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Introduction

This thesis is dedicated to the investigation of the structure of rings of differential 

operators on affine algebraic varieties. In particular, two aspects of the theory of 

differential operators are considered: the theory of primary decomposible subspaces 

as introduced by [Cannings & Holland], and the work begun in [Smith &c Stafford], 

[Hart Smith] and [Chamarie & Stafford] about S2 varieties with smooth injective 

normalisation. The former topic is used to classify the right ideals of the ring of differ­

ential operators on a smooth curve. In Chapter Two, an alternative characterisation 

of primary decomposible subspaces is given which leads to an easier proof of the clas­

sification of the right ideals, and also extends to a certain extent to surfaces. But it 

is the second of the two topics that most concerns this thesis and the main result of 

the thesis is the calculation of a counter example to a conjecture which previously 

seemed to be intractable.

In [Smith &c Stafford] it is shown that if A1 is a (possibly singular) curve with 

normalisation X  and if the normalisation map 7r : X  —► X  is injective then T>(X) 

is a simple, noetherian domain with Krull and global dimensions equal to one. The 

method of proof is find a connection between the two rings T>(X) and T>(X). This
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link i.s Morita equivalence and is afforded by the bimodule V (X ,X ) .  In the papers 

[Hart fr, Smith] and [Chamarie fo Stafford], a generalisation of this result to two 

surfaces is given. That is, it is proved that if X  is an S3 surface with smooth, 

injective normalisation X  then T>(X) is Morita equivalent to T>(X) and so is simple 

and noetherian with Krull and global dimensions equal to two. This result works by 

proving that the module P (,Y ,X )  is a reflexive P(,Y)-module then using the fact that 

in rings of global dimension two, reflexivity is the same as projectivity. In three or 

more dimensions however, this trick is no longer available but it was conjectured in 

both [Hart & Smith] and [Chamarie & Stafford] that the result would still hold for 

higher dimensional varieties (although [Chamarie & Stafford] does suggest that extra 

conditions may have to be placed on the variety X ).

This thesis was motivated by the desire to find examples of high dimensional Si 

varieties with smooth, injective normalisation and to calculate the rings of differential 

operators on them. When looking for such examples it is natural to consider subrings 

of polynomial rings and it quickly becomes clear that the easiest set of examples 

are tensor products of the coordinate rings of curves. In Chapter Three it is shown 

that the differential operator ring of a tensor product is the tensor product of the 

differential operator rings. This is a natural result to want to prove and so it is 

surprising that it has not appeared previously in the literature. Once this result 

is established, it is used to prove that if A* is a product of curves then T>(X) is 

Morita equivalent to V (X ) .  This result might seem to lend weight to the conjecture 

mentioned in the previous paragraph.

After seeing the result on tensor products, it is natural to want to find an example
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of an Si variety witli smooth, injective normalisation which is not a product of curves. 

This is the subject of Chapter Four where the line of attack is to construct a variety 

X  whose singular locus is determined by a height one prime of the coordinate ring 

C?(.V). If X  were a product then either its singular locus would be smooth or it would 

not be irreducible, so by choosing the prime ideal carefully, one may construct an X  

which cannot be a product.

The next problem is to calculate the differential operators on the varieties which 

we have constructed. Fortunately, the construction makes use of a derivation which 

has close links with the module of differential operators D (X , X ). In the second part 

of Chapter Four, a criterion is found on this derivation for the 2?(,Y)-module T>(X, X )  

to be projective. Finally, it is shown that there exists an example of an S2 variety 

X  with smooth, injective normalisation X  whose differential operator ring T>(X) is 

not Morita equivalent to T>(X). This is a counter example to the aforementioned 

conjecture.

Chapter One contains all the background material necessary for the later chapters 

and is of a completely expository nature. This should make the thesis self contained, 

even for the non-specialist in differential operator rings. The only results that are 

assumed are well-known facts about algebra such as the Dual Basis Lemma and 

Goldie’s Theorem. Chapter Five presents a discussion of the results contained in this 

thesis and how they could possibly be improved or extended.

1 would like to take this opportunity to thank my supervisor Dr.C.Hajarnavis for 

his help and guidance in writing this thesis and also Dr.M.Holland for his advice and 

ideas.
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Chapter 1

This chapter is primarily concerned with the setting forth of all the background in­

formation necessary in order to be able to discuss the results proved in the following 

chapters. The main subjects we need to look at are differential operators, algebraic 

varieties and some ring theory (both commutative and non-commutative). In partic­

ular we shall examine the interplay between differential operators and affine algebraic 

curves as studied in [Smith & Stafford] and the generalisations of this to higher di­

mensions. To do this we first need to know the basic properties of rings of differential 

operators and also some elementary algebraic geometry. We start by introducing the 

concept of rings of differential operators on varieties and we analyse their basic ring 

theoretic structure. In particular we completely determine the structure of the ring 

of differential operators on a smooth (non-singular) variety. We then study ways of 

passing from a general singular variety to a smooth one and show how these meth­

ods can lead to powerful tools for the examination of the properties of the ring of 

differential operators on a singular curve.

We assume that the reader is familiar with the correspondence between affine 

algebraic varieties over a base field k, and commutative, affine (i.e. finitely generated)
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¿•-algebras via the set of maximal ideals (max-Spec) of a ring. This correspondence 

is particularly nice when k is algebraically closed as the Hilbert Nullstellensatz tells 

us that in this case the points of a variety are in bijection with the max-Spec of its 

coordinate ring. Unless otherwise specified we will always be working with irreducible, 

affine varieties over an algebraically closed base field k of characteristic zero.

1.1 Derivations and Differentials

Let K  be a commutative ring and let R  be a commutative A'-algebra. Before defining 

the ring of differential operators on R  we look at the closely related ring of K- 

linear derivations which is the subring of Endfc(R) generated by the derivations. 

Notice first of all that End^lfR) does actually form a ring with multiplication being 

the composition of maps. We may think of R  itself as lying inside Endfc(R) since 

multiplication by an element x of R  is a linear map.

Definition 1 ( i)  Let R  be a commutative K-algebra. A map 0 6 End/c(R) is called 

a ( A'-linear) derivation if  0(xy) =  0(x)y +  xO(y) fo r all x and y in R . Denote the set 

of all K-linear derivations on R  by D er^ (R ).

( i i )  Let R  be a commutative I\ -algebra. We define the ring A k (R )  to be the subring 

of Endh (R )  generated by all the elements of R , and the set o f K-linear derivations 

on R . This is called the (A'-linear) derivation ring of R.

Of course, almost all of the time we shall simply be looking at commutative k- 

algebras for a field k, and ¿-linear derivations. In this case, when the context is
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clear we shall omit the k subscript from Der*(7?.) and A*(7?.) and simply talk about 

derivations and the derivation ring. Notice that the set of derivations Der(TZ) is closed 

under multiplication on the left by elements of 7Z and is therefore a left 72,-module. 

When TZ =  O (X )  is the coordinate ring of a variety X  we shall simply write D e r(X ) 

in place of Der(TZ). The ring A(1Z) is a subring of the ring of differential operators 

on 1Z as defined in the next section and it will turn out that when 1Z is regular (i.e. 

when the variety corresponding to 1Z is smooth), these two rings are actually equal. 

It would swm sensible therefore to study the derivation ring of a regular ring 1Z and 

we will see that A(1Z) has a number of surprisingly strong properties.

Example: Let A n denote affine n-space so that its coordinate ring 0 ( A ’*) equals 

Ar[xi,. . . ,  i n] for n indeterminates x i , . . . ,  x„. Then the set of derivations Der( A ” ) is 

a free left 0 (  A n)-module with free basis • • • i g f; }-  Hence the derivation ring

A(C?(An)) is an iterated Ore extension:

A(0(A*)) = *|*.....

This ring is very well known and is called the nth Weyl algebra An(k ). It has been 

studied extensively and is known to have many nice properties, some of which are 

summarised in the proposition below.

Proposition 2 Let An(k ) be the nth Weyl algebra. Then:

( i )  An(k ) is a left and right noetherian integral domain.

(i i )  An(k ) is a simple ring.
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( i i i )  An(k ) has h'rull and global dimensions equal to n.

(iv ) Every right (or left) ideal of An(k ) can be generated by two elements.

Proof: These results can be found in [MR] in sections 1.3, 6.6 and 7.5, and [Stafford].

□

This tells us that An(k ) is a very nice ring indeed and that although it is highly 

non-commutative (its centre is just k), the properties stated in parts (i ) and ( i i i )  

of the proposition mirror those of the commutative ring C?(An) itself. On the other 

hand, the simplicity of An(k ) indicates a marked difference from the properties of 

general commutative rings, as the only simple commutative rings are fields. Now, 

when X  is a smooth variety its coordinate ring 1Z =  O (X )  is a regular ring whose 

derivation ring looks very much like A n(k), where n is the dimension of X. In order 

to prove this fact, a number of small results are required, most of which we will need 

in greater generality for the later chapters. We therefore summarise the properties of 

the derivation ring of a smooth variety in the next proposition and remark that their 

proofs can be easily adapted from the proofs of the results contained in the remainder 

of this section.

Proposition 3 Let 7Z be the coordinate ring of a smooth, n-dimensional variety. 

Then A (R ) is a simple, noetherian domain with h'rull and global dimensions equal 

to n.

Proof: As mentioned above we omit the proofs of these facts as they are very similar 

to proofs given later in this section. The interested reader is therefore referred to
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[M R ] Theorem 15.3.7 and Proposition 15.3.6(i). □

Rem ark: There exist results about numbers of generators of right ideals of A(7£) 

in [Coutinho & Holland], namely that each right ideal needs only three generators. 

Notice the dichotomy between this and part (iv ) of Proposition 2. It is an open 

question as to whether every right ideal of A (.V) can be generated by two elements 

for an arbitrary smooth variety X . In fact, there is no known example of any simple, 

noetherian ring with a right ideal which cannot be generated by two elements.

In addition to derivations on a ring TZ we may consider the module of derivations 

between two 71-modules, and dual to the notion of derivations is that of the module of 

differentials. Fortunately we only need to consider derivations between the ring itself 

and a module. Again, for technical reasons we need to look at A'-linear derivations for 

a commutative ring K . This time we shall be working inside the set Hom^iTZ, M )  for 

a right 7?.-module M  where TZ is a commutative A'-algebra. Since TZ is commutative 

this set forms a bimodule over TZ under the following actions: for 0 € H ot71k (7Z, M ) 

and x and y € TZ, define (0 .x)(y ) =  0(xy) and (x.0)(y ) =  0(y).x.

D efin ition 4 Let K  be a commutative ring, TZ a commutative K-algebra and M  a 

right TZ-module.

(¿) Let 0 € Hornic(TZ, M ). Then 0 is called a (A'-linear) derivation between TZ and 

M  if  0(xy) =  0(x)y +  0(y)x for every x and y 6 TZ. Denote the set o f all K-linear 

derivations between TZ and M  by Derx(TZ, M ).
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(it) Let F  be the free right TZ-module with free basis the set o f symbols {(/x|.r £ TZ} 

and let G be the submodule of F  generated by all the elements of the form da, d(x + 

y) — dx — dy and d(xy) — d(x)y — d(y)x for a £ K  and x and y £ TZ. Then define 

the module of (Kahler) differentials, SIk (TZ), to be the factor module F/G.

Notice that that map d from 1Z to fla(7£) given by d(x) =  dx is a derivation. 

This map d is called the universal derivation of TZ. The link between differentials and 

derivations is explained by the next result. For the rest of this section we will assume 

that we are in the situation of the previous definition in that K  is a commutative 

ring and 1Z is a commutative A-algebra.

Lem m a 5 Let M  be an TZ-module. Then:

( i )  Given a derivation 6 £ Dern(1Z, M ) there is a unique TZ-module homomorphism 

<f> : Qk (TZ) —» M  such that 6 =  <f>o d.

(u ) The map from HomK({lK(TZ), M ) to Der^(TZ, M ) given by <j> i-> 4> o d is an iso­

morphism of left IZ-modules. In particular D erx (lZ ) =  =  Hom(fln(TZ), TZ).

Proof: Part (i) follows by setting <f>(dx) =  S(x) for x £ TZ and part (u ) follows from 

part (t). □

Example: Referring back to our previous example, let K  =  k be a field and let A n be 

affine n-space. Let / £ TZ =  fc[xi,. . . ,  xn]. Then it is easy to see, using the relations 

in fi, that df =  ¿2(df /dxi)dx{ so that the dxi generate fi over TZ. Now let M  be the 

free right 7?.-module with basis m i,..  .,m n and define 6 £ Der(TZ, M ) by £(x;) =  m; 

for each i. Then by Lemma 5 there exists a unique homomorphism <f> from il(TZ) to
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M  which maps (lx, to m, for each i. Therefore there can be no relations between the 

dx, in il(72) and it is a free 72-module on n generators dxi.

Next we give a result which although easy to prove, is powerful enough to eventu­

ally enable us to develop a theory o f localisation for the non-commutative ring A(72). 

In the proof we need the elementary fact that a sequence of 72-modules

N ' - »  N  -*  N "  - . 0

is exact if and only if the induced sequence

0 — H om n(N ", M ) - »  Homn(N, M ) - *  HomK(N ',  M )

is exact for all 72-modules M  (see [Atiyah & Macdonald; 2.9] for example).

Lem m a 6 Let S  be a commutative K-algebra, rj> : 72 —► <S a K-algebra homomor­

phism and M  an S-module. Then:

(t) Homs(S<2>KilK(n ),M )  S  Der/c(72, M).

(it) The following sequences of S-modules are exact:

(a) 0 -  £>er*(S, M ) A  DerK(S , M ) A  Der*(72, M )

(b) 5 ® Rnjr(72) A  f i * (5 )  4  n * (S )  -  0

with a being a split injection if and only if r is surjective fo r all S-modules M . 

P roo f: (t)

//oms(507ifih(72), M )  35 //omtj(fl/c(72), Homs(S, M ) )  //om^(flK-(72), M )
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which is isomorphic to ¿7erjr(TC, M )  by Lemma 5 ( ii ).

( i i )  Sequence (b) is achieved by setting a(s ® dr) =  sd(ip(r)) and fi(sdt) =  sdt for 

r S 71 and s, t 6 S. Sequence (a) is then yielded by appyling the functor Hoins( — , M ) 

to (6). The final remark is simply an easy application of homological algebra. □

The exact sequence (b) above is called the first fundamental exact sequence for the 

differentials. The next lemma is called the second fundamental exact sequence.

Lem m a 7 Let S  be a commutative K-algebra and let R  =  <S// fo r I  an ideal of S. 

Then we have an exact sequence of S-modules as follows:

i / i 2 ■!* ns)SnK(S) siK(n)  -  o.

Proof: Define 0(x +  I 2) =  1 ® dx and ^(1 ® ds) =  d(s +  /) for x € / and s £ S. It is 

straightforward to check that these are well defined and that <t> o 0 — 0. Now let M  

be an 7£-module and apply the functor Homs{—,M )  to the sequence as in the last 

lemma to give us the following sequence:

0 ->  DerK{H ,S ) £  DerK(S ,M )  £  Homs ( I ,M ) .

Here O' is given by composition with the projection of S  onto R. and <j>' is restriction 

to I . This sequence is easily seen to be exact, and so the original sequence must be 

exact also. □

We now must restrict ourselves to the situation that is of most interest to us and 

will be of most importance in Chapter Two: for the rest of this section let A: be a field

8



and let I t  be a noetherian, regular, semilocal fc-algebra which is an integral domain 

and contains a second field K  over which every factor ring of 7̂  by a maximal ideal 

is algebraic. That is, if m is a maximal ideal of 7£, then 7?/m is algebraic over K  

(identifying K  with its image in the factor ring). The semilocal condition (i.e. I t  

has only finitely many maximal ideals) is needed to ensure that 0*-(7?.) is a finitely 

generated 7^-module. The regular condition is not actually needed for the next few 

results, but is necessary in order to prove that A/c(7£) is simple and has well-behaved 

Krull and global dimensions. Also, from now on Q will denote the field of fractions 

of V. and n will be the Krull and global dimensions of H.

One example of a ring which satisfies all these conditions is the coordinate ring of 

a smooth variety, localised at a maximal ideal, where the field K  is just k itself. But 

the example that we have in mind is the following:

Example: Let A  be the coordinate ring of a smooth n-dimensional variety. Then 

the field of fractions F  of A  has transcendence degree n over k. Let X \ ,...,x n be 

a transcendence basis for F  with each x,- € A  so that fc[xj,. . . ,  xn] C A. Let p be 

a height one prime ideal of A. Then the length of a maximal regular sequence of 

A  contained in p is at most one and we may assume without loss of generality that 

fc[x),. . . ,  xn_j] f) P =  0. Therefore if we localise A  at p we invert every element of 

fc[x),. . . ,  xn_i] and so the field K  =  k (x\,.. . ,  xn_ i) is contained in A p. The ring A p 

now has only one maximal ideal p A p and the field obtained by factoring out this 

maximal ideal is algebraic over K.
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Lem m a 8 Let 71, K and k be as above. Then ila(7£IU) is finitely generated fo r every 

maximal ideal m of 'll.

Proof: Let m be a maximal ideal of 71, A  =  TZm and A  =  A/m A. Write M  =  m.4. 

Then by Lemma 7 we have the following exact sequence:

m /m 2 — A ® An K(A ) -> n * (3 )  — o.

Now, each element / 6 A  is algebraic over K : $3 /'c* =  0 for some c< 6 K . Applying 

the universal derivation d to this expression yields that 53»c,-/,_1d/ =  0. Therefore 

df =  0 and 12*-(33) =  0. Hence the map from M /M 2 to 330 f̂2K-(./4) is surjective and 

it follows that flu  (A )  is a finitely generated ,4-module. □

Now we prove some facts about localisation which will in turn yield results about 

the properties of TZ.

Lem m a 9 Let S be a multiplicative ly closed subset of 71, M  an 7Zs-module and let 

6 € D ctk(71, M ).  Then S induces a unique derivation in Deric(7ts, A/).

Proo f: Let r € TZ and s € S. Define £(s- 1r) =  s_ , (s i(r ) — r£(s)). Then is a well 

defined derivation in Dern(TZs, M ) which restricts to i  on 71. □

Proposition 10 Let S be a multiplicatively closed subset of 71. Then:

(i) There is an isomorphism <f> : f 2j t (7£ )0 7 j 7?.s —► SIk ^ s )- 

(it) Slh (7l) is a finitely generated 71-module.

( i i i )  Deric(7Zs) =  7£s0RDer*(72) and Derx(TZ) =  { i  € Ders(7^s)\b(7i) C 7£}.
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Proof: (i) By Lemma 9 the map from Dern(TZs, M ) to Derie(TZ, M ) is surjective 

for every TCs-module M . Therefore Lemma 6 ( i i ) (a )  gives us the following exact 

sequence:

0 —> SIk ( 'R )® -r ' R s  —* ¡ I k CR-s ) —» CI-r ( 7 Z s ) =  0.

(j'i) By Lemma 8, il/c(7?.m) is finitely generated for every maximal ideal m. But by 

part (»), For each maximal ideal m, let {a™ ,... ,o “ mj}

be a generating set with each «¡“  € Dk (7 )̂. Define M  to be the submodule of £Ik (1Z) 

generated by all the cq’s. Then the factor module fIa-(7£)/M goes to zero when 

localised at every maximal ideal of TZ and hence is the zero module itself. Therefore 

i2A-(7£) is finitely generated.

(Hi) Since 0/c (72.) is finitely generated we have that:

7£.s’® k WomK(flA'(7£), M )  =  //omjjs(na'(7^)(8)K7 ŝ , M ) =  Homns(flh(TZs), M )  

where the second isomorphism follows by part (¿). Hence by lemma 5( it ), 

Tls®KDerK(1l, M ) =  DerK(T ls ,M )-

The final statement now follows from lemma 9. □

Theorem  11 Let S be a multiplicatively closed subset of It .  Then S is a left and 

right Ore set o/A*-(7£), and A k (R -)s =  A k (R-s )-

Proof: By the proposition, A k (R-s ) is generated by TZs and the copy of Dern(TZ) 

contained in DerK(lZs)- The relations 6r — r6 =  6 (r) for 6 € Der^CR-) and r € 1Z 

ensure that every element of A k (R-s ) can be written in the form 0s~l or s-10 for
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0 € Aft (7?) and s € S. So A k (T Is ) must be the left and right localisation of A/c(7£) 

with respect to S. Cj

Proposition 10 can also be used to prove that A k (71) is noetherian. In order to do 

this we have to form the graded ring grA*-(7£) associated to the grading on A k (71) 

given by setting the mth graded part A o f  A*(7£) to be the 7?-submodule 

generated by all the products of at most m derivations (A/v-(7t)0 is just 71 of course). 

The relations 6r — r6 =  ¿(r) and S.S' — 6'.6 € D e rx (71) for 6, S' € Derie(TZ) and r € 71 

ensure that grAK-(7?.) is commutative.

Theorem  12 The rings grAa(7?.) and A k ( 7Z) are noetherian.

Proof: By Proposition 10(tr), il*(7£) is a finitely generated 71-module. Hence 

Derx(TV) =  (71)’ is also finitely generated. Therefore grAjc(7£) is a factor ring of

a polynomial ring over 7?. and is noetherian. [MR; 1.6.9] then shows that A k (7Z) is 

also noetherian. E

Theorem 11 allows us to show that A K(7l) is an integral domain by using the 

inclusion A/c(72.) <—► A k (Q ) where Q is the field of fractions of 71. So let us determine 

the structure of rings of derivations on fields.

Lem m a 13 Let F  D k be a field of transcendence degree n over k. Then flfc(F) is 

a free F-module with basis dx\,. . . ,  dxn where X \ , . . . ,  xn form a transcendence basis 

fo r F  over k. Also, D erk (F ) is free with a basis consisting of extensions to F  of 

d/dxt,.. . ,d / d x n.
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Proof: Let G =  ifc[x),. . . ,  xn]. Then since F is algebraic over G, for every / 6 F  

we have a relation of the form £  «,/ ' =  0 for some a* € G. Applying the universal

derivation d : F  —» il* (F ) we find that dxi , ___dxn span fi* (F ). A similar argument

to that given in the proof of Lemma 8 shows that fla (F ) =  0. Therefore by Lemma 

6(»'t)(6) there is a surjection from F<g>0 il*(G ) onto il* (F ) which is an isomorphism 

provided that each 6 € Der*(G, M ) extends to a derivation in D er^F, M ) for every 

F-module M. Now, F =  G (/) for some / € F which has a minimum polynomial 

p =  Y2P>X' say. Then F =  G[y]/(p) and so we may view M as a G[y]-module. Define 

£ € Der*(G[y], A/) to extend 6 and have £(y) =  —p' ( / ) - 1  H / ’6(Pi)- Then C(p) =  0 

and £ induces a derivation in £)er*(F, A/) as required. The rest of the lemma follows 

from the fact that D er*(F ) =  ii*..(F)*. D

Corollary 14 // F 3 A.- is n field of transcendence degree n over k with transcendence 

basis x \ ,. . . ,x n then A k (F ) =  F[d/dxi , . . . , d/dxn].

Proo f: This is an immediate consequence of the fact that Der*(F ) is a free F-module 

with basis d/dx\, . . . ,  d/dxn. O

Corollary 15 A k ( 71) is an integral domain.

Proof: By Theorem 11, by setting S =  7£\{0}, we have the following inclusion: 

A k (R.) » A k (Q ). But by the previous corollary, A k (Q ) ¡s an integral domain, and 

the result follows. O

The results that we have proved so far have not yet used the regularity condition 

on 71 and it is this which we turn our attention to now. The next proposition shows
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that the ring o f derivations on a regular ring is very closely linked to the W eyl algebra.

Proposition 16 Let m be a maximal ideal o f H  and set A  =  7?,,,. Set M  =  m A

and let y\ ,... ,yn be a minimal generating set fo r M . Then Qfc(.4) is a free A-module 

with basis dyt , . . . ,  dy„ and A k (A )  =  A[d/dyt d/dyn] .

Proof: As in the proof of LemmaS, we have a surjective homomorphism from M / M 2 

onto SIk (A )® a A/M  so that SIk (A )  is generated by the dyfs. But by Lemma 12 

f2a (£?) is free of rank n and so the rfj/i’s must freely generate fl/v(^4). °

So we have seen that Atf(77) looks quite a lot like the Weyl algebra at least locally. 

The final things to do for derivations are to calculate the Krull and global dimensions 

for A k (77) and to prove that it is a simple ring. To this end we need the following 

lemma.

Lem m a 17 Let {m i , . . . ,m r}  be the maximal ideals of H. Then © I- , A*-(77m,) is 

a left and right faithfully flat A  k (1Z)-module.

Proof: Let / be a left ideal of Aa(77) such that AK-(77„lt)® (A *-(77)//) =  0 for each 

i. But Aa(77m,)® ( A k (77)//) =  77nil®(A/c (77)//). So Aa(77)// is a left 77-module 

which is zero when localised at every maximal ideal of 77. Therefore it must be 

the zero module itself and A k (77) =  / as required. The same argument proves the 

right-handed version also. □
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The faithfully Hat Aa(7t)-module constructed in the last lemma provides a way of 

transferring information known about the localised rings A k CR-iu,) down to Aa-(7£). 

Therefore we look at these localised rings in the next propostion.

Proposition 18 Let m be a maximal ideal o f l i .  Then:

(*) A * ( f t mi) is simple.

( » )  h.:(AK(1 lm,))  =  n.

(H i) gldA/i-(7£m,) =  n.

Proof: ( i )  Let A =  7£m, let / be a non-zero ideal of A^(^4) and let 0 x € A. Recall 

from Proposition 16 that Atf(./4) =  A[d/dy\,. . .  ,d/dyn] where y\,...,yn generate 

m>4. Now, when we take the commutator of x with j/i we get another element of /, 

and repeating this process enough times for each j/* we arrive at a non-zero element 

of I f )  A. Hence the Krull dimension of A / ( I f )A )  is strictly less than that of A  

so that (/ fl-4 ) fl^[j/ii • • • iJ/n] /  0 (otherwise there would be a copy of k[y\,...,yn] 

inside A / (l f )A )  which would then have to have Krull dimension greater or equal to 

n). Taking commutators of an element of / (~| Myi- • • • > i/n] with a suitable number of 

d/dyfs shows that l  f )k  jiO  and so / =  A k (A )  as required.

(it) h  (H i) Since A a (-4) =  A[dldy\\.. .  [d/dy„], a repeated application of [MR;9.1.14] 

gives the result. CD

We are now ready to finish this section with as complete a description of A  k (K )  

as we shall need for the later chapters.
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Theorem  19 (t) A k CR) is a simple, noetherian domain.

(it ) K (A k (K ) )  =  n.

(H i) gld(AA-(^)) =  n.

Proof: ( i )  We already know from Theorem 12 and Corollary 15 that A/,-(77) is 

a noetherian integral domain. Let / be a non-zero ideal of A/((77). Then /,„ =  

/®A/i(7£m) <1 A k ('JZih) for every maximal ideal m of 77. But A/c(7?.,n) is simple by 

Proposition 18, hence /„, =  A/c(77m) and

® A a ( ^ » , )® ( A k (W)//) =  0.1 = 1
But by Lemma 17 ®  A*(77m,) is faithfully flat, and so / =  A/,-(77) as required.

(»*) By [MR; Lemma 6.5.3(f)], A.'(A/f(77)) <  sup{AC(A/c(77mi) } .  But by Proposition 

18, the Krull dimension of each K.(Ak (TZui,) equals n. Also, n =  A.'(Aji(77,n i) <  

A.'( A/,(77)) so that K (A a (77)) =  n.

( i i i )  By Proposition 18, gldAK(77mt) =  n for each maximal ideal m, of 77. Given a 

left AK-(77)-module Af, we shall show that the flat dimension fdAf <  n. It will then 

follow by [MR;7.1.5] that the projective dimension of Af is less than or equal to n also. 

For each i and each module Af, denote by Af, the kernel of the map Af —* 77mi® A f. 

Call Af, the i-torsion submodule and say that Af is ¿-torsion if Af =  A/;. Note that if 

Af is ¿-torsion then 77mj® A f is ¿-torsion also. Suppose that there exist modules Af 

with fdAf >  n. Out of all such modules choose an Af which is ¿-torsion for as many 

i as possible (after renumbering we may assume that Af is ¿-torsion for i =  1 ,..., s). 

The faithful flatness of ® [_ , A/f(72.m,) ensures that s <  r. Let Af =  Af/Afa+] and
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consider the following exact sequences:

0 —* M J+1 —► M  —» ~M —* 0 and

— (n.+l<S)M)/JJ -► o.

Notice that both Af,+i and are ¿-torsion for i =  +  1 and so

have flat dimension less than or equal to n. Also,

=  fd^A.(Rmi)(7?.J+i® M ) <  n.

The second exact sequence now shows that fdA7 <  n and then the first that fdAi <  n 

which is a contradiction.

Therefore gldAA-(7£) =  n. □

This concludes our study of rings of derivations and we now turn our attention to 

the principal objects of interest in this thesis, the rings of differential operators.

1.2 Differential Operators

In this section we begin our study of the rings of differential operators on algebraic 

varieties. We start off by defining what we mean by the ring o f differential operators, 

then develop some of the tools which are used in their study and finally show that the 

ring of differential operators on a smooth variety coincides with its ring of derivations 

which we already know to be a very well behaved ring.
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Definition 1 Let K be a commutative ring and let R  be a commutative K-algebra. 

The ring o f K-linear differential operators ’D^(Tt) is defined inductively as follows:

Set V^CR) =  R , V nK{R ) =  {0 e EndK(R)\0r -  rO € © £ " '(R ) }  fo r  n € N, 

and V k (R )  =  (J V nK(R ).
n g N

When 0 lies in (R ) but not in ( R ) , we say that 0 is an nth order differential

operator.

This definition may seem quite intractable, but the object T>k (R )  carries a lot 

of information about R  and it is the object of the theory of differential operators to 

find out as much as possible about T>k (R )  by studying the algebraic structure of it 

without having to use the definition very often. From now on, when the context is 

clear we shall omit the K  subscript from T>k (R ),  but the reader should be warned 

that we will come across situations where there are two or more base rings that come 

into play at one time. In these cases though we will replace the subscripts for clarity.

The first thing to notice about T>(R) is that it forms a ring under the compo­

sition of maps inside End^(R ). Indeed, a simple induction argument shows that 

P ” (R ) .P m(R )  C V n+m(R ).  Of course, T>(R) is a non-commutative ring. The case 

that will be of most interest to us is when the commutative ring R  is the coordinate 

ring of a variety, X  say. In this case we will write T>(X) in place of T>k(R) and will 

call this the ring of differential operators on X . As this section progresses we will 

see that the behaviour of the ring of differential operators on a variety X  is closely 

linked to the geometry of X . In the best possible case (when X  is smooth) the ring 

of differential operators on X  coincides with the ring of derivations on X  which, as
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we saw in the previous section, is a very nice ring indeed. The more singular that .V 

becomes, the more badly behaved 'D (X ) is.

Let us start off by developing one the major tools which we shall need for our 

investigation of rings of differential operators: localisation. We are able to prove 

results which are analogous to the ones for derivation rings as in Theorem 1.11.

Proposition 2 Let K be a commutative ring, TZ be a commutative K-algebra which 

is an integral domain and S a multiplicatively closed subset of TZ. Then T>k (H ) =  

{ S e v K ( H s ) \ S ( H ) c ( i i ) } .

Proof: Set Dn(7Z) =  { i  g Q TZ). I claim that the map from Dn(TZ)

to V ’f-(TZ) given by restriction to TZ is an isomorphism. We prove this by induction 

on n, noting that D°(TZ) =  I t  =  T>^(TZ) for the n =  0 case. So suppose that 

n >  0 and that the claim is true for all t <  n. Let 6 £ Dn(TZ) be such that 

=  0. Then [6, s](x) =  6(sx) — sS(x) =  0 for all s € S and x £ TZ. But 

[6, a] € D"~'(1Z) and so by induction, since [¿, s]|k =  0, [¿, s] =  0 on the whole of TZs- 

But s i(a - 1x) =  —[¿, s](s- ,x) +  6(x) =  0. Therefore ¿(s- ,x) =  0 and 6 =  0. So the 

restriction map is injective.

To show that the restriction map is surjective, let S £ T>'f<(lZ ) and define 6 £ 

Dn(7Z) by:

¿(s- I x) =  s- , (6(x ) — [6, s](s- , x ))

for s £ S and x £ 1Z, where [¿, s] is the unique element of Dn~l (TZ) extending [¿, s] 

(which exists by induction). This S is unique since if there exist t £ S and y £ TZ
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such that a ~ ' x  =  t ~ ' y , then we have the following:

s '(¿ (x ) — [5,s](s *x) =  (s f) i (tS (x ) — f[5,s](s- l x ))

=  (s t)~ l (6 (tx ) — [5, <](x) — i[5, s](s- , x ))

=  (s t)-'(6 (tx ) -  ([«,*]« -  < [M )(s - ‘x))
=  (■»<)- , (^(-»v) — [̂ , •»<](<“ * » ) )

where the last equality follows from the uniqueness of [5, a<). Finally, this last line 

equals f - , (5(y) — [5,<](<“ ' y) by symmetry.

It remains to be shown that 6 € P£-(7ts). We prove this by showing that [5,x] =  

[5, x] which lies in (U s ) by induction. So let x,y  € TZ and s € S. Then:

[5,x](a_ ,y) =  S(s~l xy) -  x6(s~l y)

=  s_ , (5(xy) -  [[5,s](s- I xy )) -  xs_ ,(5(y) -  [5,s](a- 1y)

=  s- 1 ([5, x](y) -  [[¿, x], s](s- 1y))

=  [5,x](a“ ly).

This completes the proof. □

Corollary 3 I f  TZ, K  and S are as in Proposition 2 and if TZ is affine over K then 

S is a left and right Ore set ofT>K(TZ) an<i TTk (TZ)s =  T)k (TZs )-

Proof: By Proposition 2, we may think of T>k (  TZ) as lying inside T>k (TZs ). We must 

show that every element of T>k (TZs ) can be written in the form s-1d for s € S and 

d € T>k (TZ). Let A be a finite subset of TZ, containing l, that generates TZ as a 

l\ -algebra. Denote by Am the subset of TZ given by the collection of all finite sums 

of products of at most m elements of A. We claim that given a 6 € P>k (TZs) such 

that 5(A) Ç 1Z, then 5(A ') Ç TZ for all i >  0. The proof of this claim is by induction
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on the order of 6. If 6 has order zero then 6 € Rs  and ¿(A1) =  A'~M (A) C 71 as 

required. So suppose that 6 has order n and that the claim is true for all differential 

operators of order less than n. We now have to use induction on i. We are given that 

6(A) C R, so the case i =  1 is trivial. Suppose that ¿ (A ') C R  for some t >  1. Then:

¿(A'+ I) C [¿, A ] ^ )  +  A i(A ') C R.

This proves the claim.

Now let 6 be any element of T>k (R-s )- Then 6(A) is a finite set so that there exists 

an element s € S such that «¿ (A ) C R. Then by the claim, s i(A ') C R  for all t. But 

A is a generating set for R , so s6(R ) C R. Therefore, by Proposition 2, 6 6 T>k (R )s 

as required. □

Corollary 3 is of fundamental importance to us and we shall use it again and 

again, usually without mention. Propostion 2 is of interest in itself. In particular, 

when 5 =  7?.\{0}, it says that T>k (R )  =  {6 6 C R ) ,  where Q is the

field of fractions of R. If we were then able to prove the analogous statement for 

derivations, we would have that the ring of derivations and the ring of differential 

operators on an algebra coincide. This turns out not to be the case though, except 

when R  is a regular ring (such as the coordinate ring of a smooth variety).

Let us prove then, as promised that for a smooth variety X , T>(X) =  A(A"). As 

in the previous section, we also need a slight variation of this result to cover the case 

of when R  is a regular, noetherian, semilocal domain which contains a field K  over 

which R/m  is algebraic for each maximal ideal m. Since the proofs of these two
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results are very similar and the first is contained in [MR; 15.5.6], we just prove the 

second. So let 72 be as above, and denote the field of fractions of 72 by Q.

Proposition 4 Let 72 be as in the preceding paragraph. Then Aa(72) =  { i  € 

A,v(Q )|i(72)C72}.

Proo f: Let m be a maximal ideal of 72 and let 6 € A k (Q ) be such that ¿(72) Ç 72. 

Then I claim that ¿(72,,,) Ç 72m. To see this, let s € 72\m. Then 6s — s6 is an element 

of the derivation ring of degree strictly less than that of 6 and so by induction we 

may asssume that (6s — ¿¿)(s- , r) € 72,„ for all r G 72. Hence 6(r) — s¿(s- , r) 6 72m 

and so ¿(s- , r ) € 72,n as required.

Next we claim that the same 6 actually lies in A a-(72,„). We proceed by induction 

on the order of 6, noticing that the claim is trivial for the order zero case. So let m 

be the order of 6 and suppose that the claim is true for derivations of order m — 1 or 

less. Recall from Proposition 1.16 that Der*-(72m) is a free 72,,,-module with basis 

d/dyy, . . . ,  d/dyn where y i, . . . ,y n are a minimal generating set for m72m. If we set 

6i =  6yi — for each i then by induction, ¿, € Aft-(72,„). Again by Proposition 1.16, 

each ¿, may be viewed as a polynomial in the d/dyi's with coefficients in 72 written 

on the left. Therefore, we may think of [[¿, y,], j/j] as follows:

[[¿. Vi],Vj]

Now, since the ¡/¿’s commute with each other we also have that [[¿, J/»], J/>] =  [[<$, j/j], t/,]. 

Therefore, by formally integrating [¿j,t/,] twice with respect to d/dyi and calling the 

result F  6 A/v-(72„l ), we see that dF/d-J^- =  for each t. Now let g =  6—F  € A k (Q )-
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Then g(TZln) £= 7̂ m and [<7,2/1] =  0 for all i. It follows that the order of g must be 

zero so that g € TZm and 6 € A jj(K|U) as claimed.

Finally, let be the set of maximal ideals of TZ so that 8 € A K ^ m .)

for each i by the above. Thus if M =  (1Z8 +  A(1Z))/A(TZ), then A(TZull)^ M  =  0 

for each i. But the faithful flatness of the module ©  A/c(7£m,) proved in 1.17 implies 

that M  =  0. □

Theorem  5 ( i )  Let X  be a smooth variety. Then T>k(X) =  Ajt(<¥).

(it) I f  TZ is as in Proposition \ then 'Dk (TZ) =  A k (TZ).

Proo f: (it) All we have to prove is that T>k (Q ) =  A k (Q ) and then Propositions 2 

and 4 will give us the result. Once again, the proof is by induction on the order of 

differential operators. We shall show that V rK(Q ) — A k (Q )t, the r th filtered part of 

A k (Q )- The case when r =  0 is easy and also, when r =  1, it is easy to see that 

T>]<(Q) =  A k (Q)\. So suppose that r > 1 and that PJ,-((?) =  A k (Q )3 for all s < r. 

Let 2/i,..., j/n be a transcendence basis for Q over K  and let 6 € 'Drh-(Q ). Then as 

in the proof of Proposition 4 and using the fact that V Ti f i (Q ) =  A tf(Q )r_i, we may 

find an F  € A k (Q )t such that =  0 for all i, where g =  8 — F . We prove that

this cannot happen unless g € Q. Now, if q 6 Q, then [</, </] has the same property as 

g, but has lower order. Therefore, if the order of g is greater than 1, commutate it 

with enough elements of Q so that the resultant differential operator, h say, has order 

1. By induction, h € A k (Q ) i =  Q +  Der^Q  so that h =  a +  0 for some a € Q and 

6 G D erx (Q ). The fact that [A, j/,] =  0 for all i ensures that 0 is zero on K (y i , . . .  ,yn)- 

But by Lemma 1.13, D ern (Q ) is free on the d/dyfs, so 0 must be zero. Therefore
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the order of h is zero, contradicting the fact that we chose h to have order 1. Hence 

6 — F  € Q, and so 6 € A k (Q ) as required. □

Occasionally, in what follows we shall be in the following situation: Tt is a commu­

tative domain, S is a subring of 71 and T>(Tl,S) is the subset of differential operators 

6 on 71 whose image 6(7V) is contained in S. An alternative way of viewing this is to 

view 71 as an «S-module and consider the ‘module of differential operators’ from TZ 

into S. Let us formalise this notion in a definition.

Definition 6 Let K  be a commutative ring, let 'll be a commutative K-algebra which 

is an integral domain and let M  and N  be 71-modules. Then define the module of 

differential operators T>k (M , N ) from M  into N  as follows:

Set V ^ ((M ,N ) =  H om n (M ,N ), and f o r n >  1,

T rf-(M ,N ) =  {0 £ HomK(M ,N )\ 6 r -rO  € V ? r ' ( M , N ) V r  e U ) .  

Finally, define V K(M,  N )  =  U„6n  M, N) .

It is evident that if M  and N  both equal Tt then we recover the usual definition 

of 2?/v-(TV). Notice that P/,-(Ai, N ) is a right and left 7£-module under composition of 

homomorphisms, so we may consider localisations of T>k (M , N ). Exactly in the same 

way as for differential operator rings, modules of differential operators behave well 

with respect to localisation. In order to avoid complications we shall always assume 

that M  and N  are torsion free 7^-modules.

Lem m a 7 Let K , 71 be as above with Tt being K-affine and suppose that S is a 

multiplicatively closed subset of 71. Suppose that M  and N  are torsion free 71-modules
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and that M is finitely generated over 1Z. Then:

( i ) an element of T>k (M , N ) extends to a unique differential operator in T>k (M s , Ns ), 

where Ms and Ns may be regarded as modules over either 7? or 7Zs!

(it) K sV k (M , N ) “  V k ( M s , iVs ) 5S ZV(Af, N ) K s .

Proof: The proofs of ( i ) and the first part of (it) follow in almost exactly the same 

way as in Propostion 2 and Corollary 3, using the fact that M  is finitely generated. 

To see that T>k (M s , N s ) — P k (M,  N)TZs , notice that by the first part of (ii), we 

have that T>k (M , N )  C T>k (M s , N s ), and so T>k (M , N)1Zs Q T>k (M s , N s ).

For the opposite inclusion, suppose that T>k {M s , N s ) ^  T>k (M , N)TZs and let 

0 € T>k (M s , Ns) have the smallest possible degree as a differential operator with 

respect to not lying inside T>(M, N)1Zs- Then by the first part of (ii) there exists an 

s € S such that sO 6 T>k { M , N ). Also, if <j> =  s0 — Os then <j> has degree strictly less 

than 0, so must lie in T>k {M , N)TZs . Hence there is some t € S with <f>t 6 T>k (M , N ). 

Then Ost =  — <j>t +  sOt € T>k (M , N )  and 0 € T>k {M , N)~Rs as required. □

When M  =  TZ, it is possible to rephrase Definition 6 in terms of a generalisation 

of the module of differentials Uk (TZ). This will enable us to prove things about the 

module V(1Z, N )  by using the properties of CIk CR.). It is actually possible to give a 

definition of differentials on a module, but we shall not need to do this.

Now, give the structure of a ring in the obvious way and define the

multiplication map p : 7£07£ —► TZ by p (x® y ) =  xy. Define J to be the kernel of the 

multiplication map so that J is an ideal of TZ^TZ. Notice that J  is generated by all
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the elements of the form 1®* — x ® l for x € Tl. Now, we may make H o iiik (R ,M )  

into an 7?®7?-module by defining (x® y )(0 ) =  xOy. Then given a 0 € V'(<(TZ, M ) and 

an x € n , we can see that ( l® x  — x® l )(0 ) € D 'jf ' (R , M ). It is easy to see from this 

that for each n € N ,

V nK{n , M ) =  {0 € HomK (K , M)\Jn+'0  =  0}.

It now makes sense to make the following definition:

Definition 8 For n >  1, define the module of nth order differentials i!£-(72.) by

nun) = (n®Kn)/jn+'.

Define dn : 7Z —> ff^ (7?,) to be the composition of the following two maps:

dn : n —* n®Kn - >  n̂ (n)
x t—» l ® i  i—» l®a: +  Jn+1.

The next lemma shows that fI£-(7?.) has certain universal properties which, to­

gether with the universal property of ii*  (7?.) imply that (1^(7^) coincides with fi/i(72.). 

Hence the nth order differentials really are a generalisation of our usual notion of dif­

ferentials. Also, the nth order differentials arise in a natural way from the nth order 

differential operators.

Lem m a 9 Let K , n  and M  be as above. Then:

( i )  dn is a differential operator of order n (i.e. dn € D 'f.fn , n ^ i l t ) ) ) .

( i i )  Suppose that d € T>x(n, M ). Then there is a unique n-module homomorphism 

d f r o m  n£'(7£) into M  such that d =  dL o dn.
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( i i i )  The map given by 8 i—* 8L induces an isomorphism of li-'R-birnodules between 

V f (7Z, M ) and Hom^Sl^CR.), M ).

Proof: (i) Clearly Jn+l.dn =  0 so that dn € Z>£-(7£, fi^(7?.)).

( i i )  Since 8 is a K -linear map, we may choose an 7^-module homomorphism :

'R-Qk 'R. —* M  such that 8 =  if o d where d(x) =  l® x . Now because 8 € T>,f(1Z, M ), 

we have that 0 =  Jn+i8 =  J n+iil>d =  rl>Jn+ld. Therefore, 0 =  xl>Jn+id*1Z =  so

that Jn+t C i/>. Hence the map 81 : iVf-(H) —► M  given by ¿?x( l® x  c/n+l) =  8 * x 

is well-defined.

( i i i )  This follows from ( i )  and ( i i ) .  □

As one would expect, the differentials also have their version of localisation. 

Lem m a 10 Let S be a multiplicatively closed subset of 11. Then:

n nK( n s ) s  n s® n nK(n ) .

Proof: By Lemma 7, each dn : 1Z —» i2£-(7£) extends uniquely to a map dn : 7Zs —> 

72..s<S>ST̂ -(7?.), so it suffices to show that with dn has the universal property

ascribed to il'f (1ts) in Lemma 9.

Suppose that M  is an 72-s-module and that 8 € 'D'f.('R.s, M ). Then 8 restricted 

to 1Z lies in P£(7?., M ) so that there exists a unique 7?.-module homomorphism dx : 

il^CR.) —* M  such that 8 — 81 o dn. We may extend 8L to 7£s®fi^-(7£) and then 

has the required universal property. □
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As an example, let us calculate the differentials on a regular ring. We start off 

with a regular local ring and use Lemma 10 to cover the general case.

Lem m a 11 Suppose that 7Z is a regular local ring with maximal ideal m and suppose 

that 1Z contains a field K  over which TZ/m is integral. Let y\ ,...,yn he a minimal 

generating set fo r  m. Then i l T̂ (7Z) is a free IZ-module with basis {dry ‘ ||i| <  r }, where 

i is an n-tuple of postive integers(i\,. . .  , i„ ), |i| =  » i + . . . » n  and ŷ  =  y\' .. .y '” .

Proo f: We already know from Proposition 1.16 that T>TK (7Z) is the free 7?.-module with 

basis {(d/dyi)'' ... (d/ety„)'"||i| <  r }. Therefore the subset 52|i|<r dTy ' of QTK(1Z) is a 

direct sum since any relations in flrK (TZ) would translate into relations inside T>rK(lZ ).

It is clear that the dTx 1's generate fTK(lZ ) for |i| <  r since if drf  6 11 (̂7Z) for 

some / of degree s >  r, then we would get a relation inside T>‘K(TZ). □

Corollary 12 Let 1Z be a regular domain containing a field K  over which TZ/m is 

integral fo r every maximal ideal m. Then QrK(TZ) is a projective IZ-module for every 

r € N.

Proo f: Clear. □

We conclude this section with two results about differential operator rings on 

smooth varieties that will be useful when considering factor rings. The first result 

says that when TZ is a regular ring and / is an ideal of 1Z then the differential operator 

ring of the factor ring 7Z/1 can be identified with another factor ring. There is a 

problem in that as we have seen, if 7Z is the coordinate ring pf a smooth variety then
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V(1Z) is simple and has no proper factor rings. The solution is to choose a certain 

right ideal of V (R )  and take its idealiser.

Definition 13 Let A be a non-commutative ring and let J be a right ideal o f A. 

Define the idealiser of J in A to be the set:

I a (J )  =  {a  € A\aJ C J ).

I a (J )  is the largest subring of A such that it has J as an ideal. We can therefore 

form the factor ring I a (J )/J . This has the property that I(J )/ J  =  Endy\(A/J) as is 

easily seen. Now, in our situation, the ring V (R )  will take the place of A, where I t  

is as before. The right ideal J of V (R )  will be replaced by the module of differential 

operators V (R , /), viewing / as an 7^-module. Although V (R ,  /) has so far only be 

defined to be a right P(7?.)-module, it can be identified with a right ideal of VCR) in 

the obvious way. In fact, V (R , /) is precisely the set {d  € V(R )\d  * R  C /}, where 

6 * R  denotes the ideal of R  generated by all elements of the form 6(r) for r € R-.

One benefit of introducing the generalised differentials is that we may now use 

Corollary 12 to obtain a neater description of V (R .,/): recall that each V r(R ,,I )  =t 

H om n(flr(R,), /). Now, because each i lT(R )  is projective (Corollary 12), we see 

that Hojniz(Slr(R .),/) =  //om^(flr(72.),7£). Therefore, after taking unions (i.e.

direct limits) of both sides, we get that:

V (R , I )  =  I® k V (R )  =  1V (R ).

We are now in a position to prove that V (R / l)  may be represented as a factor 

ring.
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Proposition 14 Let 71 be a regular domain containing a field K over which every 

factor of I t  by a maximal ideal is integral. Suppose that / is an ideal of It . Then:

v K( n / i )  a i tiKin ) ( iv K (H )) /iV K (n ).

Proof: Define a map </> : 1(112(71)) —♦ 72(71/1) as follows. Given d € I (172(71)), 

d l C 172(TZ) so that d * / =  d l * 7L C I72(71) *7 Z =  I. Therefore d induces a 

differential operator <f>(d) : 7£// —► 7?.//. The kernel of <j> is the set {¿7 € 72(7t)\d* 71 C 

/} =  172(71). Hence <fr induces an injective map </> : I ( I72(7Z)) / I72(7t) —► 72(71/1).

To prove that <f> is surjective, consider the right P(72.)-module 72(77,,7Z/I). In the 

same way we proved that 72(7Z, I )  =  I72(TV), we can see that:

V(7Z,K/1) a  7Z/ I® n V (7 l) a  V(7Z)/IV(7Z).

Hence given a 6 6 72(7Z/I) which gives rise to a b € 72(7Z,7Z/1) by composition 

with the projection TZ —* 71//, we can find an element 6' € 12(71)/I'D{7V) which 

corresponds to 6. This map 6 t—► 6’ is an inverse to <j> and so </> is surjective. □

What this result is really telling us is that if TZ is regular then a differential 

operator S : 7Z/I —> 7Z/I may be lifted to a differential operator d € 72(7Z).

Finally, we prove the second result which completely determines the structure of 

differential operator rings on certain factor rings.

Proposition 15 Suppose that TZ =  k +  m for some maximal ideal m of a commuta­

tive ring TZ and that mn =  0 fo r some n € N. Then:

V k(7Z) =  Endk(7Z).
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Proof: Let 0 € End^H ) and let i t , ... ,X2n- i  G 7?. Write each x, =  cq +  for some 

rq 6 k and yi € m. Then:

[. ..[[0 ,x1],x 2] , . . . , x 3„_i] =  [—  [[0, Vi], y3] , . . . ,  y3n- i ]  G ^  m'flm*’" 1-'.
1=0

Hut for all 0 <  * <  2n — 1, either i or 2n — 1 — t is greater or equal to n so that one 

of m1 and is zero. Therefore 0 € T>k(Tt). □

1.3 Differential Operators On Curves

We now know that the ring of differential operators on a smooth variety is a very well- 

behaved ring since it looks very much like the Weyl algebra. The next step is to allow 

the variety to have singularities and see what happens to the differential operators. 

In particular, we are interested in which varieties have the properties that their rings 

of differential operators are simple and noetherian with Krull and global dimensions 

equal to the dimension of the variety. It turns out that there is quite a simple answer 

to this question in the case of curves, but in higher dimensions the situation is a lot 

less clear. We will present the facts known about differential operators on curves a 

la [Smith & Stafford] and then discuss possible generalisations of these to the higher 

dimensional case.

The key to the answer in the curves case is a link between the ring of differential 

operators on a singular curve and the ring of differential operators on a smooth curve 

associated in some way to the original curve. The smooth curve associated to the 

original curve will be the normalisation, and the link between the two rings will be 

afforded by Morita equivalence. We formalise these two concepts before returning to
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the differential operators. Since this thesis is concerned with generalising the theory 

of differential operators on curves to higher dimensions, we will define normalisation 

for varieties of arbitrary dimension.

Definition 1 Let X  be a possibly singular variety and let Q be the field of fractions of 

its coordinate ring Tt. Let 71 be the integral closure of I t  in Q. Then by [Matsumura; 

chi.2.3.], Tt is a finitely generated Tt-module so is affine over k. Define X  to be the 

variety associated to Tt by X  =  m ax — Spec(T^). Call X  the normalisation of X . 

There is a map ir from X  to X  arising from the map tr : Spec(T^) —► Spec(72.) given 

by intersecting prime ideals of Tt with Tt:

P  € Spec(7£) n P n R g  Spec(72.).

This map n is called the normalisation map of X .

An important feature of the normalisation map is that it is a well-behaved map. In 

particular, for a given prime ideal of Tt, there are only finitely many prime ideals of Tt 

which map onto it. Also, it is easy to see that normalisation respects localisation (i.e. 

if S is a multiplicatively closed subset of Tt then Its  =  (Tts)), and the localisation of 

Tt at a prime ideal of Tt is especially nice.

Lem m a 2 Let X , Q and Tt be as in Definition l and let p be a prime ideal of Tt. 

Then:

(i) There exists a prime ideal P of Tt such that ir (P ) =  P  n Tt =  p.

(it) There are no inclusions between prime ideals of Tt which map onto p.

( i i i )  There exist only finitely many prime ideals P  of Tt with x (P )  =  p.
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(it») Suppose that there is just one prime ideal P  of 71 with tr( /') =  p and let S =  7Z\p. 

Then Tip =  TZs = TZp.

Proof: Parts (i) and ( i i ) are [Matsumura; Theorem 9.3]. Part (H i) follows by setting 

/ =  p7£. Then since 71 is noetherian, / has only finitely many minimal primes 

and by part (ii), no non-minimal primes of 1 can map onto p. Finally, part (in) is 

[Matsumura; Exercise 9.1]. □

Another key property of normalisation is that the inclusion 71 C TZ makes 71 into 

a finitely generated 7^-module.

Lemma 3 Let .V, Q and TZ be as in Definition 1. Then 71 is a finitely generated 

71-module.

Proof: This is the subject of [Matsumura; Section 33]. □

Although .V may not be smooth in general, it is the case that if X  is one dimen­

sional then X  is smooth.

Lem m a 4 Let TZ be a one dimensional commutative noetherian domain. Then TZ is 

normal if and only if TZ is regular.

Proof: First suppose that TZ is normal and let p be a maximal ideal of TZ. Then by 

[Matsumura; Theorem 11.2], 7ZP is a principal ideal domain. Therefore, if we write 

P  =  p7Zp, dimie(P/P2) =  1 and 7ZP is regular. Hence TZ is regular also.

The converse is just [Matsumura; Theorem 19.4]. □
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In the higher dimensions, since we are interested in linking X  to a variety whose 

differential operator ring is nice, we shall often restrict ourselves to the case of when 

X  is smooth. Although this is quite a strong condition to impose, it seems to be 

necessary since [Bernstein, Gelfand Sz Gelfand] gives an example of a variety whose 

coordinate ring 1Z is normal, but T>(TZ) is not simple and not even noetherian on either 

side. Also, we must restrict ourselves to the study of varieties whose normalisation 

maps are injective since, apart from the curves case, almost nothing is known about 

differential operators on varieties with non-injective normalisation. For curves, the 

situation is a little nicer since in [Smith ¿ 1  Stafford] and [Brown] it is shown that if 

X  is an arbitrary curve then T>(X) has a unique minimal ideal, and the factor ring 

obtained on factoring out this ideal is a finite dimensional A:-algebra. Since we are 

only interested in those facts about curves which generalise though, we shall only look 

at curves with injective normalisation.

Recall from Corollary 2.3 that T>(TZ) and P(7?.) are both contained in T>(Q). Since 

1Z C TZ it is natural to compare T>(TZ) with but it turns out that in general

neither one is contained within the other. There is however a subset of both rings 

which is of major interest.

Definition 5 Let 7i and S be commutative k-algebras with the properties that both 

are integral domains with the same field of fractions Q. Define the subset T>(S, TV) of 

T>(Q) as follows:

V (S , TV) =  {6 € P (Q )|*(S ) C K ).
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When K  and S  are the coordinate rings of two varieties, X  and ,y say, then we will 

write ~P (y ,X ) for T>(S, TV). Notice that T>(S,TZ) is a right P(«S)-module and a left 

P(7£)-module. Now, when S =  7Z so that TZ C S, we have that T>(1Z,1Z) is contained 

inside both P(7?) and 'D('R.). This bimodule T>('R.,'R.) affords us an equivalence of 

categories between P(7£)-modules and P(7£)-modules which will allow us to transfer 

over many properties of P(7?) to P ( I t ) . Once we have established this equivalence, 

called Morita equivalence, we will be able to say everything we want to about

Definition 6 Let A and B be two arbitrary, non-commutative rings and suppose that 

there exists a B-A-bimodule M  with the following properties:

(t) M  is finitely generated as a right A-module,

(ii) M  is a projective right A-module,

( i l i )  M  is a generator (i.e. M ‘ (M )  =  A where M ‘ =  H otua(M , A )),

(iv) B =i EndytiM).

Then B is said to be Morita equivalent to A. M  is said to be a (right) progenerator 

for A if  it satisfies properties ( i ), ( i i )  and ( i i i ) o f the above.

There may appear to be a lack of symmetry in this definition in that B  could 

be Morita equivalent to A without A being Morita equivalent to B. Also, if we 

had defined Morita equivalence in terms of a left A-module, would we get a different 

equivalence? The answer to both of these questions is ‘no’ however. Suppose that B  is 

Morita equivalent to A and that M  is as in the definition. Then we may view A/* as a
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left /4-module via (aO)(tn) =  a.O(rn), and as a right 0-module via (0.b)(m ) =  0(b(m)) 

for a € A, b € B, m 6 M  and 0 € Af*. Using these actions, we have the following 

result:

Lem m a 7 Suppose B is Morita equivalent to A and M  is the progenerator affording 

the equivalence. Then:

( i )  M  ~  HomB(M \ B ) and A 2* EndB(M m),

( i i )  M " is a right progenerator fo r  B so that A is Morita equivalent to B,

( in )  M " is a left progenerator fo r  A and M  is a left progenerator fo r  B,

(iv ) M  =  HomA(M m,A ) and A/* =£ Hothb (M , B ),

(v ) A =  EndB(M )  and B =  EndA(M ").

Proo f: ( i )  Identifying B  with EndA(M ),  we may define a homomorphism a : M  —► 

HomB(M ' , B ) by a (m )(0 ) =  m.O € EndA(M )  for m € M  and 0 € M ", where 

(m .6 )(n ) =  m (0 (n )) for n € M . Since M  is a generator, we have that M .M * =  A 

and we may write 1 =  £21-, 0,(m ,) for some m,- € M  and 0, 6 A/*. Suppose that 

m € h 'er(a ). Then m O(M ) =  0 for all 0 £ M m. But m =  m.l =  £2"_, =  0,

so a is injective.

Now let if € HornB(M m, B ) and define m =  X)[_i(if(0 i))(n n ). Then:

=  £  ^(0i).(mi.<t>) =  (£ 0 (0 ,)(m ;)).^

=  m.<t>.

Therefore a is surjective.
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To prove the second statement, we already have a map /? : A —* E ndn(M ") 

since M * is a left ,4-module and multiplication by elements of A form 0-module 

homomorphisms. fi is clearly injective and can be seen to be surjective by the same 

method that was used to prove that a is surjective in the last paragraph.

( i i )  — ( v ) The rest of the lemma follows by very similar arguments to those used in 

the proof of (*). See for example [MR; 3.5.4). □

Lemma 7 establishes the complete symmetry of Definition 6 and we may now 

talk about two rings A and 0  being Morita equivalent without worry. The Morita 

equivalence of two rings is a very strong relation to have since if one of the rings 

has a certain property (such as being simple), then the chances are that the other 

ring will have it too. The reason this happens is ihat Morita equivalence sets up a 

correspondence between the modules of the two rings. In more detail, suppose A and 

0  are Morita equivalent and M is the progenerator affording the equivalence. Let 

P  be a left ,4-module. Then M ® AP  is a left 0-module. Conversely, let Q be a left 

0-module. Then M *0 gQ  is a left ,4-module. So we have two maps between the 

category of left ,4-modules, ¿m od and the category of left 0-modules, emod:

0  :A m od —*g mod and <J> \b m od —*a mod 

via P  I—» A/0^0 and Q ►-» A/*0bQ.

The progenerator properties of A/ and M * ensure that 0  o <1> and $ o 0  are naturally 

equivalent to the identity functors on the relevant categories so that the two categories 

are in bijection. Two modules P  and Q which correspond to each other under this 

bijection share many properties.
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Definition 8 A properly of a module /' over a ring A is called a Morita invariant if 

whenever A is Morita equivalent to a ring B via a progenerator M  then M ® & P also 

has that property. Similarly, a property of the ring A is called a Morita invariant if 

whenever A is Morita equivalent to B then B also has that property.

Examples of Morita invariants are given by the following:

Lem m a 9 The following properties of a module are Morita invariant:

(i) being right (or left) artinian,

( i i )  being right (left) noetherian,

( i i i ) being finitely generated,

( iv ) being projective,

(v ) being a generator,

(v i) having projective dimension n.

Proof: These are all straightforward, using the equivalence of categories described 

above. □

Lem m a 10 The following properties of a ring are Morita invariant:

( i )  being Artinian,

( i t )  being noetherian,

( t i t )  having right Krull dimension n

(iv ) having right global dimension n.

(v ) being simple.

Proof: These all follow easily from Lemma 9 apart from (v ) which is proved as 

follows: Let A be a simple ring which is Morita equivalent to B via the progenerator
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M . Suppose that B is not simple and that / is a non-trivial ideal of B. Then 

is an A-A-bimodule and is contained in =  M '® M  =  A

so that A is not simple, a contradiction. □

We now have all the tools we need to be able to study the ring of differential 

operators on a singular curve X : we can associate a smooth curve X  to .V, we have a 

bimodule T> (X ,X ) with which to establish a Morita equivalence between 'D (X ) and 

T>(X), and we know a lot of nice properties of T>(X). All we need to do now is show 

that T> (X ,X ) is a progenerator over T>(.V) and that 'D (X ) 5? Endv^ ( 'D (X ,X ) ) .  

This is where the curves case detaches itself from the general case.

If X  is a curve and 1Z is its coordinate ring then Dim{TZ) =  1 so that the global 

dimension of T>( 1Z) is also 1 (by Theorem 1.19). Therefore, since 'D(1Z,'IZ) is a right 

ideal of T>(1Z), T>(TZ,1Z) must be projective. Again by Theorem 1.19, T>(1Z) is a simple 

ring so that T>(7Z, 1Z) is a generator by necessity. Finally, since 'D(IZ) is noetherian 

(Theorem 1.19), V(1Z,1Z) is finitely generated and hence is a progenerator. So the 

main part of the argument is to show for a curve X  that T>(X) =  Endv^ (T > (X , X )).  

In higher dimensions this fact will follow fairly easily from the one dimensional case, 

but then we will have lost the projectivity of V (X ,X ) .

From now on, until otherwise specified, X  will be a singular curve, TZ will be its 

coordinate ring and Q the field of fractions of 1Z. Since ~D(Q) is a noetherian integral 

domain, Goldie’s theorem implies that it has a quotient division ring A  say, and since 

T>(Q) is a localisation of both T>(1Z) and V(7Z), A  is the quotient division ring of
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both of these as well. Therefore, we may identify S =  Endv^ ( D ( R , R ) )  with the 

set {8 € A|r7P(7?, 7?) C T > (R ,R )). Write P  =  T> (R ,R ) and let / be the conductor 

of R  into 7Z: I =  A nn x (R /R ). It follows from Lemma 3 and the fact that R / R  is 

a torsion 7^-module that / is non-zero. Observe that IT>(R ) C P  so that if 8 € <S, 

then 81 C P  C T>(R). In particular, if 0 jt x 6 / then we have 8 € T>(7t)x~x C T>(Q) 

so that S  C T>(Q). Therefore, since P  is a left £>(7£)-module we have the following 

inclusions:

V (R )  C S  =  E n d ^ C D f c l l ) )  C V (Q ).

We must show that the first inclusion is actually an equality. To this end we would 

like to use the technique of localisation and so the next lemma will prove useful.

Lem m a 11 Let S be a rnultiplicatively closed subset of R . Then:

R s V (R ,R )  =  V (R s ,R s ) =  V (R ,R )R S C V (Q ).

Proof: Recall the definition of the module of differential operators between two mod­

ules as given in Definition 2.6. If we can show that T> (R ,R ), as defined above, is 

the same object as the module of differential operators between R. and R , regarding 

R  as an 7^-module, then Lemma 2.7 will give us the result. Denote the module of 

differential operators between R  and R  by T>n (R ,R )  and let T  be the set 7?.\0 so 

that R t =  R t  — Q• Then using Lemma 2.7, it is easy to see that T>n (R ,R )  =  

{5  € V (R T ,R T)\d(R) C R ) .  But V (R t ,R t ) =  V (Q ) and {8  6 V (Q )\8 (R ) C R )  

is precisely the definition of V (R ,R ) .  □
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Next we present a result that although simple, is the stepping stone towards 

proving that 77(7Z) =  S  =  Eiidv^(T7(7Z,TZ)). In order to make our notation legible, 

if () £ 77(Q) and q £ Q , we will write d * q in place of d(q). Then the symbol 

77(TZ, 7Z) * TZ means the set of all finite sums of elements of the form d * x for x £ TZ 

and 3 £ 77(TZ, TZ).

Lem m a 12 Suppose that 77(7Z,TZ) *TZ =  TZ. Then T>(7Z) =  S =  Endv^ (V (7 l,7 Z )).

Proof: We already know that T>(7Z) C S  since T?(7Z,ll) is a left X>(7£)-module. So 

let d € S  and let x £ 71. Then x £ X>(7Z,7Z) * 71. Hence:

8 * x £ d V (U , 71)* T IC  V(7Z, 71)* K C  71.

Therefore d £ 77(71) as required. □

We are now in a position to prove the main result of this section. It is here that 

we must assume the injectivity of the normalisation map in order that we may use 

Lemma 2(»t>).

Theorem  13 Let X  be a curve and suppose that the normalisation map n : X  —* X  

is injective. Then 77(71, TV) * 7L =  TZ and 77(71) is Morita equivalent to 77(71).

Proof: Notice that 77(71, TV) * TZ is a left 7?(7?)-module and hence is an ideal of TZ. 

Suppose that it is contained in some maximal ideal m of TZ. Then by Lemma 2( iv ), 

TZm is a regular local ring and we may write M  for the unique maximal ideal m7?.m 

of TZtn.
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Set / =  Anrm (71/71), the conductor of Ti into 71. Since M  is the unique minimal 

prime of /7Zul, some power of M  is contained in /7?,n. But I  is contained in 7ZUI 

and hence some power of M  lies inside 7ltn. Let n be the smallest integer such that 

A/’* 6 7£lu. If we write A =  7lm/Mn and set M  to be the unique maximal ideal of 

A then we are in the situation of Proposition 2.15: A =  k +  M  and A/" = 0. Hence 

P(/4) =  Endk(A). Now, since Af’“ C 7Zm, we may think of B =  7^,,,/Af" as a subset 

of A. Therefore we may find a 0 in P (A )  such that 0 * A C B  and 0 * 1 =  1.

Now we use Proposition 2.14: since is regular, we may lift 0 : 7Zm/Mn —* 

7Z.m/M n to a differential operator d € P(7?,ln). Notice that d actually lies in 

’P(7Zul,7Zlu) =  7ZmT>(7Z,7Z). Therefore there exists some s € 7Z\m such that 

sd € P(7?,7£). But by the construction of d, (sd) * 1 =  s ^ m. This contradicts the 

fact that V(7Z, TV) * TZ. C m and we have proved the result. □

C orollary 14 I f  X  is a curve with injective normalisation then P (.V ) is a simple, 

noetherian, hereditary domain of Krull dimension one.

Proo f: All the stated properties are Morita invariants by Lemma 10. But T>(,\’) is 

Morita equivalent to P (A ’ ) which has all of these properties and hence T>(X) has 

them also. □

In fact, we can actually characterise the varieties X  whose differential operator 

rings are Morita equivalent to T>(X) as those which have injective normalisation. 

In order to prove this we need to use the completion of a ring (see [Matsumura; 

Section 8] for details of completions). Recall that if I  is an ideal of a commutative
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domain A then the completion /I of ,4 at / is defined to be the set of sequences of 

the form (a„ +  /’‘ ) ^ ,  € n,T=i A / ln where a„ — an+r € /" for all integers r > 0. The 

ring A itself can be identified with the subring of A consisting of all the constant 

sequences. Similarly to localisation, differential operators behave well with respect to 

completions.

Proposition 15 Let TZ be a commutative noetherian domain and k-algebra and let 

I be an ideal of TZ. Then writing TZ fo r the completion o f 71 at /, T>(TZ) =  {<? €

v (n )\ d * n  c  tz}.

Proof: Write <j> : {3 € T>CR.)\d * TZ C TZ} —► T>(TZ) for the map which restricts 

differential operators on TZ to TZ. Suppose that there exists a d € P(7?) with d\n =  0. 

Let x =  (an +  i € TZ. We shall show that d * x =  0. By [Matsumura; Theorems 

8.10 and 8.11], if / is the image of / in TZ then ( I r) =  (/ )r and H Tr =  0. Hence it 

suffices to show that d * x € I r for all r >  0. Now if d has order m then:

d * x  =  d*  (ar+m +  (an -  ar+m + /» )“  , ) =  « * ( « „ -  ar+m +  € d * / r+m.

But taking commutators of 0 with /, we see that 0 * /r+m C I r . Therefore d * x =  0 

and <)> is injective.

To see that <t> is surjective we must show how to extend differential operators 

on TZ to ones on TZ, so let 6 6 V m(TZ). Define 6 : TZ —♦ TZ by 6 * (an +  /n)^L, = 

(6 * «n+m +  /n)£Lj. This is well-defined since if r >  0 then:

& * an+m+r 6 * <ln+m —  6 + (<>n+m+r — <*n+m ) € 9 * /n+m C /n
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so that S*7Z C 1Z. A straightforward calculation shows that 6 is a differential operator 

and it clearly extends S, hence <j> is surjective. □

Theorem  16 Let X  be a curve. Then the following are equivalent:

( i )  The normalisation map it : X  —* X  is injective,

( i i )  'D (X ) is Morita equivalent to T>(X),

( ill) T>(X) is a simple ring.

Proof: ( i )  => ( i i )  is Theorem 13 and (it) =► (tit) follows from the fact that simplicity 

is a Morita invariant. So it remains to prove that (iii) => (i). So suppose that X  

is a curve with T>(X) simple but whose normalisation is not injective. Let m be a 

maximal ideal of 71 and let M\ and M 2 be maximal ideals of 71 such that M\f)7Z =  

M2 f)7£ =  m. Since TL/7Z is an artinian 7?.-module there exists an integer r such that 

Af,r+* +  71 =  Af,r +  71 for t =  1,2 and for all s g N . Define S  =  ( M\ +  TV) f)( Af2 +  TV). I 

claim that (~|*̂  ^  M2n<S. If this is not true then we have the following inclusions:

T IC  S C  k + M t M iC  n .

Notice that h +  M tM 2 ^  71 and that M \ f)M 2 C Annk+M,Mi(7ll(h +  M\M2)). 

Since 71 is a dedekind domain we have that M\f\M2 =  M\M2 and 7l/M\M2 =  

TZ/Mi © 7 Z/M2. It is not hard to show that [(& +  M\M2)/M\M2\ has trivial intersec­

tion with [R/Mi\ =  0 inside 7l/M\M2 for t =  1,2 but that:

(S  +  M\M2)/M\M2 =  [(S  +  M,A/2)/ A / ,]0 [ (5 +  A/,M2)/M2].

Therefore S  C M\M2 C Ann(7Z/(k +  M\M2)). But 1 € S  so that 7Z =  k +  M\M2 

which is clearly not true. Hence we have a contradiction and the claim is proved.
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Next I claim that T>(72) C T>(S). Let rri| and m j denote M if )S  and Afan £  

respectively and let r € N  be such that (mim-j)r C 72. Write 71 and S for the 

completions of 71 and S  at (m im j)r. We may think of 71 as lying inside S. By 

[Matsumura; Theorem 8.15], S  =  5m i© 5 „ ,2 and by the construction of S, the 

projections pi of 72 onto each <Sm, are both surjective. Therefore, since differential 

operators commute with direct sums (they are homomorphisms), given a differential 

operator 6 on 71 we may extend it to 6 on S  by 6 =  pi oS +  p^oS. Finally, Proposition 

15 tells us that given a differential operator on 71 we may extend it to 71, then extend 

it again to S  by the above and then restrict it back down to S. So P(72) C V (S ) as 

claimed.

Now, if S  does not have injective normalisation we may repeat the above process 

to S  and since 71/71 is artinian, this must stop after a finite number of steps until 

we have arrived at the following situation: R  C 5, 5  has injective normalisation 

and V(7V) C P(<5). Let 7?(S,7Z) denote the set {<? € X>(<S)|d * <S C 72.}. Since 

Vl/H) C V (S ), V (S , 71) is an ideal of V(7Z). It is non-zero because it contains the 

conductor of S  into 71 and it is not equal to T>(7Z) since if it were then 1 would lie 

inside it and S  would equal 71. But 72 does not have injective normalisation whilst 

S does. Therefore V (S , 72) is a proper ideal of P(72) and T>(72) is not simple, a 

contradiction. □
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1.4 Differential Operators On Surfaces

In this, the last section of Chapter One, we show how to generalise the results of 

Section 3 about -urves to two dimensional varieties. There are more problems here 

than for the curves case and ultimately the whole thing rests upon a trick that only 

works for varieties of dimension two or less. No-one has been able to replace this 

trick with a method which works in all dimensions and it is the general purpose of 

this thesis to find new tools with which to attack the problem from a different angle.

Most of the material presented in this section is an amalgamation of the two 

papers [Hart & Smith] and [Chamarie & Stafford], although we have done some of 

the necessary work in the earlier sections. The line of attack is to try to reduce 

the situation down to the curves case by localising at height one prime ideals of the 

coordinate ring. The crux of the problem is the globalisation of the results obtained 

back to the coordinate ring again.

If we rush in and try to generalise the results of Section 3, we straight away run 

into the problem that if X  is a surface then X  need not be smooth. For example if X  is 

the cubic cone {(a:, y, z) € C|x3 +  y3 =  z3}  then the coordinate ring 71 of X  is already 

normal, but X  hits a singularity at the origin. In order then to use the properties of 

differential operators on smooth varieties that we proved in Sections 1 and 2, we shall 

always insist that the varieties that we work with should have smooth normalisation. 

Also, Theorem 3.16 indicates that we ought to have injective normalisation.

In order to prove the local case it is not necessary to insist that X  be merely a 

surface. As mentioned above, this restriction is only needed to globalise the local
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results to the general case. We therefore state the following theorem in full generality 

in order to inform the reader of what is and what is not true about the higher 

dimensional varieties.

Proposition 1 Let X  be an n-dimensional variety with smooth normalisation and 

let R  be its coordinate ring. If  P  is a height one prime ideal o f R  then T>(Rp, R p ) is 

a projective right ideal o f "D (Rp), where T>(Rp .R p ) =  {d € T>(Rp)\d + Rp  C R p}.

Proof: Since X  has smooth normalisation, R p  is a regular, semi-local ring. Now, 

by Noether normalisation ([Matsumura; Lemma 33.2]), R  contains a polynomial ring 

fc[<i,. over which it is integral. Since P  has height one, the length of a maximal

regular sequence of R  in P  is one and therefore we may reorder the tfs  so that 

k [t i,. . . ,  <„_i] (~) P  — 0. Then setting K  =  k(t\,. . . ,  we find that when we

localise at P  we get K  C R p  and Rp/M  is algebraic over K  for every maximal ideal 

M  of R p. We are therefore in the situation of Theorem 1.19 so that T>x(Rp) is a 

simple, noetherian, hereditary domain of Krull dimension one.

Define the set ZV ('R p ,R p ) to be the set {<? € T>s(Rp)\d * Rp  C R p }. Since 

A'-linear homomorphisms are also fc-linear, we may regard T>k (R p ) and T>k (R p ) as 

lying inside T>k(Rp) and T>k(Rp) respectively. Hence we have that T>n (R p ,R p ) C 

T>(Rp,Rp). Since T>k (R p ) is hereditary, T>k (R-p ,R-p ) is a projective right ideal of 

P>k (R-p )- Therefore, by the Dual Basis Lemma, 1 € T>k (R p , R p )[D a (R p , Rp)\m.

Notice that the set T>k (R-p ,R p ) =  {d € T>k.-(Q)\d * R p  C R p }  lies inside 

[T>k {R p , 72.;»)]*, since if d € /Dk (R p ,R p ) then:

dT>k. (R p , R p ) * R p  C d * R p  C Rp.
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In fact the reverse inclusion also holds for if () € 1'>h (H p ,H p ) then:

[DK(Tlp, 7£/')]*<? * Hp C V k (Hp ) * Hr  C Hr-

Hence 1 € 'Dk (H p ,H p )'Dk (H p ,H p ). Therefore 1 6 T>(Hp,Hp)T>(Hp,Hp) also 

(with the obvious meaning for T>(Hp,Hp)). So by the Dual Basis Lemma again, 

T>{Hp, H r )  is projective. □

This is the first of the problems out of the way with for the local case. The next 

step is to show that V (H p ) =  Endv^  ̂ (T>(Hp ,H p )) and the method of proof follows 

that of the curves case. In particular, we start off by showing that V (H p ,H p )*H p  =  

H r.

Proposition 2 Let X , H and P  be as in Proposition I and suppose that X  has 

injective normalisation. Then:

V (H p ,H p ) * Hp  =  Hp.

Proo f: Since the normalisation map n : X  —* X  is injective, the residue fields of Hp 

and Hp are equal. The easiest way to see this is geometrically: the prime ideal P  

defines a codimension one subvariety y  of X  and Hp is the set of functions on X  

which are regular on y. Since it is injective, X  and X  are isomorphic on a dense 

open subset of each. But dense open subsets are all that are needed to define regular 

functions on so that the residue fields are the same.

Let M  and m be the maximal ideals of Hp  and Hp respectively. Since Hp/Hp 

has a non-zero annihilator in Hp, it is a finitely generated module over a factor ring of
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7Zp and so must be artinian. Hence there exists an integer r 6 N  such that M T C 7Zp 

so that we may think of TZp/Mr as being a subset of TZp/MT. By Cohen’s Theorem 

([Matsumura A; Theorem 60]), since TZp/Mr is a complete local ring it contains a 

copy F  of its own residue field 7Zp/M and furthermore, F  may also be chosen so that 

it contains k. By the previous paragraph, F  is also the residue field of 7Zp so that 

F  C H p/M '.

Now, by Proposition 2.15, T>p(TZp/M T) =  Endp(lZp/Mr ). Therefore there exists 

some d € T>f (TZp /M t ) with the property that d * 7Zp/MT =  7Zp/Mr. Because d is 

F-linear, it is also ¿-linear. But by Proposition 2.14, d may be lifted to a differential 

operator c) on 7Zp with 1 € d * 7Zp C 7Zp. Hence the result holds. □

Corollary 3 T>CRp) =  Endp^ p^T>(TZp, U p )).

Proof: Lemma 3.12 holds even when X  is not a curve. □

The next thing we want to do is to ‘globalise’ the results proved so far in this 

section. That is, we want T>(It,TV) to be a projective 7?(72.)-module, and T>('R.) =  

Fn<ip|jjj(Z>(7?., 1Z)). In order to do this we must insist that X  is essentially determined 

by what happens at the codimension one level. The restriction that we need is Serre’s 

St condition.

Definition 4 If  A is a commutative noetherian ring then A is called Sj if A is the 

intersection of its localisations at height one primes:

A =  f )  AP.
h tP =  1
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When X  is a variety we shall say that X  is ,S'2 if its coordinate ring is .S'j.

In the two dimensional (i.e. surfaces) case, being Sj is the same as being Cohen- 

Macaulay as is evidenced by the following lemma.

Lem m a 5 Let A be a commutative noetherian domain. Then A is S? if and only if 

the depth of each prime ideal P  is at least m»n{2, h e igh t(P )}.

Proof: Suppose first that A is S2 and without loss of generality assume that P  is a 

height two prime ideal. Let 1 6  P. Then since A =  f|hiP=i Ap, xA is an intersection 

of height one primary ideals. Therefore if y 6 A is a zero divisor in A/xA then y is 

contained in a union of finitely many height one prime ideals. It is a well known fact 

(see e.g [Matsumura; Exercise 1.6]) that if an ideal is contained in a finite union of 

prime ideals, then it is contained inside at least one of them. Hence if P  consisted of 

zero divisors in A/xA then it would be contained in a height one prime ideal which 

contradicts the fact that P  has height two. Therefore there exists a regular sequence 

of length two in P.

Next suppose that if P  is a prime ideal of A then depth(P) >  m in{2, height(P )}, 

and set B =  ri/iip=i Ap. If B ^  A , choose x € B\A and write x =  a/b for a,b £ A. 

Then a € bAp for every height one prime P. Suppose that Q is a P-primary ideal 

in the primary decomposition of bA. Then P  consists entirely of zero divisors in 

A/bA so that the depth of P  is one. Therefore P  has height one as well. Hence 

a € bAp D.4 =  Q. Thus a lies in each primary ideal in the primary decomposition of 

bA and so a € bA. It follows that x € A which contradicts the fact that B  /  A. □
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The Si condition is precisely what we need in order to be able to globalise the 

results we haved proved so far.

Lem m a 6 If  X  is an Si variety with smooth, injective normalisation then T>(,V) =  

EndV{S)(V (X ,X ) ) .

Proof: If P  is a height one prime ideal of 7Z then V(7Zp,7Zp) * Up =  7Zp by 

Proposition 2. Therefore, by Corollary 3, V(7Zp) =  Endv^^(T>(7Zp,7Zp)). Since 

71 is Si, ( fW = ,  T>(71p ) ) * 7Z C r\htp=i(77>(1Zp) * TZp) C ri/it/>=i Tip =  TZ. Hence 

fW = i  V (7 lp ) =  V(7Z). Therefore:

T>(7l)<Z f| Endp^ p)(V (7 lp ,7Zp)) =  V (T l)
fcip=i

and the result holds. □

Unfortunately, Si does not seem to be strong enough to ensure that T> (X ,X ) is 

projective in general, but we do have the following:

Lem m a 7 Let X  be an Si variety with smooth, injective normalisation. Then: 

V (X ,X )  is a reflexive right ideal o f T>(X).

Proof: Denote T> (X ,X ) by / so that:

/** =  © ( * ) ) , © ( * ) )  C V (X ).

It is easy to see that I  C /** so it is the reverse inclusion that we need to prove. Let 

P  be a prime ideal of 71. Then (7*)p =  (p i)*  and P I  =  V (7 lp ,7 lP) is a projective 

P(7£p)-module. Thus PI  =  (p l )m* =  ( ( / " » *  = P (/**). Hence (/**) * K C  (P (l* * ))  *
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7Z p  C 7Z r -  Hut since 71 is S f ,  71  =  ( \ i p = !  T ip  and so ( /* * )  * 71 C 71. Therefore 

/*’  C / and / is reflexive. □

Now conies the trick (due to Bass) which enables us to improve reflexivity to 

projectivity when X  is a surface.

Lem m a 8 Let A be a non-commutative noetherian ring of global dimension 2 and 

suppose that I  is a reflexive right ideal of A. Then / is projective.

Proo f: Let K  be a submodule of a finitely generated, projective left /4-module P. 

Then we have a short exact sequence as follows:

0 — ► K — > P  — * P/K — ► 0.

Since A has global dimension two, K  must have projective dimension one or less. 

Therefore, given any short exact sequence as follows:

0 — ► G  — ► G' — ► K  — »0, 

with G' free, then G must be projective.

Let H be any finitely generated left /4-module and let F  be some finitely generated 

free left ,4-module which maps onto H. Applying the functor HomA(—, A) to the 

exact sequence F  —» / / —» 0, we get another exact sequence 0 —» //* —> F m. Thus //* 
and all of its submodules are submodules of a finitely generated free module.

Now, since A is noetherian, I  =  /** is finitely generated and hence so is /*. Let G 

be a finitely generated free left /4-module which maps onto /*. Then we have a short
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exact sequence as follows:

0 — ► H — ► G  — ►/* — » 0,

with H some submodule of G. Applying A) to this, we get another exact

sequence:

0 — ♦ / — ► G* — ► H".

The first two paragraphs now show that / is projective. O

Corollary 9 // X  is a two dimensional S? variety with smooth, injective normalisa­

tion then T> (X ,X ) is a projective right ideal o f 'D (X ).

Proof: Combine Lemmas 7 and 8 together with the fact that T>(X) has global di­

mension two (Proposition 1.3). □

We now have all the pieces of information we need, so it just remains to put them 

all together.

Theorem  10 Let X  be a two dimensional Sj variety with smooth, injective normal­

isation. Then T>(X) is Morita equivalent to T>(X).

Proof: By Corollary 9, T> (X ,X ) is a projective right ideal of T>(X) and by Lemma 

6, 'D (X ) =  Endv .g .( 'D (X ,X )). Hence the result is true. □

We also have an equivalence as in Theorem 3.16 to show that our conditions are 

really necessary. This equivalence applies even to varieties that are three dimensional
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or more and characterises varieties that are S? and have smooth, injective normalisa­

tion as the varieties whose differential operator lings are maximal orders. Recall the 

definition of a maximal order:

Definition 11 Let A be a non-commutative order in a division ring D. Then A is 

said to be a maximal order if given any ring B with A Ç B Ç D such that there exist 

elements a and b in A with aBb Ç A, then A =  B.

Notice that if A C B  contains a right (or left) ideal I  of B then x.BA  C A for 

any 0 ^  x € / and so we are in the situation of Definition 11. We shall often use this 

fact later on.

Now, in our characterisation of varieties with smooth, injective normalisation, we 

must show that if I t  is the coordinate ring of a variety whose differential operator 

ring is a maximal order then TZ has injective normalisation. In order to do this it is 

only necessary to show that if P  is a height one prime ideal of TZ then TZp is local 

and the natural inclusion of the residue field of 7Zp into the residue field of IZp is an 

isomorphism. The proof of this fact uses a process called ‘Henselisation’ which would 

take too long to describe here. Briefly, Henselisation is a process which allows a form 

of the implicit function theorem to be used for algebraic functions and is therefore 

useful for reducing problems about algebraic functions to ones on analytic functions. 

The idea behind the proof of the result stated above is that the result is easy to show 

for germs of analytic functions and one uses Henselisation for the general result. We 

summarise these facts in the following lemma:
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Lemma 12 Let Ti be the coordinate ring of a variety X . Then Ti has injective 

normalisation 1/ Tv/- is locul for every height one prime P  of Ti, and Tip +  M  =  lip , 

where M  is the maximal ideal of Tip.

Proof: For the details of the proof see [Ferrand]. □

The next result will be useful in order to be able to apply Lemma 12.

Lem m a 13 Let Ti be the coordinate ring of a variety with smooth normalisation and 

let P  be a height one prime ideal of Ti. I f  M  is a prime ideal of Ti which is minimal 

over P  and P U m = M U m then V (T ip ) C X>(7i\ i).

Proof: As in the proof of Proposition 1, there is a field K  =  &[<i,. . . ,  <r] contained 

in Tip over which Tip/M  is integral. Also, since 7i\f is regular local of dimension 

one, we may choose a regular parameter, t0 say, for M  and since P1i\i =  MTiiu we 

may assume that t0 € P. Then to,t\,. . .  , t T form a transcendence basis for Q over k 

and T>k(Q) — Q[d/dto,. ■ ■, d/dtr\. The derivations {d/dto, . . . ,  d/dtT} form a basis 

for the free 7?.M-module DerkÇÜM).

Let 6 € T>{Tip) Ç T>(Q) and write:

f  ^  d ,0 d
...irdt0 •• dtr '

Then if j 0, ... , j r are natural numbers we have that

ti' =  £  Ni0..¿ra,0... irtirio.. . M r1*

for some A f , r e N. This implies that each a,0...¿r 6 Tip and that 6 therefore lies

in V (n M). □
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Corollary 14 Let H be the coordinate ring of a variety with smooth normalisation 

and let P  be a height one prime ideal of Tl. I f  MTZm =  PTIm for each prime ideal 

M  of 71 minimal over P  then X>(7vp) C T>(Tip).

Proo f: Let M i , . . . ,  M r be the prime ideals of Tl minimal over P  and let d g 'D(Tlp). 

Then by Lemma 13, d extends to each T I m , s o  that we have:

d + K p c r ) d * n M, c f ) K M, =  Up.
1=1 1=1

Therefore d extends to Tip. Q

Theorem  15 I f  X  is a variety with smooth normalisation then the following are 

equivalent:

(») X  is S2 and has injective normalisation.

(it) T> (X ,X ) is a reflexive right V(X)-module and T>(X) = Endv^ (T ) (X , X ) ) .

(Hi) T>(X) is a maximal order.

Proo f: ( i )  =» (it) is just Lemmas 6 and 9.

(ti) => (tit) This is just [MR; Proposition 5.1.11).

(tit) =>• (i) Writing S  in place of f\ip=i we see that Z>(71) C T>(S). Now, regular 

rings are Cohen-Macaulay and hence Sj by Lemma 5. Therefore f l^ P  =  ^  where 

the intersection runs over all height one primes P  of H. This implies that S  C Tl, so 

there exists a non-zero ideal / of Tl such that IS  C Tl. Thus 0 ^  PD (S ) C T>(S,Tl) 

which is an ideal of 'D(Tl). Hence 'D(Tl) and T>(S) are equivalent orders. But 'D(’Jl) is 

a maximal order which implies that T>(Tl) =  V (S ). A comparison of the differential 

operators of degree zero then shows that Tl — S  and is 52.
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By Lemma 12, in order to prove that X  has injective normalisation, it is sufficient 

to show that the ring Up  is local and that l ip  =  Up  +  J ( l ip )  for every height one 

prime ideal P  of l i .  Notice that T> (X ,X ) C T>(X) C E n d T>.g A 'D (X , X ) )  so that 

the fact that T>(X) is a maximal order implies that X>(,V) =  Endp^jfAT>(X,X)). 

Therefore if P  is a height one prime ideal of l i ,  T>(lip) =  Endv^ i ^ (V (lip , U p )), 

since if 6 6 E n d (V (lip ,1 ip )) then 0 (T > (li, li ) ) C V (i ip ,  U p ). But T>(H p,lip ) =  

l ip T > (li , l i )  is a finitely generated right Z>(7£p)-module so that there exists some 

a € l i\ P  with sT>(1ip,1ip) C T > (li , li ). Hence aO € E n d (T > (li,li) ) =  T>(li) and 

0 € T>(1Zp). Also, by Proposition 1, T > (lip ,lip ) is projective. Consequently T>(lip ) 

is Morita equivalent to T>(lip) and must be simple. In particular, 1 € V (lip , U p ) * 

Up  otherwise l ip /(VCR.p ,  U p ) * l ip )  would be a P(7tp)-module with a non-zero 

annihilator, contradicting the fact that T>(lip) is simple.

Now, suppose that S  — l ip  +  J ( l ip )  and that S  /  l ip . Then Lemma 13 implies 

that P(<S) C T>(lip) so that T> (lip ,S ) is a proper ideal of P(«S). Therefore P(<S) is 

not simple. But we know that 1 € V ( l ip , l ip )  * l ip  C T> (lip ,S ) * l ip . The usual 

argument (Lemma 3.12) implies that V (S )  =  Endv^ f>̂ 'D(lZp,S) and by Proposition 

1, V (l ip ,S ) is projective. Therefore P(<S) is Morita equivalent to V (l ip )  and must 

be simple. Therefore l ip  =  l ip  +  J ( l i p ) and the result holds. □
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Chapter 2

Classification of Right Ideals

This chapter is concerned with the right ideals of the ring of differential operators 

of a smooth variety. These were classified for curves in [Cannings & Holland] by 

means of certain vector subspaces of the coordinate ring of the curve in question. 

In more detail, if 72 is the coordinate ring of a smooth curve and D  is a right ideal 

of T>(72) which contains an ideal of 72 then we may define a vector subspace V of 

72 as follows: set V =  D * 72, the subspace of 72 generated by all elements of the 

form d * r for d € D and r € 72. [Cannings & Holland] characterises the subspaces 

that arise in this way (as so-called primary decomposible subspaces) and shows that 

the map D  i—* D * 72 is a bijection. In this chapter we are able to give a different 

characterisation of these vector subspaces which has two advantages: firstly, the proof 

of the classification of the right ideals of 77(72) is greatly simplified; and secondly, the 

method partially generalises to two dimensional varieties to give a classification of 

projective right ideals of T>(X) where X  is a surface. Although this classification is 

only partial at present, it is to be hoped that the additional restrictions required to

58



make the method work may be unnecessary.

We begin by stating the definition of a primary decomposible vector space as 

given in [Cannings & Holland]. We then present an alternative definition of primary 

decomposible and show that the two definitions are equivalent. Next we prove the 

classification of the right ideals of the ring of diferential operators on a smooth curve 

as mentioned above and finally we generalise these results to results about surfaces. 

Throughout this chapter, TZ will be the coordinate ring of a smooth variety X . As 

usual, the base field k will be algebraically closed of characteristic zero. Also, when­

ever we talk about vector spaces, we will almost always mean /c-vector spaces.

2.1 Primary Decomposible Vector Spaces

In this section we present the two definitions of primary decomposible subpaces of 

71 and show that they are equivalent. In order to get some finiteness conditions we 

must insist that most of the objects we work with contain an ideal of the ring 71.

Definition 1 Let V be a k-vector subspace of 71. Then V is called dense i fV  contains 

a non-zero ideal of 71. Also, if D is a right ideal of T)(7Z) then D is called dense if  D 

contains a non-zero ideal o f 71.

Containing an ideal of 71 is a particularly important property to have in the case 

that X  is a curve. This is because if X  is a curve then 71 is regular of Krull dimension 

one so is a Dedekind domain. Therefore, if / is a non-zero ideal of 71 then it is a
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product of maximal ideals. Furthermore, if / =  m i' . . .m '" ,  then:

f t / / S i  [ f t / m l ' ]  ©  . . .  ®  [ f t / i r C ] ,

Hence 7?.// is finite dimensional over k and is artinian. Containing a power of a 

maximal ideal is even nicer so we give vector spaces with this property special con­

sideration. For our purposes we are able to weaken this condition slightly and this 

is where the primary decomposible subspaces come in. As the next definition only 

really makes sense when X  is a curve, we impose that restriction.

Definition 2 Let X  be a curve and let V be a dense subspace of 7Z. Then V is called 

primary if  it contains a power of a maximal ideal of 1Z. V is said to be primary 

decomposible if  it is an intersection of primary subspaces.

The notions of primary and primary decomposible as subspaces coincide with the 

usual meanings for ideals of 1Z. Thus every ideal of 1Z is a primary decomposible 

subspace. Notice that if V is primary decomposible then it is an intersection of 

finitely many primary subspaces. This is because V  is dense and so TZ/V is a finite 

dimensional ¿-vector space. In fact, the primary vector spaces which intersect to give 

V are essentially unique.

Lem m a 3 Let X  be a curve and let V be a primary decomposible subspace of 1Z. 

Suppose that I  is the largest ideal of 1Z contained in V and that m  is a maximal ideal 

of TZ containing /. Then K (m ) =  Dn=i (mn +  V ) *s tAe smallest m-primary subspace 

containing V and:

V =  f |  V ( m ) .
I  C in s S p e c (K )
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Proof: Note first that ^ (m ) is a primary subspace of 1Z since TZ/1 is finite dimensional 

and K (m ) =  mn +  V for some n 6 N . Then, if W  were some m-primary subspace 

containing V, it would also contain mr +  V for some r 6 N. But V'(m) C m r +  V .

Finally, since V  is primary decomposible it is the intersection of the primary vector 

spaces which contain it and since V^m) is contained in every m-primary subspace for 

each maximal ideal m which contains /, V =  fl/cm V^(m). □

The problem with the definition of primary decomposible which we have just given 

is that it relies heavily on the fact that X  is one dimensional for it to be of any use: 

lots of right ideals of T>(X) for a surface X  contain ideals of 1Z which are of height one. 

It is therefore not clear how to give a definition of primary and primary decomposible 

for subpaces of two dimensional rings which will be of much use in classifying right 

ideals of T>(X). Instead, we give a new definition which although is not as intrinsic as 

Definition 2, has the advantage that it gives a vector space V  a module structure over 

some ring. This module structure does not then rely the dimension of the variety in 

order to yield positive results.

From now on, if V  is a dense vector subspace of 1Z then we will use the terminology 

S (V ) to denote the set {q € Q\qV Q V }, where Q is the field of fractions of 7Z. When 

the context is clear, we will often just write S instead of S (V ). The set S =  S (V ) is 

a ring and is, in fact, a subring of 1Z. To see this, suppose that a € S and let I  be 

the largest ideal of 1Z in V . Then s i C V is an ideal of 1Z and therefore lies inside 

/. Thus / is an ideal of both 1Z and S. Let x € /. Then 7?[s] =  xTZ[s\ C 71 so that 

7?.[.s] is a finitely generated 7^-module. Hence a is integral over 1Z and must lie in 1Z
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because 1Z is integrally closed. So 5 C I t  ¡is claimed.

The construction of S =  5 (y )  makes V into an 5-module in the obvious way 

and we may therefore localise V  (and 1Z) at prime ideals of 5. This leads us to a 

new definition of primary decomposible which is quite similar to the 5? condition of 

Definition 1.4.4. Since 5j was exactly what we needed to work with in Section 1.4, it 

is plausible that this is the definition we need.

Definition 4 Let 1Z be the coordinate ring of a smooth variety X . Then a dense 

vector subspace V of 11 is called primary decomposible if the following conditions all 

hold:

( i )  5 =  5 (K ) is a noetherian ring,

(it) The map n : Spec7£ —» Spec5 is bijective,

(H i) V =  Hmpsi Vp, where the intersection runs over all the height one primes of 5.

It is easy to see that condition ( in )  of the above gives that 5 is Sj. In the case 

that X  is a curve, we automatically have conditions (t) and (tit). Condition (tit) is 

because height one prime ideals of a one dimensional ring are maximal ideals, and 

every module is the intersection of its localisations at maximal ideals. For condition 

(i), we even have that 5 is affine over k. This is because of the Artin-Tate lemma 

below. Hence if A" is a curve, a dense vector subspace V of 1Z is primary decomposible 

(in the sense of Definition 4) if and only if the map 7r : Spec72. —► Spec5(Vr) is 

injective.

Lem m a 5 (Artin-Tate) Let A C B be commutative k-algebras and suppose that B is 

affine over k and a finitely generated A-module. Then A is also affine over k.
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Proof: Let X \ ,...,x m generate B over ¿ and ]/ i,...,y „ generate & as an /1-module. 

Each x, can be expressed as a sum Xi =  <*•,>!/> for some Ojj 6 /l. Also, each

product y.yy equals EJ.i Cij.kVk for some c^,* € A. If we set C  =  ¿ [a jj,c^ iJk], then 

B =  53"_, j/jC and so is a finitely generated C-module. But C  is affine over k so that 

both B and A are Noetherian C-modules. Hence A is a finitely generated module 

over an affine ¿-algebra and so must be affine itself. □

Now, we have given two definitions of primary decomposible subspaces of the 

coordinate ring of a smooth curve so we had better check that they agree with one 

another.

Proposition 6 Let X  be a curve and let V be a dense subspace of Tt. Then V is 

primary decomposible in the sense of Definition 2 if and only if it is in the sense of 

Definition 4-

Proof: Suppose first that V is the intersection of the primary subspaces which contain 

it and set S =  5 (V ). As mentioned above, conditions (t) and (H i) of Definition 4 

hold automatically since if / is the largest ideal of 1Z which sits inside V  then / also 

lies in S. Thus 7Z/S is a finite dimensional ¿-vector space and H  must be a finitely 

generated 5-module. Therefore we may apply the Artin-Tate lemma (Lemma 5) to 

find that 5 is affine over k.

So the main thing to prove is that the map re : Spec72. —* Spec5 is bijective. 

Since 5 is noetherian. I t  is a finitely generated 5-module because if 0 x € / then 

1Z =  xTZ C 5. Hence given an element y of I t  then 5[y] is a finitely generated 5-
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module and y must be integral over S. So TZ must be the normalisation of 5 in its 

field of fractions Q. The ‘lying over’ properties of integral extensions then ensures 

that 7r is surjective.

To show that 7r is injective, notice that S is itself the intersection of primary 

subspaces which contain it. To see this, notice that if V  =  Din V (m ) then

[f| 5 (V (in ))].V  C f| [5 (V (m )).V (m )] C f| V (m ) =  V.
Ill 111 111

So we have the following:

5 C f !5 (m )  C f| 5 (V (m )) C 5.
Ill 111

Therefore S =  and we can now see that n is injective. In more detail, suppose

that M \,. . . ,  M r are the maximal ideals of TZ which contain /. Let s € N  be large 

enough so that M ‘ ... M ‘ C I. Then we may choose idempotents e\ , . . . ,  er with the 

properties that 1 =  t\ +  ... +  er and each e,’ € M ‘ for j  i so that the ê ’s lie in 

5. Recall that TZ/M‘ .. . M* =  1Z/M’ © ... 0  TZ/M’ . Using the e/s we find that 

S/M * . . .  M ’ =  (S  +  M ‘ )/M * © .. . © (S  +  M ’ )/M ‘ . Therefore the maximal ideals of 

S which contain I are in one to one correspondence with M \, . . . ,  M r. Also, it is clear 

that if M  is a maximal ideal of S which does not contain I  then there is a unique 

maximal ideal of 7Z containing M. Hence v is injective as claimed.

Now suppose that V  and S satisfy properties (*), ( i i )  and ( i i i )  of Definition 4 and 

let P  be a maximal ideal of S. The injectivity of 7r ensures that 7Zp is local. Therefore 

Vp contains a power of the maximal ideal of 7Zp and if m is the unique maximal ideal of 

TZ lying over P  then mr C. Vp f| TZ for some r € N. Hence U (m ) C V +  nT C Vp C\1Z.
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But the fact that V is the intersection of its localisations at maximal ideals of S implies 

that finí V'(m) C fhup=i Vp =  V. Q

2.2 The Classification For Curves

In this section we will show how to construct a map from the set of dense right ideals of 

T>(.V) to the set of dense subspaces of 72, where X  is a curve. We will then prove that 

this map is injective and that its image is precisely the set of primary decomposible 

subspaces of 72. So the set of dense right ideals of T>(X) is in bijection with the set 

of primary decomposible subspaces of 72. This is achieved by finding a map from the 

set of dense vector subspaces to the set of dense right ideals which is the inverse to 

the first map when restricted to the primary decomposible subspaces. Although this 

section is dedicated to the case of when X  is a smooth curve, the methods we use will 

often be general enough for when X  is a surface and so we prove most of the results 

in full generality. Throughout this section therefore, X  will be any smooth surface 

with coordinate ring 72, and we will specify which results only work curves.

Now, given a dense right ideal D  of T>(X) we may define a vector subspace D * 72 

of 72 by setting D * 72 to be the vector space spanned by elements of the form d * x 

where d € D, and x € 72. Notice that D * 72 contains any ideals of 72 that D does 

and so is dense.

Conversely, given a dense vector subspace V  of 72 we can define a right ideal 

Z>(72, V ) of V {X )  by D(72, V ) =  {d  € V{X)\d * 72 C V}. Again, Z>(72, V )  contains 

any ideals of 72 that V does and must be dense. The next result shows that Z>(72, V )
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behaves well with respect to localisation.

Lem m a 1 Let V be a dense subspace of 72 and suppose that S =  S (V ) is noethe- 

rian. Let T  be a multiplicatively closed subset of 5 =  5 (V ). Then Sp'D('R,,V) =  

V(Kt, V f) =  Z>(72, V )K t , where 2?(72r , VT) =  {d  € V (H T )\d * 72T Ç VT }.

Proof: Since 5 is dense and noetherian, V  must be a finitely generated 5-module. 

Now, the same argument as given in the proof of Lemma 1.3.11 shows that 27(72, V ) 

as defined above is the same as the module of differential operators between 72 and

V as 5-modules. Therefore Lemma 1.2.7 gives us the result. □

Proposition  2 Let V be a primary decomposible subspace of 72. Then we have that 

17(72, V ) * 72 =  V.

Proof: Set 5 =  S (V ) and let P  be a height one prime ideal of 5. The fact that

V is primary decomposible implies that 72p is a local ring with maximal ideal M  

say. Then Vp contains some power M T of M  for some r € N. By Proposition 

1.2.15, 17*(72p/A/r) =  E n d k (7 ip /M r ). Thus there exists some S € T>('R.p/Mr ) with 

6 * (TZp/Mr ) =  Vp/MT. But by Proposition 1.2.14, differential operators on factor 

rings of regular rings lift to give differential operators on the whole ring. Therefore 

we may lift 6 to a differential operator d € 27(72p) with ( d * 72p) +  M r =  Vp. This 

shows that 27(72p, Vp ) * 72p =  Vp.

Since 27(72p, Vp) * 72p =  Vp, the same argument as in the proof of Lemma 1.3.12 

shows that T>(Vp) = End-p^p)T>(R.p, Vp ), where T>(Vp) =  {d  €  V(Q)\d * Vp Ç Vp}.

So [ p| EndV(Kp)V (K P , Vp )] * V C f j  [D(72p, VP) *V P]C  f )  VP =  V.
h tP =  1 h tP = \ K tP = \
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Also, by Lemma 1, V(7Zp, Vp) =  V(7Z, V)7Zp which implies that Endp^^V(7l, V ) C 

End-pinp)VCRp, Vp) for each height one prime ideal P  of 5. Hence if T>(V) =  {<9 € 

T>(Q)\d * V C V }, then we have the following inclusions:

V (V )  c  Endv m V (7 l, V ) c  f l  Endv(Kp)V(7ZP , VP ) C V (V )
hip=\

Therefore T>(V) must equal End-p^VCR, V').

We now have that T>(V) =  Endznn)V(7l, V') and we already know that T>(71, V) 

is a projective P(7£)-module since T>(71) has global dimension one. Therefore X>(V') 

is Morita equivalent to V (7 l) and in particular, is a simple ring. Now, notice that 

V(7Z, V ) * 71 is a left V (Kj-module. Therfore V(V,T>(7Z, V ) * 71) is a two sided ideal 

of V (V ).  But V (V )  is simple and so 1 € T>( V, T>( 71, V )  * 71) =  V (V ).  Consequently, 

T>(TZ, V ) * 71 =  V  as required. □

Proposition 3 Suppose D is a dense, projective right ideal of T>(TV). Then we have 

that D =  V (H , D * 71).

Proof: Writing D * for the dual of D  as a right Z>(7?.)-module, we have the following:

d - = {d e v (Q )\d D  c t >(K)} =  { d e  v(Q )\d D  * n c n } .

So setting V =  D * 71, we have that D* =  {d  € T>(Q)\d * V C 71} =  V(V,7Z). 

Now, V(V,7Z)T>(7Z,V) * 71 C 71 so that 2>(V,TV) C [D(7Z, V)]*. In other words, 

D* C [P(7£, V)]*. Thus [D(7l, V)]** C D mm. But every D is projective and hence 

reflexive. So we have proved that T>(7Z,V) C D. But since V  =  D * 71, it is trivial 

that D C T7(7Z, V ) and the assertion is true. □
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Proposition 3 tells us that the map D t—► D * 7?. is injective, and Proposition 2 

says that the map V i-+ T>(H, V) is injective when restricted to the set of primary 

decomposible subspaces of H. It now remains to be shown that if D is a dense right 

ideal of 'D (H ) then D  * TZ is primary decomposible. There are (at least) two ways 

of doing this: one is quite short but only works for curves, and the other is longer 

but will also be of use for the surfaces case which we treat in this next section. We 

therefore choose the longer proof. In particular, we need some facts about completion 

of 5-modules and how they relate to one another.

Now, recall that the process of completion applies equally as well to modules as it 

does to rings. We are particularly interested in the following situation: V is a dense 

subspace of H. and P  is a height one prime ideal of 5 =  S(V).  Then Vp is an Sp- 
module and we may complete Vp at the largest ideal of Up  which it contains. Thus 

Vp C Vp C IZp. Assuming that 5 is noetherian, the usual proof shows that T>(Vp) 
is the module of differential operators from Vp to itself and we have the following 

proposition:

Proposition 4 Let V, S and P be as above. Then T>(Vp) =  {d  €  T>(Vp)\d * Vp C

Vp}.

Proof: This proof is an easy adaptation of the proof of Proposition 1.3.15. □

Under the assumptions of Proposition 4, let Vp be the subspace of Ttp defined as 

follows:

Vp+ =  h n ( V p + M n ,
t= l  n = l

I
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where M \,.. . ,  M r are the maximal ideals of Tip. Since U p  has Krull dimension one, 

if / is the largest ideal of Tip inside Vp then Tip/I is artinian, so there is an integer 

a € N  with the property that Vp +  M ‘ =  Vp +  A/*+n for each i and every n > 0. The 

aim of the next few results is to show that T>(Vp) C T>(Vp ).

Hy [Matsumura; Theorem 8.10], Tip (Tip)\ © ... © (7ip )T where (T ip)i means

Tip completed at the maximal ideal M,. Now, for each n >  1 and each 1 <  t <  r, we 

may choose elements ei,n € Tip such that:

(*) ei,„ +  .. . +  er,„ =  1 and 

( « )  e„„ € M " for j  ±  i.

Define =  (e,,n +  I n)^Lt € Tip. Then the e,- are the idempotents corresponding to 

the decomposition of 7ip  mentioned above.

Proposition 5 Let Vp and the e, be aa above. Then Vp =  J2ieiVp-

Proof: Firstly notice that since I  is an ideal of Tip, I =  e j .  Hence we may work 

modulo I. But Vp /I Si Vp /1, as is easy to see from the definition of the completion. 

Now, we may find integers Si,. . . ,  sr such that Tip/I =  T i p / M © ... © Tip/M‘r . 

For clarity, let us write W  for Vp ¡1 and VF(t) for (Vp- +  M*)//. Then since W (t) 

contains the image of M* in Tip/1, it also contains 7if- =  © j/, Tip/M‘r . Thus 

VF(t) =  ei,ilV(») +  H +. Hence we have that:

W  =  H  ^ ( 0  =  +  K )  =  ¿ e tllVP.
i=i i=i 1=1

It is now easy to see that multiplying Vp // by ej corresponds under the isomorphism 

to multiplying W  by e,-,i. The result follows. □
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Corollary 6 With the above notation, 'D(Vp) C T>(Vp).

Proof: If d € V (V p ) then:

d* v? = a* ¿TnVp c £ e,0* vP c £e.i> = v£.
i i «

Thus V (V p ) C V (V ^ ). □

Proposition  7 With Vp and Vp an defined above, we have that D (Vp) C T>(Vp).

Proof: By Proposition 4 and Corollary 6, we already know that T>(Vp) C T>(Vp) C 

V (V jt ). Also, by Proposition 4, V (V f )  & {d  € P (V ^ )| d *  V? C V ^ }. But the 

construction of the extensions of differential operators on Vp to Vp ensures that if 

d € T>(Vp) then d takes Vp to itself inside Vp. Therefore T>(Vp) C T>(Vp). □

This completes all of the preparatory material we need in order to be able to 

complete the classification of right ideals of T>(TZ). So let us return to the case of 

when .V is one dimensional.

Proposition  8 Let ,V be a smooth curve. I f  D is a dense right ideal of T>(It) then 

D * IZ. is primary decomposible.

Proof: Set V  =  D * H  and S =  S (V ). We must check that the normalisation map 

n : H —♦ S is injective. So let m be a maximal ideal of 5. Since T>(TZm,Vm) =  

«SmP(7?-, V ), the fact that V(TZ, V ) * V, =  V implies that T>(TZm, kin) * — kin-

Therefore T>(Vm) =  Endj>(nmfD(R.m, Vm). But T>(TZm ) has global dimension one so 

that P(7£m, Vjn) is projective. Hence P(kin) is Morita equivalent to T>(fR,m) and is a 

simple ring.
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Now, Proposition 7 shows that T>(Vm) Ç V (V '+ ) and if Vm ^  then T>(V£, Vm) 

is a proper ideal of T>(Vm). This contradicts the fact that T>(Vm) is simple. Hence 

Vm =  VjJ. I claim that 5m =  S(Vm). Clearly 5m Ç S(Vm). For the reverse 

inclusion, let s € 5(V'm). Then sV Ç \/m. But V  is a finitely generated 5-module so 

that there exists a t 6 5\m such that stV Ç V . Therefore si € 5 and s g 5m. Thus 

5,u =  5( V,u) and the fact that V,,, —— l implies that Sm =  S * ,  since S i  is easily 

shown to lie inside 5(V/+).

The argument given in the proof of Proposition 1.6 now shows that 5  has injective 

normalisation. □

Proposition 8 is the final fact needed in order to be able to prove the classification 

of the dense right ideals of T>(71).

Theorem  9 Let X  be a smooth curve with coordinate ring 1Z. Then the dense right 

ideals of T>(71) are in bijection with the primary decomposible subspaces of Ti, with 

the bijection being given by D  •—» D

Proof: Proposition 3 shows that D  i—> D * TL is injective, Proposition 8 shows that 

D * 7̂  is primary decomposible and Proposition 2 shows that the map is surjective.D

2.3 The Classification For Surfaces

In this section we attempt to extend the results of the last section to the case of when 

1Z is the coordinate ring of a smooth surface X . Instead of trying to classify all of the
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dense right ideals of P(72) however, it turns out that it is the projective right ideals 

that we need to concentrate on. Of course, when X  is just a curve, all right ideals of 

VCR) are projective, so the results of this section really are generalisations of those 

given in Section 2.

Throughout this section we make the assumption that is a smooth surface with 

coordinate ring 72. In doing this we immediately run into two problems: firstly, not 

every right ideal of VCR.) is projective; and secondly, if V is a dense subspace of 72 

then 5 =  S (V ) is not necessarily noetherian. For an example of the second problem, 

suppose that 72 =  fc[x,j/] and S is the subring of 72 given by S =  k +  xk [x ,y ]. Then 

S is dense in 72 but is not noetherian since the ideal xk[x,y\ of S is not finitely 

generated.

If S =  V (R ,S )  * 72 however, and P(72,5 ) is a projective right ideal of P(72) 

then S is noetherian. This is because V (S ) is Morita equivalent to P(72) and so is 

noetherian. Therefore, if /] C /2 C ... is an ascending chain of ideals of S  then the 

chain of right ideals I tV (S )  C I 2V (S ) C ... of V (S ) must stop after a finite number 

of steps. So there exists an integer n such that InV (S ) =  I n+iV (S ) for every i >  0. 

But l n+iV (S ) * S =  /„+, which gives that /„ =  /„+*. Hence S is noetherian.

Our problem is though that if D is a projective right ideal of P(72) and V  =  D*72 

then V (V )  is noetherian. It is not at all clear in this case if either 5 is noetherian or 

V is a noetherian 5-module. In order to get anywhere then we must restrict ourselves 

to projective right ideals D  of P(72) for which S =  S (D  * 72) is noetherian. The 

Artin-Tate lemma (Lemma 1.5) then shows that S is actually affine.

Now, we already know by Proposition 2.2 that if V  is a primary decomposible
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subspace of 'll then V  =  P(7 l ,  V )  * 'll and an easy adaption to Lemmas 1.4.7 and 

1.4.8 shows that T>(H, V )  is projective. We also know, by Proposition 2.3 that if D  

is a dense, projective right ideal of Z>(7£) then D  =  T>(H, D  * H ). So it remains to 

prove that if D  is a dense, projective right ideal of T>(TV) then V  =  D  * 7?. is primary 

decomposible. As mentioned above, we must assume that 5  =  S ( V )  is noetherian. 

The only things to prove therefore are that S  has injective normalisation and that 

V =  PI Vp where the intersection runs over the height one prime ideals of 5. The 

latter problem is the easiest to sort out and is covered by the next result. That 

S has injective normalisation is harder to show and it is this which causes us most 

difficulties.

Lem m a 1 Suppose that D is a dense, projective right ideal o f T>(TV) and set V =  

D * 'll.. Suppose also that S =  S (V ) is noetherian. Then V =  Dmp=i VJ>.

Proof: Since H  is regular, H  =  D/iiP=i Up  where each P  is a height one prime ideal 

of S. Therefore V C Vp Q 'll. Now, since S is affine, V  is a finitely generated 

5-module and so Lemma 1.2.7 shows that T>(V) C T>(Vp) for every height one prime 

ideal P  of S. Also, let d € f|V>(Vp). Then d * f| Vp C f j  Vp so that X>(f| Vp) =  

D V (V P ). Hence V (V )  C P (D  VP). So if V ±  f l  Vp then D (fl Vp, V) is a proper ideal 

of V (V ).  But V =  T>(H, V ) * H  and the usual argument shows that 'D (V ) is Morita 

equivalent to V (H ). Thus T>(V) is simple which contradicts the fact that T>(f| Vp, V) 

is a proper ideal. Therefore V  =  H Vp. □

Recall that by Lemma 1.4.12, in order to prove that 5 has injective normalisation
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it is enough to show that Sp is local for each height one prime ideal of S , and that Sp 

has the same residue field as Sp. Since S C  TZ and contains an ideal of TZ, Sp =  Up. 

The next result shows that 7Zp must be local.

Proposition 2 Let D  be a dense, projective right ideal o f TZ and set V =  D  * TZ. 

Then if S =  5'( K) is noetherian, 7Zp is local fo r  every height one prime P  of S.

Proof: By Lemma 2.3, D =  V(TZ, V ) so since V(TZP, VP ) =  SPV(TZ, V ), V(TZP, VP ) 

is projective. Also, T>(TZp,Vp) * 7Zp =  Vp so that T>(Vp) is Morita equivalent to 

P(7?p) and is simple.

Now, by Proposition 2.7, if VP ^  V? then V (V P ) C t> (V/ ) and V (V j ,V P) is 

a proper ideal of T>(Vp). But T>(Vp) is simple and so Vp =  Vp . This implies that 

Sp =  Sp also. The argument given in the proof of Proposition 1.6 now shows that 

TZp must be local. □

We want to use Lemma 1.4.12 to prove that S has injective normalisation. We 

therefore need some form of Lemma 1.4.13 in order to satisfy the conditions of Lemma 

1.4.12 and the following result is aimed towards this end.

Lem m a 3 Let S be a dense, noetherian subring of TZ and let P  be a height one 

prime ideal of S. Suppose that TZp is local with maximal ideal M  and that W  is an 

Sp-submodule of TZp containing Sp +  M . Then T>(W) C T>(7Zp).

Proof: The proof is almost exactly the same as that given for Lemma 1.4.13. Since 

Sp C W, we can find a field K  =  (< i, . . . , t r) in W  over which TZp/M is algebraic,
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and we may choose a regular parameter t0 of M  which lies inside W . We may then 

write any b € T>(W) as follows:

2- a,°....rdt0 ‘ " d t r '

and just as in Lemma 1.4.13, we find that each aI0.... lies in W C Tip. Hence

6 € T>(Tip) as required. □

Let M  be the maximal ideal of Tip. We must show that the residue field of Sp 

coincides with that of Tip. Let I  be the largest ideal of Tip contained in Vp. Then 

since Tip/1 is a complete local ring, [Matsumura A; Theorem 60] shows that Tip/1 

contains a copy of its own residue field, K say. If we show that Vp/1 is a A'-vector 

space then it will follow that Sp/I must contain A . Since Tip is regular local, we 

may choose a regular parameter t for M  and I =  tTTiP for some r € N. Then we may 

write Tip/I as K [t)/ (tT). For each n € { l , . . . , r  — 1} we may define a ^-linear map 

0n from Vp// to A' by expanding each v € Vp// out as v =  v0 +  t>i< +  ... +  wr_i<r_1 

and setting 0n(v ) =  vn. The next result shows that 0n(Vp//) equals either K  or 0 for 

each n.

Proposition 4 With 0n as defined above, 0„(Vp/I) is either A' or 0 fo r each n.

Proof: Fix n 6 {1 , . . . ,  r — 1} and assume that 0n(Vp//) /  0. Set W =  dn/dtn * Vp 

so that Vp and W  are isomorphic (as 5p-modules). If we define <j> : W  —► A  by 

4>(w) =  w +  M  then it is clear that <t>(W) =  0(n)(Vp/1). Also, we may assume 

that 1 € W. This is because if c +  m € W  with m € M  and c € A"\0 then
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W 3  c - 'W  and 1 £ c~ 'W  (such a c exists since 4>(W) ^  0). The upshot of all 

this is that (after possibly replacing W with c~ 'W ) we have S =  S (W ), S C IV 

and W =  T>(TZp, W ) * Tip. This last fact holds because Vp =  T>(TZp, Vp) * TZp and

W =  c~ 'dn/dtn(V ).

Now, Lemma 3 applies to the vector space W  +  M  to give us that D (W  +  M ) C 

T>(TZp). Therefore, if W  +  M  /  7Zp we must have that T>(W +  M )  is not simple 

(it contains the ideal T>(1Zp, W -f- M ). But we may deduce from the fact that W =  

T>(Hp, W ) * 7Zp that W +  M  =  T>(7Zp, W +  M ) + Tip. The usual argument now yields 

that ~D(W +  M ) is Morita equivalent to T>(7tp) and is simple. This contradiction tells 

us that W + M  must be equal to 7Zp or, in other words, 0n(Vp/I) =  <t>(W) =  K . □

What Proposition 4 is telling us is that for each n £ {1 , . . . ,  i—  1}, if c € K  and v £ 

Vp then there exists some v' € Vp with (cr)„ =  t>(, where cv =  (cv)o +  . .. + (ct))r_i<r-1 

modulo I. Unfortunately, this is not quite enough to show that Vp/1 is a A'-linear 

vector space since what we need to show is that given such a c and v then there exists 

such a v' that works for all n £ {1 , . . . ,  r — 1}. It would seem that we need some 

further consequence of the fact that Vp =  P(7Zp, Vp) * TZp to finish off, but it is not 

clear what this might be. So let us just sum up what we have proved in this chapter 

in a theorem.

Theorem  5 Let 7Z be the coordinate ring of a smooth, two dimensional variety and 

let V be a primary decomposible subspace of TZ. Then V =  V(7Z, V )*TZ  and ~D(TZ, V ) 

is a projective right ideal ofD (TZ).
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Conversely, let I  be a dense projective right ideal o f VCR.) with the property that 

.SX^) is noetherian where V =  I  * 1Z. Then 1 =  V(TZ, V ) and V =  fl/iiPai Vp where 

the intersection runs over all the height one prime ideals of S. Also, Tip is local for 

every height one prime ideal of S and Vp +  M  =  7Zp where M  is the maximal ideal 

of TZp and P  is any height one prime of S.

See the final chapter for a discussion of the problems with this theorem and some 

indications of how it could possibly be generalised.
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Chapter 3

Differential Operators On Tensor 

Products

In this chapter we show that the results of Section 1.4 are not restricted to surfaces. 

That is, we produce a large class of examples of varieties of any dimension whose dif­

ferential operator rings are Morita equivalent to the differential operator rings on their 

normalisations. The method of attack is to prove that differential operators behave 

well with respect to tensor products and use the properties of differential operators on 

curves and surfaces to build up differential operators on higher dimensional varieties 

in a natural way. This answers a question put forward in [Chamarie & Stafford] which 

asks if there exist varieties of high dimension whose differential operators rings are 

simple.

The technical result that we need is presented in Section One. That is, it is proved 

that differential operators commute with tensor products. Although this is a natural 

result and not too hard to prove, it surprisingly has not appeared in the literature
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except in a few special case (e.g. [Smith]). Section Two utilises the results of Section 

One to show that it is possible to build up examples of varieties with well-behaved 

differential operator by taking the tensor products of the coordinate rings of curves.

3.1 Tensor Products

Throughout this section X  and y  will be varieties with coordinate rings 71 and S 

respectively. We will denote the fields of fractions of 71 and S  by Q(7Z) and Q (S ) 

respectively. We may define multiplication on the set 7Z®kS  by (r ® s )(r ' ® s') =  

rr '®  ss' for r, r ' 6 71 and s,s' € S. Then the ring 71® kS  is the coordinate ring of the 

variety X  x ky . Similarly, we may make the set T>(7Z)®V(S) into a ring. Our aim is 

to show that P(7Z ® kS ) =£ T>(7Z)®kT>(S). From now on, we shall drop the subscript 

k since we shall not be tensoring over anything else.

Notice that we have inclusions:

V(Q (7Z)) w  V (Q (7 Z ))® V (Q (S )) and V (Q (S ) )  ^  V (Q (7 l) )® V (Q (S ))

given by 0 0 ® 1 and <j> >-► 1 ® <j>

for 0 € T>(Q(7l)) and <j> € V (Q (S )). The tensoring together of elements 0 and <j> from 

V (Q (7 i) and V (Q (S )) should then be thought of as the multiplication of 0 ® 1 and

1 ® <f>.

By localising at the multplicatively closed set { r  ® s 6 72-®<5|r 0 and s ^  0},

we may identify V(7Z® S) with a subset of V (Q (7 t)® Q (S )). Also, since V(7Z) C 

V(Q (7Z)) and V (S )  C V (Q (S )),  V (7 Z )® V (S ) may be thought of as lying inside 

V (Q (7Z))® T>(Q (S )). The following lemma shows that T)(Q (7 l))®7D (Q (S )) is the

79



same as ’D (Q ('R .)® Q (S )) so that everything we do can be thought of as happening 

inside P (g ( f t )® Q (5 ) ) .

Lem m a 1 Let H and S be as above. Then T?(Q ('R )^ 'D (Q (S )) 3  T>(Q (H )® Q (S )).

Proo f: Let asj,... ,x m and yi , . . . ,  j/„ be transcendence bases for Q(R.) and Q (S ) over 

k. Then by Corollary 1.1.14, V (Q (K ))  =  Q (K )[d/dxu .. . ,  d/dxm] and V (Q (S )) =  

Q(S)[d/dyi, . . . ,  d/dyn]. Given a 0 € T>(Q(TZ)) we may extend 9 to all of QCR.)®Q{S) 

by 0(r ® s) — 9(r) ® s, and similarly for elements of T>(Q(S)). Thus:

V (Q (K ))® V (Q (S ))  =  Q (K )® Q (S )[d / d xu • • •, d/dxm, 0 / 0 y „ d/dyn\.

Now, Q (R )® Q (S ) is not a field, but its field of fractions Q (Q (7Z)® Q (S )) is a 

field with transcendence basis X\,. . . ,  xm, y\,. . . ,  yn. So

1 * 9 ( « ( * ) ® W » )  =  « « ? < * > ® e ( S » l £ ....... .......¿ 1 -

The derivations d/dx{ and d/dyj restrict to derivations on Q (H )(& Q (S ) and so

< H n x s w s ) i ± ....... ± ....... ¿ 1 £  V (Q m ® Q (S ) ) .

Conversely, any differential operator on (?(7£)®Q(S) is a sum of products of the 

d/dxi,d/dyj's with coefficients in Q(Q(TZ.)®Q{S)). But it is easy to see that these 

coefficients must actually lie in Q(7Z)<g)Q(S).

Hence Z>(Q(7Z)®Q(S)) =  Q(7Z)®Q(S)[d/dxi, d/dyj] and the result holds. □

Next we prove the result for
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Proposition 2 Let 72 and S be as above. Then:

V (R ® Q (S ) )  =  Z>(72)®P(Q(5)).

P roof: By Lemma 1, both V (Q (R ))  and V (Q (S ))  lie inside 23(Q(72)®Q(5)) and 

elements of V (Q (S )) and VCR.) map 72 into 72. Therefore 23(72.) and V (Q (S )) both 

lie in X>(72®<5(5)). Hence 23(72)®23(Q(5)), which is the set of products of elements 

from 23(72) and 23(Q (S )), lies inside 23(72®<5(«S)).

So it remains to prove the reverse inclusion. Choose a basis {e3\j € f l }  for Q (S ) 

as a vector space over k. By Corollary 1.1.14, if j/i,. . . ,  yn is a transcendence basis 

for Q (S ) over k, every element <j> of V (Q (S ))  can be written as:

=  Z  H ciJeJ
icN " j e B

d_
dy

i

where i is an n-tuple of positive integers (* i , ... , in), each cjj e k (with only finitely 

many non-zero), and

d_
dy

d *' d in
dy\ dyn

By localising the non-zero elements of 72, we have the following inclusion:

X>(72®Q(S)) C 23(Q(72)<g>Q(S)).

Let A  € 23(720(5(5)) C V (Q (R )® Q (S )) .  Then by Lemma 1 we may write A  as 

follows:

A  =  E  E  9iJeJ
ieN " ie f i

d i

dy

where each 9\j belongs to V (Q (R ) )  and only finitely many are non-zero. Lexico­

graphically order N n and choose k 6 N n to be maximal with the property that
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is non-zero for some j .  Let 6 equal 0k,jej5^k' Since y\ € Q (S ), we have that

[A,j/i] lies in T>(Tl®Q (S)). But for any natural number r, — V i =  r ^n ’‘ *’

so [¿, j/]] =  A.'i ¿2j Ok,jej ^ k > where k' is the same as k apart from the the fact that 

k\ =  k\ — 1. Repeating this process a further k\ times, and also repeating for each 

ki, we arrive at the following:

[• • • [[A ,»,], Vi] • • • 3/n] =  E  Okjej € V(K®Q(S ) ) ,
ieB

where N  is some positive natural number. It is now easy to see that each 0y3 actually 

lies inside T>(7Z). Thus for each j , Oy ê̂  € 'D (7 i)® 'D (Q (S )), and the operator A  — 

£ j  Ok, e3 still lies in T> (lt® Q (S )). This resulting differential operator now has degree 

strictly less than A  in [^ j ,  so by induction lies in 'D (1Z )® V (Q (S )). Hence A  € 

V (T l)® V {Q (S ))  also. □

We can now proceed with the general case. The proof proceeds in essentially the 

same way as in Proposition 2, but a little extra work is needed at several of the steps.

Theorem  3 Let 1Z and S be as above, then: T>(TZ®S) =  P(7£)®P(<S).

Proof: Fix bases € A ) and {e^,; 6 B }  of Q(TZ) and Q (S ) as vector spaces

over k respectively. By Corollary 1.1.14, we can choose elements X \ ,...,x m of 7Z so 

thzt V (Q (K ))  =  Similarly, we can choose elements y\,. . . ,  yn in

S  so that T>(Q(S)) =  Q(<S)[g~, • • •, Then as before i will denote an n-tuple of 

positive integers and we will use i' to denote an m-tuple of positive integers so that 

[g j] has an analogous meaning to that which [g^]* had in Proposition 2.
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Let A  6 VCR-QS). Since P(7Z ® S ) Ç V(Q ('R ,)<^Q (S)), we can write A  thus:

A  =  E  E  ° i j ei
l e N "  i

d
dy

where each j  € V (Q (7 i)). Also, X>(7£®<S) Ç T>CR.®Q(S)) and by Proposition 2, 

V C R ® Q (S )) =  T>CR.)®T>(Q(S)). From this it can be seen that the 0| j ’s actually

belong to T>(TZ).

This is precisely the conclusion we arrived at in the Proposition 2, but this time 

we cannot just subtract a OijSj [ ^ ]  from A  as the e} [^J part might not lie in 

T>(S). What we shall do is prove the existence of a differential operator A ' in 'D (S) 

which, when written as a sum as follows:

with each Ajj € k, has Ajj equal to zero if and only if the corresponding 0\ j is zero. 

Then we may complete the proof by subtracting (l/Aa,i,)0a,i,A' from A  for some pair 

(a, b) with 0a,t non-zero. This will give us a differential operator in 7?(7£®<S) with 

fewer terms than A  and, after repeating this process a finite number of times, we will 

eventually arrive at a situation where, by subtracting elements of V(1Z)®T>(S) from 

A , we get zero. Hence A  must actually have been inside P(7£)®2?(S) to start with, 

and the proof will be finished.

Now, as A  lies in V (Q (T l)® S )  which equals T> (Q ('R ))® V (S ) by Proposition 2, 

we may write it as follows:

A  =  5E ® Pk
k= 1

for ak e V (Q (K ))  and /?* e V (S ).

83



We must now expand each ftk out as follows:

fa =  12 12 *1 J,keii g N "  i
d_

dy
for some € k. 

Substituting this into the formula for A  we have that:

& =  1212  ® e>
i j.*

d_
dy

i l

Now, the following relation must hold:

(* ) E  ,>,*<** =  Olj for each i , j .  
k= 1

Choose a pair (a, b) such that 0a,(, is non-zero and expand 0a,i> out in terms of the

[ ii' r i i#
g jl ’s. Pick a term ftdj> ^  in this expansion with p non-zero and let 

r i i'
Pk be the coefficient of dr  SE in each a*. Define A ' by:

a '  =  (i/n )1212fxi'xij,i'*j
1 >1*

nid_

dy.

Then A ' actually lies in T>(S) since:

A ' =  (l/ p ) 12 Hk 12 Ki,k*i 
k U

d_
dy

By the relation (★ ), A ' has no ‘ (i, j ) ’ term if 9\ j equals zero and, also by (★ ), the

‘ (a, by term is 1. This completes the proof. □

We may easily extend Theorem 3 to cover the cases of when 7t and S  are locali­

sations of coordinate rings of varieties.

C orollary 4 Let ~K and S be as in Theorem 3, and let c and d be multiplicatively 

closed sets in 7Z and S  respectively. Then V(7Zc lS>Sd) =  'D(7?.c)0'D(<Sd).
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Proof: If we consider H  and S  as subsets of 7Z&)S, we have that T>(HC®<S,j) =  

P(7^®«S)c4 and P(7Jc)®P(«S<i) =  (P (7 £ )® P (S ))Cid. But by Theorem 3, we know 

that T?(H ® S)Cld =  (X>(7̂ .)<2)X>(«S))c,cl- Putting these facts together yields that

T>(HC ® 5 d) =  (P (7 ? )® P (5 ))c,d

as required. □

Also, Theorem 3 and Corollary 4 may be extended to cover the case of when we 

have more than two varieties under consideration.

C orollary  5 Let Hi f o r i  =  l , . . . ,n  be localisations of the coordinate rings of vari­

eties X i. Then P (® ”=1 H i) =  ®"= lV (H ,).

Proof: Use induction. □

3.2 Differential Operator Rings On Products Of 

Varieties

In this section we use the conclusion of Theorem 1.3 to build up varieties whose 

differential operator rings are Morita equivalent to the differential operator rings on 

their normalisations, thus extending the results of Sections 1.3 and 1.4. Recall that 

for a curve X , every right ideal of T>(X) is projective, and if the normalisation map 

?r : X  ► X  is injective then V (X )  =  Endv^ V ( X , X )  so that T>(X) and V (X )  are 

Morita equivalent. Also, if X  is a higher dimensional Si variety with smooth, injective
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normalisation then Lemma 1.4.6 shows that T>(,X) =  Endv .g/D (X , X )  from the one 

dimensional case and it is the projectivity of “D (X ,X )  that is in question. We prove 

that that if X  is a product of lower dimensional varieties then T>(X ,X ) splits up in 

a natural way and we are able to use this fact to show that T> (X ,X ) is projective.

Throughout this section, if 7Z is the coordinate ring of a variety then we will 

denote the field of fractions of TZ by Q(1Z). As usual, 7Z will be the normalisation 

(i.e. integral closure) of TZ in Q(TZ). Then if TZ and S  are the coordinate rings of two 

varieties, it is easy to check that Q(TZ®S) =  Q (TZ )® Q (S ) and (7£0«S) =  7Z®S.

Recall that by Theorem 1.3, T7(TZ®S) =  T>(TZ)®T>(S). We begin by proving a 

similar result to Theorem 1.3. As the proof is so similar to that of Theorem 1.3, we 

shall leave the reader to check some of the details.

Proposition 1 Suppose that 71 and S are the coordinate rings of two varieties and 

let T>(TZ,TZ) and 1?(<S,«S) be the two modules of differential operators between TZ and 

TZ, and S and S respectively. Then V (TZ®S,TZ®S) and T>(TZ,TZ)®D(S,S) are iso­

morphic as 77(7Z®S)-modules.

Proof: As mentioned above, the proof of this is almost exactly the same as the proof 

of Theorem 3. One starts by proving that:

V (TZ® Q (S ),TZ® Q (S )) =  V (7Z,7Z)® V (Q (S )).

Then, given an element 6 of V(1Z®S, 7Z® S ) C 77(1Z®Q(S), 7Z® Q (S )), we may write 

it as a sum of products of elements taken from 77(7Z, 1Z) and 77(Q(S)). Then one may 

show that the elements taken from 77(Q(S)) actually add up to lie inside T>(S,S). 

Hence 6 lies inside X>(7Z,7Z)®T>(S,S). □
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Of course, an almost trivial induction argument extends Proposition 1 to the 

general case as in Corollary 1.5.

Corollary 2 Suppose that 71, fo r  i =  l , . . . ,n  are the coordinate rings of varieties 

,V,. Then:

as -modules.

Proof: Clear. □

Now that we have shown how to split up 2?(7£0<S, 7?0<S), we need to be able to 

use the properties of P (71,71) and T )(S ,S ) in order to study 7?(71®S, 7£0<S).

Lem m a 3 If  7Z, are coordinate rings of varieties such that T>(7Z,, TZ,) are projective 

7?(7ti)-modules f o r i  =  l , . . . ,n ,  then X>(0"=17 {̂, is a projective X>(0"_,7?.1)-

rnodule.

Proof: We prove the case of when n =  2 and notice that induction proves the general 

case. Write 71 and S  for 7Z\ and 7li respectively. By Theorem 1.3, V (7 l® S , 71®S) 

is also a right P(7^)0I>(5)-module. Choose a right I>(7£)-module P  and a right 

P(<S)-module Q such that:

V (n ,  71) 0  P  =  T>(7Z)r and V (S , S ) ©  Q =  V (S ) ‘
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for some integers r and a € N , where T>( 1Z)r means the free P(7£)-module of rank r. 

Using Proposition 1 we find that:

P (7 l® 5 ,7 l® 5 ) ©  P ® P (5 ,5 )

Also : Z>(7e)r® P (5 ,5 )© P (7 £ )r®Q

V (H , K )® V (S ,S )  ©  P ® D (5 ,5 ) 

(V (K ,T l )@ P )® V (S ,S )

v (n y ® v ( s , s ) .

ÎW < 2 > (P (5 ,5 )0 Q )

P ( f t ) r0D (5 )* .

It is easy to see that X>(7?.)r® P (5 )*  is a free P(7£)®Z>(5)-module of rank rs. Hence

P(7£®5,7£®5) is a direct summand of a free module and is projective. □

In particular, Lemma 3 tells us that if the 72̂ ’s are either curves or S2 surfaces, 

with smooth, injective normalisations then we may use the results of Chapter One 

to get that P (0 " =17 î, ®"_,7?.i) is a projective P (® "=,7?-i)-module. It is now easy to 

finish the argument off to find that P (0 " =i^ i )  >s Morita equivalent to P (® "=17£t).

Theorem  4 Let 7?., fo r i =  be the coordinate rings of a set of S2 varieties

with smooth, injective normalisations and suppose that each 'R.,) is a projective

T>(fR.i)-module. Then P (® "=17£,) is a simple noetherian ring with h'rull and global 

dimensions equal to the sum of the dimensions of the A",- ’s.

Proof: Let 5  =  ®"_,7?.,. Then 5  =  ®"=17?.I and by Lemma 3, V (S ,S )  is a projective 

P(5)-module. Since each 7£, is 52, by Lemma 1.4.6, Z>(7£,) =  Endv jP(7^,,7^i) for 

each i. Therefore, since T>(TZ,, l i , )  is projective, P(7?,) is Morita equivalent to P(7£,) 

for every i. Now, by Theorem 1.3, P (5 ) =  0 "=1P(72.j) and so, being a tensor product
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of simple rings, must itself be simple. Therefore it is a maximal order and must be 

equal to S). Finally, as V (S ) is a simple ring, V (S , S )  is a generator and

hence a progenerator so that T>(S) is Morita equivalent to T>(S). All the assertions 

of the statement then follow from the Morita invariance of the required properties.□

Theorem 4 equips us with a large class of varieties whose differential operator rings 

are Morita equivalent to the differential operator rings on their normalisations. In 

fact, it is difficult to find S2 varieties with smooth, injective normalisations which are 

not tensor products of lower dimensional varieties. It is not true however that every 

variety with these properties is a product, and this question is treated in the next 

chapter where it is shown how to write down examples of Sj varieties with smooth, 

injective normalisations which are not products of lower dimensional varieties. By 

chance, the method of construction of these varieties also gives a handhold on the 

differential operator rings and we are able to give examples of varieties whose differ­

ential operator rings are well-behaved and varieties whose differential operator rings 

are not.
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Chapter 4

Higher Dimensional Varieties

In this chapter we produce a class of S2 varieties with smooth, injective normalisation 

which includes some varieties which are not products of lower dimensional varieties. 

Therefore the differential operator rings on these varieties are not subject to the re­

sults proved in the previous chapter. We are however able to prove by a different 

method that the differential operator rings on these varieties are Morita equivalent 

to the rings of differential operators on their normalisations, but only when we insist 

on imposing a certain restriction on the variety in question. Crucially, when this 

restriction is dropped the argument fails and we are able to present an example of a 

three dimensional, S2 variety with smooth, injective normalisation whose differential 

operator ring is not Morita equivalent to the differential operator ring on the nor­

malisation. This is a counter-example to the conjectures posed in the papers [Hart 

& Smith] and [Chamarie & Stafford], although to be fair, [Chamarie & Stafford] sug­

gests that extra conditions might have to be imposed on the variety over and above 

just the S2 condition.
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In Section One we introduce the class of varieties which is of interest to us and in 

Section Two we prove that the rings of differential operators on these varieties behave 

as expected when we insist on certain restrictions. That is, they are Morita equivalent 

to the differential operator rings on the normalisations of the varieties. We then give 

an example to show that when these restrictions are dropped the differential operator 

rings behave badly.

4.1 Constructing Varieties

The aim of this section is to find a method of building S2 varieties with smooth, 

injective normalisation whilst at the same being able to detect if the variety is a 

product of lower dimensional varieties or not. The way we do this is to focus our 

attention on the ‘singular locus’ of the variety in question. It turns out that if a 

variety is a product then its singular locus must take a particular form. So what we 

do is to find a way of building varieties with particular singular loci and then those 

varieties whose singular loci are not of the special form cannot be products.

Definition 1 Let n : X  —» X  be the normalisation map of a variety X . Define the 

singular locus of X  in X  to be the set of points x € X  such that ir(x) is a singular 

point of X .

We shall usually just write ‘ the singular locus’ in place of the ‘the singular locus 

of X  in X\

Now, let X  be an S2 variety with smooth, injective normalisation and let 1Z be 

its coordinate ring. We need to impose certain conditions on X  in order to be able
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to detect if X  is a product of lower dimensional varieties or not. What we do is 

to insist that the singular locus of X  is precisely determined by a height one prime 

ideal of 72, and also that the coordinate ring of X  only depends on what happens ‘ in 

codimension one’ . That is, if we know the structure of the singular locus, we know 

everything about X.  It turns out that the conditions we impose will also allow us to 

calculate the properties of the differential operator ring on X .

In more detail, suppose that the singular locus of X  is precisely the set of points 

in X  defined by a height one prime ideal P  of 71 and that ir : X  —» X  has ramification 

index two along the singular locus. In other words, the singular locus T is a prime 

divisor of X ,  and X  is ‘pinched’ along I\ This is equivalent to P 2 being the conductor 

/ of 72. in 72. Moreover, suppose that (P f\7 l)  =  P 2. This ensures that 72 equals P 2 

plus the coordinate ring of a codimension one subvariety of X.  The ring 72p is a 

regular local ring with maximal ideal M  say, and Tip/M2 is a complete local ring. 

Therefore, by [Matsumura A\ Theorem 60], Tip/M 2 contains a copy of its own residue 

field, K . Also, the fact that Tip is a regular local ring of Krull dimension one implies 

that M  is a principal ideal with generator t € Tip. Therefore we may write Tlp/M2 

as A'[<]/(<2).

Write D for the image of the singular locus T in X  under k . Intuitively we may 

think of 7T as mapping two copies of T onto D. Let C  =  2r be the variety with the same 

underlying topological space as T but with coordinate ring O c =  72/P2 C K[t\/(t2). 

Then C  is a non-reduced scheme and the corresponding reduced variety is I\ As 

mentioned above, the behaviour of X  is entirely determined by the behaviour of D. 

Write Op and O d for the coordinate rings of T and D respectively. The map n
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restricted to T induces an inclusion of Op into Oc  and it is this inclusion which holds 

all of the information about what is going on.

Example: Let X  be the variety with coordinate ring 1Z =  k[x, y2, y3] so that X  is the 

product of a cusp with a line. Then 1Z =  fc[x, y] and, with the above notation, T is 

the subset of X  corresponding to the prime ideal P  =  (y ) of TZ. T has coordinate ring 

Or =  TZ/P =  Ar[x,y]/(y) =t fc[x] and hence must be isomorphic to the line. On the 

other hand, C  =  2r has coordinate ring O c  =  TZ/P2 =  A:[x,y]/(y2) =  fc[*][y]/(y2)- 

Thus C  is a double line.

We shall show that there are at least two ways of constructing varieties of the 

type described above, and both methods rely on using differential operators. One 

would hope therefore that the differential operator rings on such varieties might be 

well-behaved and indeed, this is what we prove in the next section. The next result 

locates the position of Op  inside O c  by means of a derivation on A'.

Proposition 2 Let X  be as described before the above example. Then there exists a 

(rational) derivation 6 from O c =  TZ/P2 to K  such that Op  =  Ker 6.

Proof: We define 6 as follows: let c € Oc  and write c =  k +  k't € A'[<]/(f2). Set S to 

be the set 7^\(P(T^) s° that K  =  7Zs/PTZs- Since X  has injective normalisation, 

the residue field of TZs is also K  or in other words, TZs +  PIZs =  TZs■ Regarding S as 

a subset of O p , we may rewrite this as (O p)s  +  tK  =  A'[<]/(<2). Therefore we may 

find an element of (Op )s  of the form k +  xt for some x € K .
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Wo have a natural projection of On-modules from Oc  to Oc/Op  and we may 

localise the On-module O c t  Op  at S to get (Oc/Op)s- So we have a map from Oc  

into (Oc/Op)s  given b yc i-t c + (O p )s -  By the previous paragraph, if c =  k + k't, we 

can find an element k +  xt € (Op)s  so that c is congruent to (k1 — x)t modulo (Op)s- 

Set 6(c) =  k' — x € K. If there is another element of (O p )s  of the form k +  x't then 

(■r — x')t must lie in (O p )s -  But Op  fj Kt  =  0 and so x — x' must equal 0. Hence 6 

is well-defined.

Let d =  1 +  I 't € K[t\/(t2) and suppose that / +  yt 6 (O p )s  so that 6(d) =  /' — y.

Then cd =  kl +  (lk‘ +  kl')t. But (k +  x t ) ( l  +  yt) =  kl +  (ky +  lx)t € (O p)s  and

6(cd) must be l(k' -  x ) +  k(l' -  y). But 6(c)d +  6(d)c =  (k1 -  x ) l  +  (/' -  y)jfc. Hence

6(cd) =  6(c)d +  6(d)c and 6 is a derivation. □

Corollary 3 I f  X  is as above then there exists a derivation A  from 71 to K  such 

that TZ =  h e r  A .

P roo f: Let 6 be as in Proposition 2 and let p be the natural projection from TZ to 

1Z/P*. Set A  to be the compostion of maps Sop. Let p denote Pf]TZ. Then by the 

assumption on X ,  we have that p =  P 2. Therefore TZ =  P 2 +  Op. But P 2 =  Ker p 

and Op  =  Ker 6. Hence TZ =  Ker A. □

Corollary 3 will be very important in the next section, but it is not clear which 

derivations from TZ to K  give rise to a noetherian subring of TZ. The solution is to 

find a way of determining more precisely the structure of A. So let us examine in 

more detail how Op  lies inside Oc-

94



The map n, when restricted to T, may be thought of as taking two copies of T 

(i.e. C )  into D. In other words, functions in the coordinate ring O d of D give rise 

to functions in O c . Therefore, the induced ring homomorphism x* : A' «—» K[t\/ ( t2) 

takes an element / € A' to f  +  t.6( f )  € A'[<]/(<*), where 6 ( f )  € A'. Now, maps of this 

type are characterised by fc-linear derivations from A' into itself. To see this, let / 

and g be elements of K.  Then as 7r* is a ring homomorphism, it" ( f .g)  =  n‘ ( f ) n * ( g ) -  

Hence

fg  +  t.S(fg) =  ( f  +  t .6 (f) ) . (g  +  t.6(g)) =  fg  +  t.(/6(g) +  g6 (f ) )

since t2 =  0 in A'[i]/(<2). Therefore, 6 (fg ) =  f6 (g ) +  g6 (f )  and 6 is a fc-linear 

derivation on A'. Conversely, any fc-linear derivation on A' gives rise to such a ring 

homomorphism.

We may now locate O d inside A'. An element / € A' lies inside Oo  if the induced 

function on C  is regular on both of the copies of T. That is, / and 6(f)  must be 

regular when considered as functions on T. But / itself is automatically regular, 

so O d is isomorphic to a subset of {/  € Or\6(f)  € C?r}- In fact, the S2 condition 

actually forces O d to be isomorphic to the whole of this set. The reason for this 

is that if an element of {/  € Or\6(f)  6 O r} is left out of O d then this element 

creates an obstruction to finding a regular sequence of length two in Od - This is best 

demonstrated by an example.

Example: Let H  be the ring k[x2, a;3] +  y2k[x, j/]. This ring comes from the inclusion 

of O d into Oc  via the associated derivation 6 =  0. Here, the set {/  € Or|6(/) € Op}
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is actually all of fc[x] C A' =  le(x). So by setting O d =  lfc[a:J,x3] as we have done, we 

are missing out the element x. Now, if we try to make a regular sequence of length 

two in 'll, such as {y2,x 2}, we run into trouble. This is because the ideal generated 

by y2 in H  does not contain the element xy2. But it does contain x2.xy2 =  x3y2, so 

that x2 is a zero divisor in 'H/y2'1l. The same problem arises whichever two elements 

we choose for a sequence. So this ring 'll is not S2.

In general, suppose that 'll is S2 and let q  be a height two prime ideal of 'll 

containing p =  P  f| Tl. Since Hq is regular local, we may choose a generator, t say, for 

the ideal P I?q. Suppose that Od ^  € Or\6(f)  € O r}  and let q  be the image of q  in

Op  under the projection of Tl into H / P 2. Set S  =  {<7+ <£(</)|<7,6(<7) € O r }  Q K[t\/t2. 

Then .S'q is a finitely generated (O d )<j-tnodule and there exists some integer r € N  

with the property that Qr C (O d )^, where Q  is the unique maximal ideal of Sq. 

Therefore we can find an element f  in Q with the properties that (/ +  t6 ( f ) )  £ (O d )q 

and (/ +  t6 ( f ) )Q  C (C?D)q- Hence t2( f  +  6 ( f ) )  lies inside Tlq, but does not lie in 

t2Hq. But given any other element g € q7£q , g-t2( f  +  t6 ( f ) )  does lie inside t2Tlq 

so that every element of q7£q is a zero divisor in Hq/PHq. Thus we can find no 

sequence of the form <2, g which is a regular sequence in Hq. But this contradicts the 

fact that 'll is S2 and so O d must equal {/  € Or\6(f)  6 C*r}-

Conversely, if O d equals {/  € Or\6(f)  € Or} ,  then H  must be S2. To see this, let 

f  +  t6(f)  be in Hq and suppose that there exists some b +  ct in Tlq with the properties 

that t2(b +  ct) <£ t2Hq but ( f  +  t6 ( f ) ) t2(b + d )  e t2Hq. Then ( f  +  t6(f) ) (b +  ct) € Tlq
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which implies that fb  +  ( f c +  b6(f))t € 72q. Therefore we must have that:

fb  +  ( f c  +  b6(f))t =  fb  +  6(fb)t =  fb  +  ( f6 (b ) +  b6(f))t.

Hence c =  6(b) and b +  ct =  6 +  t6(b). But O d consists of all the elements of this 

type, and so 6 +  t6(b) € TZ and t2(b +  ct) € <272q, a contradiction. Thus the sequence 

{<2, / +  t6 (f )}  is a regular sequence in 72q. Hence TZ must be S2-

It is not true however that if X  is of dimension three or greater then an arbitrary 

choice of 6 yields a noetherian subring of TZ. This is because if one starts with a ring 

TZ and constructs a second ring 1Z by the above method then 1Z might not be finitely 

generated over TZ. That is, 1Z might not be a finitely generated 72-module. So in 

dimensions three or greater, we are restricted in our choice of 6.

Example: Let TZ =  A:[x,j/,«], let P  =  (z ) and set 6 : K  —► K  to be 6 =  x~yd/dy, 

where K  =  k(x,y). Then the set 5 =  {/  £ A:[x, j/]|i(/) 6 fc[x,j/]} is the following:

5 =  &[x] +  xyk[x,y].

Thus TZ =  k[x\ -|- xyk[x, y\ +  z2k[x, y, z]. It is easy to see that fc[x, y, z] is not finitely 

generated over TZ. For example, whichever set of generators one tries, there will be 

some yn which does not lie in the module generated by this set.

On the other hand, if X  is two dimensional and T is smooth then any choice of 

6 will do. To see this, let n be a maximal ideal of Or and let x € n generate the 

local ring (Or)n- Then every derivation on K  has the form 6 =  uxmd/dx, for some
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unit u in (CV)n ant  ̂some (possibly negative) integer rn. It is easy to see that the set 

S *  {/  € Or\8(f) € O r )  contains the ideal of Or generated by xlmi+*. Therefore, 

since O r  is a one dimensional affine fr-algebra, Or/S must be a finite dimensional 

vector space over k and so the Artin-Tate Lemma (Lemma 2.1.5) shows that S =t Op 

is also affine.

Let us summarise what we have proved so far in the following result:

Lem m a 4  Let X  be an Sj variety with smooth, injective normalisation and with 

the properties that the conductor of 1Z into 1Z is precisely P 2 for some height one 

prime ideal P  of TZ, and P  f)7Z =  P 2. I f  T is smooth and if  D denotes the image 

of T in X  then there exists a derivation 6 on the function field K  of D  such that 

On — {/  € Or\S(f) € O r}-

Conversely, if X  is a smooth surface and P  gives rise to a smooth subvariety then 

any 8 gives rise to such a variety in this way.

Proof: See above. □

Examples: (*) Set 1Z =  A:[x,y] and let P  be the prime ideal of 1Z generated by y. 

Let A =  k(x) and define 6 : K  —» K  by 8 =  d/dx. Then in this case we find that 

Op — A:[x], and 7Z =  P 2 +  {/  +  yb(f)\f € A:[x]} =  fc[x +  y, y2, y3]. It is easy to see that 

the map x i—► x — y is a A:-algebra isomorphism of A:[x,y] which maps fc[x +  y,y2,y3) 

onto k[x,y2,y3]. Therefore X  is isomorphic to the product of a cusp with a line.

(it) The image D of the singular locus T of X  need not be non-singular, even if T 

itself is regular. Indeed, as in the previous example, take 1Z =  !b[x,y] and P  =  (y),
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but this time set 6 =  x~'i)/dx. Then Op £  Ar[ara, ar3] so that Op is isomorphic to the 

coordinate ring of a cusp. Therefore D  itself is singular. In this case H  is the set

H  =  * [xJ +  x V  x3 +  x3y] +  y2k[x, y].

It is this example which we shall show is not a product of lower dimensional varieties.

In order to decide whether a variety X  is a product of varieties of smaller dimension 

or not, we must look at the image D  of the singular locus T in X . Since we want 

to show that Example (it ) above is not a product, we need only consider whether 

such surfaces are products of two curves or not. The argument that we give is easily 

seen to extend to the general case. So let X  be an S2 surface with smooth, injective 

normalisation X  and let D  be the image of the singular locus T of X  in X . Suppose 

that X  is the product of two curves C\ and C2. Then X  must be the product of the 

curves C\ and Ci-

Now, suppose that C\ is singular at a point c € C\. Then X  must be singular all 

along a copy of in X . This is because X  is singular along all points of the form 

c x d for all d € Ct . Next suppose that C% is also singular at a point d £ Cj. Then X  

is also singular along a copy of C\ in X .  Therefore, if C  and D  are the unique points 

of Cj and Ci lying over c and d respectively, then T contains all points of the form 

C  x C2 and Ci x D. Hence T is not irreducible.

Example: If TZ =  k[x2,x 3,y2,y3] then X  is the product of two cusps, and T is 

the union of the two axes in k2.
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Now, in our Example (*») above, T is irreducible. Therefore we need only consider 

the case of when one of the curves is singular. So suppose that C\ is singular at c 6 C\ 

and that Ct is non-singular. Now we are in the situation that D contains a copy of 

C¡. But in the case of Example (it), D  is a cusp and this forces Ci to be a cusp also. 

But this is absurd since Ci is smooth. Therefore Example (it) cannot be a product 

of curves.

Of course, Example (it) is just a surface and the results of Section 1.4 apply to 

give that 'P (X )  is simple and noetherian in this case. But we may easily write down 

an analogous example for when X  is three or more dimensional with singular locus 

being a prime divisor of X  such that the image of the singular locus in X  is itself 

singular. The arguments given above then show that X  cannot be a product of lower 

dimensional varieties. So the question remains: is T>(X) well-behaved for such a 

variety? This is the question that is tackled in the next section where some positive 

results are obtained (and also the important negative one!).

4.2 The Differential Operators

In this section we begin the study the rings of differential operators on the type of 

varieties constructed in Section One. The method of attack that we use has its roots 

based on an argument that appears in [Hart] and depends on a consideration of which 

derivations A  as in Corollary 1.3 give rise to the sort of varieties that we are looking 

at. We obtain a criterion for the module 'D(TZ, TVj to be projective and use this to
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determine conditions on the derivation A  which turn the balance one way or the 

other.

Throughout this section, we retain the notation that was used in Section One. 

That is, X  is an Sj variety with smooth, injective normalisation and singular locus 

T defined by a prime ideal of TZ. For this section we must insist that T is smooth as 

this will allow us to explicitly write down differential operators. The conductor of TZ 

into TZ is precisely \i =  P  f\TZ =  P 2 and K  =  TZp/PTZp. Also, for the rest of this 

section, we may as well assume that 1Z and 7Z have been localised at a maximal ideal 

of 7Z containing P 2. Then P  is automatically a principal ideal with generator t say. 

Write M  for the maximal ideal of 1Z.

By Corollary 1.3, there exists a derivation A  from 7Z to A' such that 1Z =  Ker A. 

It is this derivation A  which will give us a hold on the differential operator ring on 1Z. 

But first of all, we need to alter A  slightly so that we only need to consider derivations 

between finitely generated 7£-modules.

Lem m a 1 Given 7Z and A  as above, there exists a derivation A  from 7Z into 7Z/P2 

with 1Z =  K er  A .

Proo f: Composing with the projection of 1Z onto TZ/P2, we may assume that A  

is a derivation from O c =  TZ/ P 2 into K. Let S be the set 7Z\P and regard S as 

a subset of both Oc  and Or. Then A  lies in the module of differential operators 

T>((Oc)s, (C?r)s). Therefore, by Proposition 1.2.7, there exists an s 6 S such that 

.sA € T>(Oc,Or). Set A (/ ) =  t .sA (p (f ) )  € Oc  for each / 6 TZ, where p is the 

projection of TZ onto Oc. Clearly TZ =  Ker A  as required. □
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We now have that 3  lies in V(11, O c )  which is a right I>(7l)-module. We therefore 

have a homomorphism of X>(7£)-modules from V (R )  into V (R ,O c )  given by multi­

plication on the left by 3 ,  and the right ideal V(1Z,R) of V (R )  plays a particularly 

important rôle.

Lem m a 2 V ( 11,11) is the kernel of the homomorphism of VCR,) into V (R ,O c ) .  In 

other words, V (R , R )  =  {d € V(R )\Ad  = 0} =  Annv^CK.

Proo f: Since R  Ç KerA, we have that ( A .V (R ,R ) )  * Ç 5  * K  =  0. Hence 

V ( R , R )  Ç Ann(A). Conversely, if d € V (R )  is such that A.c? =  0 then d * R  C 

K e r A  =  R. Thus d € V (R ,  R ) .  □

Lemma 2 gives us the following exact sequence of 2?(7£)-modules:

0 — » V (R ,  R )  — ♦ V (R )  3 .V (R )  — ♦ 0.

Our aim therefore is to investigate A .V (R ) .  If we can show that A .V (R )  has projec­

tive dimension one or less, then V (R , R )  must be projective by Schanuel’s Lemma.

Now, by Proposition 1.2.14 we have that A  extends to a differential operator 

A* G V (R ) .  The next lemma allows us to explicitly write down A*.

Lem m a 3 Given R, P  and t as above, we may extend t to a regular sequence 

t , x i , . . . , X n - t  in R  which generates the maximal ideal. Then we may write V (R )
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Proof: Since the subvariety of X  that P  generates is smooth, t must lie in M \ M 2. 

This is because 1l/(t) must be a regular local ring. In other words, if jV is the maximal 

ideal of H/(t), then the dimension of N / N 2 as a fc-vector space must be the same as 

the Krull dimension of H/(t). But if t lies in M 2, then factoring out t does not affect 

the dimension of M /M 2 whereas the Krull dimension of the ring drops by one. So t 

lies in M \ M 2 as claimed.

Now we may extend t +  M 2 to a basis of M /M 2 and choose x j , . . . , x n_i to be 

representatives in H  of these basis elements. Then it is easy to see that t, x j , . . . ,  xn_i 

have the required properties. □

If we now complete 7Z at its maximal ideal, then (abusing notation and writing 

K  for this completion) [Matsumura; Theorem 8.12] shows that

Tl =  * l * ,x i , . . . , x n_il.

From now on, we shall assume that 1Z has been completed at its maximal ideal. 

This will simply allow us to write down elements of 7J as fc-linear combinations of 

monomials in t and the Xi’s. Since differential operators behave well with respect to 

completion, T>(H) is still equal to . . . ,  8ra t ].

Recall that O d — {/  € C?r|^(/) € O r}-  Since Or is a regular local ring and 

x i , . . . ,  x„_i form a minimal generating set for the maximal ideal of Or, we can write 

6 as a sum of d/dxi's with coefficients in Or- Hence we may consider 6 as actually 

acting on K  itself. From this, we can see that A  must look like po(d/dt -  6), where p 

is the natural projection of ~RP onto Tlp/PUp. Therefore, A* must be fd/dt -  ft6 ,
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when* / € Op is such that fS  is a derivation on TZ.

Lem m a 4 3 .P ( f t )  “  (A'Z>(7£) +  t2V ( l i ) )/ t2V(TZ).

Proof: We have that S  lies in /D(1Z,lZ/t2TZ). It is easy to see that the map from 

'D(lZ)/'D('IZ,t2TZ) to T>(TZ,TZ/t2lZ) is an isomorphism. This isomorphism takes 

(A -p ( f t )  +  t2V (K ) )/ t2V (K )  into ~K.V(U). □

So all we need to show now is that (A ’T)(TZ) +  t2/D(TZ)) / t2T*(TZ) has projective 

dimension one or less. In order to do this, we need to find out which derivations 6 

are allowed. Write 6 as follows:

6 = v-* 9i &
“ T K dx,

where each gi and /i, lie in O r  and each pair (</,, /i,) are coprime (which we may do 

since O r  is a regular local ring and hence a unique factorisation domain). Let 5 be 

the set S =  {/  € Or\6(f) £ O r} -  We claim that each hi must be a power of a:,- (up to 

multiplication of a unit in Op- So suppose that h\ =  x\:f with / not divisible by xj 

and not a unit. Then the only combinations of monomials in x j , . . . ,  xn_j in 5 which 

depend on Xj must be divisible by / also. So in order to find a generating set for Op 

over 5, we need to include every power of x\. Hence Op is not a finitely generated 

5-module and 6 cannot be of the supposed form.

Therefore 6 must take the following form:

6 =Y1 9ix7T‘
t=i

d_
dxi'
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where each </, lies in Op, each r,- is a positive integer and no y, is divisible by x Set / 

equal to x\' . . .  so that f.S is a derivation on 7Z/ PR .  Then A* equals ftd/dt — 

ftb. Recall that 23(7?,7?) is projective if and only if -I- <3)X>(7 )̂/<aX>(7 )̂ has

projective dimension one or less. The next result will help us to build a projective 

resolution for (A*.P(7?) +  t2)V (R )/ t2V (R ) .

Proposition 5 With A* defined as above, A \ V (R ) + t 2V ( R )  =  f t V (R )+ f t f iV (R )+  

t2V (R ) .

Proof: Since A* =  ftd/dt — ftS, we have that

A*23(7?) +  t2V (R )  D [A*, <]23(7?) +  t2V (R ) .

But [A*,/] =  [ft.d/dt,t] € f t  +  t2V (R ) .  Hence A 'V (R )  +  t2V (R )  contains f t V (R ) .  

Therefore A*23(7?) +  t223(7?) is generated by f t , f t S  and t2. That is,

A mV (R )  +  t2V (R )  =  ( f t , f t 6 )V (R )

as required. □

In the special case of when the image D  of T in X  is itself smooth, Proposition 5 

allows us to show quite easily that 23(7?, 7?) is projective.

Proposition 6 I f  the image of T is smooth in X  then 23(7?., 7?) is projective.

Proof: Since the image of T, D  is smooth, 6 must be a regular derivation. In other 

words, the denominator / must equal 1. Then Proposition 5 shows that t € A*23(7?) +
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t2V (R ) .  Hence (A mV (H )  +  t2V (R ) )/ t2V (R )  =  tV (K )/ t2T>(n) so is a factor of one 

projective module by another and is therefore of projective dimension one or less. □

Now suppose that D  is not smooth. Then since (A ’ V ( R )  +  t2V ( R ) ) /t2V (R )  is 

generated by the two elements f t  +  t2V (R )  and ftS  +  t2T>(R), we have a map from 

the direct sum of two copies of V (R )  into it given by (x ,y )  t-> f tx  +  ftSy +  t2V (R ) ,  

where (x ,y )  € VCR)2. Writing K  for the kernel of this map we arrive at the following 

exact sequence:

0 — > K  — ► V (R ) 2 — ♦ ( A 'V ( R )  +  t26 V (R ) )/ t2V (R )  — ► 0.

By Schanuel’s lemma again, ( A 'V ( R )  +  t26 V (R ))/ t2V (R )  has projective dimension 

one or less if and only if K  is projective. Therefore we have that V (R ,  R )  is projective 

if and only if K  is projective.

We can identify K  as the following set:

K  =  { ( * , » )  € V(R)2\ftx +  ftSy € t2V(R)}  3S { (x ,y ) € V( R ) 2\fx + fSy € tV(R)}.

It is now easy to find explicit examples of varieties X  for which the P(7?.)-module K  

is not projective.

Exam ple: Set R  =  k[x,y,z], let P  be the prime ideal generated by z and define 

6 : K  —» K  to be 6 =  xy~ld/dy. Therefore A  =  zd/dz — zxy-1d/dy and A* =  

yzd/dz — xzd/dy. This gives us that R  =  K e r (A *) is the following:

R  =  fc[x] +  { f (y )  +  x z y ~ '^ \ f (y )  € fc[yJ,y3] }  +  z2k[x, y, z].

106



It follows that H  is affine, since H  is generated as an 7^-module by the elements 

l,i/, 2 and yz. Also, the argument given before Lemma 1.4 shows that since we have 

constructed Op as the set of regular functions on T which stay regular under 6, 71 

must be Sj. Indeed, it is easy to see that x, y2 +  2xz, z1 is a regular sequence of length 

three and therefore H  is even Cohen-Macaulay.

Now, in this example we can simplify the module K  considerably by slightly 

changing the exact sequence. Recall that by Proposition 5, we have that yz lies inside 

A""D(H) +  z2'D(Tl). Therefore we can see that [A *,y2] also lies inside A*T>(7?.) + 

z2V (H ) .  But [A*,j/a] =  xyzd/dy +  2xz, and since yx lies in A"P(7?.) +  z2T>(H), 

we must have that xz lies in there too. This means that the module (A*T>(71) + 

z2/D (T l))  / z2T>(H) is generated by the two element xz and yz. Thus we have that:

A ‘V (T l)  + £ V ( n )  ^  x z V (n )  +  y z V (n )  +  z2V (T i )  
z2v ( n )  z2v ( n )

s  xT>(U) +  y P (g )  +  z V (R )
z V (n )

Set A/ =  (xV (T l ) +  yV(7l) +  zT>(H))/zT>(1l). We may build an exact sequence of

P(72.)-modules as follows:

0 — ► K  =  h'er(O) — > V (K )  © V{Tl) -?-> M  — > 0

by setting 9(a, b) =  xa +  yb +  zV (J l)  for a, 6 € V(Tl).

There are now several ways now to see that the module K  does not have projective 

dimension one or less. One is to calculate a projective resolution for K  and the other 

is to notice that:

M  =
x H +  y l l  +  z7l 

zU
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Define jV to be the right TC-module ( x l t  +  ylt + zH)/:1l. Then the projective 

dimension of N  is two. To see this, suppose that N  has projective dimension one or 

less and assume that I t  and N  have been localised at the maximal ideal (x, y, z) of 

Tt. Then the Auslander-Buchsbaum Theorem ([Matsumura; Theorem 19.1]) states 

that

proj.dim.(N) +  depth^(N) =  depth(H).

But it is easy to see that N  has depth one. This is because N  does not contain the 

element 1. Therefore, if we start a regular sequence with the element f  £ 11, then / 

does not lie in N f  and / +  N f  kills every element of (x ,y ,z ) in N /N f.  Hence we 

cannot extend any regular sequence of length one to one of length two. Thus N  has 

depth one and it follows that it must have projective dimension two.

In fact, we may construct a minimal free resolution of N  as follows: since N  is 

generated by x and y, we may map two copies of 71 into N  by setting <f>(a, b) =  xa+yb  

for a, b € It. The kernel of <j> is evidently the submodule of I t 2 generated by the 

elements (z, 0), (0, z) and (y, —x). This kernel is clearly not a free module as we have 

the relation (y, —x)z =  (z, 0)y — (0, z )x , but this is the only relation and so generates 

a free module of rank one. The projective resolution of N  is then:

o — > n  — ► n 3 — > n 2 n  — > o.

Now, T>(1Z) is the free left ^-module generated by all the products of the A:-linear 

derivations on It , and so must be a flat 7^-module. Hence we can tensor the above 

exact sequence on the right by V(1Z) to obtain the corresponding exact sequence of
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P(7£)-modules:

o — ♦ v(n) — » v(nf — » v(uÿ -?-> m — * o.

This shows that M  has projective dimension two since if M  had projective dimension 

less than two then the kernel of 0 would be projective (by Schanuel's Lemma). But 

since 71 is regular so that V(7 l) is a free 7^-module, h'er(O) is isomorphic (as a 

P(7£)-module) to A'er(<^)®X>(7l). Hence A'er(0) is minimally generated by the same 

elements as Ker(<j>) and contains the same relations as Ktr(<t>). So A'er(0) cannot be 

a direct summand of a free module. Thus M  has projective dimension two and hence 

1?(7?., IV) cannot be projective. □

It would seem then that a lot of work needs to be done in order to determine 

which conditions on X  force T>CR, TV) to be projective. The above example shows 

that even Cohen-Macaulay is not enough. It may be possible though to impose some 

restriction on the derivations A  and 6 which we have been using in order to make 

K  nicer. A discussion of possible avenues of continuation is presented in the final 

chapter.
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Chapter 5

Conclusions and Conjectures

In this chapter we discuss the results of the preceding chapters and suggest how they 

might be improved, starting with Chapter Two since the results of this chapter are 

far from being complete. The main aim of the chapter is to try to classify the dense, 

projective right ideals of ~D(TZ) where TZ is the coordinate ring of a smooth surface. 

The idea is to map such a right ideal, I  say, to a subspace / * TZ of TZ and then try 

to identify the subspaces of TZ of this form with the primary decomposible subspaces. 

Proposition 2.2.2 shows that every primary decomposible subspace of TZ is of this 

form, but the converse, that / * 1Z is primary decomposible, remains to be shown. 

The two obstructions to this are that to get anywhere we have to assume that S(I*TZ) 

is noetherian, and also that we need a certain vector space to be a vector space over 

a certain field. I am certain that a simple trick is all that is required to overcome the 

latter problem.

Now, by examining closely the proofs of the various results in Chapter One about 

localising differential operators, it may be possible to get a form of localisation working

110



for 8(1 *1Z) without the noetherian hypothesis. This is also the main stumbling block 

for any attempt to extend the results to higher dimensions since here, Theorem 1.4.15 

suggests that one may have to replace the projective right ideals with the reflexive 

right ideals. In this case, there would certainly be no Morita equivalence to afford 

any noetherian conditions. Therefore, if it proves to be the case that the noetherian 

condition placed on primary decomposible subspaces can either be omitted or replaced 

with a weaker restriction, then I would put forward the following conjecture:

Conjecture 1 With a possibly altered definition of primary decomposible, if TZ is the 

coordinate ring of a smooth variety then the dense, reflexive right ideals of 'D(TZ) are 

classified by the primary decomposible subspaces of TZ via the maps l  >—> I * 1Z and 

V i—► T>(1Z, V ) where l  is a dense, reflexive right ideal of V(TZ) and V is a primary 

decomposible subsapce of 1Z.

Chapter Three is complete as it stands and it is hard to see that any generalisation 

of the results here could be made. However, if looked at in conjunction with the results 

of Chapter Four, some questions do arise. Since Chapter Four shows that it is not true 

that if X  is an S2 variety with smooth, injective normalisation then V ( X , X )  must 

be projective, then which varieties do have this property? Chapter Three says that 

all products of curves and S2 surfaces with smooth, injective normalisations have 

T>(X ,X )  projective, so there must be something about products which makes the 

differential operators behave well. In particular, is there a property which products 

have which is enough to force T>(X, X )  to be projective in general. For example, are 

they Gorenstein, and do Gorenstein varieties with smooth, injective normalisations
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have T>(.V, X )  projective?

One possible line of investigation is to examine the derivations which are used in 

Chapter Four to construct varieties. It may be possible to tell which derivations lead 

to the projectivity of T>(X,X), and then see what sort of properties the resulting 

varieties have. I believe that the class of varieties presented in Chapter Four gives a 

good indication of what happens in the general case. Indeed, a general result might 

be obtained as follows: take any 5j variety X  with smooth, injective normalisation. 

Then since X  is singular in codimension one, we may pull the singular locus apart into 

pieces which are given by height one prime ideals. Then the results of Chapter Four 

might be applied to each part, and then glued together to give information about the 

whole picture. The details are left to the reader!
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