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Abstract Respiratory syncytial virus is the leading cause of lower respiratory tract infection12

among infants. RSV is a priority for vaccine development. In this study, we investigate the potential13

effectiveness of a two-vaccine strategy aimed at mothers-to-be, thereby boosting maternally14

acquired antibodies of infants, and their household cohabitants, further cocooning infants against15

infection. We use a dynamic RSV transmission model which captures transmission both within16

households and communities, adapted to the changing demographics and RSV seasonality of a17

low-income country. Model parameters were inferred from past RSV hospitalisations, and forecasts18

made over a 10-year horizon. We find that a 50% reduction in RSV hospitalisations is possible if the19

maternal vaccine effectiveness can achieve 75 days of additional protection for newborns20

combined with a 75% coverage of their birth household co-inhabitants (∼7.5% population21

coverage).22

23

Introduction24

Respiratory syncytial virus (RSV) is the most common viral cause of acute lower respiratory infection25

Nair et al. (2010). A large majority of children contract RSV by the age of two Glezen et al. (1986);26

Ohuma et al. (2012) but the chance of developing severe disease from a RSV infection is much27

greater amongst young infants (<6 months) Hall et al. (2009) and decreases rapidly with the age of28

the infected child. Vaccine development aimed at protecting young children against RSV disease29

has become a global health priorityWorld Health Organization (2017). As of December 2018 there30

are over 40 RSV vaccines in development PATH (2018). In particular, two vaccination approaches31

have been identified as potentially effective: a single dose vaccine aimed at mothers-to-be leading32

to antibody transfer across the placenta thereby boosting maternally acquired immunity among33

newborns, and paediatric vaccination aimed directly at infantsModjarrad et al. (2016);World Health34

Organization (2017). Moreover, it is possible that a prophylactic extended half-life monoclonal35

antibody could act as a vaccine surrogate whilst replicating the desired effect of a maternal vaccine36

Zhu et al. (2017); Domachowske et al. (2018). A serious complication in RSV vaccine development37

has historically been the risk of causing enhanced disease amongst the immunologically naive Chin38

et al. (1969), therefore it might be more prudent to target a paediatric vaccine at older children with39

better developed immune systems rather than young infants most at risk of RSV disease Anderson40
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et al. (2013). Epidemiological data suggests older individuals (elder siblings, parents) are potential41

sources of infection for the infant of the household Graham (2014), for whom temporary boosted42

immunity might best be achieved using a sub-unit vaccine Anderson et al. (2013).43

The desired effect of vaccinating older children is two-fold: the vaccine both decreases the44

risk of morbidity in the vaccinated child and reduces the risk of transmission from the older child45

to any young infant the vaccinated child contacts Anderson et al. (2013). Molecular analysis of46

nasopharyngeal samples collected from a semi-rural community in Kenya has identified that the47

majority of RSV infections among young infants originated from within their household rather than48

the wider community, with older siblings being the usual household index case Munywoki et al.49

(2014), echoing a previous household study of RSV transmission Hall et al. (1976), although it should50

also be noted that the young infant was herself the index case on a significant number of occasions.51

This finding emphasises that reducing transmission to young infants within the household could be52

an effective way of reducing RSV disease in low- and middle-income countries (LMICs). However, the53

significant number of young infant index cases within households suggest that ‘cocooning’ young54

infants from transmission by vaccinating others in their household may not be sufficient by itself.55

Ideally, cocoon protection should be achieved in conjunction with directly protecting the young56

infants using a maternal vaccine.57

At this time, the only reported phase III trial on RSV vaccine effectiveness is for the maternally58

targeted ResVax®, which failed to meet its primary objective but nonetheless showed partial effec-59

tiveness at reducing hospitalisations due to RSV NovaVax (2019). The possibility that a vaccine for60

only one target population might be only partially effective, and the importance of RSV transmission61

within the household, motivates our modelling approach. In this paper we assess the efficacy of62

a mixed vaccination strategy in a LMIC setting, Kilifi county Kenya. In our scenarios there was at63

least one maternal vaccine and one paediatric vaccine available as per WHO priorityWorld Health64

Organization (2017). In Kenya there are very high rates of antenatal contact between pregnant65

women and health professionals (97.5% in Kilifi county; KNBS (2015)). This suggested targeting66

pregnant women as part of their antenatal contact, and then offering the paediatric vaccine to67

all over one year olds, including adults, cohabiting with the pregnant mother. The essential idea68

was to leverage antenatal contact to achieve a very high coverage of a maternal antibody boosting69

(MAB) vaccine, and also to target her household cohabitants with an immune response provoking70

(IRP) vaccine. The IRP vaccine elicits an immune response and, therefore, a temporary reduction71

in susceptibility to RSV for the vaccinated individual. We follow Yamin et al Yamin et al. (2016) in72

assuming that the elicited period of immunity to RSV from receiving the IRP vaccine would be similar73

to that of a natural infection.74

Predictions of vaccine effect are derived from a dynamic transmission model designed to75

capture the demographic structure of the population, the seasonality of RSV transmission and how76

rapidly, and to whom, RSV is transmitted in both households and the wider community. Unknown77

model parameters were inferred using data from the large-scale long-running Kilifi Health and78

Demographic Surveillance System (KHDSS; Scott et al. (2012)), and hospitalisation admissions at79

Kilifi county hospital (KCH) confirmed as due to RSV since 2002. It should be noted that targeting80

vaccination in this way is not an approach that one would expect to greatly reduce RSV infections81

under the assumptions of simple compartmental models of RSV transmission because the rate of82

vaccination deployment would be too low (see Box 1). However, we shall see that these vaccines83

are efficiently targeted at creating protection for the young infants most at risk of hospitalisation if84

they caught RSV.85

The modelling approach used in this paper differs from the majority of RSV modelling ap-86

proaches extant in the literature, which largely focus on deterministic age structured transmission87

models Pitzer et al. (2015); Kinyanjui et al. (2015); Yamin et al. (2016); Hogan et al. (2016). In88

contrast, we explicitly model the social clustering of individuals into households. The advantage89

of explicit inclusion of household structure in the model is that the social contacts within the90

household are persistent over multiple RSV seasons, whereas age-structured models implicitly91
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assume random mixing; that is all people of a given age group are equally likely to be contacted92

by any individual at any instant and therefore the chance of repeated contact become zero as the93

population size becomes large. In the specific case of modelling highly seasonal RSV transmission,94

it is likely that capturing the network-like transmission structure of the population is important95

for representing the relevant epidemiology. Most people have caught RSV by the age of two, and96

will have multiple repeated episodes during their lifetime. The time between recovery from an97

episode and reversion back to at least partial susceptibility is estimated to be 6 months Ohuma98

et al. (2012). In Kilifi county, there are sharp annual peaks of RSV hospitalisation at each seasonal99

RSV epidemic, and so one should expect the population to consist of large numbers of entirely100

susceptible individuals, who have never caught RSV before and are primarily in their first two years101

of life, and partially susceptible individuals, who have caught RSV at least once before, due to the102

inter-epidemic period being longer than the typical time over which loss of immunity to RSV occurs.103

These general considerations suggest that (i) RSV seasonal epidemics will be akin to repeated104

invasions of a nearly susceptible population, i.e. closer to an epidemic scenario than an endemic105

scenario, and (ii) RSV transmission is much closer to a SIS rather than a SIR paradigm. Social network106

effects in epidemiological forecasting are most important during an epidemic invasive growth phase107

and are typically more important for SIS-type dynamics with persistent contactsMiller (2009); Sun108

et al. (2015). Both these features appear to be important for seasonal RSV transmission in Kilifi and109

therefore provide strong motivation for the network-type epidemic model we have used.110

Two possible explanations for the comparative lack of using household structure in RSV mod-111

elling are: first, accounting for the interplay of demography and household structure remains a112

significant modelling challenge Glass et al. (2011); Geard et al. (2015), and second, the dynamics113

of age structured transmission models can be predicted using a comparatively small set of de-114

terministic rate equations Keeling and Rohani (2008). Moreover, whenever natural immunity is115

long-lasting and/or high levels of effective vaccination coverage exist for the population, household116

structure is less important and can be captured using simple approximations e.g. the mother-child117

contact approximation Atkins et al. (2016). As a possible alternative modelling framework stochas-118

tic individual-based models (IBMs) for epidemics benefit from additional realism and flexibility119

compared to deterministic models, and there does exist at least one modelling study considering120

the effect of social structure on RSV transmission using a non-seasonal approximation within a121

stochastic individual-based model (IBM) Poletti et al. (2015). However, rigorous inference of model122

parameters for stochastic IBMs of epidemics is highly challenging because, along with other dif-123

ficulties, the random infection times of each case will not typically be known O’Neill and Roberts124

(1999). The model used in this paper required a rate equation for each possible household con-125

figuration House and Keeling (2008). Specifically for RSV modelling it has been noted that this126

could lead to thousands of rate equations that must be simulated simultaneously Kinyanjui (2014),127

effectively rendering the model impractical for regression against data due to slow integration128

time. Nonetheless, this work demonstrates that by making appropriate simplifications, and using129

numerical solvers adapted to large systems (in this case ∼2000 variables), it was possible to both130

include realistic household structure and rigorously infer model parameters for a model of RSV131

transmission in a LMIC setting.132

Results181

The RSV transmission model parameters were either drawn from the RSV literature or inferred from182

age-stratified weekly hospitalisations at Kilifi county hospital (KCH) between 2002-2016. The underly-183

ing biology of the transmission model was similar to a simple compartmental model of RSV infection184

and waning immunity (see Box 1) with two main differences: (i) the age of the individuals affected185

their susceptibility to RSV, infectiousness after contracting RSV, duration of RSV infectiousness, and186

likelihood of developing severe disease and being hospitalised after contracting RSV, partly because187

of age-specific effects, and partly because we assumed that every person had caught RSV at least188

once after their first year of life, and (ii) infectious contacts were distributed at two-levels of social189
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Box 1. Vaccination predictions from a simple unstructured RSV
epidemic model

133

134135

The essential idea in this paper is to use antenatal contact between mothers-to-be and health

professionals to deploy two separate vaccines: first, a vaccine targeting the mothers-to-be

which boosts the duration of protection her newborn will have against RSV (MAB vaccine), and

second, a vaccine aimed at the mothers-to-be’s household cohabitants giving each a period of

RSV immunity, equivalent to that of a natural infection (IRP vaccine). As a baseline for under-

standing RSV transmission we can use a simple mechanistic model which captures the essential

biology of RSV infection; newborns are born with a period of immunity to RSV infection which

is lost during their first year of life, after contracting RSV the individual is infectious for a period

before gaining temporary waning immunity to RSV re-infection. Assuming homogeneous

transmission the dynamics of the simple RSV transmission model can be described using four

dynamic variables describing the numbers of currently maternally protected individuals (M),
susceptibles (S), infecteds (I) and immune/recovereds (R). The evolution of the epidemic, after
vaccination, can be given as a standard ODE:

Ṁ = B − �vacM − �M, Ṡ = �vacM −
�
N
SI + �R − �S − B⟨H⟩Vcov

S
S + I + R

,

İ =
�
N
SI − 
I − �I, Ṙ = 
I + B⟨H⟩Vcov

S
N
− �R − �R.

Where each term above describes the rate of events that change the epidemic state: Births (B),
loss of maternally derived protection after MAB vaccination, (�vac), mortality (�), RSV force of
infection (�I∕N), recovery (
), reversion to susceptibility (�), as standard in the literature An-
derson and May (1992); Keeling and Rohani (2008). The rate at which IRP vaccines successfully
vaccinate susceptibles is B⟨H⟩VcovS∕(S + I + R); that is the mean size of a pregnant woman’s
household (⟨H⟩) times the effective coverage of the vaccine (0 ≤ Vcov ≤ 1) time the likelihood of
selecting a susceptible and not wasting the vaccine assuming that we are only targeting those

who have definitely lost their maternal protection to RSV (S∕(S + I + R)). For simplicity, we
can treat the duration of maternal protection as very short compared to the typical person’s

lifetime (i.e. �vac ≫ �). The equilibrium of the simple RSV model is analytically tractable (see
appendix 2):

Relative reduction in transmission due to vaccination =
�⟨H⟩Vcov

(� + �)(R0 − 1)

Reduction in transmission per IRP vaccine =

 + �

R0(
 + � + �)

Where R0 = �∕(
 + �) is the reproductive ratio of RSV, and we are assuming that the birth rate
is at replacement B = �N . The simple RSV model makes some general predictions about the
efficacy of IRP vaccination:
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• The MAB vaccine does not significantly effect transmission in the general population.169

• The efficiency of the IRP vaccine (avoided infections per effective dose) should not change

with coverage.

170

171

• Using parameters typical of the study population at Kilifi (see appendix 2), the reduction

in RSV transmission due to IRP vaccination can be modest because the deployment rate is

too low; for R0 = 2 the maximum achievable reduction in transmission is < 4% compared
to no vaccination.

172
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Therefore, a naive simple model of RSV transmission is pessimistic about the joint vaccination

strategy. However, in this study we also account for more detailed social structure, differential

susceptibility, infectiousness, and risk of disease dependent on the age of the individual and

seasonality in transmission. We will see that targeting vaccines socially close to young infants

is much more effective than the simple model predicts.

176

177

178
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180
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mixing differentiating between persistent contacts between household co-occupants and randomly190

assigned contacts within the community of Kilifi county based on the ages of the infected and191

infectee (Fig. 1 and Methods). The joint age and household distribution of the population accessing192

KCH was chosen to match the ongoing findings of the Kilifi Health and Demographic surveillance sys-193

tem (KHDSS; Scott et al. (2012)). The seasonality of RSV hospitalisations at KCH has historically been194

erratic with peak months for RSV hospitalisation varying as widely as November to April (appendix195

1). Moreover, over the 15 year period we are studying in this paper, there was demographic change196

in the underlying population both in age profile and household size distribution. We addressed197

these modelling challenges: first, by rejecting the typical epidemiological modelling assumption that198

population demographic structure is at equilibrium in favour of directly modelling demographic199

change, and second, by treating the shifting seasonality of RSV transmission in Kilifi as being driven200

by an underlying latent random process to be jointly inferred with model parameters. The goal was201

to account for factors influencing the rate of hospitalisations that changed over the 15 years of202

study so as to get an unbiased estimate of parameters we assumed were static over the period,203

such as the person-to-person rate of transmission within a household. We were able to broadly204

capture the year-to-year variation in hospitalisation, and age profile of the hospitalised, with only205

six free parameters (Fig. 2, Methods, and appendix 1). The 2005/2006 RSV year (see appendix 1 for206

RSV year definition) was anomalous in that there were three peaks in RSV hospitalisation separated207

by at least a month: two smaller peaks on 11th Dec 2005 and 24th Mar 2006 around a larger peak208

on 24th Feb 2006. The model was unable to explain this unusual year, other years having solitary209

peaks. Outside of the 2005/2006 RSV year there were 2174 hospitalisations during the period of210

study compared to a model prediction of 2147 hospitalisations ([2057, 2238] 95% prediction interval211

). We were unable to jointly identify the rate of school children contacting other school children with212

the rate of homogeneous contact among all over one year olds, therefore we considered a range213

of within school contact rates, and for each value inferred the other six free model parameters214

and assessed the efficacy of vaccination for a range of MAB vaccine effectiveness values and IRP215

vaccine coverage values. Each scenario gave similar results for the efficacy of household targeted216

vaccination (see appendix 3), therefore we have only presented results in the main Results section217

for the scenario with the highest rate of within school mixing. At KCH all RSV hospitalisations218

occurred in the under five year olds with 84% of hospitalisations occurring in the under one year219

olds (Fig. 2 B). This finding is consistent with the much higher rates of hospitalisation per RSV220

infection for younger infants Kinyanjui et al. (2015). However, the hospitalisation time series has221

to also be understood in the context of dynamic RSV transmission and demographic change in222

the study population. A general trend of increasing hospitalisations between 2002-2009 is at least223

partially explained by a 16% increase in under ones in the population over that period. The rest of224

year-to-year variation in hospitalisation was explained by seasonal epidemic dynamics, themselves225

driven by shifting seasonality (Fig. 2 A; 1).226

We found that, pre-vaccination, school age children suffered on average the highest force of227

infection, that is the per-capita rate of infectious contacts, from outside of the household followed by228

under one year olds (Fig. 3 A). This finding was dependent on assuming that we had a high degree of229

homophily in the social contacts of school-age children (the high within school transmission scenario230

mentioned above). Other scenarios were considered with lower levels of in-group preference for231

school-age children to contact other school-age children; in the alternate scenarios the parameter232

imputation process found slightly higher rates of contacts within the household and homogeneously233

outside of the household but lead to very similar results (appendix 3 ). The infectious contacts234

outside the household were distributed predominantly to individuals within households of size 2-5235

(Fig. 3). This reflected the household distribution of the population; school children and under ones236

who were most at risk of making social contact with those infected with RSV outside the household237

tended to live in households of this size (Fig. 3 B).238

Force of infection is a less natural concept for measuring within household infection due to small239

numbers of individuals per household, and intense frequent contacts. Instead, we measured the240
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Figure 1. Schematic plot for the RSV transmission model and vaccination programme. Infectious individuals
(red character figures) transmit to other individuals inhabiting the same house, and to other individuals in other

households based on the ages of the both the infector and infectee. Red and blue arrows represent possible

realised infections over a short period of time. Bottom right household demonstrates the vaccination strategy;

the mother has received a maternal antibody boosting (MAB) vaccine which increased transfer of protective

antibodies to newborns (green background shading), meanwhile other household members have received an

immune response provoking (IRP) vaccine (blue background shading).
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Figure 2. RSV hospitalisation at KCH: dynamics and age profile of hospitalised patients. A: Weekly RSV
hospitalisations before implementation of vaccinations. Black curve gives mean prediction of RSV household

transmission model after regression against weekly incidence data (red dots). Grey shaded area indicates the

99% prediction interval for the model. Also shown is the number of under ones in the population (dashed line).B: Age profile of hospitalisations at KCH before vaccination. Error bars give 99% prediction intervals for model.
Figure 2–source data 1. Hospitalisation data, and model predictions, are given as MATLAB data files along with
script for plotting figure.

true rate of RSV transmission between individuals cohabiting a household. The highest per-capita241

rates of infection within households were for 7 year olds (Fig. 3 C); this reflected the typical age of242

individuals within the households most at risk of RSV introduction and with severest transmission243

rates after introduction. The infection rate among under ones increased rapidly until it plateaued244

at ∼6 months old. The rapid increase in per-capita infection rate was due to waning of maternally245

acquired immunity to RSV, which we inferred as lasting on average 21.6 days ([17.2, 26.1] 95% CI;246

see table 3 for all inferred parameters). The total infection rate within households was greatest247

in size 5 and 6 households (Fig. 3 D). This differed from the household size where each person248

was at most risk of contracting RSV outside the household. Two factors shifted the burden of RSV249

infection to larger households: first, there are more people in larger households therefore risk of250

RSV introduction can be higher even if the per-person rate is lower, and second, the intensity of251

transmission within households is higher for larger households.252

We evaluated a series of scenarios where a combination of a maternal antibody boosting (MAB)253

and an immune response provoking (IRP), vaccine were targeted at, respectively, mothers-to-be254

in their third trimester, and their household cohabitants upon the birth of the newborn. Between255

scenarios we varied (i) the effectiveness of the MAB vaccine, (ii) the coverage of the MAB vaccine,256

and (iii) the household coverage of the IRP vaccine, see table 1 for a list of all vaccination scenarios257

modelled in this paper. The protective effect of the vaccines on individuals was the same as for258

the unstructured population model presented in Box 1: the MAB vaccine increased the period over259

which a newborn was protected from RSV by maternally acquired antibodies, and the IRP vaccine,260

given to all household cohabitants of some participating mothers-to-be, initiated an immune261

response in the vaccinated which gave a period of protection from acquiring RSV similar to that262

following a natural infection. The high antenatal contact levels in Kilifi county suggested that263

vaccination coverage of mothers-to-be had the potential to be very high, especially if maternal264

immunisation to boost newborn immunity became an established method for a range of vaccines265
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Figure 3. Mean force of infection (2002-2016) between households and mean infection rates within households.A: The mean force of infection (infectious contacts received per person per day) of RSV due to transmission
from without the household on three age groups: under-ones, school age children and everyone else, including

adults. B:Mean force of infection due to transmission without the household on individuals inhabiting each
household size. C: The mean per-capita daily rate at which different age groups become infected with RSV from
within their household. D: The mean total daily rate of RSV infection within households of different sizes.
Figure 3–source data 1. The model predictions are given as MATLAB data files, along with the script for plotting
figure.
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including influenza and Group B Streptococcus. However, an available MAB vaccine might only be266

effective if delivered in the third trimester of pregnancy and, whilst having at least one antenatal267

contact is very common for pregnant women in Kilifi county, it is not clear that antenatal contact268

always occurs at the relevant stage of pregnancy. Therefore, we consider both an optimistic scenario269

(100% MAB coverage), and a more conservative uptake (50% MAB coverage). The number of days of270

additional maternally derived protection donated to the newborns by MAB vaccinated mothers was271

uncertain, we considered a range of MAB protection 0 - 90 days. We assumed that if the pregnant272

mother’s household cohabitants agreed to receive an immune response provoking vaccine then273

all were vaccinated at the birth of the newborn to maximise the overlap between the protection274

period of the cohabitants and the first months of life of the newborn. As is common in vaccine275

strategy analysis we combine coverage and effectiveness into one effective coverage (coverage276

times effectiveness c.f. Keeling and Rohani (2008)), although in this case effective coverage could277

be considered both within and between households.278

We assumed that the maximum coverage of the vaccine would be reached within a year,279

and considered ten years of RSV transmission after this implementation. When inferring model280

parameters we took care to account for the known changes in demography over the study period,281

both in the age and the household occupancy distributions of the population. However, for the282

10-year forecasting in this paper we assumed that the total birth rate was constant (8,601 per283

year), and that the population age and household occupancy distributions remained static. The284

model inference stage included inferring the statistics of yearly variation in RSV seasonality. The285

decrease in rates of RSV hospitalisation and infection due to vaccination over ten years presented286

are median improvements over 500 independent realisations of random future seasonal patterns287

compared to a baseline of no intervention. If the MAB vaccine was unavailable or ineffective (0288

days MAB protection), we found that it was still possible to reduce RSV hospitalisations by up289

to 25% using only the IRP vaccine on the household members of young infants at time of birth290

(Fig. 4 A and B). If 100% maternal vaccination could be achieved then the MAB vaccine was more291

successful as a sole vaccine option compared to IRP vaccination; in the sense that 90 days of292

additional protection from RSV delivered a 45% reduction in hospitalisation even with no IRP vaccine293

coverage. Nonetheless, even with an effective MAB vaccine there was added benefit to also using a294

IRP vaccine; a greater than 50% reduction in hospitalisations was achieved with a MAB vaccine that295

gave 75 additional days of RSV protection and a 75% coverage of the pregnant womens’ households296

(Fig. 4 A; a colorblind-friendly version of this plot can be found as appendix 4 Fig 2)). If only 50%297

maternal vaccination coverage could be achieved then unsurprisingly also using the IRP vaccine298

became relatively more important. The mixed vaccination strategy that achieved better than 50%299

hospitalisation reduction with 100% maternal coverage achieved 38% reduction in hospitalisations300

with 50% maternal coverage (Fig. 4 B); halving the maternal coverage didn’t necessarily halve the301

success of the vaccination programme so long as IRP vaccine was also available. Improving the302

effectiveness of the MAB vaccine caused a significant improvement in hospitalisations, but had an303

almost negligible effect on the total infections in the population (Fig. 4 C and D). IRP vaccination304

was more effective at reducing total RSV infections, but even at 75% coverage of the households of305

women giving birth the reduction in infections was < 4% (Fig. 4 C and D). That IRP vaccination had a306

modest effect on the true infection rate, and that MAB vaccination has a negligible effect on the307

true infection rate, was in line with the prediction of the simple non-seasonal RSV model (Box 1).308

However, the simple model cannot predict that the percentage reduction in hospitalisations would309

be significantly greater than for total infections because of the direct and indirect protection of those310

most at risk of disease. For the mixed strategy achieving a 50% reduction in RSV hospitalisations311

described above (75 days direct MAB protection at 100% MAB coverage with 75% IRP household312

coverage) the seasonal dynamics of hospitalisations post-vaccination equilibrated rapidly (Fig. 5313

A). There was a reduction in median hospitalisations in every age group, but predominantly in 0-3314

month years old (who are nearly all protected by the MAB vaccine) and 3-6 month year olds (Fig.315

5 B). However, targeting pregnant women and their cohabitants did not prevent sufficient RSV316
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Figure 4. Median forecast effectiveness of RSV vaccination for different mixed strategies over a 10 year period
for 100% maternal vaccine effective coverage (A and C) and 50% maternal vaccine effective coverage (B and D).A and B:Median percentage reduction in hospitalisations at KCH. C and D: Percentage reduction in total RSV
infections in the population.

Figure 4–source data 1. Reductions in hospitalisations and infections for each of the 500 forecasting simula-
tions are given as MATLAB data files, along with script for plotting figure.

infections as to significantly disrupt RSV transmission within the population at large, which may317

explain the rapid approach to new RSV hospitalisation dynamics. Nonetheless, those who were318

protected were overwhelmingly among those at most risk of disease if they had caught RSV.319

Each vaccine used decreased the expected number of RSV infections and hospitalisations. As320

well as measuring the overall effectiveness of RSV vaccination (see above), we also measured the321

efficiency of vaccination, defined as number of infections or hospitalisations averted per vaccine (of322

either type). Unsurprisingly, as the duration of protection given by the MAB vaccine increased the323

efficiency of vaccination also increased; significantly for hospitalisations (Fig. 6 A) and marginally324

for infections (Fig. 6 B). This was true whether an IRP vaccine was used, or not. If there is no MAB325

vaccine available, then the efficiency of using only IRP vaccination doesn’t change with coverage;326

that is that when increasing IRP household coverage the improvement per vaccine used stayed327

static, in line with what one might expect from a homogeneous mixing RSV model (see box 1).328

However, when MAB and IRP vaccines were used in conjunction there was an efficiency penalty due329

to redundancy in the each vaccine’s protective effect. For example, if a MAB vaccine was available330

that gave 90 days protection the marginal benefit in terms of decreased hospitalisations of having331

an IRP vaccine was decreased because most at-risk infants were already protected by the MAB332

vaccine (Fig. 6 A). Using two types of vaccine always decreased infections and hospitalisations (see333

above), but the total reduction was always less than simply adding the reductions of each vaccine in334

the absence of the other.335
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Figure 5. 10 year forecast of RSV vaccination effectiveness for a mixed strategy of an MAB vaccine provided 75
days of additional RSV protection for newborns and a 75% IRP vaccine household coverage. A: Forecast weekly
hospitalisations for a baseline of no vaccination (blue) and the mixed vaccination strategy (red). Shown are
median forecast (curves) and 95% prediction intervals (background shading). B: Forecast age distribution of total
RSV hospitalisations at KCH. Median forecast (bars) and 95% prediction intervals (error bars).
Figure 5–source data 1. Hospitalisation predictions for each of 500 forecasting simulations is given as a
MATLAB data file, along with a MATLAB function for combining the forecasting and Poisson hospitalisation rate

uncertainties into a prediction interval and plotting script.

Figure 6. Forecast vaccination efficiency against hospitalisations and all infections, defined as number of cases
averted per vaccine used (both MAB and IRP). MAB vaccine coverage was 100% unless unavailable, however

MAB protection duration varied (different coloured bars) and IRP household coverage was also varied. See table

1 for a list of scenario. A:Median avoided hospitalisations at KCH per vaccine over 500 simulations. B:Median
avoided RSV infections in population per vaccine over 500 simulations.

Figure 6–source data 1. A MATLAB script for converting 500 forecasting simulation outcomes into efficiency
metrics, and plotting them.
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Table 1. Modelled vaccination scenarios. Each combination of MAB vaccine effectiveness and coverage, with
IRP vaccine coverage below was one scenario. The baseline scenario being no effective MAB vaccine and 0%

coverage of IRP vaccine.

Description Range
Additional period of protection from RSV at birth due to mater-

nal antibody boosting (MAB) vaccine (P ).
0 (no vaccine), 15, 30, 45, 60, 75, 90 days

Coverage of mothers with MAB vaccine 50%, 100%

Coverage of households with newborns with immune response

provoking (IRP) vaccination (Vcov)
0%, 25%, 50%, 75%, 100%

Discussion336

Our modelling analysis suggested that a high coverage vaccination campaign of mothers-to-be337

with a vaccine inducing elevated levels of transplacenta RSV antibody transfer to her newborn,338

alongside targeting the newborn’s cohabitants with a generic vaccine that provoked a period of339

immunity to RSV can achieve greater than 50% reduction in hospitalisations due to RSV. This340

combined vaccination strategy suggested itself due to the high antenatal contact rates between341

mothers-to-be and health professionals in Kilifi county, Kenya (97.5% KNBS (2015)). We found that342

the combined vaccination strategy was efficient at targeting effort towards directly protecting343

young infants most at risk of developing RSV disease with boosted antibodies, and filling in any gap344

in protection with indirect cocoon protection within the household using a vaccine aimed at older345

cohabitants. Even at maximum effective household coverage for the IRP vaccination only ∼10% of346

the population were vaccinated each year with a modest reduction in the RSV infection rate of ∼5%.347

Nonetheless, at that coverage IRP vaccination alone achieved a 25% reduction in hospitalisations348

at KCH even without an effective MAB vaccine to provide direct protection to young infants. This349

demonstrated that although we were vaccinating at a low rate compared to population size, with350

only a modest reduction in infection rate, those people we did vaccinate were efficient at cocooning351

young infants from transmission and therefore risk of severe disease. If an effective MAB vaccine352

was also available the reduction in hospitalisations was greater, although the additional protection353

due to cocooning was relatively less since young infants were also protected from contracting RSV354

at the age when they were at most risk of severe disease.355

We constructed the model used in this paper with the purpose of estimating the efficacy of356

targeting pregnant women and their households for vaccination. In order to make predictions357

mechanistic models of disease transmission must approximate the social structure of the popula-358

tion being modelled, and hence the contact rates between individuals. The focus on household359

transmission in this paper necessitated including households into the modelled social structure;360

this represented significant additional effort in model construction, computational resource and361

inference compared to simpler models. A more common approach in the literature is to treat362

the contact rates between individuals as being determined only by their respective ages. This363

approach has the benefit of being conceptually straight-forward and draws on a number of recent364

and high-quality studies which quantify social contact patterns by age stratificationMossong et al.365

(2008); Kiti et al. (2014); Prem et al. (2017). However, the fundamental theory of age-structured366

transmission models for endemic diseases was developed mainly with reference to diseases that367

induce very long term or lifelong immunity Anderson and May (1992). For diseases provoking long368

lasting immunity one would expect most older household members to be immune and there-369

fore household structure to be a relatively less important factor in predicting risk of transmission370

compared to the age-structured transmission outside of the household. Indeed, simulation study371

of a generic strongly immunizing infection with realistic demography found limited difference372

in predicted incidence rate by age for people at schooling age or older between models with373

household structure and age structure compared to models with only age structure Geard et al.374

(2015). However, it is not clear that neglecting household structure is a good approximation for375
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modelling seasonal RSV transmission for two reasons: first, previously infected people lose effective376

immunological protection to RSV rapidly enough that each season could be closer to an ’epidemic’377

scenario rather than an ’endemic’ scenario. Second, every hospital admission at KCH confirmed as378

due to RSV was a pre-school aged child; in contrast to predicted incidence rates for school age and379

older individual, the simulation study cited above Geard et al. (2015) predicted that incidence was380

lower for 0-5 year olds, especially so for under one year olds, once household structure was taken381

into account. It would be of great interest to have a more general theoretical understanding of382

which epidemiological questions require household structure, or a more general meta-population383

structure, for epidemiological modelling, and which don’t. This remains an active area of research384

Ball et al. (2015).385

A cocooning protective effect of households could explain the big discrepancy between our386

estimate of the mean period of protection against RSV after birth due to transplacental transfer387

of antibodies from mother to baby in the the womb (21.6 days of natural protection on average)388

compared to a RSV transmission modelling study by Kinyanjui et al on the same population using389

an age-structured model Kinyanjui et al. (2015) (2.3 months of natural protection if the age mixing390

was based on diary estimates of contacts Kiti et al. (2014) or 4 months of natural protection if391

the age mixing was based on household co-occupancy and schooling ages). The age-structured392

model used in the Kinyanjui et al study reported high or very high reproductive ratios: 7.08 for the393

diary based contact patterns, and 25.60 for the household co-occupancy and schooling age based394

contact pattern. Therefore, to fit the KCH hospitalisation data the age structured model necessarily395

predicted a very high level of natural protection due to maternal antibodies to compensate for the396

predicted high force of infection on young infants. In our model we included household structure397

and we fit to the same KCH data but with a much lower level of natural protection from RSV. This398

in turn changes the guidance modelling gives to vaccination strategy; some age structured RSV399

transmission models have emphasized reducing force of infection by vaccinating infants directly400

Kinyanjui et al. (2015), and find that maternal vaccination is likely to be of limited impact Pan-Ngum401

et al. (2017), because they have inferred that the RSV reproductive ratio is high and, therefore,402

natural protection to RSV is also inferred to be high. In contrast, we infer that natural protection to403

RSV is low and therefore find that maternal vaccination in combination with elevating the cocoon404

protection to young infants provided by vaccinating household co-inhabitants is a highly efficient405

strategy. Another age-structured RSV transmission model Yamin et al. (2016) has found that406

vaccinating under-fives to RSV along with their influenza vaccination was highly efficient because of407

the large number of secondary cases generated per infected under-five year old. Again, it is not408

clear whether this result extends to a population structured into households where it is known409

that clustering in contacts has a complex interplay with disease dynamics, either reducing spread410

because infectious contacts are ‘trapped’ in the local cluster (e.g. the household) or promoting411

spread by enhancing persistenceMiller (2009); Sun et al. (2015).412

This was a modelling study and, as ever, there are factors that we have neglected in our analysis413

that could be addressed in future work. First, we treated coverage of the maternal vaccine and the414

IRP vaccine as independent. In reality, the simplest and cheapest scenario whereby the household415

cohabitants of pregnant mothers are recruited to the vaccination programme is if they attend416

antenatal contact with the mother-to-be. The percentage of pregnant women for have at least one417

antenatal contact in Kilifi county is high (97.5%; KNBS (2015)), however it is not clear that antenatal418

contact always occurs in the mother-to-be’s third trimester. Both the MAB and IRP vaccines are419

likely to be best deployed late in the pregnancy, in order to maximise direct protection from the420

MAB vaccine and the duration of indirect protection from the IRP vaccine for the newborn. This421

means that if the only antenatal contact with the mother-to-be is relatively early in her pregnancy422

then both the MAB and IRP vaccines might fail; that is the households outside of MAB coverage are423

also likely to be those outside of IRP coverage violating our independent deployment assumption.424

Our results suggest that a MAB vaccine at a high coverage sharply reduces RSV hospitalisation even425

when the amount of additional protection is low (15 days) and if the MAB vaccination coverage426
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is reduced to 50% IRP coverage becomes relatively more important to reducing hospitalisations.427

To avoid having many household unprotected by both MAB and IRP vaccination, it could be cost428

effective to devote extra resources towards encouraging pregnant women, and their cohabitants,429

who present early in the pregnancy to return for vaccination later in the pregnancy. Second, the430

cost per vaccine remains unknown and we have not considered any measurement of the burden of431

disease other than hospitalisations at KCH. RSV hospitalisations have been identified as a crude432

proxy for the true disease burden; the passive reporting of RSV hospitalisation can vary for reasons433

completely independent of RSV epidemiology Modjarrad et al. (2016). Third, despite accounting434

for demographic change in our inference of model parameters we neglect demographic change in435

our forecasting , concentrating instead on predicting the reduction in hospitalisations compared436

to a baseline of a static population without intervention. Including demographic change in our437

parameter inference step allowed us to disentangle seasonal variation in hospitalisation from438

simply changing numbers of at-risk children. The demography in Kilifi will continue to change in439

the future, the crude birth rate in Kilifi has followed a declining trend in line with the rest of Kenya.440

However, this leads to a total birth rate which is much closer to static (∼ 8,500 births per year), and441

therefore the number of at-risk under-ones has been approximately static since 2009. We avoided442

exploring complications such as the effect increased crowding within households might have on443

the risk per-newborn in this paper by assuming that the rest of the population was also static over444

the 10 years of forecasting. Further exploring more detailed issues around shifting patterns of445

household cohabitancy would be an interesting avenue to explore in future work. Our primary goal446

in this paper has been to establish the importance of thinking jointly about hospitalisation risk,447

population structure (in particular household co-occupancy) and future vaccination programmes.448

We have demonstrated that, all other things be equal, combining partially effective vaccines can be449

complementary in a household-structured setting. These issues would suggest that RSV vaccination450

policy would benefit from further cost-benefit analyses tailored to LMIC settings, possibly using451

more flexible stochastic IBMs with the model parameters inferred in this study.452

In conclusion, in this paper we have analysed the performance of a joint maternal and household453

targeting RSV vaccination strategy measuring both reduction in hospitalisations and the true454

population incidence rate. We drew our conclusions based on rigorous inference of underlying455

transmission parameters and the inherent protection to RSV newborns received from their mothers,456

taking into account potential confusing factors such as variable seasonality and demography. Two457

central insights from our study were that the duration of natural protection to RSV that newborns458

inherit from their mother was likely to be much shorter than previously estimated and that RSV459

attack rates within the household were significant in maintaining RSV transmission. Therefore,460

targeting pregnant women and their households for RSV vaccination is likely to be an effective and461

efficient strategy under a wide range of different scenarios.462

Methods463

The dynamical RSV model used in this paper simulated infection and transmission of RSV among464

a population described by the Kilifi Demographic and Health surveillance system (KHDSS Scott465

et al. (2012)) between September 2001 to September 2016. The population was assumed to466

mix and transmit RSV at two social levels: within their household and outside their household467

among the wider community. RSV infection was modelled using a modified version of the classic468

susceptible, infected, recovered (SIR) compartmental framework Anderson and May (1992); Keeling469

and Rohani (2008). The main modifications were consistent with previous RSV transmission models;470

we assumed that: (i) individuals were born with a temporary immunity to RSV which faded over471

time, and (ii) RSV infection episodes provide individuals with only temporary protection from re-472

infection (mean 6 months Scott et al. (2006)) White et al. (2007); Moore et al. (2014); Pitzer et al.473

(2015); Kinyanjui et al. (2015); Yamin et al. (2016). The high dimensionality of the ODE model (see474

below) used in this paper necessitated a relatively simple compartmental structure for RSV infection475

progression, therefore the population is only crudely age stratified into under-one year olds (U1s)476
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and over-one year olds (O1s). However, more detailed information about the age of the individuals477

in the model was available by considering their age distributions conditional on their crude age478

category and the type of household they inhabited (see below). After an initial RSV infection there479

is evidence that individuals retain reduced susceptibility to subsequent RSV infection Henderson480

et al. (1979); Hall et al. (1991), and will potentially have less infectious asymptomatic episodes if481

infected Hall et al. (2001); Yamin et al. (2016). Some RSV transmission models, using simpler social482

structures, therefore allow individuals to be characterised by both their age and their number of483

previous RSV infections Kinyanjui et al. (2015); Yamin et al. (2016). In the model used in this paper484

we assumed that all U1 individuals susceptible to RSV were at risk of their first RSV episode and485

that all O1 individuals had already been infected at least once, since re-infection within the same486

yearly epidemic is unlikely but nearly everyone has caught RSV by the age of two years old Glezen487

et al. (1986).488

Joint distributions of age and household occupancy489

As mentioned above, the high dimensionality of the RSV transmission model with two levels of social490

mixing was a limiting factor on the possible complexity of the compartmental framework represent-491

ing the possible combinations of age and disease state (see appendix 2). In order to both capture492

the structure of the population in households and incorporate finer-grained information about the493

ages of the modelled individuals we calculated empirical joint distributions for the proportion of494

individuals of different ages in various household sizes, and whether that household contained495

an under-one year old. We did not restrict the age categories of this joint age-and-household496

distribution to just under-one or over-one, instead preferring finer-grained age categories: (i) each497

month of first year of life, (ii) each year of life aged 1 - 18 and (iii) 18+ years old. We used the498

Kilifi health and demographic surveillance system (KHDSS; Scott et al. (2012)) to construct the joint499

distributions, which records for each individual a unique person ID, a birth date, immigration into500

the KDHSS date(s), out-migration from the KHDSS date(s), and a unique building ID for where they501

live during their time in the KHDSS. By combining this data we could calculate,502

ℙt(a, n, U ) =
Nt(a, n, U )

Nt
. (1)

Where Nt(a, n, U ) was the number of individuals on day t who were jointly in age category a, lived503

in a household of size n, which either contained at least one under one year old (U = 1) or not504

(U = 0), and Nt was the total population size on day t. The joint distribution changed over time, we505

calculated ℙt(a, n, U ) for a series of year-start days t = 1st Jan 2000, 2001,..., 2016. We then used ℙt506

as representative for the rest of the year. Because the exact birth dates where missing for a large507

number of people, and for model simplicity, we assumed that all U1 individuals aged to become O1508

individuals at a constant rate 1 per year, which was equivalent to assuming that given that the exact509

age of an U1 individual was uniformly distributed between 0 and 1 years old, independently of the510

U1’s household configuration.511

Conditional age of individuals512

The dynamic model of transmission tracks whether individuals are under-one or over-one years513

old, however for estimating the risk of disease per infection it was useful to use the conditional age514

distribution for the finer-grained age category of an individual based on her dynamic model age515

category a < 1 year or a > 1 year, her household size and whether the household contained an U1516

or not, for example,517

ℙt(a|n, U, a > 1 year) =
1(a > 1 year)ℙt(a, n, U )
∑

b>1 year ℙt(b, n, U )
. (2)

The conditional distributions for an individual’s household size and whether they lived in a house-518

hold containing an U1 based on their age were constructed similarly. The reason we included a519

variable indicating whether the household of the individual contained an under one or not was520
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because it was important to capture the pathway to transmission to the under-one year olds most521

at risk of disease due to contracting RSV.522

Model Dynamics, forces of infection and susceptibility to RSV523

The fundamental unit of the RSV transmission model developed for this paper was the household.524

Each household was described by the number of each type of individual inhabiting it, which we call525

the household configuration. The type of individual within each household was identified by her RSV526

disease state and age category. The RSV transmission model described the dynamics of the number527

of households that were in each possible household configuration using an approach introduced528

by House and Keeling (House and Keeling (2008)). Mathematically, the number of households in529

a given household configuration at time t was denotedHs1 ,i1 ,r1 ,s2 ,i2 ,r2 (t), referring to the household530

configuration with exactly s1 U1 susceptibles, i1 U1 infecteds, r1 U1 recovered, s2 O1 susceptibles,531

i2 O1 infecteds, and r2 O1 recovereds. In order to limit the number of possible household states532

we included only households of total size ten or less with two or fewer under ones. We chose533

these limits on the household size based on capturing ≈ 99% of the U1s in the population, and534

therefore the pathway to them catching RSV (appendix 2). There were 1926 possible household535

configurations in the RSV transmission model. The vectorH(t) of number of households in each536

possible household configuration evolved according to the semi-linear ODE:537

Ḣ(t) = AtH(t) + ft(H(t)) + �t(H(t)). (3)

Each term describing the vector field of equation (51) corresponded to a dynamic component of538

the model:539

1. RSV transmission within households, recovery of infected individuals, loss of immunity of540

recovered individuals, aging from U1 to O1 and turnover in household occupancy due to541

births and individuals leaving the household (AtH(t)).542

2. RSV transmission between households due to age-group specific mixing (ft(H(t))).543

3. Change in household numbers due to population flux, (�t(H(t))).544

See appendix 2 for further details. The force of infection due to transmission within a household545

of generic configuration (s1, i1, r1, s2, i2, r2) was density dependent; that is the person-to-person546

infection rate in the household did not depend on household size,547

�ℎℎ = ��(t)(i1 + �2i2). (4)

Where � is the basic within-household transmission rate, �2 is the relative decrease in infectiousness548

of O1s compared to U1s, and �(t) is the seasonal variation in the transmission rate of RSV (see549

appendix 1). Transmission outside of the household within the wider community was assumed to550

be based on the finer-grained age categories introduced above. The conditional age distributions551

of the individuals allowed us to construct matrices (PH→A,t) to convert between the household552

configuration vector into a vector of number of infected individuals in each age category, weighted553

by their relative infectiousness, for any time t during the simulation: I(t) = PH→A,tH(t) (appendix 2).554

The force of infection on each individual due to age-based mixing in the community was,555

�age = �(t)T I(t)∕N(t). (5)

Where T was the community infection rate matrix and N(t) was the total population size at time556

t. In this formulation, the rate at which an infected in age group b creates infectious contacts557

in the community with individuals of age group a is TabN(a, t)∕N(t) where N(a, t) is the number558

of individuals in age group a at time t Keeling and Rohani (2008). The force of infection on an559

individual within a given household was calculated using matrices constructed from the conditional560

distribution of an individual’s household type given her age, �com = PA→H,t�age. The total force of561

infection on each individual was the sum of her infectious contact rates within the household and562
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within the community, � = �ℎℎ + �com + �ext. Where �ext = ��(t)∕N(t) was the force of infection from563

outside KHDSS.564

The actual infection rate for each individual was the force of infection ‘felt’ by the individual565

times the susceptibility of the individual. The susceptibility of under one year olds (�U1) depended566

on whether or not the U1 individual was still protected from RSV by maternally acquired antibodies,567

which we modelled as giving a random M days of protection; that is for an individual of age A568

days, �U1 = 0 if M > A and �U1 = 1 otherwise. In general, the infection status of an individual569

correlates with her age. However, because RSV is strongly seasonal we do not treat the age of570

an U1 as correlated with her susceptibility arguing that every U1 is facing her first RSV season571

irrespective of whether she is one month old or 11 months old. Therefore, the mean susceptibility572

for under-ones was �U1 = ℙ(M ≤ A). The susceptibility of over one year olds was chosen as if573

the individual had definitely received at least one RSV infection in the past, and definitely had no574

chance of being maternally protected. We modelled the duration of maternal protectionM as a575

truncated exponential distribution conditioned on being less than one year in duration; that is576

M ∼ exp(�)|(M ≤ 1 year) (appendix 2).577

Hospitalisation rates578

The chance of an infected individual becoming severely diseased after contracting RSV, and then579

seeking care at hospital, depended on that person’s age and number of infections Nokes et al.580

(2008); Ohuma et al. (2012). When an U1 was infected in the model her age at infection was given581

by conditioning on the age of the U1 being greater than her maternal protection period,582

ℙ(A ∈ a|M ≤ A). (6)

Which was calculated exactly (see appendices 2 and 4). This took into account that increasing the583

duration of maternal protection would increase the age at infection and therefore reduce the risk584

of disease. O1s were assumed to have no maternal protection but their conditional age depended585

on their household type [equation (2)]. We used these conditional distributions to convert the586

incidence rate of U1s and O1s in each household type into dynamic incidence rates in each age587

category, a(t). By assuming that all O1s had been infected at least once we could use previously588

published age-dependent hospitalisation odds per infection ℎa (Kinyanjui et al. (2015) and appendix589

3) to determine the cumulative hospitalisations predicted by the model for each age category a and590

week interval wi = (ti,1, ti,2),591

(a,wi) = ∫

ti,2

ti,1

a(t)ℎadt. (7)

Parameter Inference592

The majority of the parameters for the RSV transmission model were drawn from the RSV literature593

(see table 2 and appendix 3) leaving four parameters, and the five hyperparameters of a normal594

distribution describing the random yearly variation in log-seasonality, to be inferred from hospitali-595

sation data (see table 3 for parameter estimates and appendix 1 for further details on seasonality596

model). The free parameters and distribution of the RSV transmission model were:597

• Community infection rate outside the household between U1s and all others in the community598

accessing KCH (bU1).599

• Community infection rate outside the household among all O1s in community (bO1).600

• Infectious contact rate within the household to all other household members (�).601

• Mean duration of maternally derived immunity to RSV (M ).602

• The joint normal distribution of the yearly log-seasonality amplitude and phase ([�, �] ∼603

 (�,�)).604

We also included an infectious contact rate for children of schooling age (5-18 years old; bS ) which605

acted additionally to bO1; that is children of schooling age were at additional risk of contracting RSV606
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Table 2. Parameters from literature and chosen for model.
Parameter Description Value Data source
�O1 Susceptibility (O1s) 0.75 Henderson et al. (1979)
�2 relative infectiousness (O1s) 0.5 Kinyanjui et al. (2015)
� Rate of waning of immunity 2 per year Agoti et al. (2012)

1 Rate of recovery for under-ones 1/9 per day Hall et al. (1976)

2 Rate of recovery for over-ones 1/4 per day Hall et al. (1976)
bS Community transmission rate at

schools

0,1/3,2/3,1 per day range

� Ageing rate for U1s 1 per year model choice

� Base external infection rate (whole pop-

ulation)

10 per day model choice

on top of the risk due to mixing in the community. This meant that the mixing matrix in equation607

(5) was in block form,608

T =

⎛

⎜

⎜

⎜

⎝

bU1 bU1 bU1
bU1 bS + bO1 bO1
bU1 bO1 bO1

⎞

⎟

⎟

⎟

⎠

. (8)

Where the blocks represented respectively under-one age categories, over-ones at school age609

categories and over-ones above school age categories. Unfortunately, we were unable to reliably610

identify bS parameter jointly with the other parameters. Investigating a range of bS values gave611

similar results for model fit and predictions for vaccine efficacy, the results in the main paper612

were for the highest value of bS considered which was mildly pessimistic compared to bS = 0 (see613

appendix 3).614

The data for parameter inference was RSV-confirmed, age-specific weekly admissions to Kilifi615

county hospital (KCH) hospitalisation data from September 2001 until September 2016 (see Nokes616

et al. (2009) for study details). KCH serves as the primary care facility for the KHDSS population, and617

we assumed that all KHDSS members who accessed urgent hospital treatment due to RSV disease618

accessed their treatment at KCH. However, a significant number of admissions were from people619

not within the KHDSS survey leading to data re-scaling (see appendix 3). The log-likelihood for a620

particular simulation corresponded to Poisson errors,621

ln =
∑

i

∑

a
ln fpoi(i,a|(a,wi)). (9)

Where i,a was the cumulative number of hospitalisation observed at KCH in age category a on622

week wi and fpoi(x|�) is the probability mass function for a Poisson distribution with mean �.623

If the yearly realisations of the random seasonality (see appendix 1) were known, then the entire624

model would be deterministic and ln would be a function of the unknown parameters. Therefore,625

we treated the yearly variation in seasonality asmissing data and used the Expectation-maximisation626

(EM) algorithm Dempster et al. (1977) to converge onto maximum likelihood estimates for the627

four free parameters, and the two hyperparameters of the log-seasonality model, 95% confidence628

intervals were constructed using the likelihood profile technique (e.g. King et al. (2008) and appendix629

3).630

Modelling Vaccination631

There were two vaccines used in this modelling study, which were deployed as part of the antenatal632

contact between pregnant women and skilled health professionals. We assumed that the maternal633

vaccine was delivered as one injection to the pregnant women in her third trimester. This achieved634

some unknown additional period of maternal protection, P days, on top of the random period635

M , that is after maternally vaccinating the period of protection becameMvac =M + P . Achieving636

an effective maternal vaccination coverage of Vcov shifted the mean susceptibility of U1s to �U1 =637
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Table 3. Inferred Parameters.
Parameter Description Value

bU1 Community transmission rate for U1s 0.22 [0.18,0.27] per day

bO1 Community transmission rate for O1s 0.20 [0.18,0.21] per day

� Transmission rate to each other member of household 0.040 [0.032, 0.048] per day

M Mean duration of maternal protection at birth 21.6 [17.2, 26.1] days

m� Mean amplitude of log-seasonality 0.61 [0.51, 0.72]

m� Mean timing of log-seasonality peak (phase) 67.7 [40.2, 77.7] days

�� Std. amplitude of log-seasonality 0.20 [0.098,0.31]

�� Std. timing of log-seasonality peak (phase) 38.7 [30.0, 48.5] days

��� Corr. coefficient between log-seasonal amplitude and phase -0.035 [-0.12, 0.072]

ℙ(Mvac < A)Vcov + ℙ(M < A)(1 − Vcov), a linear increase in Vcov. The change in distribution of age at638

infection was non-linear in Vcov because, conditional on an U1 being infected, it was more likely that639

the U1’s mother had not been vaccinated than the unconditional probability of non-vaccination,640

1 − Vcov (see appendix 4). We also assumed that there was a vaccine available that provoked an641

immune response in the vaccinated individuals similar to a natural infection; that is a susceptible642

O1 who is vaccinated immediately becomes ‘recovered’ and immune to RSV infection until her643

immunity waned. Immune response provoking vaccination was offered to all O1s in households644

when a birth occurred, as an addendum to the antenatal contact between mothers-to-be and health645

professionals. In principle, there were three dimensions to the coverage of the immunity provoking646

vaccine: (i) coverage of households, (ii) coverage within households, and (iii) vaccine effectiveness.647

For simplicity, we bundled these dimensions together, and vaccinated whole households at an648

effective vaccination coverage (the product of the three dimensions of coverage). Over 10 years649

of forecasted RSV epidemics if a MAB vaccine was available, and given to every pregnant mother,650

8,601 MAB vaccines were deployed each year. 0 - 24,095 IRP vaccines were deployed each year651

depending on household coverage. It should be noted that by 2016 the KHDSS population was652

around 240,000 people, hence 100% effective coverage of the households where births occurred653

corresponded to ∼10% effective coverage of the total population.654

Model simulations655

We simulated the model by numerically solving the high dimensional ODE [equation (51)] simultane-656

ously with the ongoing cumulative hospitalisations in each age category, ̇a = ℎaa(t), which allowed657

us to solve for the model predicted weekly hospitalisations [equation 7]. The initial state of the658

model was unknown. We initialised the model by starting with a completely susceptible population659

with the population demography set to mimic that of the KHDSS on 1st Jan 2000. We then simulated660

RSV transmission for 10 years, with demographic rates (e.g. birth rates) chosen to match those of661

KHDSS in year 2000 and the seasonal amplitude and phase of ln � set to their latest mean estimate,662

in order to provide an initial state of the household model. Finally, we ran the model from 1st Jan663

2000 until 1st September 2001. This provided the initial point for comparison to hospitalisation664

data. Numerical solutions were provided using the Sundials CVODE solver Cohen et al. (1996) im-665

plemented within the DifferentialEquations package for Julia 0.6 Rackauckas and Nie (2017). For666

retrospective simulations comparing model predictions to data (Fig. 2) we used the most probable667

values of the yearly seasonality. For forecast simulations we generated 500 realisations of yearly668

seasonality over 10 years from the distribution inferred in model inference, this gave 500 predictions669

for the time series of future hospitalisations. We typically presented medians of these predictions670

(e.g. Fig. 4). The code for the RSV household model used in this paper, and the data used for671

parameter inference, is available from https://github.com/SamuelBrand1/RSVHouseholdModel.git672
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Appendix 1816

Modelling seasonality in RSV transmission among KHDSS817

RSV is a seasonal virus, in temperate climates the peak month for RSV incidence tends to

be consistent year-on-year. Therefore, modelling approaches aimed at understanding RSV

transmission in temperate climates have used an annually periodic deterministic function,

with the timing of peak infectiousness of RSV being either a model parameter Yamin et al.
(2016) or itself a function of climatic variable to be fitted using regression methods Pitzer
et al. (2015).
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The seasonal drivers of RSV transmission in the tropics are less clear Paynter (2015). At
KCH the most common trough month for RSV hospitalisations was September, which lead

us to define the RSV ‘year’ as September - September. The most common month for peak

hospitalisation in each RSV year was January, however there was significant variation in peak

month between RSV seasons with peaks occurring in each month November - April between

2002-2016 (Appendix 1 Fig 1).
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Figure 1. Distribution of peak month for RSV hospitalisations at KCH.831832

The year-on-year variation in peak month for RSV hospitalisation means that naively

inferring a single fixed peak infectiousness parameter would not be a successful inference

strategy. However, determining the precise mechanistic reason for shifting seasonality was

challenging for the KHDSS population. RSV has been positively associated with the rainy

season in some tropical settings Paynter et al. (2012); Paynter (2015), however this is not
obviously the case in Kilifi county where the rainy season is April to June with short rains

October to December. There have been many proposed mechanisms for erratic periodicity

in transmission (for a wide variety of infectious pathogens) which could be relevant to RSV
transmission in Kilifi, for example, dynamical attractor switching Keeling et al. (2001), or
the effect of species/strain interaction Bhattacharyya et al. (2018). In particular, strain
competition between RSV A and RSV B has been identified a mechanism for generating

complex seasonal dynamicsWhite et al. (1999).
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In this paper, we took an agnostic view and rather than choosing a mechanistic hy-

pothesis for erratic seasonality from the many possible, we assume that the time-varying

infectiousness of RSV alters randomly (but from a common distribution) year to year:

ln �(t) = �n cos(2�(t − �n)), t ∈ RSV year n. (10)

Where the RSV infectiousness (�n) and seasonal peak timing (�n) for each RSV year n are
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drawn jointly from a normal distribution common to each year (�n, �n) ∼  (�,�). During
model inference the yearly �n and �n realisations are treated as latent variables; their mean
and covariance matrix are imputed along with other model parameters.
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Appendix 2855

Household- and age-structured RSV transmission model details856

As described briefly in the main text, we developed a dynamic model for simulating the

spread of RSV through the KHDSS population. Themodel was a hybrid between amechanistic

ODE approach, this included detailed household structure but only a simplified set of age-

and-disease states for individuals within the households, and a data-driven empirical model,

this used the observed joint distributions of KHDSS individuals’ household occupancy and

ages to generate conditional predications of individual detail beyond that of the mechanistic

part of the model.
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Brief comparison to age-structured RSV transmission models864

A commonly used conceptual framework for modelling epidemic transmission with a pop-

ulation is the compartmental model Anderson and May (1992); Keeling and Rohani (2008);
each person’s disease state is described as being one of a finite number of possibilities,

e.g. susceptible, infectious, recovered, which define that person’s risk of contracting the

infectious pathogen or transmissibility whilst infected with the pathogen. Additionally, it is

usually important to capture the heterogeneity of the population, also called the population
structure, in contrast to unstructured populations where every individual is treated as inter-
changeable. Therefore, each person will be described by their position in the population

with sufficient detail that a rate of contact can be modelled between any pairs of individuals,

see Diekmann and Heesterbeek for a more detailed discussion on modelling population

structure Diekmann and Heesterbeek (2000). RSV transmission models have most com-
monly used age structure to describe heterogeneity in the population; each individual is

described jointly by their disease state and which age interval (from some predetermined

set of intervals) they occupy Pitzer et al. (2015); Kinyanjui et al. (2015); Yamin et al. (2016).
For age-structured RSV transmission models there are two dynamical elements: the trans-

mission of disease and the demographic turnover of the population (births, deaths and

ageing). At the level of the individual these are modelled as discrete random events occurring

at some per-capita rate Rock et al. (2014). However, for large populations, there will be a
very large number of individuals in each age-and-disease state, and the flux of population

density in each age-and-disease state converges in probability onto the solution of a set

of ordinary differential equations (ODEs) as the population size is treated as converging

to infinite size Kurtz (1970, 1971); Diekmann and Heesterbeek (2000). The limiting ODE
model has as many degrees of freedom as there are age-and-disease state combinations

in the epidemic model. In most epidemic modelling studies it is the deterministic evolu-

tion of the solution to these ODEs that is usually given as the transmission model description.
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In this paper, the essential modelling concept was to shift the focus away from numbers

of individuals in each age-and-disease state and towards the number of households in

each possible household configuration. A household configuration describes the number of
individuals in each age-and-disease state who cohabit within a single household. Including

households within the model adds a potentially relevant layer of realism; the social contacts

within a household are persistent, therefore pairs of individuals that cohabit will repeatedly
have the opportunity to infect one another if RSV enters the household but be relatively

cocooned from infection if RSV has not entered the household. Age-structured transmission

models implicitly assume that no two individuals contact one another more than once.

To see this consider a population size of N ; the rate of any individual contacting another
single individual is (1∕N) therefore the probability that an individual selects the same other
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individual twice for contact over any finite time horizon goes to zero as N → ∞ (which is
also the limit at which the ODE model is valid). For household models the discrete random

events that change the state of individuals (infection, death etc.) also change the household

configuration. When the number of households is very large, there will be a large number of

households in each possible household configuration and, as with age-structured models,

there is convergence onto a set of ODEs with as many degrees of freedom as the number of

possible household configurations.
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The possible household configurations, or state space, of a household- and age-structured
RSV transmission model is considerably larger than it would be for the equivalent age-

structured model. If there are m possible age-and-disease states then the number of possible
household configurations for a household of size n is given by a standard combinatorial
identity,

(n+m−1
n

)

. In thus paper we consider a range of household sizes up to a maximum size

nmax, therefore the number of household configurations was,

# household configurations =
nmax
∑

n=1

(

n + m − 1
n

)

.

The number of possible household configurations grows very rapidly (appendix 2 Fig. 1).

Therefore, having a sufficiently large nmax to capture the target population required using a
relatively simple compartmental age-and-disease state model for RSV infection.
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Figure 1. Growth in number of possible household configurations as complexity of the underlying
age-and-disease state model grows. Calculated for a maximum household size of 10.
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Derivations for equilibriumbehaviour of unstructured RSV transmissionmod-
els

926

927

The age-and-household structured model we used in the main paper to make predictions

of potential vaccine effectiveness in a population with persistent social structure. However,

it can be useful to compare comparatively complex simulation studies to simpler models

which are at least partially analytically tractable; this comparison identifies which features of

a model are generic as opposed to emerging frommore complicated factors (like seasonality

or social structure).
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A simple unstructured compartmental model of RSV transmission with two types of

vaccine in a population of size N was presented in the main paper (Box 1). Individuals
are born into the population at rate B and are initially protected against RSV by maternal
antibodies (M). All individuals die at rate �. They lose maternal protection at rate �vac (the
rate associated with the maternal vaccine) and become susceptible to RSV infection (S).
Each susceptible is infected at a rate �I∕N where � is the product of the contact rate and
the probability of transmission per contact and I is the number of infected individuals in
the population. Infected individuals clear their infection and become recovered and are

temporarily immune to reinfection (R) at rate 
 . Recovered individuals lose their temporary
immunity to reinfection at rate �. A vaccine aimed at provoking an immune response akin
to a natural infection (IRP vaccine) is also used to control RSV. This is given to individuals

in the population at effective rate V (rate of delivery times probability the vaccine dose is
successful). For simplicity, we assume that the IRP vaccine is not given to children so young

they are likely to be in theM-compartment, but their isn’t memory of which individuals have
been vaccinated recently, therefore the chance that an individual selected for vaccination is

actually susceptible is S∕(S + I + R). If a susceptible individual is vaccinated she transitions
to becoming temporarily immune to RSV, this temporary immunity being lost at rate �.
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The ODE equations for the dynamics of the basic unstructured model are:

Ṁ = B − �vacM − �M, (11)

Ṡ = �vacM −
�
N
SI + �R − �S − V S

S + I + R
, (12)

İ =
�
N
SI − 
I − �I, (13)

Ṙ = 
I + V S
S + I + R

− �R − �R. (14)

We solve for the equilibrium state of this simple model, denoted (M∗, S∗, I∗, R∗), assuming
that the population has reached a steady size of N , with replacement birth rate B = �N . For
the simple RSV model we use a mortality rate � that corresponds to a life expectancy of 65
years, the Kenyan average. The reproductive ratio for the model is R0 = �∕(
 + �).
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Since, the rate of loss of maternal immunity is fast compared to the mortality (�vac ≫ �)
nearly all the population survive theirM period and become available for infection,

S∗ + I∗ + R∗ =
�vac

�vac + �
N ≈ N. (15)

We use S∗ + I∗ + R∗ = N below to simplify the notation, but N could be replaced with
Neff =

�vac
�vac+�

N . Note that the maternal vaccine doesn’t alter the incidence rate for the simple
RSV model at equilibrium, it simply delays the typical infection time. Equation (13) implies

that either I∗ = 0 (disease free state), or,

S∗ = N
R0
. (16)

Therefore,

R∗ = N(1 − 1∕R0) − I∗. (17)

Combining equations (12), (15), (16), (17) gives that if RSV is endemic then,

I∗ = max
{ 1

 + � + �

(

(� + �)N(1 − 1∕R0) − V ∕R0
)

, 0
}

. (18)

Equation (18) implies that for the simple RSV model the critical rate at which an IRP vaccine

eliminates RSV is Vc = (� + �)N(R0 − 1).
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At an endemic equilibrium, the RSV incidence rate with vaccination rate V , denoted �∗V , is
therefore,

�∗V =
�S∗I∗

N
= 1
(
 + � + �)R0

(

(� + �)N(� − �
) − (
 + �)V
)

=
(
 + �)

(
 + � + �)R0

(

(� + �)N(R0 − 1) − V
)

. (19)

Equation (19) implies the two results which are presented in Box 1 of the main text:
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983

984
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• The relative reduction in incidence due to IRP vaccination compared to no vaccination

is,
�∗0 − �

∗
V

�∗0
= min

{ V
N(� + �)(R0 − 1)

, 1
}

. (20)

In this paper, we model a scenario where co-habitants of newborn children each

receive an IRP vaccine. This fixes V to be proportional to the birth rate, V = �N⟨H⟩Vcov,
where ⟨H⟩ is the average number of co-habitants that a newborn has and Vcov is the
effective IRP coverage of households. This gives,

Relative reduction in transmission due to vaccination = min
{ �⟨H⟩Vcov
(� + �)(R0 − 1)

, 1
}

.

(21)

988

989

990

991

992

993

994

995

996

997

998

999

• Whilst RSV is not eliminated the reduction in incidence rate due to IRP vaccination is

linear in V , with the improvement per extra vaccine used being a constant

Reduction in transmission per IRP vaccine =
(
 + �)

(
 + � + �)R0
. (22)
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The mean number of over-one year olds living in households with at least one under-one

year old in the KHDSS (see below) fluctuated yearly, but was never greater than five (⟨H⟩ < 5).
Therefore, using a reversion to susceptibility rate � = 2 per year (see main table 2) with
equation (21) suggests that if, say, R0 = 2 then the maximum achievable relative reduction
in RSV incidence using this strategy with a Kilifi like population implied by the simple RSV

model is 3.8%.
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1010

Age-and-disease states for the household model1011

A literature review of mechanistic RSV transmission models revealed a number of critical

common features:

1012

1013

• At birth newborns are born protected against RSV infection due to antibodies gained

from their mother via trans-placental transfer. This is typically modelled as a maternally

protected disease stateM e.g. Yamin et al. (2016).
1014

1015

1016

• The probability of developing severe disease and being hospitalised depends on a

person’s age, and number of times infected in the past, e.g. Kinyanjui et al. (2015).
1017

1018

• The susceptibility to RSV infection per infectious contact, their infectiousness after

infection, and the expected time taken to become recovered from RSV depend on

number of times previously infected, e.g. Kinyanjui et al. (2015).
1019

1020

1021

The high dimensionality of household- and age-structured models necessitated using the

most minimal age-and-disease state model possible for RSV (see above). To do this we use

an extremely parsimonious approach. The possible age-and-disease state for individuals are:

susceptible or maternally protected and under the age of one (S1), infectious and under the
age of one (I1), recovered and under the age of one (R1), susceptible and over the age of one
(S2), infectious and over the age of one (I2) and recovered and over the age of one (R2). An
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under-one year old (U1) experiencing some force of infection � becomes infected (S1 → I1)
and infectious to RSV at a rate �U1� where �U1 is the average susceptibility of an U1 year old
to RSV. After becoming infected the U1 ceases to become infectious at a rate 
1 (I1 → R1)
and then is immune to reinfection to RSV for a period of time. The immunity derived from

natural infection is lost at a rate �, and the U1 revert to susceptibility but in the S2 category
(R1 → S2). The reason we transition recovered U1s to a susceptible over-one year old (O1) is
that due to the seasonality of RSV it is very rare for a person to be infected more than once

in one epidemic season, therefore functionally by the time an individual is facing the risk of

their second RSV lifetime infection they will very likely be over one. All U1s age at the rate

� = 1∕365.25 days−1 becoming individuals in the same disease state but over-one (S1 → S2,
I1 → I2, R1 → R2). An O1 individual experiencing a force of infection � becomes infected
and infectious (S2 → I2) with RSV at a rate �O1� where �O1 is the relative susceptibility of O1s
compared to an U1 no longer protected by maternal antibodies. Infectious O1s cease being

infectious (I2 → R2) at a faster rate than U1s, 
2 > 
1, but revert to susceptibility (R2 → S2) at
the same rate � (appendix 2 Fig. 2).
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As mentioned in the main document we relate this simple age-and-disease state model

to more complicated RSV models by (i) using the conditional age distribution of individuals to

address questions that required a more complicated age structure than a simple under/over-

one binary choice, for example whether susceptible under ones were still protected by

maternal antibodies, and (ii) by assuming that all over-ones have been infected at least once

and all susceptible U1s have never been infected andmight still be protected by maternal
antibodies.

1043

1044

1045

1046

1047

1048

1049

1050

Figure 2. Schematic diagram of the basic age-and-disease state compartmental model for the
individuals inside the households.

1051

10521053

Household- and age-structured model dynamics1054

A household configuration is a tuple of the number of individuals in each age-and-disease
state who cohabit a household. The generic household configuration is denoted ℎ =
(s1, i1, r1, s2, i2, r2), indicating that the household has precisely s1 individuals in state S1, i1
individuals in state I1 etc. The household size is the number of people living in the household
(i.e. s1 + i1 + r1 + s2 + i2 + r2). We denote the space of possible household configurations Σ
and number of households in the state ℎ at time t asHℎ(t). It is useful to consider a vector
quantity over all possible household configurations such as H(t) = (Hℎ(t) | ℎ ∈ Σ) where
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we have generated some ordering for elements ℎ ∈ Σ. It is clear that the knowledge of
(H(t), t ≥ 0) would allow us to reconstruct the dynamics of individuals. For example, using
the function f (ℎ) = s1 for each ℎ ∈ Σ in a vectorised form f = (f (ℎ) | ℎ ∈ Σ) allows us to track
the dynamics of numbers of S1 individuals: (f ⋅H(t), t ≥ 0).
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1059

1060
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1062
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1065

As mentioned above, age-structured models are constructed by considering the per

capita rate of events affecting the state of individuals. Household- and age-structured

models are constructed by considering the per household rate of events that affect the

household configuration (see House and Keeling (2008) for further mathematical details). In
the following we list the events that change the household model divided into three groups:

events due to transmission within the household, events due to transmission between

households and events due to demographic turnover.

1066

1067

1068

1069

1070

1071

1072

Events due to RSV transmission within the household1073

• Infection of susceptibles from within the household:

For U1s: [s1, i1, r1, s2, i2, r2]→ [s1 − 1, i1 + 1, r1, s2, i2, r2] at rate: �U1�(t)�s1(i1 + �2i2), (23)

For O1s: [s1, i1, r1, s2, i2, r2]→ [s1, i1, r1, s2 − 1, i2 + 1, r2] at rate: �O1�(t)�s2(i1 + �2i2). (24)

� is the household infection rate, �2 is the reduction in infectiousness due to being an
O1, �(t) is the seasonally varying component to the transmission rate and �O1 is the
reduction in susceptibility due to being O1. Note that the true infection rate for U1s

is �U1�ℎℎ and for O1s is �O1�ℎℎ as defined in main text. �U1 is the probability that an
U1 individual is no longer protected by maternal antibodies, calculated by integrating

over the individuals conditional age distribution as follows. Maternal protection was

assumed to be 100% effective but only for a random duration per newborn ofM days,

therefore using the uniform age distribution conditional on the individual being under

one years old (see above),

�U1 =
1
T ∫

T

0
ℙ(M ≤ a) da. (25)

Where T is the duration of a year expressed in the units of the simulation (we used days
so T = 365.25 days). The probabilistic model for the duration of maternal protection
was P ∼ exp(�)|M ≤ T days , where � is the waning maternal immunity rate. The
distribution function forM is

ℙ(M ≤ a) =

{

(1 − exp(−a∕M̄))∕(1 − exp(−T ∕M̄)) 0 ≤ a ≤ T
1 otherwise

(26)

Where M̄ = 1∕� is the mean period of maternal protection without conditioning on
M ≤ T , the true mean period of protection is E[M] = M̄ − T ∕(eT ∕M̄ − 1) but this turns
out to be a very small correction toM since we fit toM being less than 30 days (see

below), therefore for simplicity we callM the mean duration of maternal protection to

RSV. Substituting into equation (25) and direct integration gives,

�U1 =
1

1 − e−T ∕M̄
− M̄
T
. (27)

Note that �U1 ≈ 1 − M̄∕T when M̄ ≪ T .
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• Recovery of infecteds:

For U1s: [s1, i1, r1, s2, i2, r2]→ [s1, i1 − 1, r1 + 1, s2, i2, r2] at rate: 
1i1, (28)

For O1s: [s1, i1, r1, s2, i2, r2] → [s1, i1, r1, s2, i2 − 1, r2 + 1] at rate: 
2i2. (29)
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Where 
1 and 
2 are the recovery rates of U1s and O1s.

1106

1107

1108

1109

1110

• Reversion to susceptibility:

For U1s: [s1, i1, r1, s2, i2, r2]→ [s1, i1, r1 − 1, s2 + 1, i2, r2] at rate: �r1, (30)

For O1s: [s1, i1, r1, s2, i2, r2] → [s1, i1, r1, s2 + 1, i2, r2 − 1] at rate: �r2. (31)

Where � is the reversion to susceptibility/waning immunity rate.

1111
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Events due to RSV transmission from without the household1116

In a purely age-structured transmission model the number of RSV infecteds in each age

category, I(t) = (Ia(t))a∈, is a dynamic model variable which evolves according to a set of
ODEs. For the household- and age-structured model we derived I(t) from the household
configuration dynamics and the conditional age distributions as the expected number of

infecteds in each category given the distribution of household configurationsH(t). Note that
knowing a household configuration specifies both the household size n = s1+i1+r1+s2+i2+r2
and the under-one occupant boolean U = 1(s1 + i1 + r1 > 0). Therefore, we could define a
|| × |Σ| conversion matrix to convert between the dynamicH(t) variables into the implied
I(t) variables,

PH→A,t = (ℙt(a|ℎ))a∈,ℎ∈Σ, (32)

I(t) = PH→A,tH(t). (33)

The age dependent force of infection on each individual in age category a, �age(a) depends
on a community age mixing matrix T = (T (a, b))a∈,b∈,

�age(a, t) =
∑

b∈
T (a, b)[1(a < 1 year) + �21(a > 1 year)]Ib(t)∕N(t). (34)

Where N(t) is the total population size at time t. This is a standard formulation for force of
infection between different age groups (see Keeling and Rohani Keeling and Rohani (2008)).
In principle any age-mixing matrix can be used as T , however we use a simple matrix in
block form that differentiated only between U1s, O1s of school age, and all other O1s (see

main text). The force of infection on U1 and O1 individuals within households was calculated

using a |Σ| × || conversion matrix, and a small force of infection from outside the KHDSS

was added, �,

PA→H,t = (ℙt(ℎ|a))ℎ∈Σ,a∈, (35)

�com(U1, ℎ, t) =
∑

a<1 year
ℙt(ℎ|a)�age(a, t) + �∕N(t), (36)

�com(O1, ℎ, t) =
∑

a>1 year
ℙt(ℎ|a)�age(a, t) + �∕N(t). (37)

The external infection event changes the household configuration:
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• Infection of susceptibles from outside the household:

For U1s: [s1, i1, r1, s2, i2, r2]→ [s1 − 1, i1 + 1, r1, s2, i2, r2] at rate: �U1�(t)s1�com(U1, ℎ, t), (38)

For O1s: [s1, i1, r1, s2, i2, r2]→ [s1, i1, r1, s2 − 1, i2 + 1, r2] at rate: �O1�(t)s2�com(O1, ℎ, t). (39)

1145

1146

1147

1148

Events due to demographic change in the population1149

In the household-and-age-structured RSV model we track demographic change both by using

the yearly updated joint distributions of age and household size and by the dynamics of the

household configurationsH(t). The number of households of each size n changed over time
due to the effect of people leaving home, births, deaths, out-migration from KHDSS and
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in-migration into KHDSS. Moreover, the mean number of U1s per household of each size

evolved over time. Rather than track all the possible events that change the demography of

the KHDSS, we focus on (i) the ageing of the U1s becoming O1s, (ii) capturing the household

size dependent birth rate, and (iii) capturing the change in household numbers for each

household size.
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1157

1158

The recorded birth rate that can be inferred from the KHDSS data set included newborns

who out-migrate, neglected newborns that in-migrate at a very young age, and obviously

some newborns die whilst very young. As mentioned above, we did not mechanistically track

every possible demographic event, but instead calculated the effective birth rate that arrived
at the correct mean number of U1s for each household size. For simplicity, we assumed that

the effective birth rate was a turnover rate for households; that is each birth is associated
with a per-capita rate of an O1 leaving the household. This arrived at the correct density of

U1s in the population, and in each size group of households, at the cost of assuming that

events occurred at the same time rather than at the same rate.
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The number of households of each size changed over time as the overall population

size changed and individuals left households in order to form new households. As with

the demographic turnover rate, there were multiple different mechanisms whereby new

individuals entered the population and formed new houses or individuals and groups left

the population, e.g. whole groups arrived and formed a new house, individuals arrived

and joined houses etc. Moreover, the RSV infection status of the new entrants to the

population were unknown. We assumed that new entrants arrived as households with

the same distribution of household configurations as already observed in the population;

that is that new arrivals didn’t have a net effect on the proportion of individuals in each
age-and-disease state just by arriving, although obviously as the population grew this has an

effect of the number of hospitalisations we expected.
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The demographic events that changed the household configurations were:1179

• Aging:

[s1, i1, r1, s2, i2, r2]→ [s1 − 1, i1, r1, s2 + 1, i2, r2] at rate: �s1, (40)

[s1, i1, r1, s2, i2, r2]→ [s1, i1 − 1, r1, s2, i2 + 1, r2] at rate: �i1, (41)

[s1, i1, r1, s2, i2, r2] → [s1, i1, r1 − 1, s2, i2, r2 + 1] at rate: �r1. (42)

Where � = 1∕T is the aging rate at which U1s become O1s. T is the duration of a year
expressed in the units of the simulation (we used days so T = 365.25 days).

1180
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1184
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• Demographic turnover due to births and O1s leaving their household:

[s1, i1, r1, s2, i2, r2]→ [s1 + 1, i1, r1, s2 − 1, i2, r2] at rate: �(n, t)s2, (43)

[s1, i1, r1, s2, i2, r2] → [s1 + 1, i1, r1, s2, i2 − 1, r2] at rate: �(n, t)i2, (44)

[s1, i1, r1, s2, i2, r2]→ [s1 + 1, i1, r1, s2, i2, r2 − 1] at rate: �(n, t)r2. (45)

If there is at least one O1 left in the household, the birth/turnover rate is zero for

households with only 1 O1; that is there are never any households of only U1s. �(n, t)
is the turnover rate per O1 household member in a household of size n at time t
replacing them with susceptible U1s for households of size n. The turnover rates for
each year were chosen so that the correct density of U1s per household was achieved

(approximately). Following is a description of the fitting process so that the turnover

rate lead to this household demography:
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1. Collect the empirical distribution of U1s per household size. For each household size
n = 1,… , nmax we calculated the mean number of U1s per household at y = 1st jan
2000-2017, this was denoted: NU1(n, y).

1197

1198

1199

2. Calculate the implied distribution of U1s per household size for any given birth/turnover
rate. For any given birth/turnover rate, �, the equilibrium probability of finding k
U1s in a household of size n is

�(k|n, �) ∝
(�
�

)k
(

n
k

)

k = 0, ..., n − 1, (46)

�(n|n, �) = 0. (47)

Equation (46) is just the equilibrium distribution of a birth-death processGrimmett
and Stirzaker (2001).
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3. Matching the empirical distribution to the implied distribution. We used a root-finder
to find the turnover rate that matches the simulation’s mean number of U1s per

household of each size to the empirical data, for the next year:

�(n, t) is the solution to
n−1
∑

k=0
k�(k|n, �(n, t)) = NU1(n, y + 1) for all t in year y. (48)

1208

1209
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1212

1213

• Change in number of households due to population flux1214

[s1, i1, r1, s2, i2, r2]→ 2[s1, i1, r1, s2, i2, r2] at rate:
r(n,t)

∑

ℎ∈Σn Hℎ(t)
, if r(n, t) ≥ 0, (49)

[s1, i1, r1, s2, i2, r2]→ ∅ at rate: |r(n,t)|
∑

ℎ∈Σn Hℎ(t)
, if r(n, t) < 0. (50)

Where, Σn = {ℎ = [s1, i1, r1, s2, i2, r2] | s1+ i1+ r1+ s2+ i2+ r2 = n} was the set of household
configurations of households of size n. r(n, t) was the daily rate of change of number of
households of size n interpolated between the empirical distribution dates.
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Simulating the model1222

The model above could in principle have an infinite number of states if the household size

was not limited (see above). We chose limits on the household size based on capturing ≈
99% of the U1s in the population, and therefore the pathway to them catching RSV. The

limits were: (i) no household is bigger than size 10, and (ii) no household has more than 2

U1s. This also covers the big majority of the total numbers of households (see appendix

2 Fig 3). The nmax = 10 limit was imposed by initialising the model without households of
size > 10, and setting r(n, t) = 0 for all n > 10. The ≤ 2 U1 limit was imposed by setting the
birth/turnover rate to zero for all households with 2 U1s. Putting the limits in reduces the

dimensionality of the system to 1926 different household configurations.

1223

1224

1225

1226

1227

1228

1229

1230

1231
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1232

Figure 3. Household occupancy characteristics calculated on each 1st Jan 2000-2017. Top: Percentage
of U1s in households of a certain size or smaller. Middle: Percentage of U1s in households with only one
U1 and households with one or two U1s. Bottom: Household size distribution.

1233

1234

12351236

Note that the events that either change a household’s configuration or change the

number of households described above can be divided into two categories: [1] those

with rates that only depended on the household’s configuration, e.g. infection within the

household, or ageing of U1s, and, [2] those with rates that depended on the configurations of

other households, e.g. transmission between households or the rate of change of household

numbers. The events in category [1] translate to linear dynamics forH(t), events in category
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[2] translate to non-linear dynamics House and Keeling (2008). Overall, the dynamics ofH(t)
obey the semi-linear dynamical system,

Ḣ(t) = AtH(t) + ft(H(t)) + �t(H(t)). (51)

At is a matrix which encodes the dynamics of events in category [1], ft(H(t)) encodes the
transmission between households, and �t(H(t)) encodes the rate of change of numbers of
households in each configuration. We initialised the dynamics of equation (51) by starting

with a completely susceptible population on 1st Jan 1990, allowing RSV to be introduced via

the external force of infection and running for 10 years (see main text).
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Equation (51) has two properties that are important to note:1253

• The change rate in households of size n is independent of the transmission dynamics:

)t
(

∑

ℎ∈Σn

Hℎ(t)
)

= r(n, t), n = 1,… , 10. (52)

1254

1255

1256

1257

• The dynamics of the proportion of households in a given state Pℎ(t) = Hℎ(t)∕
∑

ℎ′ Hℎ′ (t)
is not directly affected by the change rates (�t) in households:

)tPt = AtPt +
ft
(

Ht

)

∑

ℎ′ Hℎ′ (t)
(53)
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1260

1261

1262

Equations (52) and (53) guarantee the desired modelling features discussed above. Equation

(52) gives that the change in the number of households of each size matches the empirical

rate of change for each year, we also verified this by numerical solution of equation (51)

(appendix 2 Fig 4). Equation (53) shows that the rate of change of household numbers

doesn’t directly effect the proportion of households in any given configuration. We also

verified that the number of U1s and O1s was close to their empirical values (appendix 2 Fig

5).

1263

1264

1265

1266

1267

1268

1269

Equation (51) was difficult to solve efficiently because it is both numerically stiff and high

dimensional. We numerically solved equation (51) using the Julia DifferentialEquations
package implementation of the CVODE solver, with an efficient Krylov method (GMRES) to

solve the implicit timestepping (see main text). We also used the DifferentialEquations
efficient event handling which allowed us to change parameters (like the household change

rate) at specific times without damaging the performance of the solver, or having to restart

simulations.

1270

1271

1272

1273

1274

1275

1276
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1277

Figure 4. Comparison of numbers of households of sizes 1-10 on each 1st Jan 2000-2017 (dots) against
simulated values (curve). Simulation is from Sept 2001 - Sept 2016. Horizontal axis is days since 1st Jan

2000.

1278

1279

12801281
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1282

Figure 5. Comparison of total numbers of U1s and O1s on each 1st Jan 2000-2017 (dots) against
simulated values (curve).

1283

12841285
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Appendix 31286

Parameters for the household- and age-structured RSV transmission
model

1287

1288

The parameters for the household- and age-structured transmission model were drawn

from four sources:

1289

1290

• A literature review of infectiousness duration and other epidemiological quantities;

main table 2.

1291

1292

• Calculated from the empirical joint distributions (see above); appendix 3 table 1.1293

• Age-dependent hospitalisation probability per RSV infection derived from Kinyanjui

et al Kinyanjui et al. (2015); appendix 3 table 2. Hospitalisation probability was the
probability that an infected individual would develop severe disease, multiplied by

the probability that severely diseased individuals would require hospitalisation. The

probability that an infected individual became diseased depended on whether it was

the individual’s primary infection episode or not. The underlying data for estimating

these probabilities was drawn from cohort studies on RSV disease rates Ohuma et al.
(2012); Nokes et al. (2008). We adapted these probabilities for our model using our
assumption that all infected under-ones were experiencing their first RSV episode, and

all over-ones were experiencing their second or subsequent infection.

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

• Inferred from the KCH hospitalisation data set (see below).1304

Table 1. Parameters estimated from KHDSS data.13051306

Parameter Description Value Data source
�(n, t) Birth/turnover rate for households of

size n on day t
Varies, see above KHDSS

r(n, t) Rate of change of numbers of house-

holds of size n on day t
Varies, see above KHDSS

PH→A,t Conditional age distribution given

household config. on day t
Varies, see above KHDSS

PA→H,t Conditional household config. distri-

bution given age category on day t
Varies, see above KHDSS

1307
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Table 2. Age-dependent hospitalisation probabilities per infection derived from Kinyanjui et alKinyanjui et al. (2015).1308

13091310

Age category Probability of hospitalisation per infection
0-1 month 0.10

1-2 month 0.10

2-3 month 0.063

3-4 month 0.059

4-5 month 0.054

5-6 month 0.025

6-7 month 0.019

7-8 month 0.022

8-9 month 0.012

9-10 month 0.016

10-11 month 0.013

11-12 month 5.1x10−3

1-2 years old 2.6x10−3

2-3 years old 7.5x10−4

3-4 years old 2.2x10−4

4-5 years old 3.8x10−5

1311

Parameter inference for the household- and age- model1312

As mentioned in the main text we used the EM algorithm Dempster et al. (1977) to estimate
parameters for the model. Again, as described in the main text the parameters we chose for

inference were:

1313

1314

1315

• Infectious contact rate outside the household between U1s and all others in the

community accessing KCH (bU1).
1316

1317

• Infectious contact rate outside the household among all O1s in community (bO1).1318

• Infectious contact rate within the household (�).1319

• Rate of loss of maternally derived immunity to RSV (�).1320

• The joint normal distribution of the yearly log-seasonality amplitude and phase ([�, �] ∼
 (�,�)).

1321

1322

Where the community age mixing matrix T (a, b) was in block form:

T =

⎛

⎜

⎜

⎜

⎝

bU1 bU1 bU1
bU1 bS + bO1 bO1
bU1 bO1 bO1

⎞

⎟

⎟

⎟

⎠

. (54)

The log-likelihood for our model [equation (8) main text] was defined using the incidence

rates a(t) predicted by solving the model. The incidence rate for all the households in the
generic household configuration was,

For U1s: ℎ(U1, t) = (�U1�(t)s1(�ℎℎ + �com(U1, ℎ, t)))Hℎ(t) (55)

For O1s: ℎ(O1, t) = (�O1�(t)s2(�ℎℎ + �com(O1, ℎ, t)))Hℎ(t). (56)

Where the household force of infection for the generic household configuration was

�ℎℎ = �(i1 + �2i2). We converted the household incidence rate into an age structured in-
cidence rate by using conditional age distributions, and this allowed us to calculate the

cumulative hospitalisations in age category a, predicted by a given set of parameters and
yearly seasonality realisations, in weekly intervals wi = (ti,1, ti,2) using the age dependent
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hospitalisation rates per infection ℎa (see table 2)

a(t) =
∑

ℎ∈Σ
ℙ(A ∈ a|M < A,A ≤ 1 year)ℎ(U1, t) + ℙ(a|ℎ,A > 1 year)ℎ(O1, t) (57)

(a,wi) = K(t)∫

ti,2

ti,1

a(t)ℎa dt, (58)

lnℙ(i,a|�, �,�) = l(�, �,�) =
∑

i

∑

a
ln fpoi(i,a|(a,wi)). (59)

Here K(t) is a time-varying scale factor that accounted for the fact that whilst we were
modelling RSV infection for the KHDSS population, other individuals were accessing KCH

for treatment of RSV-induced severe disease. To fit K(t) we first performed a polynomial
regression R(t) against the ratio of KHDSS members using KCH against non-KHDSS members
(appendix 3 Fig 1) t = 0 (days) is 22nd April 2002 fitted curve is R(t) = 1.24+ 0.00224 t - 2.45e-
6t2+ 9.45e-10t3 - 1.55e-13t4 + 9.10e-18t5. R(t) = R(0) for t < 0, and R(t) took its final value for
times after 1st sept 2016. Having fitted the ratio, the scale factor was K(t) = (1 +R(t))∕R(t),
which we derived by assuming that non-residents were experiencing RSV hospitalisations at

proportionally the same rate as residents.

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351 Figure 1. Ratio of KHDSS residents to non-residents weekly accessing KCH for confirmed RSV treatment.
Red curve is polynomial fit R(t).

1352

13531354

The conditional age category of an U1 who has definitely been infected, where a = (a0, a1),

ℙ(A ∈ a|M < A,A ≤ 1 year) = 1(a ≤ 1 year)
ℙ(M < A|A ∈ a)ℙ(A ∈ a|a ≤ 1 year)

ℙ(M < A|a ≤ 1 year)

= 1(a ≤ 1 year)
a1 − a0 +M(e−a1∕M − e−a0∕M )

T (1 − e−T ∕M )�U1
(60)

1355

1356

1357

1358

An implication of expression (60) is that if a0 and a1 are both significantly less thanM = 1∕�
then ℙ(A ∈ a|M < A,A ≤ 1 year) ≈ 0; that is that, although we have assumed that the
conditional age of an U1 is distributed evenly over the first year of life, the conditional age

distribution of an U1 who has been infected is typically older thanM . This allowed us to
extract information for inferring � from the age distribution of hospitalised children at KCH
despite only using a crude U1/O1 age distinction in the mechanistic formulation of the
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household-and-age model. The log-likelihood l(�, �,�) [equation(59)] could be determined
for a given set of parameters and realisations of the yearly seasonal amplitude and phase
by solving the full ODE system numerically [equation (51)], and thereby also calculating

the weekly hospitalisations. � represented the model parameters to be inferred, � and �
were the vectors of the seasonal transmission model equation (10), and i, a was the KCH
hospitalisation data for the ith week in the a age category.

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

The main difficulty in the inference for the unknown parameters � was that the actual
realisations of � and � are not observed, therefore l(�, �,�) could not be calculated directly.
Instead, we use the EM algorithm to converge onto a maximiser of the marginal likelihood,

(�) = ∫ ℙ(, �,�|�) d� d�. The EM algorithm converges a sequence of parameter estimates
(�(n))n≥0 towards a local maximum of the marginal likelihood by alternatively, 1) calculating
the expected value of the log-likelihood over the conditional distribution of � and � given the
observed data  and the current estimate of the parameters, which we dub the Q function
[E step], and, 2) finding the parameters which maximised the Q function [M step]. We now
give details of how this was implemented for the specific model developed in this paper:

1371

1372

1373

1374

1375

1376

1377

1378

1379

• E step: The conditional distribution of � and � given the n-th parameter estimate
�(n), from the previous M-step, and  could not be calculated in closed form. In

principle, this distribution could have estimated numerically (e.g. by using a particle

filter method), however, because the household- and age-structured RSV transmission

model was comparatively slow to integrate (∼ 40 secs per simulation) we resorted to
saddle-point integration. Our argument is that because nearly every year has a sharply

peaked hospitalisation rate then, given a parameter estimate �(n), the conditional
probability of (�,�) should be concentrated around a particular value, making saddle-
point integration an appropriate approximation (see Hinch (1991) for further details
on saddle-point integration). Using the saddle-point approximation we could solve for

the Q function,

Q(�|�(n)) = E�,�|,�(n) [lnℙ(, �,�|�)]

= E�,�|,�(n) [l(�, �,�) + lnℙ(�,�|�)]

≈ l(�, �∗,�∗) + lnℙ(�∗,�∗|�)

= l(�, �∗,�∗) −
∑

i
[(�∗i − m�) (�

∗
i − m�)]�

−1
��[(�

∗
i − m�) (�

∗
i − m�)]

T + const.(61)

The approximation step in equation (61) is the saddle-point integration approximation

of the average, and the quadratic form is due to our assumption that the seasonal

amplitude and phases are distributed jointly normally. Saddle-point integration is

equivalent to assuming that the full mass of the conditional distribution of (�,�) was
concentrated at its most probable value,

(�∗,�∗) = argmax
�,�

lnℙ(�,�|, �(n))

= argmax
�,�
{lnℙ(|�,�, �(n)) + lnℙ(�,�|�(n))}

= argmax
�,�
{l(�(n), �,�) −

∑

i
[(�∗i − m

(n)
� ) (�

∗
i − m

(n)
� )]�

−1,(n)
�� [(�∗i − m

(n)
� ) (�

∗
i − m

(n)
� )]

T }.

(62)

We determined (�∗,�∗) by sequentially optimising equation (62) over each season by
simulating the model repeated and using the Nelder-Mead algorithm implemented

within theOptim package for Julia 0.6. Note that saddle point integration has converted
solving for the function Q into a regularised maximum likelihood problem where the
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regularisation was provided by the mean and covariance matrix for log-seasonal

amplitude and phase derived in the previous M step.

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

• M step: Having constructed the Q function associated with the n-th parameter iteration
[equation (61)], we maximised Q over �. The maximum point of Q being �(n+1) for the
next E-step. Maximisation proceeded in three stages:

1408

1409

1410

1. The maximising values for the mean and covariance matrix of the random sea-

sonal amplitude and phase were given by maximum likelihood using (�∗,�∗)
derived in the E-step. This was performed using the fit_mle function provided by
the Julia Distributions package.

1411

1412

1413

1414

2. We performed a global optimisation for Q over a box in parameter space defined
by limits [0, 1] for transmission parameters and 1∕� =M ∈ [10, 120] days for the
inverse rate of loss of maternal immunity. Global optimisation was performed

by running 600 iterations of a differential evolution optimiser Storn and Price
(1997) with 50 agents. The differential evolution optimiser was implemented by
the adaptive_de_rand_1_bin_radiuslimited optimiser from the Julia BlackBox-
Optim package. The purpose of the global optimisation step was to reduce the
dependence on choosing an initial guess about � since the whole plausibility space
of the parameters was explored at each iteration of the EM algorithm. We called

the best performing agent’s parameter set on the (n + 1)th step, �̃(n+1).

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

3. We used �̃(n+1) as the starting point for a further local optimisation of Q using
the Nelder-Mead algorithm implemented by the Julia Optim package. This step
provided �(n+1) for the next E-step.

1425

1426

1427

We iterated EM algorithm until no further improvement in the value of Q∗ = max� Q was
achieved, and then retained �∗ = argmax� Q as the maximum likelihood estimator for the
parameters. 95% confidence intervals were estimated by using univariate profile likelihood

for Q; that is varying one parameter at a time whilst keeping others fixed until a �2 region
was determined around the maximum of Q (see King et al for a description of 95% CIs for
dynamical systems King et al. (2008)).

1428

1429

1430

1431

1432

1433

School mixing scenarios and inference results1434

We were unable to identify a mixing rate within schools bS , see equation (54), therefore we
considered four values of bS each determined by what a baseline reproductive value for RSV
would be if only school children mixed together and the seasonality was just �(t) = 1, RS ,

using the simple formula,

RS =
bS�O1�2

2

(63)

These four scenarios were: zero schools transmission (RS = 0), low schools transmission
(RS = 0.5), medium schools transmission (RS = 1), and, high schools transmission (RS = 1.5).
We saw that once maximum likelihood estimation was performed on the free parameters:

� = (bU1, bO1, �, �,m,Σ��) the resultant fits to the data were very similar visually (see appendix
3 Fig 2). We noticed that the outcomes of vaccination were also similar for each four

scenarios (see below and figure 1). Therefore, for robustness of conclusion we used the

most pessimistic scenario within the main body of the paper, which was high schools

transmission RS = 1.5. The maximum likelihood estimates for parameters using the high
schools transmission scenario are given in main table 3, and the maximum likelihood

estimates for all scenarios summarised in appendix 3 Fig 3.

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453
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Table 3. Model parameters inferred from hospitalisation data.14541455

bU1 Community transmission rate for

U1s

0.22 [0.18,0.27] per day

bO1 Community transmission rate for

O1s

0.20 [0.18,0.21] per day

� Transmission rate to each other
member of household

0.040 [0.032, 0.048] per day

M Mean duration of maternal protec-

tion at birth

21.6 [17.2, 26.1] days

m� Mean amplitude of log-seasonality 0.61 [0.51, 0.72]

m� Mean timing of log-seasonality

peak (phase)

67.7 [40.2, 77.7] days

�� Std. amplitude of log-seasonality 0.20 [0.098,0.31]

�� Std. timing of log-seasonality peak

(phase)

38.7 [30.0, 48.5] days

��� Corr. coefficient between log-

seasonal amplitude and phase

-0.035 [-0.12, 0.072]

1456
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1457 Figure 2. Plots of fitted weekly hospitalisations and the age distribution of hospitalisations for four
scenarios (differing values of the schools based baseline RS ). In each case, parameter inference was
performed and the maximum likelihood estimators used.

1458

1459

14601461
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1462 Figure 3. Maximum likelihood parameters for the different school transmission rate scenarios. bU1, bO1
are respectively the under-one and over-one mixing components of the community mixing rate matrix.

� is the rate at which a household member infectiously contacts each other household member.
M = 1∕� is the mean period of maternal protection after birth. m = (m� m�) is the mean vector of the
random seasonality, and �� , �� and ��� are respectively the standard deviations of the seasonal
amplitude, seasonal phase and the correlation between the two, derived from the estimated covariance

matrix Σ��.

1463

1464

1465

1466

1467

1468

14691470
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Appendix 41471

Modelling vaccination in the household- and age-structured RSV trans-
mission model

1472

1473

As described in the main paper we modelled the use of two different vaccines: a vaccine

deployed to boost the period during which a newborn is protected from RSV by an unknown

period P with coverage Vcov [MAB vaccine], and a vaccine deployed to O1 householdmembers
of the newborn which provokes a period of protection to RSV infection similar to the immunity

period of a natural infection at household coverageHcov [IRP vaccine]. Already infected or

recovered O1s were not affected by the IRP vaccine. We assumed that the MAB and IRP

vaccines were deployed independently, which is useful for gauging potential effectiveness,

but unrealistic. In reality, any reason a mother-to-be might miss being MAB vaccinated would

also be a reason that the household O1s wouldn’t get vaccinated.

1474

1475

1476

1477

1478

1479

1480

1481

1482

The IRP vaccine altered the effective birth events by also provoking transitions to R2 state
at the point of birth,

1483

1484

• Demographic turnover due to births with vaccination:

[s1, i1, r1, s2, i2, r2] → [s1 + 1, i1, r1, s2 − 1, i2, r2] at rate: (1 −Hcov)�(n, t)s2, (64)

[s1, i1, r1, s2, i2, r2]→ [s1 + 1, i1, r1, s2, i2 − 1, r2] at rate: (1 −Hcov)�(n, t)i2, (65)

[s1, i1, r1, s2, i2, r2]→ [s1 + 1, i1, r1, s2, i2, r2 − 1] at rate: (1 −Hcov)�(n, t)r2, (66)

[s1, i1, r1, s2, i2, r2] → [s1 + 1, i1, r1, 0, i2, s2 + r2 − 1] at rate: Hcov�(n, t)(s2 + r2), (67)

[s1, i1, r1, s2, i2, r2]→ [s1 + 1, i1, r1, 0, i2 − 1, s2 + r2] at rate: Hcov�(n, t)i2. (68)

1485

1486

1487

1488

The MAB vaccine altered both the probability that an U1 is protected, and the age

distribution of those who are infected. We denote the random period of time a newborn

born to a MAB vaccinated mother is protected from RSV as Mvac = M + P , which has
distribution function,

ℙ(Mvac ≤ a) =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ a ≤ P
(1 − exp(−(a − P )∕M̄))∕(1 − exp(−(T − P )∕M̄)) P ≤ a ≤ T

1 otherwise

(69)

The mean susceptibility of U1s after MAB vaccination has been applied to the population

was,

�U1,vac = 1
T ∫

T

0

(

(1 − Vcov)ℙ(M ≤ a) + Vcovℙ(Mvac ≤ a)
)

da

= 1 − M
T
+ (1 − Vcov)P

e−T ∕M

1 − e−T ∕M
+ Vcov

(T − P )e−(T−P )∕M

T (1 − e−(T−P )∕M )
− Vcov

P
T
. (70)

The conditional age category of an U1 who has definitely been infected, where a = (a0, a1),
after MAB vaccine has been deployed at coverage Vcov was,

ℙ(A ∈ a|M̃ < A,A ≤ 1 year) = 1(a ≤ 1 year)
(

(1 − Vcov)ℙ(M < A|A ∈ a) + Vcovℙ(Mvac < A|A ∈ a)
)

ℙ(A ∈ a|a ≤ 1 year)
ℙ(M < A|a ≤ 1 year)

=
1(a ≤ 1 year)
T�U1,vac

(

(1 − Vcov)
a1 − a0 +M(e−a1∕M − e−a0∕M )

1 − e−T ∕M
+ Vcovf (a, P )

)

. (71)

Where M̃ is the random maternal protection duration of a newborn before we observe

whether the newborn’s mother had been MAB vaccinated. The function f (a, P ) completes
equation (71) by giving the age distribution of U1s who had boosted maternal protection to
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RSV but was nonetheless infected,

f (a, P ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 a0 ≤ P and a1 ≤ P
a1−P+M(e−(a1−P )∕M−1)

1−e−(T−S)∕M̄
a0 ≤ P and a1 > P

a1−a0+M(e−(a1−P )∕M−e−(a0−P )∕M )
1−e−(T−S)∕M̄

a0 > P and a1 > P

(72)

Note that because �U1,vac depended on Vcov the age distribution of infected U1s depended
on Vcov in a nonlinear fashion.

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

We considered a range of values for P and Hcov for each of the schools transmission

scenarios; using the maximum likelihood estimators for the inferred parameters for each

scenario. In each scenario, at Vcov = 1 the median reduction in hospitalisations was similar,
although for the high school transmission scenario vaccination was slightly less effective

(appendix 4 Fig 1/ Fig 2 colorblind-friendly version ). Therefore, we used this scenario in the

main paper as a pessimistic/robust example. As mentioned in main text we simulated 10

years into the future over 500 independent realisations of the random seasonality. Presented

are medians of % reduction in hospitalisations at KCH compared to no intervention.

1515

1516

1517

1518

1519

1520

1521

1522

1523

Figure 1. Vaccine effectiveness for the four school mixing scenarios at 100% MAB coverage.15241525
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1526

Figure 2. Colorblind-friendly version of figure 4 frommain text. Forecast effectiveness of RSV
vaccination for different mixed strategies over a 10 year period for 100% maternal vaccine effective

coverage (A and C) and 50% maternal vaccine effective coverage (B and D). A and B: Percentage
reduction in hospitalisations at KCH. C and D: Percentage reduction in total RSV infections in the
population.

1527

1528

1529

1530

15311532
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