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1 Introduction

In a seminal contribution Stiglitz (1977) asked how a monopolistic insurance company should sell

insurance policies to consumers who know their demand for insurance while the monopolist does

not. In particular, consumers know how likely they are to have an accident while the monopolist

knows only the distribution of accident risks in the population. Stiglitz showed that the monopolist

o¤ers a menu of insurance contracts with di¤erent contracts tailored to the demand of consumers

with di¤erent accident probabilities. In designing this menu of contracts, the monopolist must make

sure that consumers with a relatively high demand for insurance have no incentive to understate

their demand. As a result, the insurance contracts o¤ered to low demand consumers are relatively

unattractive. These consumers receive too little insurance relative to the socially optimal level of

insurance. It is only the consumers with the very highest demand for insurance who receive the

socially optimal level of insurance. Mussa and Rosen (1978) and Maskin and Riley (1984a) have

shown that these insights extend in general to the theory of nonlinear pricing, and in fact even

more generally to any sort of screening problem.1

But beyond these qualitative insights our current understanding of the insurance problem with

accident probabilities drawn from a continuous distribution (i.e., when there is a continuum of

types) is still limited. Stiglitz (1977) provides a partial description of the solution but no general

description of the menu of optimal contracts. The reason is that consumers motive for demanding

insurance in the �rst place, i.e., their risk aversion, complicates the monopolist�s problem of contract

design to the point where it becomes hardly tractable.

In this paper I provide the full solution of the problem. A suitable transformation of the space

of control variables inspired by Grossman and Hart (1983) allows me to derive a formulation of the

contracting problem that can be solved with much more ease than the original one. In particular, I

have the monopolist o¤er utility contracts rather than the original insurance contracts. This simple

change of variables renders the monopolist�s pro�t function concave in the control variables, but

at the same time it linearizes the incentive constraints. The solution takes the form of a pair of

integral equations that can be solved for speci�c utility and density functions, in particular for a

special case of a CRRA utility function and various distribution of types. The solution displays

natural comparative statics properties: consumers receive better contracts when they are richer

and when accident damages are smaller. In addition, consumers receive less insurance, in the sense

1See La¤ont and Martimort (2002) for a recent and comprehensive survey of many problems that share the same

economic trade-o¤s.
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that the di¤erence in their utility levels conditional on an accident occurring and conditional on

no accident occurring is larger, when they are richer.

This paper adds to a small set of studies that have attacked problems of screening with risk

averse agents and uncertainty. Salanié (1990) and La¤ont and Rochet (1998) study the regulation

of a risk averse �rm. Matthews (1983) and Maskin and Riley (1984b) study auctions with risk

averse buyers. In companion work I study incentive compatible risk sharing between two risk

averse agents. The small size of this literature is not a sign that adverse selection is automatically

unimportant as soon as agents are risk averse2 . Rather it is a sign that risk aversion introduces

signi�cant technical di¢ culties. The contribution of the present analysis to this literature is a

technical one: I provide a relatively simple way to analyze problems of screening with risk averse

agents, when uncertainty is modeled as a two-outcome process. The method of analysis may prove

useful in other applications of the two outcome model.

The remainder of this short paper is structured as follows: To develop the reader�s intuition for

my approach I introduce the model and begin my analysis in section 2 with the two type case. In

section 3 I treat the case of a continuum of types. I have relegated the lengthy arguments in the

proofs to the appendix.

2 The Two Type Case

There is a single insurance company and two groups of individuals. An individual in group 1 has

an accident with probability equal to �; and individual in group 2 has an accident with probability

equal to �; where � > �: An accident causes a monetary loss d: The proportion of the mass 1

population with low probability of accident (group 2) is �: Individuals have concave von-Neumann-

Morgenstern utility functions u (w) de�ned over wealth w: An insurance contract is the right to

the payment B conditional on having an accident at unconditional price �: Let � = B � � denote

the net reimbursement after an accident, and let wa and wna denote the wealth conditional on

an accident and no accident, respectively, when the individual has bought an insurance contract

f�; �g : Note that

wa (�) = w � d+ �; and

wna (�) = w � �:
2There is a large literature on incentive compatible taxation starting with Mirrlees (1971) in which agents typically

have concave utility functions. However, in contrast to the papers cited in the text, there is no uncertainty and

hence no risk in the proper sense.
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Thus, an individual�s expected utility from buying insurance contract f�; �g is

U (�; �; �) = �u (wa (�)) + (1� �)u (wna (�)) for � 2
�
�; �
	
:

The insurance company o¤ers contracts
�
�; �

	
and

�
�; �

	
to insurants in order to maximize its

pro�t

� = �
�
��� + (1� �)�

�
+ (1� �)

�
��� +

�
1� �

�
�
�
:

The insurance company must o¤er contracts
�
�; �

	
and

�
�; �

	
such that an individual with a low

probability of accident prefers to buy contract
�
�; �

	
rather than contract

�
�; �

	
or no contract

at all. Likewise, a high risk individual must prefer to buy contract
�
�; �

	
rather than contract�

�; �
	
or no contract at all.

These incentive and participation constraints are complex to analyze, because they are non-

linear in the insurance contract. However, note that U (�; �; �) is linear in u (wa (�)) and u (wna (�)) :

Therefore, I switch variables and let the insurance company o¤er utility contracts rather than con-

tracts in the f�; �g space.

To ease notation let ua �
�
wa
�
�
��
; una � u (wna (�)) and so on, and let ua � u (w � d) and

una � u (w) denote the state contingent outside option utility. Moreover, I denote v � u�1 the

inverse function of u: Since u (w) is strictly increasing in w; this inverse function exists. Moreover,

since u (w) is strictly concave in w, v is strictly convex in its argument. Moreover, by de�nition

v (u (wi)) = wi for i = a; na:

In this notation I can write the insurance company�s problem as follows:

max
ua;una;ua;una

8><>: � (��v (ua)� (1� �) v (una) + w � �d)

+ (1� �)
�
��v (ua)�

�
1� �

�
v (una) + w � �d

�
9>=>; (1)

s:t:

�ua +
�
1� �

�
una � �ua +

�
1� �

�
una; (2)

�ua + (1� �)una � �ua + (1� �)una; (3)

�ua +
�
1� �

�
una � �ua +

�
1� �

�
una; and (4)

�ua + (1� �)una � �ua + (1� �)una (5)

I observe that problem (1) s.t. (2) � (5) has the same structure as the Maskin Riley problem

has with the inessential di¤erence that the �rm�s pro�t function depends on �: For this reason I

conjecture that I can apply the same technique to solve my problem. In particular, I will solve a

�reduced problem�, that I obtain from the full problem when I conjecture that constraints (2) and
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(5) hold with equality and that the remaining constraints are slack. As is usual, I will show that

the solution I obtain from the reduced problem satis�es the two neglected constraints (3) and (4) :

Therefore, the solution to the reduced problem coincides with the solution of the full problem.

Given that (5) holds with equality, I can write

ua = s (una) � ua +
(1� �)
�

(una � una) : (6)

Likewise, imposing (2) with equality, I can write

ua = ua +

�
1� �

�
�

(una � una) :

Using (6) I can simplify this condition further and obtain

ua = t (una; una) � ua +
(1� �)
�

(una � una) +
�
1� �

�
�

(una � una) : (7)

Substituting s (una) for una and t (una; una) for ua into (1) I can write the reduced problem as the

following, unconstrained maximization problem:

max
una;una

8><>: � (��v (s (una))� (1� �) v (una) + w � �d)

+ (1� �)
�
��v (t (una; una))�

�
1� �

�
v (una) + w � �d

�
9>=>; : (8)

Let fu�na; u�a; u�na; u�ag denote a solution to the reduced problem.

Proposition 1 For high enough � the solution to the monopolist�s problem is characterized by the

conditions

u�na = u
�
a; (9)

1

u0 (v (u�a))
=

1

u0 (v (u�na))
� (1� �)

�

1

u0 (v (u�a))

� � �
� (1� �) ; (10)

(7) ; and (6) :

Proof. Problem (8) is concave in the variables una and una; by the fact that v (�) is strictly

convex, which in turn is equivalent to u (�) being strictly concave. Therefore, the �rst-order condi-

tions are necessary and su¢ cient for an optimum. Conditions (9) and (10) follow immediately from

the �rst-order conditions, in which I replace v0 (ua) by
1

u0(v(ua))
and so on. The result that for low

enough � low taste consumers do not participate is well known and can also be obtained directly

from the comparative statics of the system of equations (9) ; (10) ; (7) ; and (6) with respect to

�: The remainder of the proof, showing that the solution corresponds to the solution of the full

problem is in the appendix.
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The solution displays the classical features of no distortion at the top, too little insurance for

the low risk individuals, and no rent at the bottom. The contract o¤ered to the low demand

consumer determines the rent the monopolist has to leave to the high demand consumer. At the

optimum the low demand consumer receives too little insurance relative to the social optimum.

The reason is that this makes it possible for the monopolist to extract more rents from the high

demand consumer.

It is straightforward to do comparative statics of the solution, notably with respect to the

fraction of high risks. Suppose the problem is such that the monopolist sells insurance to both

consumer types. I can reduce the system of equations to a single condition and apply the implicit

function theorem to this equation to obtain comparative statics predictions. Details are in the

appendix. I summarize my results in the following proposition.

Proposition 2 Whenever both consumers are served, the equilibrium utilities of the consumer

with the low probability of accident satisfy @u�na
@� < 0 and @u�a

@� > 0: The equilibrium utilities of the

consumer with the high probability of accident satisfy @
@�u

�
na =

@
@�u

�
a > 0:

The higher the fraction of low risk consumers, the more insurance these consumers receive, that

is @u�na
@� � @u�a

@� < 0: On the other hand, high risk consumers receive higher utilities the larger the

fraction of low risk consumers. The rationale for these results is that the more low risk consumers

there are, the less importance the monopolist attaches to extracting rents from high risk consumers.

The results I have established in this section are not surprising. However, what is surprising is

how di¢ cult it is to prove these results in a direct approach and how easy it is to prove them using

my indirect approach. This added analytical ease makes it possible to solve the more complex case

of a continuum of types, to which I now turn.

3 The Case of a Continuum of Types

Assume now that there is a continuum of types in the market with probability of accident � 2
�
�; �
�
:

Let � be distributed with a di¤erentiable density f (�) and cdf F (�) : The monopolist�s problem is

max
ua(�);una(�)

Z �

�

f��v (ua (�))� (1� �) v (una (�)) + w � �dg f (�) d� (11)

s:t: for all �

�ua (�) + (1� �)una (�) � �ua
�
�̂
�
+ (1� �)una

�
�̂
�
8�̂ and (12)

�ua (�) + (1� �)una (�) � �ua + (1� �)una: (13)
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Constraint (12) states that an insurant of type � should prefer the contract designed for type �

rather than any other contract. Constraint (13) states that all types should prefer to participate.

Since the insurance company can always o¤er contracts that are equivalent to the null contract,

this formulation of the participation constraint is without loss of generality. To solve this problem,

I derive an equivalent description of the set of implementable contracts, i.e., of the contracts that

satisfy constraints (12) and (13) : As a preliminary step towards that end, it is useful to observe

the following:

Lemma 1 A pair of utility schedules that solves problem (11) subject to (12) and (13) satis�es

una (�)� ua (�) � una � ua for all �: (14)

Proof. Suppose condition (14) is violated for some �, so

una (�)� ua (�) > una � ua:

Rearranging, multiplying by � and adding una on both sides; I get

una + � (ua � una) > una + � (ua (�)� una (�)) :

By (13) ; it follows that una (�) > una to make type � willing to participate. This implies that

ua (�) � ua; if it was the case that ua (�) > ua; then the �rm would raise the insuree�s utility in

both states, so the �rm would incur a loss from trading with this insuree. Hence, the �rm would

be better o¤ o¤ering the null contract ua; una to type �: Since adding the null contract to the menu

of contract o¤ers can always be done without violating incentive or participation constraints, any

menu that includes a contract ua (�) ; una (�) for some � where una (�) > una and ua (�) > ua

cannot be optimal.

I now show that also contracts where una (�) > una and ua (�) � ua are loss-makers for the

�rm. To see this, consider a decision-maker with increasing and convex utility function evaluating

lotteries A � fua (�) ; una (�) ; �g and B � fua; una; �g : By (13) for type �; lottery A has a weakly

higher expected value than lottery B has. Since una (�) > una and ua (�) � ua; lottery A has a

wider support than lottery B: Since v is increasing and concave, it follows that

�v (ua (�)) + (1� �) v (una (�)) � �v (ua) + (1� �) v (una) :

Since this inequality holds for any convex and increasing v; it holds in particular for v = u�1:

Rearranging the last inequality, and adding w � �d on both sides of the inequality, I get

��v (ua (�))� (1� �) v (una (�)) + w � �d � ��v (ua)� (1� �) v (una) + w � �d = 0:
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The last equality states simply that the �rm receives zero pro�t from o¤ering the null-contract to

the insuree. Hence, any contract that has una (�) > una and ua (�) � ua must be a loss maker for

the �rm.

So we have shown that una (�) � ua (�) > una � ua cannot hold for any �; which proves (14)

must hold.

The intuition for this result is pretty straightforward: in any optimal contract the insurance

company reduces the risk the consumers face in the sense that the di¤erence between utility levels

with and without an accident are reduced relative to the consumers�autarky situations. If accident

probabilities were known to the �rm, condition (14) would be obvious. Lemma 1 demonstrates

that the result carries over to the case of unkown accident probabilities. The Lemma is useful

because condition (14) is needed to prove the following, powerful result:

Proposition 3 A pair of utility schedules ua (�), una (�) is implementable if and only if

u0a (�) � 0 � u0na (�) (15)

and in addition

una (�) = una +
�

1� �ua �
�

1� �ua (�) +
Z �

�

1

(1� z)2
ua (z) dz: (16)

The proof uses standard arguments. The crucial di¤erence to the approach with a risk neutral

agent is that the switch to maximization with respect to indirect utility instead of transfers is not

useful here. But, using the standard arguments, I can eliminate one utility schedule, una (�) ; from

the insurance company�s problem. Finally, I can impose the individual rationality constraint at the

low bound of the support, and this is su¢ cient to ensure the participation constraint is satis�ed

for all �: The reason is that (14) ensures that the value of the inside option - the insuree�s indirect

utility from choosing optimally from the menu of contracts - is increasing at least as fast with �

than the outside option - the consumer�s utility without insurance - does.

De�ne the auxiliary variables y (�) � ua(�)

(1��)2 and x (�) �
R �
�

1
(1�z)2ua (z) dz: These variables

are constructed such that they satisfy y (�) = x0 (�) : Using these auxiliary variables I can write

condition (16) equivalently as

una (�) = � (y (�) ; x (�) ; �) � una +
�

1� �ua � � (1� �) y (�) + x (�) : (17)
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Substituting y (�) (1� �)2 for ua (�) and � (y (�) ; x (�) ; �) for una (�) into (11) I obtain a problem

that is equivalent to problem (11) subject to (12) and (13) ; but much easier to analyze:3

max
y

Z �

�

n
��v

�
(1� �)2 y

�
� (1� �) v (� (y; x; �)) + w � �d

o
f (�) d� (18)

s:t:

_x = y ;x (�) = 0; x
�
�
�
free; and (19)

�2y + (1� �) _y � 0: (20)

Condition (20) is equivalent to and replaces the monotonicity condition (15) : To solve my problem,

I proceed as is usual. I impose su¢ cient conditions on the distribution of types that allow me to

neglect the monotonicity constraint.

Proposition 4 Suppose the density satis�es

f 0 (�)

f (�)
� 1

�

3� � 2
1� � 8� 2

�
�; �
�
: (21)

Then, a set of insurance contracts is optimal if and only if the utility schedules satisfy

1

u0 (v (ua (�)))
=

1

u0 (v (una (�)))
�
R �
�
(1� z) 1

u0(v(una(z)))
f (z) dz

� (1� �)2 f (�)
(22)

and condition (16) :

Proof. The reduced problem is an unconstrained problem of optimal control with one state

and one control variable, and initial condition for the state variable. It is a �xed endpoint problem.

The Hamiltonian for this problem is

H =
n
��v

�
(1� �)2 y

�
� (1� �) v (� (y; x; �)) + w � �d

o
f (�) + �y;

where � is the costate variable. The Pontryagin (necessary) conditions for an optimal policy are

@H

@y
=

�
�� (1� �)2 v0

�
(1� �)2 y

�
+ � (1� �)2 v0 (� (y; x; �))

�
f (�) + � = 0; (23)

_� = �@H
@x

= (1� �) v0 (� (y; x; �)) f (�) ; and (24)

�
�
�
�
= 0: (25)

The last equality is the transversality condition.

3 I follow the usual conventions of optimal control theory: I drop the dependence on � where this can be done

without causing confusion, and I switch to dot notation to denote derivates.
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Using the transversality condition (25) and the equation of motion for the costate variable (24)

I �nd

� (�) = �
�
�
�
�
Z �

�

_�d� = �
Z �

�

(1� �) v0 (� (y; x; �)) f (�) d� :

Substituting for � in condition (23) I obtain the condition

v0 (ua (�)) = v
0 (una (�))�

R �
�
(1� �) v0 (una (�)) f (�) d�

� (1� �)2 f (�)
:

To obtain condition (22) I switch notation using v0 (ua (�)) = 1
u0(v(ua(�)))

and so on.

Finally, the individual rationality constraint at � = � completely pins down the path of utility

schedules.

The proofs of su¢ ciency and monotonicity are in the appendix.

An e¢ cient solution would equalize the consumer�s marginal utilities across the two states.

From condition (22) it is apparent that the consumer�s marginal utility is larger if he has an

accident, meaning that he receives less than full insurance. In order to decrease the rent of the

consumers with a relatively high demand for insurance (those with a high �), the monopolist

makes it less attractive for these consumers to understate their demand for insurance. To this end

the consumers with a relatively low demand for insurance (those with a low �) receive too little

insurance relative to the social optimum.

It is instructive to compare the structure of the solution with the structure of other problems

of non-linear pricing. E.g., following Maskin and Riley (1984a) suppose buyers are risk neutral

with a utility function �V (q) � T (q) where q is the quantity of some good, V (�) is a concave

function and T (�) a non-linear tari¤. Suppose in addition the seller has constant marginal cost of

production c: Then we can write the solution (provided that (1�F (�))f(�) is non-increasing to guarantee

monotonicity) as (�V 0 (q (�))� c) f (�) = (1� F (�))V 0 (q (�)) : The expected loss arising from the

departure from �rst-best is equated to the marginal reduction in the information rent of all types

with a larger marginal utility of consumption. (22) would take essentially the same form if the

marginal utility of consumption were constant in case there is no accident. So the essential economic

di¤erence to the model of Maskin and Riley (1984a) is that the type � impacts on the marginal

utility of consumption in both states.

A further technical di¤erence is that the set of distributions that generate monotonic solutions

di¤ers. One may wonder which distributions do satisfy (21) : The following Lemma shows that

condition (21) is satis�ed for a relatively rich class of distributions:

Lemma 2 Any log-concave density f (�) that satis�es
f 0(�)
f(�)

� 1
�
3��2
1�� ; satis�es (21) for all � 2

10



�
�; �
�
:

Proof. f (�) is log-concave if and only if ln f (�) is concave. Hence, for a log-concave density,

f 0(�)
f(�) is non-increasing. On the other hand,

1
�
3��2
1�� is increasing in �: Given

f 0(�)
f(�)

� 1
�
3��2
1�� ; (21) is

satis�ed for � = �: Hence, (21) is satis�ed everywhere.

The conditions in the lemma can be interpreted as a joint restriction on the class of densities

and their support in the following sense. Consider the class of log-concave densities that satisfy

f 0(�)
f(�) �

1
�
3��2
1�� : If the distribution satis�es also

f 0(�)
f(�)

� 1
�
3��2
1�� ; then it satis�es (21) and we are

done. However, suppose it does not satisfy
f 0(�)
f(�)

� 1
�
3��2
1�� : Then, we can generate a new distribution

by truncating the distibution at the right at some �
f
de�ned by the condition

f 0
�
�
f
�

f
�
�
f
� = 1

�
f
3�

f�2
1��f

.

Obviously the truncated distribution satis�es (21) for all � 2
h
�; �

f
i
: Hence, in this sense, condition

(21) is a joint restriction to logconcave densities on a support with a low enough upper bound.

The class of distributions that meet condition (21) seems reasonably large given the complexity of

the screening problem. A simple example that satis�es the conditions in Lemma 2 is the uniform

for the case where � � 2
3 : For a general treatment of log-concave densities, see An (1998).

4 Closed Form Solutions and Comparative Statics

In the remainder of this article I provide some closed form solutions that are - to the best of my

knowledge - not known in the literature.

Conditions (22) and (16) together form a system of two integral equations. An equivalent

description of the optimal menu of insurance contracts is obtained by di¤erentiating these two

equations. The resulting expression is a second order di¤erential equation, which is in general

nonlinear. Since nothing is known about the existence of solutions to these type of equations, I

abstain from a general treatment and directly discuss a case that can be solved.

Assume from now on that the von Neumann-Morgenstern utility function displays constant

relative risk aversion, i.e.,

u (w) = C
w

1� a
1�a

with coe¢ cient of relative risk aversion a = 1
2 . This particular form is convenient because it renders

v (u) quadratic in u; which implies that the di¤erential equation to be solved becomes linear. To

completely pin down its solution one has to assume special functional forms for the density f (�) :

The model is in fact �exible enough to allow this exercise to be carried through for di¤erent density
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functions. Some results are gathered in the following proposition.4

Proposition 5 Suppose that the density is of the form f (�) = �0
�(1��)2 where �0 is chosen such

that F
�
�
�
= 1: Then the solution takes the form

ua (�) =
K

(ln ��ln �)�
��1 � 1

�
� � 1� ln � + ln �

�
and

una (�) =
K

(ln ��ln �)�
��1 � 1

(� � 1)

where K = una +
�
1��ua:

Consumers receive more insurance (in the sense of una (�)� ua (�) being smaller) the larger is the

monetary loss d and the smaller is their wealth w:

Consumers fare better under the optimal contract the wealthier they are.

The same qualitative features obtain if the density is f (�) = �1
(1��)3 where �1 is chosen such that

F
�
�
�
= 1. In this case, the solution takes the form

ua (�) = K
2A1� + �

2 � 2 (ln �) � � 1� 4�
� (A1A2 �A3)

and

una (�) = (� +A1 � 3� ln �)
K

A1A2 �A3
where A1; A2; A3 are constants that are determined in the appendix.

The comparative statics are intuitive. The driving force behind these results is the assumption

of constant relative risk aversion. The wealthier consumers are, the lower is their demand for

insurance. Consequently, the rent the monopolist can extract from the consumers is the smaller

the wealthier the consumers are. As a result the departure from the e¢ cient full insurance solution

is smaller for each type when all consumers are wealthier. These results are reversed for the size

of the damage d:

5 Conclusion

This paper makes a technical contribution. It provides a method to solve a class of screening

problems that feature risk aversion and uncertainty in the form of two outcome distributions.

4 It is straightforward to check that the densities in the following proposition satisfy condition (21) for � low

enough. Another tractable case is the uniform distribution. However, the solution for this case takes quite a

complicated form and is therefore omitted.
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Using this method, I derive a complete solution for a model of monopolistic insurance with a

continuum of types. A closed form description of contracts and comparative statics results are

feasible for special cases of the model when consumers have CRRA utilities.

6 Appendix

Proof of Proposition 1 (cont.). Observe that the variable una enters the pro�t function

(8) only through the part of the pro�t that stems from the high risk consumers. The �rst-order

condition with respect to una is

(1� �)
�
��v0 (t (una; u�na))

@t (una; u
�
na)

@una
�
�
1� �

�
v0 (u�na)

�
= 0:

Substituting
@t(una;u

�
na)

@una
= � (1��)

�
from (7) and simplifying, I get

�v0 (t (una; u
�
na))

�
1� �

�
�

�
�
1� �

�
v0 (u�na) = 0;

and hence (9) : The �rst-order condition with respect to is

�

�
��v0 (s (u�na))

@s (u�na)

@una
� (1� �) v0 (u�na)

�
+ (1� �)

�
��v0 (t (u�na; una))

@t (u�na; una)

@una

�
= 0:

Substituting for
@s(una)
@una

= � (1��)
� from (6) and for

@t(una;una)
@una

= � (���)
��

from (7) and simplifying

I get

(v0 (s (u�na))� v0 (u�na)) +
(1� �)
�

v0 (t (u�na; una))

�
� � �

�
� (1� �) = 0:

Substituting for v0 = 1
u0 and making use of (6) and (7) I get condition (10) :

It remains to be shown that the pair of contracts characterized by the conditions in proposition

1 also satisfy the constraints (3) and (4) : In fact, the high risk type is willing to participate, because

�ua +
�
1� �

�
una = �ua +

�
1� �

�
una

=
�
� � �

�
(ua � una) + �ua + (1� �)una

=
�
� � �

�
(ua � una) + �ua + (1� �)una

=
�
� � �

�
(ua � una + una � ua) + �ua +

�
1� �

�
una

� �ua +
�
1� �

�
una:

The �rst equality uses the binding constraint (7) ; the second is simple algebra, the third uses the

binding constraint (6) ; and the fourth equality follows again by simple algebra. Finally, I prove in

Lemma 1 that una � ua � una � ua; which implies the last inequality.

13



Since we impose (6) ; the constraint (3) is equivalent to

� (ua � ua) + (1� �) (una � una) > 0:

Substituting ua from (7) this inequality is seen to be equivalent to the condition

�

 
� (1� �)

�
(una � una)�

�
1� �

�
�

(una � una)
!
+ (1� �) (una � una) > 0:

Simplifying I obtain the condition �
� � �
�

�
(una � una) > 0:

Economically, the low types are willing to buy the bundle intended for them when insurance is less

costly to low risks than to high risks.

Proof of Proposition 2. Substituting (9) into (7) I obtain

u�na = ua +
(1� �)
�

(una � u�na) +
�
1� �

�
�

(u�na � u�na) ;

which can be solved for u�na: I obtain this equation for

u�na = T (u
�
na) � �

 
ua +

(1� �)
�

una +

 �
1� �

�
�

� (1� �)
�

!
(u�na)

!
: (26)

Condition (26) allows me to write

t (u�na; u
�
na) = t (u

�
na; T (u

�
na)) = �ua + �

(1� �)
�

una +

��
1� �

�
� � (1� �)

�

�
u�na: (27)

From condition (6) I have

u�a = s (u
�
na) = ua +

(1� �)
�

(una � u�na) : (28)

Now I can use conditions (27) and (28) to write condition (10) in more compact notation. I obtain

the condition

v0 (s (u�na))� v0 (u�na) +
(1� �)
�

v0 (t (u�na; T (u
�
na)))

� � �
� (1� �) = 0: (29)

De�ne


 (u�na; �) � v0 (s (u�na))� v0 (u�na) +
(1� �)
�

v0 (t (u�na; T (u
�
na)))

� � �
� (1� �) :

where � is a parameter of the problem. By the implicit function theorem,

@u�na
@�

=

@
(u�na;�)
@�

�@
(u�na;�)
@u�na

:
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@
 (u�na; �)

@u�na
= v00 (s (u�na))

@s (u�na)

@u�na
� v00 (u�na)

+
(1� �)
�

v00 (t (u�na; T (u
�
na)))

� � �
� (1� �)

�
@t (u�na; T (u

�
na))

@u�na
+
@t (u�na; T (u

�
na))

@�

@T (u�na)

@u�na

�
:

Simpli�cation gives

@
 (u�na; �)

@u�na
= �v00 (s (u�na))

(1� �)
�

� v00 (u�na)

+
(1� �)
�

v00 (t (u�na; T (u
�
na)))

� � �
� (1� �)

��
1� �

�
� � (1� �)

�

�
< 0:

where the inequality follows from v being strictly convex and
�
1� �

�
� �(1��)

� being negative.

Consider now
@
(u�na;�)

@� : For the case � = � I obtain

@
 (u�na; �)

@�
= � 1

�2
v0 (t (u�na; T (u

�
na)))

� � �
� (1� �) < 0

and thus
du�na
d�

< 0:

From (28) I have then that

du�a
d�

=
@s (u�na)

@u�na

du�na
d�

= � (1� �)
�

du�na
d�

> 0:

Finally, from (26) ; I get

du�a
d�

=
du�na
d�

= �

 �
1� �

�
�

� (1� �)
�

!
du�na
d�

> 0:

Proof of Proposition 3. A necessary condition for an optimal report is the �rst-order

condition

�u0a

�
�̂
�
+ (1� �)u0na

�
�̂
����
�̂=�

= 0: (30)

Notice that u0a
�
�̂
�
and u0na

�
�̂
�
must have opposing signs. A total di¤erentiation of condition (30)

gives

(�u00a (�) + (1� �)u00na (�)) + (u0a (�)� u0na (�)) = 0:

Thus, truth-telling constitutes a locally optimal strategy only if u0a (�)�u0na (�) � 0: In combination

with the observation that u0a (�) and u
0
na (�) cannot have the same sign, the monotonicity condition

follows.

Let U (�) = max�̂ �ua
�
�̂
�
+ (1� �)una

�
�̂
�
: By the envelope theorem

U 0 (�) = ua (�)� una (�) :
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On the other hand, the change in the outside option when the type changes is

@

@�
(�ua + (1� �)una) = ua � una:

Hence, whenever

ua � una � ua (�)� una (�)

then the value of the outside option decreases faster with � than the value of the inside option.

Consequently, it is su¢ cient to impose the individual rationality constraint at the lower bound of

the support. Note that the individual rationality constraint must bind somewhere. Otherwise the

insurer could lower all utility levels by the same amount and increase his pro�t.

To get the integral condition, observe that by de�nition

una (�) = una (�) +

Z �

�

u0na (z) dz: (31)

From the �rst-order condition,

u0na (�) = �
�

(1� �)u
0
a (�) :

From the individual rationality condition at � = � I have

una (�) =
�

(1� �)ua �
�

(1� �)ua (�) + una:

Substitution of these two conditions into (31) gives

una (�) = una +
�

(1� �)ua �
�

(1� �)ua (�)�
Z �

�

z

1� z u
0
a (z) dz

= una +
�

(1� �)ua �
�

(1� �)ua (�)�
�

�

1� �ua (�)�
�

(1� �)ua (�)
�

+

Z �

�

1

(1� z)2
ua (z) dz:

Finally, the monotonicity condition makes the local conditions su¢ cient for the global maximization

conditions. I can write

�ua (�) + (1� �)una (�) �
�
�̂ + � � �̂

�
ua

�
�̂
�
+
�
(1� �)�

�
1� �̂

�
+
�
1� �̂

��
una

�
�̂
�
; or

U (�) � U
�
�̂
�
+
�
� � �̂

��
ua

�
�̂
�
� una

�
�̂
��
:

Since U 0 (�) = ua (�)� una (�) I can write

U
�
�̂
�
= U (�) +

Z �̂

�

(ua (z)� una (z)) dz:
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Hence, global incentive compatibility requires that

0 �
Z �̂

�

(ua (z)� una (z)) dz +
�
� � �̂

��
ua

�
�̂
�
� una

�
�̂
��

=

Z �̂

�

(ua (z)� una (z)) dz �
Z �̂

�

�
ua

�
�̂
�
� una

�
�̂
��
dz

=

Z �̂

�

��
ua (z)� ua

�
�̂
��
+
�
una

�
�̂
�
� una (z)

��
dz:

I can now use the monotonicity condition u0a (�) � 0 � u0na (�) to show that this inequality

is satis�ed: There are two cases to distinguish, �̂ > � and the reverse. For �̂ > � both the�
ua (z)� ua

�
�̂
��

and the term
�
una

�
�̂
�
� una (z)

�
are pointwise non-positive and the result

follows directly. The case �̂ < � is analogous and a discussion is omitted.

Proof of Proposition 4 (cont.). To prove su¢ ciency of the Pontryagin conditions I show

that Mangasarian�s su¢ ciency theorem applies. Speci�cally, since I have _x = y; a linear function,

the theorem states that the �rst order condition is also su¢ cient for a maximum if H is concave

in y and r jointly. Di¤erentiating H twice with respect to y and/or x; respectively, I �nd

@2H

@y2
=
�
�� (1� �)4 v00

�
(1� �)2 y

�
� �2 (1� �)3 v00 (� (y; x; �))

�
f (�) < 0; (32)

@2H

@x2
= � (1� �) v00 (� (y; x; �)) f (�) < 0; (33)

and
@2H

@y@x
= � (1� �)2 v00 (� (y; x; �)) f (�) > 0: (34)

Observe that @2H
@y@x = �� (1� �)

@2H
@x2 : H is concave in x and y jointly if

@2H

@y2
@2H

@x2
�
�
@2H

@y@x

�2
� 0:

Using the observation that @2H
@y@x = �� (1� �)

@2H
@x2 ; H is concave in x and y jointly if

@2H

@y2
@2H

@x2
� �2 (1� �)2

�
@2H

@x2

�2
:

Dividing by @2H
@x2 < 0 and rearranging we have that H is concave if and only if; this condition is

equivalent to
@2H

@y2
� �2 (1� �)2 @

2H

@x2
� 0:

Substituting from (33) and (32) we �nd that

@2H

@y2
� �2 (1� �)2 @

2H

@x2
= �

�
� (1� �)4 v00

�
(1� �)2 y

��
f (�) � 0:
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Consider now the monotonicity condition. Taking derivatives in the condition of optimality

v0 (ua (�))u
0
a (�)� v0 (una (�))u0na (�) = �

@

@�

0@R �� (1� z) v0 (una (z)) f (z) dz
� (1� �)2 f (�)

1A :
It follows that the monotonicity condition (15) is satis�ed if

@

@�

0@R �� (1� z) v0 (una (z)) f (z) dz
� (1� �)2 f (�)

1A � 0:

or more explicitly if

(1� �) v0 (una (�)) f (�)
�
� (1� �)2 f (�)

�
+ @

@�

h
� (1� �)2 f (�)

i R �
�
(1� �) v0 (una (�)) f (�) d��

� (1� �)2 f (�)
�2 � 0:

Observe that this inequality is satis�ed if @
@�

h
� (1� �)2 f (�)

i
� 0: The more interesting case is

when @
@�

h
� (1� �)2 f (�)

i
can be negative. In this case, use the �rst-order condition for an optimal

policy and rearrange it to conclude that

v0 (una (�)) � (1� �)2 f (�) = v0 (ua (�)) � (1� �)2 f (�) +
Z �

�

(1� z) v0 (una (z)) f (z) dz

>

Z �

�

(1� z) v0 (una (z)) f (z) dz:

Hence, I can substitute
R �
�
(1� z) v0 (una (z)) f (z) dz for v0 (una (�)) � (1� �)2 f (�) in the above

inequality. After this substitution, I �nd that a su¢ cient condition for monotonicity is that

(1� �) f (�) + @
@�

h
� (1� �)2 f (�)

i
� 0 or equivalently

f 0 (�)

f (�)
� �2� 5� + 3�

2

� (1� �)2
=
1

�

3� � 2
1� � :

Proof of Proposition 5. Note that for the square root utility function we have v (u) =�
u
2C

�2
, v0 (u) = u

2C2 ; and v00 (u) = 1
2C2 ; a constant.

Assume �rst that f (�) = �0
�(1��)2 :

Di¤erentiate condition (23) with respect to � to obtain (using f (�) = �
�(1��)2 )

v00
�
(1� �)2 y

��
�2 (1� �) y + (1� �)2 z

�
� v00 (� (y; x; �)) (2�y � � (1� �) z) =

_�

�0
; (35)

where z = _y = �x: Since v00 (u) = 1
2C2 ; a constant, we can simplify (35) to

1

2C2
(�2y + (1� �) z) =

_�

�0
:
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From (24) we have on the other hand

_�

�0
=

1

� (1� �)
1

2C2
(K � � (1� �) y + x) (36)

where K = una +
�
1��ua:

Putting equations (35) and (36) together we obtain the following second order linear di¤erential

equation:

(�2y + (1� �) z) = 1

� (1� �) (K � � (1� �) y + x) :

The equation has a solution5 of the form

x (�) =
K

� � 1 + C1
�

� � 1 + C2
1 + (ln �) �

� � 1 : (37)

To determine the constant factors we use the boundary conditions. Condition (23) together with

the transversality condition (25) give rise to the condition

�
K + x

�
�
��
=
�
1� �

�
_x
�
�
�
:

Di¤erentiating (37) and substituting the resulting expression for _x (�) into this upper boundary

condition gives

C1 = �K � C2
�
1 + ln �

�
:

Substituting back into (37) gives

x (�) = �K + C2

�
ln � � ln �

�
�

� � 1 � C2:

The second boundary condition is

x (�) = �K + C2

�
ln � � ln �

�
�

� � 1 � C2 = 0:

Therefore,

C2 =
K

(ln ��ln �)�
��1 � 1

and the �nal solution is

x (�) = �K +
K

(ln ��ln �)�
��1 � 1

 �
ln � � ln �

�
�

� � 1 � 1
!
:

Recalling that ua (�) = (1� �)2 _x (�) and una (�) = K � � (1� �) _x (�) + x (�) one gets the expres-

sions in the proposition.

5The solutions of di¤erential equations in this proof were found using Maple software.
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Assume now that f (�) = �1
(1��)3 :

Di¤erentiating again (23) and substituting from (24) we have

@

@�

�
� (1� �)2 f (�)

��
�v0

�
(1� �)2 y

�
+ v0 (� (y; x; �))

�
+ (1� �) v0 (� (y; x; �)) f (�)

+� (1� �)2 f (�)

0B@ �v00
�
(1� �)2 y

��
�2 (1� �) y + (1� �)2 _y

�
+v00 (� (y; x; �)) (2�y � � (1� �) _y)

1CA = 0:

The assumption implies that @
@�

�
� (1� �)2 f (�)

�
= (1� �) f (�) :Moreover, @@�

�
� (1� �)2 f (�)

�
=

�1
(1��)2 : We can thus write �

�v0
�
(1� �)2 y

�
+ 2v0 (� (y; x; �))

�
+� (1� �)

0B@ �v00
�
(1� �)2 y

��
�2 (1� �) y + (1� �)2 _y

�
+v00 (� (y; x; �)) (2�y � � (1� �) _y)

1CA = 0:

Simpli�cation gives

� (1� �)2 y + 2K + 2x� � (1� �)2 _y = 0:

The equation has a solution of the form

x (�) = �2 K

(1� �) �
C1

(1� �) (� + 1)� C2
(ln �) � + ln � + 4

(1� �) :

Di¤erentiating we obtain

_x (�) =
�2K� � 2C1� + C2�2 � 2C2 (ln �) � � C2 � 4C2�

(1� �)2 �
:

To determine the constants of integration we use the boundary conditions. From the transversality

condition (25) we obtain

C2

�
1 + � +

�
ln �
�
�
�

�
+K = �C1:

Substituting back into the solution and using the second boundary condition x (�) = 0 we obtain

C2 =
K

(1+�+(ln �)�)
�

(�+1)
(1��) �

(ln �)�+ln �+4
(1��)

:

Consequently

x (�) = �K +K
A1

(�+1)
(1��) �

(ln �)�+ln �+4
(1��)

A1A2 �A3
;

where (
1+�+(ln �)�)

�
= A1;

(�+1)
(1��) = A2; and

(ln �)�+ln �+4
(1��) = A3 is the �nal solution: Noting that

_x (�) = K
2A1� + �

2 � 2 (ln �) � � 1� 4�
(1� �)2 � (A1A2 �A3)

and recalling that ua (�) = (1� �)2 _x (�) and una (�) = K � � (1� �) _x (�) + x (�) we obtain the

expressions in the proposition.
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