A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/134903

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Robert Cowen

Thesis submitted for the degree of Doctor of Philosophy.

CONTENTS

Acknowledgements (1)
Declaration (1i)
Summary (iii)
CHAPTER 1 - ISOMORPHISM PROBLEMS FOR MARKOV CHAINS
O. Introduction 1

1. Topological Yarkov chains and Williams' problem 3
2. Pressure and Ruelle operators 5
3. The information cocycle and maximal measures 7
4. Topological conjugacy and Ruelle operators 8
5. Williams' problem revisited 24
6. The stochastic problem 31
7. Suspension flows 34
8. Classification of one-sided Markov chains 39
References 52
CHAPTER 2 - ON THE CLASSIFICATION OF ENDOMORPHISMSOF THE CIRCLE
O. Introduction 56
9. The phase group 59
10. The phase factor and the phase group 64
11. Complete invariants for isometric isomorphism 71
References 82

(1)

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Bill Parry, for his interest, stimulation and guidance throughout my time at Warwick.

I also wish to thank Mark Pollicott for his valued advice and correspondence during the preparation of thia thesis.

I am eternally grateful to Lina Patel and my parents for their endless support and encouragement.

Finally, 1 would like to thank Terri Moss for an excellent typing job.

DECLARATION

I declare that no portion of this thesis has been previously submitted for any degree at any univeraity or ingtitute of learning.

In Chapter 1 the following resulta are due to me: Thearem 5, Theorem 9, Theorem 10, Proposition 1, Lemma 1, Corollary 5.1 and Corollary 10.1.

- The proof
of Lemma 6 if based on 2 result by W. Parry and R. F. Williame.
The other resulta in 58 closely follow the work of R.F.
Williams.
With the exception of Proposition 1 and Theorem 1, the results contained in Chapter 2 are due to me.

(111)

SUMMARY

This thesis consists of two independent chapters. Each chapter has its own detailed intraduction and references.

In Chapter one we give new complete topological conJugacy invariants for finite atate stationary Markov chaing. These new invariante give a classification up to a topological conjugacy which preserves certain equilibrium stated. We use our new invariants to investigate Williams' problem. Finally, we generalise the topological claseification of oneaided finite state atationary Markov chains to give a classification up to block-isomorphisa.

In Chapter two we investigate a problem posed by Shub and Sullivan on the clasaification of real analytic Lebesgue measure-preserving expanding endomorphisms of the circle. We introduce new Jacobian invariant that enables us to study the phase factor. Finally, we introduce complete isomorphism invariants but these invariants have a measure-theoretic and topological nature.

CHAPTER 1

ISOMORPHISM PROBLEMS FOR MARKOV CHAINS
60. INTRODUCTION

The theory of topological Markov chains (or subshifts of finite type) plays an important role in many branches of ergodic theory and dynamical systems see [2], [3], [4], [5], and [19] for example. We will be concerned with the topological and the measure-theoretic classification of these subshifts. In [25] Williama introduced two invariants of topological conjugacy called strong shift-equivalence and shift-equivalence. He showed that strong shift-equivalence is a complete invariant for topological conjugacy. However, for many categories of matrices it is easier to decide whether they are ghift-equivalent (cf [1], [9], [16] and [25]). One of the fundamental problems In the theory of subshifts of finite type is to determine whether shift-equivalence ia complete invariant for topological conjugacy. The topological classification was generalised in [15] and [16] to give a claseification up to block-isomorphiam, i.e. a topological conjugacy between subshifte of finite type which preserves Markov measures.

Let us suppose that we are given two subshifts of finite type, each supporting the equilibrium state of a continuous function with certain properties (these will be defined in 54). We will introduce a new invariant in $\$ 4$ which gives a necessary and sufficient condition for these aubshifts to be topologically conjugate via a homeomorphism which preserves these measures.

```
We return to Williame' problem in 55 and illustrate some of
the difficulties encountered when trying to deduce this new-
Invariant from a shift-equivalence of matrices.
    In 56 we apply our results to the stochagtic generalisation
of Williams' problem. In \7 we Investigate guapension flows
over subshifts of finite type. With appropriate assumptions,
we give sufficient conditions for two suspension flows to be
topologically conjugate - where the conjugacy will preserve
flow-invariant meagures derived from equilibrium states of
continuous functions with certain properties.
    Finally, in 58 we extend the topological classification
of one-sided subshifts of finite type given by Williams in [25]
to a classification up to block-isomorphism.
```

51. TOPOLOGICAL MARKOV CHAINS AND WILLIAMS' PROBLEM

Let S be $n \times n$ irreducible $0-1$ matrix. Give
$\{1, \ldots, n\}$ the discrete topology and $\Sigma=\prod_{-\infty}^{\infty}(1, \ldots, n)$ the product topology. Consider the subspace Σ_{S} of Σ defined by

$$
\Sigma_{S}=\left\{x \in \Sigma: S\left(x_{1}, x_{i+1}\right)=1 \text { for all } 1 \in Z\right\}
$$

The shift σ_{S} is defined on Σ_{S} by $\left(\sigma_{S}\right)_{1}=x_{1+1}$ for $x=\left(x_{1}\right)$.
 (Σ_{S}, σ_{S}) la called a topological Narkov ahain (or aubahift of finite type) given by S. For S as above, we define $\Sigma^{+}=\stackrel{\rightharpoonup}{I} \quad\{1, \ldots, n\}$ and 1 et

$$
\Sigma_{S}^{+}=\left\{x \in \Sigma^{+}: S\left(x_{i}, x_{i+1}\right)=1 \text { for } 211 i \in E^{+}\right\}
$$

The shift σ_{S}^{+}is defined on Σ_{S}^{+}by $\left(\sigma_{S}^{+} x\right)_{1}=x_{1+1} f u r$ $x=\left(x_{i}\right) . \sigma_{S}^{+} 1 s$ a bounded-to-one continuous surjection and ($\Sigma_{S}^{+}, \sigma_{S}^{+}$) is called a one-aided topological Narkov ohain (or subshift of finite type). When the context ia clear we will denote σ_{S}^{+}just by σ_{S}.

-4 -
 Given two topological Markov chaing ($\Sigma_{\mathrm{S}}, \sigma_{\mathrm{S}}$) and ($\Sigma_{\mathrm{T}}, \sigma_{\mathrm{T}}$) we any that they are topologioaz $Z y$ oonjugate if there exista a homeomorphism ϕ of Σ_{S} onto Σ_{T} such thet $\phi \sigma_{S}=\sigma_{T} \phi_{\text {. }}$ In [25] Williame definee S and To be atrong ahift-equivalant if there exists non-negative integral rectangular matrices $\mathrm{U}_{1}, \ldots, \mathrm{U}_{2}$ and $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{2}$ such that
 $$
\mathrm{S}=\mathrm{U}_{1} \mathrm{~V}_{1}, \mathrm{~V}_{1} \mathrm{U}_{1}=\mathrm{U}_{2} \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\ell} \mathrm{U}_{\ell}=\mathrm{T}
$$
 W1111ams proved the following result:

Theorem 1 [25] (制1111mm)
(Σ_{S}, σ_{S}) and (Σ_{T}, o_{T}) are topologicmily conjugete if and only 11 S and T are atrong shift-equivalent.

The matrices s and T are said to be ahift-equivalent (with lag id if there exigtg a pogitive integer i and nonnegative integral rectangular matrices U and V such that

$$
\begin{array}{ll}
U S=T U & U V=T^{2} \\
S V=V T & V U=S^{2}
\end{array}
$$

It is easy to sea thet strong shift-equivalence implies shiftequivalence and it in conjectured thot the converse ia true.

This is known as Williams' problem. For many categories of matrices there is a finite procedure for deciding if two matrices are shift-equivalent. Because of this, shiftequivalence remains the best necessary condition known for topological conjugacy.

62. PRESSURE AND RUELLE OPERATORS

Let $M\left(\Sigma_{S}\right)$ denote the set of Borel probability measures on the space Σ_{S} and let $C\left(\Sigma_{S}\right)$ denote the set of real-valued continuous functions acting on Σ_{S}. For $f \in C\left(\Sigma_{S}\right)$ the presaure of f is defined by

$$
P(f)=\sup \left\{h_{m}\left(a_{S}\right)+\int f d m: m \in M\left(\Sigma_{S}\right) \text { is } \sigma_{S} \text {-invariant }\right\},
$$

where $b_{m}\left(\sigma_{S}\right)$ is the entropy of σ_{S} with respect to m. This supremum is always attained and the measures for which $P(f)=h_{m}\left(\sigma_{S}\right)+\int f$ dm are called squilibrium states for f (cf. [24]). When f has a unique equilibrium state it will sometimes be denoted by m_{f}. We can similarly define the pressure and equilibrium states for $f \in C\left(\Sigma_{S}^{+}\right)$. Since the shift-invariant measures in $M\left(\Sigma_{S}\right)$ and $M\left(\Sigma_{S}^{+}\right)$are in bijective correspondence, we will often dencte an equilibrium state for $f \in\left(\Sigma_{S}^{+}\right)$and its counterpart in $M\left(\Sigma_{S}\right)$ by the same symbol.

For $\phi \in C\left(\Sigma_{S}^{+}\right)$the Ruella operator $\varepsilon_{\phi}: C\left(\Sigma_{S}^{+}\right)+C\left(\Sigma_{S}^{+}\right)$
is defined by

$$
\left(f_{\phi} f\right)(x)=\sigma_{\sigma_{S}}^{\Sigma}{ }^{y=x} e^{\phi(y)} f(y)
$$

f_{ϕ} is positive, linear and continuous with respect to the sup norm on $C\left(\Sigma_{S}\right)$. Denote its spectral radius by $r\left(\mathcal{L}_{\phi}\right)$. Put

$$
\operatorname{var}_{n} \phi=\sup \left\{|\phi(x)-\phi(y)|: x_{0}=y_{0}, \ldots, x_{n-1}=y_{n-1}\right\}
$$

In [22] Walters combines a convergence theorem of Ruelle [17] and results by Keane [8] on g-measures to give a proof of:
2. Ruelle's Operator Theorem

Let ($\Sigma_{S}^{+}, \sigma_{S}$) be a topologically mixing one-sided subshift of finite type (i.e. S is aperiodic). Let $\phi \in C\left(\Sigma_{S}^{+}\right.$) satisfy $\sum_{n=1}^{\infty} \operatorname{var}_{n} \phi<\infty \quad$. Then there exists $\lambda>0, h \in C\left(\Sigma_{S}^{+}\right)$ and $v \in M\left(\Sigma_{S}^{+}\right)$such that $h>0, v(h)=1, f_{\phi} h=\lambda h$, $\mathcal{f}_{\phi}^{*} v=\lambda u$ and for $f \in C\left(\Sigma_{S}^{+}\right) \lambda^{-D} \varepsilon_{\phi}^{n_{f}}+v(f) h$ uniformly in $C\left(\Sigma_{S}^{+}\right) . \lambda$, hand v are uniquely defined by these properties and $\lambda=e^{p(\phi)}=r\left(L_{\phi}\right)$, Moreover $\mu \in M\left(\Sigma_{S}^{+}\right)$defined by $\mu(f)=v(h f)$ is the unique equilibrium atate for ϕ.

Remark

When S is an irreducible matrix with period d, it is well known (cf. [18])that Σ_{S}^{+}can be represented as anion of d spaces. These are cyclically permuted by σ_{S} and the restriction of σ_{S}^{d} to each one is a topologically mixing subshift. From this decomposition one can show that, apart from the convergence of $\lambda^{-n} \delta_{\phi}^{n}$, the conclusions of Ruelle's operator theorem will hold. Although we do not have uniform convergence for the normalised powers of \mathcal{f}_{ϕ}, by decomposing S one can show that if

$$
\phi \in C\left(\Sigma^{+}\right), \sum_{n=0}^{\infty} \operatorname{var}_{n} \phi<\infty \quad \text { and } \mathcal{L}_{\phi}=1
$$

then for $f \in C\left(\Sigma_{S}^{+}\right)$

$$
\frac{1}{N} \sum_{n=0}^{N} f_{\phi}^{n_{f}}+\int f f_{f} \text { uniformly. }
$$

§3. THE INFORMATION COCYCLE AND MAXIMAL MEASURES
Given an $n \times n$ matrix S the state partition a_{S} of Σ_{S} is the partition of Σ_{S} into sets $[1]^{\circ}$ for $1 \leq i \leq n$ where $[1]^{0}=\left\{x \in \Sigma_{S}: x_{0}=1\right)$. Let $\alpha_{S}={ }_{0}^{\infty} \sigma_{S}^{-1} \alpha_{S}$ denote the smallest o-algebra containing the partitions $\sigma_{S}^{-i} \alpha_{S}, 1 \geq 0$ and let m be a ${ }^{\circ} S^{\text {-invariant measure. If } B \text { is a countable }}$

$$
-8-
$$

 the conditional infomation of B given C is

$$
I_{m}(B \mid \epsilon)=-\sum_{A \in B} \quad X_{A} \log E\left(X_{A} \mid c\right)
$$

The oonditional entropy of B given C is $\int I_{m}(B \mid C) d m$ and the information oooyole is $I_{m}=I_{m}\left(\alpha_{B} \mid \sigma_{S}^{-1} \alpha_{S}^{-}\right)$. For detaila and notation used see [12] and [15]. Assaciated to (Σ_{S}, σ_{S}) 1s a natural ${ }^{\text {a }}$-invariant Markov measure, denoted by ms" This measure is colled the masure of maximal antropy (cf. [11]).

64. TOPOLOGICAL CONJUGACY AND RUELLE OPERATORS

In thig aection we will give a necessary and aufficient condition for topological conjugacy in terms of four identities involving Ruelle operators and positive linear operators between the spaces of continuous functions. Therefore one way of approaching Williams' problem would be to try and construct these relations from a shift-equivalence of matrices. Starting with a shift-equivalence of matrices, in 55 we obtain two of the identities required for a shift-equivalence of Ruelle operatora. We show how thia can be done by two separate methods. For $0<\theta<1$ and $f \in C\left(\Sigma_{S}^{+}\right)$let $\|f\|_{\theta}=\sup \left\{\frac{\operatorname{var}_{n} f}{\theta^{n}}: n \geq 0\right\}$.

We will be considering functions in the real Banach apace

$$
F_{\theta}^{+}(S)=\left\{I \in C\left(\Sigma_{S}^{+}\right):\|f\|_{\theta} \leqslant \infty\right\}
$$

with
norm

$$
\left\|\|f\|_{\theta}=\max \quad\left\{\|\left\{\left\|_{\theta} \quad \quad\right\| f \|_{-}\right\} .\right.\right.
$$

Similarly, $F_{\theta}(S) \subset C\left(\Sigma_{S}\right)$ can be defined.
Notice that for $f \in F_{\theta}^{+}(S)$ we have that

$$
\sum_{n=0}^{\infty} \operatorname{var}_{n} 1 \quad \leq\|f\|_{\theta} \sum_{n=0}^{\infty} \theta^{n}=\|f\|_{\theta} \quad \frac{1}{1-\theta}<0
$$

Given $\left(\Sigma_{g}^{+}, \sigma_{S}\right),\left(\Sigma_{T}^{+}, \sigma_{T}\right)$ and $\phi \in F_{6}^{+}(S), \psi \in F_{\theta}^{+}(T)$ we say that the Ruelle operators f_{ϕ} and \mathcal{L}_{ψ} are shift-equivalent if there are positive linear operators

$$
U: C\left(\Sigma_{S}^{+}\right) \rightarrow C\left(\Sigma_{T}^{+}\right) \text {and } v: C\left(\Sigma_{T}^{+}\right) \rightarrow C\left(\Sigma_{S}^{+}\right)
$$

such that

$$
\begin{array}{ll}
U \mathcal{L}_{\phi}=\mathcal{L}_{\psi} U & U V=\mathcal{L}_{\phi}^{\ell} \\
V \mathcal{L}_{\psi}=\mathcal{L}_{\phi} V & V U=\mathcal{L}_{\phi}^{\ell} \text { for some } \ell>0 .
\end{array}
$$

We will show that $1 f$ the Ruelle operators \mathcal{L}_{ϕ} and \mathcal{L}_{ψ} are shift-equivalent (for $\phi \in F_{\theta}^{+}(S)$ and $\psi \in F_{\theta}^{+}(T)$), it is necessary and sufficient that there is a topolagical conjugacy which preserves the measures m_{ϕ} and m_{ψ}.

Suppose that we are given a shift-equivalence of Ruelle operators \mathcal{C}_{ϕ} and \mathcal{L}_{ψ} as above.

From Ruelle's operator theorem there is an eigenvalue $\lambda>0$ and eigenfunctions $h \in C\left(\Sigma_{S}^{+}\right), k \in C\left(\Sigma_{T}^{+}\right)$such that
$h>0, k>0$ where $\mathcal{L}_{\phi} h=\lambda h$ and $f_{\psi} k=\lambda k$. In fact $h \in F_{\theta}^{+}(S)$ and $k \in F_{\theta}^{+}(T)$ (cf. [17]).

If we define

$$
\begin{aligned}
& \phi^{\prime}=\phi^{+\log h-\log h \sigma_{S}-\log \lambda} \begin{array}{l}
\text { and } \\
\psi^{\prime}=\psi+\log k-\log k \sigma_{T}-\log \lambda
\end{array}, ~ \$ ~
\end{aligned}
$$

then $\mathcal{L}_{\phi^{\prime}}, 1=1$ and $\mathcal{L}_{\psi^{\prime}}, 1=1$. Now $U h$ and V_{k} are positive eigenvectors for the eigenvalue λ and $\kappa_{\psi}, \kappa_{\phi}$ respectively hence there exists $\beta_{1}, \beta_{2}>0$ such that $\mathrm{Uh}=\beta_{1} k$ and $V k=\beta_{2} h$. If we define new operators \bar{U} and \bar{v} by $\bar{U}_{f}=\frac{U(f \cdot h)}{U h}$ and $\bar{V} g=\frac{V(g \cdot k)}{V k}$ then $U_{1}=1$ and $V_{1}=1$. Since $\beta_{1} \beta_{2}=\lambda^{2} \quad$ (from the identity UV $=s_{\psi}^{\ell}$, we have that

$$
\begin{array}{ll}
\nabla \mathcal{L}_{\phi^{\prime}}=\mathcal{L}_{\psi^{\prime}}, 0 & \nabla 0=\mathcal{L}_{\phi^{\prime}}^{2} \\
\nabla{\varepsilon_{\psi^{\prime}}}=\mathcal{L}_{\phi^{\prime}}, \nabla & 0 \nabla=\mathcal{L}_{\psi^{\prime}}^{2}
\end{array}
$$

Therefore, given a shift-equivalence of Ruelle operators, there is no losa of generality in assuming that all the operators are normalised. As $\mathbf{P}(f+\mathbb{f} \boldsymbol{f}-\mathrm{g}+\mathrm{c})=\mathbf{P}(f)+\mathbf{c}$ for $c \in R$ the equilibrium atatea for ϕ and $\phi^{\prime \prime}$ (and ψ, ψ^{\prime}) are the same.

For normalised positive linear operatora we bave:

Lemma 1
Let U : $C\left(\Sigma_{S}^{+}\right) \rightarrow C\left(\Sigma_{T}^{+}\right)$be positive inear operator with U1 $=1$ then $(U f)^{2} \leq U f^{2}$.

Proof
For $c \in R$ we have

$$
U(c i+1)^{2}=c^{2} U f^{2}+2 c U f+1 \geq 0
$$

Treating $c^{2} U f^{2}+2 c U f+1$ as a polynomial, by looking at the digcriminant we get that $4 c^{2}(U f)^{2}-4 c^{2} U P^{2} \leq 0$ and the result follows.

Given $\left(\Sigma_{S}^{+}, \sigma_{S}\right)$ and $\left(\Sigma_{T}^{+}, \sigma_{T}\right)$ we say that the one-sided shifts σ_{S} and σ_{S} are ahift-equivalent if there exists continuous aurjections $\tau_{1}: \Sigma_{S}^{+}+\Sigma_{T}^{+}$and $\tau_{2}: \Sigma_{T}^{+}+\Sigma_{S}^{+}$such that

$$
\begin{array}{ll}
\sigma_{T} \tau_{1}=\tau_{1} \sigma_{S} & \tau_{2} \tau_{1}=\sigma_{S}^{\ell} \\
\sigma_{S} \tau_{2}=\tau_{2} \sigma_{T} & \tau_{1} \tau_{2}=\sigma_{T}^{\ell} \text { for some } \ell>0
\end{array}
$$

To show that a shift-equivalence of Ruelle operatora implies that our subshifts of finite type are topologically conjugate, we will use the shift-equivalence to obtain operators that are induced by continuous surjections. These functions will form ahift-equivalence of the onesided shifts. The result will follow from the following Theorem:

Theorem 3 [25] Williams

(Σ_{S}, σ_{S}) and (Σ_{T}, σ_{T}) are topologically conjugate if and only if σ_{S}^{+}and σ_{T}^{+}are shift-equivalent.

Let X_{1} and X_{2} be uncountable Borel spaces equipped with ifinite measures m_{1} and m_{2} respectively. We require a result by A. Iwanik which extends Lamperti's theorem for operators on the $c^{p}(m)$ spaces $1 \leq p<\infty, p \neq 2$.

Theorem 4 [7] (Iwanik)
Let $1 \leq p<\infty$. Then an operator $U: c^{p}\left(m_{1}\right) \rightarrow c^{p}\left(m_{2}\right)$
is a non-negative linear isometry (not necessarily onto)
With U1 $=11 f$ and only if there exists a measure-preserving transformation $\tau: X_{2}+X_{1}$ such that UP $=f \tau$.

Lemma 2
Lat S and T be irreducible nonnegative integer matrices. If U : $C\left(\Sigma_{S}^{+}\right) \rightarrow C\left(\Sigma_{T}^{+}\right)$is a non-negative linear operator with $U(1)=1$ U is continuous with respect to the sup norms.

Proof

$$
\text { Let } f \in C\left(\Sigma_{s}^{+}\right) \text {such that }|f| \leqslant 1 \text {. }
$$

Then $f \leqslant 1$ and so

$$
\|U(f)\| \leqslant\|U(1)\|=1
$$

Therefore U is bounded and the result momus.

We now prove:

Propoaition 1

Suppose that $\phi \in F_{\theta}^{+}(S), \psi \in F_{\theta}^{+}(T)$ and $P(\phi)=P(\psi)$. If \mathcal{L}_{ϕ} and ε_{ψ} are shift-equivalent then ($\varepsilon_{S}, \sigma_{S}$) and (Σ_{T}, σ_{T}) are topologically conjugate. Moreover, the topological conjugacy preserves the equilibrium states m_{ψ} and m_{ψ}.

Proof

By the observations above, we can assume without loss of generality that $P(\phi)=P(\psi)=0$ and all the operatora in the shift-equivalence are normalised.

Lemma 1 enables us to show that our operators $U: C\left(\Sigma_{S}^{+}\right) \rightarrow C\left(\Sigma_{T}^{*}\right)$ and $V: C\left(\Sigma_{T}^{+}\right) \rightarrow C\left(\Sigma_{S}^{*}\right)$ can be extended to act on \mathcal{C}^{2} spaces. We will then apply Theorem 4 to the cual of these extenaiona.

$$
-15
$$

By Lemma 2 U is continuous and from the remark following Theorem 2, if $f \in C\left(\Sigma_{S}^{+}\right)$then

$$
\begin{aligned}
& \left|m_{\psi}(U f)-m_{\phi}(f)\right| \\
\leqslant & \left\lvert\, m_{\psi}(U f)-\frac{1}{N}{\underset{n=0}{N-1} f_{\psi}^{n} U f \mid}^{n}+\right. \\
+ & \left|U\left(\frac{1}{N} \sum_{n=0}^{N-1} f_{\phi}^{n_{n}} f\right)-U\left(m_{\phi}(f)\right)\right| \\
+ & 0 \text { as } N+\infty .
\end{aligned}
$$

Thus $m_{\phi}(U f)=m_{\phi}(f)$ and so

$$
\begin{aligned}
\|U f\|_{f^{2}\left(m_{\psi}\right)}^{2} & =m_{\psi}\left(|U P|^{2}\right) \\
& \leq m_{\psi}\left(U f^{2}\right) \quad(\text { by Lemma } 1) \\
& =\|f\|^{2} f^{2}\left(m_{\phi}\right)
\end{aligned}
$$

Therefore U acting on $C\left(\Sigma_{S}^{+}\right)$is a bounded operator when using the $f^{2}\left(m_{i j}\right)$ and $f^{2}\left(m_{\dot{\psi}}\right)$ norms. Consequently, u has an extension (which will also be denoted by U) $U: \kappa^{2}\left(m_{\dot{\phi}}\right)+\mathcal{L}^{2}\left(m_{\psi}\right)$ (cf. [10], p. 100).

Since $f^{2}\left(m_{\phi}\right)=c^{2}\left(m_{\phi}\right)$ and $c^{2}\left(m_{\psi}\right) \equiv f^{2}\left(m_{\psi}\right)$, the operator U induces a dual operator $U^{*}: c^{2}\left(m_{\psi}\right)+c^{2}\left(m_{\phi}\right)$ given by $m_{\psi}(U f . k)=m_{\phi}\left(f . U^{*} k\right)$ for $f \in \mathcal{C}^{2}\left(m_{\phi}\right)$ and $k \in \mathcal{L}^{2}\left(m_{\psi}\right)$. The operator U^{*} is non-negative and ilnear. By repeating the argument above we know thet $\left\|U^{*} k\right\| f^{2}\left(m_{\phi}\right) \leq\|k\| f^{2}\left(m_{\psi}\right)$, Similarly $v^{*}: f^{2}\left(m_{\phi}\right)+f^{2}\left(m_{\psi}\right), f_{\phi}^{*}: f^{2}\left(m_{\phi}\right)+f^{2}\left(m_{\phi}\right)$ and $\kappa_{\psi}^{*}: \kappa^{2}\left(m_{\psi}\right)+\kappa^{2}\left(m_{\psi}\right)$ can be defined.

We now wish to show thet U^{*} and V^{*} are isometries and apply Theorem 4. Let $U_{T}: f^{2}\left(m_{\psi}\right) \rightarrow c^{2}\left(m_{\psi}\right)$ denote the operator given by $U_{T} k=k \sigma_{T}$. For $g, k \in f^{2}\left(m_{\psi}\right)$ we have that

$$
m_{\psi}\left(\varepsilon_{\psi} g \cdot k\right)=m_{\psi}\left(f_{\psi}\left(g \cdot k \sigma_{T}\right)\right)=m_{\psi}\left(g \cdot k \sigma_{T}\right),
$$

thus $f_{\psi}^{*}=U_{T} \quad$ From $U V=C_{\psi}^{\ell}$ we obtain that $V^{*} U^{*}=U_{T}^{\text {R }}$ and consequentiy, $\left\|V^{*} U^{*} k\right\| \quad f^{2}\left(m_{\psi}\right)=\|k\| \underset{\mathcal{L}^{2}\left(m_{\psi}\right)}{ }$, If there exists $k \in \mathcal{L}^{2}\left(m_{\psi}\right)$ where $\left\|U^{*} k\right\| c^{2}\left(m_{\phi}\right) \quad \leq\|k\|_{c^{2}\left(m_{\psi}\right)}$ then $\left\|U^{*} k\right\|_{L^{2}\left(m_{\phi}\right)} \leq\|k\|_{c^{2}\left(m_{\psi}\right)}=\left\|V^{*} U^{*} k\right\|_{L^{2}\left(I_{\psi}\right)}^{\text {which is a }}$ contradiction. Therefore U^{*} and similarly V^{*} are isometriea. By Theorem 4 there exists surjective measure-preserving transformations $\tau_{1}: \Sigma_{S}^{+} \rightarrow \Sigma_{T}^{+}$and $\tau_{2}: \Sigma_{T}^{+} \rightarrow \Sigma_{S}^{+}$such that
$U^{*} h=h \tau_{1}$ and $V^{\dagger}+I_{2}$.
We now show that τ_{1} and τ_{2} bave continuous veraions.
If $f \in \mathcal{C}^{2}\left(m_{\dot{\varphi}}\right)$ and $g \in C^{2}\left(m_{\dot{\psi}}\right)$ we have that
$m_{\phi}\left(V U_{T}^{\ell} g \cdot f\right)=m_{\phi}\left(V V^{*} u^{*} g \cdot f\right)=m_{\phi}\left(V^{*} U^{*} g \cdot V^{*} f\right)$
$=m_{\psi}\left(V^{*}\left(U^{*} g \cdot f\right)\right)=m_{\phi}\left(U^{*} g \cdot f\right)$.

Hence $\mathrm{VU}_{\mathrm{T}}^{\mathrm{L}} \mathrm{k}=\mathrm{kT}_{1}$ a.e. $\left(\mathrm{m}_{\phi}\right)$ for all $k \in \mathrm{C}\left(\mathrm{I}_{\mathrm{T}}^{+}\right)$. Let $c \subset I_{T}^{+}$be a closed-open set (i.e. a finite union of cylinders) and let 1_{c} denote its characteristic function. Since
 Since our operator V sends continuous functions to continuous functions we have that $\mathrm{VU}_{\mathrm{T}}^{\mathrm{l}} \mathrm{c}_{\mathrm{c}}$ is continuous. Now continuous functions which are equal almost everywhere are equal everywhere. Therefore $\mathrm{VU}_{\mathrm{T}}{ }^{\ell} \mathrm{c}=\left(\mathrm{VU}_{\mathrm{T}}^{\mathrm{L}} \mathrm{c}_{\mathrm{c}}\right)^{2}$ and we conclude that $\mathrm{VU}_{\mathrm{T}} \mathbf{1}_{\mathrm{c}}$ takes only the value 0 or 1 . Hence V_{T}^{i} maps characteristic functions of closed-open sets to continuous characteristic functions. If we now apply Theorem 4 to the operator $V U_{T}^{\ell}: c^{2}\left(m_{\psi}\right)+r^{2}\left(m_{\phi}\right)$ we obtain a measura-preserving transformation $\tau_{i}: \Sigma_{S}^{+} \rightarrow \Sigma_{T}^{+}$
 continuous. Since the only continuous characteristic functions
acting on Σ_{S}^{*} are characteristic functions of closed-open sets, we conclude that $T_{i}^{-1} c$ is closed-open and so T_{i}^{\prime} is continuous. Therefore there exists a continuous version of τ_{1} and without loss of generality, we will assume τ_{1} and aimilarly τ_{2} are continuous.

From our operator identities we can simply deduce that σ_{S} and σ_{T} are shift-equivalent. For example from $V^{*} U^{*}=U_{T}^{\ell}$ we see that $k T_{1} T_{2}=k \sigma_{T}^{\ell}$ a.e $\left(m_{\psi}\right)$ for all $k \in C\left(\Sigma_{T}^{+}\right)$. Therefore $k \tau_{1} \tau_{2}=k \sigma_{T}^{\ell}$ and consequently $\tau_{1} \tau_{2}=\sigma_{T}^{\ell}$. From Theorem 3 the natural extensions of τ_{1} and τ_{2} will be topological conjugacies and the Proposition is proved.

The remainder of this aection will be concerned with proving the converse of proposition 1.

We shall need:

Proposition 2 [21]
Suppose T: $\Sigma_{S} \rightarrow \Sigma_{T}\left(\tau: \Sigma_{S}^{+} \rightarrow \Sigma_{T}^{+}\right)$is bounded-to-one. For every $f \in F_{\theta}(T)\left(F_{\theta}^{+}(T)\right)$ there is exactly one shiftinvariant $\mu \in M\left(\Sigma_{S}\right)\left(M\left(\Sigma_{S}^{+}\right)\right) w i t h \quad \mu T^{-1}=m_{f}$. The measure μ is the unique equilibrium state for ft.

Proof

When t is bounded-to-one, we bave $h_{\mu}\left(\sigma_{S}\right)=h_{\mu \tau-1}\left(\sigma_{T}\right)$
for all shift-invariant $u \in M\left(\Sigma_{S}\right)$, so that $P(f T)=P(f)$ for every $f \in C\left(\Sigma_{T}\right)$. Let $\mathcal{I} \in F_{\theta}(T)$ and let μ be the unique equilibrium state for $i t$. Then clearly $\mu \tau^{-1}$ is an equilibrium state of f, so it equals m_{f}. If $V \in M\left(\Sigma_{S}\right)$ is shiftinvariant and $v \tau^{-1}=m_{f}$, then

$$
h_{v}\left(\sigma_{S}\right)+\int f \tau d v=h_{m_{f}}\left(\sigma_{T}\right)+\int f d_{f}=P(f)=P(f \tau)
$$

so that $v=\mu$.

The proof of the following result is the same as the proof for the case when the shift is topologically mixing and this can be found in [17], [22] and [23].

Proposition 3
Let S be an irraducible $0-1$ matrix and let $f \in F_{\theta}(S)$ ($\left.F_{\theta}^{+}(S)\right)$. The following atatements hold:
(1) The function $I_{m_{f}}$ has a continuous version and $-I_{m_{f}}=1+k \sigma_{S}-k-P(f)$ for some $k \in F_{\theta}(S)\left(F_{\theta}^{+}(S)\right)$. (ii) If $f, G \in F_{\theta}(S)\left(F_{0}^{+}(S)\right)$ then $m_{I}=m_{g}$ iff there exists $c \in R, k \in F_{\theta}(S)\left(F_{\theta}^{+}(S)\right)$ such that $f=g+k \sigma_{S}-k+c$.

Suppose that $\tau \Sigma_{S} \rightarrow \Sigma_{T}$ is a topological conjugacy and $m_{\phi} \tau^{-1}=m_{\psi}$ for $\phi \in F_{\theta}^{+}(S)$ and $\psi \in F_{\hat{\theta}}^{+}(T)$, where $P(\phi)=P(\psi)$. By Theorem 3 there exists continuous surjection
$\tau_{1}: \Sigma_{\mathrm{S}}^{+}+\Sigma_{\mathrm{T}}^{+}$and $\tau_{2}: \Sigma_{\mathrm{T}}^{+}+\Sigma_{\mathrm{S}}^{+}$such that

$$
\begin{aligned}
& \sigma_{T} \tau_{1}=\tau_{1} \sigma_{S} \quad \tau_{2} \tau_{1}=\sigma_{S}^{\ell} \\
& \sigma_{S} \tau_{2}=\tau_{2} \sigma_{T} \quad \tau_{1} \tau_{2}=\sigma_{T}^{\ell} \text { for some } \ell>0 .
\end{aligned}
$$

There is no lose of generality in assuming that $\mathrm{m}_{\phi} \tau_{1}^{\boldsymbol{- 1}}=\mathrm{m}_{\psi}$ and $m_{\psi} \tau_{2}^{-1}=m_{\phi}(c f .[6])$. Since τ_{1} is continuous the zeroth coordinate $\left(\tau_{1}(x)\right)_{0}$ depends on $\left(x_{0}, \ldots, x_{m-1}\right)$ for some mp. Therefore $\operatorname{var}_{m+n} \psi \tau_{1}=\operatorname{var}_{n} \psi$ for $n \geq 0$ and consequently $\psi \tau_{1} \in F_{\theta}^{+}(T)$. As $m_{\phi} T_{1}^{-1}=m_{\psi}$, we conclude from proposition 2 that $\mathrm{m}_{\psi \tau_{1}}=\mathrm{m}_{\phi^{*}}$. Thus, by Proposition 3

$$
\phi=\psi \tau_{1}+\mathrm{fo}_{S}-1+c \text { for some } t \in F_{\theta}^{+}(S)
$$

and eR. Similarly $\psi=\phi \tau_{2}+\mathrm{hg}_{\mathrm{T}}-\mathrm{h}+\mathrm{d}$ for some $h \in F^{+}(T)$ and $d \in R$. Since $P(\phi)=P(\psi)$ we have that $c=d=0$.

Substituting the equation $\psi=\phi \tau_{2}+b \sigma_{T}-b$ into
$\phi=\psi \tau_{1}+\mathbf{I} \sigma_{S}-I$ we get that

$$
\phi=\phi \sigma_{S}^{2}+\left(h \tau_{1}+f\right) \sigma_{S}-\left(h \tau_{1}+f\right)
$$

Now, if $S_{n} f$ denoter the sum $\sum_{i=0}^{n-1} f^{i}$ then

$$
\phi=\phi \sigma_{S}^{\ell}+S_{2} \phi-\left(S_{2} \phi\right) \sigma_{S}
$$

As σ_{S} ia ergodic we conclude that $h \tau_{1}+f=-S_{\ell} \phi+e$ for some $c \in R$. By the addition of constants to f and d, we can assume $h \tau_{1}+f=-S_{\ell} \phi$ and similarly $f_{2}+h=-S_{\ell} \psi$. Define

$$
U: C\left(\Sigma_{S}^{*}\right) \rightarrow C\left(\Sigma_{T}^{+}\right) \text {and } v: C\left(\Sigma_{T}^{+}\right)+C\left(\Sigma_{S}^{+}\right)
$$

by

$$
U_{g}(y)=\sum_{\tau_{1} x=y} e^{-f(x)} g(x)
$$

and

$$
\operatorname{Vk}(x)=\sum_{\tau_{2} y=x}^{\sum} e^{-h(y)} k(y) .
$$

Then

$$
\begin{aligned}
& \text {-22- } \\
& V U g(x)=\tau_{\tau_{2} y=x}^{\sum} e^{-h(y)}\left(\tau_{1} x^{i}=y e^{-f\left(x^{\prime}\right)} g\left(x^{\prime}\right)\right) \\
& =\sum_{\tau_{2} \tau_{1} x^{\prime}=x} e^{-f\left(x^{\prime}\right)-h \tau_{1}\left(x^{\prime}\right)} g\left(x^{\prime}\right) \\
& =\sigma_{S^{\ell}} x^{\mathcal{E}=x} e^{S_{\hat{f}} \phi\left(x^{\prime}\right)} g\left(x^{\prime}\right) \\
& =f_{\phi}^{2} g(x) .
\end{aligned}
$$

Similarly, we can show that

$$
\begin{array}{ll}
U \boldsymbol{L}_{\phi}=\mathcal{L}_{\psi} U & U V=\mathcal{L}_{\psi}^{2} \\
V \mathcal{L}_{\psi}=\mathcal{L}_{\phi} V & V U=c_{\phi}^{2}
\end{array}
$$

Combining this with Proposition 1 we bave:

Theorem 5
Suppose that $\in F_{\theta}^{+}(S), \psi \in F_{\theta}^{+}(T)$ and $P(\phi)=P(\psi)$.
There is a topological conjugacy $T: \Sigma_{S}+\Sigma_{T}$ such that $m_{\phi} \tau^{-1}=m_{\psi}$ if and only if \mathcal{L}_{ϕ} and \mathcal{L}_{ψ} are shift-equivalent.

Theorem 5 could have been proved using the weaker assumptions that $\phi \in C\left(\Sigma_{S}^{+}\right)$and $\psi \in C\left(\Sigma_{T}^{+}\right)$setisfy
$\sum_{n=1}^{\infty} \operatorname{var}_{n} \phi<\infty \quad$ and $\sum_{n=1}^{\sum} \operatorname{var}_{n} \psi<\infty \quad$.

Since a topological conjugacy preserves the measurea of maximal entropy we have:

Corallary 5.1

(Σ_{S}, σ_{S}) and (Σ_{T}, σ_{T}) are topolagically conjugate if and only if $\mathcal{L}_{I_{m_{S}}}$ and $\mathcal{L}_{I_{m_{T}}}$ are shift-equivalent.

Remark

Suppose that $\phi \in F_{\theta}^{+}(S), \psi \in F_{\theta}^{+}(T)$ where $P(\phi)=P(\psi)=0$ and the Ruelle operators \mathcal{L}_{ϕ} and \mathcal{L}_{ψ} are shift-equivalent, i.e. there exists positive linear operators $U: C\left(\Sigma_{S}^{+}\right) \rightarrow C\left(\Sigma_{T}^{+}\right)$ and $V: C\left(\Sigma_{T}^{+}\right) \rightarrow C\left(\Sigma_{S}^{+}\right)$such that

$$
\begin{array}{ll}
\mathrm{v} \varepsilon_{\phi}=\varepsilon_{\psi} \mathrm{U} & \mathrm{vU}=\mathcal{L}_{\phi}^{\ell} \\
\mathrm{v} \mathcal{L}_{\psi}=\varepsilon_{\phi} v & \mathrm{UV}=\mathcal{c}_{\psi}^{2} \text { for some } \ell>0 .
\end{array}
$$

Then the proof of Theorem 5 shows how to define operators
$0: C\left(\Sigma_{S}^{+}\right)+C\left(\Sigma_{T}^{+}\right)$and $\theta: C\left(\Sigma_{T}^{+}\right) \rightarrow C\left(\Sigma_{S}^{+}\right)$where
$U_{g}(x)=\sum_{\tau_{1} y=x} e^{-f(y)} g(y)$ for some $f \in F_{\dot{0}}^{+}(S), V k(x)=$
$\underset{T_{2} y=x}{ } e^{-h(y)} k(y)$ for some $k \in F_{\theta}^{+}(T)$ and

$$
\begin{array}{ll}
0 \varepsilon_{\phi}=\varepsilon_{\psi} 0 & \nabla \theta=c_{\phi}^{L} \\
\nabla \varepsilon_{\psi}=\varepsilon_{\phi} \nabla & 0 \nabla=\varepsilon_{\psi}^{\ell} .
\end{array}
$$

The proof used in Propoaition 1 to show that $m_{\psi}\left(U_{\mathrm{g}}\right)=m_{\phi}(g)$ for all $\mathrm{g} \in \mathrm{C}\left(\Sigma_{\mathrm{S}}^{+}\right)$can also be applied to D to show that $m_{\psi}\left(U_{g}\right)=m_{\phi}(g)$. Thus $m_{\psi}(U g . k)=m_{\phi}\left(g . k \tau_{1}\right)=$ $m_{\psi}\left(0\left(g \cdot k \tau_{1}\right)\right)=m_{\psi}\left(O_{g} \cdot k\right)$ for $k \in C\left(\Sigma_{T}^{+}\right)$. Therefore $U_{g}=\mathrm{O}_{\mathrm{g}}$ a.e. $\left(\mathrm{m}_{\psi}\right)$. Now U_{g} and D_{g} are continuous functions. Consequently, $v=$ I and similarly $v=\nabla$. Thus, given a shift-equivalence of Ruelle operators, the operators U and V In the shift-equivalence are of a "Ruelle type".

55. HILLIAMS' PROBLEM REVISITED

We now try and deduce a shift-equivalence of Rualle operators from a shift-equivalence of matrices S and T. This will be attempted in two different ways. Unfortunately,
both methoda yield only two out of the four equations required in the definition of ghift-equivalent Ruelle operators.

For a $0-1$ matrix S let $\theta_{n}(S)$ be the number of $\left(1_{0}, \ldots, i_{n}\right)$ such that $S\left(i_{0,1}, i_{1}\right) \ldots, S\left(i_{n-1}, i_{n}\right)>0$. Then $\theta_{n}(S)$ is the number of allowable worde of length $n * 1$. We can define a $\theta_{n}(S) \times \theta_{n}(S) 0-1$ matrix S_{n} by

$$
S_{n}\left(1_{0}, \ldots, i_{n} ; J_{0}, \ldots, J_{n}\right)=1 i f f
$$

$$
i_{1}=J_{0}, \ldots, i_{n}=j_{n-1}
$$

The topological Markov chains (Σ_{S}, σ_{S}) and (Σ_{T}, σ_{T}) are called adapted shift-quivalent if there exists \& 21 such that S_{ℓ} and T_{ℓ} are shift-equivalent with lag $\&$. The following result is due to Parry:

Theorem 6 [13] (Parry)

(Σ_{S}, σ_{S}) and (Σ_{T}, σ_{T}) are topologically conjugata if and only if they are adapted shift-equivalent.

In [13] Parry made some observations about the construction of adapted shift-equivalence from shiftequivalence which we will briefly sumarise. A rectangular $0-1$ matrix is called a division matrix if its rows are
non-trivial and each column containg exactly one non-zero entry. A 0-1 matrix 1 s cmlled an amatgamation matrix if its transpose ia a division matrix.

Proposition 4 [25]

If M is non-trivial non-negative intagral matrix, then it can be written as $M=D A$, where D is a division matrix and A is an amalgamation matrix. Thia decompoeition into the product of a diviaion matrix with an amalgamation matrix is essentially unique in the sense that, if $M=D^{\prime} A^{\prime}$ also, then $D^{\prime}=D P, A^{\prime}=P^{-1} A$ for some permutation matrix P.

If S and T are shift-equivalent with lag 2 then for all
n >1 Parry $\mathrm{g}^{1} \mathrm{ves}$ a method for finding non-negative integer
matrices U_{n} and V_{n} such that $U_{n} S_{n}=T_{n} U_{n}, S_{n} V_{n}=V_{n} T_{n}$. Although $U_{n} V_{n}$ and $V_{n} U_{n}$ do not mecesaarily equal $T_{n} n^{n}$ and $S_{n} n^{n}$ respectively there are matricee u_{n} and v_{n} such that

$$
\begin{array}{ll}
U_{n} S_{n}=T_{n} U_{n} & u_{n} v_{n}=T_{n}^{n} \\
V_{n} T_{n}=S_{n} V_{n} & v_{n} u_{n}=S_{n}^{n}
\end{array}
$$

Moreover, if $U_{n}=D_{1} A_{1}$ and $u_{n}=D_{2} A_{2}$ then $D_{1}=D_{2} P$ and $A_{1}=Q A_{2}$ for some permutations p and Q. That is, U_{n} and u_{n} only difier by a permutation ingide the splitting and similarly
for V_{n} and v_{n}.
Let $H_{n}(S)$ be the vector apace of all real-valued functions on Σ_{s}^{+}which are dependent on the first $n+1$ variables $\left(f(x)=f\left(x_{0}, \ldots, x_{n}\right)\right)$. In [13] it was pointed out that the transpose of S (denoted by $S *$) has an interpretation as homomorphism acting on $W_{0}(S)$ to itself:

$$
S * f(x)={\underset{o}{S}}_{\Sigma}^{\Sigma}=x(y) .
$$

Similariy the transpose S_{n}^{*} of S_{n} can be viewed as a homomorphism of $W_{n}(S)$ into $W_{n-1}(S) \subset W_{n}(S):$

$$
S_{n}^{F} f(x)=\sum_{\sigma_{S} y=x}^{\sum} f(y)
$$

Therefore if $U_{n} S_{n}=T_{n} U_{n}$ and $S_{n} V_{n}=V_{n} T_{n}$ we have homomorphisms $U_{n}^{*}: w_{n}(T)+w_{n}(S)$ and $V_{n}^{*}: W_{n}(S) \rightarrow w_{n}(T)$ such that $S_{n}^{*} U_{n}^{*}=U_{n}^{*} T_{n}^{*}$ and $V_{n}^{*} S_{n}^{*}=T_{n}^{*} V_{n}^{*}$ where $S_{n}^{*}, T_{n}^{*}, V_{n}^{*}, U_{n}^{*}$ are extensions of $\mathrm{S}_{\mathrm{n}-1}^{*}, \mathrm{~T}_{\mathrm{n}-1}^{*}, \mathrm{~V}_{\mathrm{n}-1}^{*}, \mathrm{U}_{\mathrm{n}-1}^{*}$ respectively, We now amend our homomorphisms to make them aimultaneously stochastic. To do this we require a result in the theory of matrices that bas played an important role in the study of topological Markov chaing.
7. Perron-Frobenius Theorem [18]

Suppoae S is an $n \times n$ irreducible non-nagative integer matrix. Then there exists an eigenvelue r such that
(i) r is real, $r>0$.
(ii) With r there are associated strictly positive
left and right elgenvectors.
(1ii) $r \geq|\lambda|$ for any eigenvector $\lambda \mid r$
(iv) r is a simple root of the characteristic equation of S.

From the Perron-Frobenius Theorem we know that there Is a $\lambda>0$ and unique (up to multiplication by a constant)
 For a vactor t, the matrix with t down the diagonal and zero elsewhere will be denoted by Δ_{t}. As $S^{*} U^{*}=U^{*} T *$ we obtain that

$$
\left(\frac{\Delta_{r}^{-1} S * \Delta_{r}}{\lambda}\right)\left(\Delta_{r}^{-1} U^{*} \Delta_{p}\right)=\left(\Delta_{r}^{-1} U^{*} \Delta_{p}\right)\left(\frac{\Delta_{p}^{-1} T * \Delta_{p}}{\lambda}\right)
$$

where

$$
\left(\frac{\Delta_{r}^{-1} S^{*} \Delta_{r}}{\lambda}\right) 1=1 \text { and } \quad\left(\frac{\Delta_{p}^{-1} T^{*} \Delta_{p_{p}}}{\lambda}\right) 1=1
$$

Now

$$
\left(\frac{\Delta_{r}^{-1} S^{*} \Delta_{r}}{\lambda}\right)\left(\Delta_{r}^{-1} \mathrm{U}=\Delta_{p}\right) 1=\left(\Delta_{r}^{-1} U^{-1} \Delta_{p}\right) 1
$$

and so $\left(\Delta_{r}^{-1} U * \Delta_{p}\right) 1=B, 1$ for some $B>0$. Hence the four homomorphisms in

are stochastic.

$$
\text { Let } q \text { be the } \theta_{n}(S) \times 1 \text { vector defined by } q_{1_{0}} \ldots .1_{n} \mathcal{I}^{1}=r_{4}
$$

and let t be the $\theta_{n}(T) x 1$ vector given by $t_{j} \ldots \ldots, j_{n} ; 1=j_{0}$.
Then the four homomorphisms in

$$
\left(\frac{\Delta_{\mathrm{q}}^{-1} \mathrm{~s}_{\mathrm{n}}^{*} \Delta_{\mathrm{q}}}{\lambda}\right)\left(\frac{\Delta_{\mathrm{q}}^{-1} \mathrm{U}_{\mathrm{n}}^{*} \Delta_{\mathrm{t}}}{\beta}\right)=\left(\frac{\Delta_{\mathrm{q}}^{-1} \mathrm{U}_{\mathrm{n}}^{*} \Delta_{\mathrm{t}}}{\beta}\right)\left(\frac{\Delta_{\mathrm{t}}^{-1} \mathrm{~T}_{\mathrm{n}}^{*} \Delta_{\mathrm{t}}}{\lambda}\right)
$$

are stochastic. In o similar way $V_{n} S_{n}=T_{n} V_{n}$ can be amended.

Note that for $f \in W_{n}(S)$ we have

Since $\underset{H \geq 0}{ } H_{n}(S)$ is dense in $C\left(\Sigma_{S}^{+}\right.$, we have shown how the observations
made in [13] lead to a partial result along the lines of constructing a shift-equivalence of Ruelle operators by

Te now attempt to deduce a shift-equivalence of Ruelle operators from a shift-equivalence of matricea by a different method. If S and T are shift-equivalent with lag i then S^{2} and T^{2} are strong shift-equivalent. This implies that ($\Sigma_{S}, \sigma_{S}^{2}$) and ($\Sigma_{T}, \sigma_{T}^{2}$) are topologically conjugate (ci. [25]) and by a similer argument to the one used in the proof of Theorem 3, it can be shown that there are continuous surjections $\tau_{1}: \Sigma_{S}^{+}+\Sigma_{T}^{+}$and $\tau_{2}: \Sigma_{T}^{+}+\Sigma_{S}^{+}$such that

$$
\begin{array}{ll}
\sigma_{T}^{\ell} \tau_{1}=\tau_{1} \sigma_{S}^{\ell} & \tau_{2} \tau_{1}=\sigma_{S}^{\rho \ell} \\
\sigma_{S}^{\ell} \tau_{2}=\tau_{2} \sigma_{T}^{\ell} & \tau_{1} \tau_{2}=\sigma_{T}^{\rho \ell} \text { for some } \rho \geq 1 .
\end{array}
$$

By following a similar method to the one used in 54 , we can
derive from thase equationa positive linear operators
$\mathrm{U}: C\left(\Sigma_{S}^{+}\right) \rightarrow C\left(\Sigma_{\mathrm{T}}^{+}\right)$and $V: C\left(\Sigma_{T}^{+}\right) \rightarrow C\left(\Sigma_{S}^{+}\right)$
such thet

$$
\begin{aligned}
& \mathrm{U} \quad \boldsymbol{c}_{\mathrm{I}_{\mathrm{m}_{\mathrm{S}}}^{\ell}}=\mathrm{L}_{\mathrm{I}_{\mathrm{m}}}^{\frac{\ell}{}} \mathrm{U} \quad \mathrm{UV}=\boldsymbol{c}_{\mathrm{I}_{\mathrm{m}_{\mathrm{T}}}^{\rho \ell}}
\end{aligned}
$$

Thus, by this process we can deduce two of the identities required in the definition of a f ifit-equivalence of fuelle operators.

56. THE STOCHASTIC PROBLEM

We will apply the conclusions of Theorem 5 to the problem of clameifying finite mate stationary Markov chaina up to blook-iaomorphism 1.e. a topological conjugacy which preserves the Markov measures. Willigms' problem can ba generalised to the stochastic case and this was investigated In [14] and [16]. The topolagical problem 1a a special case of the block-isomorphism problem because a conjugating homeomorphism preserves the measures of maximal entropy.

Let p be a stochastic matrix and denote the matrix obtained from p by raising every non-zero entry to the powar t, $t \in R$, by p^{t}. Let p denote the unique probnbility vector sucb that $p P=p$. From the E tcchastic matrix p we can define a
 $\sigma_{p} o^{-1 n v a r i a n t . ~ T h i s ~ i s ~ d e f i n e d ~ o n ~ t h e ~ B o r e l ~ a u b e e t s ~ o f ~} \mathcal{L} o$ and assigns $p\left(1_{0}\right) P\left(1_{0}, 1_{1}\right) \ldots P\left(1_{n-1}, 1_{n}\right)$ to the cyiinder

$$
\left[i_{0}, \ldots, i_{n}\right]^{m}=\left\{x \in \Sigma_{p}: x_{m}=i_{0}, \ldots, x_{m+n}=i_{n}\right\} .
$$

Irreducible atochastic matrices P and Q are said to be atrong stochastia ahift-equivalent if there are stochastic rectangular matrices $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\ell}, \mathrm{V}_{1}, \ldots, \mathrm{~V}_{\ell}$ such that for every $t \in R$

$$
p^{t}=u_{1}^{t} v_{1}^{t}, v_{1}^{t} u_{1}^{t}=u_{2}^{t} v_{2}^{t}, \ldots, v_{e}^{t} u_{2}^{t}=q^{t}
$$

If stochagtic matricea P and Q are atrong stochastic shiftequivalent then (by putting $t=0$) it is clear that p° and a 0 are strong shift-equivalent. The claseification of Markov chains up to block-iaomorphism 1s given by the following reault - the proof can be found in [14] and [16].

Theorem 8 (Parry and Villiams)
The Markov chains ($\Sigma_{p^{\circ}} \sigma_{p} \sigma^{\prime \prime} \mathrm{m}_{\mathrm{P}}$) and ($\Sigma_{Q^{\circ}}, \sigma_{Q^{\circ}}, \mathrm{m}_{Q}$) are block-isomorphic if and only if p and Q are strong stochastic shift-equivalent.

We say P and Q are atochastio ahift-equivalant if there exista matrices $U(t)$ and $V(t)$ whose entriea are nonnegative integral combinations of exponential functions c^{t} for $c>0$, such that

$$
\begin{aligned}
& U(t) P^{t}=Q^{t} U(t) \quad V(t) U(t)=\left[P^{t}\right]^{(\ell)} \\
& V(t) Q^{t}=P^{t} V(t) \quad U(t) V(t)=\left[Q^{t}\right]^{(\ell)}
\end{aligned}
$$

for some positive integer ℓ, where $\left[P^{t}\right]^{(\mathcal{L})}$ ([$\left.Q^{t}\right]^{(\ell)}$) denotes the l-th power of $P^{t}\left(Q^{t}\right)$ in the usual sense.

Strong stochastic shift-equivalence clearly implies stochastic shift-equivalence but it is an open problem whether stochastic shift-equivalence is a complete invariant for block-isomorphism. This conjecture is known as the generalised Williams' problem. If the generalised williams' problem was solved then the (topological) Williams' problem would also be solved. The reverse implication ia not true since a topological conjugacy will not necessarily preserve the Markov measurea.

Now ${ }_{\mathrm{m}_{\mathrm{I}_{m_{p}}}}=\mathrm{m}_{\mathrm{P}}$ and ${ }_{-\mathrm{m}_{\mathrm{I}_{Q}}}=\mathrm{m}_{Q}$ - An immediate consequence of this fact and Theorem 5 is:

Theorem 9
The Markov chaina $\left(\Sigma_{P^{\circ}}, \sigma_{P^{\circ}}, m_{P}\right)$ and $\left(\Sigma_{Q^{\circ}}, \sigma_{Q^{\circ}}, m_{Q}\right)$ are
block-1somorphic if and only if the Ruelle operators $\boldsymbol{f}_{I_{m_{p}}}$ and ${ }_{f_{m_{Q}}}$ are shift-equivaient.

Therefore one way of approaching the generalised Williams' problem would be to try and deduce the shiftequivalence of E_{-1} and $\mathrm{F}_{\mathrm{F}} \mathrm{I}_{\mathrm{P}}$ from the atochastic shiftequivalence of P and Q. If P and Q are stochastic shift-
 block-isomorphic. By following a method similar to the one used in the proof of Theorem 5 we can abow that there are poaitive linear operators $U: C\left(\Sigma_{p^{+}}{ }^{+}\right) \rightarrow C\left(\Sigma_{Q^{0}}{ }^{+}\right)$and
 some $p \geq 1$. Hence, Just ag in the topological case, one can deduce two of our required equations by this method. Alternatively, we could have used the stachastic version of adapted shift-equivalence defined in [14] and followed a procedure similar to the one used in 55.

57. SUSPENSION FLOWS

Let (Σ_{S}, σ_{S}) be a subshift of finite type and let $f \in C\left(\Sigma_{5}\right)$ be strictily positive. We can define a compact metric space $\Sigma_{S}^{f}=\left\{(x, B) \in \Sigma_{S} \times R^{+}: x \in \Sigma_{S}, 0 \leq \operatorname{sif}(x)\right\}$ where $(x, f(x))$ and ($\left.\sigma_{S} x, 0\right)$ are identified. The f-auspension
σ_{t}^{f} of σ_{S} is the vertical flow defined on Σ_{S}^{f} by the local flow $\sigma_{t}^{f}(x, s)=(x, E+t)$ when $0 \leq s \leq f(x), 0 \leq g+t \leq f(x)$ for $t \in R . \quad \Sigma_{S}^{p}$ can be transformed into a measure apace by taking the o-algebra generated by the seta

$$
\Sigma_{S}^{f} \cap\{A \times B: A \text { ia a cylinder, } B \text { is Lebesgue measurable\}. }
$$

The σ_{t}^{f}-invariant probability measures on Σ_{S}^{f} all have the form $(\mu \times \ell) / \mu(f)$ where ℓ is Lebesgue measure and $u \in Y\left(\Sigma_{S}\right)$ is σ_{s}-invariant (here $\mu(f)$ denotes $\int f(\mu)$.

For strictily positive functions $f \in C\left(\Sigma_{G}\right)$ and $h \in\left(\Sigma_{T}\right)$ we say that σ_{t}^{f} and σ_{t}^{h} are topotogically oonjugate if there existe a homeomorphism $\| \Sigma_{S}^{f}+\Sigma_{T}^{h}$ such that $\sigma_{t}^{h_{\phi}}=\Phi \sigma_{t}^{f}$ for all $t \in R$. In due courge we will give suffieient conditione for two suspension flown to be topologically conjugate. To this end we need the following:

Lemma 3 [15]

If f, $g \in C\left(\Sigma_{S}\right)$ are strictly positive functions auch that $f=g+k \sigma_{S}-k$ for somekeC($\left.\Sigma_{S}\right)$ then σ_{t}^{1} and o_{t}^{g} are topologically conjugete.

If $\mu \in M\left(\Sigma_{S}\right)$ is σ_{S}-invariant then the topological conjugacy constructed in Lemma 3 preserves the mensures $(\mu \times \ell) / \mu(I)$ and $(\mu \times \ell) / \mu(g)$.

Lemma 4 [20]

Let $f \in \mathcal{F}_{g}(S)$, then there exists $f^{\prime} \in F_{\theta^{\frac{1}{2}}}(S)=F_{Q^{\prime}}(S)$ and $g \in C\left(\Sigma_{S}\right)$ such that $f=f^{\prime}+g_{S}-g$ and $f^{\prime}(x)=f^{\prime}(y)$ whenever $x_{1}=y_{i}$ for $i \geq 0$.

If the function f in Lemma 4 is bounded away from zera, $\frac{1}{n}\left(S_{n} P^{\prime}\right)$ is strictly positive for large enough n. Thie function differs from f' by a function of the form $k s^{-k}$ for some $k \in C\left(\Sigma_{S}\right)$ and so f ' may be taken to be a strictly positive function which acts on Σ_{g} and Σ_{S}^{+}.

Suppose that we are given a f-suapension flow $\sigma_{t}^{f}: \Sigma_{S}^{f} \rightarrow \Sigma_{S}^{f}$, where $f \in F_{\theta}(S)$. From Lemma 3 and Lerma 4 wa can assume that f is a function of the future ($\left.f(x)=f\left(x_{0} x_{1} \ldots\right)\right)$ belonging to $F_{G}^{*}(S)$. Our main result in this section is the following:

Theorem 10
Let $f \in F_{\theta}^{+}(S)$ and $h E F_{B}^{+}(T)$ be strictly positive functions where $P(f)=P(h) . \quad I f f_{f}$ and L_{h} are shift-equivalent,
there is a topological conjugacy $\oplus: \Sigma_{S}^{f} \rightarrow \Sigma_{T}^{h}$ such that

$$
\left(m_{f} \times \ell\right) / m_{f}(f) \Phi^{-1}=\left(m_{h} \times \ell\right) / m_{h}(h) .
$$

Proof

If L_{f} and L_{h} are shift-equivalent, we know from Theorem 5 that there ia a topalogical conjugacy $T: \Sigma_{S}+\Sigma_{T}$ such that $m_{f} \tau^{-1}=m_{h}$. By Proposition $2 m_{h r^{\prime}} \tau^{-1}=m_{h}$ and so $m_{f}=m_{h r}$. Thus from Proposition 3 and the fact that $P(f)=P(h)$, there is a $k \in F_{\theta}(S)$ such that $f \quad h T+k G_{S}-k$. Define 0: $\Sigma_{S}^{f} \rightarrow \Sigma_{T}^{h}$ by

$$
\phi(x, s)=(\pi(x), s+k(x)),
$$

then

$$
\begin{aligned}
\phi(x, f(x)) & =(\tau(x), f(x)+k(x)) \\
& =\left(\tau(x), h \tau(x)+k \sigma_{S}(x)\right) \\
& =\left(\sigma_{T} \tau(x), k_{\sigma_{S}}(x)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\phi\left(\sigma_{S} x, 0\right) & =\left(\tau \sigma_{S}(x), \quad k \sigma_{S}(x)\right) \\
& =\left(\sigma_{T} \tau(x), \quad \mathbf{k} \sigma_{S}(x)\right)
\end{aligned}
$$

Therefore preserves identifications and it is easy to check that the homeomorphism conjugates the flaws σ_{t}^{f} and σ_{t}^{h}.

Since $m_{f} T^{-1}=m_{h}$, then it is clear that

$$
m_{f}(f)=m_{h}(h) \text { and }
$$

$$
\left(m_{f} \times \ell y m_{f}(f) \quad \Phi^{-1}-\left(m_{h} \times \ell\right) / m_{h}(h)\right.
$$

This completes the proof.

Suppose that we are given two suspension flows where the suspending functions are in F_{θ}^{+}and that these suspension flowa support a flow-invariant measure derived from the equilibrium state of a function in F_{θ}^{+}. We will now give a sufficient condition for the suspension flows to be topologically conjugate by a conjugacy that preserves these flow-invariant measures.

Corollary 10.1
Let $f, G \in F_{\theta}^{+}(S)$ and $h, k \in F_{\theta}^{+}(T)$ where $P(f)=P(h)$. Suppose that f_{f} and f_{h} are shift-equivaleat (with $l_{\text {ag }} \ell$) and for the operator $V: C\left(\Sigma_{T}^{+}\right)+C\left(\Sigma_{S}^{+}\right)$in the abift-equivalence there exists $c \in R$ and $w \in F_{\theta}^{*}(S)$ guch that
$V U_{T}^{\ell}(k)=g+w_{g}-w+c$. Then there is a topological conjugacy $\Phi: \Sigma_{S}^{f}+\Sigma_{T}^{h}$ such that

$$
\left(m_{g} \times \ell\right) / m_{g}(f) \phi^{-1}\left(m_{k} \times \ell\right) / m_{k}(h)
$$

Proof

Let Φ and T be defined as in Theorem 10. The proof of Proposition 1 shows that t is the natural extension of a map $\tau_{1}: \Sigma_{S}^{+}+\Sigma_{T}^{+}$where $V U_{T}^{\circ} k=k \tau_{1}$. Consequently, $\mathbf{k} \tau_{1}=g+{ }^{w} \sigma_{S}-\omega+c$ and by Proposition $3 m_{k \tau_{1}}=m_{g}$. From
 $m_{E} \tau^{-1}=m_{k}$. Now $m_{k}(f)=m_{g}(h t)=m_{k}(h)$ and it is easy to check that

$$
\left(m_{g} \times \ell\right) / m_{g}(f) \quad \Phi^{-1}=\left(m_{k} \times \ell\right) / m_{k}(h)
$$

58. CLASSIFICATION OF ONE-SIDED MARKOV CHAINS

The topalogical classification of one-sided subahifts of finite type is much simpler than the classification of the two-sided subshifte. For the subshifte of inite type ($\Sigma_{S}^{+}, \sigma_{S}$) and ($\Sigma_{T}^{+}, \sigma_{T}$) there is a finite procedure for determining whether they are topologically conjugate i.e. whether there exiats a homeomorphism $\phi: \Sigma_{S}^{+} \rightarrow \Sigma_{T}^{+}$such that $\phi \sigma_{S}=\sigma_{T} \phi$.

For matrices S and T we say that S is a diviaion of T and write $S<T$ if there exists non-negative integer matrices D and R, where D is of diviaion shape, such that

$$
S=D R \quad \text { and } T=R D
$$

Given a matrix S we say that s_{0} is a total diuision of S provided:
(i) $\quad S_{0}<A_{1}<\ldots<A_{r}=S$ for some eequence of matrices.
(ii) S_{0} has no repeated row.

Williams proved the following classification theorem:

Theorem 11 [25](William%E6%97%A5)
Every square matrix S over \mathbf{z}^{+}has a total diviaion S_{0}. ($\varepsilon_{S}^{+}, \sigma_{S}$) and ($\Sigma_{T}^{+}, \sigma_{T}$) are topologically conjugate if and only $1 f$ their total divisiona S_{0}, T_{0} are conjugata by a permutation $\left(S_{0}=P T_{0} P^{-1}\right.$.

We will extend this classification up to bzook-isomorphism i.e. a topological conjugacy that preservea Markov measures. Let $P(t)$ and $Q(t)$ be square matrices with no trivial rows or columns whose entries are non-negetive integral combinations
of exponential functions c^{t} for $c>0$. Also suppose that $P(1)$ and $Q(1)$ are stochastic. We say that $Q(t)$ is a division of $P(t)$ and write $Q(t)<p(t)$ if there exists rectengular matrices $R(t)$ and $D(t)$ whose entries are non-negative integral combinations of exponential functions c^{t} for $c>0$, auch that $R(1)$ and $D(1)$ are atochastic, $D(0)$ is a division matrix and

```
P(t)=R(t) D(t)
Q(t) = D(t) R(t).
```

If there existe matrices $P_{0}(t), \ldots, P_{n}(t)$ such that $P_{0}(t)=P(t), P_{n}(t)=Q(t)$ and for each $1 \leq 1 \leq n-1$ either $P_{i}(t)<P_{i+1}(t)$ or $P_{i+1}(t)<P_{i}(t)$ we say that $P(t)$ and $Q(t)$ are related. Given a matrix $P(t)$ a total division is a matrix $P_{0}(t)$ satisfying
(i) $P_{0}(t)<P_{1}(t)<\ldots<p_{n}(t)=P(t)$ for some sequence of matrices.
(1i) $P_{0}(t)$ has no column which is some exponential c^{t} times another column.

At the end of this aection we will prove:

Theorem 12
Every stochastic matrix p has a total division
$P_{n}(t),\left(\Sigma_{p^{\circ}}^{+}, \sigma_{p^{\circ}}, m_{p}\right)$ and $\left(\Sigma_{Q^{\circ}}^{+} \sigma_{q^{\circ}}, m_{Q}\right)$ are block-isomorphic
if and only if the total. divisions $P_{0}(t)$ and $Q_{0}(t)$ are
conjugate by a permutation $\left(P_{0}(t)=s^{-1} Q_{0}(t) S\right)$.

The proof of Theorem 12 will closely follow the proof of Theorem 11 given by Williams in [25].

Suppose that a and n are partitions of $\Sigma_{\text {po then we write }}$ $\alpha \leq \eta$ if every element of the partition α ig a union of elements of η. For $n \geq 0$ let

$$
\alpha v \sigma_{p^{-1}}^{-1} v \ldots v \sigma_{p^{o}}^{-n}=\left\{A_{1} \cap \ldots n A_{n}: A_{1} \in o_{p^{o}}^{-1} \quad 0 \leq 1 \leq n\right\}
$$

and denote this partition by a^{n}. We shall need the following Lemma :

Lemma 5 [16]

Suppose that p is an irreducible stochastic matrix, let β and n be partitiona of ($\sum_{P^{+}} o^{*} a_{p} o^{*} m_{p}$) into closed-open sets and suppose $\alpha \leq \eta \leq \alpha^{1}$. Define two stochastic matrices indexed by $\alpha \times n$:

$$
[\alpha, \eta](K, E)=\frac{m_{p}(K \cap E)}{m_{p}(X)}
$$

and

$$
[\alpha, \eta]_{\sigma_{p} o}(K, E)=\frac{m_{p}\left(K \cap \sigma_{p o}^{-1} E\right)}{m_{p}(K)}
$$

for

$$
(K, E) \in \propto \times \eta,
$$

then

$$
[a, \eta][\eta, a]_{\sigma_{p} o}=[\alpha, \alpha]_{\sigma_{p^{o}}}
$$

and

$$
[\eta, \alpha]_{\sigma_{\mathbf{P}}}[\alpha, \eta]=[\eta, \eta]_{\sigma_{\mathbf{P}} o^{*}}
$$

Note that $[a, \eta]$ has division shape and that the products $[\alpha, \eta]^{t}[n, \alpha]_{\sigma_{p} o}^{t}$ and $[\eta, \alpha]_{\sigma_{p} o}^{t}[\alpha, \eta]^{t}$ are $0-1$ matrices when $t=0$.

Lemma 6

If P and Q are stochastic matrices and $\phi: \Sigma_{P^{*}}^{+} \rightarrow \Sigma_{Q^{+}}^{+}$
is a block-isomorphism then P^{t} and Q^{t} are related.

Proof

Let $\eta=\phi^{-1} \alpha_{Q}$ and choose n such that $\eta \leq \alpha_{p^{0}}^{n}$ and $\alpha_{P^{0}} \leq \eta^{n}$. Consider the following sequence of partitions:

$$
\begin{aligned}
& a_{p^{0}} v n^{n-1} \leq n^{n} \leq\left(a_{p^{\circ}} v n^{n-1}\right)^{1}
\end{aligned}
$$

By raising each of the matrices defined in Lemma 4 to the power t, we have that $\left[\eta^{n}, \eta^{n}\right]_{u_{p} o}^{t}$ and $\left[a_{p^{2}} v \eta_{0}, a_{p^{o}} v\right]_{\sigma_{p}}^{t}$
 are related. Now $\left[\alpha_{p o}{ }^{\circ} \alpha_{p} o^{]_{u_{p}}}{ }^{t}=p^{t}\right.$ and $[\eta, \eta]_{\sigma_{p}}^{t}=Q^{t}$. These matrices are clearly related to $\left[\alpha_{p^{0}}^{n}, a_{p_{0}}^{n}\right]_{\sigma_{p}}^{t}$ and $\left\{\eta^{n}, \eta^{n}\right]_{o_{p}}^{t}$ respectively. Hence P^{t} and Q^{t} are related.

We now show how total divisions can always be found.

Lemma 7

Let $P(t)$ be a square matrix with no trivial rows or columns such that $P(1)$ is stochastic and whose entries are nonnegative integral combinations of exponential functions. Then we can find a total division $P_{0}(t)$ of $P(t)$.

Proof

Let $P(t)$ be a $n \times n$ matrix and suppose column $j=c^{t}$ column 1. Let the integer k vary over the set $1, \ldots, 1, \ldots, j-1, j+1, \ldots, n$. Define a $n \times(n-1)$ matrix $R(t)$ where column k of $R(t)$ equals column k of $P(t)$ if $k \neq 1$. When $k=1$ let column k of $R(t)$ equal ($1+c$). column 1 . Now let D^{\prime} be the $(n-1) \times n$ division matrix that partitions the standard row vectors that generate $z^{n},\left\{y_{1}, \ldots, y_{n}\right\}$ into $n-1$ sets U_{1}, \ldots, U_{n-1} where $U_{k}=\left\{y_{k}\right\}$ for $k \neq 1$ and $U_{k}=\left\{y_{i}, y_{j}\right\}$ for $k=1$. We now construct $D(t)$ by altering the unique non-zero entry of column in in D ' to $\frac{1}{(1+c)^{t}}$ and changing the unique non-zero entry of column j of D^{\prime} to $\frac{c^{t}}{(1+c)^{t}}$. Then $D(1)$ and $R(1)$ are stochastic matrices with $P(t)=R(t) D(t)$. We now repeat this procedure if necessary on $D(t) R(t)$. Since the size of our matrices are being
reduced every time this procedure is followed, we will eventually obtain a total division of $P(t)$. We shall need the following Lemma:

Lemma 8

Suppose $B(t)$ and $C(t)$ are divisions of $P(t)$, then there exists $A(t)$ which is a division of both $B(t)$ and $C(t)$.

Proof
Let $P(t)$ be $n \times n, B(t) m \times m$ and $C(t) r \times r$. Let q be the smallest number such that the columns of $P(t)$ can be partitioned into two sets W_{1} and W_{2} of q and $n-q$ columns respectively, where each column of W_{2} is some exponential (c^{t}, for $c>0$) times one of the columns in W_{1}. Express $P(t)$ as a product $R_{1}(t) D_{1}(t)$ where $R_{1}(t)$ is $D^{\prime} \times$ and $D_{1}(t)$ is $q \times n$ by the method used in Lemma 7 and put $A(t)=D_{1}(t) R_{1}(t)$.

Since $B(t)$ is a division of $P(t)$ there are matrices $D_{2}(t)$ and $R_{2}(t)$ such that

$$
\begin{aligned}
& P(t)=R_{2}(t) D_{2}(t) \\
& B(t)=D_{2}(t) R_{2}(t)
\end{aligned}
$$

We claim that there exiats a $q \times m$ matrix $D_{3}(t)$ such that $D_{3}(0)$ is division, $D_{3}(1)$ is atochastic and $D_{1}(t)=D_{3}(t) D_{2}(t)$. Let the 日tandard row vactora which generate z^{n}, z^{q} and z^{m} be $\left\{x_{1}, \ldots, x_{n}\right\},\left\{y_{1}, \ldots, y_{q}\right\}$ and $\left\{z_{1}, \ldots, z_{m}\right\}$ respectively. The division matrix $D_{1}(0)$ gives a partition U_{1}, \ldots, U_{q} of $\left\{x_{1}, \ldots, x_{n}\right\}$ and similarly $D_{2}(0)$ gives a paritition v_{1}, \ldots, v_{m} of $\left\{x_{1}, \ldots, x_{n}\right\}$. Now for each $1 \leq \mathrm{J} \leq m, t h e$ column of $P(t)$ corresponding to all the $x_{k}{ }^{\prime} \boldsymbol{a}$ in V_{j} are an exponential times each other. But U_{1}, \ldots, U_{q} is the smalleat partitioning of the $x_{k}{ }^{\prime} \theta$ into sets whose corresponding columns are related by being an exponential times each other. Thus $\left\{V_{1}, \ldots, V_{m}\right\}$ refines $\left\{U_{1}, \ldots, U_{q}\right\}$. Let D_{i} be the division matrix that partitions $\left\{z_{1}, \ldots, z_{m}\right\}$ into sets Y_{1}, \ldots, Y_{q} where $Z_{j} \in Y_{1}$ if $V_{j} \in U_{i}$, then $D_{1}(0)=D_{3} D_{2}(0)$. If $D_{3}(1, j)=1$ and $x_{k} \in V_{j} \in U_{i}$, then $D_{1}(t)(i, k) \notin 0$, $D_{2}(t)(j, k) 0$ and we can define $D_{3}(t)$ by

$$
D_{g}(t)(i, j)=\frac{D_{i}(t)(1, k)}{D_{2}(t)(j, k)}
$$

We must check that this definition is unambiguous so suppose $x_{k}, x_{\ell} \in V_{j}=U_{i}$. Choose 自 such that $P(t)(s, k) \neq 0$, as $P(t)(s, k)=R_{1}(t)(s, i) D_{1}(t)(1, k)$ we heve that
$R_{1}(t)(s, 1) \neq 0$. Now
-48-

$$
D_{1}(t)(1, k) D_{2}(t)(1, i)=\frac{P(t)(B, k) D_{2}(t)(J, l)}{R_{1}(t)(E, 1)}
$$

$$
=\frac{R_{2}(t)(s, j) D_{2}(t)(j, k) D_{2}(t)(j, i)}{R_{1}(t)(s, 1)}
$$

$$
=\frac{P(t)(s, \ell) D_{2}(t)(j, k)}{R_{1}(t)(s, i)}
$$

$=D_{1}(t)(1, \ell) D_{2}(t)(j, k)$.

Hence

$$
\frac{D_{1}(t)(i, k)}{D_{2}(t)(j, k)}=\frac{D_{1}(t)(i, l)}{D_{2}(t)(j, l)}
$$

and $D_{3}(t)$ is defined unambiguously. Clearly $D_{1}(t)=D_{3}(t) D_{2}(t)$ and $D_{3}(1)$ is atochastic since if $1 \leq i \leq q$ then

$=\sum_{k=1}^{n} \sum_{j=1}^{m} D_{3}(1)(1, j) D_{2}(1)(j, k)$
$=\sum_{k=1}^{n} D_{i}(1)(1, k)$
$=1$.

Define $R_{3}(t)=D_{2}(t) R_{1}(t)$ and $A(t)=D_{3}(t) R_{3}(t)$,
then

$$
\begin{aligned}
\left(D_{2}(t) R_{2}(t)\right) D_{2}(t) & =D_{2}(t) R_{1}(t) D_{1}(t) \\
& =\left(D_{2}(t) R_{1}(t) D_{3}(t)\right) D_{2}(t)
\end{aligned}
$$

Since each column of $D_{2}(t)$ containg only one non-zero entry we conclude that $D_{2}(t) R_{2}(t)=D_{2}(t) R_{1}(t) D_{3}(t)$.

Hence $A(t)<B(t), ~ B i m i l a r l y A(t)<C(t)$ and the Lemra is proved.

```
We may now prove Theorem 12:
```

Proof of Theorem 12

By Lemma 7 total divisions $P_{0}(t)$ and $Q_{0}(t)$ can always be found. If $P_{0}(t)=s^{-1} Q_{0}(t) S$ for some permutation matixis S, then $P_{0}(t)<Q_{0}(t)$ and so P^{t} and Q^{t} are related. Suppose that for matrices $P_{1}(t)$ and $P_{2}(t)$ we have that $P_{1}(t)<P_{2}(t)$ and

$$
\begin{aligned}
& P_{2}(t)=R(t) D(t) \\
& P_{1}(t)=D(t) R(t) .
\end{aligned}
$$

The division matrix $D(0)$ defines a topological conjugacy between the one-sided subshifts of finite type ($\left.\Sigma_{P_{2}}^{+}(0), \sigma_{P_{2}(0)}\right)$ and $\left(\Sigma_{p_{1}}^{+}(0), \sigma_{P_{1}}(0)\right.$) (cf. (25]). This topological conjugacy will preserve the measures given by $P_{1}(1)$ and $P_{2}(1)$ on $p_{1}(0)$ and $p_{2}(0)$ respectively (cf. [14]). By composing all the block-isomorphisms given by the division matrices, we conclude that there exists a block-isomorphism from $\Sigma_{P^{+}}^{+}$onto $\Sigma_{Q}^{+}{ }^{+}$

Conversely, let ϕ be a block-isomorphism from $\Sigma_{p^{*}}^{o}$ onto $\Sigma_{Q^{+}}^{+}$Then by Lemma 6 and Lemma $7, P_{0}(t)$ and $Q_{0}(t)$ are related by a string of matrices $P_{0}(t), P_{1}(t), \ldots, P_{r}(t)=Q_{0}(t)$. These can be thought of as vertices of a polygonal line (see Fig. 1.) with a side joining $P_{i}(t)$ to $P_{i+1}(t)$ up to the right if $P_{i}(t)<P_{i+1}(t)$ and down to the right if $P_{i+1}(t)<P_{i}(t)$. If $P_{i}(t)$ and $P_{i+1}(t)$ are conjugate by a permutation matrix then we draw horizontal line.

Figure 1

Using Lemma 8 any peak vertex of this graph can be lowered to obtain a lowest graph connecting $P_{0}(t)$ to $P_{r}(t)=Q_{0}(t)$. This lowest graph cannot contain a local
minima for then there would be a atrictly smaller total division of $P_{0}(t)$ and $Q_{0}(t)$. Hence $P_{0}(t)$ and $Q_{0}(t)$ are related by a permutation matix.

REFERENCES

[1] K. Baker, Strong shift equivalence of 2×2 matrices of non-negative integers, Erogd. Th. Dynam. Sys. 3 (1983), 501-508.
[2] R. Bowen, Markov partitions for axiom-A diffeomorphisms, Amer. J. Math. 92 (1970), 125-747.
[3] R. Bowen, Symbalic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-459.
[4] R. Bowen, Equilibrium States and the Ergodia Theory of Anosov Diffeomorphismb, S.L.N. 470, Springer-Verlag, Berlin 1975.
[5] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaaes, S.L.N. 527, Springer-Verlag. Berlin 1976.
[6] R. Fellgett and W. Parry, Endomorphisms of a Lebeague space II, Bul1. London Matb. Soc. 7(1975), 151-158.
[7] A. Iwanik, Pointwise induced operatore on f^{p}-spacee, Proc. Amer. Math. Soc. 58 (1976), 173-178.
[8] M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1972), 309-324.
[9] K.H. Kim and F.f. Roush, Some results on decidability af shift equivalence, J. Combin. Inform. Syatema Sci. 4 (1979), 123-146.
[10] E. Kreyszig, Introduotory Funational Analyaia with Appifaationa, John Wiley and Sons, New York 1978.
[11] W. Parry, Intrinsic Markov chains, Trans. Amer, Math. Soc. 112 (1964), 55-65.
[12] W. Parry, Entropy and Generators in Ergodia Theory, W.A. Benjamin, New York 1969.
[13] W. Parry, The claseification of topological Markovchains: adapted shift equivalence, Israel J. Math. 34 (1981), 335-344.
[14] W. Parry and S. Tuncel, On the stochastic and topological etructure of Markov-chains, Bul1. London Math. Soc. 14 (1982), 16-27.
[15] W. Parry and S. Tuncel, Classification Probzeme in Ergodio Theory, L.M.S. Lecture Notes 67, Cambridge Univerdity Press 1982.
[16] . Parry and R.J. Williams, Block coding and a zeta function for Ifite Markov chaing, Proc. London Meth. Soc. 35 (1977), 483-495.
[17] D. Ruelle, Thermodynamio formaliam, Addison-Wesley, Reading 1978.
[18] E. Seneta, Non-negative Matriaes and Markov Chaina, Springer-Verlag, Berlin 1981.
[19] Y.S. Sinai, Markov partitions and Y-diffeomorpbisms, Funkcional. Anal. i Prilozen (2). 1 (1968), 64-89 = Func. Anel. Appl. 2 (1968), 61-82.
[20] Y,G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surv. 27 (1972), 21-69.
[21] S. Tuncel, Conditional pressure and coding, Israel. J. Math. 39 (1981), 101-112.
[22] p. Walters, Ruelle's operator and g-measures, Trans. Amer. Math. Soc. 214 (1975), 375-387.
[23] P. Waltera, Invariant measures and equilibrium states for some mappings which expand diatances, Trans. Amer. Math. Soc. 236 (1978), 121-153.
[24] P. Walters, An Introduation to Ergodio Theory, Springer-Verlag, Berlin 1982.
-55-
[25] R.F. Williams, Clasaification of subshifta of finite type, Ann. of Math. 98 (1973), 120-153: Errata, Ann. of Math. 99 (1974), 380-981.

50. INTRODUCTION

We will be inve日tigeting a problem in the measuretheoretic classification of real analytic Lebesgue measurepreserving expanding endomorphisms of the circle posed by Shub and Sullivan in [6]. It was shown in [5] that any two expanding maps of the same degree are topologically conjugate by a homeomorphism of the circle but in general these homeomorphisma do not preaerve Lebesgue measure.

For $1=1,2$ let f_{1} be endomorphisms of the Lebeggue spaces (X_{i}, B_{1}, μ_{1}). We say that the two systems $\left(X_{1}, \theta_{1}, H_{1}, f_{1}\right)$ and ($\mathrm{X}_{2}, \mathrm{~B}_{2}, \mu_{2}, \mathrm{f}_{2}$) are taomorphia if there are seta of measure zero $A_{1} \subset X_{1}, A_{2} \subset X_{2}$ and a one-to-one onto map $\phi: X_{1} \backslash A_{1} \rightarrow X_{2} A_{2}$ such that $\phi f_{1}=f_{2} \phi$ on $X_{1} \backslash A_{1}$ and $\mu\left(\phi^{-1} E\right)=\mu_{2}(E)$ for all measurable $E \subset X_{2} \backslash A_{2}$. The classification problem in Ergodic Theory is to determine when two given endomorphisms are isomorphic. As usual in measure theory, we do not distinguish between functions which coincide a.e. and so functions need only be defined a.e.

Let $1 \leq r \leq w$ and $f: S^{1} \rightarrow S^{1}$ be a C^{r} Lebergue measure-preserving endomorphism. Then if Df denotes the derivative of f, we gay that f is expanding if there exists $\lambda \in R$ auch that $|D f(z)|>\lambda>1$ for all $z \in s^{1}$. If f and g are Lebesgue measure-preserving endomorphisms of S^{1} and there
exists a Borel measurable bijection ϕ of S^{1} which is nonsingular with respect to Lebesgue measure and satisiles \$f = $\mathrm{g} \phi$, then we say that ϕ is an absolutaly continuous conjugacy between fand g. The following result tells us that under certain conditions, if two endomorphisms are isomorphic, they are isomorphic by an isometry. The analytic case was proved by F. Przytycki in [4].

Proposition 1. [6]

Let f and g be c^{2} Lebesgue measure-preserving expanding endomorphisms of S^{1} such that $\phi f=g \phi$ for an absolutely continuous conjugacy ϕ, then there is an isometry R of the circle such that $\phi=$ Ra.e.

Countable-to-one positively measurable non-singular maps have Jacobian derivatives (see [2], [3] and [10] for details) which we denote by $|\mathrm{D}|$. For C^{1} Lebesgue measurepreserving endomorphisms the Jacobian derivative is simply the absolute value of the derivative of the endomorphism. We say that the Jacobian derivatives $|\mathrm{Df}|$ and $|\mathrm{Dg}|$ are isomorphic if there is a Lebesgue measure-preserving auto-
 measure-preserving automorphism of s^{1} then $\left|D_{\phi}\right|=1$. Therefore, if $\|_{\text {is an }}$ isomorphism between f and g, we have by the chain
rule that $|D \mathcal{D}|=\left|D_{g}\right| \phi$ and so the Jacobians will be isomorphic. When our endomorphisms are real analytic and expanding, the following theorem of Shub and Sullivan shows that this invariant is nearly complete.

Theorem 1. [6] (Shub and Sullivan)
Let f and g be real analytic expanding endomorphisms of S^{1} which preserve Lebesgue measure. Suppose that the Jacobian derivatives of f and g are isomorphic, then there are isometries R_{1} and R_{2} of s^{1} such that $R_{1}^{-1} g R_{1}=R_{2}$.

Hence if f and g bave the same degree they are isomorphic up to a phase factor if their Jacobians are isomorphic. The problem posed by Shub and Sullivan was to determine complete measure-theoretic isomorphism invariants. Although we were not able to settle this completely we will introduce new measure-theoretic isomorphism inveriants in 51 and $\mathbf{5} 2$ which enable us to study the phase factor and to obtain some related classification results. In 53 we give complete invariants for f and g to be isomorphic but these invariants have a mixed measure-theoretic and topological anture.

§1. THE PHASE GROUP

We now wish to investigate certain group that can be associated with a continuous surjection $f: s^{1} * s^{1}$. We will give examples of this group and show that it ia measuretheoretic isomorphism invariant for C^{2} Lebesgue measurepreserving expanding endomorphisms. Let

then G_{f} is group where the multiplication of group elementa fagiven by normel multiplication of complex numbers and we call G_{f} a phasa group. G_{f} ia never empty since $1 \in G_{f}$ and as G_{f} is a closed subgroup of $S^{1} 1 t$ 1s either all of S^{1} or the p-th roots of unity for some integer $p \geq 1$.

Lemma 1
If $f: S^{1}+S^{1}$ is a continuous surjection with degree d then $f(z)=c z^{d}$ for some constant $c \in S^{1}$ if and only if $G_{f}=s^{1}$.

Proot

Suppose $f(z)=c z^{d}$ and $a E S^{1}$, then if $B=a^{d}$ we have that $f(\alpha z)=\beta f(z)$ for $a l 1 z \in S^{1}$, hence $G_{f}=S^{1}$.

Conversely, if $G_{f}=S^{1}$ then we can define a transformation $b: s^{1} \rightarrow S^{1}$ by $h(a)=B 11 f(a z)=B f(z)$ for all $z \in S^{1}$. h is a group bomomorphism aince if $f\left(\alpha_{1} z\right)=\beta_{1} f(z)$ and $f\left(\alpha_{2} z\right)=B_{2} f(z)$ we have that

$$
h\left(a_{1} a_{2}\right)=\frac{f\left(a_{1} a_{2} z\right)}{f(z)}=\frac{h\left(a_{1}\right) f\left(a_{2} z\right)}{f(z)}=h\left(a_{1}\right) h\left(a_{2}\right)
$$

Now the group homomorphiems of s^{1} all take the form $\mathrm{z}+\mathrm{z}^{\mathrm{l}}$ for some $t \in Z$ and so $f(\alpha z)=a^{\ell} f(z)$. Putting $z=1$ and allowing a to vary, we see that $f(z)=f(1) z^{2}$ for all $z \in S^{1}$ and so $t=d$.

We will need the following Lemma:

Lemma 2

Suppose that $f: s^{1}+S^{1}$ ia a continuous surjection with degree d, then if $a \in G_{f}$, we have that $f(\alpha z)=\alpha^{d} f(z)$ for all $z \in s^{1}$.

Proof:

When $G_{f}=S^{1}$ thia Lemma is an immediate consequence of Lemma 1 so we are reduced to dealing with the case when $G_{f} \not s^{1}$.

Let $\bar{f}: R \rightarrow R$ be a lift of f, then we can write \bar{f} as $\bar{f}(x)=q+d x+\theta(x)$ where $q \in z$ and $\theta(x+1)=\theta(x)$ for all $x \in R$. AE $G_{f} S^{1}$, we know that G_{f} consiate of the p-th roots of unity for some integer $p \geq 1$. Let $\ell \in E$ and $b \in R$ auch that $11 \alpha=e^{2 \pi 1 \ell / p}, \beta=e^{2 \pi i b}$ then $f(a z)=B f(z)$
 have that

$$
\hat{I}\left(x+\frac{\ell}{p}\right)=(b+\vec{f}(x)): R+E
$$

18 a continuous iunction and no is equal to constantm E. Consequentiy,

$$
\theta\left(x+\frac{l}{p}\right)=b+m-\frac{d L}{p}+\theta(x)
$$

and iterating we have that

$$
\theta(x+1)=p b+m p-d \ell+\theta(x)
$$

Therefore $p b+m p-d \ell=0$ and we conclude thet $B=a^{d}$.

We now give examples of real analytic expanding Lebesgue mensure-preserving endonorphisms of the circle with degree d whose phase group has order p for integers $d \geq z$ and $p \geq 1$.

Let $\bar{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ and $B: \bar{D} \rightarrow \mathbf{D}$ be the Blagchke product

$$
B(z)=z^{d-1} \frac{(z-a)}{(1-\bar{z} z)}
$$

where $|a| \leqslant 1$. The restriction of B to the circle will be denoted by f_{0}. The function f_{0} is real analytic, expanding and preservea Lebesgue measure on S^{1} (ci. [1]). If a $\in G_{f_{0}}$ then by Lemma $2 f_{0}(\alpha z)=\alpha^{d} f_{0}(z)$ and by comparing coefficients of z^{d} we have that $a=1$ and so $G_{f_{0}}$ is trivial.

$$
\text { Let } f: s^{1}+s^{1} \text { be a p-fold cover of } f_{0}, \text { i.e. } f \text { is } a
$$ real analytic Lebesgue measure-preserving endomorphism of s^{1} with degree d such thet the following diagram commutes.

If $a \in G_{f}$ then by Lemma $2 f(\alpha z)-\alpha{ }_{\alpha}(z)$. By raising all the terms in this equation to the power p we have that $f_{0}\left(\alpha^{p} z^{p}\right)=\alpha^{d p} f_{0}\left(z^{p}\right)$ and so $\alpha^{p} \in G_{f_{0}}$. Therefore the order of G_{f} divides p. Converaely, aince $G_{f_{0}}$ is trivial, the order of G_{f} is graater than or equal to p. This is
because if $\omega=e^{2 \pi t / p}$ then $(f(\omega z))^{p}=(f(z))^{p}$ and as fis continuous, there is an integer k auch that $f(\omega z)=\omega^{k} f(z)$. Hence $k=d$ and $w \in G_{f}$. Consequently, the phase group G_{f} hes order p.

By atarting with an orientation reversing Blaschke product and following the method described above, we can give examples of orientation reversing endomorphisms whose phase groups have order p.

For a continuous surjection f of S^{1} and an isometry R of S^{1} it is not hard to see that $G_{f}=G_{R f}=G_{f R}$ An immediate consequence of this fact and Proposition 1 is:

Proposition 2

Suppose that f and g are isomorphic C^{2} Lebesgue measurepreserving expanding endomorphisms of \mathbf{s}^{1}, then $G_{f}=G_{g}$.

In view of the above remark and Theorem 1 we also have:
Proposition 3
If f and are real analytic Lebesgue measure-preserving expanding endomorphisms of s^{1} with isomorphic Jacobians then $G_{f}=G_{g}$.

52. THE PHASE FACTOR AND THE PHASE GROUP

We now return to the problem posed by Shub and Sullivan. We will show (Theorem 2) that if ϕ is a real analytic Lebesgue measure-preserving automorphism of s^{1} such that $|\mathrm{Df}|=|\mathrm{Dg}| \phi$ and $\left|\mathrm{Df}{ }^{2}\right|=\left|\mathrm{Dg}^{2}\right| \phi$ then the phase factor of Theorem 1 is an element of the phase group of f. This Jacobian condition is a measure-theoretic isomorphism invariant since if ϕ is an isomorphism between f and g then $\phi f^{n}=g^{n} \phi$ for all $n \geq 1$ and by the chain rule $\left|D f^{n}\right|=\left|D g^{n}\right| \phi$. When $G_{f}=S^{1}$ it easily follows from Theorem 1 and Lemma 1 that the isomorphism of the Jacobians $|\mathrm{Df}|$ and $|\mathrm{Dg}|$ is a complete measure-theoretic isomorphism invariant. When $G_{f} \neq S^{1}$ we show how Theorem 2 can be used to obtain complete measuretheoretic isomorphism invariants for certain classes of endomorphisms. At the end of this section we investigate how this new invariant ties in with other invariants discussed in [3].

Theorem 2

Let f and g be real analytic Lebesgue measure-preserving expanding endomorphisms of s^{1} with the same degree. Suppose that there exists a Lebesgue measure-preserving automorphism ϕ of S^{1} such that $|D f|=|D g| \phi$ and $\left|D f^{2}\right|=\left|D^{2}\right| \phi$, then there is an isometry R of S^{1} such that $R^{-1} g R=\alpha f$ for some $\alpha \in G_{f}$.

-65-

Proof
If $\left|D f^{2}\right|=\left|D_{g}{ }^{2}\right| \phi$ then by the chain rule
$\left.|D f| f \cdot|D f|=\left|D_{g}\right| g\right\rangle \cdot\left|D_{g}\right| \phi$. Now since $|D I|>1$ and $\left|D_{f}\right|=\left|D_{G}\right| \phi$, we have that $|D f| f=|D g| g \phi$. From Theorem 1 there is an isometry R of S^{1} and a constant a $\in S^{1}$ such that $R^{-1} g R=a f$. The proof of Theorem 1 shows that there is a set X of positive measure auch that $R=\phi$ on X. As $R^{-1} g^{2} R=a f a f$ we use the chain rule to obtain that

$$
\left|D_{g}\right| g R .|D g| R=|D f| a f,|D f| .
$$

Now $|D f|=\left|D_{g}\right| R$ and so $\left|D_{g}\right| g R=|D f|$ af, therefore

$$
|\mathrm{Df}| \mathrm{f}=\left|\mathrm{D}_{\mathrm{g}}\right| \mathrm{g} \phi=\left|\mathrm{D}_{\mathrm{g}}\right| \mathrm{gR}=|\mathrm{Df}| a \mathrm{f} \text { on } \mathrm{X} .
$$

In other words $|D f|(z)=|D f|(a z)$ for all z contained in a set of poaitive measure and by analytic continuation $|D f|(z)=|D f|(a z)$ for all $z \in S^{1}$. Therefore, there is a constant $B \in S^{1}$ such that $f(\alpha z)=G f(z)$ for $\operatorname{lll} z \in S^{1}$, thus $a \in G_{f}$ and the theorem is proved.

As corollaries to Theorem 2, we now give complete measure theoretic isomorphism invariants for various classes of real analytic meagure-preserving expanding endomorphisms of s^{1}.

By Proposition 3 the isomorphism of the Jacobians implies that the phase groups are the same and we therefore have:

Corollary 2.1

Let f and g be real analytic Lebesgue measure-preserving expanding endomorphisms of S^{1} with the same degree and such that G_{f} or G_{g} is trivial. Then there is a isometry R of s^{1} such that $R f=g R$ if and only if there is a Lebesgue measurepreserving automorphism ϕ of s^{1} auch that $|D P|=|\mathrm{Dg}| \phi$ and $\left|D f^{2}\right|=\left|D_{g}^{2}\right| \phi$.

Suppose that 1 bas degree d and G_{f} hae inite order p where p and $d-1$ are coprime. If $\omega=e^{2 \pi 1 / p}$ and there is an integer \& such that $R^{-1} g R=\omega^{2} f$ for some isometry R of s^{1}, then there is an isometry R_{1} of g^{1} with $R_{1}^{-1} g_{1}=f$. This is because if mand q are integersatisfying $m(d-1)=q p+1$
then defining the isometry R_{1} by $R_{1}(z)=R\left(\omega^{(m)} z\right)$ and using Lemma 2, we have that:

$$
\begin{aligned}
R_{1}^{-1} g R_{1} & =\omega^{m \ell(d-1)} R^{-1} g R \\
& =\omega^{m \ell(d-1)+2} f \\
& =1
\end{aligned}
$$

Combining this with Theorem 2 we have:

Corollagry 2.2

Let f and g be real analytic Lebesgue measure-preserving expanding endomorphisms of S^{1} with degree d and suppose that the order of G_{f} or G_{g} is coprime to $d-1$. Then there ia a isometry R of S^{1} such that $R f=g R 11$ and only $1 f$ there in a Lebesgue measure-preserving autamorphism of s^{1} such that $|D f|=|D g|$ and $\left|D f^{2}\right|=\left|D g^{2}\right| \phi$.

In particular we have:

Corollary 2. 3

Let f and g be real anaiytic Lebesgue measure-preserving expanding endomorphisms of S^{1} with degree d where d-1 ia a prime number and the order of G_{f} or G_{g} is not equal to d-1. Then there 15 a isometry R of S^{1} such that $R f=g R$ if and only if there is a Lebeggue measure-preserving automorphism of S^{1} such that $|D f|=|D g| \phi$ and $\left|D f^{2}\right|=\left|D_{g}{ }^{2}\right| \phi$.

Corollery 2.4

Let f and g be real analytic Lebesgue measure-preserving expending endomorphisms of S^{1} with degree d where $|d|=2$, then there is an taometry R of S^{1} such that $R f=g R$ if and anly if there is a Lebesgue measure-preserving gutomorphism of s^{1} such that $|D f|=|D g| \phi$ and $\left|D f^{2}\right|=\left|D_{g}\right|^{2} \mid$.

Suppose that f and g are C^{2} Lebesgue measure-preserving endomorphisms of S^{1} and let $H_{1}=\left\{a f^{n}: a \in G_{f}, n \in z^{+}\right\}$, then H_{f} can be made into $a{ }^{\text {scmi-atouf }}$ where the group operation is eimply composition of functions i.e. $a_{1} f^{n} * a_{2} f^{m}=\alpha_{1} f^{n}\left(a_{2} f^{m}\right)$. Note that if f has degree $d \in Z^{+}$then from Lemma 2 $\alpha_{1} f^{n}\left(\alpha_{2} f^{m}\right)=\alpha_{1} \alpha_{2}^{d n} f^{n+m}$. We say that H_{f} is isomorphio to H_{g} if there is a Lebesgue measure-preserving automorphism of S^{1} sucb that the map $\psi: H_{f}+H_{g}$ given by $\alpha f^{n}+\phi \quad \alpha f^{n} \phi^{-1}$ is a bijection where $\phi \quad a f^{n} \phi^{-1}$ need coly equal an element of H_{g} a.e.
If αf is isomorphic to g for some $\alpha \in \mathcal{G}_{f}$, we have by Proposition 1 that there is an isometry R of S^{1} such that $R^{-1} g R=a f$ and clearly this implies that H_{f} is isomorpbic to H_{g}. We therefore bave:

Corollary 2.5

Let f and g be real analytic Lebesgue measure-preserving expanding endomorphisme of S^{1}, then H_{I} is isomorphic to H_{g} if and only if there is a Lebeague measure-preserving automorphism ϕ of S^{1} such that $|D f|-|D g| \phi$ and $\left|D f^{2}\right|-\left|g^{2}\right| \phi$.

We will now briefly describe two other measure-theoretic isomorphism invariants for Lebesgue measure-preserving endomorphisms of S^{1} (cf. [3] and [10]). Let f and g be countable-to-one Lebesgue measure-preserving endomorphisms of S^{1}. Ueing Rohlin's theory of mesaurable partitions (cf, [9]) we can assume that our endomorphisms have been modified so
that they are pogitively medarable and non-gingular, i.e. there are null eete $A_{1}, A_{2} \in S^{1}$ such that $f_{\mid} S^{1} A_{1}$ and $g \mid S^{1} A_{2}$ map measurable sets to measurable sets and null sats to null sets.

Let $B(1)$ denote the smallest σ-algebra such that $f^{-1} B(P) \subset B(I)$ and $|D I|$ 1圆 mengurable with reapect to $B(1)$. If there is a Lebesgue measure-preserving eutomorphism of S^{1} guch that $B(g)=\phi \theta(1)$ then we say that $B(f)$ and $B(g)$ are isomorphia. If is an isomorphism between f and g then $B(g)=\phi B(f)$ and so this ig mensure-theoretic isomorphism invariant. Te may that f and gere sequentiazZy equivazant if there are automorphisme $\phi_{0}, \phi_{1} \ldots .$. of S^{1} such that $\phi_{n+1} f=G \phi_{n}$ for $n \geq 0$. Clearly this is measura-theoretic isomorphism invariant. This invariant is closely related to the notion of isomorphic sequences of o-nigebras atudied by Versik 1n [7] and [8].

Now suppose that I and g are Lebeggue mensure-preserving endomorphiams of S^{1} with degree d auch that $R^{-1} g R$ af for an isometry R and $a \in G_{f}$ Since $f(\alpha z)=a^{d} f(z)$ we have that $|D P|(a z)=|D f|(z)$ and $1 f($ denotes the Lebergue a-algebra of R then
-70-

$$
\begin{aligned}
& R^{-1} B(g)=R^{-1} \underset{n=0}{v} g^{-n}|D g|^{-1}(\mathcal{L}) \\
& =R^{-1}\left|D_{g}\right|^{-1}(L) v \underset{n=1}{\infty} i^{-n} \alpha^{-\left(\frac{d^{n}-1}{d-1}\right)} R^{-1}\left|D_{E}\right|^{-1}(f) \\
& \left.=|D f|^{-1} \text { (} L\right) v \sum_{n=1}^{\infty} f^{-n} a^{-\left(\frac{d^{n}-1}{d-1}\right)}|D f|^{-1}(L) \\
& =|D f|^{-1}(\mathcal{L}) v \underset{n=1}{\infty} f^{-n}|D f|^{-1}(\mathcal{L}) \\
& =\theta(f) .
\end{aligned}
$$

Therefore $B(f)$ and $B(g)$ are isomorphic. To show that f and g are sequentially equivalent define $\phi_{0}(z)=R(z)$ and $\phi_{i}(z)=$
$R\left(\alpha^{\frac{1}{d-1}}\right.$
z) for $1 \geq$ 1. Using Lemme 2 and the fact that a is an element of the phase groupe of f and g we bave thet $\phi_{D+1}=G \phi_{n}$ for 11 D 2 o. Since $R^{-1} g R=\alpha f$ for $a \in G_{f}$ we get that $R^{-1} f^{n} R=d^{\frac{d^{n}-1}{d-1}} f$ for $a l 1 n \geq 1$. Uaing the chain rule, we conclude that $\left|D R^{n}\right|=\left|D g^{n}\right| R$ for all $n \geq 1$. Combining all these observations with Theorem 2 gives:

-71-

Proposition 4

Let f and g be real analytic Lebesgue meanure-preserving expanding endomorphisms of S^{1} with the same degree. If there is a Lebesgue measure-preserving automorphism of s^{1} such that $|D f|=|D g| \mid$ and $\left|D r^{2}\right|=\left|D g^{2}\right| \phi$ then $;$
(1) f and gere sequentially isomorphic.
(ii) $B(f)$ is isomorphic to $\beta(g)$.
(iii)There is a Lebesgue measure-preserving automorphism ψ of s^{1} such that

$$
\left|D f^{n}\right|=\left|D_{g}{ }^{n}\right| \psi \text { for } 211 n \geq 1
$$

53. COMPLETE INVARIANTS FOR ISOMETRIC ISOMORPHISM

Throughout this section we will assume that 1 and g are real analytic Lebesgue measure-preserving expanding endomorphisms with degree d. We will give complete invariants for f and g to be isomorphic but these invariante will have a meaaure-theoratic and topological nature. By Proposition 1, to give complete invariants for t and g to be isomorphic, it is enough to give complete invariants for f and g to be isomorphic by an ifometry and this is what we will do.

We begin by showing that when the order of G_{f} ig finite, fis isomorphic to endomorphism defined on the product of the circle and the phase group.

Suppose that G_{f} has order $p \in z^{+}$, let $\omega=e^{2 \pi i / p}$ and denote $G_{f}=\langle\omega\rangle$ by G. Define the measurable function $k: s^{1} \rightarrow G$ by $k(z)=\omega^{r}$ if z can be written as $z=z_{0} \omega^{r}$ for $0 \leq \arg \left(z_{0}\right)<\frac{2 \pi}{p}$ and $r \in z$. Then if i denotes Lebesgue measure on s^{1} and h_{G} denotea the Haar probability measure on G, we have that $\Psi: S^{1}+S^{1} \times G$ given by $z \rightarrow\left(z^{p}, k(z)\right)$ 1日 a measurable bijection such that $\ell \Psi^{-1}=\ell \times b_{G}$. Consider the
 is the undque endomorphism of S^{1} auch that the following diagram comutes

then $G_{f_{0}}=\{1\}$ and it is easy to check thet $\bar{f}(z, y)=\left(f_{0}(z)\right.$, $a_{f}(z) y^{d}$) for some measurable $a_{f}: S^{1}+G$.

In the same way, if the order of $G g$ is p we can define $\vec{g}: S^{1} \times G+S^{1} \times G$ where $\bar{g}(z, y)=\left(g_{0}(z), \alpha_{g}(z) y^{d}\right)$ for some measurable $a_{g}: s^{1}+G$.

We will also need to represent isometries of $\mathrm{S}^{1} \mathrm{as}$ skew-products. Suppose that $R(z)=c z^{m}$ is an isometry of s^{1} where $c \in S^{1}, m \in\{-1,1\}$ and let R_{0} be the unique isometry which makes the following diagram commute

If $\overline{\mathrm{R}}: \mathrm{S}^{1} \times \mathrm{G}+\mathrm{S}^{1} \times \mathrm{G}$ denotes the isomorphism $\Psi R F^{-1}$ then

$$
\bar{R}(z, y)=\left(R_{n}(z), a_{\underline{D}}(z) y^{m}\right)
$$

for some measurable $a_{p}: s^{1}+G$.

When G_{f} has finite order p, we can define two factors of P that depend on a certain decomposition of p. By writing p as a product of powers of prime numbers, it is not bard to see
that p bag a unique decomposition into a product of two positive integers p_{1} and p_{2} where p_{1} is coprime to $d-1$ and p_{2} divides $(d-1)^{k}$ for some $k \geq 1$. For w ge above let $G_{1}=\left\langle\omega^{p_{1}}\right\rangle, G_{2}=\left\langle\omega^{p_{j}}\right\rangle$ and define $f_{1}: s^{1} \times G_{1} \rightarrow s^{1} \times G_{1}$ and $\mathcal{I}_{2}: S^{1} \times G_{2} \rightarrow S^{1} \times G_{2}$ by $\mathcal{F}_{1}(z, y)=\left(P_{0}(z), \alpha_{f}^{P_{1}}(z) y^{d}\right)$, $\mathcal{I}_{2}(z, y)=\left(f_{0}(z),{D_{f}}_{P_{2}}(z) y^{d}\right)$.

Now the following diagrams commute

therefore, with respect to the measures $\ell \times{ }^{h} G_{1}$ and $\ell \times{ }^{h_{G}} G_{2}$ on $S^{1} \times G_{1}$ and $S^{1} \times G_{2}$ respectively, we have that \mathcal{F}_{1} and \mathcal{F}_{2} are factors of \mathbf{f}.

Similarly define $\overline{\mathrm{g}}_{1}: \mathrm{S}^{1} \times \mathrm{G}_{1}+\mathrm{S}^{1} \times \mathrm{G}_{\mathrm{I}}, \overline{\mathrm{E}}_{2}: S^{1} \times \mathrm{G}_{2}+\mathrm{S}^{1} \times \mathrm{G}_{2}$, $\vec{R}_{1}: s^{1} \times G_{1}+s^{1} \times G_{1}$ and $\bar{R}_{2}: s^{1} \times G_{2}+s^{1} \times G_{2}$.

We will now describe a new measure-theoretic isomorphism invariant. This invariant consists of a Jacobian condition and something which resembles a coboundery equation.

Suppose G_{f} and G_{g} have finite order $p=p_{1} p_{2}$ and $R(z)=c z^{m}$ ig an isometry of S^{1} such that $R f=g R$, then $R \boldsymbol{P}=\vec{B}$ and consequently $R_{0} f_{0}=E_{0} R_{0}$ and

$$
\alpha_{f}^{m} \cdot \alpha_{R}\left(f_{0}\right)=\alpha_{g}\left(R_{0}\right) \cdot \alpha_{R}^{d}
$$

In particular

$$
a_{1}^{m p_{1}} \cdot a_{R}^{p_{1}}\left(f_{0}\right)=a_{g}^{p_{1}}\left(R_{0}\right) \cdot a_{R}^{d p_{1}}
$$

Observe that if $p_{2}=1$ then $G_{1}=\{1\}$ and this last equation becomes trivial.

Proporition 5

Let f and g be real analytic expanding Lebesgue measure-preserving ondomorphisms of S^{1} with degree d. Then if 1 and g are isomorphic, there is an isometry $R(z)=c z^{m}$ such that $|D f|=\left|D_{g}\right| R,\left|D f^{2}\right|=\left|D_{g}{ }^{2}\right| R$ and $i f G_{f}\left(=G_{g}\right)$ has order $p \in z^{+}$where $p=p_{1} p_{2}$ is the decomposition of p given above, there is a measurable map $\xi: \mathrm{s}^{1} \rightarrow G_{1}$ such that $\alpha_{f}^{p_{1}}{ }^{m} \cdot \zeta\left(f_{0}\right)=\alpha_{g}^{p_{1}}\left(R_{0}\right) \cdot \zeta^{d}$.

To prove that this invariant is complete, we will need the following Lemma which tells us when we can build up from 1somorphic factors $\mathbf{F}_{i}, \overline{\mathrm{~g}}_{1}(\mathrm{i}=1,2)$ to m isomorphism of \mathbf{P} and \bar{g}.

Lemma 3
Let f and g be real analytic Lebesgue measure-preserving expanding endomorphisms of S^{1} with degree d such that G_{f} and G_{g} have order $p \in \mathbb{Z}^{+}$. For $f_{0}, \bar{F}_{1}, \mathcal{F}_{2}$ and $g_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{E}}_{2}$ defined above we have that f is ieomorphic to g if and only if
(i) There is an isomorphism $\phi_{0}: s^{1}+\mathrm{s}^{1}$ such that

$$
\Phi_{0} \mathbf{f}_{0}=\mathbf{g}_{0} \Phi_{0}
$$

(ii) For $1=1,2$ there are 1 aomorphisms $\bar{\phi}_{1}: S^{1} \times G_{i} \rightarrow S^{1} \times G_{1}$
 projection onto the firet coordinate.

Proof

Suppose that f and g are isomorphic, then by Proposition 1 there is an isometry R of S^{1} such that $R f=g R$. By letting $\phi_{0}=R_{0}, \bar{\phi}_{1}=\bar{R}_{1}$ and $\bar{\phi}_{2}=\bar{R}_{2}$ it in easy to check thet conditions (i) and (ii) are satisified.

Conversely, let

$$
x=\left\{\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right) \in\left(S^{1} \times G_{1}\right) \times\left(S^{1} \times G_{2}\right): z_{1}=z_{2}\right\}
$$

and deifne

$$
A: X \rightarrow s^{1} \times G
$$

by

$$
\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right) \rightarrow\left(z_{1} ; y_{1} y_{2}\right) .
$$

The group G is isomorphic to the group $\left\langle y_{1} y_{2}\right\rangle$ where $y_{1} \in G_{1}$, $y_{2} E G_{2}$ and consequently using the product measure ($2 \times{ }^{h_{G_{1}}}$) $\times\left(1 \times h_{G_{2}}\right.$) on X we have that Λ is an isomorphism.
Define endomorpbisms $F: X \rightarrow X, G: X \rightarrow X$ by

$$
F\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=\left(\bar{f}_{1}\left(z_{1}, y_{1}\right), \bar{z}_{2}\left(z_{2}, y_{2}\right)\right)
$$

and

$$
G\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=\left(\overline{\mathrm{g}}_{1}\left(z_{1}, y_{1}\right), \overline{\mathrm{g}}_{2}\left(z_{2}, y_{2}\right)\right),
$$

then $\Lambda^{-1} \mathbf{f} \Lambda=F$ and $\Lambda^{-1} \bar{g} \Lambda=G$. Let $\Phi: X \rightarrow X$ be the isomorphism

$$
\Phi\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=\left(\bar{\phi}_{1}\left(z_{1}, y_{1}\right), \bar{\phi}_{2}\left(z_{2}, y_{2}\right)\right)
$$

To mee that this is well defined, we need to check that
$\pi \bar{\phi}_{1}\left(z_{1}, y_{1}\right)=\pi \bar{\Phi}_{2}\left(z_{2}, y_{2}\right)$ when $z_{1}=z_{2}$. This will immediately follow from the identities $\pi \bar{\phi}_{1}=\varphi_{0}{ }^{n}$ and $\pi \bar{\phi}_{2}=\varphi_{0}{ }^{\pi}$.
Now $\varphi F\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)=\left(\bar{\Phi}_{1} \bar{F}_{1}\left(z_{1}, y_{1}\right), \bar{\phi}_{2} z_{2}\left(z_{2}, y_{2}\right)\right)$
$=\left(\overline{\mathrm{E}}_{1} \bar{\Phi}_{1}\left(z_{1}, \mathrm{y}_{1}\right), \overline{\mathrm{E}}_{2} \Phi_{2}\left(z_{2}, y_{2}\right)\right)$
$=G \Phi\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)$.

Thus F and G are tsomorphic and consequently 1 and g will be 1somorphic.
-79-

We now make use of our decomposition of p into factora p_{1} and p_{2} by showing thet if the Jacobien condition of Proposition 5 holde, we do not heve to worry about the 1somorphism of $\overline{\mathrm{F}}$ and $\overline{\mathbf{E}}_{\mathbf{2}}$.

Suppose that G_{f} and G_{g} have finite order $p=p_{1} p_{2}$ and there is an isometry $R(z)=c z^{m}$ such that $R^{-1} g R=\alpha f$ for $a \in G_{f}$, where $\alpha=\omega^{2}$ for $\omega=e^{2 \pi i / p}$ and $\& \in \mathcal{Z}$. Then $R_{0} P_{0}=g_{0} R_{0}$ and $\alpha_{g}\left(R_{0}\right) \cdot \alpha_{R}^{d}=\alpha_{f}^{m} \cdot \alpha_{R}\left(f_{0}\right) \cdot \omega^{\ell m}$, in particular
$\alpha_{g}^{p_{2}}\left(R_{0}\right) \cdot \alpha_{R} p_{2}=a_{f}^{m p_{2}} \cdot a_{R}^{p_{2}}\left(I_{0}\right) \cdot \omega^{\ell m p_{2}}$. As p_{1} and d-1 are coprime, there are integers n and q such that $n p_{1}=q(d-1)+1$. Therefore

$$
\ln p=\ell n p_{1} p_{2}=(d-1) \ell p_{2} q+\ell p_{2}
$$

and if we define $n: s^{1}+G_{2}$ by $n=\omega^{\ell m p_{2} q} a_{R} p_{2}$ we have that

$$
\begin{aligned}
& a_{g}^{p_{2}}\left(R_{0}\right) \cdot \eta^{d}-a_{g}^{p_{2}}\left(R_{0}\right) \cdot\left(\operatorname{lemp}_{2} q \cdot \alpha_{R}^{d p_{2}}\right. \\
& =\omega^{d \ell m p_{2} q+\ell m p_{2}} \cdot \alpha_{f}^{m p_{2}} \cdot \alpha_{R}^{p_{2}}\left(f_{0}\right) \\
& =\omega^{(d-1) \ell m p_{2} q+\ell m p_{2}} \cdot a_{f}^{m p_{2}} \cdot \eta\left(1_{0}\right) \\
& =a_{i}^{m p_{2}} \cdot n\left(f_{0}\right) .
\end{aligned}
$$

$$
-80-
$$

Thus defining $\bar{\phi}_{2}: s^{1} \times G_{2}+s^{1} \times G_{2}$ by $\bar{\phi}_{2}(z, y)=\left(R_{0}(z), n(z) y^{m}\right)$ we get that $\bar{\phi}_{2} \mathbf{r}_{2}=\overline{\mathbf{g}}_{2} \overline{\boldsymbol{\Phi}}_{2}$.

If in addition there is measurable map $\zeta: S^{1} \rightarrow G_{1}$
such that $\alpha_{f}^{p_{1} m} \cdot \zeta\left(f_{0}\right)=\alpha_{g}^{p_{1}}\left(R_{0}\right) \cdot \zeta^{d}$ then defining $\bar{\phi}_{1}: S^{1} \times G_{1}+S^{1} \times G_{1}$ by $\bar{\phi}_{1}(z, y)=\left(R_{0}(z), \zeta(z) y^{m}\right)$, we obtain that $\bar{\phi}_{1} \mathcal{P}_{1}=\bar{E}_{1} \bar{\phi}_{1}$.

Combining these observations with Proposition and
Lemma 3, we have completed the proof of:

Theorem 3

Let f and g be real analytic Lebeague measure-preserving expanding endomorphisms of s^{1} with degree d. Then 1 and g are isomorphic if and only if there is an isometry $R(z)=c z^{\text {II }}$ such that $|D f|=|D g| R,\left|D f^{2}\right|=\left|D_{g}{ }^{2}\right| R$ and if $G_{f}\left(=G_{G}\right)$ bas order $p \in z^{+}$where $p=p_{1} p_{2}$ is the decomposition of p given above, then for f_{0} and R_{0} dafined above, there is a measurable $\operatorname{map} \zeta: S^{1} \rightarrow G$ such that

$$
\alpha_{f}^{p_{2} m} \cdot \zeta\left(f_{0}\right)=a_{g}^{p_{1}}\left(R_{0}\right) \cdot \zeta^{d}
$$

Unfortunately, the complete invariant described in Theorem 3 is a mixed topological and measure theoretic invariant and so
we bave not fully solved the problem posed by Shub and Sullivan.

When $p_{2}-1$ we can give complete measure theoretic isomorphism inverianta for real analytic Lebeague meagurepreserving expanding endomorphisms of the circle and thia was done in Corollary 2.2.

REFERENCES

[1] N.F.G. Martin. On finite Blaschse producte whose restriction to the unit circle are exact endomorphisms, Bul1. London Math. Soc. 15 (1983), 343-348.
[2] W. Parry. Entropy and Generatora in Ergodia Theory, W. A. Benjamin, New York 1969.
[3] W. Parry and P. Walters. Endomorphisma of a Lebeague space, Bull. Amer. Math. Soc. (1972), 272-276.
[4] F. Przytycki. On holomorphic perturbations of $z \rightarrow z^{n}$, Bull. Pol. Acead. Sci. Math. 34 (1986), 127-132.
[5] M. Shub. Endomorphisms of compact differentiable menifolda, Amer. J. Meth. gi (1969), 175-199.
[6] M. Shub and D. Sullivan. Expanding endomorphisme of the circle revisted, Ergod. Th. Dynam. Sys. 5 (1985), 285-289.
[7] A.M. Versik. A theorem of the lacunary isomorphisms of monotione sequences of partitions, Funkcional. Anel. 1. Prilozen (2). 3 (1968), 17-21 = Func. Anal, Appl (2). 3 (1968), 200-203.
[8] A.M. Veraik. Decreasing sequences of measurable partitions and their applications, Dokl. Akad. Nauk SSSR. 193 (1970), 748-751 = Soviet Math. Dokl.11 (1970), 10071011 .

18] P. Walters. On the roota of n:1 measure preserving transformations, J. London Math. Soc. 44 (1967), 7-14.
P. Walters. Some resulta on the clasaification of some measure preserving transformations, Reaent Advanaes in Topologioal Dynamios, S.L.N. 319, pp. 255-276, Springer-Verlag, Berlin 1973.

