will show us that in most cases this assumption is not correct. 

Important 4f/ligand charge penetration effects, which involve a two-electron mechanism, 

should be taken into account by assuming that the crystal consists of extended charge

/
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distributions (sec Newman 1971, Garcia and Faucher 1984, Chapter 3).

[2] The ions are considered stadc in the crystal i.e. electron-phonon interactions and their effect 

on the energy levels are neglected. This approximation turns out to be a reasonable one 

since we will not be considering problems that explicitly depend on the interaction of the 

phonons with the RE ions (Hiifner 1978 p.42).

[3] There is no interaction between adjacent RE ions which seems a reasonable approximation 

in view of the electronic structure of the RE ions and the fact that we are mainly interested 

in dilute heavy RE alloys.

[4] All electrons are equivalent and the contribution of each is independent of the states of the 

other electrons in the open shell i.e. correlation effects are neglected and HCf is a one- 

electron operator. Discrepancies, that arise from the "equivalent" treatment of the 4f elec­

trons. in fitting theory to experiment although not usually pronounced, have been 

sufficiently unambiguous to provoke inclusion of two or more electron operators into the 

Her Hamiltonian (Bishton and Newman 1970, Morrison et al 1970, Judd 1977). Correlation 

effects have been proved quite important especially for S-state ions (for instance Tuszyriski 

et al 1984,1986 Chapter 8).

[5] It neglects the effects of screening of the 4 / -electrons by the filled outer electron shells of 

the RE ion (Stemheimer et al 1968) and in the case of metallic substances it completely 

overlooks the complex effects of the presence of the conduction electrons as well (Duthie 

and Heine 1979, del Moral 1984, Chapter 4)

In conclusion we can say that since the symmetry of the problem is unchanged, although 

quantitative corrections are needed, the qualitative features of the problem should remain unal­

tered. For a quantitative improvement [1] above, at least, should be properly incorporated for any 

system and in the case of metallic systems (1] and [5). For S-state ions we shall see that [4] is of 

particular importance.
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1.4. Experimental Determination of Crystal Fields

For completeness, we summarise the most important experimental techniques used for the 

determination of CF splittings in the solid state.

Electron Paramagnetic Resonance (EPR): In principle this method allows the determina­

tion of CF splittings in most alloy systems. It is especially appropriate for the very small CF split­

tings of S-state ions (Baberschke 1982). In a paramagnetic resonance experiment one measures 

the splitting AE of the lowest CF level in an external magnetic field B by means of microwave 

transitions i.e. one determines the g-factor of the level (g = Ha is the Bohr magneton). This 

g-factor allows us to draw conclusions about the CF ground state. It has been extensively used in 

RE salts (Bleaney and Stevens 1953) and to a lesser extent in metallic systems (for instance Oser- 

offetal 1977)

Hyperfine methods, like Nuclear Magnetic Resonance (for instance Belorisky et al 1984), 

Mossbauer effect (for instance Kikkert 1980, Post and Niesen 1984). These are rather indirect 

methods and as a consequence do not give a unique set of CFPs.

Optical methods : They have been extensively used for insulators (Dicke 1968, Hufner 

1978). According to Fulde (1986) only one example is known for metallic systems i.e. CeB6 

which has been studied by Raman scattering (Zimgiebl et al 1984)

Specific hea t: The different CF levels give rise to Schottky anomalies from which the posi­

tions and degeneracies of the levels can be determined. The method has been applied to concen­

trated systems as well as to dilute alloys (for instance Hoenig et al 1974, Heiniger et al 1974, 

Parker et al 1977). The accuracy of the method is often limited by spin-spin interactions at low 

temperatures and by spin-phonon interactions and exchange effects among the REs at higher tem­

peratures which distort the Schottky contribution (Shenoy et al 1982). Usually, one finds several 

CFPs which fit equally well the specific heat.

Magnetic susceptibility : CF levels identified from a study of the temperature dependence 

of the Van Vleck susceptibility. At low temperatures the susceptibility becomes constant instead 

of exhibiting a Curie law. It is reasonably accurate if the concentration of the RE ions is
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accurately known. Again this method gives a set of CFPs and is limited by exchange interactions 

between RE ions and impurities with Curie law behaviour (Williams and Hirst 1969, Touborg et 

al 1978, Dunlap et al 1984).

Inelastic neutron scattering : This is the only direct method for determining the energy 

level separations and hence CFP in metals. Slow neutrons scattered by a system of ions will 

induce transitions between CF levels. It has become the dominant method for studying CF in 

metals and intermetallics (see for instance Frick and Loewenhaupt 1986a,b, Fulde and 

Loewenhaupt 1986), the reason being that the relevant interaction energies (i.e. the CF splittings) 

are well within the energy range of inelastic neutron scattering experiments. The method often 

fails in the case of dilute RE alloys, because for these systems the levels are broad and the low 

concentration makes a determination of the levels inaccurate (see discussion by Kikkert 1980).

Other more or less related methods, which are only of minor practical importance, can be 

found in the proceedings of the series of International Conferences on CF effects which are listed

in the "References" section.
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C H A P T E R  ?

MORE SOPHISTICATED CRYSTAL FIELD MODELS FOR METALLIC SYSTEMS

2.1. Introduction

In section 1.3.1 of Chapter 1 we made clear the inadequacy of the PCM to explain the CFPs 

for dilute RE alloys. More importantly, Touborg (1979) demonstrated that any model in which 

only external charges are assumed to be responsible for the CF fails to explain the CFP in the RE 

metals and their alloys. In this introductory section we shall attempt to briefly describe the most 

important efforts to explain the CF in RE metals and their alloys. It will become apparent that an 

accurate and universal method of determining the CFP in those systems has still not been found. 

We shall also describe a new approach developed by Stevens (1976) for studying RE doped cry­

stals and a recent first principles quantum mechanical model developed by Dixon and Wardlaw 

(1986a) to determine the CF in metallic systems. Within this latter framework various effects 

such as exchange, charge penetration, screening, conduction electron character etc are studied 

systematically and as a result we expect that a detailed study of metallic systems within this 

model will yield significant insights into the microscopic origin of the CF at least for REs in 

dilute non-magnetic alloys and in particular the £ r3t:Au system which we are interested in this

thesis.
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2.2. Phenomenological Treatments of the Conduction Electrons

When studying RE ions in metallic hosts, one might naively think that the outer 5p and 5s 

electrons, together with the conduction electrons, would screen out the CF from the metal 

ligands. In fact, it is found experimentally (Table 1.2 and Touborg 1979) that the CFs are consid­

erably enhanced over those which would arise solely from the metal ligands, assuming a PCM to 

calculate these. Since we are studying metallic systems one should anticipate that the 

conduction-4f electron interaction is responsible for this enhancement. Two different approaches 

have been presented to investigate this phenomenon. The first approach arose from the work of 

Williams and Hirst (1969). They measured the magnetic susceptibilities of dilute alloys of heavy 

REs in the fee structure of Silver and Gold, and attributed the departure of the susceptibility from 

Curie-Weiss behaviour to the effect of CFs. They also found that their results could be fitted 

using conventional CF theory (Stevens 1952), with the appropriate symmetry, provided the C4 

CFP was negative and between five to six times larger than the positive C6 CFP. A PCM calcula­

tion provided much smaller values than the experimental ones and, more seriously, an incorrect 

sign for the leading C4 CFP. Coles and Orbach (ref. 15 in Williams and Hirst 1969) suggested the 

occurrence of a non-magnetic 5d virtual bound state (vbs) on the RE impurity, as a possible 

explanation for the observed C4 CFP. They producing convincing arguments to support this 

suggestion on the formation of such a vbs:

The difference between the valences of the host (Silver and Gold containing mono­

valent ions) and the usually trivalent RE impurity ions leads to the attraction of con­

duction electrons in order to screen the superfluous charge of the RE impurity. These 

screening electrons must be in states orthogonal to both the partially filled 4f and core 

shells. Spectroscopic data on the pure REs (Wyboume 1965 p.3) suggest that such a 

low-lying state satisfying the orthogonality criterion could be 5d-like. For example,

Gd2* has a ground configuration 4 f 1Sd. It may be also argued from the Friedel point 

of view (see for instance Daniel and Friedel 1965) that the loss of three valence elec­

trons, with reference to the free atom configuration, would result in an impurity poten­

tial capable of partially binding a screening electron in a broadened atomic state of d-
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like symmetry. They emphasised also that experimental evidence gathered on the first 

row of 3d-transition metal impurities in noble metal hosts strongly supports their 

argument and moreover indicates that the number of electrons accommodated in a 

3d-vbs is close to the number occupying these 3d states in the free atom. In addition 

the general trend towards non-magnetic vbs as one passes from the first row to the 

third row of transition metal impurities in a given host, leads to the conclusion that the 

5d-vbs in question will be both non-magnetic (at least g-values of EPR show no indi­

cation o f an extra contribution) and occupied by only one electron (the 5d-5d 

Coulomb repulsion will be strong enough to prevent a population of more than one 5d 

electron for any reasonable binding impurity potential).

Using the above argument and assuming that the 5d vbs degeneracy is lifted to produce 5d, 

(t = xy,yz,zx)  and 5d, (e =x2 - y 2,3z2 - r 2) states with a preferential filling o f the 5d, states Wil­

liams and Hirst estimated that for Eu* : 4 /75d', C4 = -  113 cm~l (-  158°K) a value, certainly of the 

right sign, but too large. For this calculation they made the assumption that the 4f-5d overlap is 

small and so they neglected the exchange term. But as Chow (1973) pointed out the exchange 

term is not at all small and cancels a large fraction (= 85%) of the direct contribution so that the 

5d-vbs hypothesis gives a value for C4 of the right sign but not big enough to explain the experi­

mental value. The situation is considerably improved, as we shall see later in Chapter 5, by con­

sidering the screening effects of the conduction electrons on the 4f-5d(vbs) interaction. We found 

that screening effects modify the exchange interaction much more than the direct component, 

with respect to free ion values, and as a result the strong compensation of the direct by the 

exchange contribution (in the case of no screening) is reduced, the precise reduction of the com­

pensation depending on the host material. As a result agreement between theory and experiment 

improves considerably.

The second approach has been proposed by Dixon and Dupree (1971 a.b 1973) and refined 

by Dixon (1973). Here we shall give the refined version of Dixon (1973).

In order to describe the part of the CF which arises from the conduction electrons they used
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a modified orthogonalised plane wave (OPW) as the conduction electron wavefunction. They 

assumed that the interaction between conduction electrons is weak and that they may be con­

sidered as independent from each other and that two 6s electrons and one 4f electron of the free 

RE atom, when in a metal, enter the conduction band. <b* was taken to be a single OPW ortho­

gonalised to:

(i) all the core orbitals of the host (they actually only included those of nearest neighbours).

(ii) core orbitals of the RE, including 3s and 5p.

(iii) occupied 4f orbitals.

(iv) in addition they incorporated an admixture of 3d character which was controlled by an 

adjustable parameter e*.

Within this model they found that the CFP are given by:

where:

AH' is the CF coefficient calculated from the lattice sum PCM (Kasuya 1966).

<r" > are the average values of the powers of r for the 4f orbitals.

£ represents an enhancement of the lattice sum CFPs when overlap with nearest neighbours 

is taken into account.

Z is the valence of the host.

o„ are the Stemheimer shielding factors which are approximately zero unless n = 2 (see 

Ahmad 1981)

(R")4/ >s the 4f contribution to the CFPs and has been calculated absolutely (see Dixon 

1973). In the earlier version of this model (Dixon and Dupree 1973) the admixture was con­

trolled by an adjustable parameter t / .

A P < r"  >  = -) + WTUr + (*«")* \  <1-0«)■1 ( 2. 1)

(RJ")sa is the 5d contribution (Dixon 1973) to the CFPs and was controlled by a mixing 

coefficient e*.
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This crude model has been used to calculate CFs (for instance Kikkert 1980), electric field 

gradients (Devine and Dixon 1973) and to interpret susceptibility data (Keller and Dixon 1976). 

Satisfactory agreement was obtained in virtually all cases (Dixon 1974) which emphasises the 

importance of the d and f character of the conduction electrons. In spite of the success of this 

model to explain experimental results several criticisms may be levelled at its assumptions and its 

parameters :

(i) It includes either one (e*) or two ( t/ . e*), depending on the version of the model, adju­

stable parameters with no obvious physical interpretation.

(ii) It does not incorporate electron-electron interactions in a consistent way since it is 

assumed that conduction electrons are non-interacting.

(iii) The conduction electrons are described in an effective one-electron way and we know 

that in reality the nature of the problem is a inany-body one. As soon as this approach 

(one-body like) is adopted one comes up with the problem of making the wavefunction 

of the one conduction electron, orthogonal to occupied states on the impurity and neigh­

bouring ions. If shells are completely filled this presents no difficulty, but if the impurity 

has an incomplete shell, problems arise. Basically what one is trying to do is to use a one 

electron theory for the conduction electrons and orthogonalise to many-electron impurity 

states, a procedure which is bound to run into difficulties simply because of occupancy 

of the 4f shell and the inability to ascribe electrons to specific one-electron states.

However one is bound to ask why this model has been so successful. We believe that this success 

cat. be explained partly by the presence of adjustable parameters but also because we are now 

able to give a microscopic physical interpretation of the parameters which appear in this model 

using a first principles approach given by Dixon and Wardlaw (1986a). We shall discuss again 

the parameters involved in equation (2.1) and their physical interpretation in the Concluding 

Remarks of the thesis.



- 3 5 -

23. Free Electron Screening Model

In the last section we have seen that the influence of the conduction electrons was taken into 

account by either a 5d-vbs (Williams and Hirst 1969) or a modified OPW with added 5d and 4f 

character under the assumption of non-interacting conduction electrons (Dixon 1973).

Duthie and Heine (1979) and del Moral (1984) investigated the effects of electron screen­

ing, which is one of the simplest and most important manifestations of the effect of electron- 

electron interactions, on CFs for metallic RE materials. They considered a lattice of ions 

represented by an ionic pseudopotential V(e) or in the extreme case by a point-ion potential 

V(r) = y  screened by a free electron gas through a dielectric screening function. They used 

Thomas-Fermi and Hartree screening although del Moral also considered Hartree-Fock screening 

(Ashcroft and Mermin 1976 p.340-4). They also introduced, for reasons of convergence of the 

CFPs, some kind of internal structure on the ions. Duthie and Heine investigated isolated RE 

ions substitutionally dissolved in Au and Al, and PrSe. Their striking conclusion was that free 

electron screening, far from being a strong effect, might actually be negligible although it some­

times reverses the sign of the C4 CFP (for the Al structure). This interesting suggestion for a pos­

sible reversal o f  the sign of the C4 CFP is investigated, for £ r5*:Au, in Chapter 4 within the DW 

We found that such a possibility is very small.

del Moral concentrated his studies in REAl2 intermetallics. In these compounds the Al ions 

form a 12-fold shell of neighbours, while the RE ions are slightly more distant forming a 4-fold 

shell. Within the above described free electron screening model he found that the fourth order 

CFP is opposite in sign in comparison with experiment but this becomes correct if the screening 

is removed, the point-ion limit taken and the Al charge made zero. In order to explain this situa­

tion he considered free electron screening for the Al ions and a different type of screening, due to 

the existence o f electrons of d-character at the Fermi level, for the RE ions. He was then able to 

explain satisfactorily the C4 CFP but the situation was less satisfactory for the C6 CFP.

Since a RE compound or alloy is a far more complicated system than point-ions in a free 

electron gas the usefulness of their conclusions is confined to the clarification of some issues of
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interatomic screening and the importance of the d-character (del Moral 1984) of the conduction 

electrons around the RE ions for REAI2. The importance of the d-character for fee structures has 

been pointed out in a previous section (2.2) of this thesis and is fully incorporated into the theory 

of Dixon and Wardlaw (1986a) which we have used for our investigations and present at a later 

stage.

2.4. The o- and n-bonding Approach for RE Compounds

Zolnierek (1984, 1985) proposed a simple semiempirical way to calculate the CFPs for 

quasi-ionic and intermetallic compounds. His initiative was not to discover the microscopic ori­

gin of the CFs for RE compounds but to provide a simple and easy to use model for determining 

CFP which in turn could be used as a initial trial value in fitting procedures used to fit experimen­

tal data to a parametrised Hamiltonian. The determination of such an initial set is important since 

it improves the convergence of the fitting procedure. We should point out that in such a fitting 

procedure not only the CFP but also parameters like Slater integrals and the spin-orbit coupling 

coefficient are varied (Dieke 1968). In the light of its simplicity and the success it has had in 

predicting CFPs for quasi-ionic compounds (Zolnierek 1984) and both the sign and magnitude for 

many RE alloys (Zolnierek 1985) we shall give a brief account of its characteristics and discuss 

the reasons Wits success.

Zolnierek in his early investigations (Zolnierek 1984) concentrated on non-metallic RE 

compounds. He essentially modified the classical PCM without using extra adjustable parameters. 

Firstly, the point charges which in the PCM are strictly localised at the ligand centres are replaced 

by an effective charge q,/ /  attributed to the electron charge of the a-type in RE-ligand bonding. 

Secondly, the geometrical RE-ligand distance which in the PCM is related to crystal structure 

details only, is replaced by /?»//. reflecting the position of the electron charge maximum with 

respect to the RE origin. A schematic explanation of those modifications imposed on the PCM is 

given in Figure 3:
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Figure 3: Schematic picture explaining the idea of the classical and modified PCM 
models. The black circles represent the charge o f  the ligands, open circles the positive 
charge of the RE ion (Zolnierek 1984)

We can now easily see from Figure 3 that the essential differences between the classical PCM 

and its modified version concerns the position and magnitude of the charges generating the VCf . 

They are supposed to be not at the ligand centres but somewhere on the straight line joining the 

RE and ligand ions, since the maximum of the electron charge for o-type bonding is expected to 

lie between the outer shells of the RE ion and the ligand ions. Here we should point out that this 

o-type modified PCM neglects all neighbours but the nearest ones and assumes that there is no 

interaction between the effective charges which produce the CF. For the determination of qtf/ 

and R,f f  in the o-type bonding model he proposed the following two empirical formulas based 

on the concept of Pauli electronegativity (the ability o f an atom to attract electrons, Atkins 1982 

P-485):

( 2.2)

*// tL + e*£ (2.3)



where q°f f  is the individual ligand charge per single bond. \jre is the number of ionised electrons 

from the valence shell of the RE ion, el and ere are the ligand and RE electronegativities, Nl is 

the number of nearest ligand neighbours and finally R0 is the metal-ligand distance taken from 

crystallographic data.

Using this modified version of the PCM he was able to predict, with fair accuracy for such a 

simple model, the CFP for many ionkor quasi-ionic compounds with cubic point symmetry (Zol- 

nierek 1984). This o-type version of the PCM failed to explain CFP for metallic systems and so 

he modified it to the so-called «-type. In other words he assumed that the maxima of the electron 

charge density responsible for the CF effects could be also localised off the RE-ligand straight 

lines (o-bonding) which would formally correspond to the existence of the « or higher order 

chemical bonding. He treated the possibility of «-bonding only. In order to take into account the 

displacements of the electric charges whenever instead of the a, the « bonding occurs, he intro­

duced an extra parameter This $ parameter is assumed to be given by:

« -  (2-4> 

The effective distance between the RE ion and the «-charge is defined in the same manner as in 

the o-bonding model:

• "  u Ei. +  tRE

whereas the effective charge is now defined by a different formula:

(2.5)

"3,  - <2 6 >

where N„ stands for the number of «-bonds, vre, tL, ere, Rq have the same meaning as in the o- 

bonding model and e is the elementary electron charge. In order to demonstrate that the «- 

bonding approach is working, he performed a set of calculations for selected RE metallic com­

pounds of cubic symmetry. We present some of his results, in Table 2.1, to demonstrate the suc­

cess or otherwise of the «-bonding model:
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Table 2.1 : CFP (in cm-') calculated in the framework of the « model approach for 
the RE intermetallics with the CsCl structure. a0 stands for a lattice constant of cubic unit cell. 
References in the last column concern only experimental data.

Sample flo R 'n q 'lt % A°<r*> Ag<r‘> Ref

A A e model exp model exp

ErRh 3.361 1.940 0.375 1.000 -44.7 -85.8 -11.4 -13.1 a

ErPd 3.445 1.989 0.375 1.000 -39.5 -81.7 -9.6 -8.2 a

ErAg 3.574 1.960 0.341 0.863 -39.4 -50.0 -7.7 -6.5 a

HoCu 3.444 1.889 0.341 0.863 -49.7 -47.3 -12.0 -10.4 b

EiCu 3.430 1.881 0.341 0.863 -48.5 -58.4 -10.4 -10.5 a

TbZn 3.576 1.835 0.307 0.727 -25.6 -32.0 -12.8 -12.7 c

DyZn 3.563 1.828 0.307 0.727 -23.7 -31.3 -11.6 -13.9 c

ErZn 3.520 1.803 0.307 0.727 -20.8 -25.0 -9.9 -12.4 c

HoMg 3.761 1.699 0.261 0.545 +20.3 +29.0 -8.1 -9.0 b

ErMg 3.738 1.694 0.261 0.545 +19.8 -2.5 -7.0 -7.5 a

[a] Morin P, Pierre J, Schmitt D and Drexel W 1976, J Phys 22,611-6
[b] Schmitt D, Morin P and Pierre J 1977, Phys Rev B 12, 1698-705
[c] Morin P, Rouchy J and du Tremolet de Lacheisserie E 1977, Phys Rev B 1£, 3182-93

As seen from Table 2.1 the agreement is quite satisfactory in some cases for the fourth order CFP 

and excellent for the sixth order CFP, at least excellent in comparison with the experimental 

results used by Zolnierek. There are other measurements which give a similar fourth order CFP 

but positive sixth order CFP. For instance, for dilute £ rJ+:Ag, C4 = -48.65±1.39 cm*1 and 

C6 = +9.04±0.14cm-' (Williams and Hirst 1969). Zolnierek (1985) also performed theoretical cal­

culations within the «-bonding approach for REM 3 intermetallics where M = M g,Sn Pb. He found 

again reasonable agreement with experiment.

From the above discussion we can say that at the present the «-bonding approach despite its 

simplicity seems to be a fairly accurate method for calculating a reasonable set o f CFP for RE
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intermetallics. Is is certainly the simplest phenomenological method which predict the right sign 

and magnitude for CFP of cubic structures. The most amazing fact is that the n-bonding model 

with the assumption of localised ligand charges works so well for the systems with de-localised 

conduction band electrons. This apparent inconsistency could be perhaps be understood in terms 

of the probability distributions of electronic charge along certain directions.

We recognise the usefulness of the n-bonding model for the RE intermetallics but we 

should also point out that it becomes more difficult to use for more complex structures. Accord­

ing to Zolnierek (1985) it is impossible to apply this method straightforwardly to intermetallics of 

lower than cubic symmetry. He also does not know how the model works for the actinide 

intermetallics. The assumption to consider only nearest neighbours can be perhaps understood if 

one thinks that the effect of neighbours further away from the RE are screened out because of 

conduction electrons.

2.5. Towards a Unified Treatment of Crystal Fields for Rare Earth Doped Compounds

2.5.1. Criticisms of Crystal Field Theory

So far, we discussed models based on semi-phenomenological effective Hamiltonians 

where a great deal of attention has been paid to the local symmetry by treating the 4f-electrons as 

localised about a particular site. However some crystals containing REs are periodic so it should 

be expected that the 4f-electrons would be in Bloch type orbitals which extend throughout the 

crystal rather than in localised orbitals. This criticism of CF theory was raised in the early fifties. 

These difficulties have been overcome by Stevens (1976) who proposed a new method of look­

ing at "Crystal Fields" which is compatible with the above mentioned lattice periodicity. This 

was done in an article (1976) which was principally an investigation of the exchange interactions 

between RE ions in an insulating crystal. We shall explain his method in the subsequent sections

2.5.2, 2.5.3. In this section we concentrate on the criticisms levelled at CF theory.

The substance of the attack on CF theory is included in an earlier paper by Slater (1953). He 

had become convinced that the only way to understand ferromagnetism was through band theory



and that it was necessary to use determinantal wavefunctions based on Bloch functions. By 

implication he disliked the concept of localised moments, a basic concept of CF theory. He found 

it difficult to understand that on the one hand one is dealing with a periodic lattice and on the 

other electrons are treated as localised at individual sites. His point was that electrons are indis­

tinguishable so it is unacceptable to treat some electrons as "captured" about specific sites and 

treat all "remaining" electrons in a rather cavalier fashion. To briefly illustrate this feature sup­

pose that we are treating identical CF operators at sites A. B, - - - each of which has local cubic 

symmetry. The CF operator of site A will contain a term of the form (for instance Hutchings 

1964):

D £  (35z4 -  30r2z2 + 3r4),

where the summation is only over the 4f-electrons associated with the RE ions at site A. Simi­

larly, the CF of site B will contain a similar sum but this time only over the electrons associated 

with ion B and so on. So electrons have been distinguished.

2.5.2. The Perturbation Scheme of Stevens

In order to overcome these criticisms, Stevens went back to a basic general Hamiltonian H 

where electrons are not distinguished and by carefully defining an unperturbed Hamiltonian H0 

having all the symmetry properties of the actual Hamiltonian H he showed that CF theoretical 

ideas were essentially correct but for different reasons than those normally given. The main rea­

son for seeking an unperturbed Hamiltonian H0 with all symmetries of H build in, was to avoid 

the many difficulties (e.g. very slow convergence of the perturbation scheme) which arise if one 

tries to split H into an unperturbed Hamiltonian and a perturbation. It can happen, for example, 

if Ho has less symmetry than H , that it is necessary to go to infinite order to restore symmetry. 

He required a scheme where good convergence is expected from low order perturbation theory so 

he proposed defining H0 with all the symmetries of H .

Stevens (1976) began with the general Hamiltonian:

r . A T. ^  . 1 V g2 . . . .
£  "  £  ~ n r  + ?  J j  7 7  ♦ (2.7)
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where the first term describes the kinetic energies of all electrons, the second term their electros­

tatic energies in the fields of the nuclei the third the mutual Coulomb repulsive energies and • • • 

includes any other interactions. An exact solution was assumed to be out of the question so a par­

ticular form of perturbation theory was used, and the first step was to choose the unperturbed 

Hamiltonian. According to Stevens such an unperturbed Hamiltonian, Ho, should have the fol­

lowing properties:

[1] It should not distinguish between electrons i.e. it was to be invariant under the interchange 

of any two electrons.

[2] It should have the space group symmetries of H, since then convergence in low order 

could be expected if the perturbation was small in some sense. As we have already men­

tioned earlier if it did not one might envisage going to infinite order to recover all the sym­

metries of H ; a very unsatisfactory situation.

[3] Electrons creating "local" moments and conduction electrons should be treated on the same 

footing.

[4] The perturbation H -  Ho should be small enough to give convergence in a reasonable order 

of the perturbation scheme.

[3] The scheme should be tractable.

It is not obvious how all these requirements can be met in H by splitting it into two parts as had 

been done in the past by other workers and instead he defined Ho on the basis of physical 

knowledge. He suggested that Ho has as eigenstates states which we have reason to believe are 

close to being eigenstates of H. For instance, in many instances one is interested in the low-lying 

energy levels of a physical system so in a perturbation scheme, as the one proposed previously, 

one would be attempting to modify the ground term, and hence via coupling to higher levels to 

obtain a physical picture of the states of low energy.

Ho should be Hermitian so the states which are chosen to be eigenstates of H0 must be 

orthonormal. To construct such a set of antisymmetric and orthogonal wavefunctions for the sys­

tems under consideration (i.e. RE doped periodic insulating crystals) he used Wannier functions
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(see Appendix A, Wannier 1937) but generalised Wannier functions can also be used in the same 

spirit for a non-periodic solid (Kohn and Onffroy 1973, Gay and Smith 1974). Dixon and 

Wardlaw (1986a) assumed such generalised Wannier wavefunctions for the localised electrons 

and Bloch wavefunctions for the conduction electrons of RE doped conductors. As is well 

known, the Wannier functions may be obtained from a Fourier transform of the Bloch functions. 

Let us denote by W„(t -X) the Wannier function associated with the band index n and the lattice 

site i  and by Bx Bloch functions where A. is a set of appropriate quantum numbers. He formed 

a Slater determinant, on site A, as:

|  , W6t , • • • , . • • • |

Similarly for site B:

j i t 's ,  .I t 'S . ■ ■ " ' t . ■■■ J

and so on. If the Slater determinant description of a state of the ion at site A is multiplied by a 

Slater determinant for the ion at site B the result is a product of determinants of the form:

|  Wi, , WSt , • • • , Wit , • • • |  x |  , Wfc . • • • , tVg_ , • • • j

This state is antisymmetric with respect to interchange of electrons either at A or B, but is not 

antisymmetric with respect to interchange of electrons between A and B. To overcome this 

difficulty he formed the total Slater determinant:

| , wit. • • • , w* , • - • w* . w* , ■ • • , wflm . ■ • • j
which is antisymmetric with respect to all inierchanges of electrons. This procedure can be 

extended to any number of products. Since he used Wannier functions to describe the one- 

electron states, the antisymmetrised many-electron states will also be mutually orthogonal, if dif­

ferent. We could also include any conduction electron Bloch states 0*.,. Ax, • • • to finally obtain:

ln >  =|vi'ii,VI'ii, • • .Wg,. • • • .W^.WS', ■ ■ ■

Given any such state, I n >, he formed its projection operator P* = I n > <n I defined by:
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P„l*>
I n > if n=k

0 otherwise

Then any operator of the form XX*P„, where X, are scalars, have the states ln> as eigenstates

with eigenvalues X,. The X, can be chosen as convenient. In the initial version of his method, 

Stevens chose X, equal to the expectation value of H taken for the state ln>. That is 

Xh = <n \H ln> , for if l«> approximates to an eigenstate of H , then <n\H \ n> should approxi­

mate to an eigenvalue. Thus the unperturbed Hamiltonian was initially chosen as:

Ho -  X <n 1^ l " > •"> < " •

Stevens found that such an unperturbed Hamiltonian does not have the rotational symmetries of 

H, though it does have the translational and indistinguishability requirements. The difficulty 

stems from the fact that in defining the Slater determinants directions of quantisation for orbit and 

spin are introduced (for details see Stevens 1976 p.14-15). Another problem with the above 

choice is that there is a possibility some of the ln> may have almost the same energy and 

hence one would expect divergences in higher order (the reason being that higher order terms 

involve energy differences like <n \H \n> - <m \H Im > as denominators).

The above problems have been circumvented by introducing families of In > and taking the 

mean energies within a family instead of <n \H ln>. Suppose now that we constructed, by using 

the above procedure, such a set of mutually orthogonal many-electron wavefunctions ln>. One 

family can now be the states in which each RE site has an occupancy (4/ )* ,  with the conduction 

electrons in the lowest conduction band and all core electrons filled. Another could be that in 

which, say, three sites have (4f)*~ 2, the rest have (4f ) ‘ and the displaced 4f-electrons are accom­

modated in the lowest conduction band with core orbitals given an occupancy so that the overall 

number o f electrons is conserved. Obviously, the states in a given family have different energies 

(for a given (4/)* terms of different L, S differ in energy). For a given r-th family he defined its 

mean energy as:

£ < « ,!//  lnr >
( 2.8)
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where the projection operator for the r-th family is now defined by:

P, « £  !*,><«, I (2.9)

and so the unperturbed Hamiltonian is given by:

H0 = £  Er P , (2.10)

It has been found (Stevens 1976) that the H0 given by (2.10) has all the required properties men­

tioned earlier in this section and any problems due to divergences in higher order are now 

resolved since the unperturbed energies are well separated. The perturbation will now be H -Ho- 

Having defined H0 and tV  =H -H 0 as the perturbation and specified that he is interested in the 

low-lying energy levels, degenerate perturbation theory in projection operator form, within the 

ground family (characterised by P o) was performed. The details of such a perturbation scheme 

are given fully by Bates et al (1968). We only briefly describe the following steps. The eigenfunc­

tions and eigenvalues of H0 + eV are known if it is possible to find a transformation e ,tX such 

that:

eia  (Ho + tV)e~itX (2.11)

becomes diagonal. It is however, not usually easy to find such an X , and what is done is to try and 

choose it so that the MEs o f the transformed Hamiltonian which couple the ground and excited 

families are as small as possible, at least to 0(e2). It is found that the condition for this to be so is:

P 0 eitX (H0 + tV )e~ itX Pr = 0 (0 ), r*0 (2.12)

which leads to:

P„X P , -  i rE° V_ £ ' ■ '* 0  (2.13)

The ground state energies are obtained from the effective operator:

P 0 eitX (.H0 + tV )e~ itX P 0 (2.14)

which to 0 (c2) simplifies to:

PoH oPo t  I f . v f .  -  (2.15)f*0 c '  -  c 0

This reduces to:



/

(2. 16)

2.5 J .  First Order Perturbation Theory - Example for non-S-state RE ions

To develop his perturbation scheme further Stevens used well established second quantisa­

tion techniques for electrons. The methods of second quantisation automatically take care of the 

required antisymmetry of the many-electron wavefunctions and are directly related to the Slater 

determinant representation. To simplify matters he transformed H in equation (2.16) into second 

quantised form using as a basis the complete set of one-electron orthonormal Wannier and Bloch 

functions. He noticed that if a ',  a  refer to an open shell at a particular site then pairs like a^0a mrf 

(where m , m' denote the components of orbital angular momentum and o, o' the spin components) 

have similar properties to combinations of raising and lowering angular momentum operators. He 

(Stevens 1974) established the following relationships:

, (1 +  2s[)

*  -J Z 0 - 2 s!)

« 1 . « -  = z  * « -  •«
(*) i

om. m(L) *♦ )

« 1 - « * .  E Z

Here o, a  = +. -  where we identify "+" as m, = -j and for m, = —y . The sum is over electrons

i and the rank n is that of the operators 0±mJm.(l)  which have been defined and tabulated by 

Smith and Thomley (1966). Aimfll is given by :

< m  1m '>

a—  ■ n}

and the coefficients AT.2 have been given by Stevens (1974). To understand relationships (2.17) 

note that the creator ai,a transforms under rotations as a double tensor with orbital rank /  and 

spin rank s. Similarly the annihilator cu0, multiplied by a appropriate phase also transform like 

a double tensor (Judd 1967). The product operator of a creator and annihilator may therefore be



expanded in terms of appropriately coupled double tensors, the spin ranks of which will be zero 

or one. It is therefore not surprising to find that such a product operator can be written in terms of 

the orbital operators and the components of spin operators j *‘. It should be noted that the

relationships (2.17) are equivalences since the left-hand sides are operators acting within a space 

whose basis is formed using occupation numbers for the one particle states labelled with quantum 

numbers n, l, mi,m, whereas the right-hand side is a sum of operators acting on the mi,ms of the 

i-th electron. Hence the relationships (2.17) are really equivalences between operators of two 

types which give identical MEs when sandwiched between the same two determinantal states of

It is advisable to discuss the first order perturbation theory terms (i.e. PoH Po) of equation 

(2.16) for the low-lying energy level problem for a specific case. The ground family, projected by 

P o, is defined to possess the characteristic feature that all its states have definite numbers of elec­

trons in the various shells and conduction bands. So in first order one will finish up with expres­

sions in annihilation and creation operators which conserve the numbers of electrons at particular 

sites. If equations (2.17) are used, these expressions, as we shall see later, reproduce the conven­

tional CF theory.

Suppose an insulating crystal containing N Er3* ions, the Ground Level of which, in the free 

ion is 4 / u : 4/ i*2- The J = 15/2 will usually be split in an insulating crystal. The ground family 

we assume to made up of electrons in filled shells but that 11 electrons per £>3+ site are in 

4 / '1:4/ ,« .  The ground family therefore contains 16* states. The first step is to identify the 

second quantised operators which split J = 15/2 at site A. It is now convenient to denote by 

af.a; bf,b; - etc creation and annihilation operators of 4f-electrons at site A, B, • ■ • respec­

tively and by t , f  creation and annihilation operators of filled orbitals. One operator which can 

lead to a splitting of the /  = 15/2 is of the form afa. The one-electron (h ) terms in H give such 

operators:

£  «*, I* OLpOq (2.18)

Within the same family the only operators which can contribute to (2.18) (to first order) are those
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which leave the number of electrons at a given site unaltered. The contributing a / a ,  pairs are of 

two kinds. They either refer to closed shells (f/f,) or to open shells ( a , \ ) .  In the former case f, 

may annihilate an electron in a closed shell and f / must restore the electron to the same orbital 

(since it is the only one available), so p=q. f/f, is therefore equivalent to unity and the contribu­

tion from <fp \h \ f q >f/f, is just a contribution to the mean energy of the ground manifold given 

by <fp \h \ f q>. In the latter case a, annihilates an electron in an open shell and a /  restores the 

electron to the same shell but not necessarily to the same orbital in that shell. The contribution to 

< 4 /n ;4/ lw l / / l 4 / n ^/is^> is <ap \ h \ aq> < 4 /1 *;4/is/21a/a, 14 /u ;4/ im>. The physical interpreta­

tion of the above results can be understood as follows. Imagine that the electrons at site A 

described by lw'>. Then the ln'> is related with the state In > of the whole crystal. l/i> can be 

obtained by acting on ln'> with suitable creation operators, all of which act at sites other than A. 

That is:

if ap and Oq are orbitals at A. It therefore follows that the contributions to MEs of the form 

<n \H \n> from orbitals associated with the site A are precisely those which would be found if all 

the electrons not at A were removed. The energy of what remains would be the one-electron part 

of the free-ion-like energy of the ion at A together with its energy in the CF of all the nuclei other 

than A, for the nuclei are not removed, i.e. from the one-electron terms the only contributions to 

the splittings come from the Coulomb interactions with adjacent nuclei. Each 2X ,0am.0 is 

replaced with an angular momentum operator in /,• (see equivalences 2.17) which is subsequently 

replaced, by using the Wigner-Eckart theorem, by an operator in L (L= 6) and then by an operator 

in l  (7=15/2). The result is a typical crvstal-field-like equivalent operator (see equation 1.13), and 

the local symmetry is fully reflected when all the various terms are collected together. Further 

crystal-fleld-like terms come from the two-electron operators of types a'Ffa and a'Caf for the f t  

is equivalent to unity. In general the two-electron terms have the form:

ln> = gage • • • l«’> 

where g* refers to site B etc. But

(2.19)

( 2.20)



There are three distinct possibilities for non-zero contributions to the MEs <n \H \n>: (i) a ,  and 

a , remove closed shell electrons, (ii) a, refers to an open shell at a specific site (say B ), and a, 

refers to a closed shell, (iii) both a , and a, annihilate open shell electrons.

In case (i) it can be seen that the resulting energy can be identified as the core-core two- 

electron energy but notice that it is not the one which would be deduced on simple electros­

tatic arguments since part o f it is of exchange-like origin (Stevens 1976 p.27).

In case (ii) either a ,= a , and a , and ap belong to the same open shell at B, in which case 

they can denoted by br and bp or ap=a.t and a , and a , belong to the same open shell at B 

and they be denoted by bp and b,. The former possibility contributes:

V  <apa ,  Ig laf.aJ > adaja,a ,  (2.21)

<bpa , Ig Ibraq> bpbr 

and the latter:

(2.22)

-  <qpbq Ig 16,0^ > b /b r (2.23)

Both possibilities have similar operators b'b but the first is associated with a direct ME 

whereas the second has an exchange-like ME. In other words they contribute in a similar 

way to one-electron contributions but with different MEs. The MEs can be used to identify 

the origin of the terms. The b'b shows that they are to be associated with open shell sites at 

B. If a ,  is at site B as well then the direct term <6pa ,  Ig 16,0, > is free-ion-like. If a ,  is not 

at B then it is natural to identify <fepa ,  Ig I6ra ,>  as part of the crystal-field at B due to elec­

trons in closed shells on other ions. It is very interesting to identify the origin of term 

(2.23). If ap is at site B then the term -  <apbq Ig \brap> can be identified as a free-ion-like 

exchange contribution, but if ap is not at site B it can be regarded as an additional contribu­

tion to the CF of entirely quantum origin.

The remaining third possibility, when all a 's  refer to open shell electrons does not contri­

bute crystal-field-like terms (Stevens 1976 p.29) and anyway it is not of interest to us since 

in this thesis we concentrate in dilute systems i.e. we consider systems with well separated 

RE magnetic ions so that there is no interaction between them.

r
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In conclusion the first order theory for the ground manifold leads to a spin Hamiltonian of 

the form:

Eo + I M A )  + I  M (A  J b ) (2.24)
A A*B

where Eo contains all contributions to the mean energy of the ground manifold, hA contains 

crystal-field-like terms and M  exchange interactions between magnetic sites. In this thesis we 

shall only be interested in the crystal-field-like part of (2.24).

We postpone the discussion of the first order perturbation for S-state ions and of the second 

order contributions (notice that it is possible to have crystal-field-like contributions from second 

order) for the second part of this thesis since in the first part we concentrate our discussion of 

E r^ A u  only on first order contributions. We hope that we have made sufficiently clear the 

Stevens treatment for the low-lying energy levels of a RE doped crystal. We summarise that the 

first order perturbation terms give large single-site terms which contribute to the mean energy of 

the ground manifold and reproduce CF theory. Corrections to this, appear mainly (Stevens 1976) 

in second order and they renormalise the crystal-field-like parameters which are already present 

in first order. A clear route has been provided by him whereby one can pass from a general Ham­

iltonian to a spin-Hamiltonian without distinguishing electrons.

2.6. The Determination of Crystal Fields Using a Recently Developed Unified Scheme 

2.6.1. Introduction

In the previous section we have given a brief description of the treatment of Stevens for 

insulators doped with paramagnetic ions. As we have already mentioned in section 2.5 this treat­

ment can be extended to conductors. This has been accomplished by Dixon and Wardlaw 

(1986a), (DW hereafter) in an attempt to study CFs in dilute RE alloys. Dilute alloy problems, 

although apparently simple, are very difficult to describe in a tractable way. The main reason for 

this is the presence of conduction electrons and their subsequent effects. For instance, screening 

effects arise because of them and if there is a difference in the valency of the impurity ion and the 

host metal ions, electrons from the conduction bands can become semi-localised. One expects
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that any physically sensible model for conductors should incorporate such effects and especially 

the effects of screening in zeroth order. We shall briefly highlight the DW model and will present 

explicitly only terms of interest for the purposes of this thesis which appear in the first order per­

turbation scheme o f DW. The full model is explained adequately in the original paper of DW.

2.62 . Incorporation of Screening

As we have already pointed out any physically sensible model for metals should incorporate 

screening in zeroth order. DW concentrated their studies on a magnetic heavy RE ion. considered 

as a single impurity, substitutionally dissolved in a non-magnetic host and surrounded by a rigid 

regular array of ions in an otherwise perfectly periodic metallic host. Lattice vibrations and their 

interactions with the electrons are specifically excluded. To incorporate screening they per­

formed a Bohm-Pines-like unitary transformation (Bohm and Pines 1953) on a general Hamil­

tonian of interacting electrons and nuclei. Their starting Hamiltonian was H\ given below:

Z,Zme 2 „  Z„e2 (2.25)

where the summations are over all electrons (denoted by i and j )  and nuclei (denoted by n and 

m). r ’s and R 's  denote position vectors for electrons and nuclei respectively and Z„ denotes the 

charge of the n -th nucleus. After following the above mentioned transformation applied to elec­

trons and nuclei they finally obtained, within the Random Phase Approximation (RPA) the fol­

lowing Hamiltonian

\dj n,m

-  I  I g f l ^  I F{kc 'o  -  &. I) ♦  £  & L li <2.26)

where m* is an effective electronic mass given by m /(l-(Jg-)] where p is related to the screening 

constant kc (see section 2.6.3) by P = kF being the Fermi wave vector. F(kcr,j) is the screen­

ing function and is discussed in the section 2.6.3. In other words H2 is obtained from the starting 

Hamiltonian H\ by replacing m by m’ and the bare Coulomb interactions replaced by screened
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ones. To obtain the result in equation (2.26) a series of exact unitary transformations were used 

and the RPA then only used to obtain the new form of kinetic energy (for details see DW). In DW 

other terms involving electron-plasmon and nuclei-plasmon interactions also arose as well as a 

modification of the spin-orbit coupling. These were shown at metallic densities to be at least of 

order o2 times those retained where a  is an order parameter whose size is =1/16. Hence, for our 

purposes we neglect these terms. Hi was taken by DW as the total Hamiltonian to perform 

degenerate perturbation theory following the scheme of Stevens (see section 2.5). In section 2.6.4 

we will show how the method of Stevens is used on Hi.

2.63. The screening constant kc and the screening function F (kc r ).

The function F(A*r) is defined (Raimes 1961 p.292-3) by:

F(*,r) -  l _  1  f  «SLdx (2.27)
"  o *

and it is an example o f  dynamic screening since it is due to the re-description of the motion of the 

electrons in terms of plasma oscillations plus short-range interactions among electrons (Raimes 

1957). The graph of the screening function is shown in Figure 4, and the function exp(-kcr ) is 

also shown for comparison. We can see that for values of kcr less than 2 , the functions are very 

similar, falling rapidly from unity at the origin to nearly zero. At larger values of kcr the function 

F(ktr) oscillates with slowly decreasing amplitude. In other words the effective range is about 

2Jkc. These oscillations become negligible when multiplied by e2/r (see Figure 5).
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Figure 4: The full curve represents the function F(kcr) of equation (2.27) and the bro­
ken curve the function expi-kgr).

Figures: Comparison o f the unscreened Coulomb interaction e2/r with (e2tr)F(kcr ) 
and (e2/r) cxp(-ker).

It is enough, for the purpose of this thesis, to say that kc is a screening parameter. Its physical



- 5 4 -

significance is more complicated but qualitatively it represents the magnitude of the maximum 

wave vector for which it is useful to introduce plasmons. Plasmon co-ordinates and momenta do 

not finally appear in Hi although they do appear in intermediate steps for reasons given by DW. 

Theoretically and within the RPA the value of this critical wave vector is given by (Pines 1964 

p.109-110):

k f'*  = K f  (2.28)

•  0.47 Vr,/a o (2.29)

where r, is defined (within the Independent Electron Approximation - IEA) as the radius of a 

sphere whose volume is equal to the volume per conduction electron and it is measured in units 

of the Bohr radius a0 (see for instance Ashcroft and Mermin 1976 p.5). kF is the Fermi wave vec­

tor (within the IEA) given by:

k, •  (2.30)

(Ashcroft and Mermin 1976 p.36). By combining equations (2.28). (2.29), (2.30) we finally 

obtain:

i f *  =  09024 (2.31)
r?

For instance, for silver rf* = 3.02 a 0 and so kf'* = 0.52 a<f1.

It is of outmost importance to point out that recent measurements (Eisenberger et al 1975, 

Zacharias 1975, Gibbons et al 1976, Batson et al 1976) in AI.Li and Na show that plasmons exist 

at values of the wave vector k beyond kf'*  given by (2.31). Such a conclusion has also been 

reached by the theoretical work o f  Pal et al (1980) and Pal and Tripathy (1985). They found that 

if one goes beyond the RPA plasmons exist far beyond the kf'*. So we recognise that there is 

some doubt concerning the exact values of kc. To give an idea of the magnitude of kc we present 

the Table 2.2 below which contains values of f f '* , pp (P = Pal et al 1980) and p"P for A l . Li and 

Na.
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Table 2 J : Values o f  P*/’A. p'’ ,P"P forAl. Li and Na. r, is in units of ao-

METAL P*" P' P"p

A1 2.07 0.68 1.48 1.23 [a]

Li 3.22 0.84 1.83 1.40 [b]

Na 3.96 0.94 1.32 1-11 lc]

[a] Zacharias P 1975. J Phys F: Metal Physics 5.645-56
[b] Eisenberger P, Platzman P M and Schmidt P 1975, Phys Rev Lett M. 18-20
[c] Gibbons P C. Schnatterly S E. Ritsko J J and Fields J R 1976. Phys Rev B 12.2451-60

If we assume the relationship p«p = CxVr,/ao. where C is a numerical coefficient, we found, by 

using the data of Table 2.2 and a least squares fitting procedure, that C = 0.705 i.e.

P«p = 0.705 x (■ ~ )V4

Great insight should not be attached to such a relationship since we used data only for three ele­

ments for our fitting procedure but we did use it to give us a qualitative estimation of the order o f 

magnitude of kc. Now kc for silver becomes 15 times larger than the RPA value i.e. 0.78ao1 • W e 

should treat the value of kc with some caution and later we discuss our results for a range of 

values of kc.

2.6.4. First Order of the DW Model

After establishing equation (2.26) as the Hamiltonian describing the RE doped dilute alloy, 

Dixon and Wardlaw rewrite (2.26) using powerful second quantisation techniques. Creators and 

annihilators a',a are used to create and annihilate one-electron orbitals in the 4f shell of the RE, 

and will have a suitable subscript to describe both the spin and orbital components. Similarly, cf,c 

referred to band states b'.b to the core states and d'.d to the Sd-vbs (the existence of such a vbs 

has been extensively discussed in section 2.2).

To describe the majority conduction electron states, which were assumed s-like, they used 

the Fourier transform of generalised Wannier functions. The 4f, core (b) and 5d-electron states
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were taken to be the actual generalised Wannier functions (Appendix A) Wx(l  ~D  as they form a 

complete orthonormal set, with the transformed functions, and are localised functions about par­

ticular sites. It has been discussed earlier and in Appendix A that the functions 

■M0>, bfIO>.cfIO>,dfIO> therefore form an orthogonal set of basis functions orthogonal 

between different bands and between sites.

In the spirit of the treatment of Stevens they now define the ground family, projected out by 

Po as follows: the conduction electrons are in the lowest bands, the RE has an occupancy 4/* 

consistent with a fixed L and 5 , the 5d state is occupied by one electron or none and all other 

localised orbitals are fully occupied with spins up and down. It was assumed that a state of the 

system, in which the 5d state is unoccupied but an extra electron occupies a neighbouring site, is 

also included in the ground family.

They made use of degenerate perturbation theory in projector form described by Bates et al 

(1968) and given earlier in section 2.5.2. The unperturbed Hamiltonian Ho was defined following 

Stevens (see equation 2.10) and H i-H o  was treated as a perturbation. Hi has been conveniently 

divided up into two parts HA and HB so that within HA each term conserves the number of a .b .c  

and d electrons separately, whereas Hb contains all operators which are interconfigurational e.q. 

a'c which destroys a conduction electron and creates an additional electron in a 4f-orbital.

They now make the following assumptions:

(i) Only one 5d-electron resides in the 5d-vbs, in agreement with our discussion in section

2.2, or none.

(ii) Terms which involve core states only are dropped, since they will only give constant 

contributions in first order and cannot give terms in second order, because they do not 

couple families with different numbers of core electrons.

(iii) They neglect interactions between core states on different sites since there will not be 

significant mixing because the electrons in them are so tightly bound to their nuclei.

(iv) In Hb there are a number of terms which couple the c and d states with core states (6). 

They neglect most such terms, since the c and d one-particle states are much higher in
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energy than the 4f states and hence the energy of the core states, with the exception of 

those pans of HB of the form a'abl>, d 'db'b, c'cb'b which will appear in first order. 

There are other contributions from the Coulombic parts of HB which generate many elec­

tron states from the ground family at energies close or greater than those between core 

and d or c states e.g. a'a'cc connects the ground family to a state = twice the energy 

difference between the 4f and band states. Siiuiiai arguments apply to terms like aVcd. 

These latter have also been neglected.

(v) The on-site parts of some terms vanish identically from inversion arguments e.g. a Vbc. 

As a is odd and the on-site part of c is even only odd angular momenta terms from the 

screened Coulomb interaction will produce non-vanishing terms. However, this means 

that one b is odd and the other even i.e. different, so when this term operates on the 

ground family we get zero.

(vi) They drop all Coulomb and one-body MEs in second order where at least one of the 

one-electron functions is on a site other than the impurity site.

(vii) They recognise the importance of terms which transfer electrons between the 5d-vbs and 

the s-conduction band. At the impurity site they assume an energy difference between 

these two states, but transferring a «/-electron to any other site requires very much less 

energy, so little in fact that they include these latter states within the ground family.

(viii) If HbouI denotes an electron-electron term in HB, and Hbf describes a crystal-field-like 

term in HB which arises from the fourth term in (2.2S), then for a -electrons, at least, the 

[MEs of Hbf ] «  [MEs of //a“*7]. They neglect terms in second order of the form 

PoHBoulP*HB'm,Po as it will only produce isotropic terms and they are interested in CFs 

which act on the a-pan of the Hilben space. They finally retain terms 

P oHbouIPkMbfP o + h.c. as these will be much larger than PoHBFPKHBFP 0 which are 

neglected.

To clarify the above we write schematically the resulting Hamiltonian, after performing the per­

turbation theory, as follows:
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H3 = (Coulomb among a ’s + 2-nd order) +
(Coulomb among a *s and d'& + 2-nd order) +
(Coulomb between a ’s and b *s) +
(Coulomb between c ’s and d ’s) +
(Coulomb between a 's and c ’s) +
afa (KE + attraction + V) + VCf *  s.o. + 2-nd order) +
cfc (KE + attraction + V/ + VCf + s.o.) +
dfd (KE + attraction + V) + Vcf + s.o.) +
[cfd (V) + Vcf) + h.c.]

where V/ = -Z A (e2/r)F(kcr), ZA is the magnitude of the additional positive charge at the impur­

ity site when a host ion is replaced by the impurity. VCf  is the classical CF interaction:

Vct '  ~ £ .  - ¡ r i j FV“

where the sum over n being over neighbour sites to the impurity site when a host ion is replaced 

by the RE impurity. Z„ is the charge of the n -th neighbouring nucleus.

The same authors have shown (Dixon and Wardlaw 1986b) that an impurity carrying a net 

difference in charge from the host ion it substitutes for has the effect, if the interaction is strong 

enough, of splining off a band state, which they denoted by lc<>>. from the rest of the band con­

taining states lc; >. lco> was A j-like under rotations and leaves behind other A \ states in the band 

as well as states of other representations which lc0> does not couple to. The zeroth order part of 

lco> is simply the s-like Wannier function which would be present at the impurity site in the per­

fectly periodic host with no impurity. This particular component is orthogonal to the rest of the 

host band Wannier functions by construction. The operators and c/, which create other band 

states with A i symmetry and other representations respectively, principally create electrons at 

sites other than the impurity site.

They performed further unitary transformations to weaken the 4f-conduction band and 5d- 

conduction coupling before averaging over the conduction and the 5d states to obtain an effective 

4f CF Hamiltonian. In first order they finally obtained:
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H‘f f  * m b" 1o1*-.,o,*-.o,bmial
OPPP.'

* m v*p£ * - p *~p ,*~p » -p,
0,0pp.'

+ . 1  { « » - .  s ’, '* '»  i c v . . s >  -  v . - « * »  'S ’,- « -> }  ¿ ¡ » < r

■y«.<r

where

v ." « * .  ={<“ ', Z \  1 4 f '* ■ - » 1 £ ■ £ »

-  -S’, a » )

V.„. = <”> IV „l”<4> <2.34)

VCf  has been defined above and Vsc represents the screened Coulomb interaction between 4f and 

conduction electrons.

In the second and third terms of (2.32) the c0 and d operators may be replaced by their aver­

ages. In the first term of (2.32) the b'b is equivalent to unity since they referred to filled cores (see 

discussion of this term in section 2.5.3). So effectively we obtain a one-electron-like Hamiltonian 

in a'a. To convert the pairs of creators and annihilators of 4f-electrons into orbital angular 

momenta and spin operators, the equivalences of Stevens (2.17) can be used. The details of how 

this can be done will be given in the subsequent sections where the first order terms are discussed 

in more detail. Finally, after using (2.17), //, //  can be equivalently written as:

£  £>,""<1) (2.35)

where are CFPs containing contributions from the four terms of (2.32). Notice that the above 

A ’s are not the same as the usually considered CFP (denoted by C ’s, see equation 1.13). In this 

thesis we shall use the C ’s and the relationship of the C’s to the A ’s will become apparent during 

the discussion of CFP in the subsequent sections.

Concluding we should say that the DW model can be considered as the most advanced 

quantum mechanical theoretical model for calculating CF for RE doped dilute alloys since: (i) it
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incorporates dynamic screening (ii) does not distinguish electrons (iii) incorporates the many- 

electron nature of the problem since it uses second quantisation techniques and (iv) properly 

treats the 5d-vbs. By working consistently within this model much will be revealed as far as the 

origin of CFs is concerned. We notice, for future reference, that in this latter theory CF-like terms 

do not arise solely from electrostatic mechanisms but there are non-classical components (e.g. 

exchange contributions) as well as terms in second order which have nothing to do with interac­

tion between charges at all e.g. P 0 KE P , KE P q,which have already been investigated in the 

literature (Dixon et al 1982).
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CHAPTER 3

CONTRIBUTIONS TO CRYSTAL FIELD PARAMETERS FOR Er*:Au FROM LIGAND 

ELECTRONS AND NUCLEI

9.1. Introduction

In this chapter we discuss the first and fourth terms of HtJJ given by equation (2.32) i.e. the 

interaction between the 4f-electrons of Er*+ and the ligand Gold ions, treated as ionic entities 

with extended charge distributions in space. We show that the 4f/ligand interaction can be 

described for Er ̂ rAu using a pseudo-PCM in which we use different effective charges for the 

fourth and sixth order components o f the cubic CF.

The theory of DW described in section 2.6 presented first order operators using annihilators 

and creators which referred to a set of orthonormal wavefunctions, namely the generalised Wan- 

nier functions, on the RE site and about the ligand sites. Using the 5d radial wavefunction for 

neutral Gold from Herman and Skillman (1963) and the 4f wave function for Eru  from Freeman 

and Watson (1962) - see also Appendix B - we can calculate approximately the radial extent of 

each. If we add these and compare the result with the nearest neighbour distance R„ = S.432 a.u. 

in the fee structure of Gold we can see that the radial overlap is expected to be very small 

indeed. Thus we can take the free ion functions on the ligand sites (Herman and Skillman 1963)
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and the 4f given of Freeman and Watson (1962) to represent the generalised Wannier functions to 

a very good degree of approximation. O f course such an approximation will begin to break down 

as the overlap of the 4f wavefunction on Er3* with ligand orbitals increases. Even if the 4f radial 

density is expanded relative to the non-relativistic Hartree Fock results of Freeman and Watson 

(1962) due to an indirect relativistic effect arising from the relativistic contraction of the core 

electrons (see Freeman and Desclaux 1979), the 5d(Au)-4f(£r3t) overlap will still be small 

enough to use the above approximation. As we shall see later, it is wrong to think that since the 

overlap is small the penetration effects will be small and so the conventional PCM would be a 

reasonably good approximation.

In the DW model each of the Coulomb interactions appearing, at the end of a sequence of 

unitary transformations, involved a screening function F(ktr 12) (see section 2.6.2). The incor­

poration of screening into the 4f/ligand penetration mechanism is not easy to compute, particu­

larly if the full electronic screening interaction is used as in the DW. A simpler and more practi­

cal approach of estimating its effect is to first of all determine the effective pseudo-charges and 

then to write the screened interaction as F(kf \l -R  I)/ l£-fi I. This will be done in Chapter 4. 

We shall see later in this chapter that the 4f/ligand penetration effects occur only with nearest 

neighbour ions. We have shown in Chapter 4 that for the system Er3*:Au at least and within the 

limitations of that approach (see discussion of the value of kc in section 2.6.3 and Chapter 4), if 

the ligands can be described as effective point charges in some sense, then screening modifies the 

fourth order CFP of nearest neighbours by only about 7% whereas the sixth order CFP is virtually 

unchanged from the nearest neighbour unscreened pseudo-PCM value. Hence we shall study an 

unscreened 4f/ligand interaction (i.e. kc=0 and hence F(*cri2) = 1 in DW model) and later modify 

our results, if necessary. It is worthwhile to notice that, as far as CFs in Er3*:Au are concerned, 

although screening does not seem to have any significant effect on the inter-site 4f/ligand 

mechanism (Chapter 4 and this Chapter) it does have a very important effect on the intra-site-like 

4f/5d-vbs mechanism (Chapter 5).

We earlier mentioned that the 4f electron wavefunction do have a small overlap with those 

of ligand electrons. This should not mislead us into thinking that the penetration effects are not
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importam. To demonstrate the importance o f this particular penetration effect we consider that 

the CFP are made up of two separate contributions from the ligand nuclei and the extended elec­

tronic charge of ligand ions. Following DW this may be written as (first and fourth terms of

In equation (3.1) the m 's and o ’s indicate the components of orbital and spin angular momentum 

respectively. b* 0i creates a core spin-orbital o f the ligand from the vacuum with component of

af’s create 4f orbitals from the vacuum on the RE site and the subscripts are defined in the same 

way as for the bf’s. MEs in the summations o f  equation (3.1) are defined by equations (2.33) and 

(2.34) but with Fikcrn)=  1. In first order b^bx acts on the filled ligand core electronic ground 

state to produce unity (see discussion in section 2.3.3) so our effective Hamiltonian becomes :

The Hamiltonian in equation (3.2) may now be re-expressed in terms of orbital and spin 

angular momentum operators using the set of Stevens’s equivalences given by (2.17) to read as:.

3.2. Procedures to be Adopted for Calculations

In order to simplify our numerical calculations we shall assume that the axis of quantisation 

coincides with the intemuclear axis connecting the £r ion and one ligand ion. To make our pro­

cedure clear we concentrate on the interaction between the 4f-electrons of the Erbium and one 

ligand ion. considered to be a free ion with a point charge nucleus (of charge ZN\e \)  surrounded

H 4/ lUfOMt -
mjm,*

(3.1)

orbital angular momentum m i and a spin component o, which may be m, = y  or m, = —y . The

Ha/ lutanti = £ (3.2)

H't/.utané = I  4**>(4//ligand) O jm)(£) (3.3)

where the CFP A ^ \4 f  /ligand) are found to be given by:

Aj*\4f ! ligand) =

+ (3.4)
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by closed shells displaying an extended electronic charge distribution. No distortion of this distri­

bution will be considered at this stage even though it is possible that the presence of a substitu­

tional ion may bring about strains and deviations of this electronic charge from its free ion distri­

bution. Axial symmetry then demands that q =0 and the position of the nucleus of the ligand will 

be (R, e * = 0 . =0). Figure 6 shows the disposition of co-ordinate axes which we have used for the 

calculation of the direct contribution to the CFPs. Similarly, Figure 7 shows the co-ordinate axes 

used for the exchange case. The reasons for using two different co-ordinate arrangements will be 

discussed in sections 3.4 and 3.5.

x

Figure 6: Interaction between a 4f(RE) and a ligand electron. Co-ordinate system used 
for the calculation of the direct part of (see equation 2.33).
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Figure 7: Interaction between a 4f(RE) and a ligand electron. Co-ordinate system used 
for the calculation of the exchange part o f (see equation 2.33).

We were particularly interested in a Gold host which has a fee structure. In a fcc-system the CF 

is described by two CFPs, the axial fourth and sixth order CFPs. We shall only discuss the pene­

tration effects for these two CFPs but our analysis can be generalised to cover other cases.

In the next three sections we first present the wavefunctions we have used (section 3.3) and 

then examine the direct term of the Coulomb interaction (section 3.4). In section 3.5 we calculate 

exchange contributions to CFPs and finally in section 3.6 we discuss our results and the effects of 

screening on them.

3 J . Wavefunctions

In this section we present analytical forms of the wavefunctions we have used for Gold and 

for £ rJ*. At a very early stage of our study we realised that, as far as we were aware and could 

ascertain, there were no reliable analytical wavefunctions for Gold. We decided to use the 

wavefunctions. given in numerical form, by Herman and Skillman. These are self-consistent solu­
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tions of the non-relativistic Hartree-Fock-Slaier equations for neutral ions. We have fitted these 

for Gold to linear combinations of Slater-like wavefunctions using the least-squares method and 

since they could be so useful the results are given in the Appendix B. If the Gold orbitals have a 

separable wavefunction of the form R(r) y,m(0.0) then P(r) = rR(r) is actually tabulated where the

normalisation condition is jRHr)r2dr -  1 and r is in atomic units. We have also used the 
o

wavefunction for the 4f orbital of the Er** given by Freeman and Watson (1962), listed in Appen­

dix B as well.

3.4. Contributions to the CFPs from the Direct Coulomb Term without Screening

To evaluate these contributions we inevitably have to calculate two-centre integrals and the 

most usual way of proceeding is to express all wavefunctions in the integrand in a common co­

ordinate system. Another approach has recently been adopted in the work of Garcia and Faucher 

(1984) following much earlier developments by Buehler and Hirschfelder (1951,1952). which we 

henceforth denote by BH1 and BH2. This method not only permits a simple evaluation of two- 

centre direct coulombic integrals but greatly reduces the time of computation. According to BH1 

and BH2 the inverse distance between electrons (1) and (2) (see Figure 6), where the radius vec­

tor £i of electron (1) is relative to one site and the position vector r 2 of electron (2) is relative to 

the other site, is given by:

- Î -  -  2  b . '& ir t S i J i )  r a1*(«i4i) Yi, (82.62) (3.5)
r l2 »X*

where b»%, is a function of r lt r2 and the distance between the sites R . This coefficient is related 

to that in BH1 and BH2 (£«',*',(r,^2J?)) by :

* $ t( n s * * ) * (4n)2 (wi+lpl)! (n2+1MI)! 
1*1 ¿»2) (/i |-lp l)! (/i2-'pl)!

where we have used the shorthand [m.»i2l=(2/ii+lK2rt2+l)-

(3.6)

By using the properties of 3j-symbols (Rotenberg et al 1959). integrating over all angles 

and bearing in mind we are calculating a CFP from one nucleus of charge Z ie l at position 

(0,0,/? ), we finally obtain:



- 6 7 -

Ai-> -  7 > ( ; g 8 ) x < 3 " O ^ I I 3 > x

■ £  J J  Ruin) R*/(.f2) b$*(rts2\R) r xr2dr\dr2
t j  i « r  J J

+ ifr / Rlf{r) T^rr2dr (3.7)

where r< = min(rji) and r> = m ax{rji). The reduced MEs <3IIO(")M3> can be found for 

instance in Smith and Thomley (1966). k is the principal quantum number of electrons on the 

ligand which have an orbital angular momentum /. The value of Z for Gold is +79. The expres­

sions for C .  as functions of r ts 2 and R , can be found for the three regimes defined below by 

combining equation (3.6), BH1 and BH2. They are given by:

Regime I, R > r x + r2

Regime III, r2 > R + r t

( - 1)"
4 n

[«]*
R »

r 2*'

Regime IV, r t > R + r2

ho!« = 0, if n >0

= if n=0r i

In what is termed Regime II where \r\—r 2\£R£rx+r2 the appropriate expression for bo* is far more 

complicated but can be found by using equation (3.6) and BH2. It is straightforward to obtain the 

CFPs produced by a no-longer axial ligand with coordinates (R with respect to the z-axis 

joining the RE and the ligand, by noting (see Garcia and Faucher 1984) th at:

A,“ 1 = A S "  c ; '< e .® ) (3.9)

where the denote normalised spherical harmonics (Silver 1976 p.71).
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By taking proper account of appropriate radial integration limits and the fact that we shall 

only consider n >0, the "extended charge" CFPs due to one ligand of Gold along the z-axis may 

be written as:

In order to discuss and clarify the differences between the extended charge treatment and 

the conventional PCM we introduce (following Garcia and Faucher 1984) the following variable:

where <r"> = J/f«/(r)r"’24r in the usual way. Note that the conventional PCM CF-Hamiltonian

acting within the 4f configuration is determined from the interaction between completely local­

ised effective charges Z'J1 \e I for each ligand ion N and the 4f RE electrons, z tf1 is then deter­

mined as the difference between the net negative electronic charge of the ion and its nuclear 

charge i.e. in equation (3.12) Z-^21/1 = Zfll . If we had defined p. for a no longer axial ligand

dr\dri

(3.10)

A o'* (extended charge ) 

A  i f '  (PC M )
(3.11)

where:

Ai,-\PCM) = 7 x ( J g J ) .. <31 I Q Q I  I3> ..
(Z-£2[/]>*./ (3.12)1«T

because of equation (3.9), the angular orientation of the ligand. K,<")(8,<l»), would cancel out so 

that the p-ratio remains a sensible comparison to make.
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We have computed values of p„ for a limited number of distances for the case of Er3*:Au. 

The results are summarised in Figure 8. Similar behaviour has been found for negatively charged 

ligands (Cl~,02~Jr~) the REs being Nd3+JZu3+,Tm3*, in Garcia and Faucher (1984).

Figure 8: p„ parameter as a function of intemuclear distance for Er3*:Au. Contribu­
tions solely from the Direct Coulomb term have been considered.

The nearest neighbour distance (nnd) in the fee structure of Gold, assuming that Erbium enters 

substitutionally is S.4S2 a.u. (la.u. = 0.5292 A). For this distance we found p4= 1.211 and 

P6= 1.761. We have also considered non-realistic distances R = 3 a.u. (where p4=7.847, p6=14.473) 

and R = 3.75 a.u. (where p4=3.579, p6=7.941) to give the qualitative Figure 8. One should note 

carefully that we have assumed onhogonality of the Er3* and Gold wavefunctions throughout 

which for the nnd is a very good approximation. However for smaller distances this orthogonality 

will begin to break down for certain orbitals i.e. in principle we should take orthogonality correc­

tions into account. We did not consider this worthwhile since the nnd for £r3t:Au is 5.542 a.u. 

and we only wished to give a qualitative feel for what one should expect if there was greater 

penetration between the RE ion and the ligand. From Figure 8 we see that for large values of R



the asymptotic value of p, is unity for any value of n permitted for cubic symmetry. It is possi­

bly worth noting that the /4o0) extended charge values were very close to the PCM values. As we 

might expect the PCM is well justified for the second nearest neighbours (when R = 7.71 a.u.) 

and shells of neighbours even further out but the situation is quite different for the nearest neigh­

bours. As the 4f electron penetrates the electronic charge distribution of the outer ligand orbitals 

of the nearest neighbour Gold ion it effectively experiences less of this latter charge and hence a 

more positive charge.

^or each value o f n separately we see that the ligand ion is effectively acting as a pseudo­

point charge, "pseudo" since a different value of this effective charge is obtained for different 

values of n . Thus, for the n=6 CFP, which was small with respect to experimental values (Willi­

ams and Hirst 1969) when calculated within the PCM. is greatly improved when penetration 

effects are considered since the latter increase this particular PCM CFP by a factor of = 1.8. If we 

consider the n=4 CFP we can see that penetration will not explain the negative sign found by 

Williams and Hirst (1969). The PCM gives a value for the fourth order CFP which is opposite in 

sign to the experimental one. as is well known (see Table 1.2).

3.5. Contributions to the CFPs from the Exchange Term without Screening

In the previous section we have taken into account only the direct part of the Coulomb 

interaction of equation (2.33). We wish to determine whether the exchange contribution is quanti­

tatively important for the determination of CFP for Eru :Au. We find that it is not of any 

significance for the nearest neighbours and essentially zero for all other neighbours. Unfor­

tunately, in this case, we have found that we cannot use the development of BH1. BH2 reliably 

and so we have resorted to the most common treatment whereby we transform the components of 

the integrand arising into a common co-ordinate system. Our new co-ordinate system has been 

already presented in Figure 7 of section 3.2. The inverse distance between electrons (1) and (2) 

(see Figure 7) may be expanded, in the usual way. as a series of products of spherical harmonics:

~  -  £  i  * 775- — rtlH tn)ri2 £5) 2A+1 /•£*'
(3.13)
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To evaluate exchange MEs there are seemingly two different co-ordinate systems we could use. 

We may choose that with the origin at the RE ion (P in Figure 7) or at the ligand site (o in Figure 

7). However, we found, in agreement with Gajek and Mulak (1985) that the second choice 

requires much longer computer time. The reason for this is that, if we expand the 4f wavefunc- 

tions, with 1=3, over the ligand site, the alpha-expansion of Sharma (1976) becomes far more 

complicated than for d,p  or s electrons i.e. the complexity of the alpha-expansion increases 

dramatically with increasing orbital angular momentum quantum number /.

We define g4/  as the 4f wavefunction o f the RE ion and fum as the wavefunctions of the 

ligand ion. As we must calculate a two-body ME with its radial and angular integrals we distin­

guish two different 4f and ligand orbitals by writing:

g4/(fi,8i,0i) = R*/(ri) K"'(0i,<>i) 

g 4 / ( r  2.82.92) =  R 4 /(^2 ) 1 '* ’ (82.62)

(3.14)

-  L  Ah{k J jn \R ^x) r"(8i.9i)
>1

fu m ir i& iM )  •  L  \ R s j )  Y ~  (02.92)

where the Aj(k,ljn IR,r) are defined appropriately (for example see equation 3.17) by using the 

alpha-expansion technique Sharma (1976). It is now straightforward to integrate the exchange 

contribution (including the angular pans of the operators from Stevens equivalences) over the 

angular variables by making use of the properties of 3j and 6j symbols (Rotenberg et al 1959). 

We obtain

- J  )*— * » 7 »  <?' 'P “ 'l '?>  »

( S(J i )  (  i i  m i  ){ ' i  i} * (3.15)

where lx  ’(4/ Jdm) are one-centre radial integrals given by:

0 0  r>
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r ? r |  dr\dri (3.16)

where r< = min(,r\fi) and r> = nuu(r,.rj). The reduced MEs <3MO(">ll3> are the same as in

equation (3.7). In equation (3.15), the procedure £  £  (2S j j J  has been used instead of Y Y  to
J t J A  2 Jl Ji

save computer time since the quantity, defined in (3.15), is independent of permutation of the 

j i j 2 indices (see properties of 3j and 6j symbols. Rotenberg et al 1959) and those of alpha- 

expansions (Sharma 1976).

Since the overlap between the 4f RE orbital and the outer 5d(on Au) is small we decided 

initially to estimate the contribution to the CFP from the 4f(£r3*)-5dG4u ) exchange term and if 

this contribution was found important to incorporate other ligand orbitals as well. A full treat­

ment would involve the following alpha-expansion for the 5d(Au ) orbital (see the wavefunction 

of the 5d(4u) orbital in the Appendix B). That is:

Aj(kJsn\R ,r) ¿ C Aa,(4.ZA./w .™l/?.r) + ¿ C Aa>(3^A,/w^ ilR .r)
A-l A =4

(3.17)

The CA in equation (3.17) have been given in the Appendix B and the a , are the alpha-expansions 

appropriate to the Slater-like summands in the 5d orbital of Gold (Sharma 1976). The use of 

(3.17) is very time consuming to compute, the reason being that /m=2 and the alpha expansion is 

used ten times (see equation 3.16). To avoid this problem, and since we are initially interested in 

an estimation of the order of magnitude of the exchange contribution, we used the fact that in the 

region of interest (i.e. where significant overlap occurs - Rnm = 5.452 a.u. - so this correspondsto 

the region from the second node of the 5d-Au orbital and outwards) the contribution to the 

integrals of (3.16) will be due to the "tail" of the 5d radial wavefunction (see Figure 9).
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Figure 9: The Hermann-Skillman 5d radial wavefunclion of Gold, P M(r ), given in the 
Appendix (full curve) and the approximation used, given by equation (3.18), for the 
estimation of the exchange contribution (dotted curve).

E x p l ic i t ly  w e  f it te d  t h a t  p a r t  o f  th e  5 d -A u  r a d ia l  o r b i ta l  w a v e f u n c t io n ,  b e tw e e n  r \  =  0 .573 6 1 a.« . 

a n d  r  2 = point where the wavefunction is essentially zero ,  t o  o n e  S la te r  o r b i t a l  o f  th e  fo rm  :

Psd =  r 4 x  15.430971  x  e -3 « )n 7 4 2 r  (3 .1 8 )

U s in g  ( 3 .1 8 )  in s te a d  o f  (3 .1 7 )  th e  u s e  o f  th e  a lp h a  e x p a n s io n  in  (3 .1 6 )  is  r e d u c e d  f ro m  te n  t o  tw o  

t im e s .  T h e  o th e r  a p p r o x im a t io n  w e  h a v e  u s e d  is  a  p r a c t i c a l  a p p r o a c h  to  th e  c o n v e r g e n c e  p r o b le m  

o f  th e  in f in i te  s e r ie s  o f  e q u a t io n  ( 3 .1 5 )  d e v e lo p e d  b y  G a j e k  a n d  M u la k  ( 1 9 8 5 ) .  W ith  th e s e  v e r y  

r e a s o n a b le  a p p r o x im a t io n s  f o r  th e  n n d  w e  f o u n d  th a t  th e  c o n t r ib u t io n  to  th e  f o u r th  a n d  s ix th  o r d e r  

C F P  a r e  o f  th e  o r d e r  =  +  6 .4x1  O’ 5 cm~l a n d  = - 1 .2 x 1 0 - *  c m " 1 w h ic h  in  c o m p a r is o n  w ith  th e  

c o r r e s p o n d in g  d i r e c t  v a lu e s  o f  - 0 .2 5 1  cm_l a n d  +  0 .011  cm~' a r e  n e g l ig ib l e .  W i th in  th e  s a m e  

a p p r o x im a t io n s ,  e x c h a n g e  c o n t r ib u t io n s  w e re  f o u n d  p r a c t i c a l l y  z e ro  f o r  l i g a n d s  f u r th e r  a w a y  th a n  

th e  n e a r e s t  o n e s .  W e  b e l ie v e ,  th e r e f o r e  th a t  w e  c a n  n e g l e c t  th e  e x c h a n g e  c o n t r ib u t io n s  f o r  a n y  

d i s ta n c e  R >nnd. I f  th e  tw o  io n s  a p p r o a c h  e a c h  o th e r  th e  a p p r o x im a t io n  in  F ig u r e  9  w ill  s ta r t  t o  

b r e a k  d o w n  a n d  s o ,  in  th is  c a s e ,  w e  m u s t  u s e  th e  e x a c t  a lp h a - e x p a n s io n  i n  e q u a t io n  (3 .1 7 ) .  W e  

d e c id e d  n o t  to  p e r f o r m  s u c h  a  c a lc u la t io n  f o r  tw o  re a s o n s .  F i r s t ly ,  th e  c o m p u ta t io n  w o u ld  b e c o m e
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excessively time consuming and secondly, in heavy RE noble metal complexes the relevant nnd 

and radial extents of outer orbitals are very similar to the case we have discussed, namely Er^rAu 

and so exchange effects are expected negligibly small.

3.6. Conclusion and Discussion of Chapter 3

As we might expect ligands farther away than the nnd act. to a very good degree of approxi­

mation for a Gold host, as effective charges of +1 as far as the CF experienced by the 4f elec­

trons on the Er3* is concerned (we should make clear that in the presence of screening, ligands 

other than the nn will be completely screened out - see Chapter 4). Nearest neighbour ligands 

behave quite differently and their contribution to the CFPs differs considerably for the fourth and 

sixth CFP. Exchange contributions of the 4f/ligand penetration mechanism have been found to be 

quite negligible for Er3*:Au. From equation (3.11) we see that if we multiply the point charge 

value of the net charge on such ligands by p„ this will give effective charges or pseudo-Point 

Charges (pseudo-PCs) which will take account of the effect of extended charge on the ligand. As 

we have seen above p4=1.211 whereas pt= 1.761 so the effect of the extended charge is very 

significant as regards the magnitude of CFPs. Furthermore these effective charges are unlike 

those appearing in the conventional PCM since they differ markedly with n even where, as in our 

compound £r3*:Au, the overlaps between 4f and ligand orbitals are small.

For our system it is quite clear that even when extended charge distributions are used on the 

ligands this effect cannot explain the negative sign of the fourth order CFP in the literature. The 

extended electronic charge on the ligands has the largest effect on the sixth order CFP, and will 

multiply the unscreened PCM by 1.761, giving about 1.5 cm'1 (we are referring to CFP of the fee 

system and not the axial one considered in this chapter) which improves considerably the agree­

ment with the experimental value 4.17 cm~' (Williams and Hirst 1969).
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CHAPTER 4

SCREENING EFFECTS ON THE 4F/LIGAND MECHANISM FOR & 3*:Au

4.1. Introduction

In Chapter 3 we have calculated contributions to CFPs from the unscreened interaction of 

ligand electrons and nuclei with the 4f-electrons of Er3* when it is substitutionally dissolved in 

Gold. As we have already mentioned the incorporation of the full electronic screening of DW into 

the 4f/ligand penetration mechanism is difficult to compute. To estimate its effect we first deter­

mine the effective pseudo-PCs and the screened interaction is written a s f ( * c l£ - g l ) / l £ - g l ,  

where R represents the position vectors of neighbouring sites on which are the pseudo-PCs, and r 

the position vector of a 4f-electron with respect to the RE site. This approximation is justified in 

section 4.2. The most striking feature of our results is that if we use the DW model, screening 

tends to slightly increase the magnitude of the CFPs over their naive PCM value. This is contrary 

to what one might have expected and is brought about partly because a sizable contribution, of 

opposite sign, arises in a conventional lattice sum unscreened PCM, from next nearest neigh­

bours, and. in the presence of screening, this component is screened out.



- 7 6 -

4.2. Justification of Approximation made in Section 4.1

To get a qualitative understanding of the above screening effects let us imagine the £ r3*:Au 

system when: (i) it is represented by extended electronic distributions for both Er3* and Gold ions 

and (ii) when the electrons of Er3* have extended distributions in space but the Gold ions are 

now considered as pseudo-PCs. In the former case one should expect that the screening will be 

less effective than in the latter. The reason being that in the first case less electronic charge will 

be present between the extended electronic charge distributions than in the latter where Gold- 

electrons and nuclei have been "absorbed" in a pseudo-PC. The above argument is useful if we 

find that by treating the system as in case (ii) screening effects are not important and so there is 

no need to consider the full DW screening of the more realistic case (i).

Of course a quantitative argument to support the approximative estimation of screening is 

desirable. The screened 4f/ligand-electrons interaction is written (first term of equation 2.32) as:

_ J 6 _ < g ,  m , I 1 « .•  < « ')

where we omit the exchange part since it has been found, in section 3.S, negligible in comparison 

to the direct part. The m ’s and o ’s have been defined previously (for instance in section 3.1). The 

orbitals in equation (4.1) on the Er3* and Gold ions form part of a complete orthonormal set (sec­

tion 3.1). It is matter of careful inspection of Figure 6 to be able to express the screened Coulomb 

interaction of equation (4.1) as:

i£ i + 4 - £ ,I ' ,CM £ i + S - o | > (42 )

which may be expanded as:

I! SL<r i.*L2 ~ & •) n  (6i.Oi)Yl '(6.4) (4.3)

where (0i,$i) represent the orientation of a\ (see Figure 6) and 0,4 of r2 -  R . As we have repeat­

edly mentioned earlier (for instance section 2.5.3) the operator b'b, corresponding to filled cores, 

is equivalent to unity. On summing over the core orbitals of a given angular momentum, an angu­

lar contribution of the form £  I Y? I is produced from the core orbitals in equation (4.1) which
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has no angular dependence. Hence in equation (4.3) L =0, and only «oí'i.lfi - £ j l )x C , where C 

is a constant, need be considered in calculating contributions of equation (4.1). go may be found 

exactly in principle but a better approach suitable for making approximations is to write equation 

(4.3) as:

£2 refers to a 4f-electron, whose wavefunction is sharply peaked and close to the origin, Ig  —£.2 ! 

is expected to be larger than r, in general (of course there is always some very small overlap of 

the "interacting" neighbouring wavefunctions). go will now be the coefficient of the Legendre 

polynomial Fo(x) x C \ where C' is a new constant proportional to the above C, appearing in equa­

tion (4.2) when it is Taylor expanded in powers of h. An approximate expansion for g0 may then 

be obtained by truncating this series at an appropriate power of h. This has been found (Dixon 

1986, private communication) to be:

Note that the leading term of F(ker 12) is 1. For an estimation of the terms between the curly 

brackets of equation (4.5) we choose the "worst" possible values for the quantities involved. We

h*= <r,4> = 0.0644. By using these values we see that the term in h2 is approximately one order

e2F [\H l-h2-2hx)
R \ l - h 2-2hx)y‘

(4.4)

where p = **/?', /?' = l£2 -  g  I, A = -¡jr and x  is the cosine of the angle between r2 -  g  and r x. As

| f (*c l£2 -  g  I) -  -jjj-isinp + pcosp)

(4.5)

have used ri -  1 ,64<jo, R = 5.452a0. R' = l£2 — K • = 3.81ao. \i = keR' = 0.7ao x 3.81ao = 2.67 and

used that l s i n p ± p c o s p l  S  Is in p l  + I p l  I c o s p l  5 1+2.67 = 3.67, h2 = < r‘2> = = 0.182,
R' R'

4

of magnitude smaller than the first term and the term in h* is about two orders of magnitude 

smaller than the first term. We therefore expect a reasonably accurate estimation of the screening 

by neglecting all terms in h2 and higher powers of h .



4.3. Calculation

The other part of the 4f/ligand interaction is the interaction of the 4f-electrons of £>*♦ with 

the neighbouring Gold nuclei at R* . This interaction is given by:

where VCr  has been defined in section 2.6.4. As we have already proved for the unscreened case, 

see Chapter 3, equations (4.1) and (4.6) combine to give an effective one-body operator which 

may clearly be written in the form of equation (4.6) but with the Z„ becoming the pseudo-PCs 

defined in Chapter 3. This situation is not quite as simple as the above might suggest since we 

have found in Chapter 3, that for different parts of the CF interaction different values of the mag­

nitude of the effective PCs must be used.

By using these pseudo-PCs we calculate that the contributions to the Ca and C* CFPs, for 

Er^iAu, defined by equation (1.13) have as follows:

z (4.6)

Ca = -  0.125 (4 ^ )“  j y J  (e,.6i,)<a4(r^)> xZ."/ x -§ i (4.7)

C6 = ■ -  0.0625 ($ ■  )“  p ' s  (6* 4R )< arfr,ff)>  x Z .'"  x - | i (4.8)

where:

+1.211 n = nearest neighbours
Z*A = '

+1 n = all other neighbours

+1.761 n = nearest neighbours 

+1 n = all other neighbours

The averages are defined by :

<a„(rjt)> = J/?J/(r)a,(r Jt)r2dr (4.9)
o

where the function a„(rji) is the coefficient appearing in the expansion of the function
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>n Legendre polynomials. That is

fV-af" - <*
where y  is the angle between r and R and a„(rjt) is defined in Appendix C. When kc = 0 (i.e. no

screening) the average <a„(rjt)> collapses to .
/?"

Before discussing the quantitative effect of screening on the CFPs, given by equations (4.7), 

(4.8), we should determine the value of kc to be used. Although in this chapter we consider only 

the effects of screening and do not consider in detail the contributions to CFPs from the 5d-vbs 

we shall see that whether the 5d-vbs is bound or not does, however, limit the effects which 

screening can have on the CFPs.

4.4. Approximate evaluation o f the Screening Constant kc.

To obtain kc we have calculated the energy of the eleven 4f-electrons of the Er3* ion, 

including a modified kinetic energy, the screened Coulomb attraction to the Er3* nucleus and the 

screened Coulomb repulsion between 4f-elcctrons and those in core shells and other 4f orbits. 

We have used the 4f radial wavefunction of Freeman and Watson (1962). In a similar way to the 

method described in section 4.3 we have used an effective charge to combine the attraction of the 

Er3* nucleus and repulsion by core electrons. We also did this when calculating the 4f and Sd 

energies denoting the effective charges by Z*// and Z,/y. For the 4f energy we initially put kc =0 

and derived an expression for the 4f energy as a function of ¿ / / .  The resulting energy was 

equated to the 4f energy from empirical data (Dieke 1968) for the free Er3*. This equation deter­

mined zJ/j = 18.94. The 4f energy was then recalculated for kc * 0, the kinetic energy now being 

.£—(1 -  J^.) where P = 1.569 4« ao and m was the bare electron mass. Assuming that the 4f 

energy is not significantly modified (see our discussion in section 1.2 and Freeman and Watson 

1962) in the presence of screening we obtain an equation for *f , 2$/ being already determined. 

This procedure gave 4« = 0.713ao' (Christodoulos 1985).



The validity of this procedure is questionable since:

(i) we are using Freeman and Watson Hartree-Fock non-relativistic wavefunctions for a free 

£/■*♦ ion and

(ii) it seems as though the value of k< is independent of the host which is certainly not the case. 

On the other hand we believe that the magnitude o f our value is a reasonable one since:

(i) according to our discussion of section 1.2 the energy of the 4f-electrons of Er3* is not much 

modified when embedded in a host and

(ii) the value obtained is reasonably near to the one obtained by using the empirical relation 

determined in section 2.6.3 i.e. 0.78ao*.

However we need a starting point and so we shall discuss our estimations of the screening effects 

for kt =0.713ao*. As we see later the exact value of kc, provided that it is close to the above 

value, will not affect our conclusions.

To determine a form for the Sd-vbs we have made a linear interpolation between existing 

numerical data for the neutral Gd and Lu atoms (Herman and Skillman 1963) and made a least 

squares fit to the following parametrised wavefunction :

+ r ’ £ C ,  «-Z'  (4.10)

We give the parameters of this fit in Table B.13 of Appendix B. For our calculations we used a 

24-parameter 3d radial wavefunction (Christodoulos 1983) but here we present a more elegant 

form which gives the same results. Using the same method as for the 4f case we find Z*f  = 6.386 

(the 3d energy being obtained from empirical data of Dieke 1968). When screening is inserted 

with =0.713flo'. the 3d energy becomes 1.54 i.e. unbound, so is consistent with the 

assumptions used in the DW model. In view of the uncertainty in the value of kc in Figure 10 we 

have computed the variation of the Sd energy (in units) against kc (in a o' units) and we note

carefully that at approximately kc = l.lSao' the energy becomes negative and remains so for 

higher values of kc. As there is no experimental evidence to suggest the 5d state is bound, in fact
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there is much to the contrary, this feature suggest that we cannot have kc 2 1.1 Sao for Er2*.

Figure 10: Variation of the 5d-vbs energy (in e 2!a0) with the value of kc (in a0' )

4.5. Results and Comparison with earlier work

In Table 4.1 we present our results for C4 and Ct in the sixth column. We compare them 

with the experimental values of Williams and Hirst (1969) (second column, IK = 0.695 cm-1). the 

lattice sum unscreened PCM with an effective charge of +1 on all neighbours (third column), the 

calculations of Duthie and Heine (1979) (fourth column) and a DW screened PCM with effective 

charges of +1 on all neighbours in order to distinguish the effect of screening from penetration 

effects (fifth column). Duthie and Heine used free electron screening in a conventional PCM 

with effective charges of +1 on aM neighbours and found values for both C4 and C6 which are 

much smaller than the unscreened lattice-sum PCM values.
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Table 4.1:
CFPs experiment unscreened 

PCM 
all neigh 
chs+l

Duthie-Heine
Hartree

screening

this work 
all neigh 
ch=+l

this work 
accurate 
effch

cm-1 cm-1 cm-1 cm-1 cm-1
C4 -22.24 ± 2.78 8.3 1.33 10.42 12.62

c 6 4.17 ±0.35 0.83 0.42 0.926 1.63

Our calculations use DW screening which has been introduced systematically via unitary 

transformations from a general Hamiltonian (see section 2.6) and gives, for Ac =0.713ao'. CFPs 

which are larger than the lattice-sum values. We expect our approach to be physically more rea­

sonable since it is well known that free electron screening exaggerates the screening effect (Pines 

1964, Raimes 1972, when combined with the work of Daniels et al 1970 and Raether 1980). The 

value of C4 we calculate using a lattice-sum unscreened PCM with all neighbouring charges 

equal to +1 is mainly made up of contributions from nearest (C4 = 11.2264cm-1) and next nearest 

neighbours (C?  = -3.969cm-1). When screening is introduced (Ac =0.713ao') C4 is slightly 

reduced to C4 = 10.42cm-1 whereas c ”  = -0.39cm-1 (In Table 4.1 -fifth column- we present C4 as 

the value of C4 only. This is so because we found that the contribution of all neighbours except 

the nearest is of the order of 2% of the C4). Thus the effect of screening in the first order DW 

model is to effectively make C4 more positive (relative to the net unscreened PCM value) since 

the negative component from next nearest neighbours is reduced by a factor of ten. By taking into 

account the accurate effective pseudo-PCs of Chapter 3 we finally obtain C4= 12.62cm-1. Since 

there is considerable uncertainty in the value of kc we have plotted C4 against kc in Figure 11 and 

we see that for 0SAc<0.8 a0' C4 does not change appreciably (remember that the Ac obtained from 

the empirical formula defined in section 2.6.3 was 0.78a0' )•

In the case of the C6 CFP, in the unscreened model, the second nearest neighbours again 

give a negative contribution but only about 6 % of the magnitude of that from nearest neighbours.
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When screening is introduced C ?  becomes negligible and C6 is principally determined by nearest 

neighbours.

Figure 11 : Variation of C4 (in cm~l) with kc (in a 0') .  Only nearest neighbour contri­
butions with charges of -t-1 have been taken into account.

After kc = 0.8ao' there is a dramatic change and when kc > l.CMao' C4 changes sign. The fact that 

the experimental value of C4 is negative is very difficult to explain by choosing larger values of 

kc because for (see Figure 10) a value of kc appropriate to make C4 agree with experiment would 

mean that the 5d state was bound. This would imply very different effective moment values from 

experiment and possible g-value changes in EPR. These are not observed which implies that the 

Sd state is not bound.

4.6. Conclusion for Chapter 4

Our calculations have shown that DW screening modifies the C4 CFP of nearest neighbours 

by only about 7% whereas the corresponding C6 CFP is virtually unchanged (see section 4.5). The 

contributions from second and higher order shells of neighbours have been found negligible. We
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also show that DW screening affects the magnitude of CFPs, in comparison with unscreened 

PCM values, by up to 20% (see Table 4.1). The probability that screening is responsible for the 

reversal in sign of C4 is small because the range of screening parameters required would create a 

bound 5d state in contradiction to experiment. The negative contribution to C4 from next nearest 

neighbours is virtually screened out thereby effectively increasing the C4 CFP. A similar result 

has been found for the C« CFP with a more pronounced enhancement due to penetration effects 

(see Chapter 3).
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CHAPTER 5

CONTRIBUTIONS TO CRYSTAL FIELD PARAMETERS FOR Er3*:Au FROM A 5d 

VIRTUAL BOUND STATE

5.1. Introduction

Some years ago it was proposed (section 2.2, Coles and Or bach in ref. 15 of Williams and 

Hirst 1969) that a non-magnetic 5d-vbs on the RE site, when interacting with the 4f electrons of 

the RE, could explain the magnitude of the C4 CFP and more importantly its sign which is oppo­

site to that which one might calculate using a naive PCM (Table 1.2). The creation of such a state 

could be understood by considering the difference between the valence of the host ions and the 

substitutional RE (section 2.2). The formation of such a non-magnetic state on a trivalent RE ion 

in a monovalent non-magnetic noble metal has been supported by several workers (e.g. Devine 

1974, Lacueva et al 1982 and references therein). Chow (1973) estimated the 4f-5d(vbs) contribu­

tion to the C4 CFP for Oy3*, Eru  and Ybu  in Silver and Gold.

The aim of this Chapter is to examine in detail firstly the effects of conduction electron 

screening on the 4f-5d(vbs) interaction, where we assume that the 5d-vbs does not mix with orbi­

tals on neighbouring sites, at least initially and secondly the penetration effects of the

5d-vbs with ligand orbitals. This latter effect has been studied by making the 5d-vbs orthogonal



to ligand states, and calculating their subsequent effects on the 4f ground state splitting. The mix­

ing of the 5d-vbs with the conduction band states is assumed weak (DW).

We point out that considerably better agreement with experiment than Chow's calculations 

may be obtained by taking into account the screening of the 4f-5d(vbs) interaction by conduction 

electrons while the penetration effects have been proved not important (at least with the 5d-vbs 

radial wavefunction of equation (4.11) - obviously, the more extended the Sd-vbs radial 

wavefunction the more significant the penetration effects). We show that screening modifies the 

exchange part of this interaction considerably but only changes the direct component by a negli­

gible amount compared with the exchange. Our study concentrates on the £/•*♦:Au, but is trivially 

extended to the Er**:Ag case and may readily be adapted for Dy3* and Yb3* in Silver and Gold, to 

compare with the work of Chow (1973).

5.2. Preliminaries

It is normally argued (section 2.2) that, in cubic symmetry, the 5d-vbs splits into the irredu­

cible representations t ^  (xy.yz, zx) and e, (x2-y 2, 3z*-r2) which are defined as follows (note that 

we have dropped the common radial factor. Ballhausen 1962 p.64):

»
= = r t )  = 1 /  3 V* Vj 

7T T  <*

*1 = = y \  -  J • j  012- ' 1)
0

*2* ■ d*y = r ? )  -

*2« = da = - r l ' )  =

*2« = dyi = -  T k c l ♦ r f )  -  ¿ < * > “ * 3 »

The three states, having angular dependence xy.yz and zx extend towards the positively 

charged nearest neighbours in the fee lanice, while the two e, , having angular dependence x*-y* 

and 3z2—r 2, extend into regions midway between the fee nearest neighbours. This geometry 

means that the t ̂  will have lower energy than the eg states. It is assumed therefore that the three 

la  states have an equal probability of containing at most one electron. The interaction between
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these partially occupied states and the 4f electrons gives rise to a crystal-field-like splitting. 

According to the DW model the 4f-5d(vbs) interaction can be written in second quantised form 

as: (second term of equation 2.32)

where the annihilate» and creators destroy and create electrons in generalised Wannier states at 

the RE site and have been defined previously. The ME in equation (S.2) is defined by equation 

(2.33).

In section 5.3 we shall discuss the effects of conduction electron screening on the 4f- 

5d(vbs) interaction where, to represent generalised Wannier functions, we have used the 4f radial 

wavefunction of Freeman and Watson (1962) which is orthogonal to the 5d-vbs wavefunction we 

have used, given by equation (4.11). In other words we suppose both the 4f and 5d-vbs wavefunc- 

tions are orthogonal to all neighbouring orbitals. Although such an approximation is a sound one 

for the 4f wavefunction (see discussion in section 3.1) it is not clear at all for the 5d-vbs 

wavefunction because this latter wavefunction is much more extended than the 4f one and so one 

should calculate carefully the effect of overlap with neighbouring orbitals. In section 5.4 we 

make the 5d-vbs wavefunction o f  equation (4.11) orthogonal to neighbouring electronic orbitals 

and recalculate the 4f/5d(vbs) contribution to CFPs with the new 5d-vbs wavefunction. We find 

that the contribution to the C4 CFP is not significantly altered. We also find that there is a contri­

bution to the C6 CFP, although it is not quantitatively important. This contribution is qualitatively 

interesting and comes about due to the mixing of the 5d-vbs with neighbouring electronic orbi­

tals. It is worth noting that, so far, such a contribution was not attributed to the 5d-vbs (see our 

discussion in section 5.4).

5.3. Contributions of the 4f/5d(vbs) Mechanism to the CFPs when the 5d-vbs Free Ion 

Wavefunction of Equation (4.11) is Used

By using the equivalences of Stevens (equation 2.17) between pairs of second quantised 

operators and orbital and spin angular momentum operators we obtain the following expressions

(5.2)



for the direct and exchange contributions to C4 CFP:

C¿direct) = * (  S è 3 ) x (  338> .. <31 IO(4>l I3> .. x —j-------------- x
N4 X&XK4/A

F\AfJ$d)x  £  (-1) (5.3)

C¿exchange) * -4^- x <31 IO<4)l I3> 
N4 x  8 x  K4/.4

3 n 2
—771 ] 171 1—7712 ^*2 (5.4)

where for a single 4f electron k+j A = 2/(45xl I) (Stevens 1952). <31 IO<4>! I3>=279.217657 (Smith

The function aH(r 1^2) arise from an expansion of the screened Coulomb repulsion in Legendre 

polynomials (see Appendix C).

The parameter kc which we use here is defined in section 4.4. Due to the uncertainty in the 

determination of kc (see discussion in sections 2.6.3 and 4.4) we provide in Table 5.1 the values 

of the above Slater integrals and compare them with the corresponding ones of Chow (1973) for 

different values of kc. By using the values of 3j-symbols from Rotenberg et al (1939) and the 

Slater integrals in Table 5.1 we obtain C¿direct) and C¿exchange) displayed in Table 5.2.

and Thomley 1966), Nt =8662.5 (Stevens 1974) and the radial Slater integrals are defined as:2

F \4f,5d) -  e2 JjR4/(ri)/?L(r2) (¡¿r^ri) r? rj  drxdr2 (5.5)
0 0

C "(4/,5d) = e2 f j  *4/(nV?s4(ri) a„(rts 2) r\r\ drxdr2 (5.6)
0 0



Table 5.1 : Values o f 4f-5d(vbs) Slater integrals for Er3*: Au. 
kc is in ao units and the Slater integrals in cm-1.

Chow (1973) odH kc =0.713 kc = 1.1

F \4 f* d ) 11752.4 11522.61 11522.30 11509.43

G >(4/•**) 10331.0 10407.44 9348.46 7518.93

G3(4/ JSd) 8585.6 8526.16 8523.88 8479.40

G5(4/ JSd) 6584.6 6513.16 6513.16 6513.16

Table 5.2 : Values o f contributions to Ca in cm-1 for Er3*: Au due to the 
direct and exchange terms of the 4f-5d(vbs) interaction, kc is in units o f  d o 1.

Chow (1973) kc =0.0 kc =0.713 Ac-1.1

C AÎdirect ) -  163.23 -  160.04 -  160.03 -  159.85

Ci(exchange ) 140.43 140.90 130.49 112.33

| exfh. | 86% 88% 82% 70%

C i(dir. ) + C4(cxcA. ) -22.8 -  19.14 -  29.54 -47.52

From experiment (Williams and Hirst 1969) the values of C4 for Er3*:Ag and £ r3+:Au are (note 

that the conversion factor, to obtain these results in cm'1, is taken as IK = 0.695 cm~l):

C4 (Er3+:Ag) = -  48.65 ± 1.39 cm'1 
Ca (£r,+:Au) = -  22.24 ± 2.78 cm-1

From Table 5.2 we see that the strong compensation of the total value o f  C4, made up of 

exchange and direct parts, measured by the ratio I exj j ^ f e I. in the case of no screening

(*e = 0.0 ao* ). weakens with increasing kc and, as a result, an increasingly larger negative contri­

bution is obtained for C4. A screened pseudo-PC contribution for £>3*:Au is about 12.62cm-1 (see 

Table 4.1). We now see that for kt =0.713a 0' the sum of the 4f-5d(vbs) and the screened
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pseudo-PC contributions give a total value of = -  17 cm*1, in satisfactory agreement with experi­

ment for Er**:Au. The dependence of the 4f-5d(vbs) mechanism on the host is through the kc and 

interpenetration effects of the 4f electrons and of the 5d-vbs with the ligand electrons. Since 

* (y g y )*  (DW) we see that the contribution from the 4f-5d(vbs) mechanism, in the

Er3*:Ag alloy, remains virtually the same. A screened PC contribution, for kc -  0.712 a o ', for 

Er3*:Ag gives C4 = +10.23 cm*1. In Chapter 3 we found that the penetration of the 4f with ligand 

electrons can be effectively considered by assuming, for the C4 case, a net pseudo-PC of 1.211 on 

the ligands for Er3*:Au. It is known that the metallic radius of Gold is virtually the same as for 

Silver (Samsonov 1968 p.l02,p.l06). This suggests that the pseudo-PCs for Silver should have a 

similar value to those in Gold since the nearest neighbour distances for Gold and Silver are 

approximately the same. Of course, there will be some differences, but these changes will cer­

tainly not explain the large difference in magnitude between C4 for Gold and C4 for Silver. As 

far as the penetration effects of the Sd-vbs with ligand electrons and their subsequent effect on the 

4f splitting, these have been estimated (by making the 5d-vbs orthogonal to ligand electrons) for 

Er**:Au (see section 3.4) and found to be of no significant importance. We expect, by using simi­

lar arguments as in the 4f/ligand penetration mechanism above, that the 5d-vbs/ligand contribu­

tion is not important for Er3*:Ag as well. Within the first order of DW and the approximations of 

our calculations we cannot explain the difference in the C4 CFP of Silver and Gold although later 

we put forward a possible mechanism whereby agreement might be obtained using information 

which is available from band structure calculations (see Chapter 9).

5.4. Corrections to the Contributions Obtained in Section 5.3 Due to Orthogonalisation of 

the Free 5d-vbs to Neighbouring Sites

The calculation in section 5.3 has been performed using a free ion 5d-vbs wavefunction 

whereas the DW model employs an orthonormal basis set. To obtain an orthogonal 5d-vbs 

wavefunction we have used the method of L5wdin (1950). If the original free ion orbitals are 

denoted by I Qp > and the new combinations by l/i, > then :
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■ * .>  = £  <Ï + S)V* l*,>
p

where the overlap matrix S is so defined that :

S*,

Finally:

<9* •♦*> , if n*p

0 , if n=p

(5.7)

(5.8)

l*„> -  l< >  -  -J - ÏS *  l« ,>  + '♦,» ♦  ■■■ (5.9)

We decided initially to estimate the contribution to the CFPs assuming that the 5d-vbs over­

laps only with the outermost 5d orbital of Gold and if this contribution was found important to 

incorporate other ligand orbitals as well. Thus, we describe the 5d-vbs by I5d-v/w;r,0> where r  

means that the orbital transforms like the irreducible representation r  of the cubic point group 

under rotations about its own site and "0” denotes that the orbital is localised about the impurity 

site which has been taken as the center of the coordination system (see Figure 12):

Figure 12: The twelve nearest neighbours (labelled as 1.2, • •• ,12) of the fee structure 
of Er3*:Au. The impurity site is labelled as 0.
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The position of the twelve nearest neighbours of the RE site is given, in polar coordinates, in 

Table S.3.

Table S 3 : Polar coordinates o f the twelve nearest neighbours o f the RE site.

Site Position Site Position Site Position

1 e * f  ■ ♦ * T ? 5 e - f  ■ ♦ - * 9 e - f  ■

2 6 e . - f  . m o 10 0 - f  ■ ♦ - T

3 D _ S A — ^o = y  . 9 = tj- 7 8 - -2 f  . M O 11 a _ 3lt _ X0 = . 0=  -y

4 q _ x a -e - T  . 0 - - 5 - 8 0 = . 0 = X 12 ft -  3x A -
6 ’ t  • ♦ = - r

The new 5d-vbs wavefunction is given by:

\5d-vbs¡r.n^w> = I5d-vbs;r,0> — -y £  'X'¿(label o f siie)> (S.10)

where we have retained only the terms linear in overlaps and the irreducible representation in the 

left-hand side denotes the generic irreducible representation of the particular state. Note that the 

summation in equation (5.10) contains 5d orbitals of Gold centred on neighbouring sites. There 

are 25 possible overlaps between d -orbitals of the central and a neighbouring site (see states of 

equation 5.1). Since there are 12 nearest neighbours one should expect 25 x 12 = 300 overlaps in 

principle at any rate. Fortunately, this number is reduced considerably due to symmetry argu­

ments. Since such a calculation is a very complicated one and liable to possible errors due to the 

many factors involved (e.g. five d -orbitals on each nearest neighbouring site, 12 nearest neigh­

bours etc) we actually calculated numerically gU possibilities and compared with symmetry argu­

ments. We obtained full agreement, as expected, so our cross-check was satisfactory, confirming 

the results previously obtained. To calculate the overlaps we developed a method for the expan­

sion of an off-site function about the site of interest which is described in full in Appendix D.
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After an intricate calculation we finally found that the five new orthogonalised 5d-vbs states are 

given by:

I5 d -v b s :e g j ie w >  = \5d -vb s,e ^ ,0>  -  le*,l> + le*,2> + le*,3> + l«*.4>]

+  S u [ le * ,5 >  +  I e* ,6 >  +  l r* ,7 >  +  le * ,8 >  +  I e* ,9 >  +  le * ,1 0 >  +  I i * , 11 >  +  le * ,1 2 > ]  

+  5 3 [ lc j ,5 >  +  l e / ,6 >  +  l e / ,7 >  +  l e / , 8 >  -  le ^ ,9 >  -  le * ,1 0 >  -  I e / ,1 1 >  -  l e / ,1 2 > ]

-  8 is [ l /2 » ,5 > -  1/2,,6 > +  l / 2 , .7 > -  l / 2*,8>

-  l/2, ,9> +  I /2, , 10> — If2c.11 > + l /2, . 12> ] |  (S.lOa)

ISd-vbs;e*,n«H>> = I5d-v8.i;e*,0> -  y |s2 [le£ ,l>  +  li/,2> + le/,3>+ le/,4>]

+ 83[le*,5> + le*,6> + l«/,7>+ le*,8> — le/,9> - le*,10>-  le^ ,ll> -  le*,12>]

+ 8i[le*,5> + le/,6> +  le/,7> +  le*,8> + le^,9>+ l«i,10> + l e / , l l> +  le^,12>]

r 0 0 0 0 1 1 1 1
-  57[2l/2*,l>-2l/2,.2> + 2l/2g.3> — 2l/2,,4>+ l/2*,5>- l/2*.6> + l/2 *J>- l/2*,8>

+ l/2».9> — l/2,,10> + 1/2*. 1 1 > - l/2*,12>]|(5.10b) 

\5d-vbs\t>2g,new> = l5</-vfej;/^*,0> -  2Si[ lc*,l>  -  le*,2>+ l«*,3> -  le*,4>]

-  82s[l/2*,5>- l /2*,6> +  l/2* ,7> - l / 2*,8> +  l/2*.9>- l/i* ,10> + 1/1*.l l > -  l/l*,12>]

0 0 0 0 0 0 0 0 , 
+  822[l/2g.5>+ l/2 * .6 > +  l/2 * .7 > +  l/2 * ,8 > +  l/2* ,9>+  l/2* ,10>+  l /2 * , l l> +  l/2*.12>J

+ S23[l/^,1> + 1/2* ,2> + l/^*3> + l/fc,4>]| (5.10c)

l5d-v(w ;/2*,neH>> = l5«/-vhr;/2*.0> -  ■j’|s23 [l/2*^>  + l /2*.6> +  l /2*.7 > + l /2*.8>]

-  82j [ l / 2* , l > -  l/2 » .2 > +  l/2*,3> — l/2*,4>  +  I /2*,9> — l/5*,10> +  l / ^ , l l > -  l /^ ,1 2 > ]  

+  822!  I / 2*, 1 >  +  l/l* .2>  +  l / 2*.3 >  +  l/l* .4 >  +  l/l* .9>  +  1/1*. 10> +  1/1*.11> +  l / 2*,1 2 >]

-  8?[ >/3(Ie*,5>-1e*,6>+1e ,.7 > -1<•*,8»

+ le*.5> -  le*,6> + le*,7> -  li*.8> ] | (5 .1  O d)
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\5d-vbs\lit ,new> = \5d-vbs\tjt JH> — + l*2*»10>+ l/2*,ll> + 1/2*.12>]

+ 622[l»2*.l>+ I»2i ^ > +  l/2*3>+ 1/2*.4>+ l/2,.5>+ l/^*,6>+ l/^*,7>+ l/^,8>]

+ &7[ >/3(l«*,9>-le*,10>+le^,ll>-le*.12» -  l«/,9>+ le/.10> - le/,ll>  + le/,12>] 

— 625[l»2«,l>- l/2*,2> + l/2*,3>- l/2*,4>

+ l/jr^>  -  l/j*.6> + U*.7> + l/2*^>]| (5.10c)

where we have used the notation IT '.label o f site> instead of the full 

\5d-Au\T'Ji(label o f site)> for simplicity. The 6’s represent overlaps the origin o f which can be 

easily understood by careful inspection of the ¿-states multiplied by these 5's and equation (5.10) 

e.g. §23 in equation (5.10e) is related to the overalp </l*,l l/^,0> which has the same magnitude 

as <<2*.2l/2(.0> and so on. These S's have been found to have the following numerical values:

8. - - 0.04501

62 - + 0.03220
5j - + 0.04458
87 - + 0.01057
811 - + 0.006465
8,2 - - 0.07075
8u - + 0.01831
822 - - 0.02538

823 - + 0.05661

825 - - 0.04537

The subscripts of the S’s have no obvious significance to the reader but we wish to keep this nota­

tion since it has been used throughout our lengthly calculation, to avoid confusion.

Once the orthogonalised 5d-vbs states were determined the corresponding MEs V of equa­

tion (5.2) become (initially we concentrated only on the direct part and if this contribution was 

found to be important we intended to incorporate the exchange term as well):
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<4/m ,. 15d-vbs;I~,,0> -  y  £  15d-Au ; r [^?¿label of site)> I Vx  I

4/wj, I Sd-vbs ;r2,0> -  y  £  \5d-Au-,r'2Jf£label o f site)">

< 4 /m i, 5d-vbs ; r ¡jiew I Vjc I 4 /m j, Sd-vbsSiJiew >  =

<4fm  i, (5d-vbs ¡ri,0) I Vx  I 4/m 3, (5d-vi»j;r2,0)>- <4/m,.(5<i-vi»;r,.0> I Vjc I 4/™,.(M-4«;r;.fi!«oi*/))>
-  |  t J.r . sl . M  <4/™ ..(r,'Jt,(laW )) I V« I 4 /m ,.(M -rf»;riO )>

+ T  Z  . Z  . ■Sf.j'.j-: «IJ-J-i < 4 / ™ <M -An :r ,\ a  ,(M*/» I Vsc IiiX.Xi aPrtxj

4/mj, (5d-Au¡rj.E*label))> (5.12)

where Vx  denotes the screened Coulomb interaction. It is trivial exercise to show that the 

second and third terms of the right-hand side of equation (5.12) are equal. Notice that they 

involve one off-site orbital and one overlap. The fourth term involves the square of an overlap 

and two off-site orbitals which indicates that we expect it to be at least an order of magnitude 

smaller than the second and third terms, if not orders of magnitude. We concentrate on the second 

term of equation (5.12). In order to calculate this ME we suppose that r_\ and r 2 refer to the RE 

site and so expand the off-site 5d-Au orbital with respect to the RE site (see Appendix D). We 

have used, as before, the 4f radial wavefunction of Freeman and Watson (1962) in the form 

R*/(.r)Y) (0.0) and for the 5d-states we incorporated the new »2,-like states defined by equations 

(5.1) and (5.10) where a general off-site d -state has the form :

/ d i - s D  [*,>■:• + 61i 'r" ‘]

I f  the off-site state transforms like the e, irreducible representation then b\ = b2 = 1 /(2* ). If it 

transforms like the then b\ = l,b2 = 0. If it transforms like the then b\ = -b 2 * l/(i 2*). 

Finally, if it transforms like the /J, b t = -6 2 = -l/(2 * ) and for the i2t representation 

b t = -  -!/(/ 2*). Similarly the on-site 5d-vbs is represented by:
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*ST(r) [ a ,  I ?  + a ^ n

The values of the coefficients a i. a2 are defined similarly as the above b ’s.

We found, using the expansion of the screened Coulomb interaction given in Appendix C 

and equations (1.19), (1.43) of Rotenberg et al (1959), that the contributions to the C4 and C6 

CFPs were as follows:

153.6987447 „  J  £  g  £  F j *

<513)
( 3  8  o ')  ( 8  ä  o ') (  8 o' V )  C t 1  5 k )  (  -%  ü  m \  )  £ ’«>«•♦»>

- • h (  2-X X 2 \ (  2 ¿1 2-X ^ + a? b -(  2-X x 2 W  2 f j  2-X }V m6-p  p —m6 /  V -m 2 in m6-\i '  T “ > 02 V -m 6-p  p m6 '  V -m 2 m -m 6-p  y

+ 02*1( 2-X X 2 W  2 Li 2-X 
w6-p  p —m6' 'w j  nt «6-P )  + a2b2(. 2-X X 2  \ (  2  Li 2-X }

—« 6 -p  p  m6/ v mj m -m 6-p  '

where

f  X*(4 / ,54£,*\54*") -  , •  J J « v ( r ,)* S V l)  atCnsi)
00

r* r 2 dr\dr2 (5.14)

and \ ^ ( r 2J i ) represents the radial part of the 5d-Au orbital after its expansion with respect to the 

RE site (see Appendix D). The values of m2 and m6 are fixed. From the selection rules of the 3j- 

symbols (Rotenberg et al 1959) and properties of the factorial we obtain that: X = 0,1,2; 

p = -X,• • • ,X; ¿ i  = 0,1,2.3,4; n =0,1.2,• • • ,8; L 2 = 0,1,2. •,10; M2 = m2-m 6 if we

calculate the first term between the curly brackets, M2 = m2+m6 for the second, M2 = -m 2~m6 for 

the third and M 2 = -m 2+m6 for the fourth term. We have retained many decimal places for 

numbers which we know exactly e.g. 3j-symbols and reduced MEs, to retain as accurate a picture 

as possible because, for instance, we cannot estimate the errors in the radial integrals because of 

uncertainties in the wavefunctions.
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To obtain the contribution to the C6 CFP we perform the following simple substitutions in 

equations (S.13) and (5.14):

(i) replace 153.6987447 by 234.9399044

(ii) replace 4’s by 6’s

and use <31 !0<6>l I3> = 1232.991788 (Smith and Thomley 1966), Ng = 116943.75 (Stevens 1974). 

mi and m6 are fixed again. Similarly X*0,l,2; n»-X 1i - A: ¿1 *0,1,2,3,4; n = 23. • • • .10; 

m = -n , • • • Ji; L i  = 0,1,2, * * • ,10,11,12; M i is determined as previously. The values of the 

F*\ (4/ I5d£>J+,5dA*‘) and F jf  (4/ ¿ d E,y*¿d**) radial integrals are given in Appendix E.

The contribution of relation (5.13) to the C4 CFP, in the limit of no screening, has been 

found to be +0.525cm-1 and so the contribution of both second and third terms of the right-hand 

side of equation (5.12) will be: + 1.03cm-1 i.e. 5.5% of the unscreened contribution of the first 

term (which is -19.14cm'1) of the right-hand side of equation (5.12) and of opposite sign. We can 

easily see from Appendix E that screening (A«- =0.713ao') will reduce the above contribution of 

40.525cm-1 by up to about 3.8% i.e. the screened contribution of both second and third terms of 

the right-hand side of equation (5.12) will be about +1.01cm_l, 3.4% of the first's term 

corresponding screened contribution of equation (5.12) which is -29.54cm-1 (see Table 5.2). 

Clearly, it is not worthwhile to calculate the exchange contribution since even the direct part of 

the above mechanism is not important.

Similar conclusions have been reached for the C6 CFP. We found that the contribution to 

the C6 CFP due to the second and third terms of the right-hand side of equation (5.13), after the 

appropriate substitutions, is + 4.94x10-J cm-1, which is negligible with respect to the pseudo-PC 

value of 41.63 cm-1 (see Table 4.1). Again we did not feel justified in calculating the screened 

direct and exchange contributions for the C6 CFP. It is interesting to note that the first term of the 

right-hand side of equation (5.12) does not contribute to C6. The reason being that for n=6 the 

(  J  8 $ ) and (  ^ 8 $ ). which appear in equations (5.2) and (5.3) but with w=4, are equal to zero 

due to the relevant triangle condition (Rotenberg et al 1959).
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5.5. Conclusion and Discussion o f Chapter 5

We have shown that for a non-zero value of kc, indicating the presence of screening in the 

4f-5d(vbs) interaction, good agreement with experiment for £ r]*:Au may be obtained. The value 

of kc used is = 0.713 ao 1 (although this value has been questioned in Chapter 4). Fert and Levy 

(1977) studied magnetotransport properties of noble metals containing RE impurities and found 

that, in order to explain experimental results, it was necessary to reduce their 4f-5d(vbs) exchange 

integrals but not the corresponding direct ones relative to their values using atomic wavefunc- 

tions. This strongly supports our calculation above where screening has a marked effect on 

exchange integrals but leaves virtually unchanged the direct one.

It is important to point out some of the uncertainties in our calculations. Firstly the value of 

kc is not known accurately but there is a lot of evidence (see section 2.6.3) to show that the value 

we have taken is close to that suggested by other workers i.e. = twice the RPA value. Our conclu­

sions will not therefore be affected by slightly different values of kc. Another particular source of 

error is the wavefunctions we have used. The 4f wavefunction was non-relativistic Hartree-Fock 

for Divalent ions whereas those for the 5d-vbs. where uncertainties are probably greater, were 

obtained from an interpolation procedure from Herman and Skillman (1963), (see section 4.4). 

Quite apart from  the fact that these states have a finite lifetime, and hence width, which we have 

not incorporated, the numerical values between which we interpolated are for neutral ions and are 

non-relativistic (see section 4.4). The line widths given by Lacueva et al (1982) i.e. AAg = 0.45ev 

and Am. = 0.6ev suggest that for Gold vbs lifetimes are shorter than for Silver so we might expect 

a larger 5d-vbs contribution to the C4 CFP in the Silver case.
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CHAPTER 6

A QUALITATIVE ESTIMATION OF CONTRIBUTIONS TO CFPs FOR Er3*:Au AND 

Er^-.Kg FROM A SPLIT O F F STATE FROM TH E CONDUCTION BAND

6.1. Introduction

It is well known (Economou 1979 p.109) that when a single impurity at a substitutional site 

is present in an otherwise perfectly periodic host lattice, its effect is to produce at least one 

discrete energy level outside the host band. Since in the system under consideration. Er3*:Au, the 

RE impurity carries a net difference in charge from the host ion it substitutes for we expect such 

an effect Dixon and Wardlaw (1986b) provided an analytical description for the state split off 

from the host majority conduction band, which is assumed s-like, from such an impurity poten­

tial. They denoted the split o ff discrete state by lc0> and found that it has A |-like symmetry i.e. 

invariant under all the operations of the cubic group but not rotationally invariant. According to 

the DW model and Dixon and Wardlaw (1986b) the lco>. in a zeroth order of approximation, is 

the 6s-like Wannier function for £ ru :Au (or Ss-like for Er3*:Ag) which would be present at the 

RE site in the perfect host and it is orthogonal to the rest of the band states by construction. It was 

found to have the form

lco> lc0> z
< A, I V? I CQ> I A, > +

E*. ~ Ec.
(6.1)
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where \A, are majority band functions which have A r  symmetry, V f  is the additional potential 

arising from the presence of the RE impurity and Hbmd is the Hamiltonian for an electron in a 

perfectly periodic lattice. EA' is the energy of the corresponding band state and Ee> is defined by:

Ec, = <£*> ♦ < c# l VT  l c 0 > (6.2)

where <£*> is the average energy of the original majority band before lc0> split off. £e> is well 

separated by about half of the band width from the bottom of the band (Dixon and Wardlaw 

1986b). To zero order in overlaps lc<>> will simply be the 6s state (or Ss for £r3*:Ag), lco>. of the 

host but at the RE site. The interaction between the 4f(RE)-electrons and the lco> is given by 

(third term of equation 2.32):

j k j < c’o ~ S 1ly* c l f « . .£ J> -  a . * « - '« ,5 ,1 V *  (6.3)

where the second quantised operators have their usual meaning. To estimate the magnitude only 

of contributions to CFPs from equation (6.3) we made the following approximations:

(i) We assume <co,oCo,o> = y  for both a  = 1/2 or -1/2 since it has to be occupied for there to 

be an interaction.

(ii) The 6s-state of Gold (5s for Silver) couples only to the 6s-states (respectively 5s) of the 

nearest neighbours. lco>, being a generalised Wannier function, must be orthogonal to 

core orbitals of the RE, the rest of the band states and orbitals on neighbouring ligands. 

Thus lco> will be the on-site 6s-state plus admixtures from neighbouring ligands which 

we have calculated using Lowdin's orthogonalisation technique and admixtures from the 

rest of the majority band states. We have retained only the 6s ligand contributions 

although 5d, 5p and 5s ligand states may be present. However the overlap with these 

latter 5d.5p.5j states is smaller than with the 6j  ligand state since all these are fully 

occupied with a smaller radial extent.

(iii) As far as the 6s(Ss) radial wavefunction is concerned we are using the Herman and Skill- 

man (1963) numerical data for neutral Au-atoms (respectively for Ag) to determine 

analytical expressions given by equations (6.4), (6.5) and Tables 6.1 and 6.2.
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(iv) Low din's method has been used to find the new "6s" state which may be written as in 

equation (6.6).

(v) Terms incorporating majority band states \AS> have been dropped at this stage because, 

for Gold, we expected their effect to be relatively small (see Chapter 9).

e £ ( r )  -  'KC*-** + C * - * ')  ♦  r> (C *-Z-' + C * - 1' )  +  rH.C*-1'  + C « r Z' )  (6.4)

/■sf(r) = rCte-* ' * ♦  C « - ' )  *  r K * * '  *  r V x  * ' (6.5)

where the noimalisation condition is jPH rW  « 1 end r is in atomic units.

Table 6 .1 : The parameters C, and Z, which 
define the 6 s radial wavefunction o f Gold given 
by equation (6.4).

i c, Zi

1 -0.42106137 0.721365

2 433.38138 20.219927

3 -28191.421 39.885772

4 -119.1105 6.8980116

5 -0.2780246 1.6866939

6 128.63094 5.4153185
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Table 6.2 : The parameters C, and Z, which 
define the 5 s radial wavefunction o f Silver given 
by equation (6 .5).

i Ci Z>

1 8.3102878 1.3811292

2 -21.15583 2.4085704

3 -  332.24003 16.669123

4 -  64.692329 5.2747694

3 0.089199946 1.052574

16s;new> = 16$Au,on> -  165A u ,0 //>  (6.6)

and similarly for the 5s-orbital of Silver, where Sg denotes the overlap defined in equation 

(6.7) and we have included only terms linear in overlap.

To calculate the overlaps involved in this calculation we used our development for expand­

ing an off-site function about the site of interest (Appendix D). We find:

6s~ = Au .o ff  16r Au .on > = 0.4123

= <5j '<*8 ' ° f f  15s 'A 8 <on > = 0.4093 (6.7)

where we used the following nearest neighbour distances: = 5.451853 a0 and

r £  = 5.470783 a0. To test our numerical calculations for the overlap values we found that for 

R„~*0 both overlaps tend to 1. All calculations were performed using neutral Herman and Skill- 

man (1963) data fitted atomic wavefunctions. According to Samsonov (1968 p.102, p.106) Silver 

and Gold atoms have the same metallic radius. This suggests that in the metallic phase similar 

values for the overlaps are expected, the nearest neighbour distance being virtually the same for 

both fee structures. There are no reliable estimations for the atomic radii of the neutral Gold and 

Silver atoms (Lucken 1961) so although we have some evidence that our calculations will give 

similar magnitudes for both the Gold and Silver metals we cannot estimate the changes in



magnitudes.

6.2. Direct Contributions

Once the wavefunctions to be used are determined, the direct MEs of equation (6.3) will 

become:

<  (6s;new ) , 4f m& I Vsc I {6s .new ), 4f mp. >  =

(I6j ;4m.0m> — 16* />//>) ,4/^^j- >  =

<  <6»v4.4»i ) . 4 / . 0. I Vsc I ( t s i A k J M ) . * / ^  >

~ 7 f  SJ^.«4 .-<  161 '■*“ >■ V -4- 1 v*  1 («»-4«4>//) .4 / . , .  >

- j z  * , , * « * - <  («« :4 m .< > //) .  4/ „ „ .  I Vsc I (6s 4 m mot ) .  */„„■ >

+ T £  <6> 4 « - « / / ) . V . , -  I V«: I <6J4m, » / / ] . » / . „ .  >  (6.8)

where Vsc ¡s die screened Coulomb interaction. The first term on the right-hand-side (RHS) of 

equation (6.8) leads to a rotationally invariant operator and so does not contribute to the C4 and 

Ct CFPs. The second and third terms are equal and do contribute to the C4 and C6 CFPs. As far as 

the last term of the RHS of equation (6.8) is concerned we expect it to be much smaller than the 

second and third ones and so it is neglected. The reason being that the fourth term involves the 

square o f the overlap and two off-site states in comparison with only one overlap and one off-site 

state o f the second and third terms. Straightforward algebra yields the following analytical 

expressions (within the above discussed approximations) for the contributions of the second and 

third terms of the RHS of equation (6.8) to the C4 and C6 CFPs:

-103-
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C f* c'( 4 / / c ‘o) -  -  0.147704487 Ŷ*\<dKM) FM(6i°".6io//,4 / ) (6.9)

C?"" (4//c^) = -  Sfc#A.  0.061448781 £  »'“’(Q* .1»*) /r6-6(6j",.6jo//.4/) (6.10)

where we take into account only nearest neighbours (since, for instance, all subsequent shells of 

neighbours are screened out by the screening action of the conduction electrons, see Chapter 4 or 

alternatively because the overlap between the 6s on the RE site and 6s on the second, third and 

higher order shells of neighbours is, to all intents and purposes , zero). The radial integrals are 

defined as:

F"-"(6j o/ / ,6j " \4 /)  = e2 JJ/?6,(r,) /?4/(^2) a„(r,^-2) Rtf(r 2)r\r\drxdr2(6 . \ \ )
0 0

with

£ i r < * . 4 » ) - - # [ $ ] *  (6.12)

the function am (r i,r2) arises from an expansion of the screened Coulomb repulsion in Legendre 

polynomials and has been considered in detail in Appendix C. A^“(riJi) represents the radial 

part of the 6s-Au orbital on the ligand after expanding it with respect to the RE site (Appendix 

D).

Obviously, these results can be easily extended for the case of Silver by substituting the 5s- 

Ag wavefunction for the 6s-Au wavefunction. We present the results of this calculation in Tables 

6.3 and 6.4. To test the validity of our programmes in the Gold case for the calculation of the F 

direct radial integrals we have put aK(r\,ri) = 1, n=  0 and obtained the value of the 

< 6 j  \Au .o ff 16s .A u .on > overlap as was expected. Similar tests were performed for Silver. At this 

point we should point out the difficulties faced in the numerical calculations of the F6-6 radial 

integrals. The problem appeared near the lower limits of integration (i.e. near the origin). In view 

of the expected insignificance, at least for £ rSt:Au, of the F6-6 integrals, we decided not to per­

form the extremely time consuming exact calculations but instead to give estimations of their 

magnitude.
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Table 6 J  :
equation (6 .1 1 ), in e2/a

Values o f the F direct radial integrals defined in

ke =0.0 flo' Ac =0.713 00*

Au : FAA(6s°*,6soff A f  ) 1.694x10-* 1.685 xlO-*

Au : FM(6s0*,6s0ff A f  ) 2.2 xlO"5 2.2 xlO-s

1.951 xlO-* 1.926x10-*

Ag : F**i5s°*,5s°" A f  ) 2.5 xlO-s 2.5 xlO-*

Table 6.4 : CFPs derived from the direct 4f  ico interaction 
forE r3*:Au and Er3*:Ag in cm~l.

Ac = 0.0 ao1 Ac = 0.713 ao 1

Au : ct™ ' + 3.354 + 3.336

Au : C fncl + 0.3 + 0.3

Ag:Cf “ ' + 3.835 + 3.786

Ag-.Ct™ + 0.34 + 0.34

6.3. Exchange Contributions

Since the overlap between the 6s-orbital on the RE site and the 6s-orbital on the nearest 

Au-neighbours (similarly for the Silver case) is significant we expect important "exchange" con­

tributions. The "exchange" MEs of equation (6.3) are given by:
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- y  <  (6s;tww)t 4/a |r  I Vjc 1 A f ^  .(6t;new) >  -

- 4 -  I VSC I

* / . / ,  ■. < '«* * “ ■<”• > -  y  Z  16» A u  j i f f  »  >

- y  <  ( faA u jm ),A fmfl. I VK  \ Afmfl. . (fa Au jm ) >

+ T  f  SAA-"*-< (6* 4 / . c. I V,c I 4/„„. . (6| * « .o ff  ) >

+ T  f  SJl4,-'/. - <  «4 * « .» //)  ■ 4 / .„ .  I V«: I 4 / . , . .  (6. * « * « ) >

- y ^  St ,M- t . - SlA.~M -<  1 V«c I 4 / .  (6. * « ,» / / ) >  (6.13)

In a similar way to the direct case (see equation 6.8) the first term of the RHS does not contribute 

to the C4 and C6 CFPs. The reason for this is that it can contribute only to third order CFPs and 

these will not appear in cubic symmetry. Arguing similarly to the direct case we neglect the

fourth term of the RHS of equation (6.13) and evaluate contributions only from the second and

third ones. After some algebraic manipulation we finally obtain:

c r* (4 /;c i)  -  + s „” 1a-  t I t  0.147704487 V l," '( 8 ,. t , )  .&s""Af) (6.14)

C r ‘ (4//c0) -  + 7 ^ J  0.061448781 £ r ? ‘(e„.4>„) G>4(6i“ .6» '".4/) (6.15)

where

G j4(6i " '.6 i “ .4 /) .  t 1 ¡ ¡ R u in )  *./(>•!) «jO i-tO R . , ( r , ) r ] r \ d r , d r , ( 6.16)
0 0

a* (ri,r2> and are defined in the same way as in the direct case (see Appendixes C and

D). We faced, similar to the direct case, difficulties in the numerical calculation of the G3-6 radial 

integrals so we only provide an estimation of their magnitude. We summarise our results in

Tables 6.5 and 6.6.



-107-

Table 6.5 :
equation (6.16), in e2la0

Values o f the G exchange radial integrals deñned in

*c =0.0 a i 1 k< =0.713 a i '

Au:G**(6scm.6so//A f) 5.18 xlO-5 5.15 xlO-5

Au:Gi*(6s0m.6s0, /Af ) 6.6 x1o-6 6.6 xlO-6

Ag . ¿ 5 , Af ) 6.06 xlO-5 6.02 xl0-s

A g:G 'H St~A ,’" A f ) 7.7 xlO-6 7.7 xlO-6

Table 6.6 : CFPs derived from the exchange 4 / lc0 interaction 
fo r  Er**:Au and Er**:Ag in cm~x.

ke =O.Oao‘ *c = 0.713 flo1

Au -.CT* -0 .66 -  0.656

Au : CTch -0 .09 -0 .09

A g :C T h -0 .77 -0 .7 6

a s  c r ‘ - 0 , -0 .1

6.4. Conclusion and Discussion of Chapter 6

In this chapter we attempted to estimate the contribution of the lc<>> generalised Wannier 

function to the CFPs of Er}+:Au and Er**:Ag.

In practice such a state should be the 6s (or Ss for Silver) generalised Wannier function of 

the host but at the RE site. This was mimicked by the free atom 6s-state plus a linear combina­

tion of admixtures of neighbouring orbitals which ensure the orthogonality property of the gen­

eralised Wannier functions, plus a mixture of majority A (-like band states (Dixon and Wardlaw 

1986b). In this chapter we have made the approximation that only terms linear in the overlap to
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6s(Au) orbitals of nearest neighbours is retained. We expect that this will be the dominant contri­

bution, at least for Er^rAu, but actually we should consider smaller terms linear to 5d, 5p, Ss-Au 

orbitals (at least) and mixing to other conduction band states before we can fully assess the mag­

nitude of the leo> contributions to the CFPs (see discussion in Chapter 9). From the above calcu­

lations we can say that the lco> does provide a contribution which will not significantly modify 

the value obtained for the C4 CFP from the mechanisms considered in Chapters 3,4, and 5, for 

£#•*♦: Au i.e. in total will get = -  14.3cm-*. We can also say that this mechanism tends to improve 

agreement with experiment for the C6 CFP. In view of the involved uncertainties we do not feel 

justified in making a full numerical comparison with the results obtained in previous chapters.

The theory of DW, in first order, is therefore quite capable of explaining the size and sign of 

the C4 and C6 CFPs of £r**:Au although it cannot explain why the CFPs are twice as big for the 

£/■*♦:Ag case as the £ r ,+:Au dilute alloy (at least within the approximations made in our calcula­

tion above). We postpone the discussion of this question until the Concluding Remarks section

of the thesis.
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CHAPTER 7

ZERO-FIELD SPLITTINGS FOR S-STATE IONS

7.1. Introduction - First Order Perturbation Theory for S-state Ions: PqH Po

From Chapter 3 to Chapter 6 we were mainly concerned with an investigation of the CFs of 

the dilute RE-alloy Er3*:Au. At a later stage, in Chapters 5 and 6 we made a comparison with 

Er3*:Ag and tried to elucidate why the experimental value of the C4 CFP for these two alloys 

differ by a factor of two. All these latter calculations were performed within the particular first 

order treatment of the DW model. One of the reasons for doing this is that one expects sizable 

contributions to CFPs in first order for non-S-state ions and reasonably close agreement with 

experiment (Stevens 1976, DW). When we examine S-state ions the situation is quite different 

since they possess zero total orbital angular momentum in their ground levels (at least within the 

RS-coupling).

As an example suppose we consider an insulating crystal with N Gd3* impurities. The 

Ground Level (see Chapter 1) of the free Gd3* within the RS-coupling. according to Hund's rules 

(Chapter 1) is: 4 /7,8S7/2. We can therefore think of the ground family (section 2.5.2) as being 

made up of electrons in closed shells, except for seven 4f-electrons at each of the N Gd3* ions. In 

the absence of any interaction lifting the eightfold degeneracy the 4f electrons can be in any of
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the eight Ms states of the Ground Level 4 f  . *Sw  In a similar way to the non-S-state case (see 

section 2.5.3) we define creation and annihilation operators as follows: a f.a:bM>; • • • for 4f- 

electrons related to the sites A,B ,■ ■ ■ and Tf, f  referring to filled orbitals which are not necessary 

on the RE sites. To obtain a splitting of the /  = S -  7/2 one would expect that orbital operators of 

the form a fa should appear.

Our Hamiltonian H involves in general one-electron spin-independent and spin-dependent 

operators (which we denote by h , hs respectively ) as well as two-electron spin-independent or 

dependent ones g , gs . The main contributions to H are those of the kinetic energy, the Coulomb 

attraction between electrons and nuclei (these latter two being h -like), the Coulomb repulsion 

between electrons (g-like) and the spin-orbit coupling (/is -like). These are the only terms we 

retain. We therefore drop all other spin dependent contributions like spin-spin, spin-other-orbit 

components and possible Zeeman terms which would otherwise arise (such terms are very much 

smaller than those we retain).

Let us now examine each of the contributions in turn when written in second quantised 

form in the spirit of the analysis of Stevens (section 2.5.2).

One-electron spin-independent terms in H within RS-states

Such operators as a fa can be readily obtained, for instance from the h -like terms in H :

E  <amo I h I am o> a^a amo = £  <am \ h \ am > amo
mjnja mjn' a

This type of operator would describe the crystal-field-like part of Coulomb attraction contribu­

tions which involve nuclei not at the site o f the RE. By using the equivalences of Stevens (equa­

tion 2.17) becomes 2  0 ^ m- (/, ) where i , , . ,  and the O operators have been

already defined in section 2.5.3. Within any orbital singlet (L =0) each YPmhi(£ )can ^  replaced 

by a constant i.e. the one-electron spin-independent terms do not split the RS ground manifold.

One-electron spin-dependent terms in H within RS-states
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The most important hs -like term in H is the spin-orbit interaction. This usually appear in 

the form £ § ( r ,  ) h -n  where 2, is an orbital operator for the i-th electron whose components

transform like those of a vector (i.e. according to the irreducible representation £>(1> of the full 

rotation group). If we now replace the spin-orbit interaction by second quantised operators and 

then by angular momentum operators, the resulting expression will also transform like D(,). But 

no such operator can have MEs within an orbital singlet (L=0). To understand this we can simply 

apply the Fundamental ME Theorem (Heine 1964 p.103), which states that non-zero MEs are 

only possible if the product of the irreducible representations of the states between which an 

operator is sandwiched contains the representation according to which the operator transforms. In 

this case £)<0>x£><°> = D(0) and of course D(1) is not contained in £><0>.

Two-electron spin-independent terms in H within RS-states

These are of several kinds. Those of type a'f Ta and a 'f  faf result in purely orbital terms for 

the f  f  may be commuted through to the right and replaced by unity (section 2.5.3). We can also 

have operators of the type a V aa but these arise from the Coulomb repulsion of electrons on the 

same site, and, as this is rotationally invariant, it cannot lift the spin degeneracy of S =J =7/2. 

The remaining possibilities are of type ab 'ba  and aV ab  but we are not interested in these 

mechanisms since later in our study we consider a single Gd3* ion doped in lanthanum ethylsul- 

phate.

Two-electron spin-dependent terms in H within RS-states

All these have invariably been omitted in phenomenological spin-Hamiltonians since they 

are expected to give very much smaller MEs (Stevens 1976 p.34).

In conclusion we can say that, within the Ground Level determined by RS-coupling, the 

first order perturbation theory of Stevens will contribute nothing to the splitting of the Gd3* 

Ground Level. Such a splitting is well established for a variety of hosts (Abragam and Bleaney 

1970 p.335) and although small, is not negligible. In this thesis we concentrate our S-state ion 

studies on Gd3*-doped lanthanum ethylsulphate (La(C 2H sSO *)y9H ■&). For this specific case it
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has been found (for instance Dagg et al 1969) that there is a ZFS between the Mj =±7/2 and 

Mj = ±1/2 doublets given by:

E(Mj — ±7/2) -  E(Mj =±1/2) = + 0.236 cm"1 

To obtain these well determined small splittings from a theoretical model it is clearly neces­

sary to go to higher order in perturbation theory and consider interactions with excited Levels. 

This was attempted by various researchers (see section 7.2) without any success. In fact, they 

found that either the suggested mechanisms produced a negligible contribution to the ZFS or they 

produced a ZFS of the wrong sign.

In view of the fact that the spin-orbit interaction significantly mixes the ground RS-Level 

*Sia into the first excited 6Pm  (and indeed others) we follow, for instance, Tuszyifski et al (1984) 

in the literature and take the unperturbed manifold projected out by P0 to be the intermediate cou­

pling ground state of Gd3* (often referred to as simply the spin-orbit mixed ground state) and all 

projectors for excited eigenstates of H0 refer to intermediate coupling states. This has been 

defined already in section 1.1 as:

l*S7,2» = 0.987 l8S7/2> + 0.162 l*Pm> + smaller admixtures 

where I • • • »  implies intermediate coupling and I • • • > RS-coupling. These spin-orbit mixed 

states are obviously diagonal with a Hamiltonian which involves only on-site operators. It is clear 

that:

<k*S7/2 I H I l*S7/2» = 0.987x0.987 <«S 7/2 I «  I l*57/2>
+ 0.987 x 0.162 <*S7/2 I «  I 6Pm>
+ 0.162 x 0.987 <6P7/2 I H I ®S?/2> (7.2)
+ 0.162 x0.162<6/*7/2 I H I 6P 7/2> + smaller admixtures 

The first term on the RHS of equation (7.2) is proportional to that which has already been dis­

cussed above. As far as the second term is concerned, one-electron spin-independent terms cannot 

contribute since the interacting RS-states have different spin components and are therefore 

orthogonal. The only -like term of any significance in H is the spin-orbit interaction (V*,). The 

ME <®S7/2 I Vso I 6/»7/2> does exist (Chatterjee et al 1976) but it has been found (see section 7.2) 

that it cannot explain the observed ZFS by performing standard perturbation theory using RS-

- 1 1 2 -
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states as a basis. Two electron spin-independent components cannot contribute either, because of 

the orthogonality of the spin states and finally all two-body spin-dependent terms are insignificant 

and have been neglected in H (Stevens 1976 p.34). Similar arguments hold for the third term of 

the RHS of equation (7.2). The fourth term of the RHS of (7.2) should be examined more care­

fully. The main A-like terms in H are the kinetic energy and the Coulomb attraction between 

electrons and nuclei. The kinetic energy is isotropic so although it will contribute to the main 

energy of the ground state of GdH it will not split its degeneracy. Part of the Coulomb attraction, 

the attraction of the 4f-electrons to their own nucleus, is also isotropic and so cannot raise the 

degeneracy either. The remaining part of the Coulomb attraction is the attraction of the 4f- 

electrons to neighbouring nuclei i.ejfcrystal-field-like term. Although this is anisotropic, the 

related ME between the 6Pm  vanishes (Tuszyiiski 1983). It is a remarkable characteristic of ions 

with a half-filled open shell that all diagonal MEs within the free ion RS-coupling of the form 

<2S+,Ly I Vcf 12S*lLJ> are equal to zero. This is due to the charge conjugation symmetry of the free 

ion states (Newman 1970, Tuszyiiski 1983). Similar conclusions are obtained for the g-like 

Coulomb repulsion between electrons which can be divided m1b«rtsotropic part (if electrons are on 

one site) and a crystal-field-like one (if the electrons are on different sites one of which is the RE 

site). Finally it has been found that the spin-orbit interaction vanishes between the 6Pm  RS Lev­

els (Chatterjee et al 1976). Again we face the problem of going to higher order perturbation 

mechanisms in order to explain the observed ZFS.

The above gives some indication at least of the difficulties encountered in trying to theoreti­

cally account for the ZFS for Gd3+ in lanthanum ethylsulphate. In section 7.2 we shall give a brief 

review of the main theoretical attempts where it will become clear that there was no satisfactory 

explanation until the recent work of Tuszyiiski, Dixon and Chatterjee (1984-hereafter TDC1, 

1986-hereafter TDC2). The work of TDC1 and TDC2 invoked intrasite excitation mechanisms 

(e.g. where an electron is excited to another configuration but always remains on the Gd3* site) 

which gave rise to a ZFS of the correct sign to agree with that obtained from experiment but 

approximately two times too large. Later in Chapter 8 we present an intersite excitation mechan­

ism which compensates the ZFS from TDC1 and TDC2 to produce a ZFS in good agreement with
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experiment.

7.2. Review of Intra-Site Mechanisms Resulting in the ZFS of Gd**

Many attempts have been made in the literature to account theoretically for the ZFS. partic­

ularly to obtain a sign that agrees with that which is found from experiment. The situation has 

been reviewed by Wyboume (1966), Buckmaster et al (1972) and Smith et al (1977) but no satis­

factory explanation had been found until recently. In this section we shall briefly review all 

mechanisms proposed up to 1984. The CF of the Gd** in C» symmetry, which is the appropriate 

point symmetry for the Gd**-doped lanthanum ethylsulphate (Fitzwater and Rundle 1959), has a 

potential energy VCf which is written customarily as a sum of one-electron operators of the type 

(set Buckmaster et al 1972):

7.2.1. Hutchison, Judd and Pope Mechanism

Experimental results (for instance Dagg et al 1969) indicate that the second order axial CFP 

is much larger than the other CFPs so it is reasonable to try. initially, to find mechanisms which

<4/7;6D7/2l VCf  l4 /7;6/*7,2> ME vanishafor the fourth and sixth order CF, but does not vanish for

(7.2)

where b \  are CFPs and is a tensor operator which has the same rotational transformation pro­

perties as the spherical harmonic X*:

(7.3)

contribute mainly to the Bo CFP. Hutchison et al (1957) noticed that the

the second order axial CF potential BoCo*. They proposed the following schematic fourth-order

mechanism:

where Vto represents the spin-orbit interaction. The contribution to the ZFS produced by this 

mechanism has been found ( Buckmaster et al 1972): -  0.228 cm-1. This mechanism provides one 

of the most important contributions to the ZFS but predicts the ±7/2 Kramers pair as lowest in
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energy in contrast to experiment (Dagg et al 1969).

7.2.2. Judd Mechanism

Judd (1955) showed that the CF perturbation together with the spin-orbit interaction results 

in a splitting of the ground state through a fourth-order mechanism which may be represented as 

follows:

<*PiniVcF l6Lt> <?L, IVCflV ,n >  < » > i IV .W b »]J
where *Lj is an intermediate state in the 4f 1 configuration. The contribution to the ZFS produced 

by this mechanism is very small and of the right sign (Buckmaster et al 1972): + 0.023 cm-1.

7.2 J .  Third-order Spin-Spin Interaction Mechanism

This third-order spin-spin mechanism first applied in the case of the Gd3* in lanthanum 

ethylsulphate by Wyboume (1966). Schematically is represented as:

<*■5 7/21 Vu \6Dll2> <6D in I VCf \6Pia> <*^7/ilV» l,J M>

Wyboume found that this mechanism contributes to the ground state splitting a contribution of 

the right sign but only about + 0.001 cm-1.

7.2.4. Second-order Spin-Spin Interaction Mechanism

Pryce (1950) has proposed a second order mechanism involving interaction with the 4/*6p 

configuration:

< 4 /7; l4/*(7F)6/>; %DiaMj> < A f\1F'>(,p.tD1nMj\VCF 1 4 'S laMj>
This mechanism has been estimated by Wyboume (1966) as negligible.

7.2.5. Second-order Relativistic Mechanism

Since the CF is represented as a spin-independent operator. ME between states of different 

spin vanish in the non-relativistic limit e.g. the ME coupling the *57/2 state to the 6Pin state of the 

4 /7 configuration vanishes (section 7.1). Wyboume (1965b) pointed out that if relativistic effects 

are taken into account this ME is not zero. This mechanism is schematically presented as:
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<*S7/jI Vj, \*Pll2> <*Fia\Vcr l*Sm>

It has been found that this mechanism results in a larger contribution to the observed splitting but 

of the opposite sign (Wyboume 1966): -  0.312 cm-1.

7.2.6. Crystal Field Configuration Mixing Mechanism

The CF operators of equation (7.2) are one-electron operators and hence they can only 

couple the 4 /7 configuration to others differing by at most one electron. Wyboume (1966) con­

sidered a second-order mechanism of the form:

_  T  < 4 /7; »57,21 Vcr Ix > <X IVCF 14/ 7; »S7,2>
X A £*

where X is a state belonging to an excited configuration and AEx is the positive excitation energy. 

He found that we may regard these contributions as already incorporated in the mechanisms dis­

cussed in sections 7.2.1 and 7.2.2.

7.2.7. Electrostatically Correlated Crystal Fields

Rajnak and Wyboume (1964) proposed the following mechanism:

<*S 7/2 I V„ 16Pll2> <bP HI I VecCF • 6P 7/2 > <6Pll2 I Vto • 7/2>

where

Vcccr -  - - z i -  I .  <nl"V IVcrlX> <X IV, ln/*V>

Vc is the Coulomb potential. X is an excited state and A£*, is the positive average energy of the 

excitation. The ECCF mechanism produces a negligible splitting (Wyboume 1966).

7.2.8. Fifth-order Configuration Interaction Mechanism

Wyboume (1966) noticed that the 4 /7(*S7/2) RS ground state of Gd*♦ is perturbed by elec­

trostatic interaction with the two *S7;2 levels of the 4 /s5d2 configuration. He finally found that the 

so induced mechanism produces a negligible splitting fo the Gd3* ion.
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7.2.9. Sixth-order Mechanisms

Buckmaster et al (1972) produced sixth-order mechanisms which contribute to the ZFS but 

they found that these mechanisms are negligible as far as the ZFS of Gd*+ in lanthanum ethylsul- 

phate is concerned.

7.2.10. Lulek’s Mechanism

Lulek (1969) suggested that a second-order perturbation mechanism involving an appropri­

ately induced anisotropic spin-orbit interaction could perhaps explain the ZFS of the Gd3* ion in 

an axial field. Buckmaster et al (1972) have shown that this mechanism produces a value of: 

-0.007 cm-*.

From the above brief review we conclude that all mechanisms either yield negligible contri­

butions or contributions of right magnitude but of wrong sign. The "most" important contribu­

tions to the ZFS of Gd3* are summarised in Table 7.1.
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Table 7.1 :
Calculated values (by using non-relativistic wavefunctions) for the contributions 
o f various ground-state splitting mechanisms for E (±7/2)<— *E (±1/2) transitions 
(Buckmaster et al 1972, Wybourne 1966).

Mechanism Contribution in cm'1

Wyboume Relativistic -0.312

Hutchison-J udd-Pope -  0.228

ECCF + 0.050

Judd + 0.023

Lulek -0.007

Third-order Spin-Spin Interaction + 0.001

Total -  0.473

Experiment + 0.236

Clearly the theoretically predicted value of the splitting is too large and more seriously, of the 

wrong sign. It must be pointed out that for the above calculations Wyboume (1966) and Buck- 

master et al (1972) used non-relativistic wavefunctions. Smith et al (1977) recalculated in the 

relativistic scheme of Sandars and Beck (1965) all the above mechanisms and found that although 

calculations of ZFS converged more rapidly, when using relativistic wavefunctions, the 

discrepancy between experiment (+0.236 cm-') and theory (which now gives a ZFS of 

-  0.432 cm~l) still remains unexplained.

Newman (1970) provided a step forward for a qualitative understanding of the ZFS of Gdl* 

in lanthanum ethylsulphate. He proposed the so-called Spin Correlated Crystal Field (SCCF).

7.2.11. Spin Correlated Crystal Fields

Newman’s qualitative argument for the creation of the SCCF was that the strong attractive 

exchange forces between 4f electrons whose spins are similarly directed leads to a less extended
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radial wavefunction and hence smaller B, CFPs (Newman 1970). It has been found in the litera­

ture (for instance TDC1 and TDC2) and in Chapter 8 of this thesis that you do not need to con­

sider 4f-electrons with relatively different radial wavefunctions in order to obtain a SCCF opera­

tor. A SCCF can arise from a second order perturbation mechanism. Such a mechanism will be 

discussed later in Chapter 8. Judd (1977) substantiated the idea of Newman by replacing every 

C '\ i )  in VCf by:

C,‘(i) + C l i t i c , “ '«) (7.4)

where & is the spin o f electron i , and £ is the total spin. The ck are parameters, related to a partic­

ular rank (*), which according to Newman (1970) and Judd (1977) must necessarily be negative if 

the contraction of the radial function is to correspond to similarly directed spins. Notice that £ 

includes (J*i) i.e. the substitution (7.4) introduces a two-electron operator. Judd (1977) pointed 

out that the effect of this mechanism can be appreciable throughout the entire RE series and not 

only for the ground stale splitting of Gd3* in crystals.

Following the schematic approach of Judd (1977) TDC1 and TDC2 generated effective 

operators of the SCCF by using a number of second-order perturbation mechanisms and the 

method of Stevens, discussed earlier in the thesis in section 2.5.2, which combine the CF with 

one and two-electron operators in H. All the mechanisms invoked were intra-site. They found 

(for Gd3* in lanthanum ethylsulphate by using relativistic wavefunctions) a value of + 0.853 cm*1 

which with all other mechanisms (-0.432cm-', see relativistic calculation of Smith et al 1977) 

finally gives a new total splitting of + 0.421 cm-1. This agrees in sign with the experimental value 

of + 0.236 cm- ' but it is a factor of two too large. So although the mystery of the sign appears to 

be resolved, more research was needed to understand the size of the ground state splitting of Gd3* 

in lanthanum ethylsulphate.

7.3. Conclusion and Discussion of Chapter 7

In this chapter we have attempted to show why a theoretical explanation of ZFSs in S-state 

ions and in particular Gd3*-doped lanthanum ethylsulphate is su.ch a difficult problem. A brief
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revicw of the most important mechanisms which contribute to the ZFS of Gd3* was given.

We should point out that all the mechanisms considered up to this point treat the host cry­

stal in a rather cavalier way (for instance Wybourne 1966) i.e. they are intrasite mechanisms. 

Since there are hosts in which Gd3* has a relative ZFS that is opposite in sign even though the 

hosts have the same point symmetry and similar structure (Newman and Urban 1972) we expect 

that the host in which the paramagnetic ion is present to provide an important contribution to the 

ZFS. It is the aim of Chapter 8 to present a simple model of intersite contributions to the ZFS 

of Gd3* in lanthanum ethylsulphate. We have found that these inter-site contributions are opposite 

in sign to the intra-site ones of TDC2. We show that the total ZFS which is calculated by incor­

porating the results of TDC2 combined with all theoretical mechanisms calculated so far (Smith 

et al 1977) as well as the contributions we investigate in Chapter 8 agrees well with experiment



CHAPTER 8

INTER-SITE CONTRIBUTIONS TO SCCF AND ZFS FOR Gd»♦ IN LANTHANUM 

ETHYLSULPHATE

In this chapter we seek to find a SCCF operator of the form 

P Oo2) b 'h  . i* j
where p is a constant. We attempt to find the value of p and hence, by using the work of TDC2 

we find a contribution to the ZFS of Gd*♦ in lanthanum ethylsulphate.

8.1. The Crystal Structure of Lanthanum Ethylsulphate

The crystal structure of the lanthanide ethylsulphates was first determined, using X-ray dif­

fraction techniques, by Ketelaar (1937). This structure was further refined by Fitzwater and Run- 

dle (1959). It was found that the unit cell consists of two molecules and that the RE ions occupy 

magnetically equivalent sites with Cj* symmetry. The point group symmetry is principally deter­

mined by the nine waters of crystallisation which cluster about the lanthanide ion at the vertices 

of three planar equilateral triangles shown in Figure 13.
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Figure 13: Diagram showing the geometrical configuration (not to scale) of the nearest 
neighbours surrounding a RE ion in an ethylsulphate crystal. R\ to R9 label Oxygen 
sites.

In the case of Gd3+-doped lanthanum ethylsulphate, the Gadolinium ions enter substitutionally at 

the lanthanide sites. Three of the water molecules are coplanar with the Gadolinium ion itself and 

the corresponding Oxygen ions, which we have labelled R4, R s and R6, are located at the points 

(4.7619ao. «/2, (2n + l)n/3), in spherical polar coordinates, where n =0.1,2. Another equilateral 

triangle of water molecules has Oxygen ions above the central plane containing Gd3* at the points 

(4.4785ao. 0 .2nti/3) - labelled R\, R2 and R j. The angle 0 is approximately 40°. The other triangle 

is below the central plane with Oxygen ions at (4.4785ao, n -  0, 2nnJ3) - labelled R7, Rg and /?«.

8.2. Preliminaries, Perturbation Theory and Empty States

The Hamiltonian from which we derive our mechanism we take to be

H = H ,+ H 2 + H3 (8.1)

where H\ is the operator representing the kinetic energy of aH the electrons in the Gd3t-doped 

lanthanum ethylsulphate. The lattice of nuclei we assume rigid so the kinetic energy of the nuclei 

is not present. We also omit from consideration any repulsive energy associated with pairs of 

nuclei since this would appear in equation (8.1) merely as a constant energy and would ultimately
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vanish in our second order mechanism as we see later. Thus we may write :

(8.2)

Hi describes the attraction of all electrons to the nucleus of the Gd**, which we suppose has a 

charge Z le I at the origin B.o = Q. as well as attractions to all other nuclei (with charge Z„ le I) of 

the host lattice at positions . Hence :

Apart from Coulomb repulsions between the 4f-electrons of the Gd** ion. equation (8.4) may 

bring about excitations which involve the filled core states of the Gd** ion itself or the filled core 

states of neighbouring ions. We shall be specifically interested only in those excitations of 4f- 

electrons to empty states on neighbouring ions such that at the end of such a transition filled core 

states remain filled. To obtain the operator corresponding to Newman’s SCCF we used Stevens 

method discussed earlier in section 2.5.2. We represent a filled core state of the Gdu  ion by 

f  I0>, where I0> is the vacuum state, and suppose a 4f orbital can be written as a ' I0> (both f and 

a will also have appropriate subscripts denoting spin and orbital angular momentum). When H j 

is second quantised, there will be some terms of the form f,Vf, b or its Hermitian conjugate where 

b'IO> is an empty orbital on a neighbouring ion. If this type of term is used to create an excitation 

of the type we are specially interested in. then we must have i=j, f/f, giving unity between the 

initial and final state (section 2.5.3). Such a term may also arise if the f s  refer to filled core orbi­

tals on neighbouring ions so the effect, for our purposes at least, is to generate an effective one- 

body like operator a*b (or its Hermitian conjugate). For simplicity we can absorb such terms into 

an effective charge. Z ,//, which replaces the bare magnitude of the nuclear charge Z. We can 

think of this effective charge as arising because the filled-core electrons repel the 4f-electrons 

thus reducing the attraction to the Gd** nucleus. Its introduction is strictly not necessary but it

(8.3)

The Coulomb repulsion between pairs of electrons may be written :

(8.4)
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simplifies considerably the presentation of our mechanism. A similar argument enables us to 

replace the bare neighbour nuclear charges by 7 ^ '.  Thus H2 and H j become replaced, for our 

purposes, by :

(8.5)

The dash on the summation in Hi is to indicate that only MEs within the 4f orbitals alone or 

between the 4f orbitals and an empty state on a neighbouring ion are to be allowed. If we take 

into account the number of the core electrons of Gd*♦, which is 54 (including the 5jJ5p6), then, as 

the atomic number o f Gdu  is Z=64. an approximate classical estimation for the value of Z,// is 

10. Later in this chapter we consider MEs between the ground state and one in which a 4f elec­

tron is excited to an empty 3s orbital on an Oxygen neighbour. That part of Hi which involves 

repulsions between the 4f electrons alone will clearly not contribute to such MEs. The second 

term of Hi is principally made up of two components. The first a large spherical component, 

evaluated by putting & = 0 and a very much smaller crystal-field-like part (one could visualise 

this as a Taylor expansion in the small ratio r,//?«)■ The first component is essentially a constant 

potential energy, at the origin due to nine effective charges Ẑ !1  so. as this appears between 

orthogonal many electron states when we use the projector form of perturbation theory, section

2.5.2, . (i.e. the first involving the ground state and the second a state in which a 4f Wannier 

function is replaced by a 3s Wannier function on an Oxygen), it will vanish. The crystal-field part 

of Hi (from the second term) will be so small compared with the first term of Hi that we neglect 

it. We retain the first term of Hi and so Hi becomes :

Hi (8.6)

To obtain the SCCF operator from inter-site processes we use a particular form of degen­

erate perturbation theory using projection operators P, (section 2.5.2) for the degenerate states of 

the unperturbed Hamiltonian Ho- Following the method of Stevens (see section 2.5.2). H0 is
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defined b y :

Ho = \ E t P, (8.7)

where E, is given by :

Er
IH I n ,»  

£  <xnr In,» ( 8 .8)

In equation (8.8), I n »  denotes a particular intermediate coupling many-electron state (section 

1.1) which arises from a given Term with a fixed orbital angular momentum L and spin 5 , and H 

is the actual Hamiltonian of the system. We write I • • »  for an intermediate coupling state to 

distinguish it from pure LS states I • • • > (RS-coupling). The eigenvectors of the intermediate 

coupling states should not, strictly speaking, be designated by an RS-coupling symbol, as L and 5 

have no definite values for these states. Nevertheless, it has been convenient to use such symbols 

(Dieke 1968 p.74-5). By setting up Ho as in equation (8.7) we ensure that all those intermediate 

coupling states from a given term will be degenerate since they will belong to one family in 

the Stevens sense. For the ground state of Gd*+ these latter states will be degenerate anyway 

because the 8S Term will result in only one J Level as a result of spin-orbit coupling. However, 

excited Terms could give rise to more than one total angular momentum J when spin-orbit cou­

pling is included.

The projectors appearing in equation (8.7) are now given by (see equation 2.9):

Pr = 2  In ,» « so t, I (8.9)
n C  (.LSJM,)

where the sum is over all intermediate coupling states from a particular Term 2S+,L (the label r is 

shorthand for the term (LJSJM j) ).

Having defined Ho we use degenerate perturbation theory in projector form (Bates et al 

1968) with H -  Ho = tV  as the perturbation (see section 2.5.2). Finally the second order terms are 

given by:

~  P0H P, H Pq
E — En,*0 c o (8.10)
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We shall write H = H i+ H j + Hj and examine those parts of H which promote one electron to 

an empty state on an Oxygen ion neighbouring the Gd** ion.

In order to consider excitations of electrons to states on neighbouring Oxygen sites we must 

have wavefunctions for these states. We have assumed that they are 3s-like about the Oxygen 

ions. We have chosen 3s-states for simplicity because 3s would be the next s-state to be filled on 

the Oxygen ion. To make this as realistic and at the same as simple as possible we have chosen 

the form of the 3s wavefunction so that it will have two nodes and will be of the hydrogenic form

$£ = A (4A)* [ \-2 A r  + ^ A * r 2) e~* l^O.*) (8.11)

In equation (8.11) A is a parameter, of dimension a0' . to be adjusted later and for all A*Q, $£ is 

normalised. In this equation 7 denotes I t  -  & I, fi being the position vector of the Oxygen site 

which the 3s-state given by equation (8.11) is about and (0.0) are angles defining the orientation 

of the vector difference r - g .  We have included the spherical harmonic Ko in the definition of 

so that no confusion arises as to whether it has been incorporated or not. To find the parameter 

A , or at least a range of suitable values of A , we have minimised the sum of squares of the over­

laps with the Is and 2s states of neutral Oxygen (i.e. an Oxygen atom whose overall charge is 

zero, when one electron occupies the 3s-state of equation (8.11)) and demanded that the 3s-state 

should be an unbound state and be the s-state which has the lowest energy consistent with the 

orthogonality properties. As electrons on the Oxygen ions are shared with the hydrogen ions a 

neutral Oxygen ion seemed the most appropriate to use (although modification of the valency of 

Oxygen does not significantly affect our results, see our discussion in section 8.8). To build in 

orthogonality of the 3s wavefunction in (8.11) with Is and 2s states of Oxygen we have used the 

wavefunctions of Clementi and Roetti (1974) which take the following form :

16* > = TC< N ie~Z'T +  £  Ci N i r e ~ v
i-i I-)

l + * >  =  L - 4 ,  N,e~z /  +  ¿ A ,  Ni re~Z'T

(8.12)
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The parameters in equation (8.12) are displayed in Table 8.1. The normalisation factors N i,N 2 

have dimension ao*2 and the N3.N 4.N s.N t ao*2 respectively. C, and <4;, for i'=l to 1=6, are 

dimensionless constants.

Table 8.1 : Parameters for the Is  and 2s Oxygen wavefunctions

i c t Ni Zi in ao Ai

1 0.94516 42.02042 7.61413 -0.22157

2 0.03391 102.05506 13.75740 - 0.00476

3 - 0.00034 4.33977 1.69824 0.34844

4 0.00241 11.18652 2.48022 0.60807

5 - 0.00486 44.58165 4.31196 0.25365

6 0.03681 96.23147 5.86596 -0.19183

Thus we have, numerically, evaluated

1 ^ R 1  ̂ 1 r r  11S = I <0u I ̂ 3i >1 +1 <$2» 103» > I

as a function of A . The minimum of S . constrained by the demand that the 3s-state must be of the 

lowest unbound energy consistent with the orthogonality properties, occurs when A ranges 

approximately between A = 1.4 and A = 2.0. To ensure 10* > is as close as possible to the condi­

tion of being orthogonal to 10* > and I0^> with the lowest unbound energy, A must be chosen in 

this range.

In Table 8.2 we present the results of our calculations for a range of values of A from 

A = 1.0 to A =2.0 units. For completeness we have also listed, in Table 8.3,

r  1 P’ «’ e ! _ i t ’ » 2 *»/ «*
E» -  <lh- 1 m r  ~ ~ r  ~ 1 -  T " m -------- 3--------- tçi

in units of (e2/ao). where we have assumed that the electron occupying p i  "sees" an effective 

Oxygen charge of + 1. The term -Z^//(e2iRa. ) represents the attraction of the 3s-electron by the
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Gd*♦ ion. R„ is the average distance of the Oxygen ions from the Gd3* impurity (i.e. 4.6202o0>- 

zj//  is the magnitude of an effective positive charge which should not be confused with Z*// or 

z l l  of equation (8.5). If Z,// were due to Gd3* alone and there was no overlap between the 3s- 

orbital on the Oxygen site and the outer orbitals of the Gd3* ion then we might expect Z,tf  = + 3.0. 

Such an overlap is expected small and so we should expect a Z,// not much larger than + 3. Since 

the uncertainty of the value of z j /  we calculated the 3s-energy for a range of values of it (Table 

8.3).

Table 8.2: Overlaps and sum of squares o f overlaps S .

A m ao'1 <*£■*£> S

1.0 0.1069 0.1976 0.050473

1.1 0.1067 0.1887 0.046993

1.2 0.1047 0.1690 0.039523

1.3 0.1012 0.1405 0.029982

1.4 0.0963 0.1049 0.020279

1.5 0.0902 0.0641 0.012245

1.6 0.0832 0.0194 0.007299

1.7 0.0754 0.0278 0.006459

1.8 0.0670 0.0765 0.010341

1.9 0.0581 0.1258 0.019201

2.0 0.0458 0.1750 0.033002
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Table 8 .3 : Energy o f !$*,>, in e2lao, for a range of values of Z,// and A .

A Z.//-0.0 Z.//-3.0 Z.%-3.5 Z .//-40 Z.?,«45

1.0 0.1667 -0.4826 -0.3908 -0.6991 -0.8073

1.1 0.2383 -0.4110 -0.5192 -0.6275 -0.7357

1.2 0.3200 -0.3293 -0.4375 -0.5458 -0.6540

1.3 0.4117 -0.2376 -0.3458 -0.4541 -0.5623

1.4 0.5133 -0.1360 -0.2442 -0.3525 -0.4607

1.5 0.6250 -0.0243 -0.1325 -0.2408 -0.3490

1.6 0.7467 0.0974 -0.0108 -0.1191 -0.2273

1.7 0.8783 0.2290 0.1208 0.0125 -0.0957

1.8 1.0200 0.3707 0.2625 0.1542 0.0460

1.9 1.1717 0.5224 0.4142 0.3059 0.1977

, 0 1.3333 0.6840 0.5758 0.4675 0.3593

8.3 . C ategorising o f Excitations

To systematise the different types of excitation via terms of equation (8.10), we write each 

in the form f l i : where this is understood to be shorthand for :

-  £  (8.13)

H i,H i clearly correspond to one-body operators whereas Hi corresponds to a two-body opera­

tor. H i and H% are combined to define an operator

*  -

On the other hand. Hi is a two-body operator for which we write

(8.14)

U = 2 l r ,  - £ 2I (8.15)
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H i and H 2 . when second quantised take the form (for instance see section 2.3.3)

£  <* IX U> a.'** (8.16)
u

where the states 1$ > and If > are part of an orthonormal set in the usual way (section 2.5.2). Hj 

may be written (see equation (2.21))

£  <l,m\U\s,t> a{a.„a,a, (8.17)

Remembering that we write 4f orbitals of the Gd3* ion as a'IO> and an empty state near an Oxy­

gen ion as b ' 10> let us examine the types of operator we can have in the positions of B \ and B2 of 

equation (8.13).

(i) Position B 1 : The only one electron excitation operators we can have here are :

a 'b  aV ab  a'a'ba

(ii) Position B 2 : Here we can only have :

Since the excited state projected out by P, contains only one electron, the only second order 

processes involving the excitation of one electron are :

(1) a 'b  : b';a
(2) al» : b'ia'aa
(3) a 'b  : a'b'aa
(4) a 'a 'ab  :: b'a
(5) a 'a 'ba  :: b'a
(6) a 'a 'ab  :: b'a'aa
(7) a 'a 'ab  : a'b'aa
(8) a 'a 'ba  :: b'a'aa
(9) a'a'ba : a'b'aa

8.4. An Effective Inter-site O p e ra to r

8.4.1. Second Q uantised  Effective O p e ra to rs

To describe how an effective operator is obtained from the nine processes in (8.18) we take

(2) as an example, writing it in shorthand as :
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(8.19)

where the labels 1, 2, 3, and 4 are quantum labels for the 4f electrons and a  and p are quantum 

numbers for empty orbitals near Oxygen neighbours. Because of the way Ho is constructed (sec-

Hence (8.19) may be replaced by (8.20). bp may be anticommuted through the a operators to the 

right and similarly with b0. When a  = p, as baba = 1 -  b„ba and a  is empty in Po, only unity 

remains. If a  * p then the whole ME will vanish. The operator in (8.20) therefore reduces to :

and although the states b„ 10> have apparently disappeared they are still very much present in the 

MEs associated with (8.21). The operator in (8.21) only acts within the ground family and is 

strongly suggestive of a two-body operator. If we use this same procedure on case (1) in (8.18) 

we can clearly only obtain a one-body-like effective operator which will not contribute to a 

SCCF.

The one-electron excitations, after using the above, reduce to the eight contributions below :

tions 2.5.2 and 8.2) one can write P, = 1̂ 828384 Po- Since P } = P , , the particular case of (8.19) 

becomes:

Po ai b0bp 828384 P0 ( 8.20)

Po *¡»2*3*4 Po ( 8.21)

(3) + E

(2) -  E

(4) -  E

(5) + E (8 .22)

(6) -  E

(7) + E

(8) +  E
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(9) -  £  -
' °  il/ I ® o ì ì ® 5  i f / i °  °  ~>i'm2w 'mi'm4><mS’m4' u 'm 6m1> D j  J  _ _f _ _ D

In (8.22) the sign o f each contribution is made up of the minus already present in second order in 

equation (8.13) together with any sign changes when the b’s are commuted through to the right of 

the operator. In (2) to (3) of (8.22) the summation is over the components of angular momentum 

mi^n2̂ >3^i4^is.and the spin components o  and o'. In (6) to (9) of (8.22) the summation is now 

over m \sni/nifn4fnsjni»rm and o.o'.o". The positive energy splitting A, denotes the energy differ­

ence between the ground state (with neighbouring 3s states empty) and an excited state in which a 

4f electron is transferred to one 3s on a neighbouring Oxygen ion. The 3s state is denoted by a 

horizontal bar in MEs.

8.42 .  Conversion to Effective Spin an d  O rb ita l O pera to rs

In this section we show how the operators between the projectors of (8.22) may be 

represented as a linear combination of operators of the type a 'a  and those of the form a 'a a 'a  and 

hence how they can be rewritten in terms of spin and orbital angular momentum operators by 

using Stevens’s equivalences of equation (2.17).

We now use the anticommutation rules to change each operator in (8.22) into the requisite 

form. It turns out, however, that there are two distinct ways of doing this, with two-body opera­

tors (for a full discussion see Dixon et al 1984). We choose the particular method which results in 

a form a£aamVa£~&am- g plus additional terms which involve orbitals only. The reason for doing 

this is to produce aqSCCF-like operator of the form 0 fi,o(/, ) i r t , , i* j so that our results may be 

compared with other authors who have also used operators of this type (Newman 1970, Dixon 

and Chatterjee 1980a,b, TDC1, TDC2). In fact the additional terms which appear are one-body 

like and purely orbital or are two-body like and describe orbit-orbit interactions. We have 

retained only the spin-spin terms above. The orbit-orbit terms can be shown to be equivalent to 

spin-spin terms, for the interactions we have used, (see Dixon et al 1984) and when both orbit- 

orbit and spin-spin contributions are retained the coefficient p (see equation (8.28)) is merely 

multiplied by a factor of 4/3 (Dixon 1987, private communication) and so can be easily
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incorporated in our calculations. The purely orbital one-body terms produce very small contribu­

tions to the ZFS, within the intermediate coupling ground state, for reasons given in the subse­

quent paragraph.

As an example we consider (2) of (8.22). Writing :

When the first term in (8.23) is summed over o, from equivalences (2.17), a purely orbital opera­

tor will result and its MEs will be very small within the intermediate coupling ground state 

(Wyboume 1966) wW'icW Iv.

I ®S 7/2»  = 0.98718S  7/2 > +  0.16216/* 7/2> -  0.01216£>7,2> +  0.001 \6F la>  +  •••

The reason is not difficult to find since it will either vanish or contribute to the mean energy of 

the ground state for l*S7/2> and \6Pm> (see our discussion in section 7.1). We therefore neglect 

MEs of purely orbital operators. Notice that equation (8.23) will introduce yet another minus 

sign.

After regrouping second quantised operators in (2) to (5) o f (8.22) using the methodology of 

(8.23), the same net sign results for each effective operator. Furthermore if in (3) 

n u -* m 5,m s  —ww4, since <a,b \U\c,d> = <b,a\U  Id,c> (Raimes 1972, p.33), operators (2) and

(3) becomes identical. In a similar way we can show that (4) and (5) of (8.22) are also equal. The 

result is that (2), (3), (4) and (5) give in total:

(Actually (4) = (3)' but as we take an equal Hermitian component from (2), (3), (4) and (5) to get 

our result eventually, equation (8.24) is correct as given).

In a similar way we can demonstrate that (6), (7), (8) and (9) are equal so we concentrate on 

the operator in (6) and manipulate it into the form a 'a a 'a a 'a  so the relationships of Stevens given 

by (2.17) may be used. Thus we can write :

(8.23)

<nt]\X  \ni2><m2,m i\U\nt4jns> f 
-------------------- 3---------------------•«,a '" ,aa m ,oa m ,oa "’.0

t t (8.24)

( 8 .25)
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On the RHS of (8.23), the first three terms are purely orbital from the first two relations in (2.17) 

i.e. when the sums over o, o' and o" are carried out. Hence they will either give zero or rotation- 

ally invariant MEs within l*S7/2>. \bPin> and be very small (compared with those we retain) 

within 1*57/2» so we drop these terms. The last term is approximated in (8.23) by summing over 

o ', to produce a purely orbital operator, from a l y-a-  ̂ - . and retaining only the n=0 contribution 

(otherwise we obtain a three-body contribution) when the equivalences in (2.17) are used. As

When the spin component summations are carried out over o, o' in (8.24) and (8.26) and the 

equivalences of (2.17) are used we find, for example, that:

j f c A A A i  -  2 i  - v . . .  V / C d i C m  <*-27)

Clearly if i = j  a purely orbital operator will result so we assume we can take only f * j  for rea­

sons given earlier. Furthermore, for comparison with SCCF operators in the literature, we seek an 

operator of the form (notice that we concentrate our studies on second-order CFPs since it has 

been found that their contribution to the ZFS is by far the dominant (Dagg et al 1969)):

In (8.27), if we choose n= 2, n'=0, /n2=m6 or n'=2, n=0,m,=m4. then operators of the

_  tZ  -* «'«O’ operator

since for Gd**, £1 = 7.

We therefore have, when (6), (7), (8) and (9) of (8.22) are combined :

+ * z (8.26)

p  LCo” (0,.4/)iiX
U

(8.28)

form (8.28) are obtained since Oq1 = -(45/2)Co*. We can therefore write, in total.

P = Pi + P2 + Pj + P4

where :

<W| IX \tni><mijny\U \my.m\><m\ \Op lwi|>
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M4

<m\\X \ m jx m 2jn-j\U \m*jn i> < b i ) I Q q I mj> 
ÙN0N 2

<m\jn-i\U \m-ijn\Xm-iJm\U  Imi.mjXmilOo lmi> 
TNqN}

</W |,/W; I (/ lBl3^Hi><ffl3jHjlt/ lm2,/WS><Wl2lOo I m 2>
Ân Jn Ï

(8.29)

where the sum over fi is over the positions of the nine neighbouring water molecules to the Gd3* 

ion.

8.5. Evaluation o f th e  Coefficient p

The 4f-wavefunction of Gd3* is written in the separable form:

f*/(L) = t* r(r )!?< •*) (8.30)

and a 3s-wavefunction at a neighbouring Oxygen site £  as :

t i - lL -S .)  -  (4*)-“ 2A*! ( 1 - K ' t - S I (8.31)

where :

l£ -f llx e - z 'c-«' = 2  frC kZsJt) P,(cosQ) (8.32)
1-0

and fy(KZsJt) is defined in Appendix D. By using Standard propeities of 3j-symbols (equations 

(1.43) and (2.20) of Rotenberg et al 1959), we finally obtain :

0
Ml -  - ^ « ( 3 X 1  P(R)QOJ-J<)

(8.33)

f l l f u

IK -  -  ̂ « < 3 X 1  l' i y » ) Q O JLJt)
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run- / vv ( r > - -ff )-

* <4*)-“ |2 4 w fc«M .rJ»)- 4 4 «  (MM  .<,*>■► r>dr

QUJ-JI)

xy4/(/-2) V4/(ri) V4/(/-2> r ir l  dridri

and

*"«*) - - 7(iii)<*,̂ " [ w ] '
n <3IIQ2II3> < /Iirt l !3><3liyt ll3>x8x45

a n Jn ]TL+T 7Z7Z7

where <31102l I3> = 30.74085 (Smith and Thomley 1966) ,No = 7 andN* = 189 (Stevens 1974).

For the purpose of our numerical calculations we have used the 4f radial wavefunction of 

Freeman and Watson (1962) which takes the form :

W M  -  r> 2B<  «-*•' (8.34)
i-1

The parameters W t.Bt. for Gd3*. are displayed in Table F.l of Appendix F and have dimension 

ao1 and ao9n respectively. The 6j-symbols we have used are given in Table F.2 of Appendix F 

and the reduced MEs of YL in Table F.3 of Appendix F. Using the technique described in Appen­

dix D, we have obtained an analytical expression for $i(KZ,rJi), substituted this into the 

integrals above for P(R) and Q(lJLJt) and evaluated them using the computer. The values of 

P(R) are given for the two values of R , /?|=4.4785 a0 and A?2=4.7619ao, in Tables F.4 and F.5 of 

Appendix F when A varies between 1.4 and 1.9. Table F.6 of Appendix F lists the values of 

ROJ.) for the nine pairs (/X). and only for Z,yy = 0.0 since other cases can be trivially calculated, 

that arise in the calculation of p. Tables F.7 and F.8 of Appendix F display the radial integrals 

QUJLJi) over the range <4*1.4 to <4=1.9. Table F.9 of Appendix F displays the 3s-3s overlap for 

R 12. R i7. /?!», R45, R  M and R u where Rt, in general denotes the distance between the sites i and j . 

Finally, Table F.10 o f Appendix F lists the radial part of the 4f-3s overlap for R\ = 4.4785a0 and

*2 = 4.7619a0.
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8.6. The EfTect of Overlaps

So far calculations have been performed using free-ion wavefunctions, whereas the second 

quantisation technique of Stevens should employ an orthonormal basis set. including the 3s func­

tions near the nine neighbouring Oxygen ions. As the overlap between the 4f orbitals and each of 

the 3s orbitals is small a convenient set of orthonormal functions can be generated using the 

method of Lowdin (1950) (see section 5.4 for a brief description of the method). Thus, if we 

describe a 4f orbital by \4fm >, where m is the associated magnetic quantum number and a 3s 

orbital at a site fi by 13i£ > then:

where the tildes above the kets on the left-hand site of (8.35) and (8.36) denote the new ortho- 

gonalised orbitals and we have expanded equation (5.7) and retained only those terms linear in 

the overlaps.

In and (t« of (8.29) we should have used the orthogonalised orbitals in (8.35) so a typical 

Coulomb element containing three 4f orbitals and a 3s neighbouring orbit becomes :

<4fm\Afmi\U  l4/mj,3i£m> = <4fm\Affni\U l4/mj,3i£m>

In (8.37) we have neglected all terms quadratic in overlaps i.e. 0 (S 2) or the product of an overlap 

and an integral containing a non-central site orbital with on site ones (Dixon and Wardlaw 

1986a). We have neglected all terms smaller than these and to make clear the magnetic quantum 

number part of 3j£ , when expanded in spherical harmonics related to the central site, we have 

written 3j£m rather than 3j£ . In a similar way, we find :

(8.35)

and

I3j£ >  = 13rfi> -  4 - T  5 . -  13rfi > -  i  _ l4 /m  >
L fl .fi * m

(8.36)

y  % SRm <4/m,.4/m2l i / \4fm JA fm > + 0 {S 2) (8.37)

and

<4fm ,1X13ifim > = <4fm  ,1X13iflm > -  y  Stm <4fm ,1X14fm >  + O (S2) (8.38)
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<4fmx\ 0 ?  \4fmt> = <4/m, 10® \Afmx> + 0(5*) (8.39)

It may also be shown that the denominators of the expressions in (8.29) will, to a good approxi­

mation. be unchanged by the effect of overlaps since the 4f and 3s energies are not modified up to 

the square of an overlap. That is :

< 4 / m |l / f 0l4 /m i>  =  < 4 /m , \H 0 \4 fm \>  +  0 ( S 2)

(8.40)
< 3 i f i l / / 0 l3 if i>  = < 3 j f l l / / 0l3 ig >  ♦  O ÍS 2)

The product of MEs which appears in (8.29) for pj, for example, when the effects of overlaps are 

incorporated, becomes:

[< 4 /> m ,4 /« 2 l( /  13s&m3,4/m i> < 3 jg m j,4 /m s IU  \4 fm iA fm i>

— - i - < 4 / m i  ,4 /m  21U  13 j , 4 / m \ > < 4 / m  j , 4 / m  j  11/ \ 4 f m  2 .4 /wij>

-  y S * ^ ,< 4 /« i i ,4 /m 2 li /  l4 /m j,4 /m i> < 3 jg m 3 ,4 /m 5 li/  l4 /m 2 .4 /m j>

+  |2 < 4 /m i,4 /m 2l t /  1 4 /m j,4 /m , > < 4 /m j .4 /m j  IL M 4/m 2.4 /m 3> ]

x <ni| lOo^ l« i>  (8.41)

The first term in (8.41) is that appearing in (8.29) and the second, third and fourth are additional 

contributions due to overtaps. The angular part from the first and fourth terms are identical and 

result in two harmonics K"’ (0*,9*) and coupled to form the harmonic Y° (0* .$*) in

(8.33). However the second and third terms, linear in overlaps produce either the pair of harmon­

ics y "’(0*.9*) and K/7"’(0#.O*) or Y,~m'{QR ,$#) and Y"' (0* ) which are also coupled to form

y°(0*.9a) (Rotenberg et al 1959, eq. 1.15).

8.7. Results and Comparison with Experiment

In this section we use the results of a recent paper, which discussed contributions to the ZFS 

from a number of intra-site mechanisms (TDC2), and combine them with our qualitative estimate 

of splittings due to the inter-site mechanisms we have described. Suppose we denote the value of 

p in TDC2 by p*» and the net value of p calculated from our inter-site mechanism p*/y. p*. was 

made up of two parts pf" and p”  where p r  = + 88.4cm '' and p f  = +59.9 cnr1 so
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Mo. = p ~  + ^ r  = + 148.3 cm-1. From the TDC2 intra-site mechanism the total ZFS was 

+ 0.853 cm-1 and was proportional to p<*. Therefore we have :

4P«, = + 0.853 cm-* (8.42)

for some constant Ç obtained by calculating the MEs of Co* (6, .4, ) l  h  between the intermediate 

coupling many-electron states of Gd3*. Hence, as p«, is known, Ç is determined. To compare 

with experiment we must add contributions from all other mechanisms (Smith et al 1977) which 

give -0.432 cm-* ( = q say). We require that the net p multiplied by Ç when added to x\ should 

give the experimental ZFS of + 0.236 cm-1. Hence :

(P«. +Po/ / ) * £  + i\ = + 0.236 cm- ' (8.43)

and so :

pof/ = -  32.16 cm-' (8.44)

is required from our inter-site mechanism. Careful inspection of Table 8.4,

Table 8.4 : Values o f the total p (in cm~') as a function of A and Z,//.

A Z,// = 0.0 Z *  -  3.0 Z }/ -  3.3 Z$f  = 4.0 *.// = -*.5

1.4 -3.43 -9.85 -  14.32 -26.21 -  154.28

1.5 -  14.42 -34.84 -45.60 -  65.98 -  119.33

1.6 -  11.78 -24.97 -30.70 -  39.83 -  56.70

1.7 -0.30 -0.58 -0.69 -0.83 -  1.07

1.8 + 14.95 + 26.33 + 30.15 + 35.28 + 42.50

1.9 + 30.64 + 50.43 + 56.51 + 64.26 + 74.48

where changes due to overlaps and the factor 4/3 mentioned earlier have been taken into account, 

shows that a value of p„// of the magnitude and sign in (8.44) may be obtained for Zfo -  3.5 and 

for 1.6<i4 <1.7 which is very close to the region of values of A which make the 3s wavefunction 

most nearly orthogonal to the Is and 2s orbitals of an Oxygen neighbour.



8.8. Conclusion and Discussion of Chapter 8

In this chapter we gave an account of how inter-site one-electron excitations can make con­

tributions to ZFS of Gdu  in lanthanum ethylsulphate. Our treatment has of necessity being quali­

tative at the outset in view of the uncertainties in the exact nature of excited states near neigh­

bouring Oxygen sites. However, we have tried to make the model as physically plausible as pos­

sible by making the 3s wavefunction satisfy five boundary conditions as close as possible. We 

might expect an s-state near a neighbour to be 3s-like since 1j  and 2s are already occupied. The 

choice of an s-state is principally for simplicity. Given that the wavefunction is 3s-like we have 

demanded firstly that it should have two nodes and secondly be normalised. Hence we chose the 

hydrogenic form involving only one unknown parameter. Thirdly we have tried to make the 3s 

wavefunction orthogonal to the Is and fourthly orthogonal to the 2s wavefunction of Oxygen, the 

Is and 2s being accurately known for a free ion. In addition we have demanded that the 3s state 

should be an unbound state and be the s-state which has the lowest energy consistent with the 

orthogonality boundary conditions.

Two-electron excitations can also be invoked to produce a SCCF but the angular integrals 

are more complicated than for our one-electron excitation mechanisms. For excitations involving 

two electrons the energy denominator appearing in the second order projector formalism will be 

much larger so we expect contributions from these processes to be small relative to the result of 

one-electron processes.

We have stated earlier (see section 8.2) that we have used the wavefunctions of Clementi 

and Roetti (1974) for a neutral Oxygen ion as we felt that each Oxygen would share two electrons 

with the two hydrogen ions forming the water molecule. Our results do not depend critically on 

the use of the neutral ion wavefunctions since we have repeated the orthogonality calculations 

using wavefunctions for the positively charged Oxygen ion given by Clemcnti and Roetti (1974). 

We find that the range of A for which the 3s was most orthogonal to the Is and 2s was the same, 

the minimum of the sum of squares appearing for a slightly larger value of A. This is not too 

surprising as the Is and 2s wavefunctions are very tightly bound within each atom or ion.
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We conclude that the inter-site mechanism can produce a p that is of the right sign and mag­

nitude in order to compensate the intra-site mechanism (TDC1, TDC2). Even though our calcula­

tions have been qualitative, they suggest that the resultant ZFS is a delicate balance between a 

contribution from the paramagnetic Gd*+ ion itself (the intra-site mechanism) and one from the 

host in which it is embedded (the inter-site mechanism). We emphasise that the inter-site 

mechanism should be treated speculatively because of the various uncertainties involved in the 

problem. For example, a possible source of error in our model is that s-like wavefunctions were 

used near the nine neighbouring water molecules. Without a detailed knowledge of the host ion 

wavefunctions which participate in inter-site interactions it is very difficult to modify this pro­

cedure although a molecular orbital calculation for water could be useful. The mechanism also 

used three effective charges and an average distance in the calculation of the result and all terms 

quadratic or higher order in overlaps were neglected (see section 8.6).

We finally conclude that although there are a number of uncertainties in the numerics of the 

inter-site mechanism, the idea of a host contribution to the ZFS must be importarli since there are 

hosts in which Gdu  has a relative ZFS that is opposite in sign even though the hosts have the 

same point symmetry and similar structure (Newman and Urban 1972). Such inter-site processes 

could be very important when calculating ZFSs of Gd3+ in other hosts, particularly where the sign 

of the splitting is opposite to that discussed in this chapter.
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CHAPTER 9

CONCLUDING REMARKS

9.1. CFP’s for £r**:An

In Table 9.1 we summarise our results, obtained in the first and dominant part of this thesis, 

for the CFPs of £ r3t:Au, calculated within the first order perturbation theory of the DW model. 

We see that DW’s first order perturbation theory gives a value of 60% of the experimentally 

determined C4 CFP. The major contribution to the C4, CFP derived using DW, originates from 

the 4f/5d(vbs) component which varies considerably with the screening constant kc (see Table 

5.2). We have already discussed the uncertainty of kc (see section 2.6.3) and by fitting to a small 

number of experimental results (Table 2.2) we have found that = 0.78ao 1. As we have 

already pointed out earlier, great weight should not be attached to this value, since we used only 

three experimental data points in the fitting procedure. Nevertheless it suggests that perhaps the 

screening is larger than the one used throughout our calculations (i.e. k * u = 0 .7 l3 ao 1). and this is 

supported by many-body calculations which go beyond the RPA (see discussion in section 2.6.3). 

From Table 5.2 it becomes apparent that if k?“ = 0 .78ao1 then the contribution of the 4f/5d(vbs) 

mechanism is significantly modified to give = -  34cm-1 while simultaneously the 4f/ligand pene­

tration mechanism becomes less important (= 11.5cm- ' by inspection of Figure 11). The 4//c0
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contribution will be insignificantly modified (see Tables 6.4, 6.6) to give slightly smaller contri­

butions and therefore a total value of = -  20cm-1 is obtained, in excellent agreement with experi­

ment

T able 9 .1: The CFPs from the three components o f DW’s first order perturbation 
theory, in comparison with an unscreened PCM with all neighbouring charges 
equal to +1, and experiment

C4 c*

kc = 0.0a o ' kc * 0.713a o’1 kc = 0.0a ô' kc = 0.713a o’1

4f/ligand
penetration

10.67 12.62 1.54 1.63

4f/5d(vbs) -18.09 -  28.53 4.94 xlO-3 = 4.94 xlO-3

4 Vc'o 2.69 2.68 0.21 = 0.21

SUM -4.73 -  13.23 1.76 1.85

PCM 8.3 0.83

Experiment -22.24 ±2.78 4.17 ±0.35

Unfortunately, the situation is different for £>3t:Ag. According to the DW model the value 

of the screening constant kc for Silver is virtually the same as that for Gold, the two being related 

by k?* = (yoy)*  ê*“- Since Er*+ :Ag is a similar compound (e.g. fee structure, similar nearest 

neighbour distance) to the Er3*:Au we expect that by applying the DW model in it's first order 

perturbation theory a similar value for the C4 CFP of Er*:Ag will result i.e. a value about two 

times smaller than the experimental one and so the DW model, in it's first order and within the 

assumptions invoked in our calculations, cannot explain the large C4 CFP for £V3*:Ag. Let us 

examine each one o f the three DW’s first order contributions to the C4 CFP and try to find if there 

is a decisive difference (at least as far as CFs is concerned) between the £ r3*:Ag and £>J*:Au
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dilute alloys. The 4f/ligand penetration mechanism although it plays an important role in deter­

mining the C4 CFP for Er^iAu cannot be very different for Er**:Ag. The reason is that the main 

factors which determine the magnitude of the contribution to the Ca CFP from this particular 

mechanism are very alike for both systems. In particular, both systems form a fee structure with 

nearest neighbour distances = 5.47 la0 and R%! = 5A52ao- Also there is evidence (Samsonov 

1968 p.l02,p.l06) that the metallic radius of Gold and Silver is virtually the same (i.e. = 1.44 A ). 

The final important factor for determining the magnitude of the 4f/ligand penetration contribution 

is the structure of the ligand wavefunctions themselves. This is expected different for Gold and 

Silver but we can easily see, by comparing the PCM value and the pseudo-PC value for Ca in 

Er*+:Au, that this difference cannot be the crucial factor determining the observed differences, in 

the values of the C4 CFP, between the two dilute alloys. The 4f/5d(vbs) mechanism is virtually- 

host-independent (the only relatively important dependence on the host comes through the 

screening constant A*, which is similar for Gold and Silver) and so cannot be significantly dif­

ferent for the two systems. Finally, the part of the 4 / /c0 mechanism which has been examined in 

Chapter 6 of this thesis, for similar reasons as those given for the 4f/ligand penetration mechan­

ism, does not qualify one system against the other. It is clear that the mechanism which will 

explain the difference in magnitude of the C4 CFP for Eru :Ag and £ r3*:Au has to be host depen­

dent There are two main sources from which this can arise. The first is the interaction of the 

4f(RE) electrons with the localised ligand electrons and nuclei. The second is due to the conduc­

tion electrons. From the above discussion of the 4f/ligand mechanism, whichever type of 

wavefunction we use, whether atomic or the appropriate one for the metallic phase, large differ­

ence of the Ca CFP for Er1*:Ag and £ r3i:Au cannot come about via this mechanism. We therefore 

believe that the 4f/conduction electron interaction is the most possible candidate to explain the 

above discrepancy. This interaction should be studied in more detail. One of its components i.e. 

the 4 / /co interaction has been estimated in this thesis, using parts of the first order DW model, 

and its contribution to C4 and C6 has been found small and of the wrong sign, as far as the C4 

CFP is concerned, with respect to experiment for both the Gold and Silver alloys (at least within 

the approximations made in section 6.1). Band structure calculations imply that the conduction
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band has an appreciable orbital character (i.e. electrons of orbital angular momentum different 

from zero). In particular it has been found that in Silver and Gold pure metals apart from the 

majority s-like conduction band there is a set of five narrow d-bands (Christensen and Seraphin 

1971, Christensen 1972), not too far below the Fermi energy, which influence the metallic pro­

perties of these substances (Ashcroft and Mermin 1976 p.289). By comparison of Figure 5 of 

Christensen and Seraphin (1971), which shows energy bands of Gold, and Figure 1 of Christen­

sen (1972), which shows energy bands of Silver (see Appendix G), both calculated by the 

relativistic-augmented-wave-method. it becomes apparent firstly that the d-band width is broader 

in Gold than in Silver, secondly that the conduction band of Gold has more d-character than the 

corresponding conduction band of Silver and finally that the conduction band of Gold is broader 

in total than the one of Silver.

From equation (6.1) we see that lco> is also composed of a further correction, which 

involves other conduction band states coupled to lco>- This correction is proportional to the 

inverse of the energy difference between a conduction band state and lc<>> (see equation 6.1). As 

we have discussed above the d -band width of Gold is larger than the corresponding one in Silver, 

so these electrons are more delocalised in Gold (for instance Lacueva et al 1982). This suggests 

that in Gold the average energy the conduction d-band is higher in energy relative to lc0> than in 

Silver. Note that the lc0> lies about half of the band width from the bottom of the band (Dixon 

and Wardlaw 1986b). Thus the contributions in the further correction term, for sufficiently small 

denominators, could make the d-like mixing into lc<>> very much more substantial in Silver than 

Gold. The larger average energy difference, principally due to the larger band width in Gold, 

could reduce such mixing to small proportions in £ r3+:Au.

As far as the less important C6 CFP (at least to determine CF splittings for Eru :Ag and 

£/•*♦:Au) we see from Table 9.1 that it is formed mainly from the 4f/ligand penetration mechan­

ism. If we use the above discussion of the penetration interaction this should be modified in the 

same order for both £/•*♦:Ag and £ r3+:Au so this cannot explain the double size of the C(, CFP in 

fr^ tA g  than in ErM:Au. From Table 9.1 it is clear that none of the 4f/5d(vbs) and 4 / /c<> parts, at 

least within the approximations invoked in our calculations, can explain the double size of the Ce
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CFP for Er3*:Ag compared with Er3*:Au unless there is strong mixing of /  -like character into 

lco> from the conduction band. We might expect the amount of this / -character, arising from the 

RE ion, mixed with the host conduction states to be small since the resulting 4f/conduction mix­

ture states have to be orthogonal. The 4f-electrons are known from experiment to be very well 

localised in Er3* and hence the mixing with conduction states is very small (Anderson 1961). 

Thus we would expect the conduction band, with the RE present, to be mostly s and d -like as in 

the pure host The complex orbital character of the conduction band as well as the band widths 

and energy differences between lco> and conduction band states should be investigated further in 

detail in order to account for the experimental values. Thus further systematic studies are needed 

to clarify the role of conduction electrons in CF splittings for these alloys.

Phenomenological models (Das and Ray 1970, Dixon and Dupree 1973) have already 

pointed out the importance of the inclusion o f d and f  -character within the conduction band for 

dilute RE noble metal alloys and pure heavy RE metals.

In the OPW model of Dixon and Dupree (1971a,b,1973) an empirical formula for CFPs was 

arrived at which describes very well a number of distinctly different experimental results (for 

instance electric field gradients-Devine and Dixon 1973, susceptibility data-Keller and Dixon 

1976, CFs-Kikkert 1980). The first order DW theory, when examined in detail, surprisingly can 

be put into a similar form :

Cn(DW) = Cn(PCM)0 + P „ )(l-o „ )  + D„ + Fn (9.1)

From the investigations undertaken in this thesis (Chapter 3) we see that the Pn arises from the 

4f/ligand penetration effects and tends to enhance the naive PCM CFPs in the case of positively 

charged ligands. Actually the /V s can be identified by noting that (1 +/»„)’s are the pseudo-PCs 

defined in Chapter 3. For the case of negatively charged ligands we expect that P„ decreases the 

PCM CFPs (in agreement with ab initio calculations by Garcia and Faucher 1984). As the 4f elec­

tron penetrates the ligand electronic charge distribution it effectively "sees" less of this latter 

charge and hence a more positive (negative) charge in the case of positively (negatively) charged 

ligands.
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o„ comes about from the interaction of the 4f electrons with the Er3* filled cores. This is 

the well known Stemheimer parameter (Stemheimer 1968). It is negligible for the fourth and 

sixth order CFPs but important for the second order CFP (Ahmad 1981).

D„ includes components mainly from the 5d(vbs) but also any extra ¿-like contributions 

e.g. from an s-d  hybridised band.

The F„ parameter has to be introduced to account for the experimental value of the C6 

CFP. From our calculation we cannot provide all contributions which determine it. However, one 

factor seems to arise from the 4//co mechanism. The mixing o f the 5d(vbs) with neighbouring 

orbitals can also add to its value.

Remarkably the formula of equation (9.1), which comes about from the first principles DW 

model, agrees in form with the OPW one given by equation (2.1) apart from minor differences. 

For instance by comparison of equations (2.1) and (9.1) we see that the enhancement factor (§/Z) 

of the PCM CFPs was common for all CFPs whereas in our formula is order -dependent. We can 

therefore understand the successful use of (2.1) in calculating CFPs, electric field gradients and 

susceptibility data (for a review see Dixon 1974).

9.2. ZFS for Gd3* in Lanthanum Ethylsulphate

In Chapter 8 we calculated the contribution to the ZFS of Gd3* in lanthanum ethylsulphate 

using an inter-site mechanism whereby an electron was excited to empty 3s-orbitals on nine 

neighbouring ligands in turn and then back to the RE. We found that, within the approximations 

used, the results of such a model when combined with all intra-site mechanisms could give excel­

lent agreement with experiment. This calculation involved a number of approximations. The first 

was that excitation was to a 3s-like orbital on ligands which was described in a hydrogenic form 

with one parameter (see equation 8.11). This orbital is supposed to be empty so there is consider­

able uncertainty as to its form. In particular, it may have considerable overlap with similar orbi­

tals on other sites and the RE orbitals and this we tried to incorporate by using Lowdin's tech­

nique (see section 8.6). W e did however try to incorporate the fact that this was orthogonal to the 

filled If and Is states o f Oxygen (see section 8.8) A more suitable orbital possibly would be
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obtained from a full molecular orbital calculation for water noi Oxygen. Whether the Oxygen has 

a charge of unity or is uncharged or even negatively charged does not appear to affect the calcula­

tions significantly.

Following other authors we completely neglected the ethylsulphate radicals and it is not 

known how good an approximation this is. We also neglected any movement of the water- 

molecules, in particular their "rocking" motion.

The perturbation method of Stevens we have used to get a SCCF we believe is the best we 

can hope for since it automatically incorporates all the symmetries involved in each order. It is 

possible to excite electrons to two different sites to produce a two-body anisotropic interaction 

like the SCCF (Dixon and Tuszyriski 1987a) but in this thesis there have not been considered nor 

have relativistic effects been included explicitly (although we have in a sense done so by putting 

Wyboume’s relativistic result in "other" mechanisms which can be shown to be the most impor­

tant as far as magnitude is concerned (Dixon and Tuszyriski 1987b).

It is interesting to note that there are hosts as similar as W O4 and YPO4 in which the second 

order CFP, found from experiment, is opposite in sign for Gd3* (Newman and Urban 1972 and 

references therein). This strongly suggests that the host, in this case at any rate, will play a lead­

ing role in the determination of this parameter. In fact it has been suggested in the literature that 

covalency could play an important role (for instance Smith et al 1977). Hence intra-site mechan­

isms have-UWmodified in the new host via the CF interaction and not the intra-site states used in 

the perturbation scheme. However the inter-site contributions involve not only the magnitude of 

the CF but also excitations from states on the RE to empty sites on host ions. We might therefore 

expect that inter-site contributions will be modified even more than intra-site ones when a dif­

ferent host is present.



APPENDIX A: Generalised Wannier Functions

It is well known that the solutions of the Schrödinger equation for a periodic potential are 

the Bloch functions B ^  which are plane waves modulated by a periodic factor (Bloch 1928). The 

quantum number t  determines how much the phase changes if we propagate by a lattice vector 

and the quantum number n (which is called band index) takes integer values. It is worthwhile to 

stress that the Bloch functions imply propagation without any resistance so they should be a more 

appropriate description for metals or semiconductors than insulators (Ziman 1972). In an insula­

tor where the electrons are well localised about particular sites a "localised" representation seems 

desirable. Such a set of localised functions, which are called Wannier functions, are defined as 

follows:

W .(L-D  = -jfc  S ' - * 1 «!;.<£) (A.1)

where the sum over & is over those t  vectors in the first Brillouin zone.

The W„(£ - l )  have the following properties:

(i) they are exponentially localised about particular sites i.e. -¿) is localised 
about the site L.
(ii) vy.it - l )  is orthogonal to any - j )  for n *n .
(iii) Wannier functions centred at different sites are always orthogonal.
(iv) they are orthogonal to Bloch functions of different bands.
When the periodicity of the potential is lost, as for instance by the presence of an isolated 

defect, it has been shown (Kohn and Onffroy 1973, Gay and Smith 1974) that there exists a set of 

orthonormal Wannier-like functions, called generalised Wannier functions, for the perturbed lat­

tice which have the following properties:

(i) all the above mentioned properties of the perfect-lattice Wannier functions.
(ii) similar degree of localisation as the perfect-lattice Wannier functions.
(iii) as the 1 recedes from the defect site they approach the perfect-lattice Wannier 
functions.

It is interesting to note that there is a similarity between the generalised (or perfect-lattice Wan­

nier functions) and Lowdin’s orthogonalised atomic orbitals (Lowdin 1930) in that they are both 

localised about ion sites and form an orthonormal set of functions.
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APPENDIX B: Analytical Expressions for the Radial Wavefunctions used in Chapter 3 

1. Radial Wavefunctions of Neutral-Gold Electronic Orbitals

ls-orbital

Pu(r) * C t r t ' 1'

Table B.l The parameters C, and Z, which define
the Is radial wavefitnction o f Gold.

i I Ci Zt

1 1388.3661 78.401179

2s-orbital

P j,(r) = C \r  e~Z/ +C2r2e~z'  + C jr J *"z,r

Table B.2 The parameters C, and Z, which define 
the 2s radial wavefunction o f Gold.

i Ci Zi

1 464.579 55.931155

2 -  10689.9932 35.623429

3 -  1631.5514 29.88598
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2p-orbital

3s-orbitaI

/*>(»■) -  C ir1«"*1'  ♦ C ar* « '* '

Table B.3 The parameters C, and Z, which define 
the 2p radial wavefunction o f Gold.

i Ci z,

1 10195.172 43.052115

2 40222.666 36.934307

/»a,(r) ■ C , r  «_z', +C2r 2«_z*, +C J r i e ' z'r

Table B.4 The parameters C, and Z, which define 
the 3 s radial wavefunction o f Gold.

i Ci Zi

1 217.1427 34.16282

2 -  9496.303 34.57121

3 16936.268 19.29905
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3p-orbital

/>*(>•) = Ci r1 + Ci r> e“2'  + C , r4*“2'

Table B.5 The parameters C, andZ, which define 
the 3p radial wavefunction o f Gold.

i C¡ Zt

1 5122.258 37.84581

2 -6525.176 17.5993

3 -121514.37 26.34928

3d-orbital

C m « - )  -  C ir 2' - * '  * C , r ’ e - * '  + C , r 'e - 1'

Table B.6 The parameters C, and Z, which define 
3d radial wavefunction o f Gold.

i C, Zi

i 128.30763 12.357452

2 13010.166 20.844903

3 206523.1 44.880613
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4s*orbital

r4,(r) -  C ,r  c~z'  + C ,r‘ e -Z'  + C ,r ’ e~2'  + C ,r4* -* '

Table B.7 The parameters C, and Z, which define 
the 4s radial wave/Unction o f Gold.

i Ci Zi

1 105.92873 30.891892

2 -4858.9218 30.997396

3 17223.459 20.876819

4 -5942.6514 10.796395

4 p - o r b i t a l

r v tr) « r‘ C ,e~ z'  * r ’ [C,e~z '  + C ,e~z' ]  + r‘ C ,e - z'

Table B.8 The parameters Ci and Z, which define 
the 4p radial wavefunction o f  Gold.

i Ci Zi

1 2513.2289 34.466733

2 -  11315.234 18.621294

3 682.48 8.347137

4 4967.2254 13.330245
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4d-orbital

/■«(O = r¡[c, í -2'  ♦Cl«"2' ]  [ c , t ~ 1']
Table B.9 The parameters C, and Z, which define 
the 4d radial wavefitnction o f Gold.

i Ci Zi

1 -  12492.83 20.0354

2 12382.8 18.3056

3 -  12375.857 17.86026

4 -641.475 7.965333

Pa/ ir) ■ r4 i ;  ci « - * '

Table B.10 The parameters C, and Z, which define
the 4 f radial wavefunction o f Gold.

i Ci z¿

1 2600.5631 10.40398

2 9780.7777 18.10517

3 108.3835 5.877722
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5s-orbital

f j M  .  C, r > t ~ Z '  * t '  r ‘  [ C * ' 1'  * € * * ' ] +  r 1 C * 2'

Table B.1I The parameters C, and Z, which define 
the 5s radial wavefunction o f Gold.

i c, Zi

1 12792.106 172.513

2 -  36473.673 36.8776

3 10094.765 21.9082

4 -3292.5318 9.86521

5 69.44265 4.31412

6 1665.0793 8.308174

5p-orbital

P„lr) -  Ci + r < + C ! i ‘Z-']

Table B.12 The parameters C, and Z, which define 
the 5p radial wavefunction o f Gold.

i Ci Zi

1 82241.64 67.8148

2 -44481.7 21.972091

3 5490.0474 12.26333

4 -7.167242 3.558108

5 -270.58143 5.658748
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5d-orbital

f u i r )  -  ' A% c ¡ e"l ' + r ’ ¿ C ,  « '* '

Table B.13 The parameters C, and Z, which define 
the 5d radial wavefunction o f Gold.

i c, Zi

1 121964.87 41.626691

2 -  1937.607 10.517553

3 20910.1 24.970535

4 14.501 2.9096991

5 0.54861442 1.5034575

2. The 4f Radial Wavefunction of Er**

r‘v  -  r< ¿  c, « -* '

Table B.14 The parameters C, and Z, which define 
the 4 f radial wavefunction o f Er *♦.

i C, (inoo-*1) Z, (in ao 1)

1 3141.6112 14.375

2 601.33500 8.015

3 71.845565 5.343

4 3.4191078 2.944
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3. The 5d(vbs) Radial Wavefunction of Er3*

rfm*, -  ' ,J X c, «-*' + ,» g  c, «-*'

Table B.15 The parameters C, and Z, which define 
/Ae 5d(vbs) radial wavefunction o f Er3*.

i Ci Zi

1 6529.53 25.8263

2 -  723.6 8.1395

3 271.377 7.88832

4 3.09486 1.93227

5 0.127524 0.933536
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APPENDIX C: Expansion of the Screened Coulomb Interaction in Legendre Polynomials

In this Appendix an analytical technique is developed for the expansion of a screened 

Coulomb interaction in Legendre polynomials i.e.

7 ? '*  -  £  “-('¡st) r.«x*r) (C .l)l £ i  - C i l

where ci and rj  refer to the same origin and y  is the angle between c\ and ci. By using ortho­

gonality properties of the Legendre polynomials, a„(.ri^2) is given by (see, for instance, Arfken 

1970, p.547):

a.<r,s,) -  j (C.2)

where x = cosy. The \ci -  L i1 is now written as:

r> (l+ A J -2AO * (C.3)

where h =r</r>, r< = min(r i,r2) and r> = max(r1̂ -2)- We have previously (Christodoulos 1985) 

determined the following series expansion for the screening function:

¿(2i+1)(2l+l)! 

By using equations (C.3) and (C.4) we obtain:

(C.4)

^  j  [ 7L (l+A*-2/u)* * Î o (2,+‘) 

where A=AC r>. Equation (C.5) can be easily rearranged to give:

'-2hx)'] P„(x)dx (C.5)

where //*(x) is defined as:

(C.6)

M i
h ( x )  = f  ( l + h 2- 2 h x ) ' P „ (x)dx  (C.7)

By using the Legendre polynomials of Arfken (1970 p.541) and integration by parts we finally 

establish the relations (C.9) for /,"(* ). n =0,1,2,3,4.5,6. To present our results in a compact 

form we define the following quantity:
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/0C-±) '  -  '(» I) - -■ ¿« H i* )«  [« -* )“ **■ ± « ♦ * > * « ]  (C.8)

where k is an integer and the ± of the LHS is related only to the ± of the RHS. We finally obtain:

A°C*) -  /(!.-)

/«*(*) = /(1.+) + /(2 .-)

A t* ) -  /< ! .- )  +  3/(2.+) +  3 /(3 .-)

AC*) = /(! .♦ )  + 6/(2,-) + 15/(3.+) + 15/(4.-) (C.9)

A*C*) « / ( l . - )  + 10/(2.+) + 45/(3,-) + 105/(4,+) + 105/(5,-)

At-*) -  /(! .♦ )  + 15/(2,-) + 105/(3,+) + 420/(4.-) + 945/(5,+) + 945/(6,-)

AC*) = / ( ! ,- )  + 21/(2.+) + 210/(3.-) + 1260/(4,+) + 4725/(5,-)
+ 10395/(6,+) + 10395/(7.-)

We have developed SUBFUNCTIONS, in FORTRAN 77. for the calculation of the aK(rxs 2) for 

n =0, ,6. To check our programmes, we calculated successfully (in the limit of no screening

i.e. kt = 0a*-1) Slater integrals which appear in the literature.
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APPENDIX D: A method for the expansion of OfT-Site Functions

A method to calculate multi-center integrals is to express all functions involved in the 

integrand with respect to a common origin. We wish to develop a method for expanding a func­

tion sited at a point £  from the origin, with respect to the origin.

Suppose the off-site wavefunction takes the form:

/ O t - i D K i W  (D.l)

where r ,  £  referred to the origin and (0,$) represent the orientation of r - £  = r', r ' referred to the 

off-site point. Using Brink and Satchler (1968 p.151) we may write:

i £ - s ( D . 2 )

where:

B<LXrJI> -  ( - ^ " ( 2 2 - 1 )  [ ( K  @ U ) | !  OX*,) <D 3 >

By writing (D.l) as:

¿,l 'r ~,8 ' ) [ i t  -a (D.4)

we may use (D.2) and the fact that we may write:

= £  S i( '-J ')  8i(cos6) (D.5)l £ - f i l  I*)
to expand (D.l) as a product of spherical harmonics involving (0,$) and (0«,<t>x) (by using the 

Addition Theorem of Spherical Harmonics -Arfken 1970 p.581- for D.5)

For the specific case, when:

/ d £ - f i l >  -  e - z,£-« ' (D.6)

(i.e. Slater-like orbital) we derive an explicit formula for p,(r,K) as follows:

• -* •* -* ' -  l £ - 8 l ‘ « -* '« -* ' = £  Pi(co\Q') (D.7)
■ £ - & •  /-o

where:

f  l £ - £ l x « -z 't -« 'P ,( x ) d x (D.8)
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(see, for instance. Arfken 1970 p.547). The l£ -  fi lx can be written as :

R* ( \+ h 2-2hx)™  (D.9)

where h = and x = cos(0'). By using standard analytical techniques (equation 12.8 from Arfken 

1970 and Gradsteyn and Ryzhik 196S p.21) we finally obtain :

o (2 l+ l ) Rx (—I Y ( 2 I  — 2j 1! '¡S’ i - lV i l  +
P H W ' J ! )  :  2* 5  &  ( F - £ - « ) ! » I

X ♦ 2f ♦ I J ( rt
J.

( z * y > ( \  + 2q + \ - p ) \

(h + n*»a**>-* iX + 2* +11!
iZ R y " (A.+ 2« + l - p ) !

The notation |//2] denotes the integer part of the argument 1/2.

We now wish to define the function A?“(rji)  used in equation (5.15). The 5d radial 

wavefunction of Gold, assumed at a site £  from the origin, is written as (note that L = 2 and the 

radial wavefunction is given in Appendix B):

* d £ - g l ) S C , | + £ C , e- * 1
l-l 1-4

which, by using equation (D.7) and replacing / by n , becomes:

(D.l 1)

¿ A / • „ < c o s 8 >  (D.12)
B-0

where:

A ¡¡(rjt) =  h ( l£ . r . f f )  ♦  £ C ,  (D.13)

We have developed a SUBFUNCTION for the expansion of equation (D.10), in FORTRAN 

77. We checked the validity of our expansion very carefully. For instance we successfully repro­

duced overlaps given by Sharma (1976).
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APPENDIX E: Values of the F \ * ( 4 / )  radial integrals of Chapter 5, in (e»/a0) 

units, for n=4.6.

Table E .1 : F tf(4 f  ,SdEr'‘^dAm) rad ial in teg ra ls  defined  b y  (5 .15 ) in  units o f  (e» /a0).

r = 4 R = 6

& X ) ifcc = O.Oflo 1 ke = 0 .713a o ' ke = l.O ao1 (n X) kc = O.Oflo 1

(0.0) 
(0 .1) 

____ (0-2)

0 .4224x10-»
0 .1263x10-»
0 .4643x10-*

0.408x10-»
0.1238x10-»
0.4595x10-»

0.265x10-»
0.924x10-*
0.376x10-*

(2.0)
(2 .1)
(2.2)

0 .3309x10-»
0.102x10-»

0.3781X1O-4
(1 .0)
(1 .1 )
(1 .2)

0 .1 133X10-2 
0.317x10-» 

0.1084x10-»

0.1091x10-»
0.3095x10-»
0.1071x10-»

0.687x10-»
0.225x10-»
0.852x10-*

(3 .0)
(3 .1)
(3.2)

0 .3588x10-»
0.101x10-»

0 .3283x10-*
(2 .0)
(2 .1)
(2.2)
(3 .0)
(3 .1)

____ (L2)_____
(4 .0)
(4 .1)

____ (4,2)_____
(5 .0)
(5 .1)

____ (L?)_____
(6 .0)
(6 .1)

____ )________
(7 .0)
(7 .1)

____ (7,2)
(8.0)
(8.1)

____ & 2 ) _____

0.1607x10-»
0.4154x10-»
0 .1264x10-»
0 .1885x10-»
0.4554x10-»
0.1242x10-»
0 .2021x 10-»
0 .464 5 x 1 0 -’
0.1165x10-»
0.2054x10-»
0.4556x10-»
0.1078x10-»
0.201x10-»
0.435x10-»
0.98X10-4

0.191x10-»
0.404x10-»

0 .8904x10-*
0 .1774x10-»

0.37x10"»
0 .7988x10-*

0.1541x10-»
0.4036x10-»
0.124x10-»

0.1799x10-»
0.4403x10-»
0.121x10-»

0.1922x10-»
0.447x10-»

0.1133x10-»
0.194x10-»
0.433x10-»
0.103x10-»
0.19x10-»

0.413x10-»
0.944x10-*
0.18x10-»

0.384x10-»
0.855x10-*
0.167x10-»
0.351x10-»
0.765x10-*

0.924x10-» 
0.281x10-» 
0.962x10-* 
0 . 102x 10-» 
0.291x10-» 
0.903x10-* 
0.103x10-» 
0.279x10-» 
0.803x10-* 
0.982x10-» 
0.258x10-» 
0 .702x1O'4 
0.908x10-» 
0.233x10-» 
0.609x10-* 
0.817x10-»
0 .206x 10-» 
0.524x10-* 
0.719x10-» 
0.179x10-» 
0 .447x10-4

(4.0)
(4.1) 

- & ? ■ ) -
(5 .0)
(5 .1)
(5 .2) 
(6 .0) 
(6 .1)
(6 .2)
(7 .0)
(7 .1) 

- (7 .2 )
(8 .0)
(8 .1) 

- (8 ,2 )
(9.0)
(9.1)
(9.2) 

(10 .0) 
(10 .1)
(10 .2)

0 .3598x10-»
0 .9382x10-*
0.274x10-*

0 .3473x10-»
0.855x10-*

0 .2292x10-*
0.326x10-»

0 .7693x10-*
0.194x10-*

0 .2987x10-»
0 .6852x10-*
0 .1653x10-*
0 .2702x10-»
0 .6034x10-*
0 .1408x10-*
0.2397x10-»
0 .5266x10-*
0 .1092x10-*
0 .2101x 10-»
0 .4382x10-*
0.946x10-»
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APPENDIX F: Data Used for the Calculations of Chapter 8
Table F . l : Parameters o f the 4f-radial wavefunction for Cd,+

i Wi (in ao ') Bi (in a j* 1)

1 12.554 1923.8151

2 7.046 329.66724

3 4.697 43.274827

4 2.578 1.5047469

Table F .2 : Values o f the 6j-symbol • ^ ¿  ^

/ ¿=0 L=2 L=4 L=6

1

3

5

0

1
T

0

*  lx  i ’*?! >"

_(w )"

13 .» 
** 5x7zx l1 '

0

52'  24x3*x52x72 ’

+( 1 .
^ 2 2x3,57T,

^  24x32x7z ’

Table F .3 : Values o f the </1 117.113>

/ L=0 L=2 L =4 ¿=6

1

3

5

0

0

- 4 , “

« d m * » "

- ‘■nrar»“

0

-» d ir fe » *
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Table F.4 : Values of A, KE and PE components of P(/? 0 for Z,f /  = 10 
varying w ith A for R x = 4.4785a0

A A in l O W  
independent

o f K (Z.// = 0)

KE in e2lao 
xlO-J

PE in e2.'a0 
xl0-J

P(/?i) in e2lao 
xlO-2

1.4 2.187 0.3311 + 0.9046 + 1.2360

1.5 2.432 0.5631 -0.5400 + 0.0231

1.6 2.699 0.7548 - 1.8920 -1.1370

1.7 2.988 0.8970 -3.0800 -2.1830

1.8 3.299 0.9872 -4.0640 - 3.0770

1.9 3.632 1.0280 - 4.8320 -3.8040

Table F.5 : Values o f KE and PE components of P(Ri) for Z.ff = 10 
varying with A forR j = 4.7619a0

A KE in e2lao 
x\0~2

PE in e2lao 
xlO ~2

P(/ii) in e 2/ao 
x lO ~ 2

1.4 0.4432 - 0.4489 - 0.0057

1.5 0.5929 -1.6170 - 1.0240

1.6 0.6988 - 2.6310 - 1.9320

1.7 0.7593 - 3.4520 - 2.6920

1.8 0.7774 -4.0690 - 3.2920

1.9 0.7590 -4.4910 - 3.7320
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Table F .6 : Values o f  R 0 M) in cm as A  varies and for Z,/y = 0. Columns headed (/X)

- xlO-5 xlO-5 xlO-5 xlO-* xlO-6 xlO-5 xlO-5 xlO"* xlO-5

(3.0) (5.2) (3.2) ( U ) (5.4) (3.4) (1.4) (5.6) (3.6)

1.4 -8.313 1.199 -2.217 1.1853 6.733 -1.512 8.424 6.889 -1.938

1.5 -7.476 1.079 -1.994 1.0660 6.004 -1.360 7.575 6.1% -1.743

1.6 -6.736 0.972 -1.796 0.9605 5.452 -1.225 6.826 5.580 -1.571

1.7 -6.086 0.878 -1.623 0.8676 4.928 -1.107 6.166 5.041 -1.418

1.8 -5.511 0.796 -1.470 0.7857 4.461 -1.002 5.584 4.567 -1.284

1.9 -5.007 0.723 -1.335 0.7137 4.050 -0.911 5.073 4.149 -1.167

Table F .7 : Values o f  Q(IU-Ji) in e2la0 for R 1 = 4.4785a0 as A varies. Columns headed ( /X ).

A xlO-5 xlO-* xlO-* xlO-* xlO-5 xlO-* xlO-J xlO-5 xlO-*

(3.0) (5.2) (3.2) (1.2) (5.4) (3.4) (1.4) (5.6) (3.6)

1.4 -0.925 -2.429 0.305 8.00 -7.234 0.550 4.540 -3.760 0.441

1.5 0.497 -2.138 3.307 8.04 -5.995 1.913 4.535 -3.017 1.300

1.6 1.829 -1.711 5.993 7.76 -4.338 3.105 4.353 -2.054 2.048

1.7 3.000 -1.190 8.227 7.26 -2.421 4.069 4.050 -0.%28 2.644

1.8 3.978 -0.6195 9.944 6.62 -0.4 4.780 3.670 0.1693 3.076

1.9 4.741 -0.0375 11.14 5.92 1.590 5.240 3.260 1.267 3.348
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Table F .8 : Values o f Q ( /X J t) in e2/ao for R 2 = 4.7619a0 as A varies. Columns headed (/X).

A x!0-> |  xlO~* xlO~* xl<H xlO-5 xlO-* xlO-5 xlO-5 xlO-*

(3.0) (5.2) (3.2) (1.2) (5.4) (3.4) (1.4) (5.6) (3.6)

1.4 0.418 -1.511 2.551 6.98 -4.144 1.446 3.93 -2.070 0.978

1.5 1.570 -1.177 4.800 6.72 -2.890 2.436 3.76 -1.350 1.595

1.6 2.572 -0.768 6.645 6.25 -1.434 3.221 3.48 -0.534 2.079

1.7 3.385 -0.3225 8.020 5.64 0.0902 3.780 3.12 0.309 2.417

1.8 3.999 0.1262 8.926 4.98 1.569 4.119 2.73 1.113 2.614

1.9 4.421 0.5508 9.410 4.32 2.915 4.262 2.35 1.832 2.687

Table F .9 : The <g3.( r ) 1 g j , (1 r  - R  l)> overlap. All/?,, are in a 0 units.

A xlO-' xlO-' xio-2 xlO-2 xlO-2 xlO-»

R 12=4.986 R  n=6.861 R i»=8.482 R43=8.248 R u=7.924 R ,j=6.537

1.4 3.1498 1.7033 6.978 8.074 9.7936 1.962

1.5 2.9113 1.3413 4.675 5.538 6.2412 1.594

1.6 2.6442 1.0269 3.040 3.688 4.7769 1.260

1.7 2.3581 0.7667 1.926 2.392 3.2025 0.972

1.8 2.0653 0.5595 1.191 1.516 2.0976 0.733

1.9 1.7775 0.3999 0.722 0.941 1.3456 0.541
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Table F .10: Radial integral of the < f 4/{r)\g-i,(\r - R  1 )> overlap.

A xl(H

R , = 4.4785ao

xlO-J

R »-  4.7619a0

1.4 - 3.6988 -0.4367

1.5 -0.6250 2.1914

1.6 2.3407 4.5583

1.7 5.0397 6.5682

1.8 7.3759 8.1810

1.9 9.3048 9.3974
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APPENDIX G: RAPW  energy bands of Silver and Gold 

1. RAPW band structure of Gold

2 . RAPW band stucture of Silver
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