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Abstract

This thesis presents three studies examining the methods used by human learners

to construct mental representations to reflect external data patterns, and the im-

pact the form of these representations have on subsequent behaviour. This involves

three varied tasks in which representations are built and updated from experience:

stereotype change, numerical estimation and learning consolidation. Each of these

studies uses computational models of these processes to offer potential descriptions

of the mechanisms used to construct our representations, and assesses the accuracy

of these descriptions using both qualitative and quantitative comparisons with hu-

man behaviour. Such contrasts reveal the importance of the form of our mental

representations on related actions: stereotypical beliefs are coloured by the organ-

isation of group members, numerical expectations are dependent on the assumed

format of numerical information, and stimulus choices are influenced by connec-

tions forged through experience. This then provides insight into the mechanisms

used by human learners in these tasks, and the specific impacts of such mechanisms

on related behaviour. We do however also note questions raised by the use of such

methods on the accuracy of what may be highly-complex systems in describing hu-

man behaviour, and the algorithms that may be used to implement such systems in

real life.
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Chapter 1

Introduction

A common question in the field of cognitive science: with all the many, varied

and complicated items and experiences a person encounters in every day life, how

does one go about organising this information into a form which is both usable and

useful? Despite the extensive variety of real-world events, people display a remark-

able ability to acquire complex representational forms such as item taxonomies,

latent patterns and causal structures simply through experience. Such learning sug-

gests the use of advanced mental systems to build these representations, identifying

such patterns in our observations to ensure an accurate depiction of true external

structures. These systems then play an integral role in directing our behaviour, de-

termining the form of our representations and so our understanding of the world.

As such, it is crucial to examine how we build these representations, and how this

in turn determines our actions.

Many theorists have therefore sought insight into these processes using com-

putational models of behaviour, drawing on an extensive set of methods by which

such structures could be generated in artificial agents. These models can take a

number of different forms, ranging from systems which organise observed items

by similarity to determine underlying structures, to more abstract systems which

represent concepts using boundary rules or networks of weighted connections be-

tween lower-order elements. This then provides a diverse range of techniques for

use in describing the ways in which learners construct their representations, offering
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multiple potential approaches for examining our own systems. Contrasts of these

methods with human behaviour can then provide greater insight into the mecha-

nisms which support such acquisition in our own learning, and the results this may

have on subsequent behaviour.

This thesis therefore begins with a brief overview of such models, noting

differences in form and operation, applications to real-world phenomena, and vari-

ations in complexity. Due to the extensive range of such approaches, we here focus

on three key branches of these systems: spatial methods, logical methods and net-

work methods, noting the more prominent methods within these branches in ascend-

ing complexity. This focuses primarily on applications to human categorisation due

to the extensive investigation of mental representations in this area, though applica-

tions to other tasks are also noted where appropriate. While the following sections

do note some differences between these branches in operation and application, this

primarily aims to introduce the methods available when examining human cogni-

tion, with greater contrasts between these methods being made in the conclusion of

the thesis, found in Chapter 5.

1.1 Spatial Methods

Spatial methods here refers to mechanisms which directly organise actual items

and experiences, often placing these items in a multidimensional representational

space. One simple form this can take is to store all experienced items in a repre-

sentational space with a similarity gradient around each for use in future prediction

or classification. This is exemplified in recent kernel methods, which use a va-

riety of similarity metrics and often remove redundant stored items to provide a

more efficient representation (Jäkel, Schölkopf, & Wichmann, 2007); for example,

support vector machines use kernel functions to draw decision boundaries between

categories (Cristianini & Schölkopf, 2002), often resulting in highly-accurate clas-

sification performance (Decoste & Schölkopf, 2002; Razzaghi, Roderick, Safro, &

Marko, 2016; Rasmussen, Rieger, & Webster, 2017). Such methods are mirrored
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in behavioural models by exemplar representations, which similarly store all items

in a multidimensional feature space, using assessments of similarity to these stored

items when making new predictions (Jäkel et al., 2007; Nosofsky, 1986). These

models are therefore commonly used as a simple representation of item memory

(e.g. Brown, Neath, & Chater, 2007; Nosofsky, Sanders, & McDaniel, 2018), as

well as a base for more complex learning models (e.g. ALCOVE, Kruschke, 1992),

though concerns have been raised regarding the psychological plausibility of exem-

plar representations (Vanpaemel & Storms, 2008).

Beyond this direct representation of items, spatial methods can also produce

a variety of more abstract representations, with some of the more simplistic being

those that aggregate sets of items into collected averages, such as k-means cluster-

ing and self-organised maps (Kohonen, 2013; Biehl, Hammer, & Villman, 2016).

These methods correspond with the use of prototypes in human learning, often con-

trasted with exemplar formats, which also use aggregates to represent a set; in the

case of prototypes, however, this usually involves only a singular average (Reed,

1972), matching with the most basic form of these methods. Prototypes provide an

intuitive method of summarising data sets into an easy-to-use form, but in doing

so can miss more complex aspects of item representation, including the relations

between stimuli (Vanpaemel & Storms, 2008; Nosofsky, 1992), suggesting greater

complexity is in fact required.

A more flexible representation is provided by clustering methods, in which

items within a set are assigned to subgroups called clusters according to observed

similarities. While this can involve a fixed number of clusters as in the above k-

means, much machine learning research has investigated non-parametric forms of

this representation, in which the number of clusters is flexible and learned from

the data. The Dirichlet Process Mixture Model is one of the most notable non-

parametric clustering methods, where the number of clusters is potentially infinite,

and inferred from patterns among observations (Antoniak, 1974). More recently,

the Indian Buffet Process prior has been used in similar systems to provide alter-

native representations in which cluster assignments are replaced with feature infer-
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ences, again being potentially infinite in number (Griffiths & Ghahramani, 2011). In

cognitive science, these processes have been most commonly used within Bayesian

models of cognition, providing non-parametric probabilistic systems which infer

external structures according to both direct observation and prior beliefs (Anderson,

1991; Austerweil & Griffiths, 2013). These clustering models essentially offer an

interpolation between the above exemplar and prototype forms, with each cluster

acting as a distinct prototype; any created partition therefore falls between these

two extremes depending on the number of clusters formed. This is most evident

in rational models of categorisation (Anderson, 1991), though similar techniques

have been applied to numerosity (Gershman & Niv, 2013; Sanborn & Beierholm,

2016), language segmentation (Goldwater, Griffiths, & Johnson, 2009) and causal

inference (Buchsbaum, Griffiths, Plunkett, Gopnik, & Baldwin, 2015). The present

thesis in fact employs such clustering methods in subsequent chapters, using these

systems to examine the partitioning of social groups (Chapter 2) and perceptual

observations (Chapter 3), and the impact of such processes on related judgements.

Recent advancements in these clustering methods have led to increasingly

complex representations, including hierarchical systems where clusters can be nested

within each other (Blei, Griffiths, & Jordan, 2010), and the CrossCat model, where

multiple partitions of the same items can be formed from different feature patterns

(Mansinghka et al., 2016). This has similarly led to the development of hierarchi-

cal models of human categorisation (Griffiths, Canini, Sanborn, & Navarro, 2007;

Heller, Sanborn, & Chater, 2009), as well as structural form models which select

not just the organisation of items but also the form of that organisation, consid-

ering clusters, trees and chains among others (Kemp & Tenenbaum, 2008; Lake,

Lawrence, & Tenenbaum, 2018). Such models provides a substantial level of flex-

ibility in the ultimate representation, but by expanding the number of considered

forms in this way, these systems require strong inductive priors to adequately limit

the hypothesis space in order to allow efficient learning from limited data.
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1.2 Logical Methods

Logical methods define items or concepts using logical statements concerning the

features of the target, identifying common elements within a data set that can be

distilled into grammatical terms for use in future predictions. This is most clearly

demonstrated in inductive logic programming systems (Muggleton et al., 2012),

which have been used to generate logical rules for classifications (Katzouris, Ar-

tikis, & Paliouras, 2015) and state transitions (Inoue, Ribeiro, & Sakama, 2014).

Similar concepts can be observed in rule-based models of human behaviour, com-

monly used in categorisation as category membership is often defined by similar

boundaries in everyday life (Bruner, Goodnow, & Austin, 1956; Shepard, Hovland,

& Jenkins, 1961); indeed, Feldman (2000) suggests that categorisation behaviour

reflects the use of Boolean logic, with the difficulty in learning a rule being propor-

tional to its Boolean complexity. Models such as RULEX (Nosofsky, Palmeri, &

McKinley, 1994) therefore search through stimulus dimensions to find the simplest

rule which maximises discriminability, whilst also creating a store of exceptions.

Much like the spatial methods above, these have more recently been developed into

more advanced probabilistic grammars (e.g. Goodman, Tenenbaum, Feldman, &

Griffiths, 2008), allowing for stronger inductive inferences from limited data. This

can again lead to a rational model of structure discovery, in which a rule is in-

ferred from observations using priors on individual components to provide a bias

toward simplicity, with lower probabilities for more complex, multidimensional

rules. Rule-based systems are not purely limited to categorisation, however, with

similar methods being applied to the learning of language (Frank & Tenenbaum,

2011) and functions (Lucas, Griffiths, Williams, & Kalish, 2015).

The key advantage of these logical systems is compositionality: individual

elements can be combined to create much more complex rules from fairly simplistic

building blocks. In addition, grammars provide a modality-independent representa-

tion, able to be translated into alternate formats to direct behaviour in tasks beyond

those used for initial learning (Erdogan, Yildirim, & Jacobs, 2015). Logical sys-
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tems do, however, naturally draw hard boundaries between categories, making it

more difficult to account for the graded nature of human category representations

(Rosch, 1973). While probabilistic versions of these systems do help to account for

this issue (Goodman et al., 2008; Shepard, 1987), such additional flexibility again

requires strong inductive priors in order to learn effectively from limited data.

Recent years have also offered a more advanced form of this representa-

tion in ‘program’ models (Ghahramani, 2015; Lake, Salakhutdinov, & Tenenbaum,

2015), which use Bayesian induction to construct complex production procedures

from more basic elements. This is suggested to generate broad and rich represen-

tations from small data samples, allowing for accurate generalisations from even

a single category member (Lake, Salakhutdinov, & Tenenbaum, 2015) and more

intuitive and predictable laws in function learning (Schulz, Tenenbaum, Duvenaud,

Speekenbrink, & Gershman, 2017). Programs do, however, present an especially

complex representational form, and as such are more critically in need of adequate

biases to match human learning.

1.3 Network Methods

Network methods provide an alternate form of representation using networks of

interconnected nodes, with the strength of the connections being adjusted with ex-

perience to reproduce external patterns. This representation intuitively provides a

closer correspondence between method principles and actual implementation in the

brain: connectionist networks offer a simplified emulation of true neural structures,

inherently affording such methods a degree of external validity (McClelland et al.,

2010). These systems therefore contrast with both spatial and logical models of

human cognition in their level of explanation; while the above methods focus on

Marr’s computational level, network methods are closer to Marr’s implementation

level (Marr, 1982).

Rather than the strict delineations between methods seen in the above branches,

complexity within these networks increases somewhat gradually according to size,
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both in terms of breadth and depth. This extends from basic mechanisms like per-

ceptrons, which essentially provide a connectionist implementation of prototypes

(Jäkel et al., 2007; Rosenblatt, 1958), to more complex parallel distributed pro-

cessing systems, expanding the number of nodes and connections to create a more

extensive network with a greater representational capacity (Rumelhart, McClelland,

& the PDP Research Group, 1986). There are, however, additional complexities in

these methods beyond network size, with recurrent and convolutional networks be-

ing some of the more notable forms. In addition, recent neural networks have been

further expanded to include external memory stores, using these elements to further

improve their performance (Graves et al., 2016).

Highly-complex network methods have in fact become increasingly com-

mon in recent years in machine learning due to a surge in the use of deep learning

systems in various complex tasks; these methods use multiple, hierarchical lay-

ers of connections for increasing levels of abstraction (LeCun, Bengio, & Hinton,

2015; Schmidhuber, 2015). Such systems have the advantage of flexibility, pro-

viding a single, global system that can be applied fairly readily to multiple fields.

Deep learning systems have therefore been successful in finding categorical struc-

tures in image recognition (Farabet, Couprie, Najman, & LeCun, 2013; Krizhevsky,

Sutskever, & Hinton, 2017) and speech processing (Hinton et al., 2012; Chen &

Mak, 2015), as well as matching or exceeding human performance on complex

tasks such as playing video and board games (Mnih et al., 2015; Silver et al., 2016).

Within cognitive modelling, simple network models have been commonly

used in associative learning theories (e.g. Rescorla & Wagner, 1972), providing an

extensive literature using networks often limited to only a few nodes representing

basic stimulus features. Indeed, the present thesis uses such simple network models

in Chapter 4 to examine learning consolidation, investigating how associations may

be forged between features outside of direct learning to better direct subsequent

choices. The more complex networks used in deep learning, meanwhile, are still

beginning to be applied to behaviour (Lake, Zaremba, Fergus, & Gureckis, 2015;

J. Peterson, Abbott, & Griffiths, 2016; Testolin & Zorzi, 2016), creating cognitive
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models that can take advantage of the power of such methods. There are, however,

concerns whether such applications are truly valid: while deep learning systems

demonstrate a similar level of performance to human learning, and use similar rep-

resentations to those of actual neural systems (Cadieu et al., 2014; Khaligh-Razavi

& Kriegeskorte, 2014), both speed of learning and ease of generalisation are much

higher in people than machines (Lake, Salakhutdinov, & Tenenbaum, 2015; Lake,

Ullman, Tenenbaum, & Gershman, 2017), potentially indicating some difference

in operation. This is further complicated by the opaqueness of such methods, with

any generated representation being distributed across a potentially enormous series

of connection weights; this can make interpretation of the learned representation

difficult, relying more on behavioural predictions than any obvious structure.

1.4 Summary

As the above should illustrate, past research provides an extensive set of methods

which can be used to investigate the ways in which we build and update our own

mental representations. This thesis therefore presents applications of such meth-

ods to three domains of behaviour, using comparisons with computational models

to investigate the processes involved in forming our representations, as well as the

resulting differences such forms may have on subsequent behaviour in three varied

tasks. While these studies each focus on a different subject, all share a common

theme regarding the construction of mental representations from experience: the

updating of stereotypical beliefs with new evidence; the effect of prior observa-

tions on numerical estimates; and the rehearsal of past trials to consolidate stimulus

associations. This also involves a common approach using both theoretical and

quantitative contrasts of the predictions from cognitive models of these tasks with

actual behaviour to assess the accuracy of these systems, and so provide an indica-

tion of the mental mechanisms which underlie our actions. These applications then

each demonstrate the specific impact of the form of our representations on related

behaviour in these subjects, indicating the direct influence of the operations of our
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learning systems on our actions. Such contrasts also raise questions on aspects such

as the rationality of human behaviour, the algorithms required to implement these

potentially highly-complex systems, and the biases these mechanisms may intro-

duce in our decision making, all aspects which will be revisited in greater detail in

the conclusion to this thesis. The three following chapters therefore each present

one of these applications, while Chapter 5 closes with common themes raised across

these studies.
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Chapter 2

A Computational Approach to

Stereotype Change

A clear goal when constructing a representation of the environment is to accurately

capture any patterns in our observations: similarities or recurring elements within

our experiences can provide indications of underlying structures such as item tax-

onomies or common causes which could be highly valuable in directing related

behaviour. As a result, the forms of our representations should be sensitive to the

patterns of data we observe, leading to different expectations according to differ-

ences in our experiences. In this chapter, we examine this process in the domain of

stereotype change, where beliefs about a target category are updated following new

observations of group members. This then presents a case in which the representa-

tion of the category is altered to reflect new evidence, with the specific form of the

new representation determining the influence of such data on stereotypical expecta-

tions. This draws on previous work where the organisation of counter-stereotypical

information is suggested to affect its use in subsequent judgements: certain patterns

may lead to mitigation of such data, preventing any change to existing stereotypical

beliefs. We therefore here investigate the process by which such organisation is

decided, and how this influences related predictions using computational models of

categorisation to provide both qualitative and quantitative comparisons with human

data.
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2.1 Stereotype Change

While stereotypes may commonly be thought of as distorted caricatures of certain

social groups, within the domain of cognitive science, a stereotype can be viewed

as a set of traits or behaviours which are expected to be displayed (or specifically

not displayed) by an individual based on their membership of a given social cate-

gory (Hilton & von Hippel, 1996): traits congruent with the group stereotype hold

high levels of expectation, and traits incongruent with the group stereotype hold

low levels of expectation. This then raises the question of whether these expec-

tations reflect the holder’s summed experience with the category: if such beliefs

are based on the prevalence of these traits in observations of actual group mem-

bers, then stereotypes could be termed as a rational incorporation of available data,

even if these expectations are not accurate in all real-world cases. We here use the

term ‘rational’ to refer to a system which uses all available relevant information

to produce an estimate, in this case being the predicted likelihood of a trait being

observed in future group members; this is in contrast to an ‘irrational’ system in

which some data may be ignored, leading to a bias in the resulting estimate. This

aspect can be observed in the changes in stereotypical beliefs when exposed to new

information: if rational, stereotypes should adjust to reflect this data, even where it

opposes existing expectations.

In reality, however, stereotypes have often been found to be resistant to

change, with beliefs and expectations regarding a group often persisting even when

faced with directly contradictory information (Hilton & von Hippel, 1996). This

presents a problem when trying to combat stereotypes underlying prejudice or dis-

crimination through out-group exposure as has often been suggested by theories

such as the Contact Hypothesis (Allport, 1954), as there is no assurance that simply

demonstrating the inaccuracy of these beliefs will be effective in encouraging revi-

sion. It is therefore necessary to examine the processes by which stereotypes are

updated with experience, and, in cases of stereotype persistence, determine how

counter-stereotypical information may be disregarded in order to develop better
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methods to encourage change.

Past research into this field has offered three possible processes of stereo-

type revision (summarised by Weber & Crocker, 1983): book-keeping, in which the

stereotype is slowly adjusted with each relevant observation; conversion, in which

the stereotype can undergo sudden and drastic changes in response to particularly

notable contradictory exemplars; and subtyping, in which counter-stereotypical ev-

idence is isolated from the rest of the category in a distinct subgroup, ignored when

making category judgements. This presents three potential explanations for stereo-

type persistence: stereotype-incongruent exemplars may be noted via book-keeping

but remain out-weighed by prior stereotypical beliefs; these exemplars may not

have been sufficiently significant to evoke change via conversion; or these exem-

plars may have been excluded entirely via subtyping.

This distinction was examined by Weber and Crocker (1983) by manipu-

lating the presentation format of counter-stereotypical evidence in summaries of

lawyers: equal amounts of stereotype-incongruent evidence were either concen-

trated into only a few exemplars, or dispersed across many exemplars (illustrated in

Table 2.1). This generates three competing expectations between the three theories

presented above: conversion suggests that these concentrated exemplars showing

unexpected traits on all dimensions would act as extreme disconfirmers, encour-

aging greater revision to the stereotype in the concentrated condition. Conversely,

Condition
Exemplar Concentrated Dispersed

1 I I I I N N
2 I I I C N I
3 C N N N I N
4 N N N I C N
5 N N C N N I
6 N C N N I C

Table 2.1: Illustration of the concentration design of Weber and Crocker (1983),
showing a subset of exemplars from the concentrated and dispersed conditions,
where ‘C’ represents a stereotype-congruent trait, ‘I’ represents a stereotype-
incongruent trait, and ‘N’ represents a stereotype-neutral trait.
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subtyping would suggest that concentrating incongruent evidence should make it

easier to isolate, thereby preserving existing stereotypical beliefs, leading to greater

revision in the dispersed condition. Book-keeping, meanwhile, focuses only on the

amount of data rather than the presentation format, and so suggests no difference

between these conditions. Measures of the strength of stereotypical beliefs fol-

lowing exposure to these exemplars were found to be stronger in the concentrated

condition, supporting the subtyping model, an effect that has since been replicated

in a number of studies (Johnston & Hewstone, 1992; Bott & Murphy, 2007).

These findings then depict stereotype persistence as the result of an irra-

tional process of purposefully disregarding stereotype-incongruent information by

using categorisation mechanisms to exclude this data from judgements. The pre-

cise systems underlying these effects remain somewhat unclear however: while

multiple studies have attempted to investigate the proposed partitioning of social

groups suggested by subtyping using various methods, these often draw on indi-

rect measures such as trait likelihood or exemplar typicality, which may not pro-

vide accurate indications of categorisation behaviour (Richards & Hewstone, 2001;

Queller & Mason, 2008). Conversely, attempts to directly assess categorisations us-

ing methods such as sorting tasks are likely to suffer from demand characteristics,

meaning any produced groupings may not be representative of unprompted parti-

tioning of the category (Queller & Mason, 2008). This leaves the actual treatment of

counter-stereotypical data in such cases uncertain, offering no assurance that such

information is in fact being isolated and ignored as subtyping would suggest.

A more direct assessment of categorisation behaviour can however be ob-

tained using comparisons with computational models of categorisation, contrasting

measures of the expectation of stereotypical traits from participants with equiva-

lent predictions of stereotypicality generated by potential categorisation systems

to determine which offers the most accurate description of the true process. This

method has the advantage of both directly examining the impact of proposed cate-

gorisation processes on stereotypical beliefs in a transparent manner whilst avoid-

ing demand characteristics that may occur in other potential measures. The use
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of such comparisons can therefore indicate whether learners do indeed divide the

category into subgroups, and whether such partitioning leads to the exclusion of

counter-stereotypical data; if behaviour best corresponds with such an exclusion

mechanism, then this would provide evidence of a specific strategy of stereotype

preservation. Conversely, if such fits indicate judgements do actually make use

of all available information, then subtyping effects could instead be regarded as

a natural reaction of general categorisation processes to data patterns which hap-

pen to diminish the impact of incongruent information. This would then present

subtyping as a more rational process than it might initially seem, being the result

of standard non-parametric categorisation systems creating partitions of all avail-

able group data; certain patterns may lead to structures which isolate and so in-

advertently mitigate incongruent data, while others generating greater integration

of congruent and incongruent information could lead to greater stereotype revision

more akin to book-keeping. If so, then the stereotype maintenance associated with

subtyping could be fought using similarly rational mechanisms to encourage stereo-

type change. The application of these techniques to subtyping could then provide a

valuable window into the operations of this process, revealing the logical systems

underlying this apparently illogical behaviour.

The present study therefore presents a computational approach to stereotype

use, investigating both the operations underlying such beliefs and their rationality;

in the following sections, we develop several candidate models to approximate the

existing depictions of stereotype revision, contrast the predictions of these models

with participant data to assess their accuracy, and use these findings to offer some

insight into the process of stereotype change.

2.2 Model Details

We consider four potential methods by which stereotypes could be updated follow-

ing new category member observations, drawing on both the theorised processes

described above as well as existing computational models of categorisation. These

14



are here presented in increasing complexity, defining the precise process of each

system, and examining their predictions regarding existing depictions of subtyp-

ing. For simplicity, all models considered here are stationary, meaning all stored

experiences remain available once an assignment has been made.

2.2.1 The Book-Keeping Model

The first of the candidate models aimed to emulate book-keeping, tracking the rate

of stereotype-congruent traits within the category, and updating this prediction with

each relevant observation; this was therefore named the ‘Book-Keeping Model’

(BKM). The BKM stores all exemplars in memory and uses the rate of stereotype-

congruent features across relevant stereotypical dimensions in this store to generate

predictions of the probability of future category members demonstrating similar

traits. This measure is based on a Dirichlet-multinomial distribution, in which the

rate of congruent traits across relevant dimensions is combined with an additional

parameter to represent prior expectations:

p(con) =
1
d ∑

i

nc,i +αc

n·,i +α0
(2.1)

where each i is a stereotype-relevant dimension, nc,i is the number of exemplars

presenting congruent values on that dimension, d is the number of these dimen-

sions, and n·,i is the total number of exemplars in the category. The parameter αc

meanwhile reflects the prior expectation of the occurrence of congruent values in-

dependent of any observations, equal across dimensions, with α0 being the sum of

α values for all possible trait values on a given dimension.

Predictions from the BKM are therefore based solely on the rate of congru-

ent traits in the category, with no effect of the presentation format of this data; as

a result, this model is unable to predict the results of Weber and Crocker (1983),

instead suggesting no difference according to the concentration of incongruent in-

formation. The BKM therefore acts as a baseline, offering a point of comparison

for the other candidate models.
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2.2.2 The Strong Subtyping Model

The second candidate model reflects an extreme form of subtyping in which highly

incongruent exemplars are directly excluded from the category, preventing these ex-

emplars from influencing subsequent decisions. This corresponds with the ‘refenc-

ing’ concept offered by Allport (1954), in which category boundaries are essen-

tially redrawn to remove counter-stereotypical information. This ‘Strong Subtyp-

ing Model’ (SSM) therefore operates in a similar manner to the BKM described

above, but with the addition of a gating mechanism to the memory store: follow-

ing a new observation, the average rate of incongruent traits of the target exemplar

is compared against a pre-set incongruency criterion parameter, labelled θ. Exem-

plars with incongruency rates below this parameter are added to the store and so

influence decisions, whilst those exceeding this criterion are excluded.

The SSM therefore explicitly attempts to remove incongruent exemplars

from the category to maintain stereotypical beliefs; as such, the model universally

predicts subtyping effects, particularly where exemplars display high levels of in-

congruency, as in the concentration design of Weber and Crocker (1983).

2.2.3 The Restricted Rational Model of Categorisation

As a counterpoint to this extreme subtyping model, the third candidate model made

use of existing non-parametric methods to divide the category into multiple sub-

groups based on observed similarities between exemplars for a more flexible par-

titioning of category members. The model is then able to select one of these sub-

groups for use in generating predictions, presenting an alternate method by which

data may be excluded from stereotype-related judgements. This drew on the Ratio-

nal Model of Categorisation (RMC) defined by Anderson (1991); this model pro-

vides a fundamental depiction of non-parametric clustering approaches, making it

the most appropriate base for the present model. However, whereas the RMC bases

predictions on all formed clusters, the present model included a restriction in con-

sidered clusters to allow for exclusion of certain category data; this was therefore
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labelled the Restricted Rational Model of Categorisation (RRMC).

Following the structure of the RMC, the RRMC assigns exemplars sequen-

tially to a cluster based on similarities in observed features using a Bayesian model

to approximate the ideal partition (where partition refers to the collection of clusters

within the category at a given time point):

p(k| f ) = p(k)p( f |k)
∑k p(k)p( f |k)

(2.2)

where k is the cluster and f is the feature set of the exemplar under consideration.

This posterior probability is calculated for all existing clusters as well as a new po-

tential cluster to determine assignment; this could either be deterministic according

to the maximum posterior or stochastic, though in the present study we focus on

stochastic assignment only. Following Anderson (1991), the prior probability was

defined as:

p(k) =



cnk

(1− c)+ cn
if k is old

(1− c)
(1− c)+ cn

if k is new

(2.3)

where nk is the number of exemplars in cluster k, n is the total number of members

assigned to the partition, and c is a coupling parameter describing the probability

of two exemplars being grouped together independent of any observations. Fixing

c at 1 then restricts the RRMC to a single cluster, thereby making this model equiv-

alent to the above BKM. As such, the BKM is nested within the RRMC due to the

flexibility of this model, allowing the RRMC to produce similar effects to the BKM

where exemplars are similarly grouped together.

The likelihood also followed the format of Anderson (1991):

p( f |k) = ∏
i

p( ji|k) (2.4)

where the exemplar’s features are divided into dimensions i holding values ji. This

matches with the definition for the measure of congruency given by Equation 2.1,

17



here applied to the observed trait j rather than simply congruent traits:

p( ji|k) =
n j,i,k +α j

n·,i,k +α0
(2.5)

where n j,i,k is the number of exemplars in cluster k showing trait value ji on dimen-

sion i, n·,i,k is the number of members of cluster k showing any value on dimension i,

and α j reflects the prior expectation of the occurrence of value j on any dimension,

while α0 is the sum of these α values for that dimension.

Once a partition of clusters has been generated, the model is then able to

select one of the created subgroups to provide an estimate of stereotypicality within

the category, while other clusters are disregarded. This then allows for the exclusion

of data as in the SSM above, though in this case the model does not simply remove

highly-incongruent exemplars, but instead focuses on the cluster judged to be most

representative within the partition, independent of its contents. This was achieved

by restricting the clusters considered when making estimates to only the cluster

with the highest posterior probability; such a principle was based on the findings of

Murphy and Ross (1994) which suggested that participants often only considered

the most likely cluster in their estimates rather than all generated clusters. This

used the same measure given in Equation 2.1, here based only on the cluster with

the highest posterior probability as defined by Equation 2.2.

Due to the flexibility of this method, the RRMC is able to predict differ-

ent effects depending on data pattern: where exemplars are grouped together, the

RRMC suggests book-keeping, as in the BKM above, while segregating incongru-

ent exemplars can lead to subtyping if the incongruent cluster is not selected for

estimates. As such, the RRMC should conform to the results of Weber and Crocker

(1983), being more likely to disregard incongruent information where this data is

more easily isolated in a distinct subgroup.
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2.2.4 The Rational Model of Categorisation

Finally, as an extension of the previous model, we also considered a fully rational

model which uses the same non-parametric clustering methodology, but includes all

generated clusters in its predictions, matching with the RMC defined by Anderson

(1991). The RMC uses the same clustering process defined above for the RRMC to

generate a partition, but bases predictions of stereotypicality on the average rate of

congruent traits in each cluster weighted by the probability of that cluster:

p(con) = ∑
k

p(k)p(con|k) (2.6)

where p(con|k) matches with Equation 2.1, here calculated separately for each clus-

ter. This measure can also take a more specific form where other exemplar features

are already available by using the posterior probability of assignment to a cluster

given those features:

p(con| f ) = ∑
k

p(k| f )p(con|k) (2.7)

where p(k| f ) is given by Equation 2.2.

As with the RRMC above, the flexible representation produced by the RMC

leads to different predictions according to different data patterns, with the impact of

any observations on estimates being determined by its organisation in the partition.

Unlike the RRMC, however, this does not involve the exclusion of any data, mean-

ing incongruent information will impact on predictions even if assigned to a distinct

cluster. Even so, the RMC is able to produce a subtyping effect in such scenarios

due to differences in the influence of prior expectations between larger and smaller

clusters: smaller clusters provide less evidence to outweigh prior expectations, here

represented by the α parameter. As such, there is less confidence that future mem-

bers of the incongruent cluster will demonstrate similar trait values, while the larger

congruent cluster carries more certainty.

To illustrate, consider a case in which 30 exemplars, 20 congruent and 10

incongruent, are either integrated or segregated, as depicted in Figure 2.1. For
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the purposes of this illustration, α = 1 for both congruent and incongruent traits,

and c = 1, meaning no new cluster is considered. The predicted probability of

congruency in future category members is then given by Equation 2.6, being the

product of the prior probability p(k), based on the proportion of exemplars in each

cluster, and the likelihood of congruency in each cluster p(con|k), based on the rate

of congruent members in that cluster, modified by the α values:

Figure 2.1: A demonstration of subtyping effects within the RMC

This then demonstrates that the α values are more impactful in the smaller

cluster, offsetting the actual ratio of traits to a greater degree. As a result, stereotype-

congruency is estimated to be more probable in the segregated case, as the smaller,

incongruent cluster carries less confidence than the larger, congruent cluster. The

RMC is therefore able to produce a subtyping effect without actually ignoring

or even down-weighting incongruent evidence: all exemplars contribute an equal

amount of information to a prediction, but data patterns in some clusters are more

uncertain than others.

2.2.5 Comparing the Models

The four models presented above offer four different mechanisms of stereotype re-

vision: both the RMC and RRMC use a partition that flexibly adapts to observed

data patterns, though the RRMC subsequently simplifies this partition by focussing
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on only one cluster, heightening any effects this representation may have gener-

ated, while the RMC remains more moderate. Conversely, the SSM is a definitive

method of stereotype maintenance, with any effect of data pattern being due to the

use of a gating mechanism attempting to remove incongruent data from the cate-

gory. The BKM, meanwhile, focuses on trait ratios rather than data pattern, thereby

dismissing any effects that may be predicted by the other candidate models. This

then provides three models able to predict some form of a subtyping effect, as ob-

served in Weber and Crocker (1983), and so three potentially valid depictions of

stereotype change.

There is, however, a key distinction between these models which can be used

to determine their validity: in the RMC, the subtyping effect is dependent on the

smaller size of the subtype cluster, meaning that increasing the size of the subtype

by adding more incongruent members should reduce and ultimately eliminate this

effect. In contrast, the SSM is insensitive to the size of the subtype as these excluded

exemplars are no longer considered in the partition; as such, the subtyping effect can

only increase with further exposure, as congruent data is accepted and incongruent

data is ignored. Similarly, the RRMC will continue to ignore the subtype regardless

of its size, though in this case there is a threshold to this process: if the subtype

becomes sufficiently large, it may be selected as the most likely cluster, at which

point estimates will change drastically to reflect the subtype’s much lower rate of

congruency. This could essentially reverse the subtyping effect at higher volumes of

incongruent evidence, focussing on counter-stereotypical rather than stereotypical

clusters, and so bearing a closer resemblance to the conversion-effect described

above. The BKM, finally, is unable to exclude incongruent data at all, and therefore

predicts no subtyping effect at any volume of incongruent information.

The accuracy of these models can therefore be contrasted according to the

change in the subtyping effect with further exposure to stereotype-incongruent ev-

idence: the RMC predicts a reduction in subtyping at higher volumes of counter-

stereotypical data; the SSM predicts an increase in subtyping; the RRMC predicts a

stable subtyping effect until a sudden reversal; and the BKM predicts no subtyping
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effect at any point.

The following sections therefore present three empirical contrasts of these

model hypotheses by examining the time course of subtyping in three varying sce-

narios. These experiments each shared a common base structure, extending the

concentration design of Weber and Crocker (1983) across a higher total volume of

evidence and taking measures of stereotypical beliefs throughout exposure to look

for changes in effect across the task. This also provided direct behavioural data for

use in assessing the fit of the candidate models for a more complete test of these

predictions.

2.3 Experiment 1

2.3.1 Method

Participants

One-hundred-and-sixteen participants were selected from a University of Warwick

undergraduate psychology class as part of a course requirement. The sample in-

cluded 102 females and 14 males, while age ranged between 18 and 27 years, with

a mean of 18.7.

Design and Materials

The experiment followed the concentration design of Weber and Crocker (1983)

with an additional within-subjects manipulation of data volume: measures of stereo-

typical beliefs were taken at fixed intervals during the observation of a set of exem-

plar descriptions where stereotype-incongruent information was either concentrated

in a subset of exemplars or dispersed across all exemplars. Two exemplar sets were

therefore created for use in the experiment, each containing 90 total exemplars

displaying four trait dimensions: the first dimension described the occupational

label, and so was identical for all exemplars, while the remaining three dimen-

sions described personality traits with three possible values (stereotype-congruent,
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Condition
Exemplar Concentrated Dispersed

1 I I I I N I
2 I I I C I I
3 I I I I I N
4 I I I I C I
5 N N C N I I
6 N C N I I C

Table 2.2: Exemplar structure in the concentrated and dispersed conditions of
Experiment 1, where ‘C’ represents a stereotype-congruent trait, ‘I’ represents a
stereotype-incongruent trait, and ‘N’ represents a stereotype-neutral trait.

stereotype-incongruent or neutral). In both sets, two-thirds of the 270 total traits

were incongruent, one-sixth were congruent and one-sixth were neutral; incongru-

ent traits made up the majority in order to allow for a potential incongruent cluster

to be larger than any other in the category. In the concentrated exemplar set, these

incongruent traits were concentrated such that 60 exemplars each displayed incon-

gruent traits on all three personality dimensions, with the congruent and neutral

traits being distributed equally between the remaining exemplars. In the dispersed

exemplar set, all traits were distributed as equally as possible. Exemplar structure

in this task is illustrated in Table 2.2.

As in Weber and Crocker (1983), exemplars were said to come from the cate-

gory of lawyers; exemplars were therefore transformed into member summaries for

use in the experiment by assigning each value on the three personality dimensions a

unique trait label. Sixteen total labels were used: 5 congruent (Intelligent, Industri-

ous, Neat, Out-going and Well-dressed), 5 incongruent (Incompetent, Lazy, Messy,

Shy and Slovenly) and 6 neutral (Warm, Religious, Jovial, Obnoxious, Reserved

and Meditative). These labels were taken from Weber and Crocker (1983), being

based on pilot tests determining stereotypical and counter-stereotypical traits for

the target category of lawyers. In contrast to their use in Weber and Crocker (1983),

however, these traits were here presented as discrete labels rather than as descriptive

sentences; this was intended to allow for a closer correspondence between partici-

pant and model evaluations of exemplar descriptions, keeping trait values discrete
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and definitive.

Three labels of each trait type were randomly selected at the start of each run

of the experiment for use in exemplar summaries. Summaries were also assigned

randomly selected names to assist in individuation.

Procedure

Upon arriving at the lab, participants were first randomly assigned to one of the two

concentration conditions, determining which set of exemplars would be viewed; this

was balanced to provide equal numbers, meaning 58 participants were allocated

to each condition. Participants were told the experiment tested how perceptions

of a group changed with experience, involving both viewing summaries of group

members and answering questions about the traits of the group in general.

The experiment began by asking participants to estimate the likelihood of

certain traits appearing in the category of lawyers. To provide a more intuitive

measure of probability, participants gave estimates of the number of members in

a sample of 100 lawyers displaying each trait; for example, ‘Out of 100 lawyers,

how many do you think would be: intelligent?’. Estimates were requested for all

16 possible personality traits, though only 9 were used in the subsequent member

summaries. This first question block therefore provided a measure of baseline be-

liefs before any experimental exemplars were viewed. Figure 2.2a shows a sample

slide from this measurement block.

After providing estimates for all traits, participants began a presentation

block in which member summaries were shown on screen for the participants to

examine. In order to maintain attention on this information, participants were asked

to rate the pleasantness of each group member on a scale of 1-10, though this mea-

sure was not used during analysis. Figure 2.2b shows a sample slide from the pre-

sentation period, including a highly-incongruent exemplar from the concentrated

condition.

At set intervals of presentation, the test block was repeated, and participants

were again asked to estimate the likelihood of each of the 16 traits appearing in
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Figure 2.2: Sample slides from the measurement (a) and presentation (b) blocks of
Experiment 1.

the category to measure any changes in expectation. This occurred after viewing

6, 18, 36, 60 and 90 total exemplars, with the ratio of traits within each interval

being consistent with that of the complete exemplar set. At the start of each test

block, participants were informed that though some of the questions had been asked

before, they should answer based on how they felt at that point in time.

After viewing all 90 lawyer summaries and completing the final test block,

the experiment ended, and participants were debriefed as to the aims and expecta-

tions of the study.

2.3.2 Results

Data Analysis

For ease of analysis, congruent and incongruent ratings were merged into a single

score of stereotypicality to remove trait congruency as a factor; this was done by

converting incongruent ratings by calculating the difference between each rating

and the maximum score of 100 and averaging across the resulting ratings for each

participant in each test block. Separate analyses for each trait type are available in

the appendix. Neutral ratings, meanwhile, were excluded from analysis.

Figure 2.3 shows mean trait ratings from Experiment 1. The results of the

experiment were analysed using a Bayesian repeated measures ANOVA including

the factors of test block and concentration condition. A Bayesian ANOVA provides

both the standard F statistics for each factor as well as a Bayes factor value BFinc
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measuring the relative evidence for the inclusion of that factor within the model

against a null hypothesis of excluding that factor. To aid interpretation, BFinc values

of 3, 10 and 100 are respectively considered substantial, strong and decisive evi-

dence for the alternative hypothesis, while values of 1/3, 1/10 and 1/100 are respec-

tively considered substantial, strong and decisive evidence for the null hypothesis

(Rouder, Speckman, Sun, Morey, & Iverson, 2009). All Bayes factors were calcu-

lated using the R package BayesFactor with a JZS prior as defined by Rouder et al.

(2009) under the default prior scale of 0.707. As the first test block was intended

to provide a baseline, being unaffected by either exposure to the exemplar set or

concentration condition, ratings from this round were not included in the ANOVA;

this assumption is assessed in the follow-up tests below.

The Bayesian repeated measures ANOVA found a significant effect of test

block, F(1,4) = 39.4, p < .001, BFinc > 10000, with ratings becoming less stereo-

typical over the course of the experiment. Concentration was, however, found to

be non-significant, F(1,4) = 0.99, p = .322, BFinc = 0.33, suggesting no difference

in ratings between the two conditions. In addition, no significant interaction was

found between test block and concentration, F(1,4) = 1.83, p = .122, BFinc = 0.19,

indicating the effect of exposure to the exemplar set also did not differ between the

Figure 2.3: Mean trait ratings from the two concentration conditions across the six
test blocks from Experiment 1. Error bars show 95% CIs.
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two groups.

To further examine the time course of these results, a series of Bayesian

independent t-tests were performed comparing ratings between concentration con-

ditions in each test block. As with the Bayesian ANOVA above, Bayesian t-tests

provide a Bayes factor BF10 for each comparison, here measuring the relative ev-

idence for a given alternative hypothesis against the null hypothesis that the true

difference in means is zero; these values can be interpreted using the same scale

given above. Based on expectations from previous uses of the concentration de-

sign, these tests were one-tailed, with the alternative hypothesis suggesting ratings

to be higher in the concentrated condition. This did not however apply to ratings

from the first test block as this was intended to be a baseline unaffected by con-

centration; a two-tailed hypothesis was therefore used in this block to assess the

accuracy of this assumption.

Results from these tests are summarised in Table 2.3; ratings were found to

be significantly higher in the concentrated condition than the dispersed condition in

the second and third blocks, whereas later blocks showed no significant differences

between conditions. Bayes factors do however show that these differences do not

reach the level of substantial evidence in favour of the alternative hypothesis, though

this hypothesis is more likely than the null. The data then provides an indication

of a concentration effect in early blocks which fades with further exposure, though

this does not appear to be a substantial effect, as reflected in the interaction term

above.

Block t df p BF10

1 0.32 114 0.750 0.21
2 2.11 114 0.019 2.79
3 1.68 114 0.048 1.32
4 0.98 114 0.166 0.50
5 0.06 114 0.475 0.21
6 0.13 114 0.449 0.22

Table 2.3: Bayesian t-test results from Experiment 1
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2.3.3 Discussion

The results of Experiment 1 are somewhat surprising: while ratings did become less

stereotypical with exposure to the exemplar set, reflecting the high rate of counter-

stereotypical data in these group members, the apparent lack of difference between

concentration conditions suggests expectations were seemingly unaffected by the

patterns in this data, thereby failing to replicate the subtyping effect of Weber and

Crocker (1983). This also means that the collected data displays no change in sub-

typing with further exposure, a key prediction of three of the candidate models de-

scribed above: the SSM predicts an increase in subtyping with exposure, the RMC

predicts a convergence between conditions, while the RRMC predicts a reversal of

subtyping at higher volumes of incongruent evidence where the subtype becomes

the most likely cluster. The results therefore best correspond with the predictions of

the BKM, with expectations being determined according to the prevalence of these

traits in observed exemplars irrespective of the patterns shown in these category

members.

There are, however, two issues which could be raised with this conclusion:

first, follow-up tests comparing ratings in individual test blocks do show significant

differences in early but not late blocks, suggesting the presence of a subtyping ef-

fect which fades with further exposure; while Bayes factors find these differences

do not meet the criterion for compelling evidence of a subtyping effect in these

blocks, this is a notable discrepancy with the predictions of the BKM, and could

suggest more complex categorisation processes in behaviour than are offered by

this model. Second, such a finding conflicts with previous displays of subtyping in

past research, including studies using similar concentration designs to the present

experiment (Weber & Crocker, 1983; Johnston & Hewstone, 1992; Bott & Mur-

phy, 2007), suggesting that the predictions of the BKM are not accurate in all cases

of stereotype change. As such, while the BKM does appear to be more likely to

underlie the observed behaviour than the other candidate models, this requires fur-

ther evidence before this can be accepted as an accurate depiction of the processes
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involved in stereotype revision.

We therefore sought to further examine the processes underlying behaviour

in this task using direct quantitative comparisons with simulated data from the can-

didate models. Such a comparison does however raise an ambiguity in the de-

sign of the task regarding exemplar representation which may interfere with model

fitting: it is unclear how stereotype-neutral traits should be structured within the

models. In the above experiment, neutral traits appeared on the same dimensions

as stereotype-congruent and -incongruent traits following the exemplar structure of

Weber and Crocker (1983). This is notable given that the neutral traits are sup-

posedly distinct from stereotypical beliefs, and therefore should not have such a

relationship; as such, these traits could be considered to sit on separate dimensions,

providing a contrasting exemplar structure, as illustrated in Table 2.4. It is however

unclear which of these formats was used by participants in this experiment: com-

mon dimensions may better suit the presentation of these exemplars, while separate

dimensions may better suit the underlying logic of these traits. This presents a prob-

lem when defining this structure for the candidate models, as there is less assurance

of a match between participant and model assumptions.

To address this ambiguity, we therefore performed a second experiment in

which neutral traits were entirely removed from exemplars, thereby circumventing

these potential issues; this then provided a second data set where participant es-

timates are definitively unaffected by these traits regardless of their format. Such

a change to the exemplar structure does admittedly introduce potential differences

Inferred Structure
Exemplar Common Dimensions Separate Dimensions

1 I N I I - I - N -
2 C I I C I I - - -
3 I I N I I - - - N

Table 2.4: Potential inferred exemplar structures from Experiment 1, where neutral
values (N) could either be assumed to fall on the same dimensions as congruent (C)
and incongruent (I) values, or placed on separate dimensions of their own, with ‘-’
indicating a missing value.
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in the resulting partition, though continued adherence to the concentration design

should maintain focus on subtyping formats, contrasting scenarios where incongru-

ent data is and is not easily isolated. In addition, this provided a partial replication

of the first experiment, thereby offering further verification of the above suggestion

that expectations are insensitive to the presentation format of counter-stereotypical

information.

2.4 Experiment 2

Experiment 2 replicated the design and procedure of Experiment 1 with one key

alteration: exemplars did not contain any stereotype-neutral trait values on any di-

mension, eliminating the ambiguity as to how these traits were treated by partici-

pants in Experiment 1.

2.4.1 Method

Participants

Ninety-nine participants were selected from the University of Warwick online re-

cruitment system in return for £3 in payment. The sample included 61 females and

38 males, while age ranged between 18 and 41 years, with a mean of 22.8.

Design and Materials

Experiment 2 used the same basic design as Experiment 1, extending the concen-

tration design of Weber and Crocker (1983) across a larger exemplar set and taking

multiple measures of stereotypicality at set presentation intervals. The key differ-

ence, however, was in the structure of the two exemplar sets, with neither the con-

centrated or dispersed set containing any stereotype-neutral traits. This was done by

editing the previous exemplars sets to replace all neutral values with congruent val-

ues; trait ratios in the new sets were therefore two-thirds incongruent and one-third

congruent. Exemplar structure in this task is illustrated in Table 2.5. Exemplars
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Condition
Exemplar Concentrated Dispersed

1 I I I I C I
2 I I I C I I
3 I I I I I C
4 I I I I C I
5 C C C I I C
6 C C C C I I

Table 2.5: Exemplar structure from Experiment 2, replicating the concentration
design of Experiment 1 without the use of stereotype-neutral traits.

were again said to come from the category of lawyers, so using the same congruent

and incongruent trait labels, while the same set of names was used for individuation

between exemplars.

Procedure

Experiment 2 used an identical procedure to Experiment 1 with one exception: par-

ticipants were no longer asked to provide estimates of the appearance rate of the

stereotype-neutral traits given their exclusion from exemplar summaries. As such,

each of the six rating blocks asked only for ratings of the five congruent and five

incongruent traits. Participants were again randomly assigned to one of the two

concentration conditions, with 50 participants viewing the concentrated exemplar

set and 49 viewing the dispersed exemplar set.

2.4.2 Results

Data Analysis

Figure 2.4 shows mean ratings from Experiment 2. Results from the task were

analysed using the same procedure as Experiment 1, aggregating trait ratings into a

single stereotypicality score and comparing this measure using a Bayesian repeated

measures ANOVA using the factors of test block and concentration condition, again

excluding ratings from the first test block. This found a significant effect of test

block, F(1,4) = 27.5, p < .001, BFinc > 10000, with ratings again becoming less
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Figure 2.4: Mean trait ratings from the two concentration conditions across the six
test blocks from Experiment 2. Error bars show 95% CIs.

stereotypical over the course of the experiment, but no significant effect of con-

centration condition, F(1,4) = 0.11, p = .747, BFinc = 0.27, with ratings being no

different between the conditions. Similarly, no significant interaction was found

between test block and condition, F(1,4) = 1.17, p = .322, BFinc = 0.07, indicating

the effect of exposure to the exemplar set did not differ by concentration.

These results were again further examined using a series of Bayesian t-tests

to compare ratings between conditions separately in each test block. As with the

previous experiment, these tests were one-tailed based on the results of previous

uses of the concentration design, using the alternative hypothesis that ratings would

be higher in the concentrated condition; again however, this did not apply to the

first test block, which was expected to be unaffected by concentration condition.

Bayesian t-test results from the second experiment are summarised in Table

Block t df p BF10

1 0.79 97 0.434 0.28
2 0.93 97 0.823 0.12
3 0.92 97 0.821 0.12
4 0.06 97 0.476 0.22
5 0.19 97 0.426 0.25
6 0.03 97 0.513 0.21

Table 2.6: Bayesian t-test results from Experiment 2.
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2.6; no significant differences were found between concentration conditions in any

of the test blocks, with Bayes factors instead showing substantial evidence in favour

of the null hypothesis in all cases.

2.4.3 Discussion

In contrast with the slight ambiguity of the findings of Experiment 1, the results

of Experiment 2 are much clearer on the impact of the concentration manipula-

tion: while ratings again demonstrated no difference between conditions overall,

follow-up tests now support this result in all cases, offering substantial evidence

that subtyping effects were not displayed in any test block. This also means that

the data demonstrates no change in subtyping across the task, as was indicated in

the first experiment, with the conditions remaining consistently similar throughout

exposure.

Removing the neutral values from the exemplar descriptions therefore ap-

pears to have actually assisted in clarifying the results of the previous experiment,

eliminating any evidence of a subtyping effect in the task entirely. The data from

this task then provides a closer match to the predictions of the BKM, demonstrat-

ing no effect of the format in which counter-stereotypical information is presented.

This is an interesting contrast with the first experiment, which, while not conclu-

sive, did demonstrate some minor deviations from this pattern in early test blocks; it

is unclear why such a change in exemplar structure should lead to less variations be-

tween conditions if the underlying categorisation process remains consistent. This

could then indicate a degree of flexibility in the system producing these estimates,

demonstrating some reaction to the differences in exemplar pattern between the

two experiments. While such a reaction is not possible within the framework of the

BKM, this does match with the flexibility of the previously noted clustering meth-

ods, adapting the representation of the category to suit observed data patterns rather

than being restricted to a single heuristic rule. The behaviour observed in this task

could then be attributable to a clustering mechanism which is emulating the process
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of the BKM, but with some minor deviations according to variations in exemplar

structure. This could then also explain why subtyping effects have been observed

in previous studies but not in the current experiments, as differences in presentation

format or experiment structure could generate differences in participant reactions.

This is, however, a purely speculative explanation, as the collected results remain

most indicative of a book-keeping process within the present tasks.

This does however mean that Experiment 2 is also unable to provide any

substantial assistance in determining the rationality of subtyping; by trying to align

participant and model assumptions, the changes to the design instead in fact seem-

ingly further distanced the results from previous displays of subtyping, preventing

any further insights into the process. It therefore appears necessary to maintain

the structure of the concentration design as much as possible when examining this

effect, meaning any adjustments to the neutral traits must be more delicate. As

such, the third experiment in this section attempted to redefine the dimensions of

stereotypicality by changing the labels presented on these dimensions rather than

the underlying structure; this used a shift from the polarised personality dimensions

of the previous experiments to discrete behavioural and physical traits, providing

aspects that could be stereotypical, counter-stereotypical or unrelated to the stereo-

type whilst still explicitly existing on the same dimension. In addition, as this re-

quires the generation of a new set of trait labels, this also provides an opportunity

to extend the findings of the previous experiments to a novel group, allowing for

greater assurance of the generalisation of the observed effects; the following ex-

periment therefore replaced the lawyer category used in the previous tasks with the

category of police officers, thereby targeting a different set of participant beliefs.

2.5 Experiment 3

Experiment 3 again replicated the design and procedure of Experiment 1 with some

minor alterations, though in this case the changes to the task were mainly superfi-

cial, editing the labels attached to the trait values used in exemplar summaries rather
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than the values themselves. This change in labels was intended to accomplish three

main goals: first, to explicitly place neutral traits on the same dimension as stereo-

typical and counter-stereotypical traits for a more valid exemplar structure; second,

to move from trait labels sitting at the ends of a continuum to discrete, categori-

cal labels; and third, to assess the generalisation of the effects seen in the previous

experiments to an alternative category with differing stereotypical beliefs.

2.5.1 Method

Participants

One-hundred-and-twenty-two participants were selected from a University of War-

wick undergraduate psychology class as part of a course requirement. The sample

included 98 females and 24 males, while age ranged between 18 and 25 years, with

a mean of 18.7.

Design and Materials

As in Experiments 1 and 2, Experiment 3 used an extended form of the concentra-

tion design of Weber and Crocker (1983) using multiple measurement blocks. This

used identical concentrated and dispersed exemplar sets to those of Experiment 1,

but a different set of trait labels to represent these values, employing discrete be-

havioural labels in place of the more continuous personality labels used in the pre-

vious experiments. As this required the generation of a new set of trait labels for the

task, a change was also made to the target exemplar category in order to assess the

generalisation of previous effects to novel groups; exemplars were therefore said to

belong to the category of police officers, chosen due to a high likelihood of both

participant familiarity and existing assumptions.

Five new stereotype-relevant dimensions were therefore generated for the

category of police officers through discussion between the authors, with multiple

potential congruent, incongruent and neutral labels. In order to determine which

labels were most reliably stereotypical, expectancies for these traits were tested in
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Figure 2.5: Sample slides from the measurement (a) and presentation (b) blocks of
Experiment 3.

a pilot study (N=6). This used the same trait rating paradigm from a single test

block of the previous experiments, here applied to 20 newly generated trait labels.

Mean trait ratings were then used to classify the new labels as either congruent,

incongruent or neutral. Trait labels were defined as congruent if mean ratings were

above 60 and incongruent if below 40, with intervening values being considered

neutral. Where multiple traits on a given dimension shared the same classification,

the more extreme rating was selected to represent a congruent and incongruent val-

ues, while the trait with the lowest variance was selected for neutral values. This cri-

teria eliminated two dimensions for failing to provide a congruent, incongruent and

neutral trait label, leaving three dimensions for use in exemplar summaries: work

clothing (congruent: uniform, incongruent: tracksuit, neutral: suit), hobby (congru-

ent: football, incongruent: yoga, neutral: rugby) and supported charity (congruent:

UNICEF, incongruent: PETA, neutral: Greenpeace).

Exemplars again also included a randomly selected name for individuation,

taken from the same set used in the previous experiments.

Procedure

The procedure of Experiment 3 was identical to that of Experiment 1, replacing only

the labels used in exemplar summaries and trait ratings to those given above for the

category of police officers. Sample slides from this task are shown in Figure 2.5.

Assignment to concentration condition was again randomised, with 61 participants

viewing the concentrated exemplar set and 61 viewing the dispersed exemplar set.
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2.5.2 Results

Figure 2.6 shows mean trait ratings from Experiment 3. Data was analysed using the

same procedure as the previous experiments, using a Bayesian repeated measures

ANOVA including test block and concentration condition, again excluding ratings

from the first test block. As with the previous experiments, this found a significant

effect of test block, F(1,4) = 37.4, p < .001, BFinc > 10000, with ratings becoming

less stereotypical over the course of the task, but no significant difference in ratings

between concentration conditions, F(1,4) = 0.40, p = .528, BFinc = 0.23, and no

significant interaction between these factors, F(1,4) = 0.27, p = .901, BFinc = 0.01.

This was again followed by a series of Bayesian t-tests between conditions in

each test block to further examine these results. These tests were again one-tailed,

predicting ratings to be higher in the concentrated condition, with the exception of

the first test block. Bayesian t-test results for Experiment 3 are summarised in Table

2.7; as with Experiment 2, no significant differences were found between conditions

in any of the test blocks, with Bayes factors again providing substantial evidence

for the null hypothesis in all cases.

Figure 2.6: Mean trait ratings from the two concentration conditions across the six
test blocks from Experiment 3. Error bars show 95% CIs.
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Block t df p BF10

1 0.03 120 0.974 0.19
2 0.33 120 0.630 0.20
3 0.57 120 0.716 0.22
4 0.33 120 0.628 0.20
5 0.70 120 0.757 0.24
6 0.83 120 0.795 0.26

Table 2.7: Bayesian t-test results from Experiment 3.

2.5.3 Discussion

The results of Experiment 3 correspond with those of Experiment 2: ratings did

not appear to differ between concentration conditions at any point during the task,

again indicating no subtyping effects in any test block and so no change in subtyping

with further exposure. This again places the data most in line with the predictions

of the BKM, with responses seemingly being unaffected by the organisation of new

information. The data therefore again provides no further insight into the rationality

of the subtyping effect discussed in the introduction to this study, instead suggesting

a stereotype revision process in which subtyping is not possible.

The collected empirical data therefore shows a reasonably consistent pattern

of evidence across the three tasks: all three experiments fail to reliably demonstrate

the concentration effect of Weber and Crocker (1983), instead showing no differ-

ence in expectations according to patterns in exemplar data. This then supports a

book-keeping model of stereotype revision in which beliefs are updated to reflect

each new piece of evidence as it is encountered. This does however present a con-

flict with past demonstrations of subtyping effects in previous studies of stereotype

change (Weber & Crocker, 1983; Johnston & Hewstone, 1992; Bott & Murphy,

2007), potentially leading to some concerns as to the generality of these results:

book-keeping does not appear to provide an adequate account of the range of be-

haviours observed beyond the current study. This is in addition to the minor devi-

ations from this pattern of evidence shown in Experiment 1 which could call these

results into question. As such, in order to further explore these results, the collected

data was next contrasted with simulated responses from the four candidate models
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to determine which offers the most accurate depiction of behaviour. This provides a

more direct quantitative assessment of the accuracy of these models, supplementing

the above theoretical contrast.

2.6 Model Comparison

To generate direct, quantitative model predictions, the four candidate models were

run through the same exemplar data presented to participants in each of the three

experiments, taking equivalent measures of the probability of stereotypical traits

appearing in the category at the same intervals, and comparing these predictions

with the collected data. This used a grid point search function across model param-

eters to determine the best fit of each model to participant data, calculating the fit

at certain pre-set combinations of parameter values to suggest the closest match to

behaviour. A grid search was used due to potential issues with traditional gradient

descent optimisation functions in clustering methods, which can have difficulty in

navigating the complex likelihood function generated by such models. Grid points

therefore varied the α parameter shared by all four models, as well as the coupling

parameter c used by the RMC and RRMC, and the incongruency criterion param-

eter θ used by the SSM. Considered values for these parameters were: for α, 0.01,

0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20, and 30; for c, 0.01 to 0.99 in steps of 0.01; and for

θ, 0.1 to 1 in steps of 0.1.

In addition to these parameters, as the category in question is a familiar

social group with which participants are likely to have previous experience, all four

models also included a set of exemplars added to the partition before exposure to

the experimental exemplar sets in order to simulate such prior knowledge. These

prior exemplars were used both to provide a more valid depiction of the origins

of the group stereotype according to the ratio of congruency in this set, as well as

to allow for potential interactions between prior knowledge and new information,

as have been observed in other categorical modelling studies (e.g. Heit, Briggs, &

Bott, 2004).
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Each model therefore began by generating this set, with the number of prior

exemplars np and the rate of congruency in the set pc being included as additional

parameters: this was done by randomly distributing congruent and incongruent val-

ues across the prior exemplar set, with the number of these values being defined

by the number of prior exemplars, the number of stereotype-relevant dimensions

and the prior rate of congruency. Exemplars in this set also included an additional

dimension noting their membership of the target category. Once generated, these

exemplars were then assigned using the methodology of the given model, emulat-

ing the partitioning of previously encountered category members. These parameters

were therefore also included in the grid point search, with the considered values be-

ing: for np, 0 to 100 in steps of 5; and for pc, 0.1 to 1 in steps of 0.1. As such, the

BKM was defined as having three free parameters, while the remaining models had

four.

The four models were run through the same exemplar sets given to partici-

pants at each combination of parameter values to generate estimates of the proba-

bility of both congruency and incongruency in new category members at each of the

six exemplar intervals. For greater reliability in model estimates, the models were

run 20 times at each grid point, and predicted probabilities were averaged across

these trials. These mean values were then used to calculate model likelihoods as-

suming identical parameter values for all participants in order to allow the model to

fit the two concentration conditions simultaneously.

Likelihoods were calculated at each grid point using the deviation between

mean trait ratings and mean model predictions for each trait type in each test block,

allowing all responses to be placed on a single distribution in order to fit all blocks

and conditions simultaneously; this produced a set of 24 deviation values, repre-

senting mean ratings from the two trait types in the six test blocks from the two

concentration conditions. These deviation figures were then converted into proba-

bilities according to a normal distribution across deviation with mean 0 and variance

fit to maximise the final likelihood product, providing a single likelihood value for

each model at each grid point. Likelihoods were also aggregated across Experi-
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ments 1 and 2 assuming a common set of parameters for those tasks given their use

of the same target category and feature set. Experiment 3 was however fit sepa-

rately as this used a distinct category, leading to a separate set of likelihood scores

for this task. This then provided two maximum likelihood values for each model:

one across Experiments 1 and 2, and a separate value for Experiment 3.

Maximum likelihoods from each model were then used to calculate Bayesian

information criterion (BIC, Schwarz, 1978) values for comparison to account for

differences in complexity between models; BIC figures provide an adjusted mea-

sure of model fit, with lower values indicating a better match to data. BIC values

were then summed across experiments to provide a general measure of model fit

across all collected data. These values were also used to calculate BIC weights to

provide an estimate of the posterior probability of each model (Wagenmakers &

Farrell, 2004).

This procedure also allowed for an investigation of the previously noted con-

cerns regarding the format of stereotype-neutral traits in Experiment 1: to determine

the assumed format of these traits, the models were also given alternate exemplar

sets for partitioning in which neutral traits were moved to separate dimensions, al-

lowing both formats to be compared with behaviour in this task. BIC values were

found to be lower for the separate neutral format, indicating a better match to partic-

ipant expectations, as shown in Table 2.8; as such, the following aggregated results

are based on the use of this structure in that task. Such comparisons were not per-

formed for Experiments 2 and 3 however given that neutral traits were removed

from Experiment 2 and edited to definitively fall on stereotype-relevant dimensions

in Experiment 3, removing this issue from these tasks.

Aggregate BIC scores across the three experiments are shown in Table 2.9.

Format RMC RRMC BKM SSM
Common Dimensions 140.57 142.03 142.47 169.05
Separate Dimensions 124.33 123.61 125.83 166.09

Table 2.8: BIC values for four candidate models across the two considered formats
for neutral traits in Experiment 1.
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Model Parameters MLL BIC w(BIC)
RMC 4 -176.04 380.27 0.878

RRMC 4 -178.08 384.35 0.115
BKM 3 -184.32 389.79 0.008
SSM 4 -236.43 501.06 0

Table 2.9: Aggregated modelling results from the three experiments, where MLL
is the summed maximum log likelihood for that model across experiments, BIC
values are summed across experiments, and w(BIC) is the weight of the BIC score
when comparing the four models.

The RMC was found to have the best fit to the collected data, followed in order

by the RRMC, BKM and SSM. BIC weights also show this to be a substantial

advantage, as shown by the relative scale of these figures. We next discuss the

predictions from these best fits for each experiment to assess the qualitative fit of

the models.

2.6.1 Experiment 1

Predictions from the best fits of Experiment 1 are shown in Figure 2.7a. Best fitting

parameters for this task were: for the RMC, α = 30, c = 0.22, np = 100, pc = 0.9;

for the RRMC, α = 30, c = 0.21, np = 90, pc = 0.9; for the BKM, α = 30, np = 90,

pc = 0.9; and for the SSM, α = 30, np = 100, pc = 0.8, θ = 1.

When the predictions for this best fit for the RMC are examined, differences

in probability estimates between concentration conditions for both measures are

reasonably small, and appear to remain reasonably consistent across test blocks,

contrasting with the apparent convergence between conditions observed in this task.

This deviation is, however, put in context by the best fits of the competing models,

which show greater differences between predictions and behaviour: the RRMC and

SSM both show a greater divergence in later blocks, while the BKM by design

predicts no difference between conditions, as well as a greater reduction in the

strength of stereotypical beliefs than that seen in either the alternative models or

the participant data. This reinforces that this comparison reveals only the best fit

of the four candidate models rather than an absolute description of behaviour in the
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Figure 2.7: Trait probability estimates from the best fits of the four candidate mod-
els to Experiment 1 (a), Experiment 2 (b) and Experiment 3 (c), including empirical
data adjusted to fall on the same scale for comparison.

task; more complex models may therefore be needed to reflect the subtle differences

observed in the participant data.

2.6.2 Experiment 2

Predictions from the best fits of Experiment 2 are shown in Figure 2.7b. As noted

above, best fitting parameters for this task were identical to those of Experiment 1.

Again examining these predictions more closely, both the RMC and RRMC
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capture the observed data patterns reasonably well, mirroring the minor differences

between concentration conditions, though these effects appear less substantial in

the RRMC. The BKM, meanwhile, again naturally predicts no difference between

conditions, and a greater fall in the stereotypicality of both measures than was ob-

served in the experiment. Finally, the SSM again deviates substantially from be-

haviour, showing an increase in subtyping over the task, with measures from the

two conditions moving in opposing directions.

2.6.3 Experiment 3

Predictions from the best fits of Experiment 2 are shown in Figure 2.7c. Best fitting

parameters for this task were: for the RMC, α = 30, c = 0.24, np = 80, pc = 0.8; for

the RRMC, α = 15, c = 0.18, np = 100, pc = 0.7; for the BKM, α = 20, np = 100,

pc = 0.7; and for the SSM, α = 30, np = 100, pc = 0.6, θ = 0.7.

The predictions of these best fits are fairly similar to those described above:

the RMC shows little difference between concentration conditions, whereas the

RRMC and SSM predict a larger difference which appears to grow over the course

of the task, while the BKM again predicts no difference between conditions at any

point and a greater reduction in stereotypicality than was observed in participant

data.

2.7 General Discussion

In this chapter, we attempted to assess the underlying mechanisms of stereotype re-

vision, examining responses to counter-stereotypical information both empirically

and computationally in three different scenarios. This revealed a reasonably sur-

prising set of results: across the three tasks, the present data offers no replication

of previously observed subtyping effects, instead indicating a book-keeping revi-

sion process in which subtyping is in fact impossible. Such findings present a no-

table conflict with previous studies of stereotype revision (Weber & Crocker, 1983;

Johnston & Hewstone, 1992; Bott & Murphy, 2007), making the determination of
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the systems generating these effects difficult, with behaviour seemingly changing

according to differences in experimental design. Model comparisons do however

help to reconcile this conflict, providing a quantitative indication that participant

responses were more likely to be generated by a flexible categorisation mechanism

which adapts the representation to suit patterns in observed data rather than a pure

book-keeping process. The present data may not then in fact provide evidence

against past demonstrations of subtyping, but could instead present a different po-

tential outcome of a common underlying system which may produce subtyping

effects under different circumstances.

These results therefore provide two main conclusions regarding the pro-

cesses underlying stereotype revision, each reflecting a distinction which can be

made in the definition of these systems: parametric versus non-parametric pro-

cesses, and rational versus irrational processes.

2.7.1 Parametric vs. Non-parametric Processes

The four models presented in this study can be divided into two classes: the more

basic parametric systems offered by the BKM and SSM which provide heuristic

rules for stereotype revision, and the more advanced non-parametric clustering sys-

tems of the RMC and RRMC which use a more flexible representation. Within this

distinction, the data collected here provides a case for non-parametric over para-

metric systems, demonstrated in the fits of the candidate models to behaviour: the

RMC and RRMC substantially outperform the BKM and SSM, suggesting a strong

sensitivity to the specific scenario in which category information is received. Such

a finding corresponds with the adaptable nature of the non-parametric systems in

which the generated representation reflects both new data patterns as well as po-

tential interactions with pre-existing knowledge; this is in contrast with the less

flexible parametric rules, which are unable to account for such variation in out-

comes. As such, our findings indicate that the mechanisms underlying stereotype

revision involve the incorporation of new information into a highly responsive men-
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tal representation, with subsequent judgements being coloured by the combination

of both old and new data patterns. Conversely, these findings argue against more

heuristic depictions of revision which rely on static rules for the use of new data, as

such systems are simply too restrictive to accurately capture the flexibility of human

behaviour.

This also depicts the maintenance of stereotypical beliefs associated with

subtyping as a natural aspect of such a categorisation process rather than a distinct

strategy of stereotype preservation: subtyping occurs where a particular data pat-

tern inadvertently diminishes the impact of counter-stereotypical data via isolation

within a distinct subgroup, while other data patterns may generate different results.

Such a concept is supported by theories of ‘subgrouping’ (Richards & Hewstone,

2001), a counterpoint to subtyping where the category is divided into lower-order

groups without a separation between stereotypical and counter-stereotypical infor-

mation. This has previously been seen to lead to greater levels of stereotype change

(e.g. Maurer, Park, & Rothbart, 1995), contrasting with the maintenance of beliefs

associated with subtyping: subgrouping is suggested to allow for a more even in-

tegration of stereotype-incongruent information rather than the isolation and exclu-

sion associated with subtyping. Subgrouping may therefore represent an alternate

outcome of the same categorisation process, creating a different partition which

aids stereotype change; this then presents subtyping and subgrouping not as oppos-

ing strategies, but two potential outcomes of a common system. It should be noted,

however, that the tasks used in this study provide no direct measure of the partitions

used by participants, simply inferring this structure from observed predictions. It

may then be advisable to include measures of partitioning in future work to de-

termine whether such inferences correspond with reported groupings, for example

using sorting tasks to provide a comparison with model predictions.

It is also notable that such a system presents subtyping as a reasonably frag-

ile phenomenon, being displayed in only a small subset of scenarios which facilitate

such isolation: indeed, the present study finds subtyping effects are difficult to ef-

fectively replicate, with none of the three experiments above finding any effect of
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data pattern based on empirical data alone. This could then indicate that stereotype

maintenance associated with subtyping is less of a cause for concern as it may ini-

tially seem, appearing only under fairly restrictive circumstances. This will however

need to be assessed in more diverse settings to determine the precise scenarios in

which subtyping occurs, including different target categories and exemplar formats

beyond those used here.

This distinction also offers an interesting comparison of the three theories

of stereotype change noted in the introduction to this section: book-keeping, con-

version and subtyping. While the collected empirical data does appear to generally

support book-keeping, model fitting shows that this theory is ultimately insuffi-

cient to capture the variations in behaviour displayed by participants in these tasks,

being unable to reflect the apparent sensitivity to patterns in observed data. Simul-

taneously, these behaviours also do not strictly adhere to either pure subtyping or

conversion, showing gradual changes in beliefs to reflect observed information; be-

haviour in these tasks then appears to fall between the three theories, demonstrating

greater flexibility than is offered by any one of these models alone. This further

demonstrates that stereotype revision does not appear to rely on a single universal

strategy, but reacts to data structures as suggested by the considered non-parametric

models; indeed, the two poorly performing parametric models in the above com-

parison were both designed to specifically reflect one of these three theories, with

the BKM emulating book-keeping and the SSM emulating subtyping. This then

implies that these three theories are not independent processes of stereotype revi-

sion in their own right, but three potential behaviours that could be generated by the

true system; this would again fit with the use of clustering mechanisms where the

representation is flexible and adapts to incoming data patterns, thereby potentially

offering all three of these outcomes, as well as more intermediate behaviours.
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2.7.2 Rational vs. Irrational Processes

The above distinction therefore indicates that stereotype revision is more likely to

rely on the non-parametric processes offered by the RMC and RRMC than the para-

metric systems of the BKM and SSM. This second distinction however creates a

division between these two non-parametric models according to their rationality,

as captured by their use of exemplar data: the RMC includes data from all exem-

plars within the partition in its predictions, making it a rational system, whereas the

RRMC focuses on only one cluster in its predictions while others are excluded, and

as such could be labelled an irrational system. The contrast between these models

then reflects the question that formed the basis of this study of whether learners do

in fact ignore relevant category data when making judgements, as described in the

initial depictions of subtyping; use of the RRMC would allow learners to display

such an irrational behaviour without falling back on the more extreme and inflexible

form of exclusion offered by the SSM.

The collected data is less conclusive across this distinction: without any dis-

play of subtyping in any the three experiments, the present empirical results are

unable to provide any evidence as to the rationality of this effect, seemingly sup-

porting neither the RMC nor the RRMC. Computational results do help to clarify

these findings however, showing the RMC to have a better fit across all collected

data; this does then indicate that participants made use of a rational process to pro-

vide their estimates in these tasks, using all available category data when making

associated predictions.

The present findings therefore suggest that stereotypes are in fact based on

a rational categorisation of social group data which both identifies latent patterns

within the category and uses the sum of these patterns to make new predictions, as

revealed through the response of these beliefs to new data. This then also depicts

subtyping itself as a more rational effect than it may initially seem: incongruent in-

formation is not disregarded in these scenarios due to a biased strategy of stereotype

preservation, but may be mitigated based on broader data structures. The remain-
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ing ambiguity in the present results does however suggest that further comparisons

are required to provide more confidence in this conclusion; this particularly applies

to empirical contrasts which are better able to determine whether subtyped data

is excluded from the category, an element which remains uncertain in the current

experimental designs.

2.7.3 Additional Factors

To close this section, we also note some additional factors regarding stereotype

use which may need to be considered in future investigations, beginning with the

level of interaction with counter-stereotypical data. It is notable that the present

study focused on responses to fairly minimal interactions with counter-stereotypical

information: the effects observed in all three experiments result solely from the

observation of member summaries rather than any significant interaction with ac-

tual counter-stereotypical group members. While this does seem to be effective in

changing beliefs within these tasks, it remains unclear whether these changes will

persist over a longer time period, particularly outside of the laboratory environ-

ment: past research has often suggested that meaningful change requires intensive,

long-term interaction with out-group members to generate a genuine reduction in

stereotypical beliefs, best exemplified by the Contact Hypothesis (Allport, 1954).

Further testing may then be required to assess whether such low-level interactions

truly offer an effective path to stereotype revision, for example using more long-

term measurements to examine the retention of any generated change. Alterna-

tively, similar tests could make use of more substantial interactions to investigate

whether the current observations are greater for such exposure; while the represen-

tation of level of interaction within the current model remains uncertain, one simple

method would be to treat more substantial interactions as multiple observations in

the partition, essentially viewing that individual as providing more data than a sin-

gle exemplar. This suggestion should, however, be pilot tested to determine the

validity of this representation before being incorporated into the model.
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It is also notable that this study infers the representation underlying stereo-

typing through the response to new information rather than the initial acquisition of

these beliefs. The present research aimed to examine existing theories of stereotype

change using corresponding categorisation models, thereby providing a window

into the operation of stereotype revision. This does however presume that partici-

pants not only hold these beliefs prior to any experimental manipulation, but also

base these beliefs on actual prior experience with the target category. This may be

a problem if stereotypes are not in fact built on such experience, for example being

taught by a third party; this could alter not only the base representation, but also

the malleability of any associated beliefs. It may therefore be necessary to more

closely examine the origin of stereotypes alongside their response to new informa-

tion in order to provide a more complete picture of stereotype use.

2.7.4 Conclusion

The present study provides a starting point for a rational approach to stereotype

use, providing both theoretical, empirical and computational evidence that a ra-

tional model of stereotype change, while not universally accurate, does provide

a reasonable account of behaviour both in these experiments as well as previous

studies into stereotype maintenance. We therefore hope that this study can act as a

foundation for continued work in this field, allowing subsequent research to further

refine the presented models to provide a more accurate depiction of behaviour. This

will serve to provide greater clarity regarding the operations underlying stereotype

maintenance, and so aid in finding more potential methods for encouraging stereo-

type change.
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Chapter 3

The Role of Numerical Format in

Estimation

When building a representation of the environment, the form of this representation

is not just determined by external data patterns, but also the assumed structure of the

environment prior to any actual observations. The nature of these assumptions can

therefore have drastic impacts on behaviour, affecting not only the representation

that is ultimately formed, but also the actions that are taken based on this represen-

tation. In this chapter, we examine a specific case of the use of such assumptions

within numerical estimation, contrasting different prior numerical structures both

through experimental manipulations and model comparisons. This uses differing

reactions of these structures to uncertainty as a method of distinction, providing a

window both into the underlying form of the representation as well as the potential

behavioural outcomes of the use of such a structure.

3.1 Numerical Estimation

In many everyday tasks, we are required to make quick estimates of discrete stimuli

based on noisy perceptual data: the number of people in a crowded room, or cars in

a lane of traffic, for example. These decisions are not solely reliant on perceptual

information, but also use past experiences with such stimuli to guide responses: if
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estimating the number of people in a room, the actor may consider similar occa-

sions where that number was later provided and use this information to inform their

decision. Such guidance in fact becomes increasingly valuable at higher values as

people’s ability to discriminate between figures decreases (Krueger, 1984; Izard &

Dehaene, 2008). Accurate estimates are therefore reliant on the learning of the dis-

tribution of such figures, building representations that reflect the prevalence of these

values in the real world.

The influence of such previous experience is in turn however dependent on

its representation, reflecting the different forms in which numerical information

could be stored. Existing research has offered two potential forms for such in-

formation in two contrasting number systems, each suggesting distinct impacts on

new decisions: the approximate number system and the symbolic number system.

The approximate number system refers to the innate understanding of numeros-

ity displayed by both humans and animals in which numbers are conceptualised

in a continuous analogue form (Dehaene, 2011). Storing prior experiences in this

format should therefore lead future estimates to focus on values similar to those

previously seen; if the previous room contained 50 people, then nearby figures such

as 49 or 51 would also become more likely (e.g. Gershman & Niv, 2013). In con-

trast, the symbolic number system is the discrete verbal format learned in later life

which allows for more complex mathematical operations (Izard & Dehaene, 2008);

in this case, only the experienced value would increase in expectancy, making that

response alone more likely in subsequent estimates. Such a representation would

allow the learner to acquire reasonably complex distributions through experience,

tracking the individual appearance rate of each potential value (e.g. Sanborn &

Beierholm, 2016). This would, however, also be possible using a sufficiently com-

plex continuous format: narrow similarity functions could emulate discrete formats,

making it difficult to distinguish between these forms.

This then raises the question of which of these systems underlies discrete

estimates: symbolic representations could be used to suit the discrete nature of

responses and feedback, while continuous forms may be used in spite of these el-
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ements to suit the more analogue perceptual data and translated into discrete fig-

ures as required. Despite the impact of this distinction on both the representation

formed and the resulting behaviour, this has received little attention in previous re-

search. What is more, what work has been done has found conflicting results, with

studies finding evidence for both continuous (Gershman & Niv, 2013) and discrete

(Sanborn & Beierholm, 2016) underlying systems.

The current study therefore attempts to separate these forms using two com-

plementary methodologies: first, an empirical contrast taking advantage of a differ-

ence in the definition of simplicity within continuous and discrete representations,

and second, a quantitative contrast between computational models of behaviour in

this task. In the following sections, we introduce potential models of estimation

following such discrete and continuous formats, examine the principles of these

models to derive methods of distinction, and use both empirical and computational

comparisons to provide insight into the representations used in numeric estimates.

3.1.1 Using Prior Experience

We begin by examining the process by which past estimates could be used to in-

form new judgements. While this has not been studied extensively in estimation,

one existing theory which touches on this process is calibration; in this theory, past

trials are suggested to be used as anchoring points to map a discrete response scale

onto continuous numerical representations to make subsequent estimates more ac-

curate (Krueger, 1984; Izard & Dehaene, 2008). In this case, numerical data is

automatically encoded in a continuous format and translated into discrete figures as

required; for example, Izard and Dehaene (2008) suggest an affine transformation

between continuous and discrete formats, using parameters to adjust both the shape

and position of the discrete response scale. Calibration therefore increases the ac-

curacy of this translation by tuning these parameters to suit the observed data, better

mapping these two scales against one another to improve all future estimates. Such

a transformation is, however, limited in the probability distributions it is able to rep-
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resent; while this may be sufficient for reasonably simple structures, more complex

distributions such as those with multiple modes cannot be accurately represented

by this process. This stands in contrast to empirical data showing that learners can

in fact acquire such multimodal distributions (Sanborn & Beierholm, 2016; Gersh-

man & Niv, 2013). What is more, these studies also provide evidence against the

use of a more complex translation function (Sanborn & Beierholm, 2016), thereby

suggesting the learning of these forms is reliant on other mechanisms than cali-

bration. More flexible systems are therefore required to accurately represent these

more complex forms.

An alternative framework for the use of past experience is provided by Bayesian

Decision Theory (BDT), in which prior assumptions regarding the distribution of

the target stimuli are combined with direct observational data to form a posterior

distribution from which a response can be selected; feedback from this response

can then be used to update the representation for use in subsequent estimates. Pre-

vious observations are therefore used to inform new responses by constructing a

mental representation of the true distribution, noting the prevalence of particular

values. This provides BDT with an advantage over calibration as it can capture

more complex learning structures such as the multimodal distributions noted above,

with estimates reflecting both current perceptual data as well as the history of past

observations. BDT may then provide a clear and established method well suited

to the modelling of numerical estimation, better capturing the underlying process.

In fact, BDT has been previously used as a description of the estimation process

within continuous motor responses (Kording & Wolpert, 2004; Acerbi, Vijayaku-

mar, & Wolpert, 2014; Chalk, Seitz, & Series, 2010), further supporting its use in

the present study.

The use of BDT also facilitates the current comparison between discrete and

continuous representations: while the general principles of BDT may remain fixed,

the definitions of individual elements can vary, allowing for contrasts between al-

ternate Bayesian models with different representational formats. Here, this applies

primarily to the structure of the prior distribution, as this provides the assumed
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model of the environment, and so the representation of numerical information. The

current study therefore focuses on contrasts between differing definitions of the

prior, while other model elements remain identical. What is more, BDT also allows

for such a distinction without necessarily assuming that such mechanisms are in fact

used by real learners, instead only providing useful descriptions of actual behaviour

(Tauber, Navarro, Perfors, & Steyvers, 2017). As such, the models presented here

are considered descriptive rather than normative, placing the focus on the use of

discrete and continuous numerical formats rather than the optimality of behaviour.

Continuous prior formats are provided by a number of systems, though the

present study focuses on mixtures of Gaussian components due to the flexibility of

such a representation, allowing for emulation of other continuous distributions. In

a Gaussian mixture, observations are grouped together based on similarity to form

a set of subgroups, each described by a Gaussian distribution, which can then be

combined into a single prior (Rosseel, 2002; Vanpaemel & Storms, 2008; Ander-

son, 1991); these have been previously used within Bayesian models of continuous

estimation (e.g. Acerbi et al., 2014), providing some basis for their use as a con-

tinuous candidate in the present contrast. Such a prior holds the advantage of flexi-

bility, being able to adjust the number of components used in the representation to

best suit observed data patterns rather than using a predefined component structure.

This flexibility has led to the application of Gaussian mixture priors to discrete esti-

mates in spite of their continuous format; one demonstration of this is provided by

Gershman and Niv (2013), in which a Gaussian mixture prior was used to model

the merging of distinct categories of discrete stimuli where these categories shared

similar statistical features. In this case, the Gaussian mixture is suggested to allow

for simplifications of the final representation due to a prior preference for fewer

components in the distribution; this could then indicate that discrete estimates may

benefit from the use of a Gaussian mixture prior in terms of cognitive economy or

greater generalisability. Both continuous and discrete estimates could then make

use of a common underlying estimation system which is able to adapt to the needs

of the task to provide the most valuable representation, considering both the accu-
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racy and simplicity of the resulting form.

Discrete prior formats, conversely, are provided by distributions such as the

categorical prior, which can be used to record the appearance rate of each observed

value, relying more on memory for past observations than an inferred statistical dis-

tribution. Such a prior may be better suited to numeric estimates given its greater

correspondence to the discrete nature of stimuli and responses; learners could then

use this prior under the assumption that this structure is more appropriate to the na-

ture of the task. This would, however, potentially lead to differences in behaviour

according to the differing world models implicitly assumed by these prior struc-

tures. To illustrate, consider the above application of simplicity according to com-

ponent count from Gershman and Niv (2013) to both the Gaussian mixture and

categorical priors: in the case of the Gaussian mixture prior, a preference for fewer

components is assumed to lead to the merging of subgroups where possible, leading

to a smaller number of broader, more varied components. Categorical components,

conversely, are discrete tallies of identical value observations and cannot be broad-

ened in this way, meaning a reduction in the number of components would instead

reduce the number of values considered in the distribution. The same fundamental

principle therefore leads to widely different outcomes for these two structures, with

the Gaussian mixture prior considering more values in its final posterior and the cat-

egorical prior considering fewer, demonstrating the impact of this representational

format on actual estimations. To return to the previous example of counting people

in a room, simplicity in the discrete case means restricting responses to a limited

set of answers (e.g. low/medium/high or nearest 10), while in the continuous case,

responses could focus on a single mean value, but with what could be substantial

departures.

It is therefore necessary to examine the prior structures used in numerical

estimation to determine whether this process relies on specialised discrete formats

suiting the discrete nature of this task or more general continuous forms that can be

shared with other stimuli. This has in fact been previously investigated in a study by

Sanborn and Beierholm (2016) in which participants performed a dot numeration
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task using an underlying bimodal distribution (illustrated in Figure 3.1a). In this

task, participants were asked to estimate the number of dots appearing on-screen,

with responses being followed by direct feedback noting the true dot count, making

both participant responses and task feedback discrete and definitive, so providing

clear evidence of a discrete task structure. Behaviour in the experiment was then

compared with Bayesian models of estimation using differing definitions of indi-

vidual model elements, including a contrast between continuous and discrete prior

formats using a categorical prior and a kernel density estimate. Results from this

study found behaviour was better described by the categorical prior than the kernel

density estimate, suggesting that participants were using a discrete prior structure

in line with the discrete nature of the task.

The findings of Sanborn and Beierholm (2016) therefore indicate that dis-

crete estimation makes use of similarly discrete elements in order to assist in con-

structing more precise mental representations. There is one caveat to this finding,

however: while model comparisons did suggest participant behaviour was most

likely to be based on the use of discrete structures, this result could also be pro-

duced by a mixture of continuous components under certain circumstances. This

is due to the previously noted flexibility of the Gaussian mixture prior: by group-

ing similar values together, the Gaussian mixture is able to adjust the variance of

its components to suit the observed data, allowing for both broad, highly varied

clusters and narrow, focussed clusters. Such narrow clusters could then essentially

emulate the components of a categorical prior in which all members are identical,

making the component variance zero. This concern is in fact raised in the third ex-

periment of Sanborn and Beierholm (2016), noting that such a complex Gaussian

mixture could capture the true categorical structures: a mixture prior using narrow

components at the modes of the distribution and a broader component across the

midrange offers a reasonable approximation of the true bimodal form (illustrated

in Figure 3.1b). While that experiment did attempt to control for this possibility

by using a quadrimodal distribution where such emulation is less precise, this only

excluded a narrow set of mixture forms, while more complex structures are still
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Figure 3.1: Comparison of the categorical (a) and Gaussian mixture (b) priors ap-
plied to the bimodal distribution of Sanborn and Beierholm (2016). Here, the cate-
gorical matches the true distribution, and the Gaussian mixture provides an approx-
imation, with the black lines reflecting the individual distributions of each cluster.
The lower figures demonstrate the proposed impact of uncertainty on the represen-
tation, leading to fewer potential response values in the categorical (c), but greater
bleed-over in the Gaussian mixture (d).

possible. As such, the results of Sanborn and Beierholm (2016) can be explained in

two different ways, with different implications: participants may have been using a

more precise discrete prior in accordance with the discrete nature of the task, or a

more flexible Gaussian mixture prior in line with that used for continuous estimates.

It is therefore necessary to distinguish between these explanations in order

to determine whether discrete estimations do indeed rely on discrete structures, or
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whether this was simply emulated by an otherwise continuous representation. As

such, the present study aimed to perform a comparison between Bayesian estima-

tion models using either a categorical or Gaussian mixture prior in a comparable

estimation task; this builds on the results of Sanborn and Beierholm (2016) by ex-

amining a full continuous mixture model rather than one possible form of this prior

for a more complete contrast of these formats.

While such a comparison provides a quantitative indication as to the under-

lying processes of numerical estimation, we also sought to supplement this contrast

with a more qualitative investigation; this was intended to provide both a second

method of distinction between prior formats as well as a demonstration of their

opposing implications for actual behaviour. This distinction therefore drew on the

previously noted differences between prior formats when applying principles of

simplicity: while both priors are likely to prefer a lower number of components to

simplify the final distribution, this takes two different forms according to the struc-

ture of these components, with the Gaussian mixture prior preferring to group more

observations together to produce broader components, and the categorical prior lim-

iting the number of values considered in the distribution to only a few key figures.

It should then be possible to reveal which of these priors is used in this task by

encouraging a reduction in components and observing which of these two reactions

is displayed: the Gaussian mixture prior should move towards broader components,

thereby covering more potential values and so allowing for more varied responses,

while the categorical prior should focus on fewer potential responses, most likely

limiting a bimodal such as that used in Sanborn and Beierholm (2016) to only the

modes of the distribution, essentially turning the task into a high/low classification

problem (illustrated in Figure 3.1c and d). This could be achieved by introducing

uncertainty to the existing design of Sanborn and Beierholm (2016); if the true value

of an observation is uncertain, both structures are likely to assign that observation

to an existing component rather than assuming the presence of a new component.

It should then be possible to identify whether learners are using a truly dis-

crete categorical prior or a continuous Gaussian mixture prior in this case by in-
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troducing uncertainty to the dot numeration task of Sanborn and Beierholm (2016)

and observing its effect on behaviour. The best method to achieve this is to cause

doubt in the feedback given during the task whilst still providing the true value of

the observation: if participants were made to distrust the feedback, for example

by stating that this information was accurate in only a subset of trials, participants

would no longer be able to rely on the definitive figures offered in the original

design, likely leading to more confusion between actual values based on percep-

tual data. This allows for the addition of uncertainty to the task without changing

any of the specific elements of the stimuli or feedback, instead changing the wider

context of this information. What is more, such a manipulation represents a fairly

valid scenario; real-world feedback is not always as reliable as that used in labora-

tory studies, potentially being noisy or vague, or originating from an untrustworthy

source. In addition, this design also provides a simple method of manipulating the

degree of uncertainty according to the apparent accuracy rate of feedback, allowing

for an easy comparison between high and low levels of uncertainty.

The following experiment therefore sought to investigate the processes un-

derlying numerical estimation by adding such a feedback uncertainty manipulation

to a numerical judgement task in which participants were trained on a complex

distribution through experience. This then provides a contrast of the competing

hypotheses of the two potential formats introduced above: if participants are us-

ing a categorical prior, responses should be more polarised where feedback is less

reliable, focussing mainly on the modes of the distribution. In contrast, if partici-

pants are using a Gaussian mixture prior, responses should be more spread out in

this case, leading to more midrange and out-of-range responses. This also provided

behavioural data for comparison with computational models of the task following

these formats for a quantitative suggestion of the underlying process.
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3.2 Experiment 1

3.2.1 Method

Participants

Forty University of Warwick students were recruited as participants in the experi-

ment from the university’s online SONA system in return for £8 in payment. The

sample included twenty-five females and fifteen males, while age ranged between

18 and 39 years, with a mean of 22.4. While participants were paid for participation,

these payments were not specifically tied to performance in the task.

Design

The experiment used an edited form of the dot estimation task of Sanborn and

Beierholm (2016) in which participants were trained on an underlying distribution

of dot values through an extensive series of estimation trials: in each trial, a number

of dots appeared on the screen for 400 milliseconds, and participants were asked

how many they believed had appeared. Dot counts were sampled from a bimodal

distribution, ranging between 23 and 32 dots, with modes at the extremes of the

range (illustrated in Figure 3.1a).

After giving each estimate, a feedback slide appeared noting both the par-

ticipant’s response as well as the actual dot count. In order to induce uncertainty

in the feedback, the actual count was presented as a response given by a previous

participant for that trial, with the level of uncertainty being manipulated according

to the previous participant’s reported accuracy rate across all estimation trials. The

experiment therefore made use of a between-subjects uncertainty manipulation, us-

ing two uncertainty conditions: a high-uncertainty condition, in which the previous

participant was stated to be accurate in 70% of trials, and a low-uncertainty condi-

tion, in which the accuracy rate was stated to be 95%. This rate was noted on every

feedback slide to ensure participants were aware of uncertainty information.

A discrimination task was also used in the experiment to assess the partic-
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ipant’s discrimination ability for use as a parameter in later analysis. In the dis-

crimination task, two sets of dots appeared sequentially on screen, and participants

were asked which set (1 or 2) they believed to contain more dots. This was then

followed by a feedback slide noting whether the response was correct or incorrect;

this was not however affected by the uncertainty manipulation applied to feedback

in the estimation task, being definitively accurate in all trials.

Procedure

Upon arriving at the lab, participants were first randomly assigned to one of the two

uncertainty conditions, determining the reported rate of accuracy in feedback val-

ues. This was balanced to provide equal numbers of participants in each condition,

meaning 20 participants were assigned to the high-uncertainty (70%) condition and

20 participants were assigned to the low-uncertainty (95%) condition.

Participants were told the experiment examined how decisions were made

under uncertainty, and would involve estimating the number of dots appearing on

screen. Participants first performed a set of 128 discrimination trials to assess their

initial discrimination ability; this began with a series of 4 practice trials at low dot

counts (1-4) to introduce the task.

After this first discrimination block was completed, participants then moved

to the estimation task, again beginning with a set of 3 practice trials at low dot

counts to introduce the task. Participants performed 500 total estimation trials, with

breaks every 50 trials.

Once all estimation trials were completed, participants then performed an-

other round of 128 discrimination trials to track any improvement in discrimination

ability. Finally, participants were debriefed as to the aims and expectations of the

study.

62



3.2.2 Results

Data from one participant was removed from analysis for failing to provide any re-

sponses within the presented dot range, leaving 39 subjects for comparison, with 19

in the 70% condition and 20 in the 95% condition. Responses further than 10 points

outside of the displayed range were classified as response errors and removed from

analysis; this eliminated an average of 1.81% (± 0.46% 95% confidence intervals)

of responses across participants.

Figure 3.2 shows conditional response distributions from the two uncer-

tainty conditions, illustrating the average response rate for each presented dot value.

Both groups demonstrated reasonable acquisition of the bimodal structure, showing

strong preferences for the modes of the distribution in their responses; comparisons

of each participants’ mean number of responses across the two modes of the dis-

tribution with their mean number of responses across the eight remaining values

found significantly higher numbers of modal responses, t(38) = 5.33, p < .001, d =

1.42. Unshown values were however also used as responses in both conditions, in

keeping with the bleed-over predicted by the use of a continuous prior.

The key empirical contrasts from Experiment 1 are summarised in Table

Figure 3.2: Conditional response distributions from the 70% and 95% uncertainty
conditions of Experiment 1, where square size is proportional to the percentage of
responses made to each displayed value.
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Condition 70% 95%
Unique response count 17.4 (± 1.69) 15.3 (± 1.36)
Out-of-range responses 54.1 (± 22.3) 30.5 (± 23.8)
Mid-range responses 268 (± 55.9) 250 (± 46.1)

Table 3.1: Mean measures with 95% confidence intervals from the two uncertainty
conditions of Experiment 1.

3.1. Analysis began by contrasting the count of unique responses from the two

conditions: this was found to be significantly higher in the 70% group, t(37) = 2.06,

p = .047, d = 0.69, with these participants using a wider range of values in their

answers. No significant difference was found between the 70% and 95% groups

however in either the number of responses from outside the dot range, t(37) = 1.51,

p = .140, d = 0.51, or the number of mid-range (non-mode) responses, t(37) = 0.54,

p = .590, d = 0.18, though both were found to be higher in the 70% condition.

The data therefore provides some support for the predictions of the continu-

ous mixture prior: while participants in the high-uncertainty condition did not reli-

ably offer a higher number of non-modal responses compared to the low-uncertainty

condition, these participants did use a wider range of values in their responses, sug-

gesting the use of a broader set of components when feedback was unreliable. This

then provides limited evidence that numeric estimates rely on continuous numerical

formats despite the discrete nature of stimuli and responses, utilising the inherent

flexibility of such a system to adapt the representation to best capture external data

patterns. The lack of reliable differences in all behavioural comparisons does how-

ever weaken this conclusion, meaning more substantial evidence is required before

this suggestion can be accepted.

In order to address this concern and provide more confidence in the above

conclusion, we decided to run a second experiment to further investigate this dis-

tinction using the same design but an alternate underlying distribution intended to

provide a clearer separation between the two models. This followed the design

of the third experiment of Sanborn and Beierholm (2016) in which a more com-

plicated quadrimodal distribution (illustrated in Figure 3.3) was used in place of
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Figure 3.3: The quadrimodal distribution used in Experiment 2.

the initial bimodal as a method of further distinguishing between categorical and

Gaussian mixture formats: such a distribution is more difficult to emulate using

a mixture of continuous components, making the two prior formats more distinct.

The use of such a distribution in the present study also provides a clearer separation

in empirical measures: the quadrimodal provides a set of values in the middle of

the displayed range that are not used in feedback, but may benefit from bleed-over

from the two nearby modes under a continuous format. As such, if estimates in

this task are in fact based on continuous prior structures, the use of a quadrimodal

distribution should offer a clearer demonstration of these effects in both empirical

and computational results.

3.3 Experiment 2

Experiment 2 replicated the dot counting design of Experiment 1 using a more com-

plicated quadrimodal distribution with the aim of providing a stronger contrast be-

tween the operation of the discrete and continuous priors. As such, the hypotheses

of this experiment were identical to the first, expecting a greater range of responses

in the more uncertain condition under a continuous system and a smaller number of

responses under a discrete system, though the design was expected to be more di-

agnostic in separating these hypotheses in this case. In addition, this task also used
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a larger sample size to provide more statistical power given the reasonably weak

findings of the first experiment.

3.3.1 Method

Participants

Sixty University of Warwick students were recruited as participants in the experi-

ment from the university’s online SONA system in return for £6 in payment. The

sample included 36 females and 24 males, while age ranged between 18 and 39

years, with a mean of 22.5. Payments were again unrelated to performance in the

task.

Design

The design of Experiment 2 was identical to that of Experiment 1 with the exception

of the underlying distribution: in place of the bimodal distribution, a quadrimodal

distribution was used (illustrated in Figure 3.3).

Procedure

Experiment 2 used the same procedure as Experiment 1. Assignment to uncertainty

conditions was again randomised and controlled to provide equal numbers in each

group, meaning 30 participants were assigned to the 70% condition and 30 to the

95% condition.

3.3.2 Results

Data from Experiment 2 was analysed using the same procedure as Experiment 1,

including the same exclusion criteria; while no participants were entirely removed

from analysis in this task, an average of 2.33% (± 0.71% 95% confidence intervals)

of responses across participants fell more than 10 points outside of the displayed
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Figure 3.4: Conditional response distributions from the 70% and 95% uncertainty
conditions of Experiment 2, where square size is proportional to the percentage of
responses made to each displayed value.

range, and so were classified as response errors and eliminated from subsequent

comparisons.

Figure 3.4 shows conditional response distributions from the two uncer-

tainty conditions in Experiment 2. As with the previous experiment, both groups

demonstrated reasonable acquisition of the true quadrimodal structure, again show-

ing strong preferences for the modes of the distribution; participants’ mean number

of responses across the four modes was again significantly greater than the mean

number of responses across the remaining five values, t(59) = 7.01, p < .001, d

= 1.61. As in Experiment 1, however, participants in both conditions did also use

unseen values in their responses, in this case including the unused values from the

midrange of the distribution, again suggesting bleed-over in both groups.

Comparisons from the second experiment are summarised in Table 3.2. As

in Experiment 1, the count of unique responses was found to be significantly higher

in the 70% condition, t(58) = 2.21, p = .031, d = 0.59, showing a greater range in the

more uncertain condition. Once again, however, no significant difference was found

between the 70% and 95% groups in either the number of out-of-range responses,

t(58) = 0.53, p = .600, d = 0.14, or the number of mid-range (zero-probability)

responses, t(58) = 0.80, p = .425, d = 0.21, though these were again both higher in
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the 70% group.

These results therefore correspond with the findings of the first experiment:

participants in the high-uncertainty condition used a wider range of values in their

responses, but did not demonstrate a reliable increase in the use of unshown values

over those in the low-uncertainty condition. This again provides limited evidence

for the use of a continuous mixture prior, with components seemingly becoming

broader under uncertainty, thereby covering more potential values, but not neces-

sarily relying on those values. However, while both experiments may offer weak

demonstrations of continuous effects in isolation, by replicating the observed ef-

fects in two separate tasks, these results combine to provide more reliable evidence,

suggesting behaviour in these tasks was in fact based on the use of a continuous

numerical system.

The collected empirical data then provides a reasonable qualitative indica-

tion of the numeric format underlying estimation based on a theoretical contrast of

the behaviour of the two considered priors: reactions to uncertainty better match

the predictions of a continuous system than a discrete system. To supplement these

findings, however, behavioural data was next directly compared with computational

models of estimation for a quantitative assessment of the fit of both the Gaussian

mixture and categorical priors to the collected data. This also allowed for an exam-

ination of general behavioural trends across all participants beyond the distinction

between the two uncertainty conditions of these empirical contrasts, offering an

alternate exploration of the processes underlying behaviour in these experiments.

Condition 70% 95%
Unique response count 17.0 (± 1.57) 14.7 (± 1.53)
Out-of-range responses 66.3 (± 24.7) 56.2 (± 30.2)
Mid-range responses 69.2 (± 23.7) 55.6 (± 25.4)

Table 3.2: Mean measures with 95% confidence intervals from the two uncertainty
conditions of Experiment 2.
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3.4 The Uncertain Estimation Model

In order to investigate the underlying processes used in the experimental tasks, we

developed a perceptual estimation model which was able to use either a continu-

ous or discrete prior format while other model elements remained identical. This

drew on existing clustering models in which observations are assigned to subgroups

based on similarities in features as well as subgroup size, most notably the Ratio-

nal Model of Categorisation (RMC) by Anderson (1991) which uses Bayes’ rule

to approximate the ideal partition of items. As noted above, such systems have

previously been successfully applied to numerosity (Gershman & Niv, 2013), as

well as language comprehension (Goldwater et al., 2009) and causal reasoning

(Buchsbaum et al., 2015).

The present model therefore considers potential assignments of observations

to subgroups based on perceptual data, trial feedback and prior experience in the

task, creating a set of clusters which can be aggregated to provide a representation

of the true external distribution. The format of these clusters however is dependent

on the utilised prior, here limited to the previously noted categorical and Gaussian

mixture priors to contrast discrete and continuous numerical structures. The model

is therefore nearly identical to the definitions of the RMC given by Anderson (1991)

for discrete and continuous dimensions, here adapted to infer a physical feature for

a set of cluster members rather than a category label. This model was named the

‘Uncertain Estimation Model’, or UEM.

On each estimation trial, the model determines the probability of each po-

tential value in each potential cluster generating both the observed perceptual data

and the given feedback value across all possible partitions of past observations:

p(St |X1:t ,F1:t) = ∑
S1:t−1

∑
Z1:t

p(St ,S1:t−1,Zt ,Z1:t−1|X1:t ,F1:t) (3.1)

where t is the current trial, S1:t−1 is a vector containing the dot counts S1,S2, ...,St−1,

Z1:t is a vector containing the cluster indices Z1,Z2, ...,Zt , X1:t is a vector containing
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the perceptual data X1,X2, ...,Xt and F1:t is a vector containing the feedback values

F1,F2, ...,Ft . This can be broken down to isolate the probability of the proposed

value generating the observed perceptual and feedback data:

p(St |X1:t ,F1:t) ∝

∑
S1:t−1

∑
Z1:t

p(Xt |St)p(Ft |St)p(St |S1:t−1,Z1:t)p(Zt |Z1:t−1)p(S1:t−1,Z1:t−1|X1:t−1,F1:t−1)

(3.2)

This equation is composed of five elements to be calculated: first, p(Xt |St)

notes the probability of the observed perceptual stimulus Xt given the potential value

St , where Xt is an estimate of the perceptual stimulus sampled from a lognormal

distribution with mean equal to the logarithm of the true dot count vt and fixed

variance σ2
l based on assessment of the observer’s discrimination ability:

p(Xt |vt) = logN(Xt ; ln(vt),σ
2
l ) (3.3)

This estimate is then compared with each considered value using a second lognor-

mal distribution with mean equal to the logarithm of the considered value and equal

variance:

p(Xt |St) = logN(Xt ; ln(St),σ
2
l ) (3.4)

Secondly, p(Ft |St) notes the probability of the feedback score given the pro-

posed value, allowing for the consideration of uncertainty in feedback information;

this treats feedback as a perceptual feature of the trial rather than a definitive la-

bel, assessing the fit of this information to the considered value. For the purposes

of simplicity, this uses a single parameter to reflect the assumed reliability of trial

feedback:

p(Ft |St) =


c f where Ft = St

1−c f
nv−1 otherwise

(3.5)
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where c f is the feedback accuracy parameter, fixed across all trials, and nv is the

number of values considered for St .

Thirdly, p(St |S1:t−1,Z1:t) notes the probability of the proposed value given

the partition suggested by S1:t−1 and Z1:t−1 and the proposed cluster Zt . This term

therefore introduces the distinction between continuous and discrete structures, as

this affects the generated partition.

3.4.1 Discrete Format

For the discrete form, a count of matching observations is used:

p(St |S1:t−1,Z1:t) =
ns

nz
(3.6)

where ns is the count of observations in cluster Zt with value St and nz is the total

membership of cluster Zt ; this distribution therefore becomes binary for non-empty

clusters due to the uniformity of their membership, being 1 where St matches the

value of these members and 0 elsewhere. For new potential clusters without any

members, this instead uses a uniform prior across the considered values of St . This

distribution therefore matches the definition used by the RMC for likelihood values

using discrete dimensions where the prior expectancy parameter used by the RMC

(α) approaches zero.

3.4.2 Continuous Format

For the continuous form, a Gaussian mixture is used, computing the mean and vari-

ance of the cluster distribution given its currently assigned members as well as an

assumed prior mean and variance independent of any observations. This follows the

definition given by Anderson (1991) for likelihoods using continuous dimensions,

in which an inverse chi-squared distribution to provide an estimate of the variance:

σ
2 ∼ β0σ0

2
χβ0

2 (3.7)
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where σ0
2 is the prior variance and β0 refers to the confidence in this prior variance,

while the mean uses a Gaussian distribution:

µ|σ∼ N
(

µ0,
σ√
λ0

)
(3.8)

where µ0 is the prior mean and λ0 is the confidence in this prior mean (note that the

second parameter of this distribution is the standard deviation rather than the vari-

ance). The use of these two distributions then results in a t-distribution describing

the probability of value St in the given cluster (again, the second parameter of this

t-distribution is the standard deviation rather than the variance):

p(St |S1:t−1,Z1:t) = tc(St ;µi,σi
√

1+1/λi) (3.9)

The parameters of this distribution are calculated according to the proposed mem-

bership of the target cluster in the currently assumed partition, combining the prior

mean µ0 and variance σ0
2 with the observed mean x̄ and variance s2 using the con-

fidence values β0 and λ0:

βi = β0 +nz (3.10)

λi = λ0 +nz (3.11)

µi =
λ0µ0 +nzx̄

λ0 +nz
(3.12)

σ
2
i =

β0σ2
0 +(nz−1)s2 + λ0nz

λ0+nz
(µ0− x̄)2

β0 +nz
(3.13)

Fourthly, p(Zt |Z1:t−1) is a Chinese Restaurant prior (Aldous, 1985; Pitman,

2002) describing the probability of the observation being assigned to cluster Zt
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based on the size of that cluster, following the format of Anderson (1991):

p(Zt |Z1:t−1) =



cnz

(1− c)+ cn
if Zt is old

(1− c)
(1− c)+ cn

if Zt is new

(3.14)

where nz is the number of observations in cluster Zt in the current partition, n is

the total number of assigned observations and c is a coupling parameter describ-

ing the probability of two items being grouped together independent of any other

observations.

Finally, p(S1:t−1,Z1:t−1|X1:t−1,F1:t−1) describes the probability of the cur-

rently assumed partition given by S1:t−1 and Z1:t−1, which is equal to the product of

the probability of each past observation’s assignment to the partition as defined by

Equation 3.2.

Once the probability of each potential permutation has been calculated, these

values can be used to generate the predictive probability of any value appearing

in the next trial by aggregating over the individual distributions of each potential

partition:

p(St+1|X1:t ,F1:t) = ∑
S1:t

∑
Z1:t+1

p(St+1,S1:t ,Zt+1,Z1:t |X1:t ,F1:t) (3.15)

∝ ∑
S1:t

∑
Z1:t+1

p(St+1|S1:t ,Z1:t+1)p(Zt+1|Z1:t)p(S1:t ,Z1:t |X1:t ,F1:t) (3.16)

Similarly, the UEM is able to calculate the probability of the responses made

by participants in the present experimental procedure, where estimates are given

based on the perceptual stimulus before receiving feedback, by simply omitting the

feedback element from Equation 3.2:

p(St |X1:t ,F1:t−1) = ∑
S1:t−1

∑
Z1:t

p(St ,S1:t−1,Zt ,Z1:t−1|X1:t ,F1:t−1) (3.17)
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∝ ∑
S1:t−1

∑
Z1:t

p(Xt |St)p(St |S1:t−1,Z1:t)p(Zt |Z1:t−1)p(S1:t−1,Z1:t−1|X1:t−1,F1:t−1)

(3.18)

3.4.3 Details of Model Approximations

While the above equations do provide a calculable formula, by considering all pos-

sible permutations of past cluster and value assignments, the full version of the

model would quickly become intractable at even a moderate number of observa-

tions. As such, this full solution is approximated by reducing the number of con-

sidered permutations to a set of samples using particle filtering. This process makes

use of a fixed number of ‘particles’, each containing a possible permutation of clus-

ter and value assignments for past trials at that point in time (Griffiths, Sanborn,

Canini, Navarro, & Tenenbaum, 2011). Following a new observation, the model

considers only the assignments of that observation which are consistent with cur-

rent particles, calculating the probability of the assignment according to:

p(St ,Zt |X1:t ,F1:t)≈
1
ni

∑
i

p(Xt |S
(i)
t )p(Ft |S

(i)
t )p(S(i)t |S

(i)
1:t−1,Z

(i)
1:t)p(Z(i)

t |Z
(i)
1:t−1)

(3.19)

where S(i)1:t−1 and Z(i)
1:t−1 represent the value and cluster assignments in particle i,

and ni is the number of particles. The equations for each of these components are

therefore identical to those given above restricted to the partition held by the par-

ticle under consideration. Once the probability of each valid assignment has been

calculated, these probabilities are then used to stochastically sample new partitions

including the latest observation to be held as the new particles for the next trial.

Similar processes can then be performed for both prediction and response

selection, again restricting the considered permutations to those currently held in

the particles; as such, the predictive distribution becomes:

p(St+1|X1:t ,F1:t)≈
1
ni

∑
i

p(S(i)t+1|S
(i)
1:t ,Z

(i)
1:t+1)p(Z(i)

t+1|Z
(i)
1:t) (3.20)
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replacing Equation 3.16, while the response distribution becomes:

p(St |X1:t ,F1:t−1)≈
1
ni

∑
i

p(Xt |S
(i)
t )p(S(i)t |S

(i)
1:t−1,Z

(i)
1:t)p(Z(i)

t |Z
(i)
1:t−1) (3.21)

replacing Equation 3.18.

In addition to the particle filter, the model included a second approxima-

tion within the perceptual distribution of Equation 3.4: to make computation more

tractable, the sampled value Xt was replaced with the true value vt , so assuming

perceptual samples were perfectly accurate:

p(Xt |St) = logN(Xt ; ln(vt),σ
2
l ) (3.22)

replacing Equation 3.4. While this does remove some noise from the estimation sys-

tem, this can be subsequently reinserted by sampling responses from the distribution

given by Equation 3.21 rather than simply taking the maximum, an approximation

which has previously been found to be successful (e.g. Sanborn, Mansinghka, &

Griffiths, 2013).

Finally, for the purposes of fitting the UEM to actual behaviour, the response

distribution was further edited to include two additional elements: first, the distribu-

tion is raised to an exponent to allow the model to interpolate between probability

matching and maximisation, and second, the response distribution is combined with

a uniform background distribution to emulate potential noise in response selection:

p(Rt |X1:t ,F1:t−1) = (1−wb)
p(St |X1:t ,F1:t−1)

e

∑ p(St |X1:t ,F1:t−1)e +wbU(v1,v2) (3.23)

where Rt is the potential response, e is the response exponent, wb is the weight

applied to the background distribution and v1 and v2 provide the range of values

considered in the uniform distribution. Responses can then be drawn from this

distribution using various methods, with the resulting feedback being used to update

the representation using the above method. For the purposes of this study, however,

no fixed sampling method is defined, with this distribution instead being used to
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provide the probability of a given participant response.

3.4.4 Model Comparison

The discrete and continuous forms of the UEM were compared with the experi-

mental data from both Experiments 1 and 2 using a grid point search across the

four parameters shared by the two models to determine the best fit to the collected

data. This was used in place of more traditional gradient descent functions due to

potential issues with such methods for clustering models: the likelihood function

of these models is often highly complex, leading gradient descent functions to be-

come fixed at local maxima rather than the global maximum. The search ran across

the four parameters shared by the two models: the coupling parameter c, response

exponent e, feedback confidence c f and background weight wb. Considered values

were: for c, 0.1 to 0.9 in steps of 0.1; for e, 0.1, 0.25, 0.5, 1, 1.5 and 2; for c f ,

0.1, 0.3, 0.5, 0.7 and 0.95 (capturing the stated accuracy in the 95% condition); and

for wb, 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9. The models also used a particle filter as

described above to aid computation, both set to use five particles.

In order to make the modelling more computationally tractable, the prior

parameters unique to the cUEM (µ0, σ0
2, β0 and λ0) were fixed across model fits.

The values of these parameters were set according to the range of displayed dot

counts following the format of Anderson (1991) in which the prior mean is set at

the midpoint of the range (Experiment 1: 27.5; Experiment 2: 27), and prior vari-

ance is set at a quarter of the range squared (Experiment 1: 5.06; Experiment 2:

4), while confidence values for both these parameters are set at one. However, in

order to allow for the previously described emulation of categorical components by

the Gaussian mixture prior, the prior variance and confidence values were edited

to provide a narrower initial form; prior variance was therefore set at a twentieth

of the range squared (Experiment 1: 0.20; Experiment 2: 0.16), while the asso-

ciated confidence value λ0 was set at 0.01, determined through limited likelihood

testing using manual adjustments of these parameters on a subset of the data. While
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these manipulations were limited, these were considered as full parameters for the

purposes of calculating complexity penalties in subsequent measures. As such, the

dUEM was defined as having four free parameters, and the cUEM was defined as

having six.

Both models were then fit to each participant individually by providing the

respective model with the observed dot counts in matching order for partitioning,

calculating the response distribution (given in Equation 3.23) and taking the result-

ing probability of the participant’s response for that trial. These trial probabilities

were then converted into log values and summed to produce a log likelihood fig-

ure for each participant at each grid point of each model. For greater reliability in

fit, each grid point was repeated three times to provide an average log likelihood;

this was limited at a reasonably low count to aid computation, though additional

comparisons from a subset of parameters between likelihoods averaged across ei-

ther 3 or 50 trials found high correlations (dUEM: r = 0.962; cUEM: r = 0.950),

suggesting this was still a reasonably accurate estimate.

Maximum log likelihood values for each participant from each model were

then converted to Akaike information criterion (AIC, Akaike, 1974) and Bayesian

information criterion (BIC, Schwarz, 1978) values for further comparison due to

the differing number of parameters between the models. These measures both pro-

vide an adjusted measure of model fit controlling for model complexity, with lower

values indicating a better fit. Both measures were also used to calculate weights for

the given comparison between the cUEM and dUEM, providing an estimate of the

posterior probability of each model assuming equal priors (Wagenmakers & Farrell,

2004). For ease of presentation, the following analysis focuses primarily on BIC

scores as the more conservative measure, with AIC results being noted where these

scores suggest a qualitative difference in outcome, while full AIC results are listed

in the appendix.

The grid point structure allows for both global and individual fitting, either

aggregating likelihoods across participants at each grid point assuming a common

set of parameters within each experiment, or calculating a maximum likelihood
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value for each participant assuming differences in parameters between individuals,

converting that maximum to a BIC score and then aggregating the resulting values.

Both AIC and BIC measures from both experiments do however show fits are sub-

stantially better when using individual parameters; as such, the remainder of the

comparison uses aggregates of individual best fits by summing BIC scores from

each participant, with global fits being listed in the appendix.

Results of the modelling comparison with Experiment 1 data are summarised

in Table 3.3. Across all participants, the cUEM had a better fit to the data by

summed BIC scores than the dUEM, though a nearly equal division was observed

between the number of participants best fit by the dUEM (20) and the cUEM (19).

When separated by uncertainty condition, the cUEM provided a better fit to the 70%

group, accounting for 11 of the 19 participants, while the dUEM had a better fit to

the 95% group, accounting for 12 of the 20 participants. This does not necessarily

mean however that different priors were used between conditions, as participants

are unlikely to select a prior according to the experimental manipulation. Instead,

this may reflect the above suggestion that behaviour appears more discrete where

feedback is more reliable as this is where continuous components are best able to

emulate discrete structures, with the better fit of the discrete model then being a

result of this emulation; while this suggestion is supported by summed BIC scores

from the two groups, a chi-squared test found no significant difference in the ratio

Comparison Model Parameters MLL BIC w(BIC)

Individual
dUEM 4 -43720 88409 0
cUEM 6 -43461 88377 1

70%
dUEM 4 -22335 45142 0
cUEM 6 -22112 44933 1

95%
dUEM 4 -21385 43267 1
cUEM 6 -21349 43444 0

Table 3.3: Modelling results from Experiment 1, where MLL is the summed maxi-
mum log likelihood for that model across participants, BIC values are summed from
individual best fits, and w(BIC) is the weight of the BIC score for the given com-
parison between the discrete and continuous models, approximating the posterior
probability of each model assuming equal priors.
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of participants best fit by the two models between uncertainty conditions, χ2(1) =

1.25, p = .264.

AIC scores offer almost identical qualitative results, with the only notable

difference being in the number of participants best fit by each model, which shows

a significant difference in ratio between the two certainty conditions, χ2(1) = 4.50,

p = .034, suggesting behaviour did appear more continuous in the high-uncertainty

condition. Margins between AIC scores also demonstrate a stronger support for

the cUEM, showing greater advantages where this model fits better and a narrower

difference in the 95% condition where the dUEM remains ahead. Such results are

attributable to the reduced cost of complexity in AIC scores, more closely reflect-

ing the difference in raw likelihood despite the different parameter counts of the

two models. This is notable given that the current comparisons did not take full ad-

vantage of the greater complexity of the cUEM, as the additional parameters of this

model were in fact fixed across the comparison, but were treated as variable given

the initial manual manipulations of variance and confidence to allow for narrower

components. This does however mean that the cUEM performed better even under

the harsher complexity costs of the BIC measures, providing further support for this

prior.

In contrast with the first experiment, the cUEM displayed a greater advan-

tage in the number of participants best fit by each of the models in Experiment 2,

accounting for 37 of the 60 participants; this is further displayed in the summed

BIC scores, which show the cUEM had a better overall fit to the data, detailed in

Table 3.4. Separated by group, summed BIC scores again found the cUEM to have

a better fit in the 70% condition, accounting for 19 of the 30 participants, though

this model now also better fits the 95% condition, accounting for 18 of the 30 partic-

ipants. As with the first experiment, this difference in ratio between the two groups

was found to be non-significant, χ2(1) = 0.07, p = .791.

AIC scores meanwhile again show almost identical results, though with

slight differences in the ratios of participants best fit by each model, again seem-

ingly showing greater support for the cUEM where the penalty for complexity is
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Comparison Model Parameters MLL BIC w(BIC)

Individual
dUEM 4 -66731 134953 0
cUEM 6 -65994 134225 1

70%
dUEM 4 -34740 70225 0
cUEM 6 -34338 69796 1

95%
dUEM 4 -31991 64728 0
cUEM 6 -31655 64429 1

Table 3.4: Modelling results from Experiment 2.

less severe.

Results from both model comparisons therefore suggest that a Gaussian mix-

ture prior was more likely to be used in their respective tasks than a categorical

prior, so supporting the apparent continuous effects observed in the empirical con-

trasts. This in fact extends to the one notable difference between the first and second

model comparisons: behaviour in Experiment 2 is better fit by the cUEM even in

the 95% condition where lower uncertainty was suggested to allow behaviour to

appear more discrete. Such a difference is attributable to the greater complexity of

the quadrimodal distribution used in the second task, being more difficult to emu-

late using continuous structures; this makes continuous effects more apparent even

where feedback is more reliable. Even so, it is notable that a substantial number of

participants in both tasks were better fit individually by the dUEM. As such, there

is some remaining ambiguity as to the prevalence of the continuous prior in such

estimates, with potential individual differences in prior format across participants.

Such a suggestion will however require further qualitative contrasts in future work

to more definitively identify if these are in fact reliable differences in numerical

format between individuals, particularly where general model fitting measures are

highly supportive of the continuous system overall.

These comparisons therefore do indeed further support the above empiri-

cal findings: while behavioural data in both experiments demonstrates qualitative

evidence of a continuous representation of past numeric experience, this is now

reinforced quantitatively by model fitting, providing greater confidence in this con-

clusion. This highlights the difference between the empirical and computational
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comparisons used here: while empirical contrasts focus on the differences in be-

haviour between the two uncertainty conditions, which may be limited in scope, the

model comparison is able to examine wider behavioural patterns across all partici-

pants, identifying a trend towards continuous behaviour common to both groups.

3.5 Discussion

The above sections provide evidence from two experiments of a continuous nu-

merical system underlying discrete estimates which reacts to uncertainty by sim-

plifying the held representation using rational categorisation principles: in both

tasks, responses become more varied when feedback was less reliable, indicating a

broadening of Gaussian components. This is further supported by comparisons with

computational models of estimation: in both experiments, behaviour was better fit

by a Gaussian mixture prior over a categorical prior, providing a second source of

evidence for the use of a continuous prior format, though further examinations may

be required to determine the prevalence of this system across individuals. Both

discrete and continuous estimates therefore appear to share a common continuous

estimation system able to adjust the formed representation to best meet the needs

of the task.

These results also provide greater insight into the findings of Sanborn and

Beierholm (2016), further clarifying the process by which numerical estimates are

made: through direct comparisons with full models of the estimation process, these

results suggest that learners are able to acquire complex multimodal distributions

through the use of a highly flexible continuous numerical system able to emulate

such detailed structures. This then allows for the appearance of the use of discrete

numerical formats in such tasks despite actually being based in continuous systems,

offering a new window into the results of Sanborn and Beierholm (2016): the ap-

parent use of discrete priors in that study may in fact be the result of a continuous

system emulating the narrower component format of a truly discrete distribution.

This may be attributable to aspects of the design of that study which facilitated
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such emulation: for example, the range of values displayed in the task was reason-

ably small in comparison to other studies (e.g. Gershman & Niv, 2013), potentially

encouraging the use of a set of narrow components to provide better discrimina-

tion. Alternatively, the use of definitive feedback may have avoided potential noise

in value assignment which could broaden components: the results of Experiment

1 find behaviour better matches the use of discrete formats when feedback is more

reliable, though this was not replicated in Experiment 2, while the number of par-

ticipants best fit by the dUEM did not significantly differ between uncertainty con-

ditions in either task. Even so, this effect could be more pronounced for the exact

feedback used by Sanborn and Beierholm (2016) as participants are given no reason

to believe this information is inaccurate, further narrowing components for a closer

emulation of discrete structures.

The present findings therefore depict a highly flexible estimation system in

which any formed representation and resulting behaviour are highly sensitive to

the scenarios that produce them. This allows the system to acquire more complex

distributions such as those used in the present experiments: without such a repre-

sentation, learners would not be able to accurately capture such forms. This can

in fact be demonstrated by lesioning the present models to remove their respective

priors; if the model does not store any experiences in memory, then the learner is

unable to update their beliefs, and decisions are based solely on perceptual evidence

(detailed in the appendix). Such lesioning generates a drop in estimated accuracy

for both discrete (51.1% vs. 42.7%) and continuous (52.9% vs. 45.5%) formats, il-

lustrating the benefits to learning provided by such a system. In addition, as seen in

the above experiments, this flexibility also allows the learner to account for uncer-

tainty in the formed representation, further altering mental structures according to

noise in the environment such as the unreliable feedback of the present designs. As

such, these results help to demonstrate the power of a rational system in this task,

utilising both direct observations and background knowledge to build a mental rep-

resentation which accurately captures both external patterns and their surrounding

context.

82



Such results also offer a notable correspondence with the wider literature on

numerosity in which numbers often appear to be considered within a continuous

format: even when presented symbolically, behaviour seems to suggest numerical

values are treated continuously, showing greater confusion between similar values

(Moyer & Landauer, 1967; Spelke & Tsivkin, 2001; Dehaene & Marques, 2002).

The present study may then further contribute to the suggestion that learners rely

primarily on approximate number systems when dealing with numerical values,

translating the output of such systems into discrete figures when required (Izard &

Dehaene, 2008). This links to the concept of ‘number sense’ (Dehaene, 2011), an

innate understanding of numerosity displayed independently of the standard sym-

bolic numerical system, as evidenced by its use by not just adult learners, but also

infants (McCrink & Wynn, 2004) and animals (Flombaum, Junge, & Hauser, 2005;

Ditz & Nieder, 2016). The apparent use of continuous structures across numeri-

cal tasks may then reflect a general reliance on this number sense, utilising a more

fundamental numerical system where possible and converting this to symbolic for-

mats as needed rather than directly working in a purely symbolic format learned in

later life. What is more, the current results demonstrate that despite being a more

primitive system, these structures can still enable efficient learning under the right

circumstances: within the framework of a rational clustering process, continuous

structures can be used to represent reasonably complex distributions, particularly

where their inherent flexibility can be exploited.

In addition to the format of numerical information, the present distinction

between discrete and continuous structures also demonstrates the impact of this

structure on behaviour through the application of simplicity: the two priors provide

almost directly opposing reactions to uncertainty, with one reducing the number

of considered responses in order to simplify response selection, and one reducing

the number of response regions but allowing for more potential values. The ap-

parent use of continuous numerical structures therefore carries distinct behavioural

implications, suggesting a greater reliance on prior expectations where feedback is

less reliable. This then draws estimates towards previously expected values, but
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without necessarily disregarding such information; returning again to the example

of counting people in a room, if the observer receives a potential count from an-

other individual that is viewed as unreliable, they are unlikely to store that figure in

memory, but may use a similar number that falls between the feedback figure and

their own prior expectations. This is in contrast to the more extreme process of the

discrete model, where unreliable feedback may be completely abandoned in favour

of prior values. Such a distinction is important given that real-world estimates are

rarely followed by definitive feedback; even where such information is provided,

this can be vague, or from an untrustworthy source. This also illustrates the broader

importance of understanding the form of our representations, as slight differences in

structure can have substantial effects on behaviour. As such, any interventions into

such systems must consider what structures people may hold in order to provide

meaningful results; in the current case, this applies primarily to methods that may

encourage more accurate learning of real-world distributions, though this concept

applies to any action based on internal mental representations.

It should be noted again however that the present Bayesian models were

used as descriptions of behaviour to facilitate the comparison between discrete and

continuous prior formats, and do not necessarily reflect the processes used by ac-

tual learners when making numeric estimates. This also places the current models

at the computational level of analysis (Marr, 1982), offering high-level principles

for behaviour rather than any specific algorithmic mechanism that may be used by

actual learners. Even so, BDT does remain a strong candidate for the true process:

as previously noted, BDT provides a better account for the use of prior information

than theories such as calibration (Sanborn & Beierholm, 2016), allowing for the

acquisition of more complex distributions such as those used in the present study.

In addition, existing work has offered a number of algorithms which could support

Bayesian models such as these, most notably sampling methods (Gelman et al.,

2013), which have been found to accurately account for human biases in a num-

ber of tasks (Sanborn, Griffiths, & Navarro, 2010; Griffiths, Vul, & Sanborn, 2012;

Sanborn & Chater, 2016). The current results are not however able to definitively
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determine the validity of the considered Bayesian models, meaning these models

remain descriptive until more direct tests are performed.

Another caveat to these conclusions is that the current study is limited in the

priors considered in the above model comparisons, focusing on only two particular

systems to suit the contrast between continuous and discrete structures. While these

systems do serve the present examination of numerical format in distribution learn-

ing, there are multiple other priors which could be investigated as alternatives to

these processes, including more complex continuous or discrete systems which do

not follow the same behavioural predictions used here; for example, discrete com-

ponents which correlate with neighbouring values could emulate the generalisation

pattern suggested for continuous structures whilst still using a discrete underlying

numerical format. The present study does however remain primarily focused on

the distinction between continuous and discrete numerical systems offered by ex-

isting numerical research, including the difference in generalisation between these

systems stated in the introduction to this section where bleed-over is predicted by

continuous but not discrete structures (Moyer & Landauer, 1967; Dehaene, 2011).

The currently considered priors are therefore most appropriate to the aims of this

study, while such alternative priors can be considered in future work.

Finally, one additional factor to consider in this study is the method by which

uncertainty was manipulated in this design: in order to create doubt in the task feed-

back, true values were presented as answers given by a past participant, using that

participant’s reported accuracy rate as a measure of reliability. This therefore intro-

duces a social information element to the task, as participants are made to consider

the method by which these feedback values are generated. This is particularly no-

table given that previous research has found that learners may draw different infer-

ences from observed data according to its origin: beliefs may differ when examples

are chosen by a teacher to illustrate an idea (Shafto, Goodman, & Griffiths, 2014),

or when samples are noted to exclude certain results (Hayes, Banner, & Navarro,

2017) compared to observation alone. While the current task is unlikely to have en-

couraged these particular higher level inferences, the origin of feedback remains a
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consideration when determining how participants interpret this information during

decision making: there are multiple potential methods of using feedback data with

varying levels of complexity, ranging from a reasonably simplistic correct/incorrect

dichotomy to a full model of the past participant’s decision process. For the pur-

poses of simplifying model fitting, the most basic of these forms were used in both

of the present models, using a single parameter to reflect the probability of the feed-

back being accurate; future work on this subject may therefore wish to consider

these alternate definitions in order to provide a more complete model of behaviour.

Alternatively, similar tasks could make use of non-social manipulations of uncer-

tainty to assess the impact of this factor on decision making.

3.5.1 Conclusion

The present study provides both empirical and computational evidence that discrete

numeric estimates are built on continuous mental structures, displayed here via re-

actions to uncertainty: learners react to unreliable feedback by broadening their

response regions, utilising the inherent flexibility of their representation to account

for noise in the environment. This demonstrates not just the systems used within

numerical estimation, but also the impact of these systems on both the distributions

learned through this process as well as behaviour built on this representation. We

therefore hope that this study can provide a basis for further examination of the

mechanisms underlying numerical estimation, using additional experimental con-

trasts and more advanced computational models to offer greater insight into these

systems, and so the wider representation of numerical information.
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Chapter 4

Trial Replay in Learning

Consolidation

In order to best direct behaviour, our representations should accurately reflect exter-

nal structures, capturing the connections between items as well as their associated

costs and benefits. Such a representation is not necessarily, however, built solely on

direct observation, but could also involve the consolidation and potential revalua-

tion of these structures outside of learning; new information could re-frame existing

knowledge (or vice versa), or provide greater insight into concepts that were not pre-

viously fully understood. In this chapter, we examine how acquired representations

are consolidated outside of direct learning using the Replay model, an extension

to established associative learning models which permits for the revaluation of ex-

isting structures by revisiting past experiences. This involves three applications

of this model to learning behaviour in various tasks, each investigating how such

consolidation processes could assist in identifying associative structures which had

previously been unnoticed. These experiments then examine the possible role of

rehearsal in generating more complete mental representations, and so leading the

learner towards more beneficial responses for the given situation.
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4.1 Rehearsal in Associative Learning

Existing associative learning models have often focussed on the use of direct obser-

vations in forging associative connections between stimuli, a key example being the

Rescorla-Wagner (RW) model, where the strength of an association is adjusted ac-

cording to errors between predictions and observations (Rescorla & Wagner, 1972).

While this describes the basic method by which an association can be acquired and

extinguished, by basing learning only on direct observations of relevant stimuli, the

RW model is unable to account for several learning phenomena which have been

observed in actual behaviour. For example, the RW model suggests that an extin-

guished response should remain extinguished without further reinforcement, while

in reality, such a response can in fact re-emerge at a later point given a sufficient in-

terval, an effect known as spontaneous recovery (Rescorla, 2004). Similarly, prior

exposure to a stimulus is not predicted to affect subsequent acquisition of a re-

lated association in the RW model as no learning is thought to occur in this period,

whereas this can in fact slow later training using this stimulus, known as latent inhi-

bition (Lubow, 1973). These effects, as well as others such as backwards blocking

and backwards conditioned inhibition, are suggestive of a more complex learning

system than is offered by the RW model, in which the mental representation that is

ultimately formed is based upon the wider framework of all learning experiences

rather than focusing on the most recent set of trials. It is therefore necessary to con-

sider more complex learning models which are able to review and adjust learned

structures to identify broader associative patterns in order to account for these more

advanced learning behaviours.

One potential solution for these issues is to draw on existing concepts of

rehearsal and consolidation used in theories of memory; such processes have been

suggested to be key to the transition of recent experiences to long-term storage

(Atkinson & Shiffrin, 1968; McGaugh, 2000; Ratcliff, 1990), particularly during

periods of sleep (Stickgold, 2005; Born, Rasch, & Gais, 2006; Maquet, 2001). The

application of such concepts to associative learning could then allow for learning
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models which are able to revisit past training and use this rehearsal to further ad-

just the representation to reflect all experiences. Such a mechanism has in fact

been offered in existing associative learning studies, with the suggestion that re-

hearsal of past learning experiences could allow for the alteration of acquired asso-

ciative structures, potentially explaining some of the phenomena described above

(Chapman, 1991; Ratcliff, 1990); for example, Gershman, Markman, and Otto

(2014) inserted a short break between training and test in a retrospective revalu-

ation design where new information suggests a previously trained response is no

longer optimal, and found significantly greater levels of revision of previous prefer-

ences, indicating a role of offline rehearsal in adjusting perceived stimulus values.

This is further supported by physiological evidence of such rehearsal from neu-

rological studies: hippocampal cells associated with specific locations have been

found to fire in similar sequences during training and rest, suggesting the neural

rehearsal of learning experiences (Wilson & McNaughton, 1994; Euston, Tatsuno,

& McNaughton, 2007; Davidson, Kloosterman, & Wilson, 2009). What is more,

such neural replays appear to directly support the replanning of behaviour in simi-

lar revaluation designs, with increased activity being correlated with greater reversal

of preferences (Momennejad, Otto, Daw, & Norman, 2018). Taken together, these

findings then provide a substantial basis for a suggested use of consolidation pro-

cesses within learning systems to build more complete mental representations of

external structures.

The current study therefore aimed to investigate the role of rehearsal in up-

dating associative representations, and the impact of such revision on related be-

haviour. This was implemented using the Replay model of associative learning

(Ludvig, Mirian, Kehoe, & Sutton, 2017), a proposed extension to the Rescorla-

Wagner model in which the learner is able to consolidate their experiences by men-

tally replaying past training trials outside of direct learning. This model draws on

similar rehearsal processes to those suggested to assist with memory consolidation,

here applied to the consolidation of associative learning structures: past trials can

be replayed to review their events and outcomes, solidifying any observed associa-
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tions without further training. This uses the same basic process as the standard RW

model, adjusting the association between stimuli according to prediction errors; as

such, the replayed trial is treated almost as a new experience, though it is given

a lower weight than a true novel trial. Replays can, however, be run continually

throughout rest, meaning longer breaks from training allow for greater levels of

consolidation.

Importantly, any previous trial may be selected for replay, allowing for the

rehearsal of both older and more recent trials. The Replay model is therefore able

to adjust the associative structure to more accurately reflect all learning experi-

ences, in contrast to the representation formed by the standard RW model, which

focuses on the most recent events. This allows the Replay model to identify any

broader patterns or structures that may be present in training, explaining several

of the effects noted above: in the case of spontaneous recovery, the learner is able

to replay both acquisition and extinction trials, so summating the two sets of trials

and thereby producing an intermediate associative strength that is displayed in the

recovery period. Similarly, latent inhibition is explained by a summation of the re-

warded training trials and the unrewarded exposure trials during replay, suggesting

an uneven pattern of reinforcement for the stimulus, thereby slowing the acquisi-

tion of the response. As such, through a minor adjustment to an established model

allowing for the consolidation of learning experience, the Replay model appears to

provide a more robust account for multiple aspects of associative learning.

This raises an interesting question: if the Replay model is able to identify

broader patterns across all learning, could this allow for the discovery of associative

structures that had not previously been fully understood? By replaying past events

during periods of rest, learners could find rules or patterns that had not been noticed

or acquired during training, apparently realising these structures without any new

experience. This relates to the concept of insight, in which the solution to a prob-

lem is suddenly realised without any apparent conscious deliberation, often referred

to as the ‘Aha!’ experience (Bowden, Jung-Beeman, Fleck, & Kounios, 2005).

The Replay model may therefore provide a mechanistic explanation for insight-
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like effects in standard associative learning paradigms, with past experiences being

replayed unconsciously during breaks in training until complete solutions are even-

tually found.

The present study therefore aimed to investigate whether encouraging learn-

ers to perform replays of past training trials could allow for the discovery of pre-

viously unrealised learning structures; in the following sections, we present three

experiments each examining this suggestion in differing tasks, beginning with an

existing associative learning task, categorisation.

4.2 Experiment 1: Difficult Categorisations

Categorisations provide an existing associative learning design in which learners

acquire associations between stimulus features and category labels through train-

ing on predetermined stimulus classifications, essentially learning a sorting rule for

the given categorisation. While this could be taught through either description or

experience, here we focus on the latter, with learners making stimulus categorisa-

tions and using feedback on the accuracy of their decision as a method of training,

providing a store of observed trials which could be used in consolidation. The

advantage of this task in the present study is that rules could be partially but not

fully understood if sufficiently complex; learners could initially acquire a simpli-

fied version of true categorisation rules if this is accurate in most, if not all, cases.

This partially acquired rule could then be refined through rehearsal of past trials,

identifying remaining exceptions and revising the representation accordingly, so

seemingly discovering the true rule without further training.

This first experiment therefore made use of a difficult categorisation task, in

which learners are trained on complex, multidimensional categorisation rules until

reaching a partial but incomplete understanding of the underlying structure; this

drew on the hierarchy of basic categorisations provided by Shepard et al. (1961), in

which items with three binary dimensions are organised into two equal groups, with

the so-called ‘Type IV’ categorisation using all three stimuli dimensions (illustrated
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in Figure 4.1) taking longest to be fully acquired. Interrupting this training should

therefore provide a simple method for generating partial acquisition, as the learner

should have some sense of the underlying rule, but is unlikely to have reached per-

fect performance. This can be measured according to the learner’s accuracy over a

subset of recent trials: if accuracy is above a certain criterion but not yet at ceiling,

the learner can be said to have partially acquired the rule, and training can be ceased.

The learner can then be given an opportunity to replay past trials, consolidating the

partially acquired rule and so potentially leading to improved categorisation per-

formance in a later test period. This follows the design of Gershman et al. (2014),

using a short break between training and test to allow for a period of rehearsal,

which was observed to generate greater levels of revaluation.

This therefore provided the basic design of the present experiment: cate-

gorisations were trained until meeting a performance criterion, before a break in

training to allow for replays of the training trials, followed by further categorisation

trials to assess any change in performance. However, in order to verify a replay

benefit in such a task, it must be ensured firstly that learners are in fact perform-

ing replays during the break, and secondly that the performance of replays leads

to a greater performance benefit compared to time away from the task alone. As

such, a manipulation was required to encourage the replay of one set of categorisa-

tion trials over a comparable control. Such a manipulation is dependent, however,

on the method by which experiences are selected for replay; if replays are used to

help build more accurate representations of observed associative structures, there

is likely to be some mechanism which prioritises certain experiences for rehearsal.

This prioritisation would reduce the potentially vast collection of learning memo-

ries to those which are most relevant to the current situation. For example, replay

could focus on the most recent trials under the assumption that temporally proximal

events are likely to be more similar, or on trials with the most surprising outcome,

examining the reasons for past expectation errors.

While these are valid possibilities, one particularly strong candidate is the

context of learning; context is not only a clear, salient cue that could easily be
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attached to trial memory, but has also been previously used in a similar manner

to promote the consolidation of memory in sleep, both in humans (Rudoy, Voss,

Westerberg, & Paller, 2009) and animals (Bendor & Wilson, 2012). Placing the

learner back in a training context during a break in learning could then prioritise the

replay of trials from that context over other categorisation trials, leading to greater

consolidation of the rule associated with that context.

The following experiment therefore examined a potential replay benefit in a

difficult categorisation task using a manipulation of training context: participants

completed two sets of Type IV categorisation trials in distinct contexts until per-

formance was above chance. This was followed by a break in training where the

learner was placed in one of the two training contexts to encourage a replay bias,

followed by further categorisation trials to assess subsequent performance. Based

on the potential rehearsal benefit suggested by the Replay model, two hypotheses

were examined in this task: firstly, that categorisation performance for the cued

rule would be higher following the break, and secondly, that performance would be

higher for the cued rule compared to the uncued rule.

4.2.1 Method

Participants

Eighty-four participants were selected from a University of Warwick undergraduate

psychology class as part of a course requirement. The sample included 77 females

and 7 males, while age ranged between 18 and 32 years, with a mean of 19.1.

Design and Materials

Two Type IV categorisation sets were used in the experiment, following the three

binary dimension structure of Shepard et al. (1961); each set was therefore made

up of eight stimuli divided into two pre-set categories of four. Both sets made use

of the same dimensions for the stimuli (shape, colour and size), but used different

values for these dimensions (squares/triangles and circles/hexagons, black/white
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Figure 4.1: The two stimulus sets used in Experiment 1. Dotted lines demonstrate
two potential Type IV rule boundaries.

and blue/red, large/small), illustrated in Figure 4.1.

In order to encourage the learning of a general categorisation rule rather than

memorisation of individual stimuli, colour and size received slight variations to cre-

ate the illusion of a wider stimuli set, converting the discrete labels given above into

ranges and randomly sampling a value from these ranges under uniform probability

for each presented stimulus. For size, this range represented the width in pixels of

the shape (50-100 for small, 200-250 for large). For colour, this represented the de-

viation from the base Red-Green-Blue colour code of the stimulus, ranging between

0 and 75 points; for black and white shapes, this value was consistent to all colour

dimensions (for example, a black stimulus with base colour code [0 0 0] may be

presented with the altered colour code [50 50 50]), while for red and blue shapes,

the key colour dimension remained constant (for example, a red stimulus with base

colour code [255 0 0] may be presented with the altered colour code [255 60 60]).

Four potential permutations of the Type IV structure were available for each

set; this was randomly selected at the start of each run of the experiment, though

the two sets were prevented from sharing the same permutation.

Trial context was composed of two elements: a background image of a par-

ticular location to act as the training environment, and a coloured rim around the

screen. These contexts were generated at the start of the experiment by randomly

selecting an image and rim for each of the two categorisation rules. An example

slide from the categorisation task is shown in Figure 4.2.
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Figure 4.2: An example slide from Experiment 1, showing an incorrect categorisa-
tion response for the target stimulus.

Procedure

Participants began the experiment with training on the two categorisation rules; in

each trial, a stimulus from one set was shown in the centre of the screen, along with

two cues for the two possible classifications, with the contextual elements acting as

a background. The participant was asked to identify which of two categories the

shape came from by pressing the corresponding key on the keyboard. After making

their response, feedback was provided by showing either ‘Correct’ or ‘Incorrect’

on screen, before advancing to the next trial. Training was divided into interlaced

blocks of trials from each rule set to reduce the impact of order effects; participants

therefore classified all eight stimuli from a set before switching to the alternative

rule, changing the context, stimuli set and category labels.

After completing two blocks of a rule, the participant’s performance on that

categorisation was assessed. To ensure the participant had some understanding of

the rule, accuracy had to be significantly greater than chance across the last six-

teen trials to advance. A performance criterion was therefore set using a binomial

distribution to provide the minimum number of accurate categorisations across this

period that would qualify as significantly above chance (p < 0.05) if choices were

random; this provided a criterion of 12 correct responses in the last 16 trials, for

an accuracy rate of 0.75. Upon meeting this criterion, training for that rule was

terminated; however, to prevent forgetting of the rule, blocks of the completed rule
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moved from eight trials to one trial to continue to provide a reminder of the acquired

rule.

Once criterion was met on both categorisation rules, the experiment ad-

vanced to the break phase to allow for replays. During the break, one context was

randomly selected and shown on screen to encourage replays of the trials occurring

in that context. In order to maintain attention towards the context during the break,

participants were asked to complete a simple vigilance task, clicking Xs as they

appeared on screen at 3 to 6 second intervals. The break lasted for three minutes

before moving to the next phase, matching with the break length of Gershman et al.

(2014).

Following the break, participants moved to the test phase, performing a fur-

ther two eight-trial blocks of each rule to provide a measure of categorisation ac-

curacy. Once this was completed, participants were debriefed as to the aims and

expectations of the study.

4.2.2 Results

Data from three participants was excluded for failing to meet the training accuracy

criterion within the 45 minute session, leaving data from 81 participants for analy-

sis. The data was first examined to determine whether categorisation accuracy was

higher for the cued rule compared to the control, as was predicted by the Replay

model. Figure 4.3 shows the average accuracy rates for both conditions. Accuracy

was slightly higher for the uncued rule (M = 0.65± 0.02 95% confidence intervals)

compared to the cued rule (M = 0.64 ± 0.02), though this was not a significant dif-

ference, paired t(80) = 0.47, p = .640, d = 0.07, suggesting no benefit for the cued

rule.

The results also demonstrate that performance for both rules fell between

training and test, with mean accuracy in both conditions falling below the training

criterion of 0.75. Time away from the task therefore appears to harm performance

whether experiences are cued or not, though cueing could perhaps help to offset this
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Figure 4.3: Average categorisation accuracy for the cued and uncued rules in the
test phase of Experiment 1. Error bars show 95% CIs.

loss if performance started at a higher point. To compare this fall between the two

rules, each participant’s average accuracy rate across the final 16 trials of training

for each rule was contrasted with test accuracy to measure the drop in performance.

This drop was higher for the cued rule (M = 0.11 ± 0.02) than the uncued rule (M

= 0.09 ± 0.02), though again this was not a significant difference, t(80) = 0.95, p

= .344, d = 0.15. The fall in performance therefore appears to be fairly equivalent

whether the rule was reinforced or not.

4.2.3 Discussion

Results from Experiment 1 do not support either of the hypotheses taken from the

Replay model: accuracy rates for the cued categorisation rule were no better than

either pre-break performance for that rule or test performance on the uncued control

rule. As such, these results provide no evidence of a replay benefit in this task, with

neither rule appearing to benefit from the break in training, whether cued or un-

cued. Instead, this disruption in training appears to lead to a fall in performance for

both rules, suggesting the break led only to forgetting of what had been previously

learned. The experiment therefore provides no support for our suggestion that re-

hearsal processes could permit the discovery of previously unknown rules, and so is
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unable to demonstrate an association between replay processes and insight effects.

Three main explanations can be offered for such a result: first, that no replays

were performed during the break; second, that the contextual manipulation failed to

prioritise one set of trials over the other; and third, that the categorisation task does

not benefit from trial replays.

The first of these explanations suggests a lack of any replays during the break

period, thereby providing no rehearsal of either categorisation rule. This suggestion

is supported by the drop in performance for both rules between training and test,

implying that neither rule received any consolidation. This could be attributable to

a lack of sufficient motivation to perform replays during the break, as participants

gained no direct benefit for improved performance in the subsequent test period,

providing little reason for consolidation. This is further compounded by the fact

that participants had already met a performance criterion to advance from training

to break, potentially suggesting performance was already at a satisfactory level and

improvement was unneeded. While no measure of motivation is provided by this

task, this is an important factor to consider in the study of rehearsal processes: it is

uncertain whether learners will spend cognitive resources on consolidation without

sufficient reason to do so, particularly where rest carries its own intrinsic reward

(Kool & Botvinick, 2014, 2018). It is therefore advisable to better encourage the

performance of replays when examining the potential benefits of rehearsal, for ex-

ample by providing actual monetary rewards for accurate responses. Alternatively,

cognitive resources needed for replays may have been directed elsewhere during

the break, preventing any consolidation processes. While the break did include a

vigilance task to maintain attention on the screen, this task was selected as the as-

sociated cognitive demands were not judged to be sufficient to disrupt trial replays.

Even so, this could be verified by introducing a task/no task manipulation to the

experiment, though the inclusion of an extra factor would likely require a larger

sample than was used here.

The second explanation for these results suggests a failure of the contextual

manipulation to prioritise one set of trials over the other, leading both rules to be re-
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hearsed equally, and therefore generating no difference in performance between the

rules in the test phase. This may be because context was not bound closely enough

to the training trials to be used as a cue for replay, or because context is not in fact

used to select trials for replay at all. While this would explain the lack of a per-

formance difference between the cued and uncued rules, this does not account for

the drop in performance observed between training and test; even if both rules were

equally consolidated, this should have led to an increase in performance for both

following the break. In addition, as previously noted, context has been successfully

used as a cue in studies of memory consolidation (Rudoy et al., 2009; Bendor &

Wilson, 2012), providing some support for its role in rehearsal processes. Failure

of the contextual manipulation alone therefore does not seem to adequately explain

the present findings.

The third and final explanation for these findings suggests that the categori-

sation task does not benefit from trial replays, meaning that neither rule was con-

solidated despite task manipulations being effective in encouraging rehearsal pro-

cesses. This could occur if replays did not successfully isolate prediction errors in

previous trials, leading to no correction of mistaken classifications, or if rehearsal

continued to make use of overly simplistic, one-dimensional rules which were ac-

curate in most, but not all, cases. Even so, this again does not account for the drop

in performance in the test phase, as even one-dimensional rules would provide a

higher accuracy rate than was observed for either rule, being correct in six of the

eight possible items.

While the current data makes it difficult to definitively separate these expla-

nations, the drop in performance following the break does suggest that the present

results are due to a lack of rehearsal of either categorisation rule, whether cued or

uncued. This provides two main directions for the present study: continue to use the

difficult categorisation task, making slight alterations to examine or control for the

factors noted above, or switch to alternative tasks which have previously demon-

strated insight effects to determine whether these tasks might benefit from mental

replays. Given the potential concerns as to the effectiveness of replay on the current
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task, such a switch in method may be more valuable, particularly as this would al-

low for a closer connection between replay and insight. The second experiment in

this chapter therefore continued to examine whether rehearsal processes could lead

to the discovery of previously undiscovered solutions by switching to a novel task

more closely connected to such discovery: anagrams.

4.3 Experiment 2: Anagrams

Anagram tasks are commonly used in the existing insight literature because solu-

tions to these problems are often found through sudden, pop-out realisations after

time away from the task without any apparent conscious deliberation, a key aspect

of the insight phenomenon (Bowden, 1997; Novick & Sherman, 2003). However,

while the solutions to these problems are often subjectively viewed as sudden and

without consideration, there is also evidence to suggest that such solutions are in

fact derived from the iterative testing of letter combinations during the incubation

period, possibly indicating that a gradual process of unconscious mental testing un-

derlies this realisation (Novick & Sherman, 2003; Penney, Godsell, Scott, & Bal-

som, 2004). In such cases, anagrams could then be solved using a method similar

to that of the Replay model, with unsolved anagrams being revisited during periods

of rest in a secondary attempt to find the solution.

This is admittedly not a direct correspondence; anagrams are unlikely to be

solved using the same associative learning systems taken from the Rescorla-Wagner

model. Even so, this process could follow a similar concept of allowing the learner

more opportunities to attempt to solve the problem, so increasing the probability

of identifying the true solution. Alternatively, revisiting past failures could help to

solidify which responses are incorrect, assisting the direction of subsequent solu-

tion attempts. Such a suggestion is supported by studies finding solution rates to be

higher following longer incubation periods (C. Peterson, 1974; Goldman, Wolters,

& Winograd, 1992), though whether this is due to greater consideration of the prob-

lem is still under debate (e.g. Vul & Pashler, 2007).
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As such, anagrams offer a good crossover between existing consolidation

models and theories of insight, making them useful in further examinations of the

link between insight and mental rehearsal. Experiment 2 therefore sought to apply

an anagram solving task to the consolidation design of Experiment 1: by encour-

aging the replay of unsolved anagrams in a period of rest, performance on those

anagrams may be improved in a later test period. This again made use of a con-

textual manipulation both to encourage the performance of replays as well as to

provide a contrast between cued and uncued trials: by associating anagrams with

particular contexts, placing the learner back in a context should prioritise replay of

the missed trials from that context, thereby rehearsing those errors more than other

stored trials. If such rehearsal does indeed assist in finding the solution to the re-

played trial, then this should lead to a higher probability of solution for unsolved

anagrams from the re-shown context compared to the control context in a subse-

quent test. Alternatively, if solutions are equally likely between contexts in this

period, then this rehearsal may instead lead to an advantage in solution speed, with

errors from the re-shown context being solved faster.

4.3.1 Method

The hypotheses, experimental design and planned data analysis for Experiment 2

were preregistered on the Open Science Framework before data collection began.

Full details can be found at: https://osf.io/svc7j/.

Participants

One-hundred-and-twenty-six participants were recruited from the University of War-

wick online SONA system in return for financial compensation, made up of an

initial payment of £2, and a performance bonus ranging between £0 and £6. The

sample included 86 females and 39 males (1 declined to answer), while age ranged

between 18 and 30 years, with a mean of 20.7.
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Design and Materials

Experiment 2 used an anagram solving task, in which a 5-letter single-solution word

scrambled into a randomised order appeared on-screen for a set period of time, and

participants were asked to enter the correct word using the keyboard (for exam-

ple, the scramble BMALU may appear, with the solution being ALBUM). Trials

ended when a guess had been made or when the time limit was met, at which point

the scramble was immediately removed from the screen, and participants were in-

formed of their accuracy. Response accuracy and reaction time were then recorded

before advancing to the next trial.

Anagrams were drawn from a list of 204 5-letter single solution words taken

from Gilhooly (1978). These words were randomly scrambled before the experi-

ment began such that each participant viewed the same order of scrambled letters

for a given word.

As in Experiment 1, trial context was composed of a background image of

a location and a coloured rim, with each being randomly selected at the start of the

experiment to form two distinct compound contexts (illustrated in Figure 4.4).

Experiment 2 also included financial rewards for performance in order to

address the potential motivation issues in the previous experiment noted above.

Correct answers were therefore awarded varying numbers of points, with the final

point total accumulated across the task being converted into a bonus payment at the

end of the experiment.

Figure 4.4: An example slide from the training phase of Experiment 2.
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Procedure

Upon arriving at the lab, participants were first provided with a short, written de-

scription of the experiment to introduce the task. As the task requires familiarity

with English words, participants were also asked to describe their fluency in En-

glish as either poor, satisfactory, good or excellent (a non-disclosure option was

also available).

The experiment was divided into multiple rounds, each divided into 3 phases:

training, break and test. In each round, participants began by solving anagrams until

meeting an error criterion, followed by a break to allow for rehearsal, before being

given a second opportunity to solve the failed anagrams. Multiple rounds were used

to avoid overloading participants with a high number of failed trials to replay dur-

ing the break; results from each round were then aggregated to provide a sufficient

number of measurements for analysis.

During the training phase, participants performed anagram trials in each of

the two distinct contexts. Trials were solved in blocks of five in one context before

switching to the other context. Initially, participants were given 10 seconds to solve

each anagram, though this decreased by 2 seconds with each completed block of

five trials to a minimum of 2 seconds. This decrease was intended to control for

ceiling performers by increasing difficulty over the course of the training phase.

Points were awarded for correct solutions, starting at 1 point for the first correct

answer in a context and increasing by 1 point with each successive solution up to a

maximum of 10 points per correct answer in each context. This point scheme was

intended to encourage participants to attempt to remain in the training phase for as

long as possible.

After making two errors in a given context, participants no longer viewed

trials in that context; the training phase therefore ended once two errors were made

in each of the two contexts. Before moving to the break phase, participants were

told that they would be given a second chance to solve the anagrams they missed,

but only after a 1-minute interval. Participants were also told that solutions in this
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second chance period would be awarded double the original point value of that trial;

this was intended to encourage rehearsal of the failed trials during the break phase.

Answering correctly during the training phase would still however provide access

to higher-value anagrams, so limiting the potential strategy of deliberately answer-

ing incorrectly for known solutions in order to obtain doubled rewards in the later

test phase. A slide was shown at this point to remind participants of the scram-

bles that had been answered incorrectly to control for recency effects in potential

consolidation.

The break phase then began, in which one context was randomly selected

from the preceding training phase and re-shown for one minute. Break length was

reduced in this task due to the use of multiple breaks across rounds, though the

number of trials available for replay was also lower than in the previous experiment.

During this time, participants were asked to perform a vigilance task to maintain

attention on the screen: Xs appeared on-screen in random locations at 3- to 6-

second intervals during the break, and participants were asked to click the Xs as

close to the centre as possible.

Once the break was complete, participants moved to the test phase, in which

the 2 errors from each context were re-shown and participants were given a sec-

ond opportunity to attempt solution. As previously noted, correct responses in this

phase were awarded double the point value of the original trial. The solution (cor-

rect/incorrect) and reaction time from each trial were then recorded for later com-

parison between the cued and uncued contexts.

Completing the test phase marked the end of that round, and a new round

began. Rounds continued until all anagrams were viewed, or until a maximum of

10 rounds were completed. Once either of these criteria was met, the experiment

ended, and participants were debriefed as to the aims and expectations of the study.

The total number of points earned by the participant was then translated into a bonus

payment, with each point being worth £0.01.
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Figure 4.5: Average solution rates from the cued and uncued trials in the test phase
of Experiment 2. Error bars show 95% CIs.

4.3.2 Results

Participants were excluded from the analysis if the participant failed to finish the

experiment or if the participant did not make at least 12 total errors across the

experiment to allow for later comparisons, though no participants met these criteria.

Performance in the task was found to be fairly low in both the training and

test phases: average solution rates were 0.33 (± 0.03 95% confidence intervals)

in training and 0.28 (± 0.02) at test, suggesting the task was reasonably difficult.

To assess the impact of break context on performance, contrasts were first made

between average solution rates across test trials from the cued and uncued contexts,

shown in Figure 4.5. Rates were higher by 0.02 (± 0.02) in the uncued context

(M = 0.29 ± 0.01) compared to the cued context (M = 0.27 ± 0.01), though this

difference did not meet the standard significance threshold, paired t(125) = 1.91, p

= .058, d = 0.16. This result therefore opposes the above hypothesis, with missed

anagrams from the cued context being no more likely to be solved than those from

the control context. In fact, this demonstrates a near significant difference in the

opposite direction, suggesting that this cueing may have if anything harmed later

performance. Even so, this difference does not meet the criterion for statistical

significance, suggesting this may not be a reliable effect.
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Figure 4.6: Average response times from the cued and uncued trials in the test phase
of Experiment 2. Error bars show 95% CIs.

As a follow-up to this test, contrasts were also made between the average re-

sponse times from the two conditions, shown in Figure 4.6. Anagrams were solved

0.16 (± 0.30) seconds faster in the uncued context (M = 4.60 ± 0.15) compared

to the cued context (M = 4.76 ± 0.15), though this difference was again non-

significant, paired t(125) = 1.07, p = .287, d = 0.12. Cued errors were therefore

not solved reliably faster than those from the control context, though this contrast is

less meaningful given the generally low level of performance at test, as a difference

in solution time is only relevant where anagrams were being solved frequently in

both contexts.

As a secondary analysis, we next examined the relationship between the fre-

quency of training trials and later test performance in order to test for any potential

interference in selecting failed trials for replay: due to the use of an error criterion in

training, the frequency of training trials performed by each participant was variable,

with high-performing participants viewing more trials than low-performing partic-

ipants. This difference in training frequency may have inadvertently introduced

an additional factor to the rehearsal process: higher training frequencies provide a

larger sample of trials available for replay, potentially interfering with the rehearsal

of the key failed trials examined in the test phase by making the selection of those
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Figure 4.7: Comparisons of training frequency and test solution rate from the cued
and uncued contexts of Experiment 2, including lines of regression.

trials less probable.

Figure 4.7 shows average training frequencies against test solution rates

from the two conditions, demonstrating that participants who received more training

trials tended to perform better in the test phase. This was assessed using correlations

between training frequency and solution rate, which were significantly positive in

both the cued (r = 0.424, t(124) = 5.22, p < .001) and uncued contexts (r = 0.390,

t(124) = 4.72, p < .001). As such, rather than any interference due to higher levels

of training, the results instead indicate that participants who performed well dur-

ing training and therefore viewed more trials also performed better at test, likely

reflecting underlying skill at the task.

4.3.3 Discussion

The above results provide no evidence of the hypothesised replay benefit in Experi-

ment 2, with anagrams from the re-shown context being no more likely to be solved

following the break than the uncued trials. The experiment is therefore unable to

support the suggestion that insight-like effects often observed in anagram solution

are due to the replay of unsolved problems between solution attempts assisting the

learner in identifying the correct answer.

The potential reasons for this result are broadly the same as those offered
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for Experiment 1: replays may not have been performed in the task at all, replays

may not have been adequately biased by trial context, or the anagram task may not

have benefited from the replay of failed trials. This is despite the adjustments made

to the design of Experiment 2 that attempted to address some of these concerns:

financial rewards for high performance were intended to better encourage the re-

play of missed trials, while the switch to the anagram solving task was intended to

account for possible issues in the categorisation task by moving to a design that had

previously demonstrated insight effects.

It is notable, however, that while the anagram task is more closely aligned

with insight, this is also less connected to the associative learning tasks on which

the Replay model was built, a potential cause for concern when applying the prin-

ciples of this model to the task. This application was based on the assumption that

providing the learner with more opportunities to revisit past failures through trial

replays would increase the probability of solution, either by allowing more solu-

tion attempts or by identifying the reasons for previous mistakes; such a prediction

builds on the findings of past studies suggesting insight effects in anagram tasks

are the result of a process of incremental learning across the incubation period (e.g.

Novick & Sherman, 2003; Penney et al., 2004). Instead, the results appear to indi-

cate that prompting such attempts may if anything harm later performance, though

the reliability of this effect remains uncertain. This relates to the concept of fixation

within the insight literature where learners are suggested to become fixated on in-

correct responses, preventing the realisation of the true solution. In such cases, the

incubation period is suggested to allow the learner to move away from these errors,

so starting afresh on any subsequent solution attempts (Vul & Pashler, 2007).

This could then explain the present results: cueing the replay of failed tri-

als could lead to a fixation on previous mistakes, blocking further attempts to find

novel paths to solution. If so, this could mean that anagram tasks are unable to

benefit from the consolidation of learning through replay at all, being based in a

different problem-solving system separate from the associative learning processes

underlying the Replay model. This connects with the wider debate on the nature
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of incubation effects in anagram tasks noted above: studies in the insight literature

have argued both that such effects are based on an incremental accrual of evidence

in this period (Novick & Sherman, 2003; Penney et al., 2004), as well as a true in-

sight process requiring the abandonment of previous failures (Vul & Pashler, 2007).

The findings of this experiment are unfortunately unable to provide a substantial

contribution to this debate given the lack of a significant effect in the observed re-

sults, simply displaying a scenario in which contextual cueing did not appear to

reliably affect the solution rate of related anagrams.

These results do, however, provide some guidance in the continuation of the

present research into the role of learning consolidation processes in the discovery of

previously unnoticed concepts: if trial replay is to be applied as a potential mech-

anism to allow for such discovery, this requires some assurance that this form of

consolidation will be effective in generating discovery, including greater clarity on

the way in which this process alters the existing mental representation. It is there-

fore advisable to return to the use of paradigms with a greater correspondence to the

principles of the Replay model where the effect of trial replay is better understood,

allowing for more definitive model predictions: associative learning tasks. Insight

tasks, meanwhile, may need to be examined on a case-by-case basis to determine

whether consolidation processes could be applicable as underlying mechanisms.

It is also notable that this provides a second occasion in which context may

not have effectively biased replay selection. While there are in both cases results

which point towards other reasons for this failure (the performance drop in Exper-

iment 1 and the possible fixation in Experiment 2), this could also indicate that

this is in fact an ineffective manipulation, with context either not being used as a

selection criteria, or requiring a closer connection to trial events to be used in this

way. As such, it may also be advisable to move away from the use of a contextual

manipulation as a precaution for such issues.

The third experiment in this section therefore made a greater departure from

the design of the previous tasks, both selecting a more traditional associative learn-

ing design to facilitate the application of the Replay model, as well as replacing
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the potentially faulty context manipulation. This involved the consideration of a

number of existing paradigms in order to identify a design more closely related

to associative learning principles in which learning consolidation processes could

lead to the discovery of previously unnoticed concepts; this ultimately led to the

selection of a sensory preconditioning task, being both an established associative

learning effect as well as a display of the apparent integration of separate sets of

learning into new behaviours.

4.4 Experiment 3: Sensory Preconditioning

Sensory preconditioning refers to an effect in which a value or response trained

to one stimulus is seemingly passed to an untrained but associated stimulus; for

example, in the original description of the effect by Brogden (1939), following

training on a light/bell compound, dogs trained on a shock response to the bell later

showed a similar response to the light, despite never having seen the light paired

with a shock. In its most basic form, this can be divided into three phases, as

illustrated in Figure 4.8: in Phase 1, learners are trained on associations between

two sets of stimuli (A+B); in Phase 2, learners are trained on a value or response for

one of these sets (B+R); and in Phase 3, learners are tested on their response to the

untrained stimulus (A) to examine any transfer. The present study focuses on the

value case, in which the trained stimulus is rewarded, and Phase 3 tests the transfer

of this reward to the previously untrained stimulus; for instance, the learner may

be given choices between stimuli which were and were not paired with the trained

item to assess which is preferred (e.g. Wimmer & Shohamy, 2012). This procedure

Figure 4.8: Illustration of the basic three-phase sensory preconditioning design.
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has been observed to demonstrate such a value transfer, suggesting internal mental

processes may propagate the value of one item to another despite never actually

seeing the untrained item lead to reward (e.g. J. L. Jones et al., 2012; Wimmer &

Shohamy, 2012).

Sensory preconditioning therefore appears to demonstrate the combination

of separate sets of learning to direct future choice without direct training, making

it well suited to the present examination of learning consolidation. An additional

advantage of sensory preconditioning in the present study is that it can be explained

using associative learning systems: due to the training of an association between

the rewarded and unrewarded stimuli in Phase 1, when the rewarded stimulus is pre-

sented in Phase 2, the memory of the unrewarded stimulus is also activated, leading

both stimuli to be connected with the subsequent reward (Wimmer & Shohamy,

2012). This basis in associative theory then allows for easier application of the Re-

play model to this process: if transfer results from such memory activation, then

additional replays of Phase 2 trials should then amplify this process, leading to a

stronger effect. In this case, replay does not generate the discovery of broader as-

sociative structures, but could strengthen existing effects, making such discovery

more apparent. Providing greater opportunity for replays could then further facili-

tate the preconditioning effect, solidifying the transfer of value from one stimulus

to another. This can again be achieved by adding a break between training and test,

offering the learner more time to perform replays and thereby increasing the level

of consolidation.

The third experiment of this section therefore uses a sensory precondition-

ing design to contrast the transfer of value from trained to untrained stimuli between

participants who are given a break to perform replays after training with those with-

out such an opportunity. This replaces the contextual manipulation of the previous

experiments with a simple break/no-break comparison, removing the previously

stated concerns regarding the replay selection criteria. If trial replay amplifies the

sensory preconditioning effect, then participants in the break condition should show

greater transfer than those receiving no break.
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The application of replay to this paradigm does however allow for the re-

hearsal of trials from both Phases 1 and 2, potentially leading to additional effects:

while replay of Phase 2 trials could amplify transfer as suggested above, replay of

Phase 1 trials after learning reward associations could also lead the learner to infer

that the untrained stimulus was obstructing reward in the first phase. This would

then cause the untrained stimulus to be treated as an inhibitor to reward, negat-

ing the value of the rewarded stimulus. This potential outcome is similar to the

backwards conditioned inhibition effect (Chapman, 1991; Urcelay, Perelmuter, &

Miller, 2008), in which the training of a paired stimulus without reward (XY-) fol-

lowed by rewarded training with one of those stimuli (Y+) leads the unrewarded

stimuli (X) to become inhibitory. Such a procedure bears a strong resemblance to

the described sensory preconditioning effect, but with opposing results: rather than

gaining the value of the rewarded stimulus, the untrained stimulus instead gains the

negative of this value in order to counteract this reward. This effect corresponds

with the associative framework of the Replay model: when replaying trials from

Phase 1 after learning the reward values in Phase 2, the presence of the trained stim-

ulus leads to the expectation of reward for these trials. Given that no such reward is

given in these Phase 1 trials, the associative strength between both presented stimuli

and reward decreases; in the case of the trained stimulus, this is offset by replays

of the rewarded Phase 2 trials, maintaining the association, whereas the association

of the untrained stimulus falls below its initial starting point of zero, becoming an

inhibitor.

The Replay model is therefore able to predict two opposing results from the

same consolidation process: one in which the untrained stimulus continues to gain

the value of its trained associate, and one in which it gains the negative of this

value. This results from potential differences in the way in which trials from the

first phase are represented when selected for replay: these trials may be viewed as

unrewarded in contrast with the Phase 2 trials, leading to the inference of inhibi-

tion described above, or they may simply be considered as being uninvolved with

reward information, showing only the co-occurrence of the two presented stimuli.
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The demonstration of either standard preconditioning or inhibition following the

break period could then constrain the representation used by the Replay model,

suggesting the inferences made by the learner when identifying broader learning

patterns during consolidation.

Experiment 3 therefore uses an adapted form of the described precondition-

ing design in which a break/no-break condition is added between training and test,

providing a contrast in the degree of value transfer from trained to untrained stimuli

between scenarios offering either high or low opportunity for replay. We examine

two hypotheses regarding the effect of this manipulation based upon the predictions

of the Replay model described above:

Hypothesis 1: Amplified Preconditioning

If replays of Phase 2 trials amplify existing preconditioning effects, then choices be-

tween untrained stimuli in the test phase should demonstrate greater correspondence

with the value of their trained associates following the break, leading to a greater

preference for untrained stimuli with high-value associates in the break condition.

Hypothesis 2: Inhibition

If replays of Phase 1 trials lead to the inference that the untrained stimuli obstructed

rewards in that phase, then these items should gain the inverse value of their asso-

ciates; as such, choices at test should then prefer untrained stimuli with lower-value

associates in the break condition under the assumption that these are less inhibitory.

4.4.1 Method

As with Experiment 2, the hypotheses, experimental design and planned data anal-

ysis for Experiment 3 were preregistered on the Open Science Framework before

data collection began. Full details can be found at: https://osf.io/venbp/.
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Figure 4.9: Illustration of the design of Experiment 3, including two example stim-
uli from the Untrained (boxes) and Trained (shapes) sets.

Participants

Ninety-nine participants were recruited from the University of Warwick online

SONA system in return for financial compensation, made up of a base payment

of £2 plus a bonus of £0-£3 dependent on performance in the test phases. The sam-

ple included 57 females and 32 males, while age ranged between 18 and 41, with a

mean of 22.2.

Design and Materials

The experiment used an adapted form of the three-phase sensory preconditioning

design described above, with two main alterations: first, a break/no-break manip-

ulation was added to the task, with participants in one condition receiving a three-

minute break between Phases 2 and 3; second, a recall test was added to the task

as a fourth phase both to assess whether stimulus associations were remembered as

well as to distract participants from the importance of Phase 3 trials as a measure

of transfer. The task was therefore divided into four phases: associative training,

reward training, preference test and recall test, illustrated in Figure 4.9.

Six stimulus pairs were used in the experiment, each made up of a ‘Trained’

stimulus and an ‘Untrained’ stimulus drawn from respective sets; these were rep-

resented as coloured boxes (Untrained set) containing geometric shapes (Trained

set), with the shapes being worth different amounts of money. Colours and shapes
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were randomly assigned to sequences at the start of each run of the experiment,

and remained fixed and deterministic for each participant. Monetary values were

used to provide a reward scheme for performance in the test phases of the task, with

participant responses being directly tied to actual monetary gains according to their

choice. This scheme used a binary high/low format for the Trained items, with three

shapes having high values (£1) and three having low values (£0.20); these values

received variation in the task by adding random noise figures, drawn on each trial

from a uniform distribution between -£0.15 and £0.15. Rewards were explicitly

based upon choices in Phases 3 and 4, thereby encouraging accurate learning of the

sequences.

Procedure

Upon arriving at the lab, participants were first randomly assigned to either the

break or the no-break condition; this was balanced to provide approximately equal

numbers in each group, meaning 45 participants were assigned to the break con-

dition and 44 participants were assigned to the no-break condition. Participants

were told the experiment examined the learning of stimulus sequences, and would

involve learning both simple sequences of items as well as the value of those items,

with a subsequent test to assess performance.

The task began with Phase 1, in which a single stimulus from the Untrained

set was presented on screen, and participants were asked to press a key on the

keyboard to see which stimulus from the Trained set followed. After a response,

the associated Trained stimulus appeared on-screen for 1 second, before advancing

to the next trial. Each Untrained stimulus was presented five times across the phase

for a total of 30 trials, with the order of stimuli being randomised.

After completing Phase 1, participants moved to Phase 2, which followed

a similar structure: a stimulus from the Trained set appeared on-screen, and par-

ticipants made a key press to see the monetary value of that item. Values were

generated on each trial according to the fixed mean value of the displayed Trained

stimulus plus a randomly sampled noise term, described above. Again, each Trained
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stimulus was presented five times across Phase 2 in a randomised order for a total

of 30 trials.

At this point, participants in the break condition moved to an alternate task

for 3 minutes to allow for the performance of replays; this was prefaced by a slide

reminding participants that the break would be followed by a test of their memory

for the preceding sequences, intended to encourage rehearsal. Break length was

again set at 3 minutes based on the design of Gershman et al. (2014), matching with

Experiment 1. As with the previous experiments, the break included a vigilance

task to maintain attention on the screen, in which participants were asked to click

Xs as they appeared on-screen at 3-6 second intervals. Participants in the no-break

condition moved directly to the next phase.

Participants then began Phase 3 of the task, in which two stimuli from the

same set were presented on either side of the screen, and participants were asked to

choose which they would prefer based on their previous experiences in the earlier

phases. Choices were made using one of two corresponding keystrokes representing

either the left or right stimulus, and led to reward values corresponding with the

trained sequence, meaning selection of an Untrained stimulus that led to a high-

value Trained stimulus was treated as a high-value choice. Participants did not,

however, receive rewards during this phase, though choices between high- and low-

value stimuli were recorded and used to generate bonus payments at the end of the

task. As such, participants received no feedback on the outcome of their selections,

preventing any contamination of future decisions by that feedback.

Participants completed all 15 potential comparisons from each stimulus set

twice, plus four additional repetitions of the 9 key comparison trials (high vs. low)

from the Untrained set, for a total of 96 test trials, again presented in a randomised

order. While choices between the Untrained stimuli provided the main measure of

the experiment, choices between the Trained set offered a verification that partici-

pants had accurately learned the value of these items in Phase 2.

Finally, Phase 4 provided participants with a recall test, in which an Un-

trained stimulus appeared at the top of the screen, and two Trained stimuli (one
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correct, one randomly selected foil) appeared on the left and right. Participants

were instructed to select which of the two Trained stimuli followed after the shown

Untrained stimulus, again responding using keystrokes to select either the left or

right shape. As with choices in Phase 3, participants did not receive feedback on

their answers to prevent contamination of future responses, though these were again

used to determine the final bonus payment. As with Phases 1 and 2, each Untrained

stimulus was presented five times across Phase 4 in a randomised order, for a total

of 30 trials.

After completing all four phases, the experiment ended, and participants

were debriefed as to the aims and expectations of the study. Bonus payments were

then calculated by randomly selecting a key comparison trial from Phase 3 and a

recall trial from Phase 4, and using the participant’s responses in these trials to de-

termine a reward payment. Choice trials were rewarded following the same scheme

as Phase 2, providing either a high or low value plus noise, while recall trials re-

ceived a fixed reward of £1 if correct.

4.4.2 Results

Figure 4.10 shows average preference rates for the high-value Untrained items

across the key high/low comparison trials from Phase 3. Average rates were marginally

higher in the no-break condition (M = 0.63 ± 0.08 95% confidence intervals) than

the break condition (M = 0.61 ± 0.08), though this was not a significant difference,

t(97) = 0.25, p = .801, d = 0.05, indicating no reliable effect of break on preference.

This rate was, however, found to be significantly higher than 0.5 in both the break

(t(44) = 3.05, p = .004, d = 0.45) and no-break (t(43) = 3.32, p = .002, d = 0.50)

conditions, suggesting participants were not answering randomly in these trials.

As a secondary test, preference rates were also compared across the high/low

comparisons from the Trained set to check learning of stimulus values, shown in

Figure 4.11: this again was higher in the no-break condition (M = 0.785 ± 0.075)

than the break condition (M = 0.749 ± 0.067), though this was not a significant
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Figure 4.10: Average preference rates for high-value Untrained items in the test
phase for the break and no-break conditions of Experiment 3. Error bars show 95%
CIs.

difference, t(97) = 0.72, p = .471, d = 0.16 again suggesting no reliable effect of

break. This was again however found to significantly differ from chance selection

in both the break (t(44) = 17.5, p < .001, d = 1.12) and no-break (t(43) = 16.7, p

< .001, d = 1.16) conditions, demonstrating reasonably accurate learning of shape

values in both groups.

Figure 4.11: Average preference rates for high-value Trained items in the test phase
for the break and no-break conditions of Experiment 3. Error bars show 95% CIs.
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Figure 4.12: Average recall rates for stimulus associations in the recall phase for
the break and no-break conditions of Experiment 3. Error bars show 95% CIs.

Similarly, recall rates were also compared between groups to assess memory

for the initial associations, shown in Figure 4.12: these rates were higher in the

break condition (M = 0.896 ± 0.045) than the no-break condition (M = 0.893 ±

0.054), though this was once again a non-significant difference, t(97) = 0.09, p =

.929, d = 0.02, indicating no reliable effect of break on memory for the sequences.

As with the previous measures, however, recall rates were above-chance accuracy

in both the break (t(44) = 17.6, p < .001, d = 2.63) and no-break (t(43) = 14.8, p <

.001, d = 2.22) conditions, indicating these associations were accurately acquired

in both groups.

Finally, correlations between preference rates from the Trained and Un-

trained sets were used to assess the relationship between learning and transfer; this

was found to be positive, r = 0.663, p < 0.001, suggesting that better learning of

the value of Trained stimuli led to greater transfer to the Untrained stimuli.

4.4.3 Discussion

The findings of Experiment 3 appear to conform with previous displays of sensory

preconditioning, with participants showing a greater preference for items with high-

value associates, implying that these items were viewed as holding similarly high
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values. This reflects a transfer of value from trained to untrained stimuli based

on internal mental processes rather than any new observations: participants appear

to be inferring the value of the untrained items via their relationship with their

rewarded associates, so using the combination of distinct sets of learning to guide

their behaviour in the choice trials.

Preferences did not, however, differ with a break between training and test,

suggesting that such transfer is unaffected by the amount of time available for re-

hearsal, so opposing both the amplification and inhibition hypotheses taken from

the Replay model. Such results can again be attributed to the explanations offered

for the lack of replay effects in the previous tasks: while the removal of the con-

textual manipulation eliminates potential failures in replay bias, the lack of a break

effect again implies either that participants may not have performed replays across

the break period, or that replays may not have led to any substantial change to the

participants’ associative representations.

In the case of the former explanation, this again reflects concerns regarding

participant motivation or distraction interfering with rehearsal despite the continued

use of design elements to counteract these issues. There is however an additional

factor relating to this explanation introduced in this task due to the removal of the

contextual manipulation: without this element, the present design provides no direct

cue towards replay in the break period at all, offering less assurance of rehearsal.

While the contextual manipulation did not appear effective in the previous exper-

iments, the lack of any method of encouragement in this task remains a notable

issue, and should be addressed in future studies of replay. It is therefore advisable

to determine alternate methods of prompting rehearsal to more adequately assess

this conclusion; for example, context could be more closely bound to training trials

to assure its use as a cue, or the training stimuli themselves could be re-presented

during the break period, though this could introduce other confounds.

The latter of these explanations meanwhile reflects deeper concerns that re-

plays may have little influence on sensory preconditioning tasks even where re-

hearsal is effectively encouraged. This would be a more surprising result for this
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task given that sensory preconditioning was specifically chosen in this experiment

for its existing basis in the same associative learning principles that form the basis

of the Replay model: Replay uses the same associative learning framework which

seemingly underlies both the acquisition of stimulus and reward associations as well

as the transfer of reward values displayed in this task. It is therefore unclear why

the same process which accounts for these behaviours during training should fail to

generate change in offline rehearsal if replays are occurring as described.

Such a finding could then relate to other potential issues introduced when

adding a rehearsal period to the present design beyond learning consolidation. A

key example of such a factor is memory decay: longer intermissions between train-

ing and test could also cause greater losses in trial memory, counteracting any po-

tential rehearsal. Adding a break period therefore introduces a conflict between

rehearsal and forgetting, an aspect which is more pronounced in the current design

due to the contrast between break and no-break conditions rather than the contex-

tual manipulations of Experiments 1 and 2. If so, this would have to be a fairly

equal balance in the present task given the lack of break effect in the above results,

with forgetting essentially negating any rehearsal benefit to generate an equivalence

between conditions. What is more, this would also call into question the global

benefits of consolidation across tasks, being consistently counteracted by memory

failures. This may then need to be assessed more directly to determine the impact

of forgetting on rehearsal, for example using different break lengths to examine the

time course of the effect.

There is also the possibility that the two opposing effects hypothesised by the

Replay model did actually both occur during the break period, but due to their con-

flicting directions, ultimately cancelled each other out: if participants replayed trials

from both Phases 1 and 2 during the break at approximately equal rates, then the

initial preconditioning effect may have been both alternately amplified and coun-

teracted, leading to no overall difference. This is however a highly speculative

explanation based on the operations of the Replay model; the present data is unable

to confirm either individual effect occurred in this task, and so cannot verify such
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a suggestion. This could however be tested by cueing participants to replay either

Phase 1 or Phase 2 trials to separate the two effects, though this would again require

more reliable cueing mechanisms as noted above to effectively promote rehearsal

of one set of trials over another.

The current data is unfortunately unable to effectively discriminate between

these explanations, providing no clear indication as to whether replays were or were

not performed in the task. These results do however indicate that potential rehearsal

benefits are dependent on more than just greater opportunity for replay: simply

providing learners with a break to perform replays does not guarantee a greater

benefit, as other factors could interfere with rehearsal in this period. This then

suggests that consolidation processes are more complex than was assumed by the

initial depictions taken from the Replay model, involving the consideration of more

factors beyond rehearsal time. As such, Replay may require further development

to capture these elements if it is to provide more accurate predictions. This applies

both to the theoretical side, expanding on model definitions to account for these

factors, as well as the empirical side, adapting experimental contrasts to provide

more complete assessments of model predictions.

While the lack of a break effect makes the processes involved in this task

ambiguous, it does remain notable that in replicating sensory preconditioning ef-

fects, this data demonstrates the discovery of overarching structures outside of di-

rect training that was initially targeted by this study; independent of the break ma-

nipulation, participants are combining separate sets of training to guide their later

responses. The present sensory preconditioning task does therefore appear to offer

a good base for further examinations of such discovery, even if the role of rehearsal

in this task remain unclear. This may then be a valuable design for continued exam-

ination of consolidation results, offering a building point for future work to more

closely investigate the systems involved in learning consolidation.
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4.5 General Discussion

Across the three experiments of this section, we have found no definitive evidence

that mental rehearsal of past experiences through trial replays assists in the discov-

ery of previously unrealised data structures: Experiments 1 and 2 find no benefit

from cueing such replays, with Experiment 1 in fact observing a drop in perfor-

mance, while Experiment 3 finds no benefit from providing greater opportunity for

replay using a break period. This then makes it difficult to suggest the value of re-

plays in building more accurate representations of real-world data patterns, offering

no clear evidence of learning consolidation processes having any impact on men-

tal structures. Such findings also prevent any connection between general learning

consolidation systems and insight effects, particularly given that none of the three

tasks studied here demonstrate any improvement with time away from training.

These findings then provide an interesting contrast with the existing liter-

ature on rehearsal and consolidation in memory which provided the basis for the

present work: despite the integral role of these processes in forging long-term

memory (Atkinson & Shiffrin, 1968; McGaugh, 2000; Ratcliff, 1990), we here

find no impact of similar systems on associative representations in three distinct

tasks. This could then present a disconnect between the systems supporting learn-

ing and memory, with the former being less reliant on rehearsal of past experiences

than the latter. Such a distinction would be somewhat surprising given the poten-

tial benefits of rehearsal in maintaining an accurate representation, as well as the

fit of such a system to existing behaviour (Ludvig et al., 2017; Chapman, 1991;

Ratcliff, 1990). This is in addition to the apparent display of such rehearsal in neu-

ral structures (Wilson & McNaughton, 1994; Euston et al., 2007; Davidson et al.,

2009), as well as the attribution of existing associative learning effects to such pro-

cesses (Gershman et al., 2014; Momennejad et al., 2018). The role of rehearsal

within learning systems therefore appears somewhat ambiguous, perhaps suggest-

ing a more complex interaction between direct learning and subsequent consolida-

tion than was initially assumed in this study.
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Despite these results, there are two potential suggestions that could be made

regarding the role of replay based on common elements identified throughout these

studies: first, replays appear to be difficult to effectively encourage; and second, re-

plays may not assure a benefit in all scenarios. The first of these suggestions refers

to the potential issues noted in all three experiments regarding the manipulations

used both to prompt and bias trial replays: while Experiments 1 and 2 used trial

context to provide a contrast between cued and uncued conditions, the lack of ef-

fect in these studies casts some doubt on the success of this design. Conversely, by

removing this manipulation from Experiment 3, this task included no direct cueing

mechanism at all, providing even less assurance that replays were being performed.

This is a substantial cause for concern given that any assessment of the benefits of

the rehearsal of past learning depends on reliable experimental contrasts between

situations where learners are and are not performing replays, so requiring some as-

sured method of encouragement. As such, it appears necessary to more definitively

identify the criteria by which experiences are selected for replay in order to provide

more concrete comparisons in future examinations of learning consolidation. In

this respect, the present findings could be useful as indications that trial context is

not used as such a criterion, demonstrating no effect in two different tasks. This is

not, however, a definitive conclusion, as there are additional factors within each of

these tasks that may have interfered with replay; the role of context may then need

to be revisited in future work to be more conclusively eliminated, alongside other

potential cues.

The second suggestion is based primarily on concerns raised in Experiments

1 and 2 that the tasks in question may not benefit from trial replay even where re-

hearsal occurs, though similar concerns could be raised in Experiment 3 given the

lack of break effects. Such a suggestion also matches with the apparent distinction

in findings between the present experiments and previous studies which indicated

rehearsal effects in associative learning paradigms (e.g. Gershman et al., 2014;

Chapman, 1991): these differences in results could be attributed to differences in

the tasks used in these studies, with the current tasks offering poorer applications
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of rehearsal than those used in the existing literature. This could then imply that

Replay is a somewhat limited system in terms of generality, only able to generate

benefits in a subset of tasks that correspond with the model’s framework. Such is-

sues again promote the careful consideration of the tasks used when examining the

validity of Replay in order to maintain focus primarily on those likely to display

rehearsal benefits. This was noted previously when discussing the results of Ex-

periment 2, leading to the suggestion of restricting attention to tasks more closely

aligned with the associative learning principles that form the foundation of the Re-

play model. It is therefore advisable to maintain this focus in future work, assessing

the Replay model within its existing framework before attempting to adapt or ex-

tend the model to more varied tasks.

Such a suggestion also relates to concerns regarding memory decay noted

in Experiment 3: even where rehearsal benefits could be gained from time away

from a task, this may be counteracted by the loss of trial memories during the same

period, again limiting the impact of replay on the representation. The collected re-

sults offer conflicting evidence on this interaction: while the drop in performance of

Experiment 1 does suggest a loss of trained patterns, Experiment 3 finds no general

differences in memory with a break, while Experiment 2 provides no real measure

of memory (though this task did use a reminder slide to counteract such concerns).

Even so, this remains an important factor to consider given the reliance of con-

solidation on memory, and should be examined in future work on the rehearsal of

learning. There is also the alternate possibility that consolidation effects actually

require longer breaks in training to be displayed: the breaks used in the present

experiments may not have allowed for a sufficient number of replays to display

any rehearsal benefit, even where replays were effective in altering the associative

representation. This would be a more surprising finding given that the length of

these breaks was based on those used in the experiments of Gershman et al. (2014),

which did find behavioural differences across such relatively short intervals. It may

then be advisable to replicate this study to determine whether such results are in

fact reliable before applying this design to other tasks.
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It is also worth noting that these two suggested aspects of Replay are likely

to show significant interactions with one another: for example, the factors used

to select replays could vary from task to task, while clearer definitions of replay

selection criteria could help to better encourage rehearsal to counteract forgetting.

These elements must therefore be considered simultaneously in order to provide

a more complete depiction of learning consolidation. Both suggestions are still,

however, merely interpretations of the common elements of these results rather

than definitive findings, and will require further verification in future research using

more varied tasks and designs.

4.5.1 Conclusion

The studies in this chapter aimed to examine the process by which an acquired rep-

resentation could be re-examined and revalued in order to better capture external

data patterns, focussing on the discovery of new concepts through the mental re-

play of past events. Instead, the results of these experiments show little evidence

of a general benefit of rehearsal, with both contextual and temporal manipulations

seemingly having little effect on behaviour. This may then depict a more complex

consolidation system than initially offered by the current Replay model, involv-

ing deeper considerations of task demands and trial features to identify scenarios

in which a benefit is observed. We therefore hope that further contrasts and ap-

plications to novel tasks will offer greater insight into this process, and a better

understanding of the ways in which our representations are maintained.
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Chapter 5

Conclusion

The preceding chapters of this thesis describe three studies each examining the

form of our mental representations in varied tasks. While each of these tasks differ

in subject and structure, the results of these studies do offer a consistent theme:

the representations we build from our experiences are not simply a loose collection

of event memories, but are crafted by internal systems to reflect external data pat-

terns. This is demonstrated both in the clustering mechanisms used in the studies

of stereotype use and numerosity of Chapters 2 and 3, as well as the connections

formed between stimuli in the associative learning tasks of Chapter 4. Such find-

ings suggest a general preference for structure in our learning systems, building ad-

vanced representations which reflect the complexity of our environment: categories

are divided into distinct subgroups to reflect commonalities in members; numer-

ical systems attempt to build distributions which reflect the prevalence of certain

values in our experiences; and associative networks seek to reflect the costs and

benefits of available actions to guide future decisions. What is more, these forms

have clear consequences on resulting behaviour: exemplar partitioning determines

subsequent stereotypical beliefs, numerical format affects discrete estimates, and

associative structures direct related stimulus choices. These results then reveal the

broader goals behind such systems, building representations which are not just ac-

curate to true environmental structures, but also provide clear directions for related

behaviour.
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These studies also serve to demonstrate the value of computational models

of behaviour in offering insight into such representations: all three studies pre-

sented here use such models both to provide descriptions of the process by which

our representations are formed as well as to predict the outcomes of such systems

on behaviour. This then allows for both qualitative and quantitative assessments of

the mechanisms supporting our behaviour which may not possible using cognitive

theory alone. It is important to note however that these models are not necessarily

completely accurate; even where a model might receive support from comparisons

with participant data, this is not definitive evidence of the use of this system by ac-

tual learners. A key factor in this distinction is model complexity: highly-complex

models may provide good descriptions of behaviour, but may not be feasible within

human capabilities. This reflects the position of these models within Marr’s levels

of description (Marr, 1982): the models used in these studies are predominantly

computational, providing broad goals for behaviour rather than the actual imple-

mentation of these principles by real learners. These models will then likely require

further development before they can be accepted as true depictions of human deci-

sion making, particularly regarding the algorithms required to make such structures

feasible in actual learning. There are, however, multiple potential algorithms that

could be applied to such models to fill this role according to the form of the rep-

resentation; for example, sampling procedures can be used as an approximation

for a number of Bayesian spatial methods such as the clustering models used here

(Gelman et al., 2013), while network structures can use prediction errors to facili-

tate learning (Rumelhart, Hinton, & Williams, 1986). What is more, the use of such

algorithms could also provide potential explanations for any systematic errors made

by human learners in such tasks (Sanborn et al., 2010; M. Jones, Curran, Mozer, &

Wilder, 2013), stepping away from the more complex systems described here.

It is also worth noting that the differences in representation discussed in

each of these studies are focussed on the different potential outcomes of a single

given method: Chapter 2 focuses on differences in exemplar clustering in stereotype

change, Chapter 3 focuses on differences in prior format in numerical estimation,
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and Chapter 4 focuses on differences in the strength of inter-stimulus associations

in learning consolidation. While this does provide valuable distinctions in represen-

tational form in each of these studies, as was noted in the introduction to this thesis,

there are a number of methods which have been applied as potential models of cog-

nition with substantial differences in generated representation, ranging from logical

rules to artificial neural networks. It may then be useful to extend the models con-

sidered in each of these domains to include such variations in methodology; for ex-

ample, stereotypical beliefs could be examined using associative networks linking

category membership to target traits, while learning trials could be partitioned using

clustering techniques to infer latent structures, each providing alternate approaches

to their given subject. Such applications could offer novel methods to examine the

representations used in these tasks, including new descriptions of learning and new

behavioural predictions to be tested in further work. One element to consider in

such contrasts however is that these broader differences in representation between

methods may not necessarily reflect actual differences in learning system, but could

instead present different depictions of the same underlying process. This reflects

the fact that these models provide different approaches for exploring the ways in

which human behaviour operates, with no single model likely offering a perfect de-

scription of behaviour (Box, Hunter, & Hunter, 2005). Method selection may then

depend not just on the match to human behaviour, but also the suitability of the rep-

resentation used to the needs of the topic at hand; for example, clustering methods

may be most useful when such categorisations are central to the target problem, as

in Chapter 2, whereas the less transparent network methods may be better suited

to tasks where the actions derived from a representation are more crucial than its

form, as in Chapter 4.

Another aspect raised by such models comparisons is the optimality of be-

haviour: the Bayesian methods used in both the models of stereotyping and nu-

merosity are commonly used to describe optimal solutions to a given problem

(Anderson, 1991; Sanborn et al., 2010), while associative networks often attempt

to identify the value of certain actions for the agent to determine optimal choices
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(Sutton & Barto, 1981; Gershman et al., 2014). The optimality of human be-

haviour in contrast is far more questionable; many studies have noted the errors and

fallacies displayed by human learners, thereby suggesting optimal processes may

not accurately describe our actions (Tversky & Kahneman, 1974; Gigerenzer &

Brighton, 2009). As noted above, however, such errors in human behaviour may be

attributable to the specialised algorithms used to implement such high-level optimal

systems, thereby introducing potential biases that generate the irrational behaviours

observed in real life (Sanborn et al., 2010; M. Jones et al., 2013). This further rein-

forces the importance of considering such algorithms alongside higher-level goals

when evaluating cognitive models, finding a combination which captures both the

high and low levels of performance which can be demonstrated by real people.

One final point to make regarding the use of these models is on the poten-

tial advantages of the complexity assumed in such systems: while the above points

question the feasibility of complex learning processes within human capabilities, it

is also worth noting what benefits increased complexity may offer in capturing the

intricacies of our behaviour. Recent advances in machine learning techniques have

provided increasingly complex systems for use by artificial agents, and therefore

cognitive models; these models can then capitalise on these advances to create more

detailed behavioural descriptions, potentially providing better accounts for our own

learning. This is particularly notable in modern deep learning systems, which have

demonstrated great success in mirroring human levels of performance in real-world

tasks such as image recognition (Farabet et al., 2013), speech processing (Hinton et

al., 2012) and playing video and board games (Mnih et al., 2015; Silver et al., 2016).

Continued application of such complex methods to models of human learning could

then allow for more complete depictions of behaviour, shifting focus from the ab-

stracted tasks commonly used in cognitive science to more valid problems matching

with those encountered in everyday life. The use of such highly-complex models

will however further require appropriate algorithms to make such systems feasible

if they are to be applied as explanations for human learning.

To conclude, computational models of behaviour offer valuable insight into
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the mechanisms we use to build and maintain our mental representations, providing

potential explanations for both the strengths and weaknesses of human learning.

This is here demonstrated in three distinct domains, each using such models to of-

fer insight into our own learning processes, and the direct impact of the workings

of these systems on our actions. The use of such models does however require

a number of considerations before such systems can be accepted as accurate de-

scriptions, particularly regarding the feasibility and implementation of what can be

highly-complex methods. Continued development and comparison will therefore

provide greater understanding of our own mental processes, and the ways in which

we are able to make sense of our noisy and complex world.

131



List of Abbreviations

Chapter 2

BKM: Book-Keeping Model

SSM: Strong Subtyping Model

RRMC: Restricted Rational Model of Categorisation

RMC: Rational Model of Categorisation

BIC: Bayesian Information Criterion

Chapter 3

BDT: Bayesian Decision Theory

UEM: Uncertain Estimations Model

dUEM: Discrete Uncertain Estimations Model

cUEM: Continuous Uncertain Estimations Model

AIC: Akaike Information Criterion

Chapter 4

RW Model: Rescorla-Wagner Model

132



References

Acerbi, L., Vijayakumar, S., & Wolpert, D. M. (2014). On the origins of subop-

timality in human probabilistic inference. PLoS Computational Biology, 10,

e1003661. doi: 10.1371/journal.pcbi.1003661

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transac-

tions on Automatic Control, 19, 716–723. doi: 10.1109/TAC.1974.1100705

Aldous, D. (1985). Exchangeability and related topics. In École d’été de proba-
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Appendix A

Additional Stereotype Change

Results

This appendix provides additional testing of the empirical data described in Chapter

2, separating the previous analyses by trait congruency to examine any difference

in results between stereotypical and counter-stereotypical trait ratings.

A.1 Separated Trait Types

Rather than aggregating ratings from congruent and incongruent traits into a single

stereotypicality score, the following analyses instead examined the two trait types

separately using matching tests. As with the main text, these analyses use Bayesian

repeated measures ANOVAs for each experiment including the factors of test block

and concentration condition, though ratings from the first test block were again

excluded in all cases due to their role as a baseline unaffected by exposure to the

respective exemplar set. Note that for incongruent traits, the predicted direction

of effect for concentration is reversed, with ratings expected to be lower in the

concentrated condition, as lower ratings indicate more stereotypical expectations.
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A.1.1 Experiment 1

For congruent ratings from the first experiment, a significant effect was found for

test block, F(1,4) = 18.3, p < .001, BFinc > 10000, with ratings decreasing across

the task, but no significant difference was found between concentration conditions,

F(1,4) = 1.22, p = .272, BFinc = 0.31, and no interaction was observed between these

factors, F(1,4) = 0.77, p = .545, BFinc = 0.04. Follow-up t-tests found a significant

difference within the second test block, though Bayes factors suggest this did not

meet the threshold for substantial evidence. These results are summarised in Table

A.1.

Similar patterns were observed in incongruent ratings: while test block was

again significant, F(1,4) = 33.7, p < .001, BFinc = Inf, showing an increase in rat-

ings over the experiment, no significant effect was found for concentration, F(1,4)

= 0.37, p = .544, BFinc = 0.30, and no significant interaction was observed between

these factors, F(1,4) = 1.92, p = .107, BFinc = 0.20. Follow-up t-tests meanwhile

found a near-significant differences in ratings in the second and third test blocks,

though neither met the level of substantial evidence, while all other test blocks in-

dicated no difference in ratings between concentration conditions. These results are

summarised in Table A.2.

A.1.2 Experiment 2

Within the second experiment, both trait types showed similar effects to those de-

scribed in the main text. For congruent ratings, a significant effect was again found

Block t df p BF10

1 0.19 114 0.849 0.20
2 1.80 114 0.037 1.62
3 1.07 114 0.143 0.56
4 1.06 114 0.146 0.55
5 0.40 114 0.346 0.27
6 0.51 114 0.305 0.30

Table A.1: Bayesian t-test results for congruent trait ratings from Experiment 1.
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Block t df p BF10

1 0.27 114 0.768 0.21
2 1.45 114 0.074 0.93
3 1.58 114 0.058 1.13
4 0.57 114 0.285 0.32
5 0.19 114 0.576 0.17
6 0.13 114 0.550 0.18

Table A.2: Bayesian t-test results for incongruent trait ratings from Experiment 1.

for test block, F(1,4) = 13.8, p < .001, BFinc > 10000, with ratings decreasing

across the task, but no significant effect was found for either concentration condi-

tion, F(1,4) = 0.002, p = .968, BFinc = 0.25, or the interaction between concentra-

tion and test block, F(1,4) = 1.87, p = .116, BFinc = 0.21. Subsequent t-tests again

found no significant differences between conditions in any test block, with most

blocks again showing substantial evidence of no difference, as shown in Table A.3.

Similarly, incongruent ratings from the second experiment showed a signifi-

cant effect of test block, F(1,4) = 24.5, p < .001, BFinc > 10000, increasing across

exposure to the exemplar set, but no significant effects of concentration, F(1,4) =

0.33, p = .569, BFinc = 0.27, or any interaction between these factors, F(1,4) =

0.45, p = .772, BFinc = 0.03. Follow-up t-tests again found substantial evidence of

no difference between conditions in all test blocks, as summarised in Table A.4

Block t df p BF10

1 0.31 97 0.760 0.22
2 0.71 97 0.760 0.13
3 0.79 97 0.785 0.13
4 0.39 97 0.350 0.29
5 1.01 97 0.158 0.55
6 0.11 97 0.457 0.23

Table A.3: Bayesian t-test results for congruent trait ratings from Experiment 2.
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Block t df p BF10

1 1.03 97 0.305 0.33
2 0.94 97 0.824 0.12
3 0.83 97 0.795 0.13
4 0.23 97 0.592 0.18
5 0.59 97 0.721 0.14
6 0.12 97 0.549 0.19

Table A.4: Bayesian t-test results for incongruent trait ratings from Experiment 2.

A.1.3 Experiment 3

As with the previous experiment, separated trait types from Experiment 3 show

similar results to the main analysis. Within congruent ratings, a significant effect

was found for test block, F(1,4) = 19.4, p < .001, BFinc > 10000, with ratings

decreasing across the task, but no significant effect was found for concentration,

F(1,4) = 0.003, p = .957, BFinc = 0.23, or for the interaction between concentration

and test block, F(1,4) = 0.51, p = .730, BFinc = 0.02. Follow-up t-tests found

substantial evidence for no difference between concentration conditions in any test

block, shown in Table A.5.

Incongruent ratings show similar results, demonstrating a significant effect

for test block, F(1,4) = 25.0, p < .001, BFinc > 10000, with ratings increasing

across the task, but no significant effect for concentration, F(1,4) = 0.73, p = .393,

BFinc = 0.29, or for the interaction between the two factors, F(1,4) = 0.17, p =

.954, BFinc = 0.01. As with congruent ratings, follow-up t-tests found substantial

evidence for no difference in these ratings between concentration conditions in any

test block, shown in Table A.6.

Block t df p BF10

1 0.63 120 0.529 0.23
2 0.44 120 0.332 0.28
3 0.19 120 0.427 0.22
4 0.32 120 0.376 0.25
5 0.51 120 0.695 0.14
6 0.11 120 0.542 0.18

Table A.5: Bayesian t-test results for congruent trait ratings from Experiment 3.
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Block t df p BF10

1 0.47 120 0.643 0.21
2 0.72 120 0.765 0.12
3 0.88 120 0.809 0.11
4 0.71 120 0.760 0.18
5 0.56 120 0.712 0.13
6 1.02 120 0.845 0.10

Table A.6: Bayesian t-test results for incongruent trait ratings from Experiment 3.
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Appendix B

Uncertain Estimation Model Results

This appendix gives additional details from the modelling exercise of Chapter 3,

including alternative measures of model fit and further comparisons with lesioned

versions of the model.

B.1 Additional Modelling Results

The following provides alternate model comparison results, beginning with the

global fits assuming a common set of parameters across participants within each

experiment, summarised in Table B.1. This does show a different finding to the

individual fits in Experiment 1, with the dUEM having a better fit to behaviour in

both measures, though as mentioned in the main text, fits are however substantially

better when using individual parameters in both tasks, making those findings more

helpful in separating the models.

Experiment Model MLL AIC w(AIC) BIC w(BIC)

Experiment 1
dUEM -51506 103021 1 103052 1
cUEM -51661 103333 0 103381 0

Experiment 2
dUEM -78718 157444 0 157477 0
cUEM -78485 156982 1 157032 1

Table B.1: Global modelling results from Experiments 1 and 2, where MLL is
the maximum log likelihood for that model assuming common parameters across
participants in each experiment.
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Secondly, we here list the full results of the model comparisons using AIC

values, summarised in Table B.2.

B.1.1 Experiment 1

As with the BIC scores above, aggregate AIC scores show the cUEM had a better

fit to experimental data, though the number of participants best fit by each model

was relatively even, being 17 for the dUEM and 22 for the cUEM. When divided

by uncertainty condition, the cUEM better fit the 70% group, accounting for 14 of

the 19 participants, while the dUEM better fit the 95% group, accounting for 12 of

the 20 participants. In contrast with the BIC measures, this difference in ratio was

confirmed to be significant, χ2(1) = 4.50, p = .034, suggesting behaviour did appear

more continuous in the high-uncertainty condition.

B.1.2 Experiment 2

Aggregate AIC scores found the cUEM held a better fit to data from Experiment 2,

accounting for 44 of the 60 participants. When divided by uncertainty condition,

the cUEM held a better fit in both the 75% and 95% groups, suggesting behaviour

was best described using a Gaussian mixture prior even where feedback is more

reliable; this is further displayed in the ratios of participants best fit by each model,

with the cUEM accounting for 23 of the 30 participants in the 70% condition and

21 of the 30 participants in the 95% condition. In contrast to the first experiment,

this ratio did not significantly differ between groups, χ2(1) = 0.34, p = .559.

B.2 Model Lesioning

To test the actual impact of the use of these prior distributions on the accuracy of

subsequent estimation, the continuous and discrete models described above were

compared with a lesioned version of the UEM removing either prior, labelled the

lUEM. This meant that responses were based solely on perceptual data, as defined
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Experiment Comparison Model MLL AIC w(AIC)

Experiment 1

Individual
dUEM -43720 87752 0
cUEM -43461 87391 1

70%
dUEM -22335 44821 0
cUEM -22112 44453 1

95%
dUEM -21385 42930 0.982
cUEM -21349 42938 0.018

Experiment 2

Individual
dUEM -66731 133941 0
cUEM -65994 132707 1

70%
dUEM -34740 69719 0
cUEM -34338 69037 1

95%
dUEM -31991 64222 0
cUEM -31655 63671 1

Table B.2: Alternate modelling results from Experiments 1 and 2, where MLL is
the maximum log likelihood for that model, and w(AIC) is the weight of the AIC
score for the given comparison between the discrete and continuous models.

by Equation 3.22, though this distribution was again modified by the response ex-

ponent and background distribution as in Equation 3.23:

p(Rt |Xt) = (1−wb)
logN(log(vt),σ

2
l )

e

∑ logN(log(vt),σ
2
l )

e
+wbU(v1,v2) (B.1)

The dUEM, cUEM and lUEM were then run at the best fitting parameters found

for each model for each participant in the above model comparison and used to

calculate an estimate of accuracy by taking the average probability of the model

giving the true displayed value as a response across estimate trials. The predicted

accuracy of the lUEM was significantly lower than both the dUEM (t(98) = 16.2, p

< .001) and cUEM (t(98) = 14.8, p < .001), suggesting the use of either the discrete

or continuous prior distributions benefits estimation performance.
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