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Abstract

The aim of this study was to identify novel genes required during early 
embryonic development, of Drosophila melanogasler.

This thesis describes the identification of a gene required for development of 
the larval head This gene has not been detected previously in conventional 
mutagenesis screens and was detected using the technique of'enhancer trapping' This 
gene was selected for further investigation on the basis of the B-galactosidase 
expression pattern from the P[lArB]enhancer detector transposon insertion,
A3 50.1M2. The expression in this line was considered to be interesting since it occurs 
very early in a spatially restricted manner. The insertion was mapped to 59F1-3 on 
chromosome 2R The P-element insertion was shown to be hemizygous lethal over 
Df(bwS46) and this lethality can be reverted by excision of the P-element This showed 
that the insertion must have disrupted a gene that is essential for development

The P[ClrB] insertion D26, is homozygous viable, and viable when hemizygous 
over Dft2R)bwS46 It had been shown to have a similar expression pattern and map 
position to the A350.1 M2 insertion, and it was therefore likely that it had inserted near 
to the same essential gene disrupted by A350.1M2. This was later confirmed by non 
complementation of AD26 excision chromosomes with A3 50 1 M2

The 13-galactosidase expression pattern of A3 50 1M2 in early gastrulating 
embryos, corresponds to cells that are the precursors of the midgut, Malpighian 
tubules and the proctodeum in the posterior, and in the anterior, the anterior midgut 
and head ectoderm In germband extended embryos expression corresponds to cells of 
the anterior and posterior gut, gnathal and hypopharyngeal segments of the head and a 
large number of cells of the nervous system

Genomic clones from the region flanking the insertion were obtained from a 
previously isolated plasmid rescue clone and a cosmid clone from the brown gene 
walk Two fragments from this region known to contain only unique sequences were 
used to screen a cDNA library Three cDNA clones were isolated cDNA clone 19 and 
cDNA clone 3a3 were shown to be overlapping, cDNA 19 being a 5' trunkated form of 
3a3 cDNA clone 6 seemed to be a different gene which may be from a different 
genomic location

Fragments from each of these three clones were used to perform in situ 
hybridisation to whole mount Drosophila embryos cDNA clones 19 and 3a3 gave 
expression patterns strongly reminiscent of the il-galactosidase pattern of A3 50 I M2 
The expression of these cDNA clones occurs slightly earlier than in A350.1 M2, in two 
broad stripes in the anterior and posterior of the embryo These cells correspond to the



same cells that express 13-galactosidase slightly later in line A3 50.1 M2 By germband 
extension the expression is very similar to that of A3 50 1 M2 cDNA clone 6 is not 
expressed during embryogenesis.

All three cDNA clones map back to the genomic walk cDNA 3a3 is 6 kb to 
the right of the A3 50.1M2 insertion, and approximately 50 kb to the right of the brown 
gene cDNA 3a3 was sequenced in both strands and the protein sequence was 
predicted in all three frames The frames program on GCG showed there was no long 
open reading frame in any of the frames The two longest frames occur in the same 
frame ORF1 and ORF2, which encode 92 and 88 amino acids respectively. The best 
homologies to known protein sequences are a sodium channel protein from rat cardiac 
muscle which shares 28 1% homology over 32 amino acids for ORF1, and a minor 
core protein V which has 35.1% identity over 37 amino acids, for ORF2 The sequence 
has provided little information about the function of the gene

The viable D26 insertion was excised using transposase mediated excision and 
imprecise excision events were selected by lethality over Dfl[2R)bwS46 Ten imprecise 
excision events were selected and were all shown to be embryonic lethal when 
hemizygous. These excision events were placed into two complementation groups

The cuticular structure of dead first instar larvae showed that some of the 
excision events had defects in the head skeleton These defects include reduced 
lateralgrate and disintegrated dorsal bridge. There were no obvious homeotic 
transformations accompanying these defects There were no obvious defects in the 
corresponding earlier embryos. The morphological defects observed in mutant larvae 
correspond to a small subset of the total expression domain of the 3a3 transcript

XI



Chapter 1 

Introduction.

The aim of my research has been to identify novel genes involved in the early 

development of Drosophila melanogasler, in particular development of the nervous 

system.

Apart from its powerful genetic technology Drosophila provides an excellent 

system for such studies for the following reasons: embryonic development occurs 

externally, and there are a large number of easily identifiable morphological landmarks 

at all stages of development facilitating the study of pattern formation and 

identification of mutant phenotypes; the genome is well characterised genetically and is 

amenable to genetic manipulation. Drosophila is also useful for the study of 

neurogenesis since it has a relatively small nervous system, there are approximately 

two hundred and fifty neurons per hemisegment in the ventral nerve cord, although the 

brain is larger and more complex

Following fertilisation the zygotic nuclei divide in a common cytoplasm, the 

syncitial blastoderm (stage 1-2; 0 - 1:05 hr; fig 1.1). After eight synchronous divisions 

most of these nuclei begin to migrate to the periphery of the embryo (stage 3; 1: 05 - 

1:20 hr; fig 1.1). Pole bud formation and nuclear division nine take place during stage 

three Three protuberances bud off at the posterior pole. These are the polar buds 

which will divide twice and immediately after the second division the buds will pinch 

off forming 12-14 pole cells (Foe and Alberts, 1983). As the pole cells form, the 

remaining nuclei continue to divide in near but not perfect synchrony until they have 

divided thirteen times During stage five the plasma membrane extends between the 

nuclei resulting in cellularisation (Mahowald, I963)(stagc 5, 2:10 - 2:50 hr; fig 1.1). 

Gastrulation then involves three main sets of cell movements First a strip of the most 

ventral cells of the blastoderm embryo invaginates to create a two layered embryo 

(stage 6-7; 2:50 -3:10 hr; fig 1.1). The inner layer, the mesoderm, forms many of the 

internal organs, such as muscles, and the outer layer, the ectoderm will form the 

epidermis, central and peripheral nervous systems Secondly, presumptive endoderm
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invaginates as two pockets at the anterior and posterior extremes of the ventral 

furrow, these are the forerunners of the anterior and posterior halves of the midgut 

(stage 8; 3:10 - 3:40 hr; fig 1.1). Thirdly, at the posterior pole a roughly ovoid cell 

plate corresponding approximately to the posterior midgut anlagen begins to move 

rapidly in an anterodorsal direction and simultaneously invaginates, carrying with it 

and internalising the pole cells (stage 9; 3:40 - 4:20 hr; fig 1.1). This anterodorsal 

movement of the posterior pole marks the onset of germ band extension The germ 

band consists of the main trunk of the future embryo, the part that will become 

segmented. A transverse cephalic furrow forms laterally at the anterior extreme of the 

ventral furrow. Before germ band extension is complete, during stage nine, cells that 

will become the central nervous system begin to delaminate from the ventral 

neuroectoderm along the segmented region of the embryo, and also from the 

procephalic neuroectoderm in the head region. These neuroblasts form an intervening 

layer between the mesoderm and ectoderm, and subsequently divide a number of times 

to form the central nervous system (CNS). By stage 10, (4:20 - 5:20 hr; fig 1.1), the 

epidermis displays evenly spaced grooves and inside the mesoderm is arranged in a 

series of bulges The epidermal grooves demarcate fourteen parasegments which 

correspond to the anterior edge of the posterior compartment of the three gnathal, 

three thoracic and eight abdominal segments. During stage eleven (5:20 - 7:20 hr; fig 

1.1) the germ band retracts and in stage twelve (7:20 - 9:20 hr; fig 1.1) the anterior 

and posterior midgut fuse By this stage the body plan and major tissue types of the 

larva are obvious and the remainder of embryonic development consists largely of 

differentiation of specialised cells within these tissues Stage 13 (9:20 - 10:20 hr) is 

initiated at the completion of germ band shortening This stage begins when the 

prospective anal plate is at the posterior egg pole and ends with the beginning of head 

involution. During stage 14 (10:20 - 11:20 hr ) and stage 15 (11:20 - 13 hr) the 

epidermal layer of both sides of the embryo moves dorsally covering the amnioserosa 

towards the dorsal midline, ultimately leading to dorsal closure The gut forms a 

closed tube that completely contains the yolk sac On the lateral prospect the gut
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shows a constriction which gives it a characteristic heart shape Head involution 

occurs simultaneously with the movement of the epidermis Head involution occurs by 

the caudalwards retraction of the clypeolabrum and the inward movement of the labial 

segment which results in the displacement of the opening of the salivary gland into the 

mouth. Ventrally the hypopharyngeal lobes have been displaced into the stomodeum. 

The gnathal appendages have moved antero medially and become located behind the 

lateral border of the stomodeum and the lateral walls of the atrium Stage 16(13 - 16 

hr) ends when the dorsal ridge has completely overgrown the tip of the clypeolabrum 

(the morphogenic movements of head involution are summarised in Fig 1.2). Several 

further constrictions appear in the gut and the ventral nerve cord shortens until its 

posterior tip corresponds to 40% egg length. Stage 17 lasts until hatching of the 

embryo during which time the tracheal tree becomes apparent and retraction of the 

ventral nerve cord continues.

Maternal contribution to pattern formation.

Positional cues are established in the egg before or shortly after it is fertilised or 

laid; these are due to the activities of gene products expressed in the germ cells or 

follicle cells of the mother (Fig. 1.3). During ovarian development the female germ 

cells divide mitotically to produce sixteen cells that are in electrical contact via 

cytoplasmic channels One of the most posterior cells develops into the oocyte and 

stays diploid while the others become the polyploid nurse cells The group of sixteen 

cells is surrounded by about 1000 follicle cells which are derived from the mesoderm 

of the mother (fig 1 2). Early experiments by Sander (1978) (cited by Ingham, 1988) 

in Euscelis, and later in Drosophila (Nusslein-Volhard el a l , 1987), which involved 

separating the embryo into two halves and then allowing them to develop separately, 

showed that the anterior posterior and the dorsal ventral axis are established 

independently These experiments also showed that the anterior-posterior axis is 

generated progressively during early embryogenesis, under the influence of organising 

centres at the two poles of the embryo
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The anterior posterior pattern is set up by three systems which determine anterior, 

posterior, and terminal identity in the embryo.

To enable investigators to be able to describe the location of structures or gene 

expression domains within the Drosophila embryo a reference system of percentage 

egg length has been developed. EL 0% refers to the posterior pole and 100% to the 

anterior pole.

Anterior pattern.

There are three levels of gene activity that potentially regulate cephalic 

patterning: a set of maternally expressed factors and two levels of region specific 

zygotic gene expression. Maternal patterning systems control the organisation of the 

cephalic region: the bicoid anterior-posterior gradient, and the torso terminal 

signalling system described in the next section.

The gene bicoid was one of the genes identified in the screen for maternal genes 

that affect embryonic pattern (Nusslein-Volhard el a!., 1987). Embryos mutant for this 

gene develop normal posterior segments but have disrupted anterior abdominal 

segments, and no proper head or thoracic segments The bicoid gene has been cloned, 

and from in situ hybridisation experiments bicoid mRNA has been shown to be 

transcribed in the nurse cells and apparently transported to the anterior pole of the 

oocyte (Berleth et al., 1988; St. Johnson et al., 1989). At least three gene products are 

necessary for the correct positioning of bicoid RNA; these are exuperantia, swallow 

and staufen (Frohnhofer and Nusslein-Volhard, 1987; St. Johnston et al., 1991). After 

fertilisation, a concentration gradient of bicoid protein is established by translation of 

the bicoid mRNA at the anterior pole followed by diffusion posteriorly from the 

anterior source (Driever and Nusslein-Volhard, 1988a) This concentration gradient is 

thought to be maintained by diffusion from the anterior source counteracted by a 

uniform rate of degradation of the short-lived bicoid protein By the time pole cell 

formation has occurred the detectable protein gradient extends from 100% to 30% 

egg length (Berleth et al., 1988)
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The sequence of the bicoid gene reveals that its product has a homeo domain, it 

has also been isolated by homology to a sequence (PRD-repeat) in the segmentation 

gene paired (Berleth el al., 1988; Frigerio el a!., 1986) This suggests that bicoid 

encodes a DNA-binding protein which acts by directly regulating zygotic target genes

In the syncitial blastoderm embryo seven gap genes are induced in overlapping 

domains along the anterior posterior axis Two of these gap genes huckebein and 

tailless are expressed in the terminal regions The expression of these two genes are 

partially activated independantly both by the torso signalling system and by the high 

levels of the bicoid gradient (Bronner and Jackie, 1991, Pignoni el al., 1992) The role 

of the terminal gap genes differs at the posterior and anterior ends of the embryo, the 

pattern of tailless expression at the anterior end of the embryo is controlled by the 

bicoid gene

Another zygotic target of bicoid is the gap gene hunchback which is required for 

correct development of the thorax and part of the head Zygotic hunchback RNA 

occurs in a broad anterior domain which extends to about 50% egg length (Bender et 

a /.,1987; Lehmann and Nusslein-Volhard, 1987b, Tautz el al., 1987) This expression 

is dependent on moderate levels of bicoid expression In bicoid mutant embryos 

zygotic hunchback is absent, whereas when bicoid gene dosage is increased the 

domain of hunchback expression extends posteriorly (Schroder et al., 1988, Tautz, 

1988; Struhl et al., 1989). A number of bicoid-binding sites are present in the 

hunchback upstream region, including three strong and three weak binding sites, in the 

three hundred base pairs immediately 5' to the major start site of zygotic hunchback 

transcription (Driever and Nusslein-Volhard, 1989) Bicoid protein has been shown to 

be a morphogcn, since its presence allows head patterning in a dose-dependent 

fashion. If the number of bicoid4 doses in the mother is increased the boundary of 

hunchback transcription shifts more anteriorly (Driever and Nusslein-Volhard. 1988b) 

A model for how this occurs has been suggested by analysis of the ability of different 

bicoid-binding sites to direct the embryonic activation of a basic promoter (Driever 

and Nusslein-Volhard, 1989b) The model suggests that promoters with low affinity
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bicoid-binding sites require high concentrations of protein to be activated and are 

therefore expressed only in the most anterior regions. Conversely promoters with high 

affinity sites can bind bicoid at lower concentrations and direct expression in larger 

domains which extend more posteriorly (Struhl el al., 1989). In this way the smooth 

protein gradient can be translated into a number of discrete domains of zygotic gene 

expression, which define several anterior positional values

Since hunchback alone is not sufficient to specify head development and loss of 

hunchback causes less severe defects than loss of bicoid the system requires at least 

one additional zygotic gap gene, which is directly regulated by bicoid, to be expressed 

in a smaller more anterior domain than hunchback (Driever and Nusslein-Volhard. 

1989).The remaining four gap genes expressed in the cephalic region are 

orthodenticle, empty spiracles, bullonhead and giant. Mutations in these genes delete 

partially overlapping, adjacent regions of the head anterior to that affected by 

hunchback mutations and these genes are therefore likely also to be head gap genes 

that are regulated by bicoid (Dalton el al., 1989, Cohen and Jurgens, 1990, Fig 1.3).

In the trunk regions of the embryo segmental boundaries are determined by the 

expression of gap genes that direct localised expression of pair-rule genes, which in 

turn direct the localised expression of the segment polarity genes No pair-rule genes 

are expressed in the cephalic region so the overlapping domains of gap gene 

expression must define segmental boundaries (for reveiw see Cohen and Jurgens, 

1991). The phenotype of mutants of the gap class of genes is the deletion of one or 

more segments

Embryos mutant for the buttonhead gap gene show incomplete involution of the 

embryonic head, lack mandibular, hypopharyngeal and antennal segments (Cohen and 

Jurgens, 1991). The buttonhead transcript is expressed in an anterior stripe at 80-65% 

EL which becomes visable during nuclear cycle 12/13 and an anterior dorsal spot 

which appears at cellular blastroderm (Wimmer, 1992)

orthodenticle is expressed during syncytial blastoderm and its expression is 

limited to the circumferential anterior region extending to the pole By cellular
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blastoderm orthodenticle expression has retracted from the pole and is confined to a 

broad stripe extending from 70-90% egg length Formation of the cephalic furrow 

occurs just posterior to the domain of orthodenticle expression The orthodenticle 

protein has a homeodomain suggesting it may be a transcriptional regulator Mutations 

in orthodenticle cause embryonic lethality. The associated morphological phenotype is 

failure of head involution and deletion of the antennal and preantennal segments The 

clypeolabrum, hypopharyngeal and gnathal (mandibular, maxillary and labial) segments 

develop but are often disrupted There is no evidence for homeotic transformation or 

duplication of head structures (Fickelstein and Perrimon, 1990).

The expression of empty spiracles (ems) is also controlled by bicoid. The enis 

gene is expressed from cellular blastoderm in the developing head in a single anterior 

band extending from 70-76%EL dorsally and 74-89%EL ventrally Later in 

embryogenesis empty spiracles is expressed in the lateral region of each segment, 

where the tracheal pits form and lateral neuroblasts originate, as well as in the 

posterior spiracles The empty spiracles protein has a homeodomain suggesting a role 

in transcriptional regulation of other genes The N-terminal portion of the predicted 

protein sequence is very proline rich whereas the C-terminus has an acidic profile This 

is also consistent with the role of a transcription factor In mutants of empty spiracles 

head involution fails to occur, the anterior border of the mandibular lobe and the entire 

optic lobe are absent The maxillary lobe has a slightly perturbed shape compared to 

wildtype (Walldorf and Gehring, 1992).

Another possible target for bicoid regulation is the anterior of the giant 

expression domain, which is also dependent on bicoid concentration (Eldon and 

Pirrotta, 1991, Kraut and Levine, 1991). Mutations in the ¿flora/ gene result in some 

head defects affecting the clypeolabrum and the labial segment resulting in incomplete 

head involution and loss of parts of the cephalopharyngeal skeleton (Petschek el a/.. 

1987; Mohler etal., 1989).

During cellularisation of the blastoderm the second phase of region specific 

anterior gene expression occurs Genes in this tier include segmental homeotic genes
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of the Antennapedia complex: labial, Deformed, Sex combs reduced and 

proboscipedia; and the region specific homeotic genes spall and forkhead In the 

trunk homeotic selector genes specify segmental identity Mutations in these genes 

result in transformation of segmental identities, without affecting the number of 

segments In the head, no mutations have been found that alter the identity of the 

cephalic segments in the embryo

At the same time the two zygotic gap genes ill and giant shift from initial broad 

domains of expression to distinct late expression patterns which are maintained 

throughout the germ band extended stage The late expression of the giant gene is 

three stripes corresponding to 94%, 77% and 65% EL (Mohler el al, 1989). The 

expression domain of tailless extends from 75- 88% EL (Pignoni et a l , 1992)

The Deformed gene contributes to the specification of maxillary segment identity 

and is expressed at 67% EL ( Regulski et al., 1987). Sex combs reduced contributes to 

the specification of the labial and first thoracic segments The expression domain is 

from 56-64% EL (Kaufman et al., 1990, Riley et al., 1987) Mutations in the gene 

labial result in defects in all derivatives of the gnathocephalic segments, head 

involution fails but there is no homeotic transformation, the gene is expressed at 72% 

EL (Merrill et al., 1989; Diederich et al., 1989) prohoscipedia is necessary for the 

correct specification of the labial and maxillary segments Null mutations of 

prohoscopedia result in simultaneous transformation of the labial segment to 

prothoracic legs and of the maxillary palps towards antennae (Pultz et al., 1988)

The homeotic gene s/>alt is also required for the correct specification of the labial 

segment in the Drosophila head The anterior expression of this gene has two 

domains, one 60-70% EL and a dorsal spot at 85% EL (Frei et al., 1988)

Other anterior structures included in the Drosophila head are the foregut, anterior 

midgut and salivary glands forkhead was originally detected as a homeotic gene 

promoting terminal as opposed to segmental development in the ectodermal parts of 

the gut (Jurgens and Weigel, 1988) forkhead is expressed in the most anterior part of 

the cellular blastoderm from 95-100% EL, forkhead \s also expressed in the salivary
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gland placodes The salivary gland placodes are established by a collaboration of Sex 

combs reduced, which acts positively, decapenlaplegic, and genes of the spitz group, 

which act negatively to limit the dorsal and ventral extent of the placode huckebein is 

also required for invagination of the salivary placode (Panzer and Fong, 1992)

tramtrack has a complicated expression pattern during embryogenesis of two 

alternatively spliced transcripts The pattern of one of these transcripts (408) during 

germ band elongation is strikingly similar to the expression offorkhead in the foregut, 

anterior midgut, posterior midgut and hindgut tramtrack encodes a zinc-finger protein 

and plays a role in the regulation of the two pair rule genes fushi tarazu and 

evenskipped (Read and Manley, 1992). The expression domains of genes required for 

head development are shown in Figure 1.4

Posterior pattern.

The pole plasm at the posterior pole contains two localised determinants The 

posterior determinant which controls the development of the abdomen and a signal 

that directs the formation of the pole cells There are ten posterior group genes that 

give a disruption of abdominal patterning Eight of these genes cappuccino, spire, 

staufen, oskar, vasa, valois, tudor and mago nashi are also required for pole cell 

formation These mutations do not remove the posterior activity but interfere with its 

localisation to the posterior of the egg (for review see, St Johnston and Nusslein- 

Volhard, 1992) The two remaining genes, nanos and pumilio are only involved in 

abdominal development No posterior determining activity is found at any stage in 

ovaries or eggs mutant for nanos (Lehman and Nusslein-Volhard, 1991) Injection of 

wildtype nanos RNA can rescue the abdominal deletions produced by all other 

posterior gene mutations nanos is therefore the gene most downstream in the 

pathway, that is it encodes the posterior factor nanos has been cloned and its RNA as 

expected is localised at the posterior pole of the egg (Wang and Lehmann, 1991)

Since nanos activity is required in the presumptive abdominal region, while its RNA is 

localised at the posterior pole, nanos protein must move to this more anterior region
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In pumilio mutants insufficient nemos activity appears to reach the abdomen although 

it is present in their pole plasm. The role of pumilio is to enhance the activity of nanos 

proteiw The expression and distribution of nanos protein is indistinguishable from 

wild-type in embryos derived from pumilio mutant females (Barker el al., 1992)

Unlike bicoid the embryo does not respond point by point to nanos protein 

concentration The role of nanos is to remove maternal hunchback from the posterior 

half of the embryo, thus allowing posterior development to occur (Irish el al., 1989).

In fact, if maternal hunchback expression is removed from the embryo by making 

germ line clones there is no need for the nanos gene. The mechanism of control of 

hunchback by nanos protein is unknown as there are no strong sequence similarities 

with other known genes However nanos protein affects the distribution of both 

maternal hunchback RNA and hunchback protein (Tautz, 1988, Tautz and Pfeitle, 

1989). This has been confirmed by the discovery of a short sequence that occurs twice 

in the 3' untranslated region of the hunchback transcript that is required for nanos 

regulation. The presence of these two sites in a heterologous transcript is sufficient to 

allow nanos-dependent repression in the posterior of embryos (Wharton and Struhl, 

1991). Ectopic anterior expression of nanos which occurs in Hicaudal-D mutations, 

results in loss of the bicoid gradient at the anterior pole (Wharton and Struhl, 1989; 

Wang and Lehmann, 1991). In these embryos bicoid protein is degraded prematurely 

even though the RNA is present when the protein is normally translated The 3' 

untranslated region of the bicoid transcript has been found to contain sequences 

similar to those found in the hunchback transcript and its translation may therefore be 

repressed by the same mechanism Since hunchback encodes a protein with six zinc 

finger domains (Schroder el al., 1988) it is likely that it prevents abdomen formation by 

directly repressing the expression of knirps and giant, which are both gap genes 

required for abdominal pattern formation (Tautz el a l , 1987; Stanojevic el al., 1989, 

Treisman and Desplan, 1989). giant is expressed in a posterior domain from 0-30%

EL at syncitial blastoderm, localising to 25-35% EL at cellular blastoderm (Kraut and 

Levine, 1991). giant activity is required for the correct specification of abdominal
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segments A5-A8 In embryos mutant for the gap gene empty spiracles the posterior 

spiracles and filzkorper are disrupted (Walldorf and Gehring, 1992)

Homeotic genes expressed in the posterior include Abdominal B of the Hi thorax 

complex specifies development of the abdominal segments A5-A10 and at least part of 

the genitalia The mutant adult phenotype is transformation of all the abdominal 

segments posterior to A5 towards A4. Posterior to A8 only the spiracles were affected 

and are either reduced or absent (Sanchez-Herrero el ai, 1985).

The mutant phenotype in the posterior of embryos lacking s¡xill expression is the 

transformation of the fate of abdominal parasegments 14 and 15 to parasegment 13 

(Frei et al., 1989). The posterior domain of spall expression corresponds to 10-20% 

EL (Jurgens, 1988)

Mutations in the homeotic gene Polycomb, develop homeotic cuticular features of 

abdominal segment 8 in more anterior body segments (Denell and Frederick, 1983).

The posterior region of the embryo also includes the hindgut, posterior midgut 

and malpighian tubules forkhead a homeotic gene, and tramtrack are both expressed 

in, and required for, the correct development of the posterior midgut and hindgut The 

position of the posterior domain offorkhead expression is determined by til and hkb. 

There are two complementary subdomains of the poslenar forkhead domain, one 

includes hindgut and anal pads, the other one the malpighian tubules and hindgut 

Mutations in forkhead affect PS 16 and PS 17, the anal pads and malpighian tubules are 

abolished (Jurgens and Weigel, 1993) The terminal gap genes tU and hkb are 

expressed at 0-15% and 0-12% EL respectively (Bronner and Jackie, 1991)

Mutations in the central gap gene Kruppel produce embryos in which the cells of the 

malpighian tubule anlagen fail to enter their normal pathway but contribute to hindgut, 

suggesting that it acts as a homeotic gene in the malpighian tubules (Harbecke and 

Janning, 1989). Figure 1.5 shows the expression domains of genes involved in 

posterior determination 

Terminal system.

Most of the genes involved in this system are also maternal effect, homozygous



mutant mothers lay eggs that lack both anterior and posterior extremes of the embryo, 

the acron and the telson respectively. The seven maternally active genes of the 

terminal class which have been identified by classical mutation screens are: torso (tor), 

trunk (trk), fs(l) Nasrat [fs(l)jV], fs( 1 )pole hole [fs( 1 )ph], torso-like (tsl), pole hole 

[ph\\ and corkscrew (csw) (Perrimon e t a l , 1985, Klinger e t a l , 1988; Nishida et a l , 

1988; Schupbach and Wieschaus, 1989; Degelmann et al , 1990; Stevens et al , 1990 

and Perkins et al. 1992)

The three terminal class genes which have been cloned show significant homology 

to other signaling proteins. The gene torso has been extensively studied and encodes a 

tyrosine kinase receptor (Casanova and Struhl 1989; Sprenger et al., 1989) torso 

RNA is synthesised during oogenesis but is not translated until after fertilization The 

torso receptor is distributed evenly on the egg plasma membrane of the oocyte 

(Casanova and Struhl, 1989).

The pole hole (ph\) gene encodes the Drosophila homologue of Raf 1 a serine- 

threonine kinase which is involved in a number of signal transduction pathways (Mark 

et al., 1987; Nishida et al., 1988). c-raf which encodes Raf 1 has been implicated in 

the signal transduction pathways of several vertebrate receptor tyrosine kinases 

(Morrison et al., 1988)

corkscrew encodes a non-receptor tyrosine phosphatase that is homologous to the 

mammalian PTP1C protein PTP1C has been shown to bind physically to the activated 

EGF receptor (Perkins etal., 1992). Both the maternally transcribedph 1 and 

corkscrew transcripts are distributed throughout the mature oocyte and early embryo 

(Nishida et al., 1988; Ambrosio et al., 1989; Perkins et al , 1992)

Mutations in the gene torso include alleles which give either loss or gain of 

ftjnction torso loss-of-function proteins have no tyrosine kinase activity, whereas the 

gain-of-function proteins are constitutively activated Loss-of-function alleles give the 

terminal pattern defects The gain-of-function alleles give the opposite phenotype, 

embryos develop normal terminal structures but have defects in the segmented region 

(Klingler et al., 1988). These gain-of-function phenotypes are suppressed in embryos
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that are also mutant for the gap gene tailless (Klingler el al., 1988, Strecker et al., 

1988, Weigel et al., 1990) The phenotype is therefore probably due to the ectopic 

expression of huckebein and tailless, whose functions are to repress central gap gene 

activity in the termini, resulting in the loss of expression of the central gap genes 

Mutations in ph 1 and csw cause a terminal pattern phenotype when the maternal 

contribution is removed and suppress the torso gain-of-function phenotype, suggesting 

that they are downstream of torso in the signal transduction pathway (Ambrosio et al., 

1989; Klingler, 1989; Perkins et al., 1992). The mutant phenotype ofph\ in larval 

imaginal discs indicates that it has a major role in the regulation of cell proliferation 

like the mammalian c-raf and it is also required for the development of the adult 

compound eye (Perrimon et al., 1985; Nishida et al., 1988).

The genes upstream of torso are involved in the localised production of the ligand 

at the two termini of the egg. The ligand is thought to be produced and localised in 

subpopulations of the somatic follicle cells The three genes trunk, fs(l)Nasrat, and 

fs(l) pole hole are all required in the germline nurse cell- oocyte complex (Schupbach 

and Weishaus, 1986). By contrast torsolike acts in the somatic follicle cells and not in 

the germline Follicle cell mosaics mutant for torso-like show that torso-like is 

specifically required in the terminal follicle cells, this suggests that these cells produce 

the terminal signal (Stevens et al ,1990) Which of these genes upstream of torso 

encodes the ligand for the torso receptor is not known The ligand that activates torso 

has been shown to be freely diffusible and limited in quantity (Sprenger and Nusslein- 

Volhard, 1992; Struhl and Casanova, 1993). torso is transiently activated during the 

syncytial blastoderm and this activation is produced by the binding of its ligand The 

activation of torso initiates a signal transduction pathway which results in the 

activation of the gap genes tailless and huckebein in the termini of the embryo 

In an attempt to identify other genes in the terminal pathway a large scale 

mutagenesis screen for dominant suppressors of the tor gain-of-function allele was 

carried out by Doyle and Bishop (1993). Forty five mutants that suppress the tor gain- 

of-function phenotype were identified and these fell into seven complementation
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groups two of which correspond to mutations in ras- 1 and Sos.

The signal transduction cascade resulting in the R7 photoreceptor cell fate also 

involves a receptor tyrosine kinase receptor. This receptor is encoded by sevenless and 

the ligand of this receptor is the product of the Boss locus presented by the 

neighbouring R8 cell (for review, see Rubin, 1991). The intermediates of this 

transduction pathway are very similar to those in the torso pathway, except the end 

results are different, and in this case probably lead to the activation of the sina 

transcription factor

Complementation tests between the dominant suppressor of torso gain-of- 

function alleles and mutations identified as enhancers of a hypomorphic allele of.vev 

[E(sev) loci] , showed that four of these mutations disrupt the Son o f sevenless (Sos) 

or the ras-I loci (Simon et al., 1991) In addition to Sos and ras-l they showed that 

three other enhancers of sevenless mutations suppress the tor gain-of-flinction 

phenotype E(aw)1A, E(.wv)2B and E(.v<?v)3A (Simon et a l , 1991). The E(.vt'v)2B 

encodes a protein containing SH2 and SH3 domains (Simon et al., 1993) The gene 

downstream o f receptor kinases (drk), was independently cloned by identification as a 

mutation in a screen for second site modifiers of both gain and loss of function sev 

alleles, and has been shown to be the same as E(.vev)2B (Olivier et al , 1993) The 

biological activity of this protein correlates with binding of its SH2 domain to 

activated receptor tyrosine kinases and concomitant localisation of drk protein to the 

plasma membrane In vitro, drk protein has been shown to bind directly to the C- 

terminal tail o f Sos, a guanine nucleotide releasing protein, which leads to the 

activation of the Dra.v-1 protein These results suggest that drk is the linking molecule 

between receptor tyrosine kinases and Sos through its SH3 domains thereby coupling 

receptor tyrosine kinases to Ras (Olivier et a l , 1993)

A screen for dominant suppressors of the eye phenotype (reduced number of 

ommatidia and rough eye surface [Perrimon et al., 1985]) and eclosion defects of the 

weak D-raf' 1 ,()(/>/»l( 1 ,(>) a||e|ei identified Dominant suppressor o f Raf (DawI) 

(Tsuda el al., 1993) Loss of function mutants of Daw die during larval/pupal stages
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with severe defects in tissues containing proliferating cells inside normal looking 

larvae Embryos derived from germline clones homozygous for Dsor which lack any 

maternal contribution of the gene, have both anterior and terminal defects, showing 

that Dsor is essential for the development of the termini D.vor has been cloned and 

encodes a serine/threonine kinase similar to MAP kinase activator, or extra cellular 

signal regulated protein kinase (ERK's)(Tsuda et al., 1993). R af 1 has been shown to 

activate MAP kinase activator (Kynakis et al., 1992; Howe el al., 1992). Since the raf 

kinase and MAP kinase activator are highly conserved between Drosophila and 

vertebrates a MAP kinase homologue would be expected to function downstream of 

Dsor. Dm-ERK-A a Drosophila homologue of ERK may be the candidate (Biggs and 

Zipursky, 1992) The multifunctional nature of D-raf indicates that D-raf is involved 

in a variety of transmembrane signalling processes associated with both cellular 

proliferation and differentiation These experiments provide conclusive evidence of the 

extensive overlap between the torso and sevenless receptor tyrosine kinase pathways 

(Fig 1 6 ) The sevenless signal transduction pathway results in activation of the si no 

transcription factor resulting in R7 photoreceptor cell fate The end result of the torso 

signal transduction pathway is the localised zygotic transcription of the terminal gap 

genes huckebein and tailless For this to happen there is presumably one more widely 

distributed transcription factor which is activated as a result of this pathway, thereby 

leading to the localised transcription of huckebein and tailless This localisation of 

terminal gap gene expression requires the activity of the bicoid gene in the anterior 

pole

The zygotic gap genes tailless and huckebein are transcribed in domains 

restricted to the poles of the embryo, and have mutant phenotypes similar to the 

maternal terminal class genes (Pignoni et al , 1990, Bronner and Jackie 1991) The 

domains of expression of the terminal gap genes ill and hkb are dependent on torso 

activity The spatial control of hkb and ///expression does not involve interactions 

with each other, or any regulatory input from the central gap genes
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The terminal gap genes prevent métamérisation by repression o f the central gap genes, 

thereby distinguishing the segmented trunk from the unsegmented terminal regions of 

the embryo (Klingler el a i, 1988, Strecker el ai, 1988, Weigel el a i, 1990)

Neurogenesis in Drosophila

Much of what is known about the cellular basis of neural development in the 

nervous system of Drosophila, comes from comparisons with work first carried out in 

grasshopper embryos The model of how the array of neurons arises, was originally 

obtained by microscopic observation and laser ablation studies. Grasshopper embryos 

and their individual cells are five to tenfold larger than in Drosophila, and their 

embryonic development is about twenty fold slower Most of the neurons in the 

grassshopper CNS arise from neuroblasts, about 30 of these cells per hemisegment 

differentiate in a reproducible order from the ventral ectoderm ( Doe and Goodman. 

1985). Ablation of a particular neuroblast leads to its replacement by differentiation of 

another ectodermal cell ( Doe and Goodman, 1985b), suggesting that stochastic 

processes determine which cell will become a neuroblast and that when one forms, it 

inhibits its neighbours from also becoming neuroblasts These experiments also 

suggest that the identity of a particular neuroblast is dependent on where it forms in 

the array Each neuroblast is a stem cell with a characteristic lineage, it buds off a 

series of ganglion mother cells (GMC's) which each divide once to give two neurons 

The identity of this neuron pair is dependent on the identity of its parent GMC, which 

in turn is dependent on the identity of the parental neuroblast (Doe and Goodman. 

1985b) Ablation experiments also suggest that the two neurons derived from each 

GMC are initially identical, their final identity being determined by stochastic 

interactions between them (Kuwada and Goodman, 1985) During grasshopper 

development segments are generated sequentially as the cells o f the embryo 

proliferate By contrast, in insects such as Drosophila the entire body plan is 

established simultaneously at the blastoderm stage Despite the different early
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embryonic events in grasshoppers and Drosophila, the neuronal anatomy o f  these two 

organisms is remarkably similar (Thomas el ai, 1984)

At cellular blastoderm the two halves of the presumptive neurogenic region are 

separated by the most ventral cells of the embryo, which invaginate to form the 

mesoderm During gastrulation the invagination of the mesoderm along the ventral 

furrow causes joining of the two halves of the neuroectoderm at the ventral midline 

(Fig 1.7) During the four hours following gastrulation the neurogenic region exhibits 

three waves of neuroblast formation Neuroblasts are formed from single ectodermal 

cells which enlarge and delaminate into the embryo

The first two waves of neuroblast formation (SI and SII) produce three columns 

of neuroblasts which extend along the anterior-posterior axis on each side of the 

embryo giving medial, intermediate and lateral neuroblasts in each half of the 

neurogenic region The first ten neuroblasts of the SI class form in the following 

columns, four lateral, two intermediate and four medial neuroblasts (Jimenez and 

Campos-Ortega, 1990) The next set of neuroblasts, the SII class, results in the 

addition of two neuroblasts to the medial column and between five and six to the 

intermediate column (Hartenstein and Campo-Ortega, 1984) The last wave of 

neuroblast formation. Sill adds neuroblasts throughout the neurogenic region 

resulting in approximately twenty five neuroblasts arranged roughly in four columns 

and six rows (Doe el al., 1988, Jimenez and Campos-Ortega, 1990)

A neuroblast is a stem cell and soon after formation it begins to produce an 

apparently stereotyped cell lineage Each neuroblast undergoes approximately five 

asymmetrical divisions to produce five smaller ganglion mother cells Each ganglion 

mother cell divides to produce two neurons Studies in a variety of insects show that 

an identified neuroblast generally produces a characteristic chain of progeny (Taghert 

and Goodman. 1984) (Fig I 7b)



Neuroblast formation.

There are two main classes of gene known to be involved in this process, the 

proneural and the neurogenic genes. These genes have broadly opposite roles in 

neuroblast determination. Loss of function of the proneural genes results in a decrease 

in the number of neuroblasts formed (Jimenez and Campos-Ortega, 1990), whereas 

absence o f function of the neurogenic genes results in a larger number of neuroblasts 

being formed (Lehmann et al., 1983).

The proneural genes include daughterless, and the achaete (ac), scute (sc), lethal 

of scute (I'sc) and ásense (ase) genes of the achaete-scute complex (AS-C) . The loss 

of function of the proneural genes results in the formation of fewer neuroblasts 

(Jimenez and Campos-Ortega, 1990, Cabrera etal., 1987) Adding additional copies 

of the wild-type gene results in excessive neuroblast formation (Brand and Campos- 

Ortega, 1988). The loss and gain of function phenotypes of the AS-C mutations 

suggest that the role of the proneural genes is to repress epidermal development and 

promote the neural fate

The ac protein is present in four clusters of four to six ectodermal cells, each in 

stereotyped positions within each hemisegment of the neurogenic region One 

neuroblast will form from each cluster, at which point the ectodermal cells will lose ac 

expression, achaete expression, however, persists in the neuroblast until just before it 

divides Later ac expression reappears in a more complex pattern which preceeds SII 

neuroblast formation Presumably one neuroblast is formed from each of these clusters 

(Cabrera etal., 1987; Cabrera, 1990).

I'sc protein is also detected in clusters of four to six ectodermal cells, with each 

cluster producing one I'sc positive neuroblast I'sc seems to be expressed in every 

neuroblast (Cabrera, 1990). Expression of AS-C genes is directly related to neural fate, 

only those cells that maintain expression of either ac or I'sc become neuroblasts 

Genes of the achaete-scute complex encode proteins with basic helix-loop-helix DNA- 

binding motifs and appear to form heterodimers with the daughterless protein which 

act as neural-specific transcription factors (Cabrera and Alonso, 1991). Further
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experiments looking at under and over expression of either ac or sc in sensory 

precusors concluded that AS-C genes are involved in triggering neural fate, but are not 

involved in determining the identity of the neuron or sensory precursor.

The neurogenic class of genes include Notch, Delta, mastermind, bigbrain, 

neuralised, and several genes of the Enhancer o f split complex and shaggy (Lehmann 

et a l, 1983; Bourouis et al., 1989). Loss of function of these genes results in all the 

cells of the neuroectoderm developing into neuroblasts rather than into epidermis An 

increase in neurogenic gene function results in fewer neuroblasts being formed. 

Embryos lacking neurogenic gene function initially show normal expression of ac and 

I'sc, but expression is never restricted to a single neuroblast. Since expression persists 

in all the cells of the cluster they all develop into neuroblasts. Neurogenic genes limit 

AS-C expression to a single cell per cluster by cell interactions described as lateral 

inhibition (Wigglesworth, 1940) The lateral inhibition signal and its receptor are 

thought to be mediated by Delta and Notch respectively. They both encode membrane 

proteins with extracellular EGF like repeats (Wharton et al., 1985, Kopozynski et al.,

1989). The protein encoded by shaggy is a putative serine/threonine kinase and is 

therefore a candidate in a process leading to the phosphorylation/inactivation of AS-C 

proteins. This signal ultimately leads to loss of AS-C expression in cells adjacent to the 

neuroblasts and these cells differentiate into epidermis The genes of the Enhancer of 

split complex have been shown to act downstream of all the other neurogenic loci 

(Vassin, Vielmetter and Campos-Ortega 1985; De la Concha et al 1988). The function 

of E(spl) is to receive or to process signals that regulate the epidermal pathway of 

development within the neuroectoderm (Technau and Campos-Ortega, 1987). As 

several of the E(Spl) genes encode helix-loop-helix proteins, they may act to specify 

epidermal development analogously to the role of the AS-C genes in specifying neural 

development

The pattern of neuroblasts within the embryonic CNS show segment specific 

differences, particularly between the thoracic and abdominal segments (Bate, 1976). 

Homeotic genes are thought to regulate the spatial expression of the proneural genes.
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thereby producing different neuroblast patterns in different segments

Cell fate within the CNS must be controlled, at least conceptually, by three 

classes of genes

1) Neuroblast identity is thought to be determined by genes regionally expressed 

within the neuroectoderm, which provide two dimensional positional cues along the 

anterior-posterior and dorsal-ventral axes. The neuroblast identity genes would 

translate these positional cues into specific neuroblast lineages

2) GMC identity genes are expressed in subsets of GMC's in response to neuroblast 

identity genes These genes control the identity of individual GMC's and their progeny.

3) Neuronal identity genes are expressed in the neurons as they are generated by 

asymmetric division of a ganglion mother cell.

Few NB identity genes have been identified, one example is the gene prospero 

(Doe et a!., 1991). Homeo box genes such as fushi tarazu (ftz) and evenskipped (eve) 

are expressed in GMC's and control the fate of them and their neuronal progeny Table 

one shows a list of genes known to control neural fates

Using enhancer detector transposons to detect novel Drosophila genes.

In the past screening for developmentally active genes has relied on identification 

of obvious morphological disruptions caused by the loss of function of the gene This 

can be problematic if the phenotype is subtle or affects an internal organ such as the 

CNS Genes can also function at more than one time during development Mutations 

in these genes may produce phenotypes associated with only the earliest function. If 

the gene product can be replaced in part by another gene, that is the gene's function is 

at least partially redundant, then a mutation in such a gene may not give a detectable 

phenotype.

The technique of'enhancer trapping' can detect genes that may have been missed 

in classical genetic screens for the reasons discussed above, since it allows genes to be 

detected by their patterns of expression rather than by their mutant phenotypes The 

technique relies on the assumption that developmentally important genes are expressed
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in temporal and spatial patterns related to their function, an assumption which over the 

years has been shown to be often, but not always the case An enhancer detector 

transposon consists of the weak, basal P-element promoter fused to the Escherichia 

coli lacZ gene which encodes 13-galactosidase When this transposon is introduced 

into the Drosophila genome, the 13-galactosidase gene is only active if the transposon 

integrates close to a transcriptional enhancer. The enhancer directs expression from 

the weak promoter, resulting in 13-galactosidase expression, in a pattern which often 

reflects the expression pattern of the neighbouring gene normally regulated by the 

enhancer (O'Kane and Gehring, 1987). The presence of B-galactosidase can be 

detected in situ using either the chromogenic substrate X-gal or antibodies raised to 13- 

galactosidase Although large numbers of discrete lines can be produced by micro­

injection, it is now easier to produce different insertions by transposase-mediated 

mobilisation of the transposon Fortunately a stable genomic source of P-element 

transposase is available in Drosophila (Robertson el al., 1988). New enhancer-trap 

insertion lines can be made by crossing flies carrying the enhancer detector transposon 

to flies which contain a disabled P-element which encodes transposase but cannot 

jump.

Another advantage of screening for novel genes using enhancer traps is that it is 

relatively staightforward to clone the gene flanking the transposon In many cases to 

date a gene with the expected pattern of expression has been found near to the 

insertion site eg fasciclin III and collagen IV (Bellen el al., 1989). The number of 

enhancer trap insertions which show specific expression patterns is fairly high, Bellen 

el al (1989), found that 65% of lines are expressed in a tissue specific pattern during 

embryogenesis Also 35% of lines are expressed in the embryonic CNS (Bier et al., 

1989). Only 10% of P-insertions cause homozygous lethality or an obvious phenotype 

(Freeman, 1992), but given a source of transposase the P-element can excise 

producing small deficiencies at low frequency Many of the genes detected by 

enhancer detector transposons have transcription patterns similar to the lacZ 

expression shown by the detector transposon Below are a number of examples of
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genes that have either been detected and cloned by the use of enhancer detector 

transposons, or were previously identified mutations that have been able to be cloned 

by this method.

The gene prospero was identified in an 'enhancer trap' screen by its expression in 

a subset of neuroblasts, sensory neuron precursors, and identified glial precursors It is 

not expressed in neurons. Neuroblasts lacking prospero gene function generate 

abnormal cell lineages, producing incorrectly specified progeny that differentiate into 

neurons exhibiting pathfinding defects, prospero is therefore required in neuroblasts to 

specify neuronal fate The expression pattern of prospero transcripts as seen by in situ 

hybridisation with prospero cDNA is very similar to the original lacZ expression 

pattern, prospero was cloned using a P-lacW insertion 150 base pairs away from the 

site of the start of transcription (Doe et al., 1991).

The gene deadpan was also isolated from an enhancer trap screen looking for a 

gene expressed in all the neurons and their precursors The function of deadpan is 

essential for viability. Complete lack of deadpan gene function affects the function but 

not the gross morphology of the CNS. Again the expression of deadpan transcripts is 

pan-neural closely resembling the original lacZ expression The lack of a 

morphological phenotype, explains why this gene was not detected in previous genetic 

screens for genes involved in CNS function The protein encoded by the deadpan 

transcript has a helix-loop-helix domain A P-lacW element less than 1000 base pairs 

5' of the cDNA was used as the molecular entry point for cloning the gene (Bier el 

al, 1992).

couch potato was also identified by P-element mediated enhancer detection on the 

criteria that it expressed lacZ in the sensory mother cells (SMC's) of the embryonic 

PNS and more differentiated cells of the PNS. This gene is essential for embryonic 

development and is re quired for normal adult behaviour Again no obvious 

morphological defects have been observed in the PNS Bellen et al., 1992, also 

showed that the P-element enhancer detectors are inserted into key regulatory 

elements of couch potato All the P-element insertions into couch potato are clustered
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within a genomic fragment 200 base pairs upstream of the 5' end of the cDNA A 

genomic fragment carrying these sequences was fused to a heterologous promoter 

driving expression of lacZ Embryos of two independently transformed lines stained 

for B-galactosidase activity show the expression pattern of lacZ essentially 

corresponds to the expression pattern in the enhancer detector strains (Bellen el al., 

1992). The two proteins encoded by the couch potato gene contain similar, but 

nonidentical, RNA-binding domains that are most homologous to the RNA-binding 

domains of the Drosophila embryonic lethal abnormal vision gene and a human brain 

protein

The sloppy paired {sip) locus was cloned by P-element mediated detection Two 

cDNA clones were isolated that map to the sloppy paired loci, sip 1 and slp2 sip 1 is 

less than 500 base pairs from one P-lacZ insertion 509; slp2 is ~1.5 kb from another 

insertion 208, about 8 kb away from the first insertion Each of these insertions are to 

the 5' of the transcriptional units The distribution of the sloppy /wired mRNA's 

closely resembles the expression of lacZ in the original enhancer detector strain This 

expression is segmentally repeated and reminiscent of the pair-rule and segment 

polarity genes Loss of function of these transcripts produces a pair-rule phenotype 

and head defects which correspond to the pattern in which it is expressed The sip 

transcripts encode proteins with a putative DNA binding domain, the forkhead domain 

(Grossniklaus et al., 1992).

The reporter gene insertion in the gene teashirt was expressed in a gap gene like 

pattern covering the trunk region of the embryo In-situ hybridisation o f the teashirt 

cDNA probe showed that this gene is expressed in a similar pattern to the reporter 

gene The insertion is less than 1 kb to the 5' of the teashirt cDNA Mutations in this 

gene show that it is required for the normal development of the trunk region of 

embryos which correlates with the spatial expression of the gene in the anterior 

posterior axis but not in the dorsal ventral axis teashirt encodes a protein with three 

distantly spaced zinc finger motifs (Fasano et al., 1991)
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An insertion into the gene apterous was detected in flies homozygous for a P- 

element insertion which exhibited a wingless and haltereless phenotype; characteristic 

of the apterous mutation The nature of the defects are consistent with the pattern of 

apterous expression in the larval imaginal wing and haltere discs, apterous is also 

expressed in a subset of cells in the embryonic CNS and larval PNS. The location of 

the rk568 insertion was found to be 42 bp upstream of the 5' end of the longest cDNA 

clone. The cDNA clone encodes for a protein with a homeo domain and a cysteine/ 

histidine rich domain known as the LIM domain (Cohen et a/., 1992).

The gene ming was detected by its expression in a subset of neuroblasts at 

reproducible points in their cell lineage The mRNA pattern of the ming gene is 

indistinguishable from the lacZ expression of the enhancer detector strain. Defects in 

ming result in precise alterations in the CNS gene expression, defects in axonogenesis 

and embryonic lethality The insertion is less than 1 kb from the cDNA, which encodes 

for a protein with a zinc finger motif (Cui and Doe, 1992)

Other genes have been cloned using this technique that 1 shall not discuss in 

detail, genes such as germcell less (Jongens et a l , 1992), scabrous (Baker and Rubin, 

1990), escargot (Whitely el al , 1992), argos giant lens (Freeman el al., 1992; 

Kretzschmar et al., 1992) and rutabaga (Levin et al., 1992).

Second generation enhancer traps.

A second generation enhancer trap system has been developed (Brand and 

Perrimon, 1993). In these enhancer detector transposons the reporter gene is the yeast 

transcriptional activator GAL4 This transcription factor has been shown to function in 

Drosophila, and activates genes which have a GAL4 binding site linked to their 

promoters This binding region is known as the upstream activating site (UAS) This 

system enables any cloned gene to be expressed in the cells in which a particular 

GAL4 enhancer trap is active The gene attached to the UAS can encode markers for 

cell surfaces, the nucleus or cytoplasm, this will allow precise characterisation of the 

position and morphology of many cell types If UAS is linked to a gene involved in
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development, the effect of ectopic expression in the cells expressing GAL4 can be 

determined. In our laboratory this system is being used to express a cold sensitive ricin 

a subunit under the control of UAS, in the same cells as GAL4 enhancer trap lines. 

This system should provide a mechanism of ablating specific cells and then looking for 

a consequence of this ablation.

Enhancer detectors with 13-galactosidase directed cytoplasmically rather than 

nuclearly have been made in the hope that axon fibres of neural cells expressing lacZ 

would become visible P[ClrB] made by removing the nuclear targeting sequence from 

the P-lacZ proved to be not wholly satisfactory; while the fusion was cytoplasmically 

localised it did not fill axons in sufficient quantity (Smith and O'Kane, 1991).

A recent approach to construct an enhancer detector with cytoplasmic lacZ 

expression, has been to fuse the Drosophila kinesin gene, that encodes a microtubule- 

associated motor protein, to lacZ (Giniger el al., 1993).
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Figure 1.1 Embryogeoetia of D nm ophU m m rim mog m tU r. Numbers refer to 
developmenul stage. Time refers to number of hours after fertilisation at 23°
C.Embryos are orientated anterior left, posterior right, dorsal top and ventral bottom, 
(adapted from Lawrence, 1992).
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Figure 1.2 Embryonic head involution. Head involution is initiated by dorsal 
closure at the end of stage 13. By stage 14 the gnathal buds (md/ mx/ lb) have moved 
orally and the md/ mx have reached the lateral margins o f the atrium. The dorsal ridge 
has moved anteriorly initiating the formation of the frontal sac (ft). Progression o f the 
dorsal fold and further deepening of the frontal sac continues during stage 13 and 16 
until the dorsal subdivisions of the antenno maxillary complex attain their position at 
the anterior.
Bold numbers refer to developmental stage. Numbers 1*12 arbitarily label various 
regions of the procephalic lobe (pi) and the dypeolabrum (cl) before and after head 
involution, (taken from Campos-Ortega, 1983).
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C ap Ganaa

Late (Post-Cellularization) Expression
H o m a o tic  Canaa
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Figure 1.4 The spatial domains of gene expression in the cephalic region of the 
Drosophila enihryo (adapted from Mohler, 1993)

Abbreviations hkb. huckebein, til, tailless, old. orthodenticle, ems, empty spiracles, 
gt, giant, hb. hunchback, hid, buttonhead. fish, forkhead, lab. labial. Dfd. deformed. 
Scr, sex combs reduced, sal. spall, cue. cap and collar
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Figure 1.6: A comparison of (he torso and sevenless tyrosine kinase signal 
transduction pathways (adapted from Tsuda et al., 1993 and Dickson et al, 1992).

A: torso leminal signal transduction pathway- the torso receptor tyrosine kinase is 
activated by the binding of its ligand. The genes tsl, Irk, fs{ 1 )ph, /v( I )N arc upstream 
of torso. D-rof acts downstream of torso. The protein drk is thought to link the signal 
transduction from the tyrosine kinase receptor to Sos through its SH3 domains Sos 
activates ras\ which is upstream oi D-raf and csw. A non receptor phosphatase 
encoded by the corkscrew gene csw also acts downstream of torso and in concert with 
D-raf the interaction between csw and D-ra/is not known. D-.vwl acts downstream 
of D-raf and csw and is a protein kinase similar to MAP kinase activator This 
predicts a MAP kinase like molecule downstream of D-sor, Dm-ERK-A may be the 
candidate The transcription factor which activates hkh and til is still not known 
Embryos double mutant for the zygotic genes huckebem and tailless show terminal 
defects and are the target genes of the terminal system. The expression pattern of 
tailless suggests that the terminal signal transduction pathway regulates til positively 
at the posterior but negatively at the anterior end bed is also involved in the control 
of tailless expression at the anterior end

B: The seven less signal transduction pathway-Activation of sev results after 
interaction with Boss ligand which leads to an increase in the amount of active GTP- 
bound Rasl protein either by stimulation of.S'av ( a putative guanine nucleotide 
exchange factor homologue) or by inhibition of Gap I ( a putitive Ras GTPase 
activating protein) or both D-raf acts downstream of Rasl playing a crucial role in 
the transduction of the signal towards the nucleus where a possible target the sum 
protein is localised
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Figure 1.7 Neurogenesis in the Grasshopper.
A: The transformation of a uniform epithelial sheet of ectodermal cells into the 
stereotyped pattern o f unique neuronal precursor cells.
B: Lateral inhibition
i: All the cells o f the neuroectoderm are initially equivalent and interact with
each other.
ii: One cell begins to enlarge into a neuroblast and inhibits the adjacent cells from
doing so.
in: If an enlarging neuroblast is ablated the adjacent neuroectodermal cells are
released from inhibition and one will enlarge to replace it. 
iv: Eventually all the cells differentiate into either neuroblasts or nonneuronal
support cells.
C:The second step o f neurogenesis is the production of a characteristic family of 
neurons from each neuroblast.
(taken from Doe and Goodman, 1985)
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Gene Phenotype Neuroectodenn neuroblasts ganglion
mother
cells

neurons Protein motifs

Prc-ncuroblast 
gene activity

Loss of 
nervous 
system

AS-group
lethal of scute subset clusters most - helix-loop-

helix
scute subset clusters subset - • hclix-loop-

helix
achaete subset clusters subset • • helix-loop-

helix
daughterless constitutive constitutive 7 7 helix-loop-

helix
Post-
neuroblast
gene activity
Neuroblast
group
asense loss of nervous 

system
- mou 7 - helix-loop-

helix
snail ? - subset subset subset Zn fìnger
seven-up ? subset clusters subset 7 7 Zn fìnger
hunchback ? no all most most Zn finger
runt 7 subset subset subset 7
prospero Abnormal

fasciculation
most most • homeodomain

pox-ncuro 7 subset subset subset homeodomain
cut subset subset subset homeodomain
gooseberry
BHS4

7 subset subset mihsct homeodomain

Krüppel 7 7 7 subset Zn finger
dPOU-19 A 28 7 subset • - POU domain
GMC group
fushi-tarazu Sibling

transformation
• subset subset homeodomain

even-skipped sibling
transformation

* subset subset homeodomain

Table I.I: Neural fate gena (taken from Cabrera, 1992).
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Figure 1.9 Detection of genomic regulatory elements with enhancer detector 
transposons.

E-represents a genomic regulatory element (enhancer). Genomic enhancer 
elements can act at a distance and in either direction to stimulate expression from a 
promoter. The enhancer detector element consists of the E.coli 6-galactosidase 
gene fused to a weak promoter. If the transposon integrates such that it is near to a 
genomic enhancer then B-galactosidase will be expressed under the control of that 
genomic element.
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Chapter 2
Materials and Methods

2.1 Standard Materials for growth of E.coli.

LB: 1% Bacto-tryptone (w/v); 0.5% Bacto-yeast extract (w/v); 0.5% NaCl (w/v); 
adjusted to pH 7.

LB agar plates: 1.5% agar dissolved in L.B

SOB: 2% Bacto-tryptone (w/v); 0.5% Bacto-yeast extract (w/v); 0.05% NaCl (w/v); 
2.5mM KC1 (add as a solution); pH to 7.0 with 5M NaOH

SOC: SOB +20mM glucose

2.2 Making competent E.coti cells.

FSB: KC1 lOOmM, M n C ^ ^ O  45mM, CaCl2 H2O 10mM, Hexammine cobalt chloride 
3mM, K acetate lOmM, redistilled glycerol 10% (w/v).

Bacteria were made competent to take up exogenous DNA by the procedure of

Hanahan (1986). Stocks of bacteria were maintained as 1ml liquid cultures made 25% for

glycerol and stored at -70 °C A small quantity of this glycerol stock was removed using a

sterile loop and then streaked across an L-agar plate and grown overnight at 37"C to

obtain single colonies A single colony was used to inoculate 500 mis of L-broth and

shaken at 37°C in an orbital shaker until the O D 550 had reached approximately 0 5 The

culture was then transferred to a sterile 500 ml tube and the cells were pelleted by

centrifugation at 7000 r.p m for 15 minutes After this the supernatant was removed and

the pellet was gently resuspended in 1/3 culture volume of FSB and incubated on ice for

10-15 minutes The cells were pelleted by gentle centrifugation and resuspended in 1/12.5

of the original volume DMSO was added to a final concentration of 3 5% (v/v) into the

middle of the culture and swirled for 5-10 seconds, it was then left on ice for 5 minutes A

second aliquot of DMSO was added so that the final concentration was 7% (v/v) the cells

were left for 10-15 minutes on ice Cells were aliquoted into screw cap cryogen tubes,

flash frozen in liquid nitrogen and stored at -20°C.

36



2.3 Transformation of competent E.coli

To transform competent bacteria 5-50 ng of DNA in a maximum volume of 15pl of 

TE, was added to a 100 pi aliquot of competent cells This was incubated on ice for 30 

minutes and then a 30 second heat shock at 42°C was performed, then the cells were 

returned to the ice for 5 minutes. After this time 1 ml of SOC was added and the culture 

was incubated at 37°C for 30 minutes. The cells were gently pelleted by spinning at 6000 

r p m. for two minutes in a MSE microcentaur and resuspended in 100 pi of L broth The 

bacterial cells were then spread on a L-agar plate containing 50pg Ampicillin per ml The 

plates were incubated overnight at 37°C and then examined for transformants 

Transformation frequencies of lxlO6 - lxlO7 colonies per pg of DNA were routinely 

obtained for E.coli XLI-blue when using this protocol

2.4 Isolation of plasmid DNA (Alkaline lysis method).

Solutions for routine DNA isolation

TE: lOmM Tris Cl (pH 8); ImM EDTA (pH 8).
Isopropanol: 100%
Ammonium Acetate: 7.5M 
E.D.T.A.: 0.5M (pH 8)
LiCl: 4M 
ethanol: 100%. 
ethanol: 70%

2.4.1 Small scale 'minipreps'.

Materials.
Solution I: Lysis solution: 25mM Tris Cl (pH 8), lOmM EDTA (pH 8); 10% glucose;
0 lmg / ml RNAse (DNAse free), Img / ml lysozyme (added just before use)
Solution II: Alkaline SDS: 0 2M NaOH, 1% SDS
Solution III: Plasmid Hi-salt solution: 3M potassium acetate, 115 % acetic acid (v/v) 

A single bacterial colony was inoculated into 10 ml L-broth with Ampicillin 50pg/ ml 

and grown overnight at 37 °C in an orbital shaker 1 5 ml of culture was pelleted by 

centriftjgation at 6000 rp m  for 5 minutes in a microcentaur and the pellet was then 

resuspended in lOOpI of solution 1. 200pl of solution 2 was added and mixed by inverting 

the Eppendorf tube, followed by 150pl of solution 3 The now lysed bacteria were 

incubated on ice for 10 minutes and then centrifuged at 12000 r p m for 10 minutes to
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pellet the bacterial debris The supernatant was transferred to a new Eppendorf tube and

an equal volume of isopropanol was added (500^1) After inversion the tube was

centrifuged for 20 minutes at 13000 r.p.m. to precipitate the nucleic acids The DNA was

phenol extracted, chloroform extracted and ethanol precipitated as described in section

2.4 3 and 2.4 4 Typically 1-2 pg of plasmid DNA was obtained using this method

2.4.2 Large scale 'maxipreps'.

Materials (as for small scale)
Ethidium bromide: 10 mg/ml.
Caesium chloride
Isopropanol saturated with S.TE buffer: lOmM Tris (pH 8); lOOmM NaCl, ImM 
EDTA 0.5M (pH 8)

Method.

A 10 ml bacterial culture was grown overnight as above This was then used to 

inoculate 500 ml of L-broth where the concentration of Ampicillin was 50 pg/ ml The 

culture was shaken vigourously in an orbital shaker for 18 hours at 37“C. The cells were 

harvested in two 250 ml Beckman plastic bottles and pelleted at 7000 r.p.m. in a MSE 

centrifuge for 20 minutes at 4 °C. The pelleted cells were resuspended in 4 mis of solution 

1 and placed on ice 8 mis of solution 2 was added and after a further 15 minutes on ice 

12mls of solution 3 was added The tube was mixed by gentle inversion The mix was spun 

at 13000 r.p.m, for 30 minutes at 4 °C in a Beckman centrifuge The supernatant was then 

decanted into fresh oakridge tubes 0 6 volumes of isopropanol was mixed with the 

supernatant and incubated at room temp for 15 minutes The oakridge tubes were then 

spun at 10000 r.p.m for 20 minutes The supernatant was discarded and the pellet air 

dryed following a wash with 70% ethanol The pellet was resuspended in 5.5 ml of TE, 

and 6 05 g of CsCI and 0 7 ml of 10 mg/ ml EtBr was added The solution was then 

transferred to a Beckman vti 65 heat seal tube The tube was ultracentrifuged at 45000 

r.p.m. for 18 hours in a Beckman (vti 65) rotor The CsCI gradient produced by 

ultracentrifugation causes the DNA to become localised in two discrete bands The lower 

band is composed of supercoiled plasmid DNA and was extracted using a syringe and the 

Et Br was extracted with STE saturated isopropanol Four volumes of TE were added and
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the DNA was precipitated with 3 volumes of 100% ethanol. This was spun at 13000 r.p m 

for 30 minutes, washed with 70% ethanol and vacuum dried The pellet was resuspended 

in 1 ml of TE.

2.4.3 Phenol/ chloroform extraction of protein from DNA 

Phenol /(chloroform/isoamyl alcohol, 24:1) 1:1

An equal volume of phenol chloroform mixture was added to the aqueous DNA 

solution. The two phases were mixed and then separated by centrifugation for five minutes 

at 6500 r.p.m. The upper aqueous layer was removed leaving the protein residue at the 

interface This procedure was repeated until the interface was clean

2.4.4 Ethanol precipitation of DNA.

Ethanol 100%
3M Sodium Acetate pH 5.2

Sodium acetate was added so that it was one tenth of the volume of the DNA 

solution Ice cold Ethanol was added until the final volume was three times that of the 

original DNA solution The solution was placed at -70°C for thirty minutes or in dry ice 

for ten minutes and then centrifuged for thirty minutes at 13000 r.p.m. The pellet was 

washed in 70% ethanol vacuum dried and resuspended in T E to a concentration of 

lpg/pl.

2.5.1 Restriction digestion of DNA.

DNA was routinely cut with restriction enzymes as described in Maniatis el ai„ 1982 

Generally DNA was cut in a volume of between 10 pi and 100 pi containing IX reaction 

buffer (appropriate to the enzyme) and <l/10th volume restriction enzyme Digests were 

incubated at 37°C for 3 hours Restriction enzymes and buffers were supplied by Gibco 

BRL.
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2.5.2 Size separation or DNA fragments.

Fragments of DNA were separated on the basis of their size by electrophoresis in 

agarose gels by the standard method in Maniatis el al. 1982. In outline, for the purposes of 

visualisation of the sizes of various DNA fragments, DNA was mixed with loading buffer 

containing glycerol and coloured dyes (bromophenol blue and xylene cyanol) and loaded 

into wells in a 0.7% to 2% agarose gel in tris/ borate/ EDTA buffer This gel was then run 

at between 100 and 150mA until the DNA fragments had migrated far enough to become 

separated Ethidium bromide (0.5pg/ml) was added to the gel to allow visualisation of the 

DNA fragments by U.V. illumination (254 nM)

If a DNA fragment was to be purified from the gel by geneclean, the gel was made 

and run in a tris/acetate / E D T A  buffer

2.5.3 Transfer of DNA to nylon membrane.

Fragments of DNA which had been size fractionated in agarose gels were often 

transferred to nylon membranes for the purposes of performing Southern hybridisations 

Materials.

Alkali bufTer: 0 5M NaOH: 1.5M NaCl
Ammonium acetate: IM
Nylon membrane: Hybond N (Amersham).
ssc

Method

After electrophoresis the DNA on the gel was denatured by incubating in alkali buffer 

for 30 minutes The DNA was neutralised by washing twice in ammonium acetate (15 

minutes per wash) The DNA was transferred to the nylon membrane by capillary action 

A piece of 3mm Whatman paper (wetted with 20X SSC) was placed on a glass plate The 

gel was then placed on top of the Whatman and then the nylon membrane (cut to size and 

pre-wetted in SSC) was placed on top of the gel This was followed by three more layers 

of Whatman (again pre-wetted and cut to size) and finally on top 10 cm of tissues 

Another glass plate was placed on top of the tissues and a moderately heavy weight (500
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g) was placed on the glass plate. Transfer was allowed to proceed for between 1 hour and 

overnight

After transfer the nylon membrane was removed from the stack, allowed to air dry 

and then the DNA was crosslinked to the membrane by U V illumination (254 nM) for 2 

to 3 minutes Membranes were stored between sheets of Whatman paper before use 

2.6 Preparation of DNA probes

2.6.1 Preparation of Digoxygenin labelled probe.

This protocol is taken from the non-radioactive DNA labelling kit supplied by 

Boehringer Mannheim 

Materials
lOx Hexanucleotide Mix: Boehringer Mannheim
10X Dig DNA labelling mix: Boehringer Mannheim
Klenow fragment of DNA polymerase 1: B.R.L. (6 units per ml).
LiCI 4M

Method

Linearised template DNA was denatured by boiling for 10 minutes in a water bath and 

then chilling quickly in a dry ice/ethanol bath The following components were then added 

to an eppendorf on ice: 100 ng denatured linearised DNA, 2 pi lOx hexanucleotide mix, 2 

pi lOx DIG labelling mix; 1 pi Klenow enzyme, dH2 0  to make the volume to 

20pl. The reaction was then incubated at 37°C for I hour and then the probe was 

precipitated by adding 12 pl LiCI and 330 pl prechilled ethanol and by incubating at -70°C 

for 30 minutes or more The precipitate was spun down in a MSE microfuge at 13,000 

R P.M for 30 minutes and then washed with 1 ml of prechilled 70% ethanol The pellet 

was dried in a vacuum dessicator and then resuspended in 50 pl TE

2.6.2 Preparation of Biotin labelled probe.

Materials.
lOx llexanucleotide mix: Boehringer Mannheim
lOx Nucleotide mix: ImM dATP; ImM dCTP, ImM dGTP, 0 5mM dTTP 
Biotinylated dUTP: 0 5mM (Boehringer Mannheim)
Klenow fragment of DNA polymerase 1: URL (6 units/ml)
Hybridisation BulTer: 600mM NaCl; IX Denhardts, 50mM NaPC>4 (pH7 2), 5mM 
MgCI2
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M ethod

Linearised template DNA was denatured by boiling for 10 minutes in a water bath and 

then chilling quickly in a dry ice/ethanol bath. The following components were then added 

to an eppendorf on ice: 100 ng linearised denatured DNA; 2 pi hexanucleotide mix, 2 pi 

nucleotide mix; lpl biotinylated dUTP; lpl Klenow enzyme: db^O to a volume of 20pl 

The reaction was incubated at 37°C for 20 hours and then stopped by adding 2 pi 

E D T A The probe was then precipitated by adding 10 pi Herring sperm DNA, 11 pi Na 

Acetate and 330 pi ethanol and then incubating at -70°C for 30 minutes. The probe was 

centrifuged in a MSE microfuge at 13,000 R.P M for 30 minutes and then washed with 

prechilled 70% ethanol. Finally the pellet was dried in a vacuum dessicator, resuspended in 

20 pi TE and 280 pi of hybridisation buffer was added

2.6.3 Preparation of a radioactively labelled probe.

Radioactively labelled DNA probes were prepared by random priming 

Materials.
Solution A: 1.25M Tris (pH 8); 0.25M MgCl2 ; 0.018% 2-mercaptoethanol, ImM dATP, 
ImM dCTP; ImM dTTP 
Solution B 2M Hepes (pH 6 6).
Solution C: Random hexamers (Boehringer Mannheim) at 90 OD units/ml in TE 
OLB: Solution A: Solution B: Solution C at 100:250:150 ratio 
B.S.A.: Ultra pure (lOmg/ml) 
a 32P labelled dGTP: 10 pCi/pl
Klenow fragment of DNA polymerase I: B.R L. (6 units/ml).

Method

Approximately 50 ng template was dissolved in 32 5 pi dH20 and then denatured at 

100°C for 3 minutes The template was then incubated at 37°C for 5 minutes and then the 

following components were added in order, 10 pi OLB, 2pl B S A., 5 pi a 32P dGTP, Ipl 

Klenow The solution was mixed by pipetting and then incubated at room temperature 

overnight The unincorporated nucleotides were separated in one of two ways Either the 

volume was made up to 100 pi with TE and the unincorporated nucleotides were removed 

using a G-50 sephadex column as described in 2 6 4 or the unincorporated nucleotides 

were removed by precipitation In this case 10 pg tRNA, 12 5 pi sodium acetate and 50 pi
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isopropanol were added. The solution was incubated on ice for 30 minutes and then spun 

for 30 minutes in a MSE microfiige to pellet the probe The pellet was washed once briefly 

in ice-cold 70% ethanol and then allowed to air dry before resuspension in 50 pi TE.

2.6.4 Separation of unincorporated nucleotides.

Unincorporated nucleotides were separated from DNA probes as described in 

Maniatis el al. 1982

G-50 Column preparation.

Materials.G-50 Sephadex: Resuspended in TE.
TE: lOmM Tris (pH 8); ImM E D T A (pH 8).

Method.

To prepare a column the plunger was removed from a 1 ml plastic syringe (Becton 

Dickenson) and a small amount of siliconised glass wool was added and pushed down to 

the bottom of the syringe using the plunger The syringe was then filled with G-50 

sephadex The column was then inserted through a small hole in the lid of a Falcon 2097 

tube. An eppendorf was placed at the bottom of a 2097 tube to collect fractions from the 

column The 2097 tube was then spun at 1600 g for 4 minutes in a Mistral 2000 

centrifuge The column was washed twice with 100 pi TE The TE was removed by 

spinning 1600g for 4 minutes The eppendorf was replaced with a fresh one before the 

column was used 

Use of the G-50 Column

The volume of the probe to be separated from unincorporated nucleotides was made 

up to 100 pi with TE and this was added to the top of the column The column was then 

spun at I600g in a Mistral 2000 centrifuge for 4 minutes and the elutant was collected
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Labelled DNA was hybridised to southern blots and detected in one of 3 ways. The 

hybridisation of radioactively labelled probe was detected by autoradiography using X-ray 

film (Fuji). Digoxygenin labelled DNA probes were detected by either a colour reaction 

using N.B.T. and X-Phosphate (dig DNA detection kit), or by chemiluminescense 

( A.M P.P.D ).

2.7.1 Hybridisation and detection of radioactively labelled probe on Southern blots. 

Materials.
Components of hybridisation solutions

Boiled, sonicated, Herring sperm DNA: lOmg/ml
50x Denhardts: 5% Ficol (w/v); 1% Polyvinylpyrrolidone (w/v), 1% B S A (w/v). 
tRNA: 10 mg/ml
20x S.S.C.: 17.53% NaCl (w/v), 8 82 % Na citrate (w/v); Adjusted to pH 7.0 with NaOH

Prehybridisation solution: 50% formamide, 5x Denhardts, 5x S.S.C.; 0.1% S.D.S.; 
100|ig/ml denatured, sonicated herring sperm DNA

Washing solution 1: 2X S.S.C.; 0 1% S D S 
Washing solution 2: 0. lx S.S.C.; 0.1% S D S

Method.

The membrane, on to which DNA had been transferred was placed in a glass tube 

(Hybaid) and was prehybridised for at least an hour in 50 mis hybridisation solution at 

42°C. The radioactively labelled probe, was boiled in a water bath for 5 minutes (to make 

it single stranded) and then cooled in an ice/water bath Most of the prehybridisation 

solution was then poured away from the blot to leave just enough to keep the filter evenly 

wet (5 to 10 mis) The single stranded probe was then added to the prehybridisation 

solution and the tube was incubated rotating for 12 hours at 42°C in a Hybaid oven 

The probe was then poured off and the blot was then washed twice in washing 

solution 1 for 10 minutes at room temperature The blot was washed twice in 

100 mis washing solution 2 at 68°C for 45 minutes each wash The filter was then allowed 

to drain (but not dry out), wrapped in cling film and exposed to X-ray film (Fuji) in an a

2.7 Detection o r labelled DNA hybridised to Southern blots.
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autoradiograph cassette for between 1 and 16 hours. The X-ray film was developed under 

standard conditions described in Maniatis el al (1982).

2.7.2 Hybridisation and Detection of Digoxygenin labelled probe on southern 

blots using the colour reaction generated by N.B.T. and X-phosphate.

DNA blots were probed essentially as described in the protocol supplied with the Dig 

DNA detection Kit (Boehringer Mannheim)

Materials.
Antibody conjugate: Anti digoxygenin fab fragments conjugated to alkaline phosphatase 
(Boehringer Mannheim).
Malate bufTer: lOOmM Maleic acid; 150mM NaCI, Adjusted to pH 7.0 with NaOH 
lOx Blocking bufTer: Blocking reagent (Boehringer Mannheim) 10% in Malate buffer 
Prehybridisation Solution: Sx SSC; 1% Blocking reagent (1 in 10 dilution of lOx 
blocking buffer); 0 1% n-laurylsarcosine; 0.02% S.D.S 
Blocking BufTer: lOx Blocking buffer diluted I in 10 with Malate buffer 
Colour reaction solution: NaCI (lOOmM), Tris pH 9.5 (lOOmM); MgCl2 (50mM) 
N.B.T.: nitroblue tetrazolium salt 75 mg/ml in DMF (Boehringer Mannheim) 
X-phosphate: 5-bromo-4-chloro-3 indolyl phosphate toluidinium salt 50 mg/ml in DMF 
(Boehringer Mannheim)
Wasning solutions 1 and 2 as in section 2 7.1

Method

DNA blots, were prehybridised for 1 hour in prehybridisation solution (30 mis) at 

68°C Digoxygenin labelled DNA probes were made single stranded by boiling for 10 

minutes and then cooling in an ethanol / dry ice bath for 5 minutes Prehybridisation 

solution was poured away to leave a volume of 10 mis Single stranded probe (30 pi) was 

added and the blot was incubated at 68°C for 12 hours

The probe solution was poured off and the blot was washed twice in 50 mis of 

washing solution 1 at room temperature The blot was then washed twice in 50 mis of 

washing solution 2 (45 minutes per wash) at 68°C The blot was next incubated for 2 

minutes in Malate buffer 1 and then incubated for 30 minutes in blocking solution Anti- 

digoxygenin antibody was diluted I in 5000 in blocking solution The blot was sealed in a 

plastic bag containing 10 mis of diluted conjugate and incubated at room temperature for 

30 minutes The blot was then washed twice in 100 mis of Malate buffer (containing 0 1% 

Tween 20) for 15 minutes each wash Next, blots were washed twice for 5 minutes in

45



100 mis colour reaction buffer During these washes, colour developing solution was made 

by adding 45 (il N.B.T. and 22.5 |il X-phosphate to 10 mis colour reaction buffer The 

blot was then incubated with the colour developing solution for the desired length of time 

(typically between 10 minutes and several hours.) The colour reaction was then stopped by 

washing the blot twice for 10 minutes in lOx TE

2.7.3 Hybridisation and Detection of Digoxygenin labelled probe on southern 

blots using chemiluminescense.

DNA blots were probed essentially as described in the protocol supplied with the Dig 

DNA detection Kit with the exception that the colour reaction was replaced with a 

chemiluminescent substrate of alkaline phosphatase ( AM.P.P.D Tropix-NBS 

Biologicals)

Materials.
Antibody conjugate: Anti digoxygenin fab fragments conjugated to Alkaline Phosphatase 
(Boehringer Mannheim)
Assay buffer: 0.1M Diethanolamine, ImM MgCl2
2 4 mis Diethanolamine were added to 200 mis dH2 0  and the pH was adjusted to 10 0 
with concentrated HCI MgCl2 was then added to a concentration of ImM and the volume 
was made up to 250 mis
A.M.P.P.D.: disodium 3-(4-methoxyspiro [1,2 dioxetane-3,2'-tricyclo[3 3.1 1 A 7] decanj 
-4-yl) phenyl phosphate ;24mM (N.B S).

Method.

The blot was hybridised and detected as described in up to the point where the blot 

would have been washed in colour reaction solution Instead the blot was incubated twice 

in 100 mis of assay buffer (5 minutes each) and then sealed in a plastic bag with 5 mis of 

A.M P.P D. (diluted 1 in 100 in assay buffer) and incubated for 5 minutes The 

AM.P.P.D was then removed and the blot was placed in an autoradiograph cassette and 

exposed to x-ray film (Fuji) for 30 minutes The blot was then exposed to x-ray film for a 

further period determined by the result of the first exposure.
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DNA to be used in ligations or as template in probe making reactions was restriction 

digested and then run on a 0 7% TAE agarose gel to separate the fragments The required 

fragment was then cut from the gel using a razor blade and separated from the agarose 

using either the Geneclean II kit (Bio 101 inc.) Gene clean relys on DNA preferentially 

binding to glass beads at high salt concentrations (6M Nal).

2.8.1 Separation using the Geneclean II kit.

Materials.
Nal: 6M (Bio 101).
Glassmilk Suspension of silica matrix (Bio 101).
New wash NaCl, Tris, E.D.T.A. made up in ethanol and stored at -20°C (Bio 101) 

Method.

The DNA band was cut from the gel (visualised using a long wave U.V lamp (302 

nm) and transferred to an eppendorf. The gel slice was weighed and dissolved in 3 

volumes of Nal at 55°C (0 3 mis Nal per 0 1 g gel slice) 5 pi of Glassmilk was added 

and mixed by inverting the capped Eppendorf several times The solution was then placed 

on ice for 5 minutes to allow binding of the DNA to the silica matrix The glassmilk was 

then pelleted by spinning for 15 seconds in a MSE microfuge The Nal was then removed 

and the pellet was washed three times with 700 pi 'New Wash' (-20°C). After the third 

wash the 'New Wash' was removed the pellet was spun for a further 15 seconds to bring 

down any residual 'New Wash' adhering to the sides of the Eppendorf This last wash was 

removed and the pellet was then resuspended in 10 pi TE and incubated at 50°C for 3 

minutes to elute the DNA The glassmilk was then pelleted by spinning for 1 minute and 

the supernatant containing the eluted DNA was transferred to as fresh tube The DNA was 

eluted twice

2.8 S eparation  or DNA away from  im purities, salts and agarose.
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2.9 Isolation of genomic DNA from adult Drosophila.

Materials.
Homogenisation Buffer: lOmM Tris (pH 8.0); 60mM NaCl, lOmM EDTA; 0 .15mM 
Spermidine; 0.5% Triton X-100 (v/v).
Sarkosyl: 20%.
Sodium Acetate: 3M (pH 6.3).

Method.

A Dounce homogeniser was cleaned and then pre-chilled on ice Approximately 100 

to 200 flies were homogenised in 3 mis of homogenisation buffer. The homogenate was 

filtered through a fine gauze into a 15 ml plastic tube (Falcon 2059). The filtrate was then 

spun at 7,000 r p m for 7 minutes in a Beckman centrifuge at 4°C The supernatant was 

removed and the pellet was resuspended in a further 3 mis of homogenisation buffer and 

respun at 7,000 R.P.M for 7 minutes at 4°C. The supernatant was decanted and the pellet 

was resuspended in 18 mis of homogenisation buffer and 200pl of 20% sarkosyl was 

added. The solution was mixed by gentle inversion and 20pl proteinase K ( pg / pi) was 

added. The solution was then incubated at 50°C for 2 to 3 hours. Following proteinase K 

treatment, 200 pi sodium acetate (3M) was added, and protein was extracted with 250 pi 

phenol. A equal volume of chloroform/isoamyl alcohol was added to removed any traces 

of phenol Nucleic acid was precipitated with 3X the volume of 100% ethanol at -20°C 

for 30 minutes, and then spun at 10,000 R.P.M. for 15 minutes at 4°C to pellet the nucleic 

acid The pellet was washed to remove salt with 10 mis of ice-cold 70% ethanol and then 

air dried The pellet was resuspended in approximately 50pl - lOOpI of TE

2.10 RNA Manipulations

2.10.1 Isolation of total RNA from Drosophila tissue.

Total RNA was isolated from Drosophila embryos, using the following protocol 

(Ashburner, 1989).

Materials.
Homogenisation bufTer: 100g Guanidinium isothiocyanate, 100 ml deionised H2O, 10 6 
ml IM Tris HCl (pH 7 6), 10.6 ml 0 2M EDTA 
P.C.I.: Phenol/Chloroform/ Isoamyl Alcohol (25:24 1)
Rnase-free d l^ O :
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Falcon 2059 tubes: Freshly opened bag 
15 ml Dounce homogeniser: RNAse-free

Method.

Precautions to prevent contamination with RNAses.

Glassware was made RNAse free by baking at 250°C overnight Sterile plastic ware is 

essentially RNAse free and so, fresh bags of eppendorfs, yellow and blue disposable tips 

and Falcon 2059 tubes were used each time the experiment was performed Disposable 

gloves were worn at all times and changed frequently throughout the experiment

RNA extraction.

A 15 ml RNAse free Dounce homogeniser and a 15 ml 2059 Falcon tube were placed 

on ice for 5 minutes. Approximately 300mg of tissue (fresh or frozen at -70°C) was 

homogenised in 1ml homogenisation buffer The homogenate was transferred to a Falcon 

2059 tube where it was deproteinised with 1ml of phenol/ chloroform. The tube was then 

spun in a beckman centrifuge at 10,000 R P M for 20 minutes at 4°C. The upper aqueous 

phase was then removed and the RNA was precipitated by adding lOOpl of sodium acetate 

and 3X the volume of 100% ethanol, this was mixed by inversion and incubated at -20°C 

for 30 minutes The RNA was then pelleted by spinning at 10,000 R P M  for 15 minutes 

at 4°C The pellet was washed and resuspended in 50pl of RNAse free dF^O

The concentration and purity of the RNA was estimated spectrophotometrically 

Absorbance readings were taken at 280 nm, 260 nm and 230 nm respectively The 260 nm 

value was used to assess the concentration of the RNA (using the approximation that a 40 

pg/ml solution of RNA will have an absorbance at 260 nm of 1 O D unit ). The 260/280 

ratio was used to assess levels of contamination with protein (RNA with a value of 1 7 or 

above was used).

2.10.2 Electrophoresis of RNA.

Materials
Formamide gel: 50% deionised Formamide, 12% Agarose, 1XTPE, RNAse free H2O 
10X TPE pH8 0: Tris base 4 36g/l, NaH2P04 4 68g/l, EDTA 0.37g/l
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Method

Dissolve agarose in TPE and H2 O in a microwave measure formamide in fume hood 

and add to hot agarose and mix. Set at 4°C.RNAse free loading buffer was added to the 

RNA samples which were heat denatured at 65°C before loading. Run gel at 20mA in 1X 

TPE for 6 hours After running the gel was soaked in 20X SSC for 30 mins, the gel was 

then stained in Ethidium bromide at lpg/ ml for 30 mins The gel was destained in RNAse 

free water for 15 mins. The gel was veiwed on a transilluminator and photographed

2.10.3 Transfer of RNA to nylon membrane.

RNA species were size fractionated on a formamide gel The gel was then soaked in 

0.5M NaOH for 20 minutes to partially hydrolyse the RNA which aids transfer The gel 

was the soaked in RNAse free 20X SSC for 45 mins and then transfered to a nylon 

membrane in exactly the same way as for DNA

2.10.4 Hybridisation of DNA probes to RNA bound to nylon membranes

Random prime labelled a ^ p  probes were synthesised as described in section 2.6.3. 

the filter was prehybridised and the probe was denatured by boiling befiore adding to the 

filter The filter was hybridised overnight and detected as for southerns with radioactive 

probes 2.7.1.

2.11 Screening a plasmid cDNA library. (Adapted from the protocol of Brown and 

Kafatos, (1988) of high density library screening)

Epicuran blue (Statagene) supercompetent cells were transformed with the 4-8hr 

embryonic cDNA library of N Brown The library was titered and then plated onto 9 

plates at a density of 50,000 colonies per plate

2.11.1 Preparation of filters.

Each plate was grown at 37°C for ~ 10 hours At this stage the colonies are just 

visible less than 0.2mm diameter A square of nylon membrane was placed onto each plate 

and keyed using a hypodermic needle The filter was carefully removed and a replica filter
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was prepared. The printing press method was used. A dry nylon filter is placed on top of 

the colony side of the lifted filter, this sandwich is squashed in the press, keyed with a 

needle and then wrapped in tin foil and autoclaved for five minutes with slow exhaust This 

lyses the colonies and denatures the DNA. DNA was fixed to the filters by UV irradiation 

for five minutes The master plates were stored at 4°C.

2.11.2 Screening the Library

To screen the library, P32 labelled probe was made to selected fragments of genomic 

DNA The filters and their replicas were washed in PW for 2hours at 65°C for two hours, 

prehybridised, hybridised and detected as described in 2.7 1.

Isolation of positives.

Positives which appeared on both the original and replica filters were identified and a 

5mm circle was picked. Permanent stocks were made from these cultures by adding 0.5ml 

sterile 50% glycerol to 1 ml of culture and freezing at -70°C

Secondary screen

For the secondary screen the plates were plated at a density o f 1000 colonies per 

plate. The secondary replicas were then prehybridised, hybridised and detected as 

described for the primary replicas Positives identified on both replicas and which could 

be identified as single colonies were picked into 5 mis of LB(amp) and grown overnight at 

37°C. Approximately 3 positives per plate in the secondary screen were picked From 

each of these cultures DNA was prepared and restriction enzyme digested Permanent 

stocks were made from these cultures by adding 0 5 ml sterile 50% glycerol to 1 ml of 

culture and freezing at -70°C.
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2.12.1 Preparation of the sequencing gel.

Materials.
Cream cleaner, detergent, ethanol: 100%.Siliconising solution: Repelcote (B D H ) 
Vaseline:
5x T.B.E.: 5 4% Tris base (w/v); 2.75% Boric acid (w/v); lOmM E.D.T A (pH 8)
Urea: 46.7% Urea (w/v); 5x T.B.E..
Acrylamide solution: 19.3% Acrylamide (w/v); 0 67% Methylene-bis-acrylamide (w/v); 
46.7% Urea (w/v); lx T.B.E..
Ammonium persulphate: 10% in dH2 Û.
TEMED: N.N.N'.N'-tetramethylethylenediamine

2.12 Double stranded  sequencing of DNA.

Method.

Two glass sequencing plates (one notched) were cleaned thoroughly using cream 

cleaner and detergent The plates were rinsed thoroughly with water and then dried The 

plates were then cleaned with 100% ethanol 0.4mm thick teflon spacers were scrubbed 

and then wiped with 100% ethanol The spacers were positioned along the sides and 

bottom of the plate. Two small blobs of Vaseline were added at the intersections between 

the bottom and the two side spacers The notched plate was coated with siliconising 

solution and was placed siliconised side down on top of the non-notched plate The two 

plates were then clamped together using several bulldog clips The gel was prepared using, 

80 mis urea solution mixed with 20 mis acrylamide solution in a 200 ml beaker (final 

acrylamide concentration of gel = 4%). To this 140 pi TEMED and 400 pi (lOOmg/ml) 

ammonium persulphate were added Using a 50 ml syringe (Becton Dickenson) The 

solution was poured between the two plates which were angled to allow the solution to 

run down one side and fill the space up from the bottom of the gel The wells were formed 

by inserting a sharks tooth comb (flat side inwards) into the polymerising gel Once the gel 

was set, the bulldog clips, comb and the bottom spacer were removed The well and edges 

of the gel were washed with water to remove any unpolymerised acrylamide Wells were 

produced by inserting a sharkstooth comb, teeth down into the top of the gel Gels were 

used after 30 mins to I hour after setting
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Single stranded DNA was prepared essentially as described in the protocol supplied 

with the sequencing kit as follows;

Approximately 5 pg template DNA was used for each set of sequencing reactions 

The DNA was denatured by adding 1/1 Oth volume of 5M NaOH and incubating at 20°C 

for 10 minutes NaOH was removed from the template by centrifuging through a 

Sepharose column

2.12.2 P repara tion  of single stranded  DNA.

Sepharose column preparation.

The column was prepared in a 0.5ml Eppendorf A 19 guage needle was used to 

pierce the base of the tube Three mm of glass beads were placed into the column followed 

by the Sepharose The column was placed inside a 1.5 ml Eppendorf and spun 3X for 

30sec 20pl of H2O was added to the top of the column and spun for 30sec, this was 

repeated until the volume coming out of the bottom was also 20pl.

2.12.3 Sequencing reactions.

The sequencing reactions were performed as described in the protocol supplied with 

the Sequenase version 2.0 kit (U S B ). This technique of sequencing using chain 

terminators is adapted from that of Sanger el al (1977)

Materials.
Single stranded DNA: See above 
Primer: 300ng
Reaction Buffer: 200mM Tris Cl (pH 7.5).; lOOmM MgCI2, 250mM NaCl, (U S B ) 
DTT: O IM(U.S B )
Labeling mi*: 7 5 pM dGTP; 7.5 pM dTTP; 7 5pM dCTP, ( U S B )
a-3SSdA TP: lOpCi/pl
Sequenase: Version 2 0 enzyme (U S B ).
Enzyme dilution bulTer: lOmM Tris (pH 7.5).; 5mM DTT, 0 5 mg/ml B S A, ( U S B )  
ddGTP termination mix: 80 pM dGTP, 80 pM dATP, 80 pM dCTP, 80 pM dTTP.
8 pM ddGTP, 50mM NaCl. (U S B ).
ddATP termination mix: 80 pM dGTP; 80 pM dATP, 80 pM dCTP, 80 pM dTTP.
8 pM ddATP, 50mM NaCl; (U S B ).
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ddTTP termination mix: 80 pM dGTP; 80 pM dATP, 80 pM dCTP, 80 pM dTTP,
8 pM ddTTP; 50mM NaCI; (U S B ).
ddCTP termination mix: 80 pM dGTP; 80 pM dATP; 80 pM dCTP; 80 pM dTTP;
8 pM ddCTP; 50mM NaCI; (U S B ).
Stop solution: 95% Formamide (v/v); 20mM E.D.T.A.; 0.05% Bromophenol blue (w/v); 
0.05% Xylene cyanol (w/v); (U S B ).

Method.

Annealing template and primer.

For each set of sequencing reactions, lpl primer (300ng) was added to 2 pi reaction 

buffer and 7pl DNA 5pg (denatured as described above). The DNA and primer were 

allowed to anneal at 37°C for 30 minutes. During this incubation, labelling mix was 

diluted 5 fold in dH20 and stored on ice 

Labelling reaction.

After annealing the primer and the template, the solution was placed on ice for 5 

minutes The following were added to the annealed mix, 1 pi DTT; 2 pi diluted labelling 

mix; 0.5 pi a -35S dATP; 2 pi freshly diluted Sequenase (Sequenase enzyme diluted 1 in 8 

in ice-cold enzyme dilution buffer) The solution was mixed thoroughly and incubated for 

2 to 5 minutes at room temperature 

Termination reaction.

During the annealing reaction, 2.5 pi ddGTP termination mix was added to tube G,

2.5 pi ddATP was added to tube A , 2 5 pi ddCTP was added to tube C and 2 5 pi ddTTP 

was added to tube T.

The tubes were capped and prewarmed to 37°C, 3 5 pi of the labelling mix was removed 

and transferred to each of the tubes A, C, G and T The solutions were mixed and 

incubated at 37 °C for 5 minutes After 5 minutes, 4 pi stop solution was added to each 

tube The sequencing reactions were stored at -20°C until they were required

2.12.4 Running the sequencing gel.

Sequencing gels were run using standard electrophoresis equipment for 

sequencing gels (Maniatis et al) The running buffer used was IX T B E (6 I 3)
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Method.

Sequencing gels prepared as described above were pre-run at 1500 V, 200 amps and 

40Watts for 15 minutes The wells were then flushed out with 200 pi lx T B E Prior to 

loading, the sequencing reactions were heated to 85°C. Approximately 3.5 |il of each 

sequencing reaction was loaded per track and the gel was run for 3 hours per 1 run of the 

gel

Fixation and transfer of sequencing gels.

Materials.
MeOH/Glacial acetic acid: 10% MeOH (v/v; 10% Galcial acetic acid (v/v).

Method

After electrophoresis, the combs, spacers and non-siliconised plate were removed 

The gel was fixed in 10%MeOH / 10%glacial acetic acid for 30 minutes After fixation the 

gel was removed from the solution and allowed to air dry slightly A piece of dry 

Whatman paper was then placed on the gel. The gel becomes stuck to the paper allowing 

it to be moved The gel was covered in cling film and then placed on a heated vacuum 

drier for 40 minutes at 80°C The cling film was then removed and the dried gel was 

exposed to X-ray film (Fuji) overnight

2.13 In situ hybridisation of DNA probes to Drosophila polytene chromosomes.

Biotin labelled probes were synthesised and these were detected using Streptavidin 

conjugated to Horse Radish Peroxidase

2.13.1 Preparation of polytene chromosome squashes.

Materials.
lx PBS: 0 IM NaH2 P0 4 /Na2 HP0 4 (pH 6 8), 0 15M NaCI 
3:1 fixative: 75% ethanol (v/v), 25% Glacial acetic acid (v/v).
Acetic Acid: 45%
Glass slides: Subbed
Coverslips: Siliconised in repelcote (BDH)
Pencil: With rubber on the end
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Method.

Fly stocks were transferred daily on rich food and then the larvae were cultured at 

18°C until they reached the late third instar The larva was dissected in lx PBS and the 

salivary glands were removed. These were then transferred to a drop of 45% acetic acid 

on a coverslip. The coverslip was then lifted with a subbed slide and positioned coverslip 

up. The coverslip was then tapped firmly with the rubber end of the pencil until the 

chromosome arms had spread Strong pressure was then applied to the coverslip with the 

thumb to flatten the chromosomes. The slide was then placed on dry ice for 5 minutes and 

the coverslip was flicked off with a razor blade The chromosomes were fixed immediately 

in 3:1 ethanol acetic acid The chromosomes were fixed for 10 minutes followed by 

dehydration in 100% ethanol for 10 minutes Finally the slide was allowed to air dry before 

storage or pretreatment

2.13.2 Pretreatment and hybridisation of slides.

Materials.
Triethanolamine:7.5M (pH 8)
Acetic anhydride 
Rubber cement

Method.

The chromosomes were heat treated by incubating them at 68°C for 30 minutes in 2x

5.5. C.. The slides were then transferred to 2x S S C. at room temperature for 2 minutes 

500 mis ofO. 1M triethanolamine was rapidly agitated using a magnetic stirrer and to this 

0.625 mis of acetic anhydride was added After 5 seconds the stirrer was turned off and 

the slides were incubated immediately in this solution for 10 minutes The slides were then 

transferred to fresh 2x S S.C for 4 minutes at room temperature The slides were then 

washed 4 more times in 2x S S.C. for 4 minutes each at room temperature. The slides 

were then dehydrated by washing then twice in 70% ethanol for 5 minutes and then once 

in 100% ethanol for 5 minutes The chromosomes were then denatured in freshly prepared 

0.07M NaOH (pH 12.5) for 3 minutes at room temperature The slides were washed in 2x

5.5. C. for 5 minutes at room temperature three times The chromosomes were dehydrated
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by washing twice in 70% ethanol for 5 minutes and then once in 100% ethanol for 5 

minutes Finally they were allowed to air dry Pretreated slides were kept for up to a 

month before they were hybridised

Slides were hybridised with biotin labelled probes The probe was boiled for 10 

minutes and then cooled on dry ice/ethanol for 5 minutes To each slide 30 pi probe was 

added and then a large coverslip (22mm x 22mm) was laid on top The edges of the 

coverslip were sealed with rubber cement and the slides were incubated in a moist chamber 

at 58°C for 12 hours.

2.13.3 Detection of biotin labelled probes.

Materials.
Triton X-100:
ABC reagent A: Vectastain ABC Elite kit (Vector laboratories)
ABC reagent B: Vectastain ABC Elite kit (Vector laboratories).
B.S.A.: Boehringer Mannheim
DAB substrate mix: 0.02% H2 O2 (v/v); 1 mg/ml DAB; 0.1M Tris (pH 7.2).
Giemsa staining solution: 3% Giemsa (v/v); lOmM PBS 
DePeX BDH

Method.

After hybridisation the coverslips were removed and the slides were washed 3 times 

for 20 minutes in 2x S S.C at 53°C During the last wash the following components were 

added to an Eppendorf and mixed on a blood mixer for 30 minutes, 972 pi PBS, 9 pi ABC 

reagent A; 9 pi ABC reagent B, 10 pi B S A During this incubation the slides were 

washed once for 2 minutes in lx PBS, once for 2 minutes in lx P B S\0 1% Triton X-100 

and once for 5 minutes in lx PBS The ABC/PBS/B S A mixture was added (100 pi per 

slide) and allowed to incubate for 30 minutes The slides were washed once in 2x S.S.C. 

for 5 minutes, once in IX PBS/0 1% triton X-100 for 5 minutes and once in lx PBS for 5 

minutes DAB substrate mix was added to each slide and allowed to incubate for 8 

minutes The slides were washed twice in dH20 for 3 minutes and then dehydrated in 70% 

ethanol ( 2x2  minutes) and 100% ethanol ( 1x2 minutes) Slides were then counter- 

stained with Giemsa for 90 seconds, washed extensively in dH20 and then mounted in 

DePeX
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2.14.1 Preparation of probe for in situ hybridisation.

Probes for use in in situ hybridisations were prepared by a modification of the 

standard method for the synthesis of digoxygenin labelled probes This method utilises a 

high concentration of the random hexamers to reduce the average length of the probe 

molecules This substantially reduces background

Materials.
Random primers: 20 mg/ml (Boehringer mannheim).
Vogel bufTer: 0.95M Pipes (pH 6.6); 50mM MgCl2 ; 0.36% (i-mercaptoethanol 
dNTP mix: ImM dATP; ImM dCTP; ImM dGTP 
dTTP: ImM
Dig-dUTP: ImM (Boehringer mannheim).
DNA polymerase 1 (Klenow fragment): 6 units/pl (BRL)
Hybridisation bufTer: 50% Deionised formamide, 5X SSC; Sonicated .boiled .Herring 
sperm DNA (0 lmg/ml); tRNA (0. lmg/ml); Heparin (0.05mg/ml); Tween 20 (0.1%).

Method.

Fragments to be used as templates were generally isolated from agarose gels by 

geneclean (Bio 101). Approximately 100 ng template was added to 5 pi random primers 

and the volume was then made up to 12.5 pi This mixture was then boiled for 4 minutes 

to denature the template and then quick chilled in ice/water The following components 

were then added; 2 pi Vogel buffer (lOx), 2 pi dNTP mix, 1 3 pi dTTP, 0.7 pi dig-dUTP 

and 1.5 pi klenow The reaction was incubated overnight at I4°C  The following morning 

another I pi klenow was added and the reaction was incubated for a further 4 hours at 

room temperature. The reaction was stopped by adding 2 p i E.D T.A  and heating to 

65°C for 10 minutes. The probe was precipitated by adding 1 pi tRNA, 80 pi dH20, 10 pi 

LiCI and 300 pi ethanol and incubating at -20°C overnight The probe was pelleted by 

spinning in a MSE microfuge for 30 minutes The pellet was then washed once in 100% 

ethanol, air dried and resuspended in 60 pi hybridisation buffer. Probes were stored at 

-20°C before use

2.14 In situ hybridisation to  whole m ount Drosophila embryos.
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This protocol is based on that described by Tautz and Pfiefle (1987).

Materials.
Sodium Hypochlorite: 8%. 
n-Heptane:
Formaldehyde: 37% (B.D.H.).
Methanol: 100%..
PBS: 0.1M NaH2P04 / Na2HP04 (pH 6 8); 0.15M NaCI 
PBT: P B S; 0.1% Tween 20.
Glycine: 2mg/ml.
Proteinase K: lOmg/ml
Hybridisation solution: 50% Deionised formamide, 5X SSC; Sonicated .boiled .Herring 
sperm DNA (0 lmg/ml); tRNA (0 lmg/ml), Heparin (0 05mg/ml); Tween 20 (0 1%) 
Antibody conjugate: Digoxygenin fab fragments conjugated to alkaline phosphatase 
(Boehringer Mannheim)
Detection buffer: lOOmM NaCI; 50mM MgCI2, lOOmM Tris HCI (pH 9.5),
0.1% Tween 20. Filtered through 0.23 pm filter and then Levamisol added to ImM 
N.B.T.: 50 mg/ml in DMF (Boehringer Mannheim).
X-phosphate: 50 mg/ml in DMF (Boehringer Mannheim)
Histodear
G.M.M.: 2g/ml Canada balsam in methylsalicylate 

Method.

Embryo collection and fixation.

Approximately 50 Drosophila were placed in a small cage and allowed to lay onto a 

grape juice agar plate After timed layings, embryos were collected from the plate using a 

fine paintbrush into a collecting basket immersed in dH20  The embryos were placed in 

sodium hypochlorite to remove the chorion ( 3 minutes) The embryos were then 

transferred to a 20 ml glass vial containing a two phase mixture of equal volumes of 

n-Heptane and 10% formaldehyde (diluted in PBS), and fixed by shaking vigorously for 20 

minutes The lower aqueous phase and some of the heptane was removed and 10 mis of 

methanol was added The embryos were devitelinised by shaking vigorously for 10 

seconds The devitelinised embryos sink, and were transferred to an Eppendorf These 

embryos were washed several times with methanol Finally the embryos were washed three 

times in ethanol and stored at -20°C

2.14.2 In situ hybridisation of DNA probes to wholem ount Drosophila em bryos.
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2.14.3 Pretreatment.

All washes were performed in lml, on the rotostat, unless stated otherwise

Embryos were washed twice for 2 minutes in methanol and then twice for 2 minutes 

in a mixture of equal volumes of methanol and 5% formaldehyde in PBS The embryos 

were post fixed for 20 minutes in 5% formaldehyde in 0.5 x PBT Next they were washed 

3 times in PBT (5 minutes per wash). During the last wash 1 ml PBT was preheated to 

37°C and 2.5|xl freshly thawed proteinase K 20mg/ml was added ( final concentration 

50pg/ml) After washing the embryos were incubated in the proteinase K buffer for 

3 minutes at 37°C, digestion was stopped by rinsing twice for 2 minutes with glycine 

solution (2mg/ml in PBT) The embryos were rinsed twice in PBT (5 minutes per wash) 

and then post fixed for 20 minutes in 5% formaldehyde in PBT Finally the embryos were 

washed 5 times in PBT (5 minutes per wash)

2.14.4 Hybridisation.

An aliquot of embryos was set aside for antibody preabsorbtion and the remainder 

were rinsed twice in a mixture of equal volumes of PBT and hybridisation solution for 10 

minutes each wash The embryos were then washed in hybridisation solution for 20 

minutes. The embryos were prehybridised by incubating at 48°C for 2 hours in 100 pi 

hybridisation solution. Antibody conjugate was diluted I in 100 in PBT and preabsorbed 

to wildtype embryos overnight at 4°C. Following prehybridisation as much hybridisation 

solution as possible was removed and replaced with 90 pi hybridisation solution and 10 pi 

denatured probe The embryos were hybridised overnight at 48°C

2.14.5 Detection

After hybridisation the embryos were rinsed in hybridisation solution at room 

temperature for 2 minutes Embryos were washed for 20 minutes in hybridisation solution 

(at 48°C), and then for 20 minutes in a mixture of equal volumes of hybridisation solution 

and PBT(at 48°C) They were then washed 4 times (20 minutes each) in PBT also at 

48°C The preabsorbed antibody conjugate was removed from the embryos The antibody
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was diluted 1 in 20 in PBT The embryos were incubated in 100 (il of diluted antibody 

conjugate for 2 hours, at room temperature, on a blood mixer Following this the antibody 

conjugate was removed and the embryos were washed for 2 minutes, 10 minutes and 3 

times 20 minutes in PBT. The embryos were then rinsed 3 times in detection buffer 

(2 minutes per rinse). The colour reaction was produced by adding 4.5 |xl N.B.T and

2.5 pi X-phosphate to the last wash (PBT + embryos) Finally the embryos were 

transferred in the detection solution to a 24 well, multiwell plate and incubated until the 

colour reaction occurred The reaction was stopped by rinsing 5 times in TE (2 mis per 

rinse).The embryos were dehydrated through an ethanol series: 50% ethanol, 70% ethanol, 

90% ethanol They were then rinsed 3 times for 1 minute in 100% ethanol, and for 10 

minutes (or longer) in 100 pi of histoclear Finally the embryos were mounted in G M M

2.15 Antibody labelling of Drosophila embryos.

Antibody labelling was standardly performed by incubating with a mouse or rabbit 

primary antibody followed by a biotin labelled anti-mouse or anti-rabbit secondary 

antibody The ABC component is a complex consisting of streptavidin bound to horse 

radish peroxidase Streptavadin binds to the biotin labelled secondary antibody The 

peroxidase activity was detected using the substrate diamino benzoate (DAB) which gives 

a black precipitate when cleaved by the peroxidase DAB is carcinogenic and so all 

operations after the addition of the DAB were performed on a plastic tray and everything 

which might have come into contact with DAB was washed in sodium hypochlorite before 

disposal The secondary antibody, and streptavidin/peroxidase complex were obtained 

from the ABC Elite kit from Vector laboratories 

Materials.
Pretreated embryos: 6.6.2 
Primary Antibody:
PBS: 0 IM NaP04 pH 6 8, 0 I5M NaCI 
PBT: P B S; 0.1% Triton-X, 0.2% BSA 
PBTN: PBT; 5% Swine serum 
B.S.A.: 10% (w/v) in PBT
Secondary Antibody: ABC Elite Kit (Vector laboratories )
Solution A: ABC Elite Kit (Vector laboratories )
Solution B: ABC Elite Kit (Vector laboratories )
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DAB solution: 0.1M Tris (pH 7.5); 0.5 mg/ml DAB; 0.00012% H2 O2 (v/v)

Method.

All of the following incubations were performed at room temperature whilst mixing 

on a blood mixer unless stated otherwise.

2.15.1 Antibody Preabsorbtion.

Primary antibodies were preabsorbed (where possible) in the following manner 

Embryos for preabsorbtion were isolated and pretreated as for 2.14.2 . Embryos were then 

rehydrated by washing them in 30%, 60% and 100% ethanol diluted with PBT (2 minutes 

per wash). Non-specific binding was blocked by incubating the embryos in B S A for 30 

minutes The antibody was preabsorbed at 1 in 50 dilution (in PBT), overnight at 4°C

2.15.2 Antibody binding.

Embryos were isolated, pretreated and rehydrated as described for preabsorbtion The 

primary antibody (preabsorbed or not as required) was incubated with the embryos at a 

dilution of between 1 in 2 and 1 in 500 in PBT (depending upon the antibody) at 4°C 

overnight During this time the secondary antibody (anti-rabbit or anti-mouse depending 

upon the primary antibody) was also preabsorbed as described for primary antibody 

preabsorbtion The embryos were washed 3 times for 1 minute in PBT (1 ml per wash) 

and then 3 times for 20 minutes in PBT (1ml per wash) The embryos were incubated in 

PBTN for 30 minutes The embryos were then incubated with the preabsorbed secondary 

antibody at a dilution of between 1 in 200 and I in 500 in PBTN (depending upon the 

primary antibody) at 4°C overnight, or for 4 hours at room temperature

The embryos were washed 3 times for 1 minute in P B.T (1ml per wash) They were 

then given three 20 minutes washs in PBT ( I ml per wash) During the three 20 minute 

washes, the two components of the ABC kit were allowed to complex by adding 16 pi 

solution A and 16 pi solution B to 1 ml PBT and incubating for 1 hour The embryos 

were then incubated in the ABC complex (500 pi) for 30 minutes The embryos were 

washed for 1 minute in PBT (1 ml per wash) and then 3 times for 20 minutes in PBT (1 ml 

per wash) The colour reaction was performed in 500 pi DAB solution until the colour
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developed The reaction was stopped by washing several times in PBT Embryos were 

dehydrated and mounted in GMM

2.16 X-Gal staining

2.16.1 Staining for ß-galactosidase activity in Drosophila embryos.

Method: Cahir O'Kane, pers. comm 

Materials.
Grape juice agar plates
Fix: 4% formaldehyde; 50mM EGTA; IX PBS.
X-Gal: 8% in DMSO
Staining solution: lOmM NaH2 P0 4 -H2 0 /Na2 HP0 4  2 H2 O (pH 7.2);.150mM NaCI; 
ImM MgCl2; lOmM K4[Fe''(CN)6];10mM K3[Feiii(CN)6]; 0.3% Triton X-100 
PBS: 0 .1M NaP04 pH 6 8; 0 15M NaCI.
P.B.X.: 0.3% Triton X-100 in PBS

Method.

Embryos were washed and then dechorionated in sodium hypochlorite (about 3 

minutes) The dechorionated embryos were then washed several times in PBS The 

embryos were fixed in 0.5 ml of fix solution and 0.5 ml of n-heptane and shaken 

vigorously for 15 minutes During the fixation period 12 5 pi X-gal was added to 500 pi 

staining solution and prewarmed to 37°C. After fixation the heptane and fix were removed 

and the embryos were washed several times in P B X until they no longer stuck to the 

sides of the eppendorf The P B .X. was then replaced with the preincubated X-gal staining 

solution and incubated at 37°C until the blue colour developed Embryos were mounted in 

70% glycerol/30% staining solution beneath supported coverslips

2.16.2 Detection of (5-galactosidase activity in Drosophila imaginal discs

Method: Cahir O'Kane, pers comm 
Materials.
PBS: 0 .1M NaP04 pH 6 8, 0.15M NaCI.
PBT: P B S, 0.3% Triton X-100 
Fixative: 0 00375% gluteraldehyde in PBT 
X-Gal: 8% in DMSO
Staining solution: lOmM NaH2 P0 4 .H2 0 /Na2 HP0 a 2 H2O (pH 7.2); 150mM NaCI,
ImM MgCI2, lOmM K4[Fen (CN)6]; lOmM K3[Fen '(CN)6]; 0 3% Triton X-100 
Ethanol series: 30%, 50%, 70% and 100%
G.M.M.: 2g/ml Canada balsam in methyl salicylate
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Method.

Imaginal discs were dissected out of well fed 3rd instar larvae in PBT and then 

transferred to fixative for 15 to 20 minutes During the fixation 25 |il X-gal was added to 

1 ml staining solution (preheated) and then incubated at 37°C The fix was then removed 

and the discs were washed 3 times for 2 minutes in PBT The discs were then transferred 

to the staining solution and incubated until the colour developed The colour reaction was 

stopped by washing several times in PBT.

Mounting.

The discs were taken through an ethanol series (3 minutes in each of 50%, 70%, 90%, 

and 3X in 100% ethanol) They were then transferred to a glass slide and mounted in 

G.M.M.

2.17 Cuticle preparations of first instar larvae.

Clearing solution: Lactic acid : 70% Ethanol (9:1)
Hoyers mountant.

The unhatched larvae were collected at least twenty four hours after being laid They 

were hand dechorionated by placing onto double sided sticky tape and removing with a 

sharp pair of forceps The procedure was repeated but this time under a drop of PBS to 

devitellinise the larvae The larvae were transferred to clearing solution and left at 55°C to 

clear overnight The larvae were then transfered to a drop of Hoyers mount on a slide and 

a coverslip was placed on top

2.18 Miscellaneous

2.18.1 Maintenance of fly stocks.

Fly stocks were maintained at either 25°C or 18°C in vials or bottles of food 

prepared as described below

2.18.2 Fly food

Flies were generally maintained on standard food On occasions where large numbers 

of flies were required the parents were allowed to lay on rich food This significantly 

increased the number of hatching offspring
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Materials.
Standard food;
To make 1 litre of standard food. 
Maize meal: 104g.
Sugar (granulated): 94g 
Agar: 5.5g.
Yeast: 18.5g.
Nipagin: 15 mis (10% in ethanol). 
H2O: To make volume to 1 litre

Rich food;
To make 1 litre of rich food; 
Yeast: lOOg.
D-Glucose: lOOg 
Agar: 20g
Nipagin: 15 mis (10% in ethanol). 
H2O: To make volume to 1 litre

Method.

Both standard and rich food were made in the same way The yeast was dissolved in 

the water and then transferred to a large pan The maize, sugar and agar were then added 

and the mixture was brought to the boil whilst stirring continuously The food was then 

simmered for 10 minutes The nipagin was added and the pan was kept on a low heat 

whilst it was poured into either plastic vials or bottles The food was allowed to cool 

(protected by muslin) and then live yeast was dropped onto the surface of the food and the 

bottles and vials were stoppered with cotton wool bungs

2.18.3 Grape juice agar plates.

Grape juice agar plates were used to collect embryos for either in situ hybridisations, 

antibody labellings or detection of (i-galactosidase activity 

Materials.
To make 1 litre of Grape juice agar.
Grape Juice: 50 mis 
Sugar: 80g 
Agar: 25g
Water: to make volume up to 1 litre 

Method

All the materials were combined in a large saucepan and then heated until the solution 

boiled The solution was cooled a little then poured into tissue culture dishes (5 5cm 

diameter) Once set plates were stored at 4°C until required Before use the plates were 

allowed to reach room temperature, and a small amount of moist yeast was added to the 

plate.
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2.18.4 Subbed slides.

Materials. 
Gelatin 
Chrome alum 
Glass slides

Method

Glass slides were washed thoroughly in detergent and then three times in water 

Gelatin was then dissolved to 0.1% in hot water When this solution had cooled chrome 

alum was added to 0 1% and the slides were dipped into the subbing solution and then 

allowed to air-dry
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Chapter 3

Initial characterisation of the P(lArB] insertion A350.1M2.

3.1 Introduction

The temporal and spatial pattern in which a gene is expressed is often indicative of its 

function. One example is the gene twist which is expressed at the beginning of 

gastrulation in a ventral band of cells. These are the cells that invaginate during 

formation of the ventral furrow that will go on to form the mesoderm. In embryos 

lacking the twist gene function gastrulation fails. The twist gene product is a helix- 

loop-helix transcription factor and remains active in the mesoderm cells until they 

begin to differentiate and may be required to specify mesoderm (Thisse et al., 1988). 

As mentioned in Chapter 1 bicoid is required for anterior patterning and its mRNA is 

localised in the anterior pole of the embryo (Frigerio et al., 1986). Likewise the nanos 

gene product is required for abdominal development and is localised in the posterior 

pole of the embryo (Wang and Lehmann, 1991). The products of all these genes are 

localised in a temporally and spatially restricted manner that is related to their 

function. There are exceptions however. The gene patched is expressed in a spatially 

restricted pattern that never includes the posterior compartment of each segment in 

the Drosophila embryo. The phenotype of patched mutations is the loss of the middle 

region of each segment (Nakano et al., 1988). Ubiquitous expression ofpatched 

under the control of a heat shock promoter in the embryo has no obvious phenotype, 

suggesting that its localised expression is not essential for its function (Sampedro and 

Guerrero, 1991). Another exception is the gene torso, its product is localised 

ubiquitously in the blastoderm embryo, but is required only in the terminal regions 

where it is activated (Klingler et at., 1988).

It should be noted that genes required for setting up the body plan are 

expressed very early during embryogenesis and that genes which elaborate this plan 

are expressed slightly later. The gap genes are expressed in broad overlapping 

domains along the anterior -posterior axis and embryos mutant for these genes
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develop with large chunks of the body pattern missing. The gap genes regulate the 

expression domains of each other and then later define the positions of the pair rule 

genes.

Some genes have multiple functions; for example, ftz has an early role in 

segmentation, and is expressed later in specific subsets of neurons in the central 

nervous system. In ftz  mutants these particular neurons are defective (Doe et a l, 

1988).

On the basis of its temporal and spatial pattern of expression, I therefore 

decided that P[lArB] insertion A350.1M2 (originally reported by Bellen et al., 1989) 

was worthy of further investigation. The most interesting features of the expression 

pattern in this line are 1) the expression is very early, during gastrulation in the 

amnioproctodeal invagination and in the cells of the anterior midgut and the cephalic 

epidermis and 2) the later expression is in most of the cells of the ventral nerve cord, 

and in the epidermis of the hypopharyngeal and gnathal segments of the head.

Before undertaking more extensive work, however, it was necessary to 

determine whether the insertion was likely to be in a gene already known to be 

involved in head, gut or nervous system development. This can be performed by 

mapping the P-element insertion on the cytological map of the Drosophila genome. 

The known mutations around this region can then be tested for complementation with 

any mutations caused by insertion or excision of the P-element.

Genomic insertion of P-elements has previously been used as a form of 

mutagenesis (reviewed by Cooley et al., 1988), so it is reasonable to test whether the 

P-element insertion has disrupted a gene adjacent to the enhancer that it has detected. 

Individual flies homozygous or hemizygous (i.e. heterozygous over a deficiency in the 

region) for the P-element insertion can be checked for a phenotype. Homozygous or 

hemizygous individuals may not be present if the insertion is in a gene that is essential 

for viability. If such individuals are present then one possibility is that the gene near 

which the P-element has inserted is essential, but the P-element has not inactivated it.
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If the P-element insertion line has a phenotype, it is then necessary to 

determine whether any phenotype observed is associated with the P-element insertion, 

as opposed to an unrelated mutation on the same chromosome. Excisions of the P- 

element can be made using transposase-mediated excision (Robertson et al., 1988). If 

the insert excised precisely (or nearly precisely) then the mutant phenotype should be 

reverted to wild-type if it has been caused by the insertion.

Here I shall explain precise excision of transposons from the genome of 

Drosophila. Later in Chapter Five imprecise excisions of P-elements to generate small 

genomic deletions will be discussed.

The method employed to excise P-elements from genomic DNA is by 

transposase mediated excision. Fortunately a stable source of transposase is available 

in Drosophila, the defective P-element P[ry+ A 2.3](99B) (Robertson et al., 1988). 

The P[ry+ A 2.3](99B) element produces transposase but can not excise. Presence of 

the P[ry+ A 2.3](99B) element in a fly line also containing a P-element results in 

transposition and loss of the P-element from some of its cells. In the germ-line of 

males this event will result in the production of sperm lacking the element. The P- 

element is marked in the case of PflArB] with the rosy+ gene and reversion of this to 

a rosy  phenotype can be used to screen for loss of the element.

A model o f the molecular mechanism of these excision events has been 

proposed; the gap repair model of P transposition. When the P-element is excised it 

produces a double-strand break, which is widened to varying degrees by exonuclease 

activity. The gap is shown with 3' overhangs (Fig. 3.1b). The broken ends and the 

complementary template find each other, and strand invasion is initiated at the 

overhanging 3' ends (Fig. 3.1c). Polymerisation occurs from both broken ends filling 

in the gap and leaving an intermediate structure which has two Holliday junctions 

(Fig. 3. Id). This intermediate structure is resolved and the result is a noncrosssover 

product in which the template duplex is unchanged (Fig. 3.1e) (for review, see Gloor 

etal., 1991).
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product in which the template duplex is unchanged (Fig. 3. le) (for review, see Gloor 

flat., 1991).
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If the insertion causes no obvious phenotype, then it may not have inactivated 

the adjacent gene; 20% of insertions on the third chromosome cause lethality, 5% of 

insertions on the X cause lethality (Bellen e ia l, 1989). However, mutations in genes 

flanking the insertion can be generated by imprecise excision of flanking DNA 

Imprecise excision events result in the removal of flanking genomic DNA along with 

the P-element. The P-element can be excised given a transposase source, these 

excision events can be tested for imprecise events by checking for loss of viability 

over a deficiency in the region.

3.2 P[IArB] insertion A350.1M2.

The B-galactosidase expression pattern of A350.1M2 detected with anti-B- 

galactosidase antibody and horse radish peroxidase.

3.2.1 Embryonic expression pattern.

Embryos were staged according to the description of development of wildtype 

Drosophila embryos (Campos-Ortega and Hartenstein, 1985).

The first expression can be seen during early gastrulation, stage 7, (3 - 3 :10 

hrs). After formation of the ventral fiirrow, cells of the amnioproctodeal invagination 

can be seen to express B-galactosidase (Fig. 3.2.1b). As the cell plate deepens during 

stage 8 (3:10 - 3:40 hrs), the expression becomes more extensive in the cells of the 

primordia of the posterior midgut In the anterior region of the embryo expression can 

be seen in the cephalic ectoderm and anterior midgut (Fig. 3.2 lc and d) By stage 11 

(5 :20- 7:20 hrs) the expression can be seen in the cells of the posterior midgut, 

Malpighian tubules and proctodeum Expression can also be seen in the region of the 

anterior midgut (Fig.3.2 le) Many cells of the ventral nerve cord can be seen to be 

expressing B-galactosidase in a segment ally repeated pattern Expression is also 

present in the cephalic neurogenic region The expression is strong in the epidermis of 

the three gnathal segments of the head (mandibular, maxillary, and labial) and in the 

hypopharyngeal lobe (Fig. 3.2 If) After germ band shortening during stage 12 (7:20 - 

9:20 hrs), expression is seen in much of the head epidermis (except the clypeolabrum), 

and in a large number of cells of the central nervous system Expression can still be
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seen in the posterior midgut, Malpighian tubules and the proctodeum and is also 

visible in the larval salivary glands (Fig. 3.2. lg).The dorsal view of the stage 13 (9:20 

- 10:20 hrs) embryo shows staining in the Malpighian tubules (Fig. 3.2. lh).

3.2.2 Larval expression pattern.

B-galactosidase expression is present in the larval brain in the brain lobes and 

in the ventral nerve cord (Fig. 3.2.2a). Only one of the larval discs shows any 

B-galactosidase expression and that is the dorsal prothoracic discs which are located 

at the anterior-most end of the trachea (Fig 3.2.2b). This larval disc gives rise to the 

humerous a small plate on the anterior comer of the notum of the adult fly

3.2.3 Adult expression

In the central nervous system a small amount of expression is found in a few 

cells of the adult brain lobes and in a striped pattern in the ventral nerve cord (Fig 

3.2.3a). The nuclear localisation of the lacZ gene product makes it impossible to 

visualise the shapes of these cells, and hence it is unclear what types of cell these are 

Other adult structures include the pericardial cells of the heart (Fig. 3.2.3b) 

and a structure at the posterior end of the gut (Fig. 3.2.3c) which both contain 

endogenous B-galactosidase activity.

3.3 A350.1M2 maps to cytological position 59F

A clone of genomic DNA flanking the A3 50.1 M2 insertion was obtained from 

Dr. Clive Wilson. This clone had previously been used to localise the insertion to 59E- 

F (Wilson el al„ 1989). A biotin-labelled probe was made from this plasmid rescue 

clone which was then hybridised to wild-type Drosophila polytene chromosomes 

Detection of the probe revealed a unique signal at cytological band S9F1-3 as shown 

in Figure 3.3.1.
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3.4 The A350.1M2 insertion is associated with hentizygous lethality.

It was not possible to tell directly whether the A350.1 M2 insertion was 

homozygous lethal because it is on the CyO balancer chromosome, which itself is 

homozygous lethal However given the knowledge of the cytological map position of 

the insertion, one can test for hemizygous lethality by crossing the insertion 

chromosome to a chromosome carrying a deficiency which is thought to cover the 

insertion site The A3 50.1 M2 chromosome was tested over Df(2R)bwS46 (Simpson, 

1983), which has the breakpoints -59D8; 60A7 (Fig 3.4.1). From the results of the 

cross to Dt(2R)bwS46, the A350 1M2 chromosome has a lethal in the region of the 

deficiency, but is this lethality due to the insertion of P[IArB]9 This can be tested by 

precise excision of the P-element to ask whether excision reverts the chromosome to 

viability

3.5 The A350.1M2 insertion causes hemizygous lethality.

The crossing scheme used to excise the A350.1M2 insertion and results are 

shown in (Fig. 3.5 1). In the F zero generation flies containing the insertion to be 

excised (A350 I M2) were crossed to flies containing the P[ry+ A 2.3](99B) element 

From the FI generation flies containing both the A350.1M2 insertion and the P[ry+ A 

2 3](99B) element (jumpstart males) were selected These jumpstart males were 

crossed singly to r y  virgins, and flies from the F2 generation were selected that had 

lost the transposase-producing chromosome and also were lacking at least the ry+ 

marker of A350 I M2 These Hies (a single progeny tly of each jump-start male) were 

then crossed to the deficiency Dfl^RJbw^b to test for viability of the excised 

chromosome over the deficiency

After excision of P[IArB] the CyO A350 I M2 chromosome is reverted to 

viability over deficiency Df(2R)bwS46 The P-element insertion A350 I M2 had 

therefore produced the lethality, suggesting that the gene it has disrupted is essential 

for viability.
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3.6 Determination of the lethal phase of the genotype A350.1 M2/ 

Df(2R)bwS46 .

The hatch frequency of embryos from the cross shown in Figure 3.6 1 was 

determined by lining up fertilized eggs on a grape juice plate, leaving for twenty four 

hours at 25°C, and then counting the number of unhatched eggs A quarter of the 

progeny of this cross will be CyO A350.1M2/ CyO and are embryonic lethal If 75% 

of the embryos hatch then CyO A3 50.1M2/ Df(2R)bwS46 individuals are not 

embryonic lethal If 50% of the embryos hatch then A350.1M2/ Df(2R)bwS46 

embryos are embryonic lethal The results in Figure 3.6 1 show that 29% of the 

embryos did not hatch, i.e 69% of the embryos hatched This suggests that 

A350 1M2/ Dfl;2R)bwS46 do not die during embryogenesis In control experiments 

with wildtype embryos >90% of fertilised eggs hatch

3.7 P|ClrB| insertion D26.

The P[ClrB] construct is essentially similar to the P[IArB] detector transposon 

except that it carries a truncated P-lacZ fusion gene The predicted protein from this 

fusion has the first two amino acids of P-transposase fused to the lacZ product The 

nuclear localisation of the fusion product in P[IArB] was thought to be due to the 

presence of the N-terminal 126 amino acids of the P-transposase, the removal of this 

region results in cytoplasmic localisation of the 13-galactosidase in P[ClrB] Eighty 

eight independent lines were generated and the 13-galactosidase expression pattern of 

these lines were examined (Smith and O'Kane, 1991)

3.8 ll-giilactosidase expression pattern of P|ClrB| line D26.

The 13-galactosidase expression pattern in this line is similar to that of the 

A350 1M2 insertion during embryogenesis In early gastrulating embryos expression 

can be seen in the cells of the amnioproctodeal invagination and in the head ectoderm 

Once the germ band has elongated expression occurs in a segmcntally repeated 

pattern in the ventral nerve cord, this expression is particularly strong in the epidermis
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of the gnathal and hypopharyngeal segments of the head, a characteristic of the 

A350.1M2 expression pattern (Fig. 3 8)

3.9 D26 maps at cytological position 59F and is homozygous and hemizygous 

viable.

D26 has been shown to map to the same cytological position on wildtype 

polytene chromosomes as the A350.1M2 insertion, at cytological band 59F (H Smith, 

pers. comm ). The D26 chromosome is homozygous viable showing that the insertion 

has not disrupted the flanking gene The D26 insertion was tested for viability over 

the Df(2R)bwS46 by looking at the progeny of the cross shown in Fig 3.9 1 The 

results show that D26 insertion is viable over Df(2R)bwS46

3.10 Discussion

3.10.1 A350.1M2

This line is interesting because the expression of Q-galactosidase in this line 

occurs in a spatially restricted manner early during embryogenesis The expression 

pattern of this line is shown diagrammatically in Figure 3 .10 Genes expressed this 

early during development are good candidates to be involved in determining cell fate 

decisions The expression pattern of the P-lacZ insertion suggests that any adjacent 

gene with a similar expression pattern might be involved in determination of the 

posterior gut, the head or the CNS The fact that the A350.1M2 insertion causes 

hemizygous lethality shows that it has disrupted (at least partially) an adjacent gene, 

which is essential for development For a P-element insertion to disrupt the function 

of a gene it must insert within the coding region of the gene (structural gene), in the 

regulatory elements or in such a place that it separates the coding region from its 

control elements
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3.10.2 D26

The expression pattern and map position of this insertion suggests that it is 

probably near the same essential gene which is disrupted by the A3 SO. 1M2 insertion. 

The D26 chromosome is homozygous viable and is also hemizygous viable over 

Df(2R)bwS46.
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P u c U o n  Mnd wkJ&ntng of 
doufcto-strand gap

-C O -

Figure 3.1 The Gup repair aiodeL
A: P-element excision leaves a double-strand gap, which is widened to various extents 
by exonuclease activity. The gap is shown with 3' overhangs.
B: The broken ends and the template find one another, then strand invasion occurs at 
the overhanging 3' ends.
C: Polymerisation occurs from both broken ends filling in the gap and leaving an 
intermediate structure with two Holliday junctions.
D: The double-Holliday junction intermediate is resolved, resulting in a noncrossover 
product in which the template duplex is unchanged. The repaired duplex has a central 
region o f converted sites flanked by heteroduplex regions and single strand nicks. The 
nicks are ligated.
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Figure 3.2.1
The embryonic O-galactosidase expression pattern of P[lArB] insertion 
A350.1M2.

A-stage 5 (2:10 - 2:50hrs)
At cellularisation there is no expression.

B-stage 7 (3 - 3:10hrs)
At the onset of germ band extension, expression can first be seen in the cells of the 
amnioproctodeal invagination.

C-stage 8 (3:10 - 3:40hrs)
This is the rapid phase of germ band extension, expression can be clearly seen in the 
primordia of the posterior midgut and the proctodeum. Expression is now apparent in 
the region of the anterior ectoderm and the anterior midgut primordium.

D-stage 8 (Dorsal view)
The anterior midgut invagination can be seen to be faintly expressing B-galactosidase 
(ring of cells).

E-stage 11 (5:20 - 7:20hrs)
Expression can be seen in a segmentally repeated pattern in the cells of the ventral 
nerve cord. Cells in the cephalic neurogenic region also strongly express B- 
galactosidase. Staining is still intense in the posterior midgut and proctodeum 
Expression is strong in the stomodeum and faint in the anterior midgut.

F-stagel 1 (5:20 - 7:20hrs)
The expression is most intense in the epidermis o f the three gnathal segments 
(mandibular, maxillary and labial) and also in the hypopharyngeal lobe. In the 
maxillary and labial segments the expression is mainlyin the ventral half of each 
segment. The salivary glands invaginate from the labial segment.

G-late stage 12 (9hrs)
Expression can be seen in most of the cells of the ventral nerve cord, cephalic 
neurogenic region and most of the head epidermis except the clypeolabrum At the 
anterior the salivary glands are expressing B-galactosidase. The posterior midgut, 
Malpighian tubules and proctodeum are still expressing B-galactosidase.

H-stage 13 (9:20 - 10:20hrs, Dorsal view)
This view shows the expression of B-galactosidase in the embryonic Malpighian 
tubules.

Embryos are orientated anterior left, posterior right. Lateral views are dorsal top, 
ventral bottom, except where stated otherwise.
Abbreviations: am; anterior midgut primordium, api; amnioproctodcal invagination, 
ce; cephalic ectoderm.CNR; cephalic neurogenic region, hp; hypopharyngeal lobe, lb; 
labial bud, md; mandibular bud, mt; malpighian tubules, mx; maxillary bud, pm, 
posterior midgut primordium, pr; proctodeum, sg; salivary glands, VNC; ventral 
nerve cord, B,brain.
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Figure 3.2.2 The R-galactosidase expression pattern in the third instar larvae 
of line A350.1M2.

A- Larval CNS, A number of cells in the brain lobes and the ventral nerve cord 
can be seen to be expressing B-galactosidasc.

B- The prothoracic disc is the only disc to express B-galactosidase in the third 
instar larva.

abbreviations: rg; ring gland, bl; brain lobes, dpd; dorsal prothoracic disc, 
tr; trachea.
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Figure 3.2.3 U-gnlartusidase expression pattern in the adult fly or A350.IM2 
heterozygotes.

A- The adult CNS, staining can be seen in a small number of cells in the brain lobes 
and in a striped pattern in the thoracic ganglion (anterior top, posterior bottom)

B- Some of the pericardial cells of the heart express iJ-galactosidase (anterior top, 
posterior bottom) This is due to endogenous B-galactosidase activity in these cells

C- Part of the male testis (anterior left, posterior right) This is also due to 
endogenous 13-galactosidase activity in this structure

abbreviations hi, brain lobes, vg. ventral ganglion, ag. abdominal ganglion
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Figure 3.3.1 Cytological map position of A350.IM2 P-element insertion.

A; The cytological map of Lefevre (1976). B: The A350.1M2 plasmid 
rescue clone was hybridised to wild-type Drosophila polytene chromosomes. The 
signal can be seen at cytological bands 59F1-3.
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Flies carrying the insertion of interest are crossed to a Deficiency in the region.

FO

Lethal (Cy Sp+) Cy+ Sp Cy Sp

Number of flies counted
#1 none none 136 143
#2 none none 192 178
#3 none none 206 198

Figure 3.4.1 Test for hemizygous lethality of the A350.1M2 insertion over 
Dfl(2R)bwS46.

There were no Cy Sp+ progeny, indicating that the A350 1M2 insertion 
chromosome is lethal over Dfl[2R)bwS46
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Cross A350 1M2 females to transposase-producing stock.

F0
Ç yQ A 3 5 0 ,1 M 2 iy ^  ; JX 

b Adh en 1 ry
£ &  : 1Y St P |r r  A 2,31(99?) 
Sp TM6

Pick single Jump-start males, excision occurs mosaically in these flies 

F I
CvO A350.1M2 ry+ ; rv Sb Plnr+ A 2.3K99B) X  

Sp iy
£yQ, nfr ; a

Sp iy

Pick single A3 50.1M2 ry  revertant offspring from each Jump-start male and cross to 
deficiency stock

F2
Çy9 A A 350 ,lM ?ry ; JX 

Sp ry
pftw (§46 ) ; a
CyO  «y

Score for hemizygous lethality of A350.1M2 ry  chromosomes over deficiency

F3 X  /
, Hemizygoua A A350.1 M2 

revenants /
^  /

ÇyÇ AA350,lM^iY Cy9  AA3*>,lM2rc
CyO Df bw(S46) Dfbw(S46) CyO

I Lethal 1 Cy. Sp+ | Cy+. Sp I Cy. Sp I Phenotype |

none 20 18 20 SI
none 20 18 30 #2
none 16 17 14 S3
none 12 17 16 S4
none 6 9 13 S3
none 19 18 19 S6

Figure 3.S.I. Precise excision of A350.1M2

Cy Sp+ flies were present in the offspring showing that CyO A A3 50 1 M2 is viable 
over Df(2R)bw S46 This shows that the P-insertion must have caused the lethality 
since the chromosome is viable when the element is excised
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FO
CvO A350.1M2 

b Adh cnl
X DfT2RïbwS46

CyO

FI
CvO A350.1M2 
Df(2R)bwS46

/  X  
CvO A350.1M2

CyO
b Adh cnl 

Df(2R)bwS46
b A(flh çnl 

CyO

embryonic lethal? embryonic lethal viable viable

total number of 
embryos

number of 
unhatched embryos

% of unhatched 
embryos

400 113 29

3.6.1. Test for embryonic lethality of the genotype A350.1M2/ Df(2R)bwS46.

23% of the offspring are CyO A3S0.1M2/ CyO and die as embryos 71% of 
the embryos hatched indicating that A3 SO. 1M2/ Df(2R)bwS46 individuals are not 
embryonic lethal.
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Figure 3.S The embryonic B-galactosidase expression pattern of P[ClrB] 
insertion D26.

Germ-band extended embryo stained with antibodies to p-galactosidase, 
expression can be seen to be in a segmentally repeated pattern in the ventral nerve 
cord. The expression is strong in the epidermis of the gnathal segments of the 
embryonic head. This is a characteristic of the B-galactosidase expression pattern of 
the A3 SO. 1M2 P[lArB] insertion line.

D26
D26

FI

Cy+ Cy

Number of flies counted
#1 137 1S8
#2 89 102
#3 97 8S

Figure 3.9.1 Test to determine whether D26 insertion is viable over 
DH(2R)bwS4<.

The presence of non Cy flies in the FI progeny indicates that the D26 insertion 
chromosome is viable over Df(2R)bwS46.
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Figure 3.10 Diagramamtic representation of the 6-galactosidase expression is 
early A350.1M2 embryos. (Fate maps adapted from (Jurgens t t  a t . ,  1987).

A: Expression domains have been drawn onto the fate map at the gastrula stage

B: Expression in the head region at germ band extension
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Chapter 4

Molecular characterisation of the genomic region flanking the A350.1M2 

insertion.

4.1 Introduction.

In this chapter I describe the strategy taken to molecularly clone a gene that 

flanks the A3S0.1M2 enhancer detector transposon and has a similar expression 

pattern to it. Molecular cloning of a gene requires the identification of transcriptional 

units in the genomic region, to enable the characterisation of these transcripts to be 

performed. Characterisation of the transcript can provide information about any 

protein encoded by this gene and information about possible functions of the gene.

The P[lArB] transposon contains Bluescript plasmid sequences allowing 

plasmid rescue of flanking genomic sequences Cloning of genomic DNA is facilitated 

by the presence of a polylinker, (PL3) in the vector, which contains a number of 

restriction sites which are not found downstream in the construct (Fig. 4.1.1.) 

Consequently the next site downstream will be in the genomic sequences. After 

restriction enzyme digestion to produce linear genomic fragments and ligation to 

recircularise them, these fragments can be transformed into competent Kcoli cells. 

Checking that the transformants are in fact plasmid rescue clones can be done both by 

restriction mapping and by labelling the insert DNA with biotin and hybridising to 

wildtype polytene chromosomes.

Restriction mapping involves digesting the DNA with a large range of 

enzymes and then sizing the resulting fragments by electrophoresis. The fragments can 

be ordered by comparing fragment sizes produced by different combinations of digests 

using two enzymes. Restriction mapping of putative plasmid rescue clones indicates 

which clones are likely to be real plasmid rescue clones on the basis o f the sizes of the 

fragments produced. A digest which liberates the vector from insert is useful since the 

size of the vector band is known, and from this digest the size of the insert o f genomic 

DNA can also be calculated. Producing a restriction map is useful as it allows
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subsequent selection of smaller genomic fragments which can be used for further 

experiments.

Hybridisation of the clone to polytene chromosomes shows that the clone 

contains only unique DNA sequences and also shows the cytological map position of 

the clone.

If more genomic DNA than that contained in the plasmid rescue clone is 

required, it can be obtained by screening a genomic DNA library using the plasmid 

rescue clone as a probe If the region is already well characterised, a genomic walk 

from a nearby gene with clones covering the region may already exist Once genomic 

clones covering the region are obtained they can also be restriction mapped

When clones of DNA flanking the insertion are available and have been 

restriction mapped, it is then necessary to identify transcribed sequences in this region 

These transcripts can then be tested for an expression pattern resembling that of the 

P-lacZ insert, and to identify and characterise cDNA clones in order to determine the 

nature of any gene product encoded by appropriate transcripts

cDNA clones are DNA clones made by reverse transcribing mRNA molecules 

and they therefore represent potential protein coding sequences Screening a cDNA 

library with genomic DNA fragments will therefore yield cDNA clones derived from 

mRNAs transcribed from those fragments The difficulty of this depends on the 

abundance of the relevant cDNA clones in the library Any cDNA clones recovered 

can then be mapped and orientated with respect to the genomic walk Whole mount in 

situ hybridisation to Drosophila embryos using the cDNA as a probe detects the 

developmental expression pattern of the transcript This pattern can then be compared 

to the original P-lacZ expression pattern the line was selected for. The sequence of 

the cDNA clone provides information regarding any protein encoded by the 

transcript, and may predict a possible function for such a protein
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4.2 Isolation or genomic DNA flanking the A350.1M2 insertion, and the 

production of a restriction map.

Genomic DNA flanking the 3' end of the insertion had previously been 

obtained by plasmid rescue (Wilson et a l. 1989). The plasmid rescue clone was 

generated from a //»«dill digest of A3S0.1M2 genomic DNA, and contained 1 lkb of 

DNA 3' to the insertion. This clone was digested with a range of enzymes and the 

resulting fragments were sized by electrophoresis to generate a restriction map. The 

restriction sites in PL3 and PL4 of the plasmid rescue clone are shown in Figure 4.1.1. 

The gels used to size these fragments are shown in Fig. 4.2.1 and this information is 

summarised in Table 4.2.2. The restriction map and the rationale behind the mapping 

is presented in Fig. 4.2.3. Genomic DNA S' to the insertion was obtained from a 

genomic cosmid clone from the genomic walk covering the region of the brown gene 

(Dreesen et al., 1988). This walk extends approximately from 59D/E-59F1, so there 

was a possibility that it contained genomic DNA from the region of the A3 SO. 1M2 

insertion at S9F. A Southern blot of EcoKl and Xhol digests of cosmid clone cPn31 

was probed with the radioactively labelled Xhol-Noil fragment from the plasmid 

rescue clone. Cross hybridisation to the large 12kb Xhol fragment was seen (data not 

shown). The cosmid fragments were ordered by probing £coRJ and Xhol digests of 

cPn31, cPnl 24 and the plasmid rescue clone with this 12ld> Xhol fragment of cPn31. 

The gel showing digests of cPn31 and cPnl24, and the sizes of these fragments are 

shown in Fig. 4.2.4. and Table 4.2.S. A restriction map of the cosmid vector cosPneo 

is shown in Figure 4.1.1.

From the data of Dreesen and co-workers I have positioned the plasmid 

rescue clone with respect to the brown walk as approximately SOkb to the right of the 

brown gene on chromosome 2R. Dreesen ( personal communication ) has also placed 

cPnl24 as being to the left of cPn31, and overlapping with cPn 722 and cPnl21. As I 

have found that cPnl24 overlaps only with the region of the A350 1M2 clone nearest 

the P-insertion, whereas cPn31 probably covers the entire clone. This has allowed me 

to orientate the restriction map with respect to the polytene map (Fig.4.2.3.).
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4.3 Isolating cDNA clones from the region adjacent to the A350.1M2 insert.

Before fragments from the genomic region described were used for further 

experiments it was first necessary to check that they did not contain repetitive 

sequences. The Notl-HindlU fragment from the plasmid rescue clone, fragment a) and 

the 12kb Xhol fragment from cPn31, fragment b) (these fragments are shown in Fig. 

4.2.3) were labelled with biotin by the method of random priming, and hybridised to 

wildtype polytene chromosomes. The result for the Noil-Hindlll fragment of the 

A3 SO. 1M2 plasmid rescue clone is shown in the previous chapter. Both fragments 

gave a single signal at cytological position S9F indicating that these fragments 

contained only unique sequences (Fig. 4.3.1 shows Xhol fragment).

Before screening the cDNA library I made numerous attempts to size any 

transcript that might be encoded by the Noil-Hindlll plasmid rescue clone by 

Northern analysis. Although my Northern blots were not of the highest quality, they 

did suggest that the plasmid rescue clone was transcriptionally active (Fig. 4.3.2 ).

Given the evidence for a transcript within the Noil-Hindlll plasmid rescue 

clone, I decided to screen for cDNA clones derived from this genomic fragment. The 

Nicholas Brown embryonic cDNA libraries (Brown and Kafatos,1988), were available 

in our laboratory and because of the early B-galactosidase expression ( 3 hrs onwards) 

in the A3S0.1M2 V-lacZ insertion line, I chose to screen the 4-8hr embryonic library. 

The complexity of this library ( ie. the number of initial transformants ) was 3.3x10*. 

The 4-8hr embryonic cDNA library was transformed into Epicurian Blue competent 

cells. I screened 430,000 colonies over 9 plates (-30,000 per plate). In the primary 

screen 23 independent putative positive colonies were picked and by the tertiary 

screen three of these original positives were represented by three types of cDNA 

clone.

The cDNA clones were characterised into one of the three types on the basis 

of their restriction patterns when digested with the two enzymes SowIIIa and £coRI. 

The cDNA clones were restriction mapped using £coRI and Him.fill, this also enabled 

an estimation of the size of each clone to be made. The gel showing Hindlll and
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EcoRI digests of each of the clones are shown in Fig 4 3.3. This information is 

summarised in Table 4.3 .4

The 5’ and 3‘ end of each of the cDNA clones was sequenced using the 

dideoxy T termination reaction only (ie. T-tracked) in order to determine which of the 

cDNA clones were the same. From the T-tracking experiment the 3’ ends of cDNA 

clones type 19 and 3a3 were the same but they differed at the 5’ end The sequence of 

cDNA clone 6 differed from the other two clones at both its 5’ and 3’ end These 

results suggest that clones 19 and 3a3 are overlapping (ie. the same gene) whereas the 

other clone is non overlapping (ie a different gene). (Data not presented).

4.4 Mapping cDNA clones back to the genomic walk.

Fragments containing non vector sequences from each of the cDNA clones 

were labelled with Digoxigenin by random priming and used to probe filters of EcoK\ 

digests of cPn31 and the plasmid rescue clone. The positions of these fragments on 

the genomic walk are shown in Figure 4.2.3. Each filter had an £coR] digest of the 

cDNA clone it was probed with as a positive control The gel blotted to make these 

filters is shown in Fig 4 4 1 The hybridisation was detected colourmetrically on the 

filter Fig 4 4.1. Clones 19 and 3a3 map between co-ordinates +6  and +8 3 kb on the 

restriction map All the cDNA clones hybridised to the 8kb fragment from the plasmid 

rescue clone fragment and to the 1 Okb fragment from cPn31 The 8kb fragment 

contains bluescript so hybridisation to this band is probably due to contaminating 

vector sequences in the probe. The lOkb cPn31 fragment may also be vector, if this is 

real hybridisation the fragment is further away either to the left or to the right of the 

insertion site and is therefore of less interest cDNA clone 6 hybridised weakly 

between co-ordinates +6  and +7 4 kb
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4.5 In-situ hybridisation or the cDNA clones to whole mount Drosophila 

embryos.

Fragments from £coRI -///«dill digests of each of the cDNA clones 

corresponding to non vector sequences were used to make random-primed 

Digoxigenin probes and were hybridised to whole mount Drosophila embryos These 

fragments are shown on the restiction maps of the cDNA clones shown in Table 

4.3.3. Two expression patterns were detected in wildtype embryos

1) cDNA clones of type 19 and 3a3 gave a very similar expression pattern to that 

originally detected by the Enhancer detector transposon (Fig. 3.2.1) The expression 

of cDNA clone 3a3 is shown in detail in Figure 4.5.1. The homologous transcript 

corresponding to cDNA clone 19 and 3a3 is expressed very early in an anterior and a 

posterior stripe during the blastoderm stage (between 2:20-2:50 hrs); the cells at the 

anterior are the anlagen of the anterior midgut, hypopharyngeal lobe and brain, the 

cells at the posterior are the precursors of the posterior midgut and proctodeum 

These are the same cells that showed lacZ expression in A350.1M2 but at a slightly 

later stage The A350.1M2 shows the posterior expression in the cells of the amnio 

proctodeal invagination (anlagen of the posterior midgut and proctodeum) in early 

gastrulating embryos (stage 7; 3 hrs). The anterior expression of lacZ in A3 50 1 M2 in 

the cephalic region occurs slightly later stage 8 (3:10-3:40 hrs) During germ band 

elongation the expression is in a segmentally repeated pattern in the ventral nerve cord 

as in A350.1M2. A striking similarity with A350. IM2 enhancer detector expression is 

the more intense staining in the gnathal segments of the head A more detailed 

description is given in the legend of Figure 4.5.1.

2) cDNA clone 6 showed no expression throughout embryogenesis

4.6 Precise mapping of cDNA 3a3 to the genomic region flanking the 

A350.1M2 insertion.

cDNA clone 3a3 was shown to detect a transcript which was expressed in a 

similar pattern to the lacZ expression pattern of the original A350 1M2 enhancer
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detector line (Fig 4 5.1) The cDNA clone 3a3 was mapped more precisely to the 

digests of the DNA flanking the original insertion site to determine how far it was 

from the site of insertion of the P-element. Digests of the cosmid clone cPn 31 and the 

plasmid rescue clone were probed with the cDNA clone (Fig 4.6.1 and summarised in 

Table 4.6.2. The cDNA maps somewhere between map co-ordinates +6  and +9 3 kb 

(Fig.4.2.3). cDNA clone 3a3 was orientated with respect to the genomic region by 

making a probe from a fragment from the 5' end of the clone (ie. 1 2kb ///«dill, £coRI 

fragment of cDNA clone 3a3; restriction map Table 4.3.3). The 5' fragment from 

cDNA 3a3 hybridised only to the 1.45kb EcoK\ site (+6  - +7 4 kb) (Fig 4 6 3; Table 

4.6.4), orientating the clone as shown with respect to the genomic region (Fig 4 2.3 ). 

The restriction map of clone 3a3 also corresponds to the genomic map

cDNA clone 6 also hybridised map between co-ordinates +6 - +7.4 kb of the 

genomic walk. No expression was detected by in situ hybridisation to embryos, and 

sequencing of the ends of the clone show that it has no homology to cDNA 3a3 This 

is suprising as one would expect substantial overlap with clone 3a3 I have not 

resolved this but one possibility is that cDNA 6 maps at a different location and shares 

some homology with this genomic region The restriction map of cDNA 6 does not 

correspond to the genomic

4.7 DNA sequence of cDNA clone 3a3.

cDNA clone 3a3 was larger than the cDNA clone 19 and was less likely to be 

truncated and was therefore the one that I decided to sequence Both strands of the 

clone were sequenced using sequential primers The DNA sequence was 2887 base 

pairs long (Fig.4.7.1) and was translated in all three frames to its peptide sequence, in 

an attempt to find translational start sites and an open reading frame In all three 

frames there appears to be no long open reading frame I used frames on GCG to 

locate all the possible start and stop sites in each of the three frames and also of the 

clone in reverse (Fig. 4.7.2). The stop sites occur very frequently in all three frames 

In frame two there are two short potential open reading frames, these have been
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labelled ORF1 and ORF2 ORF1 encodes 92 amino acids starting at the methionine 

before it stops, ORF2 encodes 88 amino acids from the methionine I performed a 

homolgy search of the Swissprot database witheach of these peptide sequences The 

best ten homologies to ORF1 and ORF2 are shown in table 4 7.3. None of these 

provide any information about what the 3a3 transcript is doing in normal 

development I also searched each of the ORF's for protein structural motifs but 

neither of them had any. There are a small number of regions where there could be a 

mistake in the sequence (these were areas of high secondary structure in the template 

causing compressions in the sequence, these compressions were present in the 

sequence of both strands) these have been clearly marked on the sequence (Fig 

4.7.1). Even if all of these areas resulted in a frame shift it still would not produce a 

long reading frame.

Since I had a shorter version of the same clone ie cDNA clone 19 it occured 

to me that there was a possibility that cDNA 3a3 might be an unspliced version of 

clone 19, which would account for the lack of a long open reading frame From the 

restriction map of clone 19 the 5' most Hind\\\ EcoRl fragment was shown to be 650 

basepairs shorter (550 bp) than the most 5' ///«dill EcoR\ fragment (1.2 kb) in clone 

3a3. We know that the sequence from the 3' ends of 19 and 3a3 are the same, if clone 

19 is a spliced form of 3a3 then the 5' end of clone 19 will be closer than 650 base 

pairs from the start of the 5' end of clone 3a3 The 5' end of clone 19 was sequenced 

to determine where the sequence was in clone 3a3 The 5' end of clone 19 starts 671 

base pairs into clone 3a3 (Fig 4 7.1). The start of the 5' sequence of clone 19 is 

indicated on the sequence of clone 3a3 (Fig 4 7 1) This data suggests that clone 19 is 

a 5' truncated form of clone 3a3

100 base pairs of sequence from the 3' end of cDNA 6 was compared to 3a3 

and no homology was seen This DNA sequence from cDNA 6 is given in Fig 4 7 4
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4.8 Discussion.

4.8.1 The restriction map or the genomic DNA flanking the A350.1M2 

insertion.

Genomic DNA flanking the original A350.1M2 insertion was obtained from 

plasmid rescue of sequences 3' to P[lArB] and from a cosmid clone cPn 31 (from the 

brown gene genomic walk) which extends both to the 5' and the 3' of the insertion 

This region has been restriction mapped and orientated with respect to the 

cytological map 50kb to the right of brown on chromosome 2R It was determined 

that the plasmid rescue clone and the 12kb Xhol genomic fragment contained only 

unique sequences and could therefore be used as a probe for cDNA clones in the 

region I also produced tentative evidence that the plasmid rescue clone was 

transcriptionally active

4.8.2 cDNA clones from the genomic region adjacent to the A350.IM2 

insertion.

A number of cDNA clones were isolated from a cDNA library screen using 

the plasmid rescue clone as the probe These clones were categorised into three types 

on the basis of their restriction patterns The cDNA clones 19 and 3a3 both mapped 

back to the genomic region flanking the A350.1 M2 insertion cDNA 3a3 and cDNA 

19 appear to be the same from their sequence at their 3' ends but cDNA 19 is 

truncated by 671 bp at the 5' end. cDNA 6 also mapped to I 45 kb £coRI (between 

+6 and +7.4 kb on the restriction map) fragment which is suprising since the sequence 

of cDNA clone 6 is not contained in cDNA 3a3

4.8.3 In-situ hybridisation of the cDNA clones to whole mount Drosophila 

embryos.

The immense similarity between the original lacZ expression of A3 50 I M2 

and the hybridisation pattern of the cDNA clone suggests that cDNA 3a3 represents 

the transcript of the gene originally detected by the enhancer trap line A3 50 I M2
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4.8.4. The sequence of cDNA clone 3a3.

The DNA sequence of cDNA clone 3a3 has not yielded conclusive 

information as to the nature of the protein if any, encoded by this transcript. Perhaps 

this gene has its effect as an RNA molecule? Or maybe one o f the short reading 

frames does encode a protein product? The other possibility, is that there may be 

another transcript in the region that is disrupted by the A3 SO. 1M2 insertion. I have 

not conclusively proved that the 3a3 transcript is the only transcript in the region or 

that this transcript is disrupted by the insertion.
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Figure 4.1.1
Plasmid rescue of sequences flanking the PJlArB] transposon.

A: structure and function of the P-element enhancer detector PPArB], the P-lArB 
plasmid contains a P-lacZ fusion gene, the Adh gene, the ry+ gene as an eye 
colour marker and Bluescript plasmid sequences. The transposon is flanked by the 
5' and 3' P-element sequences necessary for transposition (hatched boxes). The 
polylinker 3 (PL3) contains six restriction enzyme sites that are not present farther 
3' in the construct and therefore may be used for plasmid rescue.

B: plasmid rescue with P[lArB]. Genomic DNA from the PPArB] transposant of 
interest is digested with each of the six enzymes that cut in PL3, in this case 
Hirullll. The genomic fragments are ligated in large dilution. The ligation mixture 
is used to transform competent E.coli, only those molecules containing bluescript 
sequences can replicate and confer Ampicillin resistance and therefore are rescued. 
Digestion of the rescued clone with the enzyme used for the rescue and Not\ 
produces a fragment containing 3‘ P-element sequences and all of the adjacent 
cloned genomic DNA.

C: Restriction map of cosmid P neo
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Figure 4.2.1 Cosmid clone Cpn 31 and the plasmid rescue clone A3S0 digested 
with a range or restriction endonucleases.

These gels were used to calculate the si/cs of the fragments used to produce the restriction 
map (Fig 4.2.3).
A -A  p a l ,  B -B a m H l, C -C la l, E-£coRI, H -H in d ll l ,  K - K p n l ,  X -X h o l

A350
E

A3 50 
EAH

A3 50 
EAA

A3 50 
EAC

A3 50 
EAK

A150
EAX

A3 50 
BAA

A350
BAC

A3 50 
BAH

A3 50 
BAE

C  31 
EAH

C.31
E

C 31
EAX

1 k b
ladder

kb kb kb kb kb kb kb kb kb kb kb kb kb k b
9 4.75 4.75 4.75 4.75 4.75 3 8 6.1 10 5.7 4.75 10 8 12.21
1.6 3.6 2.4 2.3 3 6 3.6 3.3 2 65 2.75 16 4.55 7.1 5.1 11.19
1.5 1.6 16 16 16 16 2.65 2.15 1 6 1.5 3.5 4 55 4.55 10.18
1.45 1.5 1.5 1.5 1.45 1.45 2.23 16 1 45 3 35 3 8 3 6 5 9 16
0.9 1.45 1.45 1 45 1.4 0.9 1.6 10 0.9 3 2.5 2.5 8 14
061 0.9 1.15 1.0 0.9 0 8 6 0.61 2.5 2.15 2.15 7.12
0.2 0 61 • 0.9 0.9 061 0 6 4 0.2 2.15 16 1.6 6 10
0.18 0.2 0.56 0.61 0.2 061 0 18 1.95 1.5 1.5 5 0 9

0 18 0.2 0.2 0 18 0 2 1 65 1.45 1.45 4.07
0 18 0 18 0 18 16 0 9 4 0 9 4 3.05

1.5 0.9 0.9 2 0 3
1.45 0 6 9 0 84 1 63
14 0 61 0 6 9 1 01
1.25 0.2 0 6 6 .517
0.94 0 18 0 6 1 506
0.9 0.57 396
0 8 4 0 4 6 344
0 6 9 298
061 220
0 4 6 201

A3 50
X

A3 50 
AAX

A3 50 
A

A3 50 
KAA

A3 50 
K

A 1I0
CAK

A lS i
KAX

A3 50
C

A3 50 
CAX

A3 50 
CAA

kb kb kb kb kb kb kb kb kb kb
7.« 7 1 8 1 7.1 6.7 8 2 6.7 10.3 7.0 7.8

4.3 4.3 4.3 3.7 0 56 2.3 3.9 3 2
2.4 2.4 2.4 2 } 10 2.3 13
0.7 0 2 4 1.0 10 1.0

0 86

Table 4.2.2 The sizes of restriction fragments produced from clones Cpn31 
and the A350 plasmid rescue clone when digested with the enzymes indicated.

The fragment sizes were calculated from several gels to give the most accurate value in kb. 
these gels arc shown in Fig 4.2.1. This information was used to produce the restriction map of the 
genomic region flanking the A350.IM2 P-element insertion Fig 4.2.3
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Figure 4.2.3 Restriction n iiip  or the genomic region flunking the A 350 .1M 2 
insertion.

None of the restriction enzyme sites in PL3 are in Bluescript.
Map co-ordinates refer to the distance in kb to the left (-) or right (+) of the 
A350. IM2 P-element insertion.

1) A single digest of lia n iH I  produces two fragments, of Mkb and 1.6 kb. There arc no /¡m»HI sites in 
Blucscript and a liu m H  I site in PL4. therefore the B a m  HI site in the clone must be 16 kb to the right 
of PL4.
2) A single digest o tA p a l  produces a 8. lkb. a 4.3kb and a 2.4kb fragment. There is an A p a l  site in 
PL3. the 2 4kb fragment is to small to contain Blucscript. so it must be in cither the 4 3kb or X. I kb 
fragments.
3) A single digest o ff 7«I produces the following fragments lO.Skb. 2 3 kb. and I.Okb. CM cuts in 
PL3,only the lO.ikb fragment is large enough to contain Blucscript. and e.\tcnds to the right of PL3 
and places a f 7nl site 3.3kb away from the right hand end of the plasmid rescue clone The other two 
fragments lie to the right of this site.
4) The double digest of ( 7«I and A p a \ results in the 4.3kb and the 2 4kbA p a l  fragments being cut. 
Therefore each of the two f 7<?1 sites must lie in one of each of the two A p a \  fragments Since wc 
know that one C M  site is 3.3kb from the right hand end of the clone and the other f 'M  sue is w ithin 
this, the order of the A p a  I fragments is 8. Ikb. 4.ikb and 2.4kb from left to right. The 2.3kb ( 'M  
fragment is cut by . l/>nl so the order of the f 7nl fragments is 10 ikb. 2 3kb and I .Okb from left to 
right.
5) ,\7wl cuts to produce a doublet of -7.Xkb. it has one site in PL3 therefore cuts in the middle of the 
clone.
6 ) .\7/«l and ( 7ul double digests place lhc.\7r»l site 3.9kb to the left of the most left < 7ul site
7) .\7i«»l and. l/vrl double digest place the X lio I sue 0.7kb to the left of the most le ft. I p n I sue
X) K p n  I single digest also produces a doublet of about 6.7kb . it also has a site hi PL3 and the second 
site is therefore hi the middle of the clone close to the AVrol site
9) A C /a l and K pn l double digest puls the Kpnl site 3 7kb to the left of the most left C /a l site 
suggesting that llic.Y/ml sue is to the left of the K p n I site The distance is confirmed by a k / m l  and 
X h o l  double digest which suggests they arc separated by o.56kb. K p n l and. lp a \ double digest places 
the K p n  I site (>.24kb to the right of the most left A pril site.
10) Digestion with /:V<»RI produces the following Fragments ohb. I c»kb. I ikb. I 4ikb. o nkh 
0.61 kb.
0.2kb and o IXkb These fragments have been positioned as follows The 9kb fragmcnl must contain 
Bhicscripl and from the /-.VoRI and I h n i l l l l  double digest it is shown to extend 3 r> kb hi one 
direction and 4 75 kb in the other direction from the //»«/111 site hi PL3 /:< «Rl. t 7<il and l  i »Rl . 
A p a  I double digests both result in the 3.6kb fragment being cut. This places an /:'< »Rl site 3 6kb 
from the right hand end of the clone, and one 4 7ikb to the right ofPL3.
11) The l. ik b  £toRI fragment is cut by.YAwl into two small fragments oft) 64kb and o Xokb This 
positions two /:VnRI sues 0 64kb and O.X6kb away from this Xhol sue. the orientation of these sites 
arc not known The K p n  I and AcviRI double digest cuts the I ikb fragment producing a new I 4 kb 
fragment, reconfirming that the K pn  I site lies to the right of the X h o l  site.
12) The 0 6 1 kb /x«RI fragmcnl can be positioned adjacent to and to the right of the I ikb /■.'< <>KI 
fragmcnl on the basis that it is cut by Apal to a fragmcnl of0.i6kb
13) The southern (Fig 4.2.4 & 4 2.3) where the probe was the large I2kb.\/»'l fragment from Cpu 31 
showed hybridisation to the I 6kb £cf>RI positioning it to the left of the I ikb  £c»RI fragmcnl This 
means that the 0.9kb and the I 4ikb fragment must lie to the right of the 0 6lkb fragment The small 
fragments (0 2 and 0. IX) were not on this gel so their positions arc not accounted for
14) The I 45kb AVuRI fragment is to the left o f the 0.9kb /w uRI fragment since the i '  end o f the 
cDNA hybridised only to the I 4ikb fragment.
I.i) Since cPn 124 overlaps the region of the A3i0 I M2 clone nearest the P-element insertion 
whereas cPn.) I probably covers the entire clone This allows orientation o f this restriction map with 
respect to the polytene map. centromeric left, telomeric right.
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Figure 4.2.4
Xhol and EcoRI digests of cPn3 1. cPnl24 and the plasmid rescue clone A350 were 
run on an agarose gel The gel was blotted and hybridised with a radioactively labelled 
12kb Xhol fragment from cPn31 The autoradiograph shows which bands the probe 
hybridised to This data is summarised in Table 4.2.5

Table 4.2.5
Summarises the information from the gel shown in figure 4 2 4 probed with 

Xhol fragment

double lined hatched box indicates the bands which the probe hybridised to
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Figure 4.3.1 In situ hybridisation of the 12kb Xhol fragment of Cpn 31 to 
wildtype polytene chromosomes.

An unique signal can be seen at cytological band 39F showing that the 12 kb 
fragment only contains unique sequences.

20pg ^p g

P
Figure 4.3.2 Northern blot of Wildtype 0-24hr total RNA probed with the 
A350.1M2 Noll Hindlll fragment.

A northern blot of total RNA from 0-24 hour embryos two lanes were 
loaded with 20pg and lOpg of RNA. The two arrows indicate the position of the 
ribosomal bands.

Hybridisation can be seen suggesting that this fragment is transcriptionally 
active. The size of the hybridising bands varied between gels so an estimation of 
transcript size could not be made.
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6 19 , 3a3

cDNA clone 6 cDNA clone 19 cDNA clone 3a3
E EH H E EH H E EH H
2.15 2.15 3.5 2.15 2.15 4.0 2.15 2.15 4.0
1.5 0.96 0.22 0.88 0.8 0.74 . 1.5 1.2 1.45

0.22 0.8 0.71 0 88 0.8
0.21 0.55 0.8 0.71

0.29 0.29
0.22 0.22

Figure 4.3.3 Gel showing HinAXW EcoKL digests or the cDNA clones 6, 19 and 
3a3, the fragment sizes in kb are shown in the table above.

Primary
Screen

Probe which
detected
colony

cDNA
number

Size of 
insert

Expression pattern Restriction map

la A350NH 19 2.23kb A350-like
__1<» • »  II  IN  111 M

3a A350NH 3a3 2.88kb A350-like
1— .. UtiW n 1 a '

5b A350NH 6 1.07kb no expression 
during embryogenesis iw  W I F ™ | I

Table 4.3.4 cDNA clones isolated from screening the Nick Brown cDNA 
library.

The origin of each clone and the probe which it was identified by. The cDNA 
clones have been classified into three types on the basis of their restriction patterns. 
The non vector fragment used for in situ hybridisation to embryos is indicated by the 
asterisk.
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Gel showing EcoK\ digests of A3 50.1 M2 plasmid rescue clone and cPn 3 I DNA 
clones 6, 19 and 3a3 were also run as positive controls Each was probed with non 
vector sequences from one of the cDNA clones. The probe was labelled with 
digoxigenin and detected colourmetrically with NBT and X-phosphate

Figure 4.4.1 M apping cDNA clones lo the genomic m ap.
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Drosophila embryos.
A. Ccllularisation occurs during stage 5 (2:10 - 2:30) this stage has been divided equally into 

three depending on the depth of invaginating membranes. The time between these stages has been 

taken to be approximately equal (according to Campos Ortega and Hartenstcin, 1983; Lawrence and 

Johnston, 1989). The embryo is approximately old stage 3(1) 2:23 hrs.thc 3a3 transcript can first be 

seen to be expressed at this stage. The expression is in two bands one at the anterior and one at the 

posterior end of the embryo. The anterior band at the dorsal surface extends from 92-76% egg length 

and from 92-78% egg length on the ventral sufacc. The posterior band is from 12-0% egg length. 

There may be low levels of expression around some o f the other peripheral nuclei. There is no 

expression in the yolk nuclei or the pole cells.

B. stage 3(2) 2:23 -2:36 hrs.thc expression pattern of 3a3 transcript is unchanged from stage 

3(1). This blastoderm expression is shown diagramatically on the blastoderm fate map (Fig 3.7).

This map indicates that the cDNA expression is in the cells which arc the anlagcn of the proctodeum 

and the posterior midgut in the posterior and precursors of part of the anterior midgut, 

hypopharyngcal lobe and the proccphalic neurogenic region in the anterior of the embryo. These arc 

approximately the same cells that minutes later (ie. 3hours in the posterior, and 3:10 hrs in the 

anterior) show the early lac-Z expression in the A350.1M2 enhancer trap line.

C. Late stage 3(3) 2:30 hrs, just prior to the formation of the ventral furrow 3a3 can still be 

seen to be expressed in two terminal stripes.

D. The cephalic furrow has started to form stage 6 (2:50 - 3 hrs). cDNA 3a3 can be seen to be 

expressed in cells anterior to the cephalic furrow.

E. This embryo is approximately stage 8 . The amnioproctodcal invagination has formed.this 

invagination of endoderm becomes the primordia of the posterior midgut and the germ band is 

extending. 3a3 expression is strong in these cells. The embryo is viewed dorsally and shows 

expression in the posterior midgut and cephalic ectoderm. This expression is similar to the original 

A350.1M2 la c Z  line.

F. Stage 11 (5:20 - 7:20 hr).segmentation has occurcd and expression can be seen in a 

scgmcntally repeated pattern in the ventral nerve cord. Expression is strong in the posterior midgut. 

Malpighian tubules and proctodeum. The expression is strongest in the gnathal segments and the 

hypopharyngcal lobe of the head a characteristic o f A350.1M2.

G. By stage 12 (7:20 - 9:20 hrs) the expression pattern is strongly reminiscent of the 

A350.1M2 lac-Z line. There arc a large number of cells o f the ventral nerve cord showing 

expression, and this expression is strongest in the gnathal segments of the head. There is also 

expression in the cephalic region and in the salivary glands.

Fig. 4.5.1 The p a tte rn  of hybrid isation  o f cDNA clone 3a3 in whole m ount

1 0 8









G

Arrowheads indicate the depth of invaginating membranes.

abbreviations: VNC; ventral nerve cord, pr; proctodeum, pmg; posterior midgut, 
cf; cephalic furrow, am; anterior midgut.

112



Figure 4.6.1 Accurate mapping of cDNA clone 3a3 to the genomic region.

Gel showing digests of A3 50.1 M2 plasmid rescue clone and Cpn 31 The gel 
was blotted and probed with the whole cDNA 3a3 clone

Table 4.6.2

DNA fragments generated by restriction enzyme digestion of the two clones 
A350 and Cpn 31 were calculated from figure 4 6 are summarised in this figure The 
filter was probed using the whole of cDNA clone 3 A3 as a probe

Double outlined hatched box indicates which bands the probe hybridised to. 
A - Apal, B - Hamm, C - ClaI, E - £coRI, H - HindM, K - Kpnl, X - A7ioI.
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Gel showing digests of A3 50.1 M2 plasmid rescue clone and Cpn 31. This gel 
was probed with the 5' end of cDNA clone 3a3

Figure 4.6.3. O rien ta tin g  the  cDNA d one  3a3 w ith  respect to the genomic walk.

Table 4.6.4 Summarises the information shown by the gel and 
autoradiograph shown in ligure 4.6.3.

Gel was blotted and probed with the 5' end of cDNA 3a3 to orientate it with 
respect to the genomic DNA Bands which the probe hybridised to are shown by 
double lined boxes

Hatched box indicates fragments which the probe hybridised to 
A - Apal, B - BamHl, C - Clal. E - EcoRI, H - Hmdlll, K - Kpnl, X - XhoV
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F igure 4.7.1. The nucleotide sequence of cDNA clone 3a3.

The done was sequenced in both strands using the primers marked The sequence was translated and 
the two longest potential reading frames are shown ORF1 and ORF2. Areas of uncertainty are 
marked between two x's. The position of the 5' end of cDNA clone 19 is marked by a large 
arrowhead

z
1 ccccccaaaa gtttggtcaa aataacagaa gggggtcagc gcatttatac

51 ttagacataa aaatgatatt ctttttagct tcaagataga agttcaattt

101 ctgtaagata caattgagaa catccaatta tatatetetg ettaatatet

151 gagtagctga agagtttctt taggatagtt actgcgtgcc ttggccaatc

201 ettgagetag ccaaagatga gataagataa gtactccttg cctaagtgcc

2 5 1 tatatgeget cgaaaagaga
3

ttgaagattg
_______fe
ccaagttcga taccagatgt

301 gcacaacaat
4

gattaacccc Xggcaattgcc gtegettgea gtttgttctt

351 ggtcgctatg tatctgtaag atactttcat tccgttcgct ggeataaett
\

401 atgcttcaac
M  L Q

gcgtaccatt 
R V  P F

taggeataaa 
R H  K

£

tcgcgctgtc
S R C

accccgatca
H  P D  Q

451 gccttttgtc 
P F V

atcatcatga 
1 1 M

c^agctgctct 
R A  A  L

!________ fe.
tgcctcgttc 

A  S F
ttettetegg 
F F

501 atttgattgt 
D  L 1 V

tttcgttgtc 
F V  V

gttaaaatat 
V  K 1

tttttgggtg
F F G  C

tgttctgtat 
V  L Y

551 tttaatagcg
F N '  S

cactgcgaag
A  L6 R R

agaagccagc 
E A  S

acttccttgc
T S L

gtctcacaca 
R L T H

601 ccctttttgc 
P F C

cccgctacct
P A T

cagcttgttt 
S A  C  L

aatttctttc
1 S F

gaattggtcg 
E L V

651 ggcaggggga 
G  Q  G  D

ccaaaccaaa ccgaaagtaa
Q  T K À P  K V  

c D N A  19

catgatttca
T '

gtttttactc

701 gaagtaattc gggaaatact ttgacacata tgtacacata agtatgtatg
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751
___IZ____ ^
tgtagactgc taatccctca cacgtctcag ttttggtagc tttggtagtt

X X801 cgacagccga atttatagtc gttgaaggaa gcgagcggac ggctcactcg
18

851 gaattattaa acctaatctt gattctacga ctttggcttc agttagggtt

901 cccattcagt gagtgagtga gtgcgagcgg gggcggtgtg ggcagaggat

951 gttatatata tatatatata ttttaatacg agtccccgat gcgatcgcac

20_______________________ ^

1001 gatcgtcgcc acgcaggtat gcgcgttaaa atcggagatt tgatcacgaa

X X1051 caccagcacc agcaccccac ccaccttgac gcagtcgctc gctctgagtt
"  19

1101 tagtcttgat tttaggatct taggattaaa aatgtcgtca gccttttatg

1151 ctgaattcca aatattctcc gctcgctcat ccatttggca ttgagttgat

1201 tcgcaaaaac acaacccaag ccagactttc agcttccaac gactaatttg

1251 cggatttgac agttgatttg ggtattcgat ggggcaactg ttgactattc

1301 atcattggat gtctttgcat ctgcggcttt gattgtgttc agtaagctag

________21__________________ ^

1351 catcaagctt tgagctcatc aagtgattag ttagtatata ttattattat

1401 ctaaatacat agagagagat ctgcaatcgg tggaggaggc gatcgttcgt
^ -----------23----------------
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1 4 5 1 agcaccctta cattcatatt gcccgactaa ttggccgacc agtcatattt

1 5 0 1 cattcacata tgtatgtgta tatgcacatc gaactatact agaggtagtc

1 5 5 1 actcagcacg gcaaaggcaa aaattaattt attaaaattti aaagcgcatg
M

1 6 0 1 acttttcgag 
T F R

caaatggcaa 
A  N  G  K

acggccjgagg cagccgcgaa taaatggcaa
1 N  6  N

_J5____^
1 6 5 1 tatagqttat

1 G  Y
atgggttata
M  G  Y

ggtatgattc atgcgtcaca cttgcgcata
IT- T U V | L A  1 O R F 2

1 7 0 1 ataatcgagg
N  N  P G

ggagt^cgc^a g ^ c g g a g g g cggcjcaggcc^ gctggaaatt
L E 1

1 7 5 1 cgggcacaga
A  Q

tgcagatact 
M  Q  1 L

gactggacct
T G  P

acagccacga 
T A  T

ccccaagcgt 
T P S V

1 8 0 1
X Xcaacgcgcaa 

N  A  Q
X Xcgcgccaact 
R A  N

ccagctccag 
S S S S

ttcgatatca
S 1 s

atggattgtt
M  D  C

1 8 5 1 gccgggcaga 
C  R A  D

ctagattcta gtatctagat acccaactgc gtccaggtgt

1 9 0 1 gcactgccaa acaaattttt cgttgtttgt ggtttcggtt gttgtgcttt

1 9 5 1 tgatttcgaa tttgattttg attttttttt ttttttttga tgtttgcatg

2 0 0 1 tgggctgttg tgcgccttgg gctgttttgt cacttgcgaa ctgaaaagct

9
2 0 5 1 gaaaagttga aagaaattcg aagaattcga ttcgccggac agcttaatta

2 1 0 1 aggttatcta tcaaatgtac ttagtttagt ttattgatag tgccgtcgtg
10

2 1 5 1 gacagtcgca gtaagctccc taaacgatgc aattagcaat taaatatcag

____________
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2201 ttgacttaat gctaggcaaa gtctcgacga cttatttatc aatttcagat

2251 acaaatacaa cgatgtgtgc gacatcgata aacaaaagag ctctaaatta

8
2301 tgtgtagtct tagcatttgt tattcctgtt gaccaacaca cacacgcaca

7

2351 ctcgaagcca atcgttccca tgactttaat tacaatttaa tatttattta 

2401 gttcgataag gccggggtga ttatttttgg atactcatga ctgcacccag 

2451 cactcgcata cttacgtgca cagatacaga tacagataca gatacagata 

2501 cagatacaca tgcgtacata tctttacgag tgcgtatttg tttttgtgtt

2551 actatcaatt gggcctaatc aaatgcctaa gtaaattgct cagcaaatca

_________2________ w
2601 ctgaaaccgg acaccatgtg ggtaaataat gtgtgtctaa ttaatagtta

2651 aaccccaaat gcgaatgaaa gtgcctccac agaagattgc tttcgacgaa

2701 cttctaatac gcttgctgca cactttaaag gcgaattagg gggagttagc

2751 ttcgtggaac tgtgacttcc ggtgcctttg tagttcgtct gagtctaaga

2801 tggctctgct cacgcaccca tctgcaccag gcacacccgc tcttttccga

2851 caatttacgt aaattagaca cgaaaaatgg gtaaaaaaaa aa
^ --------------Ä--------------
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Figure 4.7.2 Polenlial start and slop sequences in the cDNA clone 3a3 
translated in three frames.

The longest potential open reading frames are present in frame two . These 
arc labelled ORF1 and ORF2.
Upwards lines represent starts and downwards lines represent stops.
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ORF 1 ORF 2
gene homology gene homology
Na+ channel protein, 
rat cardiac muscle

28.1% over 32 aa minor core protein V 35.1% over 37 aa

Quinate permease 43.8% over 16 aa Major core protein 
precursor V II

30.0% over 40 aa

Cl~ channel protein 21% over 78 aa Von Willebrand factor
precursor
Human

29.0% over 31 aa

regulatory protein 
BLAR1

22.9% over 35 aa S-Laminin precursor 
rat

33.3% over 24 aa

chitin synthase 2 
yeast

27.3% over 33 aa human bone 
morphogenetic protein 
4

34.8% over 23 aa

complement factor H 
precursor mouse

23.8% over 21 aa human bone 
morphogenetic protein 
4 precursor

34.8% over 23 aa

cytochrome B 
chick

28.1% over 32 aa isopentenyl transferase 40% over 15 aa

cytochrome B 
(fragment)

34.4% over 32 aa insect toxin 4 36.4% over 22 aa

cytochrome BXenopus 28.1% over 32 aa ryanodine receptor 
rabbit

87.5% over 8 aa

L-(a-am inoadipyl)-L- 
cyste in-D-valine 
synthetase

34% over 26 aa ryanodine receptor 
human

87.5% over 8 aa

Table 4.73
This table shows the ten best homologies to the peptide sequence of ORF1 

and ORF2.

1 g g c a c c a t n t n t g g g t t c g c g g t t t a c g t t t t a c a t a g g a a c t t t t c g c t

51 c a g t a t a a t c g a a a c a g ta a g c c c a g c a c c g tc g c c a c c a c c a a c c c c c a

101 a a a c a a a a t t t t

Figure 4.7.4 Nucleotide sequence of the 3' end of cDNA 6.

This sequence was found to share no homology with cDNA 3a3.
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Chapter 5

G enetic  analysis o f  A 350.1M 2

5.1 In tro d u c tio n .

The classical genetic approach of determining the wild-type function of a 

given gene is to remove its activity and then to look for developmental consequences. 

There are a number of ways of removing the wild-type activity of a gene Mutagenesis 

can be performed using either X-rays or chemicals. To generate a mutation in any 

single gene requires screening two to ten thousand mutagenised sperm After 

mutations are generated, a means of identifying a mutation in the gene of interest is 

also required One way of doing this is to cross mutagenised males to a stock carrying 

an existing allele of the gene of interest, and screen the progeny for new mutations 

that fail to complement the original allele

As discussed in chapter one P-element insertions can be used as a form of 

mutagenesis. The P-element insertion sometimes disrupts gene function. If the P- 

insertion has not disrupted a nearby gene it can be used to generate imprecise excision 

events; which can be then be screened for mutation in the flanking gene

Targeted mutagenesis screens allow identification of P-element insertions near 

to a gene of interest. The strategy requires two oligonucleotides, one complementary 

to part of the gene of interest, and one complementary to the terminal sequence of the 

P-element. The segment of DNA between the two primers will be the target for 

amplification by the polymerase chain reaction; only in a fly where the insertion is 

within two kilobases of the gene primer (Ballinger and Benzer, 1989; Sentry and 

Kaiser, 1992).

If the P-element insertion has not caused a mutation it can be excised by 

transposase mediated excision, to generate imprecise excision events This allows easy 

genetic characterisation of genes identified by enhancer detection (eg Bellen el aL, 

1989; Fasano el al., 1991). P-element jumpouts displaying a homozygous mutant
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phenotype are recovered at high frequency. Mobilisation of the viable sloppy paired 

insertion A208 created -30% lethal jumpouts (Grossniklaus et al., 1992).

It is quite possible that the gene detected by enhancer trapping may have a 

redundant function; this is because identification relies on expression pattern rather 

than mutant phenotype. This would also account for the gene not being detected in 

previous screens.

One might expect the phenotype of a mutation affecting the 3a3 transcript to 

affect the regions where it is expressed. The screen for cuticular patterning genes did 

not detect a gene in the region 59F (Nusslein-Volhard et al., 1984 ).The mutation 

affecting the 3a3 transcript is either one of the few remaining mutations not detected, 

or it could be partially redundant and more than one gene has to be disrupted to see a 

phenotype eg. gooseberry (Baumgartner, et al., 1987).

The types of defect one might predict in the absense of the 3a3 transcript are, 

those affecting the development of the cephalic regions (especially the gnathal and 

hypopharyngeal lobes), the posterior terminus, parts of the gut or the CNS.

Complementation tests with A3 SO. 1M2 and all the available point mutations in 

the region had previously been performed (Bhatia pers comm ). Table 5.1 shows the 

mutations from the region which were tested. The results showed that the A350.1 M2 

mutation was not in any of these genes.

5.2 Deficiency mapping

A number of deficiencies in the region generated by Bruce Reed (Ph D. thesis, 

Cambridge University) whilst working on the gene morula were used to perform 

complementation tests to map them with respect to the A3 SO. 1 M2 insertion The 

cytology of these deficiencies are tentative but the results of complementation tests 

with the A350.1M2 insertion suggest the approximate Deficiency map in Fig 5.2.
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5.3 G e n e ra tio n  o f  a d d itio n a l alleles o f  A 350.1M 2

A350.1M2 insertion has been shown to be a lethal insertion (Chapter 3) but 

the lethal phase was shown to be after embryogenesis The tendency of P-elements is 

to integrate in regulatory regions rather than structural genes, and hence they 

frequently cause hypomorphic rather than amorphic mutations. This would account 

for the A350.1 M2 insertion not causing embryonic lethality I therefore wanted to 

generate additional alleles of A3 50.1 M2, particularly with the hope of isolating some 

with a more severe phenotype. I was particulary interested in generating embryonic 

lethal mutations which might have defects corresponding to the expression pattern of 

the gene flanking this insertion, the 3a3 transcript (or a neighbouring, so far 

undetected, transcript with a similar expression pattern) Given the localised 

expression pattern of the A350.1M2 enhancer trap and the nearby 3a3 transcript, it 

seemed likely that an amorphic mutation (eg a deletion of 3a3 transcript) would give 

rise to an embryonic lethal mutation, possibly with a cuticular phenotype

The D26 PClrB line described in chapter 3 maps close to the A350.1M2 

insertion on the cytological map, and its expression pattern is also very similar to the 

A3 50.1M2 insertion suggesting that they are being regulated by the same enhancer 

elements The D26 insertion is viable when homozygous and when hemizygous over 

Df(2R)bwS46 Hence, mutations that give rise to loss of the insertion and any 

neighbouring essential gene, can easily be screened for simultaneous loss of the 

insertion and mutation towards lethality Imprecise excisions of the P-element from 

the D26 chromosome were generated by remobilisation mediated by transposase and 

selected by lethality over Dft2R)bw^ 46 (Fig. 5.3.1.).

36 individual D26 chromosomes were used to generate the jumpstart males 

Jumpstart males contain both the source of transposase and the element to be excised, 

and are referred to as the F0 generation Each of these chromosomes was followed 

through subsequent generations to check that I did not select an already existing 

hemizygous lethal mutation on any of the chromosomes
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The P[ry+ A 2-3 (99B)] chromosome was used as an exogenous source of 

transposase (Robertson et a l, 1988). Jumping which occurs in the germline of the 

jumpstart males produces offspring with precise and imprecise excision events Many 

of the progeny from a single jump-start male may have the same excision event.

Hence only one of the offspring of each jump-start male which carried a r y  excision 

event (Fig. 5.3.2 FI) was tested for the nature of its excision event as described 

below. In all, two hundred and seven individual FO jump-start males were sucessfully 

used to generate (FI) 'jump-outs'. FI offspring were selected which had lost the ry+ 

marker, indicating loss of the P[ClrB] transposon from the D26 chromosome; the 

source of transposase was removed by selecting only flies that did not carry the Sb 

marker on the P[ry+ A 2-3(99B)] chromosome.

Imprecise excision events that extended into a neighbouring essential gene 

were lethal over the Dfr2R)bw^46 deficiency, allowing selection of imprecise events 

by the lack of A D26/ Dfr2R)bw^ 46 hemizygous progeny Of the two hundred and 

seven FI progeny carrying excision events that were tested for viability over 

Df(2 R)bwS46 ten were lethal over the deficiency; these were therefore imprecise 

excision events which affected a nearby essential gene

All the one hundred and ninety seven hemizygous viable excision events were 

checked for obvious adult morphological defects and were tested for female sterility 

since the excision may have just removed a possible maternal contribution of a 

neighbouring gene Hemizygous viable excisions of D26 over the Dff2 R)bwS46 were 

crossed to Df(2R)bwS46/CyO Roi to check a) whether the excisions cause a maternal 

effect lethal and b) whether the excisions caused a maternal effect lethal which could 

be paternally rescued If the excision has caused embryonic lethality by loss of 

maternal expression of a gene there would be no offspring, but if paternal rescue 

occurs there would be only Cy progeny (Fig 5.3.2). None of the hemizygous viable 

excisions tested had an obvious phenotype or were female sterile, or showed a 

maternal effect lethality that could be paternally rescued
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5.4 Classification of the A 1)26 chromosomes into complementation groups.

In order to identify the minimum number of adjacent genes affected by the 

excision of the D26 insertion, the ten imprecise excision events were used to perform 

complementation tests in an attempt to classify them into complementation groups 

The raw data are presented in Table 5.4.1. This information is summarised in Table 

5 4.2 The results of these complementation tests suggest that A350 and 33E lie in 

one complementation group and that 27B and 31A lie in another I A, 6C cover both 

o f these groups 27A and 31H partially cover both groups 24K and 32E also cover 

most of the deficiencies in the two groups but they complement each other 1 1K is not 

complemented by 1A or 6C but is partially complemented by all the other deficiencies 

(Fig 5.4 3).

5.5 lacZ, staining of the A 1)26 excision stocks.

Embryos from each of the stocks were collected and stained with the 

chromogenic substrate of 13-galactosidase, X-gal. 1 A, 6C, 27A and 32E showed 13- 

galactosidase activity (this information is shown in Table 5.4 2).

5.5 Determination of the lethal phase of the A D26 chromosomes.

The imprecise excision chromosomes were selected using the criterion that 

they were hemizygous lethal over Df(2R)bwS4i> The lethal phase of each of these 

chromosomes was determined by looking at hatch frequencies of embryos from the 

following cross, A D26/ CyO X Df|2R)bw^4i)/ CyO One quarter of the progeny 

should be homozygous for the CyO balancer chromosome, these embryos die during 

embryogenesis If the observed hatch frequency is 75%, then the dead embryos are 

the CyO homozygotes and the A D26 chromosome over Df^Rlbw^ 46 is not 

embryonic lethal If however the hatch frequency is 50%, then the A D26 

chromosome over Df(2R)bwS4(> is embryonic lethal All ten of the crosses showed 

hatch frequencies of approximately 50%, indicating that the hemizygous lethality 

occured during embryogenesis (Fig 5.5.1).
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5.6 C u tic u la r  p h e n o ty p e  o r  d e a d  1st in s ta r  A D26/ Df(2R)bwS46 a n d  AD26/ 

AD26 la rv a e .

Hemizygous phenotypes of the excision chromosomes were scored by 

examining embryos of the following cross D26/ CyO X Df(2R)bwS46/ CyO. 

Unhatched embryos were collected añer 48 hrs and mounted for microscopic 

inspection. Half of the dead embryos were homozygous for the CyO balancer 

chromosome and die without any obvious morphological defects The other half of 

the dead embryos were the following genotype A D26/ Df(2R)bwS46, and were 

examined for a phenotype.

Embryos were scored for homozygous defects by collecting embryos from 

each of the deficiency stocks AD26/CyO X AD26/ CyO The dead embryos were 

examined after 24 hours and are of the genotype AD26/ AD26.

The embryonic head in a large number of the embryos examined showed a 

phenotype, no obvious defects could be detected in the posterior of these embryos 

The number of embryos of each stock tested were counted for wild-type and mutant 

phenotypes (Table 5.6.1).

The head structures which I scored for in terminally differentiated embryos 

were as follows: mouth hooks, cirri, maxillary sense organs, median tooth, antennal 

sense organs, ectostomal sclerite, hypostomal sclerite, epistomal sclerite, cross piece 

of H-piece, lateralgrate, dorsal bridge, ventral arms, vertical plates, dorsal arms and 

the presence of the dorsal pouch These structures in the wild-type first instar head are 

shown diagramatically in Figure 5.6.2.

The structures in the tail region which I scored for are: anal pads, Filzkorper 

and the spiracular opening

In a number of cases, the D26 excisions appeared to cause head defects No 

defects were detected in tail cuticular structures. In mutant embryos none of the 

structures scored for in the embryonic head were missing, but a number of them were 

disrupted The Lateralgrate in these embryos is grossly shortened The ectostomal.
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hypostomal and epistomal sclerites are present but disorganised The dorsal bridge is 

present but fragmented in appearance (Fig 5.6.3 ).

5.7 D iscussion.

The generation of excisions from the D26 insertion produced ten imprecise 

excision events from two hundred and seven independent excision events (4 8%). The 

criteria used for selection of imprecise excision events was hemizygous lethality over 

Df(2R)bwS46 From the surviving hemizygous viable excision events I recovered 

none with any obvious adult morphological defects, none of them were maternal 

effect lethal or maternal effect lethal that could be paternally rescued. As most o f 

these A D26 excisions are lethal over A3 50.1M2, this confirms that the D26 insertion 

is close to the A3 50.1 M2 insertion, as had been suggested by their similar map 

positions and lacZ expression patterns

The ten imprecise excision events fell into two complementation groups A3 50 

and 33E are in one of them and 31A and 27B are in the other, 1 A, 6C, cover both of 

these complementation groups 24K, 27A, 31H, and 32E partially cover both 

complementation groups 1 1 K partially complements all the excisions except 1 A and 

6C and cannot be accurately placed with respect to the complement groups The exact 

genomic deletions contained in these deficiencies can only be determined by genomic 

southern analysis.

Two complementation groups suggest two genes, to the right of the D26 

insertion. The other explanation is that there is only one gene mutated, but at least 

two sets of regulatory elements One of the complementation groups seems to only 

contain hypomorphic alleles 33E and A350.1M2, ie. 33E is homozygous viable, but 

hemizygous lethal and A3 50 is post-embryonic lethal This suggests that this 

complementation group may not correspond to a structural gene

All the ten imprecise excision events were shown to be embryonic lethal The 

dead embryos of A D26 lines 1 A, 6C, 27B and 31A showed head skeleton defects 

These are likely to be amorphic (null) alleles o f the gene responsible for the phenotype
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since defects were seen in both homozygous and hemizygous embryos. This 

tentatively supports the idea that mutations in only one structural gene are being 

detected.

Many of the excisions are still lacZ+. These suprisingly are excisions which 

affect both complementation groups. These therefore are not simple deletions of the 

D26 insertion. This is further circumstantial evidence that only one gene is being 

detected by the excision events

The head defect shows shortening of the lateralgrate and disruption of the 

dorsal bridge These excision events are likely to be null alleles of the gene

These results suggest that there is only one gene being affected by the D26 

excisions, whose null phenotype is a head skeleton defect

C o rre la tio n  o f  3a3  expression  w ith  m u ta n t defects.

3a3 expression domains in the embryo are correlated with the head fate maps 

of Jurgens el al., (1986) in Figure 5.7 The cells that express the 3a3 transcript at the 

cellular blastoderm are fated to give rise to the hypopharyngeal segment, part of the 

mandibular segment the anterior midgut and the brain (Fig 5 7a) The dorsal bridge o f 

the head skeleton is included in the 3a3 expression domain The dorsal bridge is 

present in the mutant embryos, but is fragmented The lateralgrate is reduced in size in 

mutant embryos, but at the blastoderm is not included in the 3a3 expression domain

In the fate map of the extended germ-band (Fig 5 7b), head structures 

included in the 3a3 expression domain includes all the structures of the head skeleton 

The disruption of the lateralgrate and dorsal bridge is consistent with the expression 

pattern at this stage None of these structures have been deleted in the mutant 

embryos.

The ectostomal, epistomal and hypostomal sclerites appear to be present but 

disorganised The epistomal sclerite is included in the 3a3 blastoderm expression 

domain, but the hypostomal sclerite is outside this domain, and the ectostomal sclerite 

is not marked on the fate map of Jurgens el al., 1986
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Mutation Map position
genetic
cytological

Phenotype scored for Mutation/A350.1 M2 
Complements (+ )

heavy vein - hv 104.0 thickened wing veins hv+

abbreviated - abb 105.5 59E2;60B10 smaller bristles, 
especially posterior 
scutellars

abb+

minus - mi 104.7 59D6;E4 bristles almost as 
small as hairs

mi +

slight - sit 106.3 small fly, short thin 
bristles

slt+

Plexate - Px 107.2
60C6;D

viability +

purploid - pd 106.4
59E2;60B10

dark pinkish,
maroon
eves

pd +

lanceolate - ll2 106.7
59E2;60B10

wings narrow at tips, 
small bulging eyes, 
narrow head

11+

seizure - sei 106.0
60A7;B10

paralysed at 
temperatures above 
38°C

sei+

morula - mr 106.7
59E2;60B10

rough eye, 
irregularly reduced 
bristle size 
and number.

+

T a b le  5.1 M u ta tio n s  in  th e  reg io n  su rro u n d in g  th e  A 350 .1M 2 in se r tio n  
a n d  re su lts  o f  c o m p le m e n ta tio n  te s ts .

+ fully complements 
- does not complement.

The results of the complementation tests were obtained from D. Bhatia (pers. 
comm.).
Map positions were obtained from 'the red book', Lindsley and Zimm, (1992)
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A

map position 
cytological

Phenotype scored for Mutation / A3 50 
complements +

Df(2R)bwDRj 59C5;59F6-8* viability +

Df(2R)bwDRa 59El;60A4-5* viability (+) 6%

Df(2R)bwDrp 59D3-4;59F5-6* viability (+) 6%

In(2LR)610#7.5 Df(2R)59F3 ;60B 1, 
In(2LR)

viability +

Df(2R)bw54b 59D8-11;60A7 viability

D26 P[ClrB] 
insertion

59F viability +

B

, ln(2LR )610#7.5

, Df(2R)bwDrj 
. Df(2R)bwDra 
, Df(2R)bwDrp 

, D f(2R)bwS46 
59

A 3 50 .1 M 2

j

j

60A

F ig u re  5.2
A C o m p le m e n ta tio n  tests be tw een  A 3S0.1M 2 a n d  several d efic ienc ies  in  the  
reg ion .
B A p p ro x im a te  deficiency m a p  suggested  by th e  resu lts  o f  th e  
co m p lem en ta tio n  te s ts  in A.

+ shows that the A3 50 1 M2 insertion is fully complemented by the deficiency 
shows that the A350.1 M2 insertion is not complemented by the deficiency.

(+) shows partial complementation, the % figure refers to the number of these 
individuals observed if the expected number is 100%.
* the cytology of these deficiencies is tentative (Bruce Reed, pers comm ) but 
my results suggest the approximate map given above
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D26 ; dl
D26 ry

single males (36)

D 2 6 ^ i  
CyO Roi

X CvQ Roi ; jx
Adh cn bw ry

virgin females

QxQ ; ^ S b  Pfry± à  2 31 
Sp TM6

Presence o r these flies If the excision is hemizygous
indicates that the A D26 lethal, ie. there arc no Cy+ flies.

chromosome is viable over then these flies are used to establish
D f bw (S46). Imprecise excisions a heterozygous balanced stock, 
were selected by the absence 
o f these flies.

F ig u re  5.3.1 S tra teg y  fo r  th e  g enera tion  o f  im prec ise  excisions o f  th e  D26 
in se rtio n .

m

a
 a



F2

virgin female male

receive no copy 
of the gene from 
the father

Figure 5.3.2. Surviving lieinizygous excision events over the Df(2R)bwS46 were 
tested for maternal effect lethality using the above strategy.

If the excision event has knocked out a possible maternal expression of a gene 
then there will be no offspring, but if paternal rescue occurs there will be otfsping but 
there will be no straight winged flies
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1 )

D26 X 
D26

CvO A350.1M2 
Sp

D26
CyO A350.1M2

P26
Sp

50% Cy Sp+ 50% Cy+ Sp

2)

D26 X 
D26 /  \

A P26 
CyO

/  
D26 
A D26

P26
CyO

50% Cy+ 50% Cy

3)

A D26 X A D26
CyO /

A D26 
A 026

A D26 A D26 CvO 
CyO CyO CyO

33.3% Cy+ 33.3% Cy 33.3% Cy Lethal

4)

£ ri? A ? ? ? ,|M 2
Sp

X A D26

CvO A3 50.1 M2 
A D26

CvO A3 50 1 M2 ^
CyO A D26 CyO

33.3% Cy Sp+ Lethal 33.3% Cy+ Sp 33.3% Cy Sp

The expected  num ber o f  offspring o f  a genotype o f  in terest w as calculated as the 
num ber o f  flies one w ould expect to  hatch if  that geno type  w as totally  viable In cases 
w here  the flies w ere either non viable o r  partially viable th e  expected  figure is 
calculated from  the num ber o f  flies o f  the o ther geno types obtained
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D26 A3 50 DCS46 1A 6C U K 24K 27A 27B 3 1 A 31H 32E 33E

D26 E 46 95 90 134 67 74 57 71 61 70 70 66

O 39 82 67 97 59 70 43 56 45 59 49 68
* 100% 8 4 « 8 6 « 7 4 * 7 2 * 8 8 * 95 * 7 5 * 7 9 * 7 4 * 8 4 « 7 0 * 183*

A 350 E 49 65 57 48 53 35 29 22 36 42 55
O 0 0 0 37 9 6 24 26 0 0 0

% 0 * 0 « 0 « 0 * 7 9 * 1 7 * 1 7 * 8 3 * 118* 0 * 0 « 0 «
DfS4A E 82 98 76 88 79 67 70 91 47 59 57

o 0 0 0 0 0 0 0 0 0 0 0

%

1A E 116 110 84 81 90 74 84 75 70 85

o 0 2 0 0 0 0 0 0 0 0

*

6C  E 130 49 69 70 60 66 73 83 88

O
%

0 0 0 0 0 0 0
0%

0
0 »

0
0%

U K  E 78 82 99 77 96 41 82 92

O 0 4 36 11 i 5 1 22

* 0 * j * 3 6 « 1 4 « 3 * 1 2 * 1 J * 2 4 *

24K E 47 86 48 100 78 72 89

o 0 0 0 0 0 17 0

* 0 * 0 * 0 * • « 0 * 2 4 * 0 *

27A  E 83 74 47 79 75 72

o 0 0 0 6 0 22

* 0 * 0 « • * 8* 0 « 3 1 *

27B E 75 68 104 81 94

o 0 0 17 0 59

* 0 « • * 1 6 « 0 * 6 3 *

3 IA  E 47 72 79 119

o 0 0 0 34

* • « 0 « 0 « 2 9 *

31H  E 66 59 40

o 0 0 6

* 0 * 0 * 1 5 *

32E  E 74 74

o 0 0

* 0 * 0 «

33E  E 88

o 41

* 47%

Table 5.4.1 Complementation tests between A350.1M2, D26, Df(2R)bwS46 and 
the ten A D26 imprecise excision chromosomes.

E- expected number of offspring of the genotype represented by that square if they are 
viable. The crossing schemes opposite (page 33) show the various expected percentage 
of the genotype of interest.
O- is the observed number of offspring of that genotype
%- is the percentage of offspring observed if the expected number is 100%
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D26 A350 DIS46 1A 6C U K 24K 27A 27B 31A 31H 32E 33E

D26 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4-4-4- 4-4-4-

A3 50 + + + - - + + + 4- + + + + + + + - * -

EX546 + + + -

1A + + + ( - ) -

6C + + + (- ) -

U K + + + + + + - - ( - ) + + + ( - ) + ( - ) 4-4-

24K + + + + ( - ) 4-4- *

27A + + + + - + + - - - - 4- • 4-4-

27B + + + + + + 4- - - - - 4- • 4-4-4-

31A + + + + + + ( - ) - 4-4-

31H + + + * - + - + 4- - - - ( - )

32E + + + (*) *

33E 4-4-4- • * 4-4- - + + + + + 4-4- ( - ) - 4-4-4-

ImcZ
activity

+ + - 4» + - - 4- - - - 4- -

w""" viable viable n.t. 4- + - - - + + - (+ ? )
viable

»■WIM
hn4 viable viable n.t. + 4- n.t. - n.t. 4- n.t. * n.t. (+ ? )

Table 5.4.2 Summary or Complementation test results with D26, A350, Df 
bwS46 and the ten imprecise excision chromosomes.

The crosses used in the complementation tests and the numbers of each genotype expected in the
progeny arc shown on the facing page
the following only refer to the complementation tests:
+++ >40% of the expected number of flics of this genotype
++ 20-40% of the expected number of flics of this genotype
-t- 5-20% of the expected number of flics of this genotype
(•) 0-5% of the expected number of flics of this genotype
- No flics of this genotype (docs not complement) 
lacZ expression in the deficiency lines.
+ positive for fi-galactosidasc activity
- negative for fi-galactosidasc activity
Head phenotypes in unhatched larvae, 
homozygous individual arc of the genotype D26/ D26 
hemizygous individuals arc of the genotype D26/ CyO 
+ means disrupted head structures were present, 
n.t means that this genotype was not tested.
0 no mutant larvae
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FO

CvO
Cy

viable viable lethal

line being 
tested A D26

Total number 
o f embryos

number o f embryos 
unhatchcd after 48hrs

% of embryos 
unhatchcd

Embryonic lethal

D ftfR lbw 5»46 900 519 58% yes
1A 275 123 45% yes
6C 780 403 52% yes
U K 167 82 49% yes
24K 464 197 42% yes
27A 620 408 66% yes
27B 158 84 53% yes
31A 504 320 63% yes
31H 237 133 56% yes
32E 432 270 63% yes
33E 405 261 64% -2 2 ___________

Figure 5.5.1 Testing Tor embryonic lethality by determination of hatch 
frequencies of the deficiency and the ten imprecise excisions when hemizygous 
over Df(2R)bwS46.

These imprecise excision events were selected by lethality over the 
Df(2R)bwS46 chromosome, but the stage at which they die had not been determined 
One quarter of the progeny will die because of the recessive lethals on the CyO 
chromosome If 25% do not hatch then the lethality does not occur during 
embryogenesis If 50% do not hatch then then the lethality does occur during 
embryogenesis

All of the excision events over the deficiency had hatch frequencies o f -50% 
and were therefore embryonic lethal
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Figure 5.4.3. Proposed complementation groups Tor A350.IM2 and the ten A 
D26 chromosomes.
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Homozygous
A D26
chromosomes

Wild-type head
defect

H o f
mutant
larvae

Hemizygous 
A D26

chromosomes

W ild-type head
defect

H o f
mutant
larvae

null
alleles

1A/1A 25 28 53% 1A/Df 10 3 23% +
6C/6C 13 9 41% 6C/Df 6 2 25% +
11K/11K 27 0 0%
24K/24K 21 0 0% 24K/Df 25 0 0%
27A/27A 37 0 0%
27B/27B 30 27 47% 27B/Df 15 4 21% +
31A/31A 23 10 30% ' 1
31H/31H 17 0 0% 31H/Df 19 0 0%
32E/32E 6 5 45% , ,
33E/33E 21 0 0% 33E/Df 17 10 37%

Table 5.6.1. The cuticular phenotype of unhatched larvae derived from the A 
D26 imprecise excision stocks.

Unhatched larvae homozygous for the AD26 chromosome were collected 
from each of the stocks AD26/ CyO X AD26/ CyO. Half of the unhatched larvae are 
of the genotype CyO/ CyO which die with no obvious morphological defects If A 
D26/AD26 homozygotes have a phenotype then 50% o f  the unhatched larvae are 
expected to show defects

Unhatched larvae hemizygous for the AD26 excision chromosome were 
collected from the following cross AD26/ CyO X Df(2R)bwS46/ CyO. Again half of 
the unhatched larvae will be CyO/ CyO, the other half will be AD26/ Dff2R)bw^46 if 
the hemizygous individuals have a mutant phenotype it should be present in 50% of 
the unhatched larvae

+ null alleles show a head phenotype both as homozygotes and hemizygotes 
(+) possible null alleles, homozygotes show head defects Hemizygotes have not 
been examined
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p r o t m o r a x
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AnISO
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a n te r io r

lo b e

J trh jm

Figure S.6.2. Camera lucida drawing of the head of wild-type first-im tar 
larvae.

Abbreviations AntSO- antennal sense organ, ci- cirri, DA - dorsal arm, D Br- dorsal 
bridge, eps- epistomal sclerite, es- ectostomal sclerite, hys- hypostomal sclerite, LG- 
lateralgrate, MH- mouth hook, VA- ventral arm, VP- vertical plate (Jurgens, 1987).
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Figure 5.6.3. The phenotype of AD26 null alleles.

A- shows the cuticular structures present in the head of a wild-type 1st instar larva 

B- the head skeleton of AD26 null alleles

Abbreviations: ci- cirri; DA- dorsal arm, D Hr- dorsal bridge, eps- epistomal sclerite; 
es- ectostomal sclerite; hys- hypostomal sclerite, LG- lateralgrate; MH- mouth hook, 
VA- ventral arm, VP- vertical plate
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Chapter 6

6.1 Introduction.

A number of P-transposon enhancer trap strains which had been generated in a 

previous screen, and had been shown to be homozygous lethal were available in the 

laboratory (Bellen el al., 1989). These lines were potentially interesting since the P- 

insertion must have disrupted a gene which was essential for viability.

I screened these twenty lines for embryonic morphological and CNS defects 

Since the nervous system is an internal structure, a method of marking these cells was 

required The cell markers 1 used were the antibody to horse radish peroxidase 

(HRP), which fortuitously recognises Drosophila neuronal cell surfaces This 

antibody labels the entire neuropile (Jan and Jan, 1982), and therefore enabled me to 

detect any gross morphological defects I also used antibodies to the engrailed and 

even-skipped proteins These antibodies each label small subsets of segmentally 

repeated neurons (Frasch el al., 1987; DiNardo el al., 1985), and enabled me to detect 

alterations in any of these cells.

If one of these lines should have an interesting phenotype, the presence of the 

P-element insertion would allow it to be immediately amenable to genetic and 

molecular analysis

6.2 Screening the lethal P-element stocks for a embryonic phenotype.

The lethal P-element insertions were maintained as heterozygotes over a 

balancer chromosome. For this reason only one quarter of their offspring will be 

homozygous for the insertion, and should therefore exhibit any phenotype

From the twenty lethal P-elements screened only two lines showed mutant 

morphological phenotypes

O th e r E nhancer d e tec to r lines studied
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6.3.1 Phenotype

Antibody staining of line A326.2F3 with antibodies to HRP protein showed 

that A326.2F3 mutant embryos had no ventral epidermis, since neural specific staining 

extended right to the ventral surface of the embryo. Antibodies to engrailed and even- 

skipped also showed that these embryos had more neural tissue than wild-type 

embryos (Fig 6.3.1).

This phenotype is consistent with a mutation in one of the neurogenic genes 

Complete lack o f function of any one of the neurogenic genes, results in all the cells of 

the neural ectoderm developing into nervous system at the expense of epidermis (de la 

Concha ela l., 1988).

The B-galactosidase expression pattern of A326.2F3 is strong in the 

proctodeum, midgut and oesophagus of germ band extended embryos In late 

embryos (stage 11, 5:20 hrs) B-galactosidase expression can be seen faintly in the 

CNS and in a few cells of the PNS (Data not shown)

6.3.2 Precise excision of the P-element from line A326.2F3 to check that the P- 

insertion is responsible for the lethal phenotype.

The P-element was excised from line A326 2F3 by transposase mediated 

excision The cross performed is shown in (Fig 6 3.2)

The result of this experiment showed that the homozygous lethality of line 

A326 2F3 could be reverted to viability by excision of the P-element Therefore the 

lethality must be due to the presence of the insertion and not due to another mutation 

elsewhere on the chromosome

6.3.3 Determination of the cytological map position of the A326.2F3 insertion.

A biotin labelled tacZ probe was hybridised to A326.2F3 polytene 

chromosomes, and was shown to be 92A (Fig 6 3 3). This map position corresponds 

to the neurogenic gene Delta

6.3 E n h an ce r tra p  line A326.2F3
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6.3.4 Complementation with a point mutation in Delta.

The neurogenic phenotype and cytological map position both suggest that the 

insertion is in the gene Della The expression pattern are similar to but weaker than 

Delta. To test whether the A326.2F3 insertion is in Delia it was crossed to a Delia 

point mutation A326 2F3 failed to complement a point mutation in Delta and 

therefore must have disrupted this gene (Fig 6.3 4 ).

6.4 Enhancer trap line AI3I.IF3

6.4.1 Phenotype

The embryonic phenotype seen in A13 1 1F3 embryos is variable, but it does 

consistently show some kind of segmental defect The embryos often show 

irregularities in segment width or depth of the segmental furrows in a few thoracic or 

abdominal segments and adjacent segments are sometimes partially fused Staining 

with even-skipped antibodies showed that in some but not all mutant embryos, there is 

some disruption of the embryonic CNS (Fig 6 4 I)

The U-galactosidase staining pattern in line A131 1F3 occurs in the dorso- 

posterior part of each segment and is stronger in alternate segments (data not shown) 

This expression pattern has been reported to occur in a large number of P-insertion 

lines, and is thought to he due to some regulatory component in P[IArB] rather than 

due to a nearby genomic enhancer

6.4.2 Precise excision of (lie P-eleinent from the AI3I.1F3 chromosome to 

determine thill the insertion was responsible for the lethality.

The same crossing scheme as for A326 2F3 was used to excise the P-element 

The results of this experiment showed that the lethality of A13 1 IF3 was due to the 

P[ I ArB ] insertion (Fig 6.3 2)
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6.4.3 Determiiisilioii of (he cytological map position of (he P-insertion 

A131.1F3.

A biotin labelled probe to lacZ was hybridised to polytene chromosomes from 

line A13 1 1F3 The map position of this insertion was shown to be 65C-D (Fig 

6 4 3.1). I tested all the available point mutations in the region for complementation 

with A13 1.1F3 and showed that it was in none of these genes (Table 6 4.3.2) There 

are also four cloned genes known in this region also shown in Table 6 .4.3.2)

6.4.4 Is the morphological phenotype associated with embryos homozygous for 

the P-insertion?

Due to the variability of the phenotype it was necessary to confirm that 

embryos with this phenotype were in fact homozygous for the P-element insertion A 

way of unambiguously identifying embryos that are homozygous for the insert is to 

make the insertion heterozygous with a balancer chromosome with a strong 13- 

galactosidase expression pattern Embryos homozygous for the insertion will be the 

only ones that do not exhibit the strong expression of the balancer chromosome The 

embryos homozygous for the insertion also have 13-galactosidase expression but this 

expression pattern is different from the balancer

The cross and the genotypes of the resulting progeny are shown in Figure 

6 4 4 The embryos were collected and stained with antibodies to lucZ, and then 

examined by microscopy 75% of the embryos showed the strong expression 

associated with the blue balancer The other 25% were homozygous for the A13 1 IF3 

insertion The phenotype could not be seen in many of the embryos which were 

homozygous for the insertion and also the phenotype could be seen in some embryos 

that carried the lacZ marked balancer This result showed that the phenotype was not 

associated with the P-insertion
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6.5 Discussion

6.5.1 A326.2F3

This insertion has been shown to be in the neurogenic gene Della The 

neurogenic phenotype in this line is consistent with this as is the B-galactosidase 

expression patttem. The cytological map position is the same as the gene Della 

(Vassin el al., 1987) and most conclusively, insertion A326.2F3 failed to complement 

a point mutation in Delta

Delta has already been extensively studied both genetically and molecularly. I 

therefore discontinued working on this line

6.5.2 A13I.1F3

The variable phenotype in line A131.1F3 can be explained in a number of 

ways. First it might have produced a hypomorphic mutation in the gene it has inserted 

into. In a hypomorphic mutation the gene function is reduced rather than removed 

completely Secondly the insertion may have caused a null mutation of the gene, but 

the function of the gene is partially redundant ie , there are one or more other genes 

whose function can partially compensate for the loss of the first gene

The 13-galactosidase expression pattern of this line is not particularly 

enlightening, since it seems to be specific to P[IArB] rather than to a nearby genomic 

regulatory element This means that one cannot correlate the expression pattern to the 

morphological defects observed

The P-insertion in line A131.1F3 mapped to cytological region 65C-D, there 

are a number of point mutations and four molecularly cloned genes in this region 

A131. 1F3 insertion is in none of the point mutations tested None of the cloned genes 

in this region are likely to be associated with the kind of phenotype observed in this 

line.

The result that the phenotype was not associated with the P-element insertion 

meant that I discontinued working on this line
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Figure 6.3.1 The phenotype of mutant enbryos from the A326.2F3 insertion 
line.

The two upper embryos are labelled with antibodies to HRP which light up all 
neural tissue The lower two embryos are labelled with antibodies to even-skipped 
which light up a subset of the cells of the CNS.
The embryos on the left are wildtype, those on the right are homozygous for 
A326.2F3. The evenskipped and HRP staining show the presence of an abnormally 
large number of neural cells The HRP staining shows that this embryo has no 
epidermis

abbreviations nc; neural cells, e, epidermis

Figure 6.3.3 The cytological map position of P-insertion A326.2F3

Polytene chromosomes from line A326 2F3 were probed with a lacZ probe to 
identify the insertion site of the P-element Hybridisation can be seen at cytological 
band 92A
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yLs__
A326.2F

__
TM3 Sb e

»Mi* M>ç 
A326 2F3

IMJ e 
TM3 Sb e

Sb+ Sbe Sb

Number of flies of each genotype counted

None 148 123

Lethal

6.3.4 Complementation test between A326.2F3 and a point mutation in Delta.

There were no Sb+ progeny indicating that A326.2F3 does not complement 
the point mutation in Delta
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Cross the heterozygous P-insertion stock to the transposase producing strain
FO

Pfrv+1 A326.2F3 
TM3 Sb

PfrY+A2-31(99B) 
TM6 Ubx

FI
Select Sb Ubx+ males; these carry both the transposase producing chromosome and 
the P-insertion chromosome

S
Pfrv+1 A3262F3 X TM3 S\f ry
P[ry+ A 2-3](99B) Sb /  rflO

F2
Select ry brothers and sisters for individual sibling matings; loss of ry+ markers means 
that some kind of excision event has occured

AA326 rv X AA326 rv
TM3 Sb /  \  TM3 Sb

tM3 $b
TM3 Sb 

lethal

F3
Check for viability of excised A326.2F3 ry homozygotes

/  ^ ^
AA326 2F3 rv AA326.2F3 ry AA326,?F3 ry

TM3 Sb TM3 Sb AA326.2F3 ry

F3 expected phenotypes 

Sb Sb Sb+

If there are no Sb+ progeny then A326 2F3 homozygotes are lethal 

Observed phenotypes

matings where only Sb 
flies are observed in F3

matings where Sb+ and 
Sb+ flies are observed

A326.2F3 13 7
A131.1F3 15 3

Figure 6.3.2 Reversion cross to test viability of the A326.2F3 and the AI3I.IF3 
chromosomes after excision o f  the P-element.

The presence of Sb+ flies in the F3 generation shows that the homozygous 
excision chromosome is viable The viability after excision suggests that the P- 
insertion was responsible for the lethality
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Figure 6.4.1 The embryonic phenotype in line A131.1F3.

A- ventral v iew  o f  a  w ild type em bryo  a fte r germ  band re trac tion  (stage 13). The 
segm ents a re  regularly  spaced and the segm ental furrow s a re  o f  a  constant depth. 
T h e  em bryos have been stained with antibodies to evensk ipped  p ro te in .

B- is a ventral view  o f  a m utant em bryo  at an equivalent stage. Irregu larities in 
segm ental w idth and depth  o f  the segm ental furrow s (arrow heads) can be seen. 
T he  staining o f  evenskipped can be seen to  be d isrupted  in the abdom inal regions.
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Figure 6.4.3.1 The cytological map position or the P-insertion in line
A13I.1F3.

Map position was determined by hybridisation of a lacZ probe to polytene 
chromosomes from A131.1F3. The P-insertion maps at 65C/D.

name map position Complemented by 
A131.1F3 (+)

Moire 64C12-65E 3.19.2 +
javelin 64C12-65E 3.19.2 +
shrew 3.15 +
nudel 3.17 +
spook 3.19 +
H3)tr 3.20 +
Pie 3.18.8 +
SG8 3.19.2 +
SG9 3.22.2 +
SG10 3.23.3 +
tyrosine hydrolase 
pale

65C

G protein a  subunit 
(DGal)

65C

POU III domain (Cfla) 
DNA binding transfactor

65D

PRD gene 3 
paired homology

65D

Table 6.4.3.2. The point mutations and cloned genes in the region around
65C-D.

These are the point mutations in the region that I tested for complementation 
with A131.1F3. A131 was shown not to be in any of these genes
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insertion line A131.1F3 is crossed to the stock carrying the Balancer marked with 
/acZ P[C41]

FO

virgin females carrying both the A131.1F3 chromosome and the blue balancer P[C41] 
are selected and crossed to their brothers of the same genotype (ry+ Ubx+ Sb+).

\0 '
PfA131 1F3rv+1 
TM2 Ubx e P[C41

(ry+ Ubx+ Sb+)

F2
The embryos were collected and stained with lacZ

P[A131 1F3 ry+]
TM2 Ubx e P[C41 ry+]

___________ z ___*
PIA131.1F3 fv+l PIA131.1F3 rv+1 PIA131.1F3rv+l TM2 Ubx c PIC41 rv+l
P1A131.1F3 ry+) TM2 Ubx e P|C41 ry+| TM2 Ubx e P[C41 ry+] TM2 Ubx e P[C41 ry+

VOnly these embryos 
do not have the lacZ 
pattern of P[C41 ] and 
therefore be easily 
identified and examined 
for a phenotype.

\T
These embryos have the lacZ 
expression pattern associated with 
P[C41] blue balancer,

Figure 6.4.4 Cron to allow unambiguous identification of embryos 
homozygous for A131.1F3.
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Chapter 7 

General Discussion.

The work presented in this thesis describes the identification of a novel gene 

required for pattern formation of the larval head This gene had not been previously 

identified in conventional mutagenesis screens The gene was detected by an enhancer 

trap screen on the basis of the B-galactosidase expression pattern of an enhancer 

detector transposon insertion, A350.1M2.

Initial characterisation of the P|IArB| insertion A350.1M2.

The early B-galactosidase expression pattern of this line was considered to be of 

interest, because expression occurs in a spatially restricted manner very early during 

embryogenesis. The early nature of the expression pattern of this line, suggests that a 

flanking gene, with a similar pattern of expression, may be involved in early cell fate 

decisions. The insertion was mapped to 59F1-3 on chromosome 2R The A3 50.1 M2 

insertion was shown to cause hemizygous lethality This shows that it has disrupted at 

least to some extent an adjacent gene that is essential for development For the 

insertion to have disrupted the function of this essential gene the insertion must have 

disrupted either the structural gene or the regulatory elements Another explanation is 

that the insertion separates the structural gene from the regulatory elements

A P[ClrB] insertion, D26, also seemed to be inserted near this same essential 

gene This was suggested by its expression pattern and cytological map position This 

was subsequently confirmed by non complementation of deletions made by imprecise 

excision of the D26 insertion, with A3 50 I M2 The D26 insertion is homozygous and 

hemizygous viable This suggests that the insertion has not disrupted the gene

The B-galactosidase expression from the enhancer detector transposon 

A350.1 M2 has been drawn onto the Drosophila blastoderm fate map and the fate map 

of the head at germ band extension, to determine the final fate of the labelled cells
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During early gastrulation the posterior expression corresponds to cells which become 

the posterior midgut, Malpighian tubules and proctodeum. Expression in the anterior 

corresponds to cells which become the anterior midgut and cephalic neural and 

epidermal cells. By germ band extension the expression corresponds to the gnathal 

segments and the hypopharyngeal lobe of the head, and a large number of cells of the 

CNS.

Molecular characterisation of the genomic region flanking the A3S0.IM2 

insertion.

Genomic DNA flanking the insertion was obtained from a previously isolated 

plasmid rescue clone and a cosmid clone from a walk close to the brown gene The 

genomic region was restriction mapped and orientated onto the cytological map Two 

fragments from this region which had been shown to contain only unique sequences 

were used to screen a cDNA library. cDNA clones were isolated with only one of these 

fragments the A3 50 1 M2 plasmid rescue clone The clones were characterised by their 

restriction patterns and the sizes of these clones were determined Sequencing showed 

that clone 3a3 and 19 were the same at the 3' end but differed at the 5' end, the other 

clone 6 was different from these clones at both 5' and 3' ends. Clone 19 seems to be the 

same gene as 3a3 but is truncated at the 5' end The other cDNA clone 6 seemed to be 

a different gene which may actually map at a different chromosomal location

Fragments from each of these cDNA clones were used as probes to detect the 

RNA expression in situ in whole mount Drosophila embryos. cDNA clones 19 and 3a3 

gave expression patterns which were strongly reminiscent of the 13-galactosidase 

expression pattern in A350 I M2 The expression of cDNA 3a3 can be seen slightly 

earlier than the first expression in A3 50 1 M2 During cellular blastoderm this 

expression occurs in two broad stripes in the anterior and posterior of the embryo 

These cells correspond to the same cells that slightly later express lacZ in A350 I M2 

By germ band extension the expression is very similar to that of A350 1M2 The other 

cDNA clone 6 shows no expression during embryogenesis
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The cDNA clones were mapped onto the genomic walk clone 19 and 3a3 map 

between +6 and +8.3kb on the genomic map. The cDNA clone 3a3 is 6kb to the right 

of the A3 50.1 M2 insertion, and approximately 50 kb to the right of the brown gene

The cDNA clone 3a3 was sequenced in both strands and this sequence was 

used to predict the peptide sequence in all three frames The frames program on GCG 

which shows all possible translational starts and stops showed that there was no long 

open reading frame in any of the three frames The two longest open reading frames 

ORF1 and ORF2 are 92 and 88 amino acids long and both occur in the same frame 

The best homologies to known protein sequences on the Swissprot data base are, a 

Sodium channel protein from rat cardiac muscle which shares 28 1% homology over 32 

amino acids, and a minor core protein V which has 35.1% identity over 37 amino acids, 

for ORF1 and ORF2 respectively The sequence has provided little information about 

the function of the gene.

There is a possibility that there is another transcript in the region that I did not 

detect, sloppy paired has two transcripts that are expressed in very similar patterns In 

the case of sloppy paired both transcripts have long open reading frames

Genetic characterisation of A350.1M2.

The A350 1M2 insertion had partially disrupted the gene which it had inserted 

into since it was hemizygous lethal over a deficiency in the region The A3 50 1 M2 

insertion did not cause embryonic lethality I wanted to isolate some more severe alleles 

in particular ones which were embryonic lethal The viable insertion D26 was excised 

by transposase mediated excision and imprecise excision events were selected by 

hemizygous lethality over Df(2R)bw S4G The imprecise excisions fell into two 

complementation groups All ten of the imprecise excisions were embryonic lethal The 

cuticular structure of dead first instar larvae was determined by microscopy Some of 

the imprecise excisions showed a defect in the head skeleton in the dead first instar 

larvae These defects include reduced lateralgrate and disintegrated dorsal bridge I 

could not detect any morphological defects in corresponding earlier embryos This may
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be because at earlier stages the defects are very subtle or they only occur during the 

formation of the head skeleton, which occurs after embryonic head involution No 

obvious homeotic transformations accompany these defects The morphological defects 

observed correspond to a small subset of the total extent of the expression domain of 

the transcript in the respect that the head is affected The head segments are not deleted 

however; although some of the cuticular head structures arising from these structures 

are perturbed

Approaches to further illucidate the whereabouts o f the gene responsible for 

this head phenotype are discussed below.

Determining the genomic limits of the deletions could be acheived by genomic 

southern analysis £coRI digests of genomic DNA from each of the deletions would be 

probed with known £coRl fragments from the walk to determine which ones are 

missing This information would make it easier to interpret the complementation 

groups, and would also determine whether the 3a3 transcript is included in these 

deficiencies

Whether or not the transcript homologous to cDNA 3a3 is present in embryos 

homozygous for the A D26 deficiencies could be checked by in situ hybridisation This 

would give information regarding whether the transcript was present. It would not 

however determine whether this transcript was altered in some way.

Northern analysis could be used to check the whole genomic region for 

transcriptional activity and determine whether 3a3 is indeed the only gene in this 

region There is a possibility that there may be another transcript in the region, with a 

similar expression pattern to A3 50 I M2, which might have a more enlightening 

sequence
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