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Obesity is characterized by a state of chronic inflammation in adipose tissue mediated

by the secretion of a range of inflammatory cytokines. In comparison to WAT, relatively

little is known about the inflammatory status of brown adipose tissue (BAT) in physiology

and pathophysiology. Because BAT and brown/beige adipocytes are specialized in

energy expenditure they have protective roles against obesity and associated metabolic

diseases. BAT appears to be is less susceptible to developing inflammation than WAT.

However, there is increasing evidence that inflammation directly alters the thermogenic

activity of brown fat by impairing its capacity for energy expenditure and glucose uptake.

The inflammatory microenvironment can be affected by cytokines secreted by immune

cells as well as by the brown adipocytes themselves. Therefore, pro-inflammatory signals

represent an important component of the thermogenic potential of brown and beige

adipocytes and may contribute their dysfunction in obesity.
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INTRODUCTION

Obesity is generally associated with a systemic low-grade inflammation with adipocytes able to
produce and release signaling proteins that contribute to this condition (1–4). Many pathologies
are associated with this inflamed state, including cancer, heart disease, type 2 diabetes (T2DM), and
neurodegenerative diseases. Additionally, inflammation has been shown to impact the function of
BATwith thermogenic activity inhibited by TNFα-induced insulin resistance and proinflammatory
cytokines secreted from macrophages (5–8).

Adipose tissue (AT) functions as the body’s main organ to maintain energy homeostasis
(9). Mammals have two main classes of AT; brown AT (BAT) and white (WAT) that act
together to maintain a balance between fat accumulation and energy expenditure (10). AT is
characterized by the presence of mature lipid-storing adipocytes and pre-adipocytes (11). However,
it is heterogeneous in nature and composed of a wide range of additional cell types including
macrophages, neutrophils, lymphocytes, endothelial cells, and nerve endings (12–14). With its
secretion of over 100 different adipokines, cytokines, and chemokines, AT is the largest endocrine
organ and links metabolism and immunity (15). Undesirable changes in adipokine expression
including up-regulation of inflammatory markers and down-regulation of adiponectin are linked
to obesity (16).

BAT dissipates energy through the process of non-shivering thermogenesis (10). This is
facilitated by a large number of mitochondria, which express high levels of UCP1 (uncoupling
protein 1) in the inner membrane (10). In brown adipocytes, the nucleus occupies a central position
and triglycerides (TGs) are stored in many small multilocular lipid droplets (LDs) (17, 18). This
provides a large LD surface accessible to lipases, which facilitates the rapid lipid consumption for
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adaptive thermogenesis (18). In contrast, WAT acts as a storage
repository with white adipocytes maintaining TG in a single large
LD that occupies a central position (16, 19). Its nucleus is located
on the periphery and the cell possesses fewer mitochondria than
brown adipocytes (16). Adipocytes with brown characteristics
located within WAT are known as BRITE (brown-in-white)
or beige adipocytes, and are found under conditions such
as in response to cold or other stimuli (20–22). Evidence
indicates that beige adipocytes are mostly derived from a
different cellular lineage to that of classical brown adipocytes
and have the capacity to reversibly transition between white
and beige adipocytes (23). Due to the widespread prevalence of
obesity and its associated diseases, there is considerable research
interest in factors that modulate BAT thermogenesis and the
beige phenotype to enhance weight loss and reduce morbidity
risk. BAT itself has recently being recognized to practice an
endocrine role. It can secrete multiple factors which could
contribute to the systemic consequences of BAT activity. This
also forms an interesting aspect of obesity research as it could
lead to the identification of novel brown fat factors to direct
drug discovery approaches and ultimately improve metabolic
health (24).

The presence of BAT is associated with metabolic health
and the amount of BAT is reduced in obesity (25–29). Higher
BAT content and activation, such as by BAT transplantation in
mice, positively affects glucose and insulin metabolism and body
mass and plays a protective role against obesity pathogenesis
and associated metabolic disorders such as hyperglycaemia and
hyperlipidaemia (30–38). Cold induced thermogenesis, glucose
uptake rates and insulin stimulation is severely impaired in BAT
in the adiposity state (29, 39–41). Despite the studies showing
that reduced BAT in obesity is associated with many negative
metabolic consequences, understanding of the underlying
mechanisms is limited. Chronic inflammation represents an
important mechanism behind the dysfunction of BAT and
browning of white adipocytes in obesity.

INFLAMMATORY CELLS IN BROWN
ADIPOSE TISSUE

Although mainly composed of brown adipocytes and pre-
adipocytes BAT also contains a variety of immune cells
such as macrophages, neutrophils and lymphocytes (42–44).
Inflammation due to infiltration by macrophages and other
immune cells is recognized as a key contributor to WAT
pathophysiology in adiposity including insulin resistance and
other alterations in metabolism (45, 46). Recent studies have
identified infiltrated immune cells in BAT and inflammatory
processes as contributors to BAT dysfunction in obesity and
associated metabolic disorders. Similar to WAT, it is thought
that recruitment of immune cells in BAT is a result of lipolysis
and the release of fatty acids from stored TG (47). In diet-
induced obese mice, after 6 months, BAT presents an increase
in immune responses, including genes that indicate broad
infiltration of leukocytes, monocytes, M1-macrophages, and
cytokine release (48–51). However, BAT appears to be more

resistant to macrophage infiltration than WAT in diet induced
obese mice as these cells take longer to appear and have a
more limited influence on BAT (50, 51). Also, the expression of
inflammatory markers is lower in BAT than WAT regardless of
diet (52) providing further support that BAT is generally more
resistant to inflammation. Ultimately, inflammatory changes and
higher expression of inflammationmarkers (including TNFα and
F4/80) are evident in BAT after a persistent high burden of calorie
intake (39, 52–54).

Enhanced inflammation is suggested to play a major role in
the whitening of BAT that occurs after prolonged exposure to
high fat diet at thermoneutrality. This transformation of brown
adipocytes to unilocular cells similar to white adipocytes, is a
result of a combination of various factors that include triggering
macrophage infiltration, brown adipocyte death, and crown-like
structure (CLS) formation. Whitened BAT shows CLS formation
surrounding adipocytes that contain enlarged endoplasmic
reticulum, cholesterol crystals, some degenerating mitochondria,
and become surrounded by an increased number of collagen
fibrils. BAT gene expression analysis shows that whitened BAT
is associated with a strong inflammatory response and activation
of nucleotide-binding oligomerization domain-like receptor-3
inflammasome (NLRP3) (72). In addition, the multimodular
adaptor protein p62 is involved in multiple functions including
inflammation, and it contributes to regulating energymetabolism
via control of mitochondrial function in BAT which is another
indicator of the importance of inflammation and immune cells
pathways in BAT biology (73).

The enhancement in BAT inflammation is considered to
be largely a result of the existence and active participation of
infiltrated pro-inflammatory immune cells which are listed and
reviewed below:

MACROPHAGES

Macrophages are immune cells that serve an important
role in the coordination of inflammatory processes (74).
Classically activated macrophages (M1) secrete high levels
of pro-inflammatory cytokines including TNF-α, MCP-1,
IL-1β, and IL-6, whereas alternatively activated macrophages
(M2) produce anti-inflammatory cytokines including IL-4
(2). In subcutaneous fat (scWAT), positive roles are reported
for M2 macrophages in adaptive thermogenesis. Adipocyte-
derived adiponectin signals to activate M2 macrophage
proliferation during chronic cold exposure and the depletion
of macrophages or adiponectin leads to resistance to cold-
induced browning in scWAT (75). M2 macrophage activation
also contributes to the beiging effects of adrenomedullin
2 (ADM2) and subsequent increased UCP1 expression in
adipocytes (76). ADM2 can be produced by white adipocytes,
and its expression is down-regulated in adipose tissues of obese
mice (76). M2 macrophage activation is also stimulated by
meteorin-like (Metrnl) supporting the link between adaptive
thermogenic responses and anti-inflammatory gene programs in
fat (77).

In the lean state BAT resident macrophages which are
mostly the M2 subtype (78, 79). In obesity, however, BAT
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is infiltrated with (M1) macrophages which are suggested
to play a crucial role in controlling adaptive thermogenesis.
Inflammation of BAT caused by infiltrated macrophages
reduces thermogenesis and UCP1 activation (39, 43). However,
how macrophages affect thermogenesis and BAT biology is
controversial (78). Initially, cold-induced thermogenesis was
thought to be dependent on the secretion of the cytokines
IL-4 and IL-13 by innate lymphoid cells and eosinophils that
signal to macrophages as deletion of these cytokines receptors
was found to diminish UCP1 expression and heat generation
(77, 80). It was also suggested that M2 macrophages participate
in this mechanism by secreting catecholamines (77, 80–82).
However, this concept was recently challenged (83). It was
found that adipose resident macrophages do not express tyrosine
hydroxylase (the rate limiting enzyme for the catecholamine
synthesis) and chronic treatment of wild type, UCP1−/−, and
IL-4 receptor knockout mice with IL-4 failed to increase
energy expenditure. In addition, incubation of adipocytes with
conditioned medium from IL-4 stimulated macrophages did
not induce UCP1 protein expression (83). These data indicate
that any role of macrophages in brown fat activation is not
through IL-4 stimulated secretion of catecholamines. However,
a role of macrophages should not be completely ruled out
in thermogenesis.

The main pathway for thermogenesis activation in BAT
is via the sympathetic nervous system. It has recently been
demonstrated that macrophages play a role in the control of BAT
innervation; as selective depletion of the nuclear transcription
factor Mecp2 (methyl-CpG- binding protein 2) in macrophages,
a murine model of Rett syndrome, leads to spontaneous
obesity with compromised homeostatic energy expenditure and
thermogenesis of BAT. Specifically, deficiency of Mecp2 in BAT-
macrophages causes a reduction of UCP1 gene expression levels
that appears to result from impaired sympathetic innervation
(43). Moreover, adipose tissue resident macrophages are reported
to express a set of genes, or have a subpopulation attached
to sympathetic neurons, which regulate norepinephrine levels
by controlling its degradation which influences adipose tissue
thermogenesis (84, 85).

MAST CELLS

Mast cells are immunological classic mediators of allergic
reactions and the main secretors of histamine (86). They are
present in both WAT and BAT and their number increases
in obesity (87, 88). Similar to some macrophages, they are
closely associated with the vasculature (88). Brown adipocytes
have high levels of histamine contained in mast cells and it
is reported to play a role in thermogenesis through the H2-
receptor. This action appears to be independent of any effect on
noradrenaline stimulated oxygen consumption in isolated brown
adipocytes (89). In response to colder temperatures, mast cells
secrete histamine, IL-4 and other factors that promote UCP1
expression and the beiging response of WAT (90). Furthermore,
it is proposed that acute cold exposure recruits mast cells to
the WAT of lean subjects and enhances their degranulation
and histamine secretion in both lean and obese subjects.

As degranulation positively correlates with UCP1 suggests
thermogenesis and beiging enhancement through histamine
and secretion of other factors (91). However, these positive
associations between mast cells and thermogenesis/beiging
of WAT has been challenged. Zhang et al. reported that
mast cell deficiency or pharmacological inhibition in mice
increases browning of WAT by increasing beige adipocyte
differentiation. It has also been demonstrated that mast cell-
derived serotonin inhibits WAT browning and systemic energy
expenditure (92). The mouse model used for this study has a
mutation in c-kit tyrosine kinase and a degree of caution in the
interpretation of the outcomes is required. Several alternative
(c-kit-independent) genetic models of mast cell depletion have
found that there is essentially no effect of mast cells in
obesity and related pathologies. That is because diet-induced
obese mice with either deficiency or proficiency of mast cells
exhibits similar profiles of weight gain, glucose tolerance, insulin
sensitivity, metabolic parameters, and AT or liver inflammation
(93, 94). Further research is needed to fully understand the
role of mast cells in brown and beige adipocytes especially
in humans.

T LYMPHOCYTES: TREG AND ILC2S CELLS

Treg cells are a small subset of T lymphocytes and are
considered to be one of the most crucial defense mechanisms
in maintaining appropriate immune responses including roles
in autoimmunity and inflammation (95). Treg cells appear to
be reduced in obesity and also required to maintain a normal
adaptive thermogenesis response to cold (96, 97). Depletion
of this type of immune cell impairs BAT function which was
demonstrated by decreased oxygen consumption and prevention
of the activation of thermogenic genes coincident with
enhanced inflammation and the invasion of proinflammatory
macrophages (96).

ILC2s (IL-33/Group 2 innate lymphoid cells) are a subtype
of innate lymphoid cells. ILC2s are activated by epithelial
cell-derived cytokines IL-33 and IL-25 as well as thymid
stromal lympoiphoidin (TSLP) in response to allergens. In
WAT, it has been found that white adipocytes themselves (98)
and endothelial cells (99) can express IL-33. ILC2s control
eosinophil and pro inflammatory macrophages to initiate
type 2 immune responses that prevent helminth infection
or promote pathologic allergic inflammation (100). They are
found in WAT and their number is decreased in obese
mice and humans (101). These cells essentially release IL-
5 which maintains macrophage responses and IL-13 which
controls eosinophil responses. Both of these cytokines appear
to play an indirect role as mediators of beiging of WAT
(100). In addition, ILC2s produce an opioid-like peptide,
methionine-enkephalin (MetEnk) peptide, which appears to
directly upregulate UCP1 in WAT and induces the beiging
process (101). The cytokine IL-33 limits the development
of spontaneous obesity by increasing numbers of ILC2s and
eosinophils. This coincides with beiging and energy expenditure
in the WAT of mice by but not BAT. Deletion of IL-33 leads to
opposite effects (100, 102, 103).

Frontiers in Endocrinology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 156

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Omran and Christian Inflammation Modulates Brown Fat Activity

IMPACT OF INFLAMMATION AND
INFLAMMATORY MEDIATORS ON BROWN
ADIPOCYTE FUNCTION

Obesity mediated upregulation of inflammatory cytokines has
been extensively studied in WAT, while relatively little is known
about the cytokines involved in the adiposity inflammatory state
in BAT and how it affects BAT function and thermogenesis.
However, there is an increasing amount of evidence that
inflammation directly alters the thermogenic activity of brown
fat by impairing its energy expenditure mechanism and glucose
uptake. Pro-inflammatory cytokines can affect thermogenesis
in BAT (104–106) and also determine the capacity of WAT
browning (106, 107). It has been clearly demonstrated that
infiltrated macrophages and other immune cells in subcutaneous
WAT negatively impact the ability of precursor cells to
differentiate into thermogenically active beige adipocytes because
of pro-inflammatory cytokine secretion and generating an
inflammatory microenvironment (108).

In BAT, the increased expression of inflammatory markers
such as TNFα and MCP-1 in obese murine models is
accompanied by a decrease in the expression of UCP1 and other
markers of thermogenesis as well as lack of fatty acids which
are needed as substrate for thermogenesis (49, 109). Also, it
is reported that IL-1b reduces the cAMP-mediated induction
of UCP1 expression (104), cold-induced thermogenesis in
adipocytes in vivo via sirtuin-1 inhibition (SIRT1) (110) and
WAT browning (111). Furthermore, Fractalkine, which is an
adipocyte-synthesized chemokine, appears to contribute to
enhancement of the pro-inflammatory status of BAT and reduced
thermogenic gene expression in diet-induced obese mice (59). In
contrast, IL-13, which has anti-inflammatory properties, induces
GDF15 (growth differentiation factor 15) expression which is
found to protect against obesity by inducing thermogenesis,
lipolysis, and oxidative metabolism in mice (112, 113), and
prevent inflammation through inhibition of M1 macrophage
activation (71).

Oncostatin M, a macrophage proinflammatory cytokine
impairs BAT thermogenesis and browning capacity of
subcutaneous WAT in vivo. Furthermore, it inhibits
brown adipocyte differentiation in vitro (114, 115). The
pro-inflammatory phenotype induced by Oncostatin M is
indicated as a mechanism of downregulating UCP1 expression.
The significance of inflammation-driven inhibition of beige
adipogenesis in obesity has been highlighted by studies of the
interaction between α4-integrin receptor on pro-inflammatory
macrophages and VCAM-1 (vascular cell adhesion molecule-1)
on adipocytes. This interaction resulted in reduced UCP1 gene
expression via the ERK (extracellular signal-regulated kinase)
pathway and blockage of α4 integrin led to elevated beige
adipogenesis and prevented metabolic dysregulation of the obese
AT (113). This mechanism establishes a self-sustained cycle
of inflammation driven impairment of the beige phenotype
in obesity.

Another inflammatory candidate that might affect BAT
biology and thermogenesis is the macrophage secreted factor

GDF3 (growth differentiation factor-3) which increases in
obesity. It is suggested that GDF3 is responsible for inhibition
of β3-adrenoceptors which can lead to reduced lipolysis and
consequently the impaired release of fuel for thermogenesis
(84). However, although thermogenic gene expression was not
restored after deleting activin-like kinase-7 (Alk7) which is the
GDF3 receptor (84, 116, 117), deleting Alk7 led to reduced
obesity. The metabolic benefit of Alk7 deletion may be attributed
to enhanced mitochondrial biogenesis and increased levels of
fatty acid oxidation found in this mouse model (116) as browning
did not occur.

BAT can respond to immune and inflammatory pathways by
the expression of cytokine receptors, Toll like receptors (TLRs),
and nucleotide-oligomerization domain-containing proteins
(NODs). Activation of these receptors by immune and metabolic
signals mediates a negative impact of proinflammatory signaling
on BAT thermogenesis (53). In this respect, both LPS and
TNFα are found to impair UCP1 in BAT in mice in vivo
and in vitro studies (110, 118). In addition, TLR4 activation
inhibits β3-adrenergic-induced browning of WAT, whereas
TLR4-deletion maintains thermogenic capacity (111). Some
inflammatory inducers can lead to greater disruption of WAT
browning compared to affecting thermogenesis in BAT. This
may be indicative of a greater inflammatory response of
WAT compared BAT. For example, depletion of the intestinal
microbiota leads to greatly enhanced WAT browning while
having only a minor effect on typical BAT (119). Also,
LBP (LPS-binding protein) depletion similarly enhances WAT
browning (120). This might be explained by a higher basal
level of inflammation in subcutaneous WAT compared to
BAT (51, 106, 107).

On the molecular level, IKKε (IκB kinase ε) and IRF3
(interferon regulatory factor-3) are among the main
inflammation regulators in obesity (121, 122). Deletion of
IKKε or IRF3 results in a reduction of inflammatory markers
in adipose tissues and enhanced WAT browning with UCP1
expression and energy expenditure increased, while there are
only minor effects on BAT (122, 123). The Nod-like receptor
3 (NLRP3) inflammasome multiprotein complex regulates
inflammation and macrophage activity by cleaving IL-1b and
IL-18 precursors into their active forms. Activation of NLRP3
in macrophages attenuates UCP1 and adaptive thermogenesis
induction of white adipocytes and mitochondrial respiration,
while NLRP3 deletion prevents UCP1 reduction. The action
is through IL-1 as blocking the IL-1 receptor in adipocytes
protected thermogenesis activity (111). IEX-1, an immediate
early gene, is highly expressed in macrophages in obesity
and is responsible for the majority of the obesity associated
inflammation in humans and mice and its deletion had
profound effects on the browning of WAT. Knockout of IEX-1
prevents HFD-induced inflammation, insulin resistance, and
obesity by elevated browning and increasing thermogenic
gene expression in WAT. This results from the promotion
of M2 macrophages in WAT, but not BAT (124): and further
highlights the different immune responses of white and brown
adipose tissues.
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There is a link between inflammatory stress pathways and
the accompanied activation of endoplasmic reticulum (ER) in
conditions of disruption of systemic metabolic homeostasis like
obesity (125, 126). Brown adipocytes have a relatively small ER
content and restricted ER surface area compared to other cell
types. Thus, ER adaptation in these cells may require alternative
pathways to conventional mechanisms such as chaperone-
mediated protein folding and ER expansion (127, 128). In fact,
some of the canonical ubiquitin-proteasome system molecules,
for example X-box binding protein 1, appear to be dispensable
in adipocytes (129). To maintain ER homeostasis and cellular
integrity increased proteasomal activity in brown adipocytes is
reported to be essential for thermogenic adaptation. This occurs
via induction of the induction of the ER-localized transcription
factor nuclear factor erythroid-2, like-1 (Nfe2l1, also known as
Nrf1) (130). Deletion of Nfe2l1, specifically in brown adipocytes,
results in ER stress, inflammation, mitochondrial dysfunction,
insulin resistance, and whitening of the BAT (130, 131).

In addition to the direct effects that proinflammatory
cytokines may have on brown adipocytes, some of these factors
may inhibit activation of adrenergic receptors, stimulation
of sympathetic nervous activity and thus local secretion of
noradrenaline. As this is the main mechanism of inducing
BAT thermogenesis activity and WAT browning, in response to
cold and diet, it should be considered when evaluating effects
on browning.

BROWN ADIPOCYTES SECRETE
PRO/ANTI-INFLAMMATORY MEDIATORS

In addition to the cytokine mediators secreted by infiltrated
immune cells, such cytokines may also be secreted by brown
adipocytes themselves. Table 1 summarizes what has been
studied in BAT.

Chemerin is an adipokine associated with inflammation
markers (e.g., IL-6, TNFα, Leptin) and components of the
metabolic syndrome in WAT. It modulates chemotaxis and
activation of dendritic cells and macrophages (132–134).
Chemerin was found to be secreted by brown adipocytes. Its
gene expression levels are increased in obesity and decreased
with cold induced thermogenesis and could potentially play
a key role as an inflammatory modulator in BAT. However,
the lack of correlation between expression levels in BAT and
circulating levels make it unclear whether it plays an endocrine
role in attracting immune cells (55). At present, it remains to be
determined how Chemerin expression is controlled and what is
its function in BAT.

Endothelin-1 (ET-1) has pro-inflammatory effects by
activating macrophages, resulting in the secretion of pro-
inflammatory and chemotactic mediators including TNFα, IL-1,
IL-6, and IL-8 (135, 136). ET-1 levels were found to be increased
in obesity and enhance lipolysis thereby linking it to insulin
resistance in WAT (137). ET-1 is released by brown adipocytes
and its secretion is inhibited during adrenergic stimulation (56).
Data implicates that it can inhibit thermogenesis via induction of
Gq signaling. However, the contribution of ET-1 to inflammation

of BAT and the mechanism of thermogenesis repression remains
to be fully investigated.

Vascular endothelial growth factor A (VEGFA) is a
proangiogenic cytokine. The reported findings concerning
VEGFA levels in WAT in obesity are controversial. Deletion of
VEGFA in WAT leads to little or no change in the expression
of inflammatory markers that contribute to systemic insulin
resistance, such as EGF-like module-containing mucin-like
hormone receptor-like 1 (Emr1), TNF-α, and MCP-1. Nor were
there detectable changes in the expression of mitochondrial genes
in WAT (138, 139). In contrast, in BAT VEGFA can induce
thermogenic activity and deletion of VEGFA results in reduction
of BATmass, vessel density, and eventually loss of thermogenesis
through mitochondrial dysfunction (68, 138). Hence, ablation
of VEGFA results in the whitening of BAT. However, the direct
effect of VEGFA on inflammatory markers in brown adipocytes
is currently unknown.

Retinol-Binding Protein 4 (RBP4) is an adipokine and
circulating transporter of vitamin A (retinol) that induces
inflammation and promotes the secretion of proinflammatory
molecules (140). There has been some controversy regarding
the associations and/or causality in the context of obesity and
metabolic syndrome. However, in adipocytes, RBP4 appears to
have a relevant role in obesity and the development of insulin
resistance and diabetes (141). Brown adipocytes release RBP4
when exposed to a thermogenic, noradrenergic activation, but
the mechanism associated with this release is unclear. Lipocalin
2 (Lcn2) has been implicated in the release of RBP4 as Lnc2
KO adipose tissue shows increased RBP4 levels while circulating
levels are reduced (142). Also, BAT released RBP4 may not
be associated with insulin resistance given that cold-induced
activation of BAT is associated with insulin sensitization (57).

Fibroblast growth factor 21 (FGF21) is a brown adipokine
and a key factor in the regulation of energy homeostasis. In
WAT, it induces browning and participates in improving glucose
metabolism and weight regulation. Cold induced thermogenesis
and adrenergic activation induces FGF21 release from brown
adipocytes. In addition to this mechanism, WAT-resident anti-
inflammatory invariant natural killer T (iNKT) cells promote
the release of FGF-21 by adipocytes and the browning process
(143–145). Prevention of hyperglycaemia and hyperlipidaemia
is associated with high levels of FGF21 in line with high BAT
activity and enhanced energy expenditure (146, 147). Although
FGF21 is reported to have anti-inflammatory effects on white
adipocytes (148) it remains to be determined if it has a similar
action in brown adipocytes.

CXCL14 is a member of the CXC chemokine family and exerts
chemoattractive activity for activated macrophages, immature
dendritic cells and natural killer cells. In WAT, CXCL14
participates in glucose metabolism (149, 150). It is reported to
be secreted by brown adipocytes in response to thermogenic
activation. CXCL14 appears to attract M2 macrophages and its
deletion leads to impaired BAT thermogenesis activity and low
recruitment of macrophages into BAT. CXCL14 enhances the
browning of white fat via type 2 cytokine signaling (67).

Fractalkine (CX3CL1) is a chemokine produced by brown
adipocytes that plays a role in the recruitment of leukocytes
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TABLE 1 | Summary of brown adipocyte secreted inflammatory mediators.

Inflammatory mediator Role in brown/beige adipocytes Inflammation Cold-regulated References

Pro- Anti-

Chemerin ↑ Chemerin expression in brown

adipocytes in obesity

↑ Chemerin gene expression in brown

adipocytes through differentiation

Chemerin predicted to increase

triglyceride accumulation

✓ ↓ (55)

Endothelin 1 (ET-1) ET-1 inhibits adipogenesis

Adrenergic activation inhibits

ET-1 secretion

✓ (?) ↓ (56)

Retinol-Binding Protein 4

(RBP4)

↑ RBP4 expression in BAT with

thermogenic, noradrenergic activation

✓ (?) ↑ (57)

Growth differentiation factor

(GDF8/myostatin)

Myostatin leads to ↓ thermogenesis

and browning and ↓ metabolic

activity in BAT

✓ (?) (58)

Classic pro-inflammatory

cytokines such as MCP1,

TNFα, IL-1.

The increase in these cytokines is

accompanied with ↓ thermogenesis

genes and ↓ mitochondrial respiration

in BAT

✓ ↓ (53)

Fractalkine (CX3CL1) Enhanced CX3CL1 secretion leads to

↑ pro-inflammatory status and ↓

thermogenesis gene expression in

BAT

✓ (?) (59)

Insulin-Like Growth Factor-1

(IGF-1)

IGF-1 leads to ↑ proliferation and

differentiation of preadipocytes

✓ ✓ ↑ (60, 61)

IL-6 ↑ IL-6 expression in BAT with

adrenergic stimulus

✓ ✓ ↑ (62)

Fibroblast growth factor 21

(FGF21)

FGF21 leads to ↑ thermogenesis ✓ ↑ (63, 64)

Follistatin (Fst) Fst leads to ↑ thermogenesis and

browning

Fst leads to ↑ adipocyte differentiation

✓ ↑ (65)

C-terminal fragment of

SLIT2 protein (SLIT2-C)

SLIT2-C leads to ↑ browning ✓ ↑ (acute) (66)

- (Chronic)

C-X-C motif chemokine

ligand-14 (CXCL14)

CXCL14 leads to ↑ browning and ↑

(M2) macrophages in BAT

✓ ↑ (67)

Vascular endothelial growth

factor A (VEGFA)

VEGFA leads to ↑ thermogenesis and

browning

✓ ↑ (68, 69)

Lipocalin prostaglandin D

synthase (L-PGDS)

L-PGDS leads to ↑ basal metabolic

rates and ↑ lipid utilization in BAT

✓ ↑ (70)

Growth and differentiation

factor 15 (GDF15)

↑ GDF15 gene expression and

release with noradrenergic,

cAMP-mediated thermogenic

activation of brown adipocytes

Inhibits local inflammatory pathways

originated from macrophages

✓ ↑ (71)

through the fractalkine receptor. Its action seems to be to
promote an inflammatory state as deficiency of the fractalkine
receptor prevents BAT accumulation of macrophages and leads
to reduced expression of pro inflammatory genes (Tnfα, Il1α,
and Ccl2) in mice exposed to HFD. Furthermore, the BAT of
fractalkine receptor deficient mice shows increased expression
of lipolytic enzymes such as adipose triglyceride lipase (Atgl),
lipase, hormone-sensitive (Hsl) and monoglyceride lipase (Mgtl)
and upregulation of UCP1 and other thermogenesis genes
(59). This indicates that fractalkine serves a key role in the

local inflammation of BAT tissue and the remodeling on HFD
affecting metabolism.

Follistatin (FST) is a soluble glycoprotein that has the
capacity to modulate the activities of multiple members of the
transforming growth factor (TGF) family, specifically activin A
andmyostatin (GDF8). TGF-β superfamily cytokines play pivotal
roles in regulation of tissue functions including inflammation
(151–153). Blockade of TGF-β/Smad3 signaling enhances insulin
sensitivity and prevents diet-induced obesity, promotes the
browning of WAT with reduced levels of inflammatory cytokines
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and less inflammatory macrophage infiltration (154–156). FST
is upregulated in BAT in response to cold, and is potentially a
positive regulator of BAT function by blocking TGF-β signaling
pathways, GDF8 actions, and exerting anti-inflammatory effects
(65, 157, 158). However, these actions are yet to be explored.

Myostatin (GDF8) is a key member of the transforming
growth factor-β (TGF-β) super family and has an essential
role in the regulation of overall fat content in mice. Loss of
GDF8 leads to a significant increase in lean mass, total energy
expenditure, protection against diet-induced obesity, and insulin
resistance. GDF8 levels increase in obesity and it is reported to
suppresses Irisin leading to activation of inflammatory cytokines
and insulin resistance in WAT. GDF8 secretion from brown
adipocytes is stimulated by activation of hunger-related neural
circuits. It negatively regulates BAT thermogenesis as well as
WAT browning, and metabolic activity. Data clearly indicates
that GDF8 inhibits brown fat gene expression (157), however,
further research is needed to investigate its inflammatory related
effects in this tissue (58, 156, 157, 159–161).

Growth and differentiation factor 15 (GDF15) is also known
as macrophage inhibiting cytokine-1 and is a member of the
TGF-β superfamily (162). GDF15 is suggested to be a reliable
predictor of disease progression in certain tumors, inflammatory
diseases, cardiovascular disease, and obesity (162). It is reported
to decrease food intake, body weight and adiposity, and to
improve glucose tolerance under normal and obesogenic diets
(163). Furthermore, systemic overexpression of GDF15 was
shown to prevent obesity and insulin resistance by increasing
the expression of the main thermogenic and lipolytic genes and
oxidative metabolism in BAT and WAT (164). It is identified
as one of the factors secreted by brown adipocytes through
protein kinase A-mediated mechanisms, and highly induced in
response to thermogenic activity following stimulus by cold,
norepinephrine, and cAMP. GDF15 acts on macrophages in
BAT and may mediate inhibition of local inflammatory pathways
under conditions of enhanced BAT activity (71).

C-terminal fragment of SLIT2 protein (SLIT2-C) belongs
to the Slit family of secreted proteins that play important
roles in various physiologic and pathologic activities including
inflammatory cell chemotaxis where it exercises an anti-
inflammatory role (66, 165). SLIT2-C expression is regulated
by PRDM16 and is secreted from beige/brown adipocytes. It
induces thermogenesis, WAT browning, and metabolic processes
associated with substrate supply to fuel thermogenesis. The
pathway for the induction of thermogenesis is independent of β-
adrenergic activation, but requires activation of protein kinase A
signaling (66). The protease that generates the SLIT2-C fragment
as well as the receptor in BAT that binds it are important areas
for future investigation.

Lipocalin prostaglandin D synthase (L-PGDS) is expressed
in BAT where it has a key role in energy substrate utilization.
It is also localized in the central nervous system and it is
involved in inflammatory modulations amongst other functions
(166). Deletion of L-PGDS leads to inadequate thermogenesis in
BAT because of impairment in switching of substrate utilization
from glucose to lipids (70, 167). In addition, L-PGDS deficiency
induces obesity possibly through the regulation of inflammatory

responses (168). However, if that is the case in brown adipocytes,
it is yet to be elucidated.

Insulin-Like Growth Factor-1 (IGF-1) appears to play
pleiotropic functions and provides signals to macrophages
to sustain adipose tissue development and homeostasis.
IGF1 signaling integrates immune-metabolic interactions
to facilitate macrophage activation status. Cold exposure
stimulates elevation of IGF-1 expression in the BAT of rats (169).
However, Myeloid-specific ablation of IGF-1 receptor worsens
diet induced obesity but not cold induced thermogenesis
(170, 171). It is suggested that IGF-1 is released by brown
adipocytes and involved in proliferation and differentiation
of brown preadipocytes (60, 61, 172). IGF-1 upregulation due
to BAT transplantation is proposed to abolish type I diabetes
in this experimental model and negatively correlates with
glucose, glucagon, and inflammatory cytokines in rodents
(31, 173). However, the detailed role of IGF-1 in brown
adipocytes inflammation regulation remains an area to
be investigated.

Interleukin 6 (IL-6) is secreted by brown adipocytes upon
β-adrenergic activation (62). Chronic elevation of IL-6 in the
CNS leads to increased UCP1 in BAT, but not in denervated
BAT tissue which suggest a central role in IL-6-dependent
promotion of thermogenesis (174). Signaling by IL-6 promotes
M2 macrophage polarization in BAT (175). Evidence indicates
that IL-6 is released from WAT during the differentiation
of human beige adipocytes to facilitate the commitment of
adipocyte precursors toward beigeing and enhancement of
thermogenesis capacity in an autocrine manner (176). The
deletion of IL-6 in mice leads to inefficient BAT transplantation
with sustained obesity and insulin resistance, and blunted FGF21
increase (33). These data suggest beneficial effects of IL-6 in
regulation of BAT metabolism possibly directly or indirectly
related to FGF21 actions. However, this contrasts with the
action of IL-6 as a potent pro-inflammatory cytokine. This
aspect can be demonstrated by plasma IL-6 being elevated in
obesity and diabetes, in addition to reduced levels in weight
loss (177–179). Furthermore, it is also found to play a major
role as a pro-inflammatory cytokine in obese adipose tissue,
macrophage polarization, and T cell regulation via STAT3,
leading eventually to insulin resistance and worsening diet-
induced obesity (180). Moreover, as expected for IL-6 having
a typical role as a pro-inflammatory cytokine, its deletion
causes reversal of pro-inflammatory signaling in the obese state
(179). In terms of browning activation, IL-6 is implicated in
inducing inguinal WAT atrophy by accelerating WAT lipolysis
and browning (181). In any case, these available contradictory
data concerning the role of IL-6 are indicative of both pro-
and anti-inflammatory actions. A schematic showing the actions
of inflammatory mediators on brown and white adipocytes is
presented in Figure 1.

INSULIN SENSITIVITY

Pro-inflammatory signaling can disrupt the insulin signaling
cascade and impair the insulin sensitivity of BAT. Although,
IL-1, TNF-α, MIF, and IL-6 have consistently been shown to
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FIGURE 1 | Inflammatory mediator actions on white and brown adipocytes. Pro-inflammatory factors secreted by immune cells and brown/beige adipocytes prevent

the expression of brown fat genes in adipocytes, including UCP1, the main thermogenic protein (red arrows). In contrast anti-inflammatory mediators promote the

transition of white to beige adipocytes and could prevent expression of the “whitened” brown adipocyte phenotype in brown adipose tissue (green arrows). IGF-1,

Insulin-Like Growth Factor-1; CX3CL1, Fractaline; RBP4, Retinol-Binding Protein 4; TNFα, Tumor necrosis factor a; GDF8, Growth differentiation factor 8; ET-1,

Endothelin 1; IL6, Interleukin 6; IL1, Interleukin 1; MCP1, Monocyte Chemoattractant Protein-1; SLIT2-C, C-terminal fragment of SLIT2 protein; VEGFA, Vascular

endothelial growth factor A; FGF21, Fibroblast growth factor 21; CXCL14, C-X-C motif chemokine ligand-14; L-PGDS, Lipocalin prostaglandin D synthase; Fst,

Follistatin; UCP1, Uncoupling Protein 1; GDF15, Growth and differentiation factor 15.

cause insulin resistance in WAT (182, 183), their effects have
not been extensively explored in BAT at the molecular level.
Elevated inflammatory marker levels in the diet induced obesity
state in mice are suggested to be responsible for BAT insulin
resistance via AKT (protein kinase B) and ERK pathways (52).
TNF-α appears to play an important role in impairing insulin
sensitivity of BAT. The mechanism has been discussed in detail
and it involves disturbances of both MAP- kinases activation
and IRS-2 and AKT (5–7). Mammalian target of rapamycin
complex 2 (mTORC2), which activates inflammation, sustains
thermogenesis via Akt-induced glucose uptake and glycolysis
in BAT. This highlights the significance of glucose metabolism
in BAT in thermogenesis and indicates the importance of
identifying how inflammation can affect mTORC2-activation in

BAT (184, 185). Alleviating the inflammation state in obesity
may restore insulin sensitivity as targeting inflammation in
diet induced obesity in mice leads to a decrease in adipocyte
area, macrophage infiltration, proinflammatory gene expression,
along with JNK and NF-κB activation and increased insulin
sensitivity via increased AKT phosphorylation (186, 187). In
this context, sucrose non-fermenting related kinase (SNRK), a
member of the AMPK-related kinase family, is found to suppress
inflammation in WAT and is essential for maintaining UCP1
expression for BAT thermogenesis. Dysregulation of this anti-
inflammatory kinase leads to induction of insulin resistance in
BAT via impairment of the PP2A-Akt pathway (188, 189). As a
result, inflammation is a modulator of insulin responses in BAT
and is strongly linked to UCP1 expression and thermogenesis. It
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is important to determine the role of each inflammatory cytokine
in insulin resistance and thermogenesis in order to identify
therapeutic targets.

MITOCHONDRIAL FUNCTION IS
AFFECTED BY INFLAMMATORY
PATHWAYS

Inflammation and mitochondrial dysfunction are closely linked
with obesity and associated with alteration in mitochondrial
function and mass (190, 191). These alterations are further
demonstrated by downregulation of mitochondrial biogenesis,
oxidative metabolic pathways, and oxidative phosphorylation
proteins in WAT in obesity, and a negative correlation
with pro-inflammatory cytokines (192). Evidence indicates
that proinflammatory cytokines have a significant influence
on modulating mitochondrial efficiency leading to effects on
energy homeostasis in human white adipocytes. TNF-α most
dramatically alters 3T3-L1 adipocyte mitochondrial functions,
whereas IL-1β and IL-6 have more modest effects. Moreover,
activation of the NLRP3 inflammasome in macrophages
attenuates UCP1 induction and mitochondrial respiration in
cultures of primary adipocytes possibly via IL-1, while the
absence of NLRP3 is protective for UCP1 and adaptive
thermogenesis capacity in adipocytes (111, 193, 194).

The activation of pattern recognition receptors in brown
adipocytes and subsequent increased inflammation leads to
mitochondrial dysfunction and suppression of mitochondrial
respiration with reduced UCP1 expression levels and repressed
white adipocyte browning capacity in response to adrenergic
stimulation. Mechanistically, these effects are likely to involve
inhibition of SIRT1 activity (53, 110, 111). Moreover, deletion
of TLR4 protected mitochondrial function and thermogenesis in
WAT (111). However, there is a suggestion that mitochondrial
dysfunction in adipocytes is a primary cause of adipose tissue
inflammation, adipocyte enlargement and insulin resistance.
According to this hypothesis mitochondrial dysfunction and
fatty acid oxidation in adipocytes leads to adipocyte enlargement
because of triglyceride accumulation. Furthermore, adipocyte
mitochondrial dysfunction leads to pseudo-hypoxia with greater
accumulation of hypoxia-inducible factor 1α (HIF-1α), which
elevates adipose tissue inflammation and fibrosis (195, 196).
Similarly, alteration of mitochondrial capacity in BAT might be
functionally associated with defective thermogenesis and energy
expenditure in obesity and increased risk to develop obesity-
induced insulin resistance.

Using a mouse model of chronic systemic inflammation,
which exhibits increased circulating levels of inflammatory
cytokines and abnormal regulation of both innate and adaptive
immune responses, mitochondrial swelling is detected with
severe damage of the cristae, in addition to reduced cold-induced
thermogenic capacity and UCP1-dependent mitochondrial
respiration (197). Furthermore, low grade inflammation in
BAT in obesity is found as a contributor to excess reactive
oxygen species (ROS) production and associated oxidative stress,
which may cause mitochondrial dysfunction (198–202). Further

investigations in BAT confirmed increased inflammation and
ROS generation, but this was accompanied by the doubling
of mitochondria respiration compared to lean subjects. It is
possible that if the obesogenic conditions were maintained for
longer, mitochondria would have eventually failed to deal with
obesity stress and thermogenic capacity would be ultimately
compromised (49). ROS production does not necessarily have
negative consequences in BAT. Consistent with beneficial effects
of increased ROS, activated BAT thermogenesis in vivo is
defined by a substantial increase in mitochondrial ROS levels
and pharmacological depletion of mitochondrial ROS leads to
hypothermia upon cold exposure, and inhibits UCP1-dependent
increases in whole body energy expenditure (203).

Mitochondrial dysfunction resulting from deletion of the
mitochondrial transcription factor A (TFAM) leads to adipocyte
death coincident with inflammation in WAT and a whitening
of BAT with decreased energy expenditure. BAT whitening in
these mice is mainly explained by impairment of mitochondrial
electron transport chain function, reduced fatty acid oxidation,
and increased circulating fatty acids, rather than a conversion of
brown to white adipocytes (204). These findings highlight the link
between mitochondrial function and inflammation and point
to mitochondria dysfunction leading to increased inflammation
which could ultimately lead to a vicious cycle.

ANTI-INFLAMMATORY PATHWAYS AND
BAT FUNCTION

Strategies that target the inflammatory status may have
the potential to reverse adipose tissue dysfunction and
prevent progression of metabolic diseases. Suppression of
inflammation using pharmacological agents, with reduction
of pro-inflammatory cytokines and macrophage infiltration in
WAT, improves AKT-phosphorylation in response to insulin
along with improved body weight and fat mass (187, 205–
207). Cytarabine, which has immunosuppressive actions, is
associated with enhanced BAT activity via the AMPK pathway
raising the possibility it could be developed for anti-obesity
therapy (208). There is also evidence that dietary intervention
can have anti-inflammation activity which leads to enhanced
insulin sensitivity. Food extracts with a high content of either
flavonoids, phenolic compounds, p-coumaric acid, quercetin, or
resveratrol have been found to exert systemic anti-inflammatory
actions via inhibition of TNF-α-triggered activation of MAPKs
and NFκB in human white adipocytes which improve insulin
sensitivity (186). Specifically, Curcumin intervention was found
to reduce mouse WAT inflammation and increase BAT UCP1
expression via PPAR-dependent and -independent mechanisms.
It reduces macrophage infiltration and proinflammation
cytokine expression in both macrophages and adipocytes along
with increased energy expenditure and body temperature in
response to cold (209).

Fatty acids (FA) are another example of dietary constituents
that act as inflammation modulators. Importantly, ω3-FAs (n-3
polyunsaturated fatty acids (n-3PUFAs) have anti-inflammatory
effects and may significantly impact chronic inflammatory
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diseases including obesity related disorders (210). An ω3-
enriched diet, in non-obesogenic non-inflammatory conditions,
leads to synthesis of oxylipins which have an anti-inflammatory
response in both WAT and BAT with a macrophage modulation
effect, but with no influence on inflammatory cytokine secretion
(209). FFAs are active stimulators for members of the rhodopsin-
like family of G protein-coupled receptors (GPCRs) including
GPR40, GPR41, GPR43, GPR84, and GPR120 (211, 212).
GPR120 is highly expressed in both BAT and WAT. and
positively impacts metabolic health by stimulating mitochondrial
respiration in brown fat via intracellular Ca2+ release which
results in mitochondrial depolarization and fragmentation.
This occurs along with mitochondrial UCP1 activation, which
may act synergistically with mitochondrial fragmentation to
increase respiration. GPR120 activation by the agonist TUG-
891 upregulates fat combustion in BAT thereby reducing fat
mass, while GPR120 deficiency diminishes expression of genes
involved in nutrient metabolism (213). Moreover, GPR120
deficiency leads to obesity, glucose intolerance, and hepatic
steatosis in mice fed a high-fat diet (214). Importantly, GPR120
mediates the anti-inflammatory and insulin sensitizing effects
of ω3-FAs including inhibition of inflammatory pathways and
cytokine secretion in adipocytes and macrophages (215, 216).
A role for GPR120 in BAT activation and WAT browning
in response to cold via FGF21 secretion has also been
confirmed (217).

CONCLUSION

Immune responses pose a significant metabolic challenge for the
host due a range of energetically expensive processes including
inflammatory mediator production and cell migration and
proliferation. There is a trade-off between the energetic demands
of immunity and homeothermy that permits a hypometabolic-
hypothermic state to favor the immune system. Peripheral insulin
resistance provides a mechanism for reallocating metabolic
fuels to immune cells due to decreased nutrient storage

in fat, muscle, and liver. The precise role of BAT in the
hypometabolic-hypothermic state is currently unclear. Although
BAT is generally more resistant to inflammatory stimuli than
WAT, the repression of thermogenesis by inflammation may
be a key energy trade-off to allow sufficient resources for
immune responses. Importantly, BAT-mediated thermogenesis
reactivation seems to be required for the exit from the
hypometabolic-hypothermic state (218).

Many immune and inflammatory cells actively participate
in the regulation of BAT thermogenesis, WAT browning
and ultimately have the capacity to participate in controlling
energy balance, glycemia, and lipidemia. Pro-inflammatory
mediators secreted by both immune cells and adipocytes inhibit
thermogenesis activation in BAT and browning of WAT in
contrast to anti-inflammatory factors that have a positive
influence. Additional research is needed to demonstrate the effect
of each one of these mediators on brown and beige adipose
cells and fully explain the pathways involved at the molecular
level that regulate immune cells and brown/beige adipocytes
interactions. This could lead to new therapeutic strategies to
improve metabolic health and combating obesity and associated
metabolic diseases.
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