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Spherical varieties and norm relations

in Iwasawa theory

par David Loeffler

Résumé. Les familles des classes de cohomologie compatibles pour
l’application norme, définies pour les variétés de Shimura et d’autres
espaces arithmétiques symétriques, jouent un role important dans
la théorie d’Iwasawa des formes automorphes. Dans cette note,
nous développons une approche systématique pour établir la com-
patibilité dans le cas ”vertical” (c’est-à-dire dans le cas où le
niveau ne change qu’en un nombre premier fixé p), à la fois pour
pour la cohomologie de Betti et la cohomologie étale, en révélant
une relation inattendue avec la théorie des variétés sphériques.
Cette machinerie peut être utilisée pour construire de nouveaux
exemples de telles familles, éventuellement donnant naissance à
la fois à de nouvelles constructions des systèmes d’Euler et à de
nouvelles fonctions L p-adiques : par example, nous obtenons des
familles anticyclotomiques de cycles algébriques sur les variétés de
Shimura pour les groupes U(n)× U(n+ 1) et U(2n).

Abstract. Norm-compatible families of cohomology classes for
Shimura varieties, and other arithmetic symmetric spaces, play an
important role in Iwasawa theory of automorphic forms. The aim
of this note is to give a systematic approach to proving “verti-
cal” norm-compatibility relations for such classes (where the level
varies at a fixed prime p), treating the case of Betti and étale
cohomology at once, and revealing an unexpected relation to the
theory of spherical varieties. This machinery can be used to con-
struct many new examples of norm-compatible families, poten-
tially giving rise to new constructions of both Euler systems and
p-adic L-functions: examples include families of algebraic cycles
on Shimura varieties for U(n)×U(n+1) and U(2n) over the p-adic
anticyclotomic tower.
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1. Introduction

1.1. Setting. The goal of this paper is to study norm-compatible families
of cohomology classes attached to arithmetic symmetric spaces. Perhaps
the simplest non-trivial example is the Mazur–Tate elements, appearing in
the theory of modular symbols for GL2 /Q. These are the elements defined
by

Θm,N :=
∑

a∈(Z/mZ)×

[a]⊗ { am → i∞} ∈ Z[(Z/m)×]⊗Z H
1(Y1(N),Z),

where m,N > 1 are integers, Y1(N) is the modular curve of level Γ1(N),
and { am → i∞} denotes the image in Y1(N) of a path from a

m to i∞ in the
complex upper half-plane. These Mazur–Tate elements satisfy the following
crucial vertical norm relation1: if p is a prime dividing N , and r > 1, then

(1) normpr+1

pr
(
Θpr+1,N

)
= U ′p ·Θpr,N ,

where “norm” denotes the projection Z[(Z/pr+1)×]→ Z[(Z/pr)×], and U ′p
is the transpose, with respect to Poincaré duality, of the usual Up operator.
This norm-compatibility relation is the crucial input in constructing the
p-adic L-function of a weight 2 modular form. These elements also satisfy
a norm-compatibility property in N , which is the input needed to extend
the p-adic L-function to a 2-variable p-adic L-function for a Hida (or more
generally Coleman) families of modular forms.

A second, apparently rather different, setting in which “norm-compat-
ibility” problems arise is the theory of Euler systems. The Beilinson–Flach
elements, defined in [17], are classes

(2) BFm,N ∈ H3
mot

(
(Y1(N)× Y1(N))Q(µm),Z(2)

)
,

where “mot” denotes motivic cohomology. These turn out to satisfy norm-
compatibility relations (in both m and N) which are formally very similar
to those of the Mazur–Tate elements; and these are crucial in applications
of the Beilinson–Flach elements to Iwasawa theory and the Bloch–Kato
conjecture.

1.2. Results of the paper. In this note, we develop a general formalism
for proving vertical norm-compatibility relations for families of cohomology
classes built up by pushing forward cohomology from a “small” reductive
group H to a “large” one G. The basic condition we need is that some
subgroup of H (depending on the setting) should act with an open orbit on
a flag variety for G, and that the stabiliser of a point in this orbit should be
as small as possible. This links our approach with the theory of spherical

1There is also a “horizontal” norm relation, relating Θ`m,N and Θm,N where ` is a prime not

dividing mN , but we shall not discuss horizontal norm relations here.
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varieties, which are precisely those G-varieties G/H in which H has an
open orbit on the Borel flag variety of G.

For instance, we can intepret the norm-compatibility (1) as a consequence
of the fact that the subgroup ( ? 1 ) ⊆ GL2 has an open orbit on P1 with
trivial stabiliser; and we can interpret (2) as a consequence of the more
subtle statement that the subgroup ( ∗ ∗1 ) ⊆ GL2, embedded diagonally
inside GL2×GL2, has an open orbit on P1 ×P1 with trivial stabiliser.

Our construction is entirely local at p, and applies to any cohomology
theory satisfying a list of straightforward properties. This gives simple, uni-
form proofs of a wide range of norm-compatibility statements appearing in
the literature on p-adic L-functions and Euler systems. More importantly,
it also gives rise to many new results.

One special case of our construction is the following theorem. Let G
be a reductive group over Q, and H ⊆ G a reductive subgroup, equipped
with compatible Hodge-type Shimura data. For simplicity, we assume that
the centres of G and H have no isogeny factor which is R-split but not
Q-split. Let C be the maximal torus quotient of H, and E the reflex field
of the Shimura datum for H, so the action of Galois on the connected
components of the Shimura variety YH is given by the composite of the
Artin reciprocity map for E with a homomorphism ResE/Q(Gm)→ C. Let
G,H,C denote the base-extensions of G,H, C to Qp, for some prime p such
that G,H,C are unramified.

Theorem 1.2.1. Suppose that there exists a parabolic subgroup QG of G,
with opposite QG, and a point u ∈ (G/QG)(Qp), such that:

• the H-orbit of u is Zariski-open in G/QG;
• the image in C of the subgroup H ∩ uQGu−1 (the H-stabiliser of u)

is a proper subgroup C0 ⊂ C.

Then the QG-ordinary projections of cycle classes of YH in YG interpolate
into an Iwasawa cohomology class over the abelian p-adic Lie extension of
E corresponding to C0.

As instances of this, we obtain norm-compatible families of cycles (in the
arithmetic middle degree) over the p-adic anticyclotomic tower for Shimura
varieties attached to the groups U(n, 1)×U(n− 1, 1) and U(2n− 1, 1), for
any n.

Acknowledgements. I would like to thank Antonio Cauchi, Christophe
Cornut, Andrew Graham, Dimitar Jetchev, Jan Nekovǎŕ, Aaron Pollack,
Joaquin Rodrigues Jacinto, Shrenik Shah, Chris Skinner, Chris Williams
and Sarah Livia Zerbes for illuminating discussions and comments in con-
nection with this paper. I am also grateful to Syed Waqar Ali Shah for
several useful comments on an earlier draft (in particular Remark 2.1.4
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below), and to the anonymous referee for his or her close reading of the
paper.

2. Formalism of cohomology functors

We begin by introducing a formalism which is intended to model the
behaviour of cohomology of symmetric spaces attached to reductive groups.
This section is entirely abstract nonsense; its aim is to allow the theorems
of the later parts of this paper to be stated and proved in a uniform way, by
axiomatising the properties that a “reasonable” cohomology theory should
satisfy. (The real work in this paper will begin at §4.)

2.1. Cohomology functors. Let G be a locally pro-finite topological
group, and Σ ⊆ G an open submonoid (not necessarily a subgroup). We
shall frequently omit to specify Σ, in which case it should be understood
that Σ = G. We let Σ−1 be the monoid {g−1 : g ∈ Σ}.

Definition 2.1.1. We let P(G,Σ) be the category whose objects are the
open compact subgroups of G contained in Σ, and whose morphisms are
given by

HomP(G,Σ)(U, V ) = {g ∈ U\Σ/V : g−1Ug ⊆ V }.

We write [g]U,V , or just [g], for the morphism U → V corresponding to the
double coset of g, with composition defined by [g] ◦ [h] = [hg] for any two
composable morphisms [g], [h]. If U ⊆ V we write [1]U,V as prU,V or just
pr.

Definition 2.1.2. By a cohomology functor M for (G,Σ) (with coefficients
in some commutative ring A) we mean a pair of functors M = (M?,M

?),
where

M? : P(G,Σ)op → A-Mod and M? : P(G,Σ−1)→ A-Mod,

such that:

(1) M?(U) = M?(U) for every object U ; we write the common value
simply as M(U).

(2) writing [g]U,V,? = M?([g]U,V ) and similarly [g]?U,V , we have

[g]?U,V = [g−1]V,U,? ∈ HomA(M(V ),M(U))

whenever this makes sense, i.e. whenever g−1Ug = V and g ∈ Σ.

We shall omit the subscripts U, V if they are clear from context. A mor-
phism of cohomology functors M → N is a collection of A-module maps
M(U) → N(U) for each open compact U ⊆ Σ, compatible with the maps
[g]? and [g]?.
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In practice, we shall obtain examples as follows: we shall consider a
functor from P(G) to some category of geometric objects (e.g. manifolds or
schemes) sending U to a “symmetric space of level U”, and the maps [g] will
correspond to degeneracy maps between these symmetric spaces, twisted
by the right-translation action of g ∈ G. Taking cohomology of these
spaces – for any “reasonable” cohomology theory, admitting pushforward
and pullback maps – will then give a cohomology functor in the above
sense. This will be made precise in §3 below. The role of the monoid
Σ is to allow us to work with cohomology with coefficients in lattices in
G-representations (which may not be invariant under the whole group G).

Definition 2.1.3. We say M is Cartesian if the following condition is
satisfied: for any open compact subgroup V ⊆ Σ and any two open compact
subgroups U,U ′ ⊆ V , we have a commutative diagram⊕

γM(Uγ) M(U)

M(U ′) M(V )

∑
pr?

pr?

∑
[γ]? pr?

where the sum runs over the double quotient γ ∈ U\V/U ′; we define Uγ =
γU ′γ−1 ∩ U ; the left vertical map is the sum of the pullback maps for the
inclusions γ−1Uγγ ⊂ U ′; and the top horizontal map is the direct sum of
the natural pushforward maps.

Note that if U / V and we take U ′ = U , then all the Uγ are equal to U ,
and we see that the composite of pushforward and pullback has to be given
by summing over coset representatives for V/U .

Remark 2.1.4. The above notion of a Cartesian cohomology functor is the
analogue for locally profinite groups of the notion of a Mackey functor
considered in the representation theory of finite or profinite groups; see [23]
for an overview of this theory. (I am very grateful to S.W.A. Shah for this
observation.)

2.2. Completions. If M is a cohomology functor for (G,Σ), then there
are two canonical ways to extend M(−) from open compact subgroups
to all compact subgroups, which correspond roughly to the “completed
cohomology” and “completed homology” of Emerton [10]. We define

M(K) = lim−→
U⊇K

M(U), MIw(K) = lim←−
U⊇K

M(U)

where the limits run over open compact subgroups of Σ containing K.
Evidently, the first limit is taken with respect to the pullback maps pr?,
and the second with respect to the pushforwards pr?.
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We shall not use M in the present paper (we mention it only for com-
pleteness); it is MIw which is most relevant. We shall refer to it as the
Iwasawa completion, by analogy with Iwasawa cohomology groups of p-
adic Galois representations (in fact this is more than a mere analogy, as we
shall see in due course).

It is clear that we can define pushforward maps [g]∗ : MIw(K)→MIw(K ′)
for all triples (K,K ′, g) with g−1Kg ⊆ K ′ and g ∈ Σ−1 (compatibly with
the given definition when K,K ′ are open). More subtly, if M is Carte-
sian, we can also define finite pullback maps on Iwasawa cohomology: if
K ′ ⊆ K has finite index, then we can find systems of open compact sub-
groups (Kn)n>1 with

⋂
n>1Kn = K, and similarly (K ′n)n>1 with intersec-

tion K ′, such that K ′n ∩K = K ′ and [Kn : K ′n] = [K : K ′] for all n. The
Cartesian property then implies that pullback maps from level Kn to level
K ′n are compatible with the pushforwards for changing n, and we deduce
the existence of pullback maps at the infinite level making the following
diagram commute for all n:

MIw(K) MIw(K ′)

M(Kn) M(K ′n).

With these definitions, the pushforwards and pullbacks in Iwasawa coho-
mology satisfy a Cartesian property extending Definition 2.1.3, for any
three compact subgroups U,U ′ ⊆ V with [V : U ] <∞.

Remark 2.2.1. The situation for M is, of course, exactly the opposite: one
can define finite pushforwards and arbitrary pullbacks.

2.3. Functoriality in G. Let ι : H ↪→ G be the inclusion of a closed
subgroup, and MG a Cartesian cohomology functor for (G,Σ). Then we
can define a cohomology functor ι!(MG) for (H,Σ ∩H) by setting

ι!(MG)(U) = MG,Iw(ι(U)).

Definition 2.3.1. If MH and MG are Cartesian cohomology functors for H
and G respectively, then a pushforward map ι? : MH →MG is a morphism
MH → ι!(MG) of cohomology functors for (H,Σ ∩H).

A more pedestrian definition is that a pushforward map consists of mor-
phisms ιU,? : MH(U ∩ H) → MG(U) for any open compact U ⊆ Σ, com-
patible with pushforward maps [h]? for h ∈ H ∩ Σ−1, and satisfying a
compatibility with pullbacks expressed in terms of a Cartesian diagram
involving the double quotient U\V/(V ∩H).
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3. Examples of cohomology functors

The motivating examples of the above formalism arise as follows.

3.1. Betti cohomology. Let us suppose that G = G(Qp), where G is
a connected reductive group over Q. Let K ′∞ denote a maximal compact
subgroup of G′(R)◦, where G′ is the derived subgroup of G, and (−)◦ denotes
the identity component. We set K∞ = K ′∞ · Z(R), where Z is the centre
of G, and X = G(R)/K∞; this has natural structure as a smooth manifold,
preserved by the left action of G(R). (Alternatively, we can define K∞ as
the preimage in G(R) of a maximal compact subgroup of Gad(R)◦, where
Gad = G/Z.)

We choose an open compact subgroup Up ⊆ G(Ap
f ) which is small enough

that for any open compact U ⊆ G, the product UpU is neat. Such sub-
groups exist, since there are only finitely many conjugacy classes of maximal
compacts in G. We can then define

Y (U) = G(Q)\
(

(G(Af)/U
pU)×X

)
,

Our assumptions on Up imply that Y (U) is a smooth manifold for every
U , and the right action of G on G(A) gives a covariant functor

Y : P(G)→ Manur,

where Manur is the category whose objects are smooth manifolds and whose
morphisms are finite unramified coverings. Since Betti cohomology is both
covariantly and contravariantly functorial on Manur, we obtain cohomology
functors MG(−) = H i(Y (−), A), for every i > 0 and ring A. These are not
in general Cartesian, so we shall impose the following hypothesis:

Hypothesis (“Axiom SV5”). The centre Z is isogenous to the product of
a Q-split torus and an R-anisotropic torus. Equivalently, Z(Q) is discrete
in Z(Af).

(See the section “Additional axioms” in [22, Chapter 5], where the
widely-used abbreviation SV5 originates).

It follows from SV5 that for any morphism [g] : U → V in P(G), the
map Y (U) → Y (V ) has degree [V : g−1Ug]. In the setting of Definition
2.1.3, we have [V : U ] =

∑
γ [U ′ : Uγ ]. It follows that in the commutative

square

(†)

⊔
γ Y (Uγ) Y (U)

Y (U ′) Y (V )

tγ pr

tγ [γ] pr

pr
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all the maps are surjections and the vertical maps have the same degree,
and hence the diagram is Cartesian. Since pushforward and pullback maps
commute in Cartesian diagrams, we deduce that H i(Y (−), A) is a Cartesian
cohomology functor. So we have shown:

Proposition 3.1.1. If Axiom SV5 holds, then for any ring A and inte-
ger i > 0, the functor M(−) = H i(Y (−), A) is a Cartesian cohomology
functor for G with coefficients in A (and similarly for compactly-supported
cohomology). �

Remark 3.1.2. There are many important examples where Axiom SV5 is
not satisfied, such as Hilbert modular groups ResK/Q GL2 for K totally
real. These can be dealt with by the following workaround. Let E denote
the closure in G(Qp) of the discrete group Z(Q) ∩ UpZ0, where Z0 is the
(unique) maximal compact of Z(Qp). We then set G = G(Qp)/E, and for
U ⊆ G, we let Y (U) be the symmetric space of level Up · π−1(U), where
π is the projection from G(Qp) to G. Then the cohomology of Y (−) is
Cartesian as a functor on open compacts of G. We leave the details to the
interested reader.

3.2. Coefficients. More generally, we may also consider cohomology with
coefficients in local systems; here the role of the monoid Σ becomes impor-
tant. If Axiom SV5 holds, and M is an A-module with an A-linear left
action of Σ, then for every open compact U ⊆ Σ, the U -action on M gives
rise to a local system VM of A-modules on Y (U); and for every morphism
[g] : U → V in P(G,Σ), we can define [g]∗ to be the composite

H i(Y (V ),VM )→ H i(Y (U), [g]∗VM )→ H i(Y (U),VM )

where the second arrow is given by the action of g on M . The same
construction gives pushforward maps for morphisms in P(G,Σ−1); so the
groups H i(Y (−),VM ) form a cohomology functor for (G,Σ), and one can
verify that this is also Cartesian.

One obvious case of interest is when A = OK , for some p-adic field K,
and M is an OK-lattice in an algebraic representation of G over K. In this
case, one can take Σ to be the monoid {g ∈ G : g ·M ⊆M}. However, one
can also consider more sophisticated coefficient modules (not necessarily of
finite type over A), such as the modules of locally analytic distributions
appearing in [21] and [14].

3.3. Étale cohomology. Let us now suppose that G admits a Shimura
datum, so that we can identify X with the set of G(R)-conjugates of a
cocharacter h : ResC/R GL1 → GR satisfying the axioms of [8]. Then
Deligne’s theory of canonical models shows that there is a number field
E ⊂ C (the reflex field) and a smooth quasiprojective E-variety

Y(U) := ShUpU (G,X )E ,
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for each open U , whose C-points are canonically identified with Y (U).

Proposition 3.3.1. For any integers i, n, the groups

M(U) = H i
ét

(
Y(U),Zp(n)

)
form a Cartesian cohomology functor with coefficients in Zp; and similarly
for motivic cohomology with coefficients in Z.

This is proved much as before: Y(−) becomes a functor from P(G) to the
category of smooth E-varieties and étale coverings, and étale cohomology is
both covariantly and contravarantly functorial on this category. Moreover,
Axiom SV5 implies that the diagram corresponding to (†) is Cartesian in
the category of E-varieties (not just topological spaces) so one obtains the
Cartesian property of the cohomology from this.

One can also replace Y(U) with its canonical integral model over OE,S ,
for S a sufficiently large finite set of places (containing all those above p),
in situations where such models are known to exist (e.g. if the Shimura
datum (G,X ) is of Hodge type); this has the advantage that the étale
cohomology groups become finitely-generated over Zp. We can also consider
étale cohomology with coefficients, much as in the Betti theory above.

3.4. Functoriality. Now suppose that we have an embedding ι : H ↪→ G
of reductive groups over Q (both satisfying Axiom SV5). We can then
apply the constructions above to either H or G, and we indicate the group
concerned by a subscript.

If there is a cocharacter h : ResC/R GL1 → HR such that (H, [h]) and
(G, [ι◦h]) are both Shimura data, then KH,∞ (resp. KG,∞) is identified with
the centraliser of h inH(R) (resp. G(R)). It follows thatKH,∞ = KG,∞∩H,
so that XH is a closed submanifold of XG .

For more general embeddings of groups H ↪→ G (not necessarily un-
derlying a morphism of Shimura data), there may not be a natural map
XH → XG , because KG,∞ ∩ H(R) can be strictly smaller than KH,∞. We
thus define

X̃H = H(R)/ (KG,∞ ∩H(R)) ,

so that there are maps XH � X̃H ↪→ XG , compatible with the action of

H(R). Of course, in the Shimura variety setting we have X̃H = XH; in the

general case, X̃H → XH is a real vector bundle.
Finally, we shall choose a (sufficiently small) prime-to-p level group UpG

for G, and define UpH = H(Ap
f ) ∩ UpG . We thus have maps

YH(U ∩H)� ỸH(U ∩H)→ YG(U)

for every open compact U ⊆ G, where H = H(Qp). Moreover, since the

fibres of ỸH → YH are real vector spaces, pullback along this map gives an
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isomorphism in cohomology (and also for compactly-supported cohomology,
up to a shift in degree). With these definitions, the following is elementary:

Proposition 3.4.1. Define cohomology functors by

MH(−) = H i(YH(−), A), MG(−) = H i+c(YG(−), A),

for some i > 0 and some coefficient ring A, where c = dimXG − dim X̃H.
Then the composite of pullback and pushforward along the maps above de-
fines a morphism of cohomology functors ι? : MH →MG. The same applies
to étale cohomology, defining

MH(−) = H i
ét(YH(−),Zp(n)), MG(−) = H i+2c

ét (YG(−),Zp(n+ c))

for any i, n, where c is the codimension of XH in XG as a complex manifold.

We can also formulate versions of these statements with coefficients, not-
ing that the pullback of sheaves from YG to YH corresponds to restriction
of modules from Σ to Σ ∩H.

4. The norm-compatibility machine

4.1. Notations. We suppose ι : H ↪→ G is an inclusion of reductive group
schemes over Zp. We fix a Borel subgroup BG of G, and maximal torus
TG ⊆ BG, in such a way that the intersections BH , TH of these with H are
a Borel and maximal torus in H.

Definition 4.1.1. By a mirabolic subgroup of G we mean an algebraic
subgroup-scheme Q0

G of the following form: we choose a parabolic QG ⊇ BG,
and let QG = LG ·NG be its standard Levi factorisation (so TG ⊆ LG). We
choose a normal subgroup L0

G P LG, and we let Q0
G = NG · L0

G. We define
mirabolic subgroups of H similarly.

Our goal is to show that if Q0
G and Q0

H are mirabolics in G and H
satisfying a certain compatibility property, then – for any map of Cartesian
cohomology functors MH →MG – we obtain maps

MH,Iw(Q0
H(Zp))→

[
MG,Iw(Q0

G(Zp))
]fs
,

where “fs” denotes the finite-slope part for an appropriate Hecke operator
(this will be defined below).

4.2. The input. As input, we need examples of “interesting” classes in
MH,Iw(Q0

H(Zp)). Examples of these arise as follows:

• For any group H, and any globalisation H of H, we can take Q0
H =

QH = H, and consider the identity class in MH(H(Zp)) where MH

denotes degree 0 Betti cohomology (or étale cohomology, when this
is defined). Perhaps surprisingly, this case is by no means trivial, and
will in fact give rise to many of our most interesting examples.
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• For H = GL2 /Q we can take QH = ( ∗ ∗∗ ) the standard Borel and
Q0
H the mirabolic subgroup ( ∗ ∗1 ). The Siegel units

(
cg0,1/pr

)
r>1

, for

some suitable auxilliary integer c > 1, are a norm-compatible family
of modular units of level {Q0

H mod pr} (cf. [15, §2]); they thus give
rise to classes in MH,Iw(Q0

H(Zp)) with MH(−) taken to be degree 1
étale, Betti, or motivic cohomology.
• More generally, for H = GSp2n we can take QH to be the Klin-

gen parabolic and Q0
H the “mira-Klingen” subgroup

 ? ? ... ? ?
? ... ? ?
...

. . .
...

...
? ... ? ?

1

.

A construction due to Faltings [11] gives an integrally-normalised
Eisenstein class with norm-compatibility in this tower, living in the
groups H2n−1

ét (YH,Zp(n)); for n = 1 this reduces to Kato’s Siegel unit
class.
• We can take direct (i.e. exterior cup) products of the above examples

in the obvious fashion.

The norm-compatiblity satisfied by these classes is quite weak, or even
vacuous (i.e. the quotients H/Q0

H are small or trivial). The machinery of
this section will allow us to parlay this into a far stronger norm-compatiblity
statement for their pushforwards to G.

4.3. A flag variety. Let Q0
H be a mirabolic in H, and QG a parabolic

in G. We consider the left action of G on the quotient F = G/Q̄G, where
Q̄G is the opposite of QG (relative to our fixed maximal torus TG). Via
the embedding ι, we can restrict this to an action of Q0

H . We shall assume
there is some u ∈ G(Zp) such that the following conditions are satisfied:

(A) The Q0
H -orbit of u is open in F .

(B) We have

u−1Q0
Hu ∩ Q̄G ⊆ Q̄0

G,

where Q̄0
G = N̄G · L0

G for some normal reductive subgroup L0
G P LG.

Of course, condition (B) is always satisfied if we take L0
G = LG, but

we obtain stronger results if we take L0
G to be smaller. In most of the

examples below, L0
G will turn out to be either ZG or {1}. We shall define

Q0
G = NG · L0

G (the opposite of Q̄0
G).

4.4. Level groups. We fix some cocharacter η ∈ X•(TG) which factors
through Z(LG), and which is strictly dominant, so that 〈η,Φ〉 > 0 for every
relative root Φ of G with respect to QG; and we set τ = η(p). (We shall
show later that our constructions are actually independent of η.)

We then have

τNG(Zp)τ
−1 ⊆ NG(Zp), τ−1N̄G(Zp)τ ⊆ N̄G(Zp),
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and both τNG(Zp)τ
−1 and τ−1N̄G(Zp)τ are in the kernel of reduction mod-

ulo p (so both inequalities are strict unless NG = {1}, which is a trivial
case). Moreover, if τ−rgτ r ∈ G(Zp) for some r > 0, then g (mod pr) ∈ Q̄G.

Notation. We define the following open compact subgroups of G(Zp), for
r > 0.

• Ur := {g ∈ G(Zp) : τ−rgτ r ∈ G(Zp) and g (mod pr) ∈ Q̄0
G}.

• U ′r := {g ∈ G(Zp) : τ−(r+1)gτ (r+1) ∈ G(Zp) and g (mod pr) ∈ Q̄0
G}.

• Vr := τ−rUrτ
r.

Note that Ur ⊇ U ′r ⊇ Ur+1, and U ′r = Ur ∩ τUrτ−1. Moreover, for r > 1
all three groups have Iwahori decompositions with respect to QG and Q̄G: if
we set Nr := τ rNG(Zp)τ

−r, N̄r := τ−rN̄G(Zp)τ
r, and Lr := {g ∈ LG(Zp) :

g (mod pr) ∈ L0
G}, then we have

Ur = N̄0 × Lr ×Nr, U ′r = N̄0 × Lr ×Nr+1, Vr = N̄r × Lr ×N0.

Lemma 4.4.1. Suppose r > 1. Then:

(i) We have u−1Q0
Hu ∩ U ′r = u−1Q0

Hu ∩ Ur+1.
(ii) We have

[u−1Q0
Hu ∩ Ur : u−1Q0

Hu ∩ U ′r] = [Ur : U ′r].

Proof. Part (i) follows from the assumption (B) on Q0
H (applied modulo

p(r+1)): if q ∈ u−1Q0
Hu∩U ′r, then q mod pr+1 is in u−1Q0

Hu∩ Q̄G, hence it
is in u−1Q0

Hu ∩ Q̄0
G.

For part (ii), we need to show that there is a set of representatives for
U ′r\Ur contained in u−1Q0

Hu. Projection to the N factor of the Iwahori
decomposition gives an isomorphism

U ′r\Ur = Nr+1\Nr.

Let [1] denote the image of the identity of G in F . Since the orbit of [1]
under u−1Q0

Hu is open as a Zp-subscheme of F , and it contains [1], it must
contain the preimage in F(Zp) of [1] mod p. Hence, for any x ∈ Nr, there
exists q ∈ Q0

H(Zp) such that u−1qu lies in Nr+1xQ̄G. In particular, u−1qu
(mod pr) ∈ Q̄G, so in fact u−1qu (mod pr) ∈ Q̄0

G and thus u−1qu ∈ Ur.
However, by construction u−1qu maps to the coset of x in Nr+1\Nr, so
u−1qu represents the coset of x in U ′r\Ur. �

4.5. The construction. Let MG be a Cartesian cohomology functor for
(G,Σ), where Σ is some monoid containing G(Zp) and τ−1; let MH be a
Cartesian cohomology functor for (H,Σ ∩H); and let ι? : MH →MG be a
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pushforward map. Then we consider the following diagram:

MH,Iw(Q0
H ∩ uUr+1u

−1) MG(Ur+1)

MH,Iw(Q0
H ∩ uU ′ru−1) MG(U ′r) MG(τ−1U ′rτ)

MH,Iw(Q0
H ∩ uUru−1) MG(Ur) MG(Ur)

[u]?
[τ ]Ur+1,Ur,?

[u]? [τ ]?

[u]?

Here upward (resp. downward) vertical arrows are given by the pullback
(resp. pushforward) along the natural projection maps. The commutativity
of the lower left square follows from assertion (ii) of the preceding lemma,
together with the Cartesian axiom for ι? : MH → MG. The dotted ar-
row making the lower right square commute is the definition of the Hecke
correspondence T associated to the double coset [Urτ

−1Ur].
Given zH ∈ MH(Q0

H(Zp)), we can define zG,r to be the image of zH
under the map

MH,Iw(Q0
H)

pr∗−−→MH,Iw(Q0
H ∩ u−1Uru)

[u]∗−−→MG(Ur).

Note that this element depends only on the class of u in Q0
H\G.

Proposition 4.5.1. We have [τ ]Ur+1,Ur,?(zG,r+1) = T · zG,r.

Proof. From the compatibility of the lower left square in the diagram, we
know that prUr+1,U ′r,?

(zG,r+1) = pr?U ′r,Ur(zG,r) as elements of MG(U ′r). The

result now follows by mapping both sides into MG(Ur) via [τ ]?. �

This setup is convenient for proofs, but one can obtain tidier statements
by replacing Ur with its conjugate Vr = τ−rUrτ

r, and the classes zG,r with
their cousins

ξG,r = [τ r]? · zG,r ∈MG(Vr).

Then we have the following:

Proposition 4.5.2. We have prVr+1,Vr,? (ξG,r+1) = T · ξG,r. �

It will be convenient to introduce the finite slope part

MG(Vr)
fs := A[T , T −1]⊗A[T ] MG(Vr).

Proposition 4.5.3. The operators T on MG(Vr) and MG(Vr+1) are com-
patible under the projection pr? : MG(Vr+1)→MG(Vr), for each r > 1.

Proof. From the Iwahori decomposition of Vr, we see that the operators
T on MG(Vr) and MG(Vr+1) admit a common set of coset representatives
(given by any set of representatives forN0/N1). So the compatibility follows
from the Cartesian property of MG. �
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So we have a well-defined module

MG,Iw(Q0
G(Zp))

fs = lim←−
r

MG(Vr)
fs.

Theorem 4.5.4. The above construction defines a map

MH,Iw(Q0
H(Zp))→MG,Iw(Q0

G(Zp))
fs,

mapping zH to the compatible system (T −r ⊗ ξG,r)r>1. �

4.6. Towers of “abelian type”. The above construction gives norm-
compatibility in the towers (Vr)r>1, whose intersection is Q0

G(Zp). This
incorporates a huge amount of information. In practice it is often simpler
to discard the “non-abelian part” of this information, by projecting to a
simpler level tower.

Let π : H → C be the maximal torus quotient of H (as an algebraic

group over Qp), and let G̃ denote the direct product G × C. The map

ι̃ = (ι, π) gives a lifting of H to a subgroup of G̃; and the second projection

G̃→ C gives an extension of π to G̃.
We suppose we have subgroups Q0

H and QG satisfying the open-orbit con-
dition (A), and such that π

(
Q0
H ∩ uQ̄Gu−1

)
is contained in some subtorus

C0 ⊆ C. Note that this condition depends only on the H-orbit of u in
(G/QG)(Qp). We can then replace G with G̃ in all of the above construc-
tions, and take

L0
G̃

= LG × C0 ⊂ LG̃ = LG × C.

If Cn denotes the preimage in C(Zp) of C0 mod pn, then the group Vn ⊂
G̃(Zp) arising from these new data is then contained (strictly if n > 1)
in J0 × Cn, where J ⊆ G(Zp) is the parahoric subgroup associated to
QG. Since both Vn and J have Iwahori decompositions with respect to
the parabolic QG̃, the finite-slope parts for T are compatible under the
projection prVn,J×Cn,?; so Theorem 4.5.4 gives us maps

MH,Iw(Q0
H(Zp))→MG̃,Iw(J × C∞)fs,

for any cohomology functor MG̃ for G̃. In the setting of Betti and étale
cohomology, these groups have a more “classical” interpretation, as we now
show:

The Betti setting: p-adic measures. Suppose that we are in the Betti coho-
mology setting, with Zp-coefficients. That is, G = G×Qp for some Q-group
G, and MG(U) = H i(YG(UpU),VM ) for some i, where VM is the sheaf cor-
responding to a lattice M in an algebraic representation of G (preserved
by τ−1).
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Let C be the maximal torus quotient of H, and let ∆n denote the finite
arithmetic quotient

∆n = C(Q)\C(A)/Cn · Cp · C(R)†,

where Cp is the maximal compact subgroup of C(Ap
f ), and C(R)† is the

subset of the components of C(R) in the image of KH,∞. Then we obtain

an extension of MG to a cohomology functor MG̃ for G̃, such that

MG̃(J × Cn)fs = Zp[∆n]⊗Zp MG(J)fs.

Since MG(J) is finitely-generated over Zp, the limit eord = limn→∞ T n!

exists as an endomorphism of MG(J), and its image is the maximal direct
summand MG(J)ord on which T is invertible. Thus we have a natural map
MG̃(J × Cn)fs →MG(J)ord; so Theorem 4.5.4 gives a map

MH,Iw(Q0
H)→ Zp[[∆∞]]⊗Zp H

i (YG(UpJ),VM )ord .

The right-hand side is the space of p-adic measures on the abelian p-adic

Lie group ∆∞, with values in the Zp-module H i (YG(UpJ),VM )ord. So we
have defined p-adic measures interpolating the QG-ordinary projections of
classes pushed forward from H.

Remark 4.6.1. In most of the examples which interest us, C will just be
Gm, and C(R)† = R×>0; and Cm will be the principal congruence subgroup
of level m, so that ∆∞ ∼= Z×p .

The étale setting: Iwasawa cohomology. In the étale cohomology setting,
we can proceed similarly, but we must now treat the finite groups ∆n

as 0-dimensional algebraic varieties over the reflex field E of YH, i.e. as
Gal(E/E)-sets. For simplicity we suppose that the Shimura datum for G
(and hence also for H) is of Hodge type; it follows that if S is a suffi-
ciently large finite set of places of E (containing those above p), then all
our Shimura varieties have smooth models over OE,S , and the morphisms
between them extend to the integral models.

The Galois action on ∆n is given by translation by a character

κn : Gal(E/E)ab → ∆n,

unramified outside S, which is the composite of the Artin map for E and
the cocharacter µ : ResE/Q Gm → C determined by the Shimura datum.

As before, the maps YH(UpU ∩ H) → YG(UpU) lift to maps into the
varieties

YG̃(UpU × CpCn) ∼= YG(UpU)×∆n.

The étale cohomology of these products over E is given by

H i
ét

(
YG̃(UpU × CpCn)E ,VM

) ∼= Zp[∆n](κn)⊗Zp H
i
ét(Y(UpU)E ,VM ).
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This implies a spectral sequence2

Eij2 = H i
(
OE,S ,Zp[[∆∞]](κ∞)⊗Zp H

j
ét(YG(UpJ)E ,VM )(n)

)
⇒ H i+j

ét,Iw

(
(YG(UpJ)×∆∞)OE,S ,VM (n)

)
.

Let Γ∞ denote the image of κ∞ in ∆∞. Then the Eij2 term can be
written as

Zp[[∆∞]]⊗Zp[[Γ∞]] H
i
Iw

(
OE∞,S , H

j
ét(YG(UpJ)E ,VM )(n)

)
where E∞ is the abelian extension of E (with Galois group Γ∞) cut out

by the character κ∞. If Γ∞ has positive dimension, then the E0j
2 terms

vanish, so we obtain edge maps into H1
Iw. Thus Theorem 4.5.4 gives maps

into the groups

Zp[[∆∞]]⊗Zp[[Γ∞]] H
1
Iw

(
OE∞,S , H

j−1
ét (YG(UpJ)E ,VM )ord(n)

)
.

Specialising to the case Q0
H = H gives Theorem 1.2.1 of the introduction.

5. Some example cases

5.1. Hecke-type pairs. We refer to pairs (G,H) satisfying our condi-
tions for Q0

H = H as Hecke type, by analogy with Bump’s classification of
Rankin–Selberg integrals. In this case, our norm-compatibility machinery
gives compatible families of cycle classes (topological or étale).

5.1.1. Diagonal embeddings of general linear groups. Our first example is
G = GLn×Gm GLn+1, for n > 1, where ×Gm denotes fibre product over the
determinant map to Gm. We take H = GLn, embedded via g 7→ (g⊕ 1, g),
and Q0

H = H.
It is well-known that (G,H) is a spherical pair, i.e. H has an open orbit

on the Borel flag variety of G. Moreover, since dimH = dim(G/BG) = n2,
the stabiliser of a point in this orbit has to be finite, and one checks that
it is in fact trivial. Hence we can take QG to be the upper triangular Borel
of G; and we can take the abelian quotient C to be the maximal torus
quotient of H, which is GL1.

This case can be globalised in several distinct ways. Firstly, we can take
G and H to be the corresponding split groups over Q. For n = 1 this
recovers the classical “modular symbol” construction of norm-compatible
families of classes in Betti H1 of modular curves, given by paths between
cusps, and thus we recover the classical construction of the standard p-adic
L-function of a modular form. For n > 1, we obtain p-adic L-functions

2Here the use of the S-integral models is essential, in order to avoid issues involving compat-
ibility with inverse limits.
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associated to Rankin–Selberg L-functions for GLn×GLn+1; this recovers
a construction due to Kazhdan–Mazur–Schmidt [16] and Januszewski [13].

Alternatively, we can take G and H to be unitary groups (relative to
some imaginary quadratic field K in which p splits), with R-points

U(n− 1, 1) ↪→ U(n− 1, 1) ×
U(1)

U(n, 1),

and use étale cohomology of the canonical models over K. The pushfor-
ward of the identity class in H0

ét(YH) is then the étale cycle class of a
diagonal cycle, living in the group H2n

ét (YG ,Zp(n)) (the “arithmetic middle
degree”); and the action of Galois on the abelian quotient C = U(1) cuts
out the anticyclotomic extensions of K, so we obtain norm-compatibility
relations in the anticyclotomic tower at p. For n = 1, this recovers the
norm-compatible family of Heegner points; the case n = 2 is essentially
the setting of the work of Jetchev and his group on “unitary diagonal cy-
cles” [2]. (The restriction to p split is easily removed, since one checks that
the same group-theoretic criterion – that H have an open orbit on G/BG
with trivial stabiliser – is also satisfied for the unramified unitary groups
associated to a quadratic extension of Qp.)

Remark 5.1.1. We have, of course, discarded much useful information by
taking L0

G to be the kernel of the determinant map, when we could in
fact have taken it to be {1}. The extra information arising from choosing
L0
G = {1} is essentially the fact that the above Betti and étale classes

interpolate in Hida-type p-adic families as the weight varies.

5.1.2. Diagonal embeddings of orthogonal groups. We can also consider
the analogue of the above construction for orthogonal groups: we choose a
quadratic space V/Q of dimension n, set V ′ = V ⊕ Qe where 〈e, e〉 = 1,
and define H = SO(V ), G = SO(V ⊕ V ′). Again, it is well-known that
(G,H) is a spherical pair, and it has the property that the stabiliser of a
point in the open orbit is trivial. If we choose our global groups in such a
way that the picture at ∞ is

SO(n− 2, 2) ↪→ SO(n− 1, 2)× SO(n− 1, 2),

then we again have a diagonal cycle on a Shimura variety for G, living in
the arithmetic middle degree.

For n = 2 this again recovers Heegner points (up to a harmless central
isogeny), since SO(2) is a non-split torus and SO(1, 2) ∼= PGL2. For n = 3,
the group G is isogenous to SL2×SL2×SL2, and we recover the Gross–
Kudla–Schoen cycles of [7].

Remark 5.1.2. For n > 3 the group G has no nontrivial torus quotient.
However, the construction can be naturally interpreted in terms of variation
in p-adic families of Hida type.
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5.1.3. The case of GLn×GLn ⊂ GL2n. We can also consider the “block–
diagonal” embedding of H = GLn×GLn into G = GL2n. In this case,
there are two natural possibilities to consider.

The first option is to take QG to be the parabolic having H as its Levi
factor. In this case, a straightforward calculation shows that if u =

(
In In
0n In

)
,

where In is the n × n identity matrix, then u−1Hu ∩ Q̄G = {
(
X
X

)
:

X ∈ GLn}. This is in the kernel of the natural map H → Gm given
by (h1, h2) → det(h1)/ det(h2), so the construction of §4.6 gives norm-
compatibility in an abelian tower with Z×p as the quotient.

One global setting in which this local computation applies is that studied
by [9]: here we take G and H to be the split groups GL2n and GLn×GLn,
and one obtains p-adic L-functions for cohomological automorphic repre-
sentations of GL2n(AQ) having a Shalika model. However, one can also
consider unitary groups split at p, with signature at ∞ given by

U(n− 1, 1)× U(n, 0) ↪→ U(2n− 1, 1),

in which case one again obtains étale classes landing in the arithmetic
middle degree, satisfying a norm-compatibility property along the anti-
cyclotomic extension of the CM field defining the unitary groups. The
properties of these classes are studied further in recent work of Graham
and Shah [12], who have shown that these classes also satisfy a “horizontal”
norm-compatibility relation at primes split in the CM field.

A more powerful, but more complex, variant of this construction is ob-
tained by taking BG to be the Borel subgroup, and u the element

(
In Jn
0n In

)
,

where Jn is an anti-diagonal matrix of 1’s. Then one checks that u−1Hu∩
Q̄G is contained in LG: it is the group of diagonal matrices of the form

diag(x1, . . . , xn, xn, . . . , x1).

So LG/L
0
G is isomorphic to Gn

m. We can obtain a further Gm factor
by extending our embedding to GL2n×GL1 via the formula (h1, h2) 7→((

h1
h2

)
, deth1

)
. This can be used to construct (n + 1)-parameter fam-

ilies of cohomology classes, with one “abelian” variable (as above) and n
“weight” variables. We hope to explore the applications of this construction
further in a subsequent paper.

Remark 5.1.3. For n = 1, the GLn×GLn ↪→ GL2n×GL1 and GLn ↪→
GLn+1×Gm GLn constructions coincide (up to a redundant extra GL1 fac-
tor).

5.2. Eisenstein-type pairs. There are also important examples in which
Q0
H is a proper subgroup of H, and we take the input to be one of the non-

trivial Iwasawa cohomology classes mentioned in §4.2. Since these classes
are associated to Eisenstein series for the parabolic QH ⊂ H, we refer to
these as Eisenstein type.
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5.2.1. Rankin–Selberg and its twists. If we take H to be GL2, G to be
GL2×Gm GL2, and Q0

H the mirabolic ( ? ?1 ), then our conditions are satis-
fied for the orbit of u = ( 1 1

1 ), with L0
G = {1}.

The “obvious” global application, in which G and H are the split rational
forms, is the p-direction norm relation for the Euler system of Beilinson–
Flach classes [17]. However, taking H = GL2 but G to be the quasi-split
form of GL2×Gm GL2 corresponding to a real quadratic field F/Q (with
p split in F ), then the same local computation gives norm relations for
the Asai–Flach Euler system [18]; and taking F instead to be imaginary
quadratic, and our cohomology functors to be Betti rather than étale, one
obtains the p-adic L-function of [20].

5.2.2. GSp4 and GSp4×GL2. We can also take H = GL2×Gm GL2, and
G to be GSp4, with the embedding ι : H ↪→ G given by a decomposition
of the standard representation of GSp4 into two orthogonal subspaces. We
can take Q0

H to be the fibre product of two copies of the standard mirabolic
( ? ?1 ) of GL2.

One checks easily that there is an open orbit of Q0
H in the flag variety

for the Siegel parabolic PS ⊂ G (the stabiliser of a 2-dimensional isotropic
subspace), and the stabiliser of this orbit is {1}. So we can take Q0

G to
be the unipotent radical of PS. In particular, this group has trivial image
under the multiplier map µ : G→ GL1, so we deduce a norm-compatibility
statement for the abelian tower given by the groups

Jn = {x : x ∈ PS mod p, µ(x) = 1 mod pn},
involving the Hecke operator given by the double coset of diag(p, p, 1, 1)−1.
This is, of course, precisely the computation underlying the vertical norm-
compatibility of the étale Lemma–Flach classes of [19].

Another possibility is to take the same group H, but to embed it instead
into G = GSp4×Gm GL2, with the map being the fibre product of the
above map H ↪→ GSp4 and the second projection H → GL2. Here we
take Q0

H = (( ? ?1 ) , ?). One checks that Q0
H has an open orbit on the

Borel flag variety of G, with trivial stabiliser. This gives a natural norm-
compatible family of étale classes in the degree 5 étale cohomology of the
Shimura variety for G (which is the arithmetic middle degree, since YG has
dimension 4). This will be investigated in detail in forthcoming work of
Hsu, Jin, and Sakamoto, based on a project led by the author and Zerbes
at the 2018 Arizona Winter School.

Remark 5.2.1. Iterating the process once more gives a Hecke-type pair

(G,H) =
(

GSp4 ×
Gm

GL2 ×
Gm

GL2, GL2 ×
Gm

GL2

)
.

After factoring out the copy of Gm in the centre of both H and G, this
becomes the n = 4 case of the (SOn×SOn+1,SOn) construction above,
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since SO5
∼= PGSp4 and SO4 = (GL2×Gm GL2) /Gm. Together with the

GSp4 and GSp4×GL2 constructions this gives a new “trilogy” of Euler
systems, as a sequel to the “tale of two trilogies” described in [1].

5.2.3. GL3×GL1 and its twists. We can also consider the embedding

H = GL2×GL1 ↪→ G = GL3×GL1

(g, x) 7→ (( g x ) , x) ,

with Q0
H = ( ? ?1 ) × GL1. One computes that there is an open Q0

H -orbit
on the Borel flag variety of G whose stabiliser is trivial; in particular, we
obtain norm-compatibility in an abelian tower with Galois group Z×p ×Z×p .

This example has (at least) two interesting global applications. Firstly,
we can take K imaginary quadratic (with p split), H to be the group
GL2×Gm ResK/Q GL1, and G the quasi-split unitary group GU(2, 1). Then
the Galois action on the above abelian tower cuts out the maximal abelian
extension of K unramified outside p, so we obtain norm-compatible families
of Galois cohomology classes over this 2-dimensional p-adic Lie extension.
This will be pursued in forthcoming work of the author with Skinner and
Zerbes. Secondly, we can take G and H to be split over Q, in which case
we obtain a 2-variable measure with values in the Betti cohomology of the
5-dimensional symmetric space for GL3. This will be studied further in a
forthcoming work of the author and Williams, where it will be used to con-
struct a p-adic L-function for cohomological automorphic representations
of GL3 /Q which are not necessarily self-dual.

5.2.4. Some curiosities. We mention two further pairs of groups in which
case the above machinery seems not to work as well as one would hope.

The preprint [4] studies the image of the Faltings Eisenstein classes for
H = GSp4 under an embedding into GU(2, 2), which factors through the
kernel G of the natural map GU(2, 2)→ U(1); this kernel G is isomorphic
to GSpin(4, 2). The choice of these Eisenstein classes requires us to take
Q0
H to be the 7-dimensional Klingen mirabolic. However, the Borel flag

variety of G has dimension 6 (the root system of G is the same as that of
SL4). So every orbit of Q0

H on the flag variety of G has to have stabilisers of
dimension at least 1; and one computes that the stabilisers always surject
onto the maximal torus quotient of G. Hence there is no way to obtain
norm-compatibility in an “abelian” tower for these cohomology classes; but
one obtains instead a compatibility in Hida-type families. (The situation
would be much improved if one could take Q0

H to be a mirabolic associated
to the Borel subgroup of H, but we do not know of a construction of
Iwasawa cohomology classes for this level tower.)

The preprint [5] studies the embedding

GL2 ×
Gm

GL2 ×
Gm

GL2 ↪→ GSp6,
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taking Q0
H to be the group (( ? ?1 ) , ?, ?). This group has dimension 8, so it

has no chance of having an open orbit on the 9-dimensional Borel flag vari-
ety of G. Instead, one checks that it has an open orbit on G/Q̄G, where Q̄G
is block-upper-triangular with blocks of size (1, 2, 2, 1), and the stabiliser
of a point in this orbit is trivial. Hence one obtains norm-compatibility
in a very large p-adic tower. The difficulty in this case is in proving the
horizontal norm relations: the strategy followed for GSp4 in [19] relies on
a multiplicity-one property for decompositions of spherical representations
of G × H, which is closely bound up with the existence of an open orbit
of QH (sic, not Q0

H) on G/BG. This is clearly impossible, for dimension
reasons.

Remark 5.2.2. Note that in the first example, the problem is that Q0
H is

“too large”, and the second example, Q0
H is “too small”.

6. Brion’s classification

The embeddings of algebraic groups H ↪→ G such that G is semisimple,
H is reductive and (G,H) is a spherical pair (i.e. H has an open orbit on
G/BG) have been classified by Brion [3]. It suffices to classify the associated
pairs of Lie algebras (g, h). These are all built up via direct products from
an explicit list of “indecomposable” pairs.

In Hecke-type constructions (with Q0
H = H), our machinery works most

neatly if dim(G/BG) = dimH, so the stabiliser of a point in the open orbit
is finite. There are eight infinite families of indecomposable pairs (g, h)
with this property: the pairs (sln × sln+1, sln × t) and (son × son+1, son),
which correspond to the constructions of §5.1.1 and §5.1.2 respectively, and
six more:

• (sln, son)
• (sl2n+1, sp2n)
• (so2n+1, son × son+1)

• (so2n+1, sln × t)
• (sp2n, sln × t)
• (so2n, son × son)

Here t is the 1-dimensional abelian Lie algebra. There are also the fol-
lowing “sporadic” examples:

•
(

(sp4)2 × sl2, (sl2)3
)

•
(

(sp4)3, (sl2)4
)

•
(
sp6 × sp4, sp4 × sl2

)
•
(
sp8 × sp4, sp4 × sp4

)
•
(
sl3 × sp4, (sl2)2 × t

)

•
(
sl4 × sl2, (sl2)2 × t

)
•
(
sl4 × sp4, (sl2)3 × t

)
•
(
e6, sp8

)
•
(
e7, sl8

)
•
(
e8, so16

)
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•
(
f4, sp6 × sl2

)
•
(
g2, sl2 × sl2

)
The cases in which h has t as a factor are particularly interesting, because

we can potentially use this to obtain norm-compatibility in a non-trivial
abelian level tower. One of these, the pair (so2n+1, sln × t), appears in re-
cent work of Cornut [6], who constructs an Euler system in the cohomology
of a Shimura variety for SO(2n− 1, 2), using cycles given by an embedding
of U(n−1, 1); our theory thus allows Cornut’s Euler system to be extended
over the p-adic anticyclotomic tower. Arithmetic applications of the re-
maining cases, such as sln × t ↪→ sp2n, do not seem to have been explored
at all (beyond the case n = 1) and it would be highly interesting to do so.

This list can also be used to find new examples of “Eisenstein-type”
constructions, by searching for spherical pairs (g, h) such that g = g′ ×
(sl2)n, h = h′ × (sl2)n for some g′, h′ and n > 1, and the map h ↪→ g
identifies the two (sl2)n factors. This gives rise to spherical pairs of the
form (Q0)n × H ′ ↪→ G′, where Q0 is the standard mirabolic in GL2; and
we can obtain norm-compatible families in symmetric spaces for G′ by
pushing forward GL2 Eisenstein classes. Searching for pairs (g, h) of this
form in the above list, we recover the constructions described above for
G′ = GL2×Gm GL2, GSp4, GSp4×Gm GL2, and GL3×GL1, and two new
cases, namely G′ = GL4 and G′ = GSp4×Gm GSp4.

Remark 6.0.1. This list does not exhaust the potential applications of our
main theorem, since it only covers cases where we can take QG to be the
Borel of G and L0

G = {1}. These are not the only cases where the method
gives interesting results, as the examples of §5.1.3 show.
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