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ABSTRACT

The fast atom bombardment, FAB, of salts of uranium, the 

lanthanides and related metals yield long, well defined series of 

cations of metal-oxygen clusters, < M»0V ■ > with x up to 30-40. Up to 

seven values of y are associated with each value of x, but in each set 

of clusters there is usually a well-defined ion of maximum abundance. 

These series comsist of regular patterns of clusters whose relative 

stabilities and structures can be directly related to reported solid 

state structures, demonstrating the strong Influences of solid state 

processes at the molecular level. Thus, direct correlations are found 

between these metal-oxygen clusters and the complex metal-oxide phases 

exhibited by the actinide and lanthanide metals.

The mass spectral and collision-induced decomposition < CID ) 

spectral data obtained for many of these clusters feature ion abundances 

depending on cluster size, and a pronounced odd/even alternation, both 

of which are interpreted in terms of the electronic and geometrical 

structures of the clusters. Similar trends are also demonstrated for 

series based on the general formula ( U>.CLr. with x up to 13. 

Conditions of sample preparation < matrix, source pressure, etc. > are 

described for the achievement of maximal cluster formation and 

fragmentation reactions. The fabrication and deployment of a 'split'

FAB source is described which enables the simultaneous bombardment of 

two samples to yield 'mixed' clusters.

The FAB spectra of a variety of uranyl complexes containing 

biologically important molecules, such as peptides, demonstrate the 

sequential loss of the ligands. The inter-relationship between their 

mode of fragmentation, and the extent of ligand coordination, as well as

their relative ion abundances is described.
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IÏTRODUCTIOK.

1.1 FAST ATOM BOMBARDMERT MASS SPECTROMETRY.

Fast atom bombardment (FAB) mass spectrometry was first described In 

a brief publication by two research groups from Manchester in 1981 

(1>(2). These publications described a new method by which the 

ionization of labile and non-volatile molecules could be carried out, 

which were unsuitable for ionization by conventional electron impact 

(EI> methods.

While El had been used for about 25 years for the analysis and 

characterisation of volatile organometallic and inorganic molecules, it 

had found limited use in the analysis of involatile or thermally labile 

species of high relative molecular mass (RMM) such as macromolecules, 

like polymers, proteins and metal cluster compounds. However the use of 

FAB enables the mass spectra of such molecules to be obtained at high 

resolution <3>(4)<5>.

FAB is refered to as a soft ionizing technique in which 'fast atoms’ 

of noble gases (argon, xenon) with energies of the order of 10 keV are 

fired at a viscous solution of the sample (3)(5). On impact, the beam 

causes the sample to undergo a process called sputtering (6) and ion 

formation takes place either in the sample or in its immediate vicinity. 

The ions formed are then accelerated and analysed in a conventional mass 

spectrometer.
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1.2 THE PROCESSES INVOLVED IH DESORPTION MASS SPECTROKETY

Desorption techniques such as FAB, secondary ion mass spectrometry 

(SIMS) and laser desorption mass spectrometry (LDMS) are all primarily 

based on the kinetic competition between evaporation and decomposition 

processes (7). Thus the higher the rate at which energy i6 supplied to 

the target molecules, the higher the level of local rapid heating, which 

promotes evaporation, and hence the lower the extent to which 

decomposition occurs.(8)

For thermally labile molecules, such as peptides, their volatility 

is the major limiting factor in their ability to undergo mass 

spectroscopic analysis. The volatility problem exists primarily because 

of the thermal instability of such molecules at the energies required 

for evaporation to take place, which is often greater than the energy 

needed for thermal decomposition. There are many ways of surmounting 

this problem; one is the use of field desorption, but most other methods 

involve the use of rapid heating techniques.

In FAB the time scale of this rapid heating, i.e. 10-,2s, is so fast 

compared with the diffusion coefficient of a typical liquid, i.e.

10 cm^s-1, (9) that the molecules can be considered as essentially

stationary. Consequently over the time periods involved, liquids and 

solids can be considered to behave identically (10).

The term sputtering is used in FAB to describe the processes taking 

place in the sample during its bombardment by the neutral atom beam.

This process may take place by two main mechanisms (10). The first of 

these is that of colllBlonal cascade, in which momentum is transferred, 

via screened coulomblc interactions, from the incoming particle to the
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target molecule. The target molecule may then undergo further 

collisions before being sputtered from the sample surface. The primary 

particle will continue, leaving many recoiling molecules in its 

penetration track.

In the second process, linear cascade, the recoiling molecule is 

able to set up further, higher order, recoils in the surrounding sample. 

Some of these may result in the molecules aqulrlng sufficient energy to 

overcome the surface binding energy and hence for sputtering to take 

place.

After impact with the surface, the primary particle continues into 

the body of the sample, causing further collisions and transferring 

momentum to the respective nuclei. This may result in the formation of 

excited species (11). The collisional cascade resulting within the 

sample causes displacement, i.e. the recoiling of target molecules along 

the penetration path of the primary particle. As the cascade 

progresses, the kinetic energy transferred will decrease, resulting in 

elevated temperatures (12)(13), with the cascade core reaching 

temperatures of the order of lO^K (7><8><14>. This causes the formation 

of a high-density, supersaturated, 'hot gas’ consisting of target 

molecules, their fragments and the excited species of these in the 

primary particle track. These species may then undergo ion-molecule 

collisions and reactions before their violent expansion into the 

surrounding vacuum (15)

The depth to which the 'thermal spike' of the colllslonal cascade 

reaches depends on the initial energy of the primary bombarding 

particle. This was Bhown to have a maximum useful value of 

approximately 15 to 20 keV, after which the number of ions recorded by

3



the mass spectrometer decreased <16>. This may be due to the major 

energy-releasing collisions occurring too far below the surface for the 

extent of ionisation and fragmentation to be detected correctly.

1.3 GAS PHASE CHEMISTRY

FAB—MS has shown itself to be well suited to the characterization, 

analysis and mass spectral study of a wide range of compounds (20>(21). 

These include involatile, often polar, organics and bio-organics such as 

peptides macromolecules, enzymes and other large involatile systems as 

well as inorganics, organometallies and coordination compounds.

These studies have shown a variety of chemical processes to be 

Induced by the bombardment and subsequent energy deposition. These 

reactions include

1 Sequential ligand loss.

2 Redox reactions, in which the central metal atom undergoes either 

one or a sequence of one electron reductions.

3 Ligand fragmentation.

4 The formation of matrix adducts and oligomeric species by 

association reactions between sample molecules themselves and matrix or 

solvent species.

These processes have been reported for a large number of systems and 

are clearly demonstrated in the FAB spectra of cyanometalllc complexes 

of various transition metals (17)(18).

The formation of matrix adducts and oligomeric species has been 

widely reported for a variety of matrices and co-solvents, with Fenton
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et al. reporting species containing 2 and 3 magnesium atoms to be formed 

in the FAB of mixed ligand complexes of magnesium (19).

These reactions have been generally viewed as the result of gas 

phase association reactions occuring between species present in the 

sample both before and after bombardment (20) (21) and may result in the 

formation of gas phase clusters. The formation of clusters in this way 

has been used in the analysis of a wide range of substances, as diverse 

as archaeological artifacts (22) and low temperature watei— alcohol 

mixtures (15). The resulting clusters can take several forms, each 

showing different properties, with the type and mechanism by which the 

clusters are produced depending on various influences Including both the 

nature of the aggregating moieties and their local enviroments.

This dependance is readily demonstrated by the various types of 

clusters formed. For example,

Van der Vaals molecules which are held together by virtue of weak 

electrostatic forces, these clusters are of particular interest in the 

study of nucleatlon and condensation phenomena (23).

Other notable classes of clusters are small covalent molecules (24), 

pure metallic clusters (25) and clusters formed by metal salts, of which 

Csl clusters are classic examples (26).

The association mechanism by which these clusters are formed, 

however, are not well understood although they have attracted many 

investigations aimed at gaining insight into the underlying processes 

occuring in the various desorption methods and their subsequent 

fragmentations.
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1.4 THE ELECTROHIC STRUCTURE OF THE ACTIHIDE ELEMENTS

The close proximity of the energy levels of the 7s,6d and 5f 

electrons result in the actinides being able to exhibit a wide range of 

oxidation states, this is markedly so for the early actinide elements. 

This, along with their hydrolytic behaviour, leads to the mid-actinides, 

Protactinium to Americum, showing some of the most complex chemical 

behaviour of all elements.

The oxidation states of the post-curium elements decrease in number 

and show an Increased resemblence to the lanthanides, with the adaption 

of 3+ as the principal oxidation state. This change in behaviour is a 

consequence of the actinide contraction with the latter elements 

corresponding to 5f, 6d inversion.

1.4.1 THE HYDROLOSIS OF THE ACTIHIDE ELEMENTS.

The actinides show a richness of aqueous chemistry, due to their 

wide range of accessible oxidation states, and hence have a tendancy to 

undergo hydrolysis to give oxo- and hydroxo-species. The trivalent 

oxidation state exists for uranium and heavier actinides in aqueous 

solutions and becomes increasingly stable with increasing mass. The IV 

oxidation state is the most Important state for thorium and is one of 

uraniums stable states in aqueous solution. However since the aqueous 

actinide ions become increasingly acidic in nature with increasing

6
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charge on the central metal ions. ThIV and UIV are prone to hydrolysis 

and the formation of polymeric species.

The actinides in higher oxidation states have a tendancy to form 

actinyl ions, with AnOa~ and AnOa*- corresponding to Anv and AnVI states 

respectively. The AnQa^- ions are formed by U, Np, Pu and Am, while 

AnOa“- by Up, Pu and Am as symmetric linear entitles. The An-0 bond 

lengths vary over a wide range of values, depending on the chemical 

environment provided by the coordination as well as contraction 

Influences and the valence state of the central An^^ ion. The bond 

length for AnOa^"- is notably shorter than the corresponding AnOa* 

length due to the additional electron being accommodated in a non- 

bonding orbital.

-*■

UOa average bond length < solution ) 1.76 A
a+

UOa average bond length ( solution ) 1.70 A
a»

UOa average bond length < solid > 1.71 A

The actinyl ions have an acidic nature, liberating protons in 

aqueous solution to form hydroxo complexes, this in turn can lead to the 

subsequent formation of poly-nuclear species containing hydroxo- < An- 

OH-An ) or oxo- < An-O-An ) linkage. The formation of such species is 

pH dependant as demonstrated by the uranyl ion.

The tendancy to form large polymeric species drops significantly 

from Anlv to AnVI, with only small higher order AnIV species being 

formed.

8
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1.4.2 THE URANYL ION (electronic structure)

The strongly linear uranyl, UOz2* , ions exists as a single 

charged entity, of a unique stability that distinguishes it both from 

other group VI elements and actinides. The stability of the uranyl ion 

is a result of its valence electrons occupying bonding molecular 

orbitals, with the non-bonding and anti-bonding orbitals remaining 

empty.

The pentavalent uranium ion forms U02 in aqueous solution. This is 

highly unstable and disproportlonates to U02z- and The VOz* ion is

only stable over a very narrow pH range near pH2, where its rate of 

disproportionation is negligable. The UOa ion's instability is a 

consequence of the additional electron residing in an antibonding 

molecular orbital. (27)

The UOz-*' ion has a bent conformation like related oxo-catlons, VOa" , 

M0O22*, WOar2^ and ThOa, and has an average bond length of 1.76 A.

The UOz2"̂ ion is always observed with a formal 5f‘, 6d" valence

configuration in crystals and complexes with a trans geometry, having 4
a.

to 6 secondary coordinations in its eqqftorlal plane, perpendicular to 

its 0=U=0 axis. This is in marked contrast to other isoelectric species 

< MoOa2'*', VOa2'*, VOa- ) whioh have a related d" valence configuration, 

which usually occur in octahedral ligand sets.
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These species however, all exhibit similar properties such as short

K-0 band lengths and labile coordination geometries. So the geometrical

preferences of these species can be assumed to be dictated by the

central metal ion, not the auxilary ligands, although the M-0 bond
o

length is influenced by their resulting enviroment.

The only major differences between the species is the presence of 

the 5f orbitals in UOa2 .̂ For HoOz2'1' a strong minimum is observed in 

the d, s, p potential curves in the region of O-H-O * 110*, this is in 

agreement with crystal data.

These geometries are further stabllsed by the use of 4d orbitals in IT 

bonding with oxygen lone pairs.

For the UOz-2 ,̂ although d, s, p sets are similar to the above but well 

defined, the 5f orbitals do not favour a bent geometry. This effect is 

enhanced by the Influence of the inner shell unfilled 6p orbitals.

Since the 6p orbitals cause the o'u* orbital to be pushed up, increasing 

the 0<2p7>-Uc6pe> overlap.

The position of these molecular orbitals are dependent on the 

external environment experienced by the central oxo-metal cation, this 

is clearly shown by isoelectric ThCkt. ThOz i6 linear for shorter bond 

lengths, but as they increase the 5f/6d energy gap becomes greater and 

ThOz assumes a bent geometry. In the case of the UOz2'* ion linearity is 

seen at all bond distances due to a smaller 6d/5f energy gap and the 

interactions with the 6p core. The effect of bond length on electronic
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structure has been calculated by Tatsumi et al. using the extended 

Huckel theory (28) (29).

1.4.4 THE URANYL IOK ( aqueous chemistry )

The uranyl ion ( U022- > is very stable and is found in both solid 

and aqueous solutions. In aqueous solution it is seen to be acidic in 

nature and has a tendancy to undergo hydrolysis and form polymeric 

species. The extent to which this hydration takes place is dependent on 

both uranyl concentration and the pH of the solution. This is shown by 

the preferential formation of the ( U02 )a ( OH )a2- dimer, with UOaOH- 

being formed only in very weak uranyl solutions.

At higher pH's the trimer ( UOa )s( OH Is*" becomes predominant, with 

larger polymeric species being reported as the pH of the solution 

increases. These species are ( UOa )a( OH l-»2-*, ( UQa >.*( OH )«2 ,̂

< UOa >*( OH >7.-, ( UOa )»< OH )«2~ and ( UOa >»( OH )«2~ being 

reported (30)(31).

At very high pH values precipitates of hydrous oxides and 

hydroxides are formed. Similar behaviour is also seen for Np and Pu.

1.5 THE URAHIUM-OXYGEN SYSTEM

The uranium-oxygen system is the most complex of the actinide oxide 

systems and one of the most complex systems known. The uranium-oxygen 

system contains various phases consisting of stoichiometric and non-



Fig 1.5.1 The Pressure - Temperature Relationship 
Between UOa - UQs
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stoichiometric forms, with uranium : oxygen ratios being observed 

between 1 : 1 and 1 : 3. The simple binary oxides so far reported are 

in increasing U : 0 ratios;

UO, UOz, U„0<s, U ie 0 3 7 , Us Ot , Us O i *, U iO n , U>O is

U 13 0 ;j4 , UsOai , Ui 1O2» ,  UaiOa, U iz O a s , UO3

in addition to the above there have also been several crystal 

modifications for most of these reported.

The ability to exhibit such a large range of oxides is a consequence 

of uranium's variability of valency and it6 ability to form compounds in 

which it simultaneously exhibits more than one valence state.

The way in which its vast array of oxides are formed are best 

understood by the consideration of the UOa fluorite structure < face 

centred cubic ). This fluorite structure has a open nature which allows
rr\ o

the accoiqirdatlon of additional oxygen atoms in the lntersltlal holes. 

This leads to contlnuosly increasing distortion to the original fluorite 

lattice

The distribution of these additional oxygen atoms can take a random

form, resulting in a lattice of variable structure, stoichiometry and

density. However if the oxygen atoms assume an ordered distribution

then the formation of cubic, tetragonal or monocllnlc superlattices

based on the fluorite structure takes place. Vben a given number of
** o

additional oxygen atoms have been accot^fdated within the lattice the



stoichiometric limit is reached and at least some of these oxygen atoms 

become ordered in a superlattice providing a new phase. This behaviour 

continues via various phases until the uranium : oxygen ratio reaches 

approximately

1 : 2.4, when an abrupt density change occurs, with the crystal 

lattice adopting a lower density form. In these lower density phases 

the bonding is dominated by uranyl-type moieties, for at least some of 

the oxygen atoms present, with the uranium coordination showing the 

presence of two shortened co-linear bonds (32>.

1.5.1 THE URANIUM - URAHIUX DIOXIDE REGION

The phases in the U - U02 region exist at elevated temperatures 

mainly, with oxygen becoming increasingly soluble in uranium metal as 

the temperature increases up to 2425*c (33)(34). From this temperature, 

changes in temperature result in the stoichiometry of the solid UOa-,« 

phase decreaseing so that below 300*c x is effectively zero.

1.5.2 THE UOa - UOa.ae REGION

UOa at 25*c has a fluorite type structure, allowing oxygen 

vibrations in to its four surrounding lnsertices. As the temperature 

increases the motion becomes increasingly anharmonic in nature. This 

effectively shifts the oxygen atoms centre of vibration and leads to the 

formation of different types of sites for oxygen addition (35)(36).



Excess oxygen can hence be accoiyidated into the crystal lattice 

without long range deformation of the fluorite structure. This 

behaviour is often accompanied by increases in the valence states of 

some of the uranium atoms. The above continues beyond the homogeneity 

range and at a given temperature the UbOs-y phase is formed. In this 

unstable phase the cubic structure, although having larger lattice 

parameters, is essentially the same as for UCh-x apart from the 

occurence of long range ordering of the oxygen defect zones, leading to 

the production of a superlattice in regions (37).

1.5.3 THE U0a .3S - U»Oa-x KEGIOH, < Fig. 1.5.1 >

The uranium system between 04Ob -v , < U02 .24S >, and UaOe, < U03 .st )

is very complex. Hoekstra et al. provided a great deal of help to 

clarify the phases of this region by a series of high pressure 

experiments, even though such elevated pressures and temperatures can 

effect the stability of phases favouring denser conformations (6) (12). 

Hoekstra et al. proposed that the fluorite-type phases also Included 

UiaOar, ( UO2.31 )i UaOis, < U03 .37 ); and 0- and UzQs, ( UOa.® > as

well as several U30b related higher oxides reported.

a-OaOs has a predominantly uranyl type nature and is stable upto 

800*c and low pressures, at higher pressures a-UaO» transforms into (3- 

U30s which has a hexagonal fluorite type configuration.

At higher pressures this again undergoes a crystal modification in 

to monocllnlc H-UaOa. These three forms of U2O0 correspond to the



Fig 1.5.2 The Pressure - Temperature Phase Relationships 
At UaOs

Fig 1.5.3 The I.R Spectra of UaO* Phases
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uranyl / fluorite crossover region, this is shown by their i.r. spectra. 

These show the gradual elimination of group vibrations in the uranyl 

region and the assimilation of various stretching and bending modes into 

a single broad band of a fluorite type structure (32).

1.5.4 THE UaOe-x - U03 REGION

In this region UOa appears in six possible polymorphs and a seventh 

at high pressure. The first of these a-UO» is hexagonal and has a 

density of 7.3 g/cm3, which is notably less than the calculated value of

8.4 g/cm3. This discrepancy is due to shortened U-0 bond lengths 

causing lattice deformation, with the i.r. spectrum showing evidence of 

uranyl type characteristics (39) (40). The 8- and y- UOa forms consist 

of UOe octahedra, sharing edges and corners, in a three dimensional 

network. These again show slight evidence of uranyl type bonding

(41) (42) .

K-OOa however, formed in air at 415'c, has a cubic Re03 type 

structure containing no evidence of uranyl type bonding (43).

In the case of the high pressure form of uranium trloxide, ^-UOa,
o- C

which forms pentagonal blpyr^sjadal structures, there 16 notable uranyl 

type bond formation with a colinear 0-Ü-0 axial group with a five 

membered puckered ring around its equatorial region. The U-0 uranyl 

bond length is 1.83A, which is comparable with other known uranyl bond 

lengths (44).
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The existence oi uranyl type bonding In the above lower density 

forms of the uranium-oxygen system, even In high pressure modifications, 

shows the unique stability of the uranyl configuration over a vast array 

of conditions. This is again shown in the uranium trloxide / water 

system, which contains another extensive series of phases and crystal 

modifications. These can on the whole be best regarded as uranyl 

hydroxides, for example UO3.H-.2O , U02(OH>2 (45).

Thorium dioxide, Th02, also has a fluorite structure but does not 

show an extensive oxide system like uranium. The actinides directly 

after uranium, Hp and Pu, however do form large oxide systems as a 

consequence of the 5f / 6d valence shell crossover occuring in this 

region of the actinides. In addition to the above binary oxides and 

complexes, uranium also forms many uranates and polyuranates in which 

uranyl group formation predominates, with various levels of equatorial 

coordination (46).
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1.6 THE GAS PHASE CHEMISTRY OF URAHIUM

The gas phase chemistry of uranium, both in its ionic and atomic 

forms, has attracted Interest due to its importance in the nuclear 

industry and other applications.

The reactions of uranium ions and atoms with Oa, CO, Ha, Da, Ha, 

CD», COa, COS CSa, HaS and DaO have been studied (47)C48) (49).

For oxygen the reaction is found to yield various uranium-oxygen 

compounds,

u- + Oa uo- + 0 <i>

uo- + Oa — * UOa- + 0 <ii>

both these reactions are exothermic and reaction (i> was observed to 

yield small amounts of UOa- which may be due to a low energy reaction 

pathway (50). The reactions involving Da, Ha and Ha followed the 

general pathway,

U- + Ra — 4 UR- + R

with similar results also being observed for CD».



DaO, HaO and Ha were also observed to react with similar character,

u* DaO ---------------->uo* + Da

--------------M  U0*

------------------*>U0D*

+

+

DO ) 

D

and It Is suggested that these reactions proceed via an 

intermediate 1DU*OD*. Since the UO* product dominates at lower 

energies, this pathway is preferred thermodynamically, while bond 

fission in UOD* has a high frequency. At higher energies UOD* is formed 

directly and its yield is found to increase.

Further reactions also occur with increasing energy

00* DaO- ■*U0a* + Da

♦UOzD* + Da

both these reactions are exothermic but the occurrence of the latter of 

these increases with energy. For CO the reaction is endothermic, having 

a notable energy threshold, resulting in,

2 2



The COa reaction was found to fora UOa* by a single bimolecular

encounter and occurs at the dissociation threshold for UO* + 1

U* + COa --
• I ----- >U0* + CO -hH1__----- sUOa* + C +hH

UO* + COa — ----- »UOa* + CO -hH

While with CSa the exothermic reactions were found to yield

U* + CSa — ----- »US* + cs* + US-

UO* + CSa — -----eUSO* + CS

In the reactions with COS

U* + COS ----- »us* + CO1__----- *U0* + cs

US* + ocs — ----- >USa* + COL ----- >USO* + cs

UO* + ocs - ----- >uso* + CO

Although the formation of US* is thermodynamically favoured over UO* due 

to the permanent dipole present in US*, the reaction proceeds by a 

energy dependent branching ratio. The dissociation energy for US* is 

approximately half that of UO*. Hence at higher energies UCT is 

preferentially formed.

The gas phase reactions of uranium clusters with different gases 

have also been studied. Devienne et al. investigated the reactions of
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Chi S a n d  Hz on the cluster formation of uranium, niobium and tantalum 

by high energy molecular bombardment (51). The cluster yields were seen 

to Increase with Increasing mass of the bombarding species.

In the presence of Oa a slight decrease In the higher mass clusters 

was observed, for all three metals, with the latter two being observed 

to form a number of oxides. The reactions of Ha with uranium formed 

UpHc,"- species, where q < p + 1, while niobium and tantalum only formed

and Mp.Nz*’ species. In the reaction concerning Ha and Da, however 

very few species were detected.

The CID of (JO"' and UOz*~, using argon collision gas, showed both 

species to fragment by the loss of oxygen atoms. In both cases the 

dissociations have threshholds in the region of that of the bond being 

broken. For UOa"*' the absolute cross section is approximately twice that 

for UOT suggesting that the dissociative collision occurs via the 

oxygen atoms (52).

Recently fast atom bombardment mass spectrometry has been used to 

form numerous uranium-oxygen clusters (53). Similar clusters have since 

been described by Brown et al. in the mass spectral study of metal 

hydroximates (54).
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1.7 BONDIKG MODELS FOR CLUSTERS

In the early experiments it was shown that sodium clusters exhibit 

distinct 'Magic numbers', Mn, Indicating nuclearitiee with high 

stabilities relative to adjacent clusters. These observations were 

rationalized by the use of the spherical Jellium model, a simple one 

electron model <55).

Such studies have since been extended to cover a wide range of 

cluster types and units, and have been used to explain a number of 

spectral effects and size dependent phemomena.

1.7.1 THE SPHERICAL JELLIUM MODEL

The simplest model is that proposed by Knight et al. which 

successfully predicted the magic number positions for alkali and related 

metals by associating these nuclearltles with closed-shell electron 

counts. This model postulates that the electronic structure of free 

electron metal clusters may be approximately described by considering 

only the energies of the valence electrons, without specific information 

about the positions of the atomic cores. This was carried out by the 

use of a central field potential of the form,

Vo(r)
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where Uo is the sum of the Fermi energy and the work function of the 

bulk metal and r® is the effective radius of the cluster sphere, 

assumed to be ro - r« N1* and r® is the radius of a sphere containing 

one electron in the bulk metal and e = 1.5 au, with the Schrodinger 

equation being solved for each value of N.

This yields a series of discrete energy levels characterised by 

their angular momentum quantum numbers. These resulting energy levels 

are seen to order in the following ways

Is < lp < Id < 2s < If < 2p < lg < 2d < 3s < lh
Number of
associated electrons 2 6 10 2 14 6 18 10 2 22

Total number of 2 8 18 20 34 40 58 68 70 92
electrons

and are consistent with experimental magic number values.

The differences in the level orderings from that of the hydrogen­

like atom are due to a number of factors, with the major of these being 

that the hydrogen-like potential is infinite at its origin and slowly 

decreases with distance < 1/r ); where''as in the Jelllum model, the 

potential is essentially flat out to its outer spherical bounderies and 

is modeled as a rounded finite square well.

Although the spherical Jelllum model has shown Itself to be useful 

in explaining the positions of magic numbers, it does have many 

drawbacks. These Include predictions of ionization energies, which are 

seen to be incorrect and it does not make accurate predictions of the



electronic structures of non-magic number clusters. This is a 

consequence of these clusters giving rise to distortions of the 

spherical potential, resulting in the splitting of the high degeneracy 

of the spherically symmetrical well.

Various extensions to the spherical Jelllum model have been made in 

order to overcome these inaccuracies (56)(57). The most important of 

these involved the consideration of electron-electron interactions (58) 

and the removal of spherical symmetry restrictions. In the latter of 

these Clemenger used a perturbed harmonic oscillator model and its 

extensions to oblate and prolate shaped potential wells (59).

1.7.2 THE STRUCTURED JELLIUK MODEL

In thi6 extension of the simple spherical Jelllum model, the 

movement of an independent electron is considered in a coulombic 

potential, resulting from a series of point like atomic cores, of 

effective charge z and position x. This gives rise to a potential V(r), 

which can be expressed using spherical harmonics (59)(61)(62),

«n *-L M
V(r) = E l.—o E m — — l . Vl. ( r, 0, i )

where M and L are angular momentum quantum numbers.

From this it is possible to calculate the energy level structure of 

the resulting potential, by taking the spherical component ( L » 0 > to 

be the zero order potential and treating the remainder as a



perturbation. This gives the splitting patterns of the individual 

shells < n, 1 > and alows predictions as to their shape to be made.

Vhen the spherical components are dominant, magic number shell 

structures are obtained. The non-spherlcal part of the potential 

however lifts the degeneracy of the shells, with the resulting splitting 

being dependent on the cluster shape and the effective charge on the 

core. The latter of these tends to decrease in Importance as the 

cluster size increases. The extent to which splitting occurs is very 

strongly influenced by cluster shape, however, with prolate and oblate 

geometries giving rise to specific forms of distortion. The extent to 

which these distortions occur, and the type of geometry adopted, are 

dependent on the number of electrons occupying cluster orbitals.

Clusters of intermediate electron numbers more favourably assume 

geometries that enhance their prolate/oblate character in order to 

Increase their LUMO-HOMO gap.

1.7.3 THE LIBEAR COMBINATION OF ATOMIC ORBITALS MODEL

In this model approximations for solutions of the electrostatic 

Schrodlnger wave equation are made using spherical harmonics, relative 

to their radial vectors <64>.

That is, for a local coordinate system, such that the 'z* axis i6 

along a radius vector from the cluster centre, then v orbitals ( s, pa 

, d»2 ) can be viewed as cylinderically symmetrical harmonics Yi_M by

setting the coefficient of each atomic orbital equal to the value of Yl.m
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at the core positions. The resulting symmetry adopted cluster orbitals, 

Lm x, provide a framework by which the closed shell requirements and 

structural aspects of ligated clusters may be described.

For clusters where bonding 16 only due to 's' orbitals both the LCAO 

approch and the Jellium model give the same energy level pattern. For 

example, the Jellium model and LCAO model give identical conclusions for 

alkali metal clusters, with shell closure occuring at 2, 8, and 20 

electrons. These correspond to spherical topologies, being more stable 

than their neighbours, and would be expected to have higher ionization 

energies and pseudospherlcal close packed structures of high symmetry 

(65).

The level of symmetry adopted by a cluster is dependent on its 

nuclearity 'n' and in turn influences its stability, with non- 

symmetrical structures leading to splitting of the energy levels and an 

inherent instability.

Thi6 is demonstrated by neutral sodium clusters,which exhibit magic 

numbers at Mn = 2, 8, 20, 40, 58 .... but not at 18, 34, 68.... which 

also correspond to closed shell configurations for the Jellium model. 

This is due to the higher symmetry of the former, with similar phenomena 

being reported for silver, gold and copper clusters (66).

The Influence of symmetry on stability can be considered according 

to molecular orbital theory as explained above and is supported by ab- 

initio and Huckel theory calculations.(67)



1.8 MODELS FOR MAIM GROUP TRAMSITION METAL CLUSTERS.

Clusters from main group elements and transition metals have long 

been known to show strong relationships between structure and the 

number of skeletal electrons present. This correlation is clearly 

expressed by boranes and carboranes. <60>(68>(69)<70>

1.8.1 THE TENSOR SURFACE HARMONIC MODEL.

The Jellium model is seen to fail when the electronic structure of 

the cluster can no longer be regarded as a perturbation of a spherical 

shell model, that is, the contribution from the non-spherical part of 

the potential is large. This has been seen to be the case for large 

effective nuclear charges, nuclearities or for shells with large angular 

momenta.

So the Jellium model can be expected to fail for clusters containing 

large numbers of valence electrons per atom, especially for small 

clusters of these atoms.

Hence, with certain exceptions the Jellium model can be expected to 

fail for p-block elements and the transition metals.

Tbe r...on. <°r tti. —  » H U U M O d  W  « •  LC1° •Pfro*°1“ *r*
ov„ C C  » .  TRESOR SURFACE HAREORIC tb.or, <TSH> d— rlbnd b, «°». 
„M C  co-id.,. « •  contribution. Iron ,. «, —  A “ bltnln. <6A.1711.7R.
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The tensor surface harmonic theory demonstrates the basic 

differences in the electronic structures of the main group and 

transition metal clusters from those of free electron metals, with 

approximate linear combinations of atomic orbitals being formed using 

the eigen functions for the particle on a sphere problem < ie spherical 

harmonics) and tensor surface harmonics.

In the TSH model the cluster is treated as a sphere, with angular 

momentum quantum numbers L and M, as in an atom, and also classified by 

parity.

Each cluster atom is classified by its basis functions into 0-, x and 

S orbitals, having 0, 1 and 2 nodal planes respectively, each containing 

a radius vector from the cluster centre.

Cluster orbitals are formed from the v basis function by using the 

values of spherical harmonics evaluated at the cluster vertices as 

expansion coefficients. Hence the cluster orbital is a linear 

combination of the form:

-  £ »  Y u m  1 pi > Vt

where <01 , pi ) are the spherical coordinates of cluster atom i. Yu m ' 

sets with L=0, 1, 2... are denoted by S', P', D'...., while a whole set

ie denoted by L'. For real clusters these denote symmetry
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classifications. Molecular orbitals expressed by yLm ' are not seen to 
undergo strong mixing.

For rt orbitals, p« and py orbitals are seen to be tangental to the 

spherical surface and hence their magnitude and direction ( a , t > to 

the wave function can be described as to sets of vector surface 

harmonics, Vum and Vu m . These vector sets are always at right angles to 

each other

Vi_m = a Yum

Vu m = r x Vl m = r x a Ylm

Therefore, for each value of Yu m , two vector functions can be 

obtained. Vlm is a polar vector surface harmonic and is given by the 

gradient of the spherical harmonic while Tun Is an axial vector surface 

harmonic and is the cross product of the position vector and Vu m . The 

direction and magnitude of Vum at the cluster atom 1 is used to give the 

magnitude and direction of a n orbital contribution to a x type cluster 

orbital yuM" with the same parity as Yu m . While Vum yields a cluster 

orbital Vu m " of the opposite parity to the parent.

However there are no s” cluster orbitals, L = 0, since Yoo is 

constant, but Pw/P" and D”/D" cluster pairs do exist and are generally 

denoted by L” and L”. These sets show a pairing relationship, with each 

being obtainable from the other via 90* rotations about their radius 

vectors. This pairing operation also seems to convert bonding 

interactions into antibonding ones, with L" and L" orbitals describing



these respectively. The bonding sets usually consist of L", with 

combinations of L' and the strongly bonding S' orbitals.

Vi_m and "VITm are parity related with Vl m being bonding and Veil 

antibonding. This parity relationship means that under inversion of 

these bonding/ antibonding orbitals there are limits to which mixing can 

take place.

The L' and L' orbitals of the same L and M values can mix with each 

other but not L". For most main group clusters L' will be antibonding 

for all orbitals except S'. L' and Lw orbitals can undergo mixing to 

produce one bonding and one antibonding contribution, resulting in 

changes in the energy level ordering among the bonding orbitals.(20)

In transition metal cluster bonding contributions for a, n and 6 

atomic orbitals must be considered. These are handled by the use of the 

second order derivatives of Y,_m , giving two polar vectors of the same 

parity, and one axial vector of opposite parity. These are parity 

related.

1.8.2 POLYHEDRAL SKELETAL ELECTRON PAIR THEORY, ( PSEPT ).

This is a combination of TSH, the associated electron counting rules 

and the use of the lsobal analogy as well as orbital calculations.
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This theory relates the number of electron pairs involved in 

skeletal bonding to the polyhedral geometry, and is characterised by 

three basic rules.

i> Main group and transition metal ring compounds have a total of

6n and 16n valence electrons respectively.

ii) Main group and transition metals in three connected cluster 

compounds have 5n and 15n valence electrons respectively.

iii) If a transition metal atom occupying a vertex position is 

replaced by a main group atom, then the characteristic number of valence 

electrons is reduced by 10.

1.8.3 THE APPLICATION OF PSBPT TO GAS PHASE TRANSITION METAL CLUSTERS.

PSEPT was developed to account for the observed structures of 

conden/ejphase, ligated clusters, with transition metal clusters of this

type being predominately closed shell, diamagnetic species, with their 

narrow band of d-orbitals being completely filled.

Base transition metal clusters are generally open shell and have 

partially filled d-bonds. This results in a subtle interaction between 

coulomblc repulsion and exchange forces making an accurate description 

of the electronic structure often unobtainable <73><74).

One area in which PSEPT has shown itself to have important 

applications is that of ligated gas phase clustering, as shown by its 

role in the description of the electronic structure of a variety of 

transition metal carbonyls(75)(76)(77).
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1.9 MAJOR CLUSTER CLASSES

1.9.1 RARE GAS CLUSTERS.

Rare gas clusters were the first atomic clusters to be produced by, 

neat, free-Jet expansions and as a consequence of the relative ease by 

which they can be formed they have been subjected to a vast array of 

experimental and theoretical investigations. These investigations have 

encompased the precise measurement of cluster growth patterns (78), the 

determination of thermodynamic cross sections (79) and scattering 

fragmentation studies (80).

In 1981 Echt et al. reported the presence of a magic number pattern 

that in the cluster spectrum of < Xe In* coincided exactly with the 

numbers predicted by the lcosohedral spheres described by McKay (81).

It was also noted that the ratios of neighbouring peaks remain 

approximately constant and clearly denote the stability of the neutral 

cluster. Despite minor differences among the Ar, Kr and Xe series, 

similar sequences of magic numbers are clearly displayed (82).

Shell number 1 2 3 4 5 6

Ico6ohedral number 13 55 147 309 561 923

1« 14 55/56

Ar 14 148 309 561 923

Kr 13 147 309 561 923

Xe 13 55 147 309 561 923
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The presence of these predominant magic numbers, the associated 

spectral fine structure and their agreement with similar structures in 

the spectra of a number of van der Waals cluster series is a very 

important source of information about the electronic and geometrical 

structures of such clusters.

Studies on the decay patterns of these clusters have provided a 

sensitive probe by which to study their dynamic and structural 

characteristics. In many cases the results of such studies reflect the 

development of shell structures, with an unstable cluster undergoing 

dissociation to attain a more stable atom combination, that often 

coincides with complete shell icosohedra. Unlmolecular dissociation 

studies an argon clusters carried out by Stace et al. and Mark et al. 

<82> (83) showed

Ar*o* Aria* + Ar

to produce a very intense fragment ion. It was suggested that the Ar,»'” 

cluster consisted of a Arz^ dimer enclosed within a seventeen argon atom 

Icosohedra shell. Similar results were also reported with clusters 

undergoing fragmentation by the sequential loss of two neutral argon 

atoms (85).

This is further supported by studies of a number of higher 

nuclearlty clusters and computer models. Simulations using Lennard- 

Jones clusters have shown icosohedral packing to be of the lowest 

energy, particularly for smaller clusters, and after the completion of



the first lcosohedral shell the construction of the next outershell is

localised as opposed to the sequential addition to all faces 

symmetrically (86).

Studies have also been carried out, using quantum mechanical 

computations, on the energy levels and wavefunctions of small rare gas 

clusters (87),

1.9.2 AMMONIA CLUSTERS

Studies carried out on ammonia cluster ions show them to undergo a 

variety of ion-molecular reactions upon ionization. In the cluster 

spectra ions cluster to exhibit smoothly diminishing intensities with 

protonated pentamer being the only strongly reproducible magic number 

observed.

The ammonia clusters show evidence of dissociation and extensive 

cluster reorientation following ionization, for example, the protonated 

monomer is seen to lose up to six monomer units of which at least two 

are lost as a result of direct unlmolecular evaporative dissociation. 

This is true for all ammonia clusters, with the protonated pentamer 

exhibiting an abnormally high intensity (88).

The intra-cluster ion-molecular reaction that leads to the formation 

of the stable ammonium < NR»* ) cation, with the prompt ejection of NH*

, results in the heating of the cluster and evaporative dissociation.

In addition to the large energy of proton transfer reaction a small



amount of excess energy will also be generated during cluster relaxation 

and reorientation about the newly formed ion (89).

Fragmentation studies have shown the binding energies of the 

resultant cluster ions to decrease with increasing cluster size, with 

abnormally high values being displayed by the HH.»-( NHs )* species. A 

similar local maximum is also seen for the NH«-! NHa >11 cluster 

(90) (91).

The enhanced stability of the SEa^C NHa )* pentamer is due to four 

ammonia monomers coordinating onto the hydrogens of the central ammonium 

ion, constituting a closed solvation ring around the central < NH,» >* 

ion. So the enhanced stability observed is a result of the cluster 

ion's structure and not that of the neutral.

1.9.3 METHAUOL CLUSTERS

Upon ionization methanol clusters undergo ion-molecule reactions 

leading to the production of protonated clusters. These subsequently 

undergo proton transfer reactions followed by a number of evaporative 

dissociations. The rates of these dissociations decrease with time 

after the ionization event and Increase with cluster size. This is in 

agreement with the behaviour of ammmonia clusters. The proton transfer 

reactions display size dependant reactivities, with only the resulting 

cluster ion being observed (92).

C ( CHr.OH ) „  I * ------- + C ( CH:,OH 1 + CH*C0
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The protonated trimer H"̂ < CHaQH >3 , a, shows a increased

intensity in agreement with structural calculations.

Methanol cluster ions, H-" C CHaOH >„ also undergo several other 

intra-cluster reactions, whose rates are dependant on cluster size (93).

This is clearly demonstrated by the reaction resulting in the 

formation of the H-< HaO >< CHaOH >r, , b, cluster series, that only 

appear at n ) 7. This sequence of clusters is envisaged to be formed by 

the reaction,

C H-< CHaOH >r, 1*--*H~< CHaOH >„-aHaO + < CHa > *0 + CHaOH

Fragmentation studies of these clusters show the presence of several 

series of daughter ions. The main series of these corresponds to the 

loss of neutral monomer units, with the loss of up to five monomers 

being lost from the protonated octamer.

Another important reaction involves the loss of water from the 

protonated dimer,

H-< CHaOH >2 ------- •>( CHa >aOH~ + HaO

This reaction requires an induction time, due to rearrangement, and is 

not observed for higher order clusters <94><95). This is due to the 

competition between several reaction pathways. In larger clusters, HaO^

4 0



is more strongly solvated and the loss of the protonated dimethyl ether, 

< CHa, latOH*, occurs more readily and leads to the production of 

H"'< HzO > (CHaOH >r>. The rates of < CHa )a0 elimination Increases with 

cluster size, as a result of solvation effects and has been reported for 

other alcohols (96)<97)(98).

1.9.4 ACETOKE CLUSTERS

Tzeng et al. have carried out a comprehensive study of the reactions 

of acetone clusters <99>. The major cluster ions observed are,

c < CHa >2 CO ImH- m = i - 5

c < CHa >2 CO 1mCH2~ m = i - 10

t < CHa >2 CO 1 mCaHaO"- in = i - 17

The nature of these clusters was shown to be due to monomer 

fragmentation during ionization, followed by the loss of one acetone 

unit by unlmolecular decomposition.

Many other ion-molecule reactions have been reported <100)<101). 

These reactions are similar to those of ammonia and methanol clusters 

and show the importance of solvent molecules on such reactions.



ICETAL CLUSTERS

numerous investigations into the physical and chemical properties of 

metallic clusters have been carried out. These have shown metallic 

clusters to display a vast array of types, with their stability 

depending on such properties as their electronic and geometrical 

structures as well as internal energy requirements.

Clusters of simple metals, eg. the alkali metals, can be clearly 

described by single-electron models, while more complex models are 

needed for heavier metals and transition metals. In the latter case 

transitions from van der Vaals-type clusters to metallic binding, via. 

covalent bonding, have been observed (102).

The aim of this section is to outline those trends occurring in 

cluster structures and reactivities within groups and periods as well as 

describing the chemistry of the major transition-metal clusters.



1.9.5 ALKALI METAL CLUSTERS

Alkali metals are often considered as simple prototype metals due to 

their single free 's' electrons and their ready description by the free 

electron model. Thus on cluster formation the valence electrons become 

readily delocalized and exhibit the properties of a Fermi electron gas.

The neutral cluster spectra of various alkali metals, < Am >„"* , 

have been reported and all exhibit similar basic characteristics. These 

are (i) 'shell like' intensity distributions, with the intensities 

decreasing with cluster size, and (ii) size-dependent reactivities. The 

'steps' in the spectral intensities are observed to change with cluster 

charge and occur for cationic clusters when the cluster size n» 

corresponds to the number of valence electrons needed to bring about 

shell closure, with ns = 2, 8, 20, 40, 58, 92, , ,. (55)

The alkali metal clusters also exhibit strong even/odd alternation, 

with the even clusters being seen to display greater intensities than 

those of neighbouring odd clusters. This is a consequence of the even 

clusters corresponding to electron pairing and hence filling of 

subshells.

This effect is further enhanced by the decay pathways shown by these 

two types of cluster. Even clusters only undergo dissociation via one 

dissociative pathway involves the evaporation of a single monomer unit, 

while odd clusters present two competing dissociation pathways.(103)
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Even cluster

( Ha ) 2p+------- ——> ( Ha ) < 2p-1 > + Ha

Odd clusters,

( Ha ) < 2p+1 >"*"------ Ba )2p* + Na

1 Ha ) < 2f»— i >"* + Ha*

of which are Cl)the loss of neutral monomer units and (11) the 

dissociation of neutral dimers. The rates of these two pathways are 

size-dependent, with small clusters preferentially undergoing dimer 

loss. This loss of neutral dimer leads to greater reduction of the 

spectral intensities of odd clusters, and enhanced even/odd alternation.

As cluster size increases however the rate of dissociation of the 

monomer increases until it becomes the dominant pathway for all the 

larger clusters. Monomer loss is also seen to be energy dependent and 

laser studies have shown rates to increase with increasing energy input 

to the cluster. Brechignac et al. have shown these effects can be 

interpreted in terms of cluster binding energy for the monopositive 

cluster <103) (104). Vhen plotted against cluster size, these are seen 

to be higher for odd clusters and also show peaks at n = 9 and n = 21 

corresponding to the enhanced stabilities of these species. These 

clusters reflect shell-closing electron configurations of ns = 8 and 20 

electrons. This is more pronounced for < Ha than ( K )r,~ due to its

smaller radius and hence deeper potential well. The ionization energies 

mimic the cluster binding energies and are also 6een to decrease with 

increasing cluster size. This is also displayed by the cohesive 

energies of small clusters which show greater relative increases upon
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the loss of neutral units, due to the extensive charge redistribution 

required in addition to the energetics of bond breaking.

Another striking example of the size-dependance of cluster 

reactivity is shown by multiply-charged sodium clusters. Laser-induced 

ionization of ( lia >0*' clusters to produce ( Da In2* <I>, shows a 

size threshold, nc, below this photodisociatlon takes place (Il>.

< Ha -------------------------* ( Ha >„2- + e- (X)

I--------------------------- >(. Ha >„-„*■ + pHa (III

For reaction <I> the input energy causes photoionization and the

ejected electron is emitted with most of the excess energy, while in

reaction (II) the input energy does not exceed the ionization threshold 

of the cluster and photo-induced dissociation takes place. The process 

leading to the formation of doubly-charged clusters (I) only occurs at 

nc * 19 and is also seen to lead to the production of triply-charged 

clusters for very large clusters ( nc ) 70 ). The doubly-charged 

clusters are found to undergo unimolecular dissociation by the loss of 

neutral monomer units,

< Ha ->< Ha >„-1*-* + Ha

4 7



1.9.6 SILVER CLUSTERS

Silver clusters show similar behaviour to that of the alkali metals. 

In their spectra, the intensity is seen to decrease with increasing 

cluster size and marked odd/even alternation is apparent <105), with odd 

clusters being the more intense species for both positive and negative 

clusters. In addition to these phenomena a number of anomalous 

discontinuities are observed in the cluster intensities. The position 

of these marked drops in cluster intensity are seen to differ by two 

mass units between negative and positive clusters. Thus abnormalities 

are observed at n~~ = 1, 7, 17, 19, 33, 39, 57, 91, 137 and 197 for 

negative clusters < Ag , while for positive clusters < Ag they

are seen to occur when n* = 3, 9, 19, 21, 35, 41, 59, 93, 139 and 199. 

(106)(107)

The positions of these 'steps' are related to the number of valence 

electrons contained within the cluster with n~ = n. - 1 and n’* = n_ + 1 

, where n. is the number of valence electrons required to bring about 

electronic shell closure. The resulting values of ns are equal to the 

magic numbers displayed by the alkali metal clusters <108), hence their 

size distributions reflects those of neutral clusters.

The presence of such phenomena demonstrates that a 'one-electron 

shell model' can be used to explain the stabilities of those metals in 

which 's' valence electrons are bound in a spherically symmetrical 

potential well.

4 8



The presence of odd/even alternation cen be explained in terms of 

electron pairing, with odd clusters always containing paired electrons. 

This is supported by ionization energies and electron affinity studies 

(109). This odd/even alternation is most pronounced for smaller 

clusters, that is n~ < 30, n~ < 40. The spectral stabilities of the 

odd-numbered clusters are also demonstrated by their dominance of 

fragmentation spectra with the loss of neutral dimers being essentially 

the only fragmentation pathway observed <110)<1 11>.

Multiply-charged silver clusters, < Ag >„a*- , also show odd clusters 

to be preferentially formed, for n > 19. Smaller doubly-charged 

clusters however, are not observed since the coulombic repulsive energy 

would exceed their binding energies and hence lead to coulombic 

explosion (112)013).

Silver clusters also show a series of interesting ion-molecule 

reactions involving other species. Brocker et al. (114) carried out

laser desorption of AgO, which produced Ag*’, Aga* and ( AgaO >*■, with 

cluster enhancement being observed on the reduction of the laser power. 

Vhen the AgO was mixed with ZnO, an extended cluster series 

corresponding to ( Ag In'* and C < Ag >„0 3* was detected. These 

species showed strong odd/even alternation and no zinc species were 

observed, suggesting that Zn or Zn* may be acting as a third body to 

stabllze the silver clusters or reduce the incident laser power.

The reactions of various silver species with organic species, such 

as Cl - C3 alkanes, C2 - C6 alkenes, Cl - C3 alcohols, ferrocene and
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glycerol (115> have also been studied and Involve such processes as 

charge exchange, reduction and dehydration. Sec-butylamlne Is also 

found to undergo deamination. In addition to these studies the 

reactions of silver supported on a graphite matrix has also been 

Investigated leading to the exclusive production of only odd clusters, 

of the form t Agr>Cx I*", where x is even (116).

1.9.7 GOLD CLUSTERS

Gold clusters, ( Au )n* , display the same basic properties as the 

silver clusters, with their cluster spectrum showing the presence of 

odd/even alternation as well as magic numbers.

The positions of these are,

n = 3, 9, 19, 21, 35, 59, 93, 139

n as 17, COco 57, 91, 137

with a number of shell closure configurations not being seen to lead to 

enhanced stabilities (106)(107). This behavour is due to the high level 

of delocalization of the 6s valence electrons In gold and these clusters 

are able to be described by the single electron model.

Similar 

studied the 

yields. In 

gold foils,

results have been reported by Beuhler and Friedman who 

effects of projectile ion mass and velocity on cluster 

this work H-< HaO ) projectile clusters were impacted onto 

and the cluster yields were not seen to increase with
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projectile mass or velocity, but however the clusters were seen to have 

Increased kinetic energies <116).

1.9.8 ALUMINIUM CLUSTERS

Aluminium is almost a free electron metal, and is trivalent in 

almost all its known compounds. However many of these compounds are 

borderline between ionic and covalent.

Meiwes-Broer et al. Investigated the metastable dissociations of 

mass selected aluminium clusters,(Al)/, n < 23, with metastable 

decomposition being observed for clusters n * 7, with the dominant 

dissociation pathways leading to the loss of single neutral monomer 

units (Al). For n i 15 the loss pattern is seen to favour the 

sequential loss of two Al monomers (117).

However in CID studies on (41)n*, n = 3-26, the major dissociation 

product was Al* and Aln-i* for larger clusters. In the region of 

aluminium cluster magic number species the dissociation pathways of 

neighbouring clusters were seen to change in order to preferentially 

yield these magic number clusters (118>. For example

Parent Cluster Dissociation Pathway Productions

Al»* A l , »* (Al>n-l* Air* All 4
Al»* A l , •* (Al ) r>—a* Air* Al,4
Al i o- Al 1 r* (Al),,-** Air* All 4

5 2



Af

MASS,  amu.

Fig 1.9.6 The Mass Spectrum of Aluminium Cluster Ions

S3



The products of these multiple dissociations yield clusters of 

nuclearltles n = 7 and 14, which are proposed magic numbers for 

aluminium clusters. These clusters are also seen to be at the positions 

of sharp drops in cluster ionization potentials and decreased 

dissociation energies leading to their enhanced stabilities. This is 

also demonstrated by their collisional cross sections which show very 

small values at n = 7 and 13 / 14.

The position of these magic numbers are also confirmed by Jellium 

model calculations, which show peaks at:

n = 7, 13, 19. ro 03 31

of e- = 21,39, 57, 69, 93 for neutral aluminium clusters.

Hence the Al?^ (2s) and Alia'*' (2p> species correspond to closed 

shell electronic configurations containing 20 and 40 valence electrons 

respectively, with weak evidence also being displayed for a shell 

closure at Ala*"' with 68, (2d), valence electrons.

The difference in dissociation pathways between small (i) and large 

(1 1) clusters,

(1) (Al)n*---- 1crH■<k + Al~ n = small

(ii> (Al)o--------- 9- Al„-,~ + Al n = large

is caused by energetic influences and is reflected in the relative 

ionization potentials of A1 and Alrt-i. For small clusters, their



Ionization potential Is greater than that of the atom and hence Al* is 

the major product, while for larger clusters A1 n-1 has a lower 

ionization potential than that of the A1 atom and so retains the 

positive charge.

The crossover between these two dissociation regimes is seen to 

occur at (Al),»* and hence this must correspond to the position where 

the ionization potential of the cluster < Aln-i ) drops below that of 

the neutral aluminium atom, before decreasing to that of the bulk 

values.

Another unusual phenomenon observed in the ionization potential of small 

(ADn* clusters, n » 1 to 4, is an initial Increase in their values, 

this is a consequence of the high 3p character of the aluminium valence 

orbitals. This results in small aluminium clusters having deeper Fermi 

levels than those of most other metals (lld>.

Similar investigations carried out on boron clusters, Bn* ( n = 3 - 

8 ), show the primary fragmentation pathway to involve the formation of 

B*. However the dissociation energies for Bn* were found to be 

approximately three times greater than those of the corresponding Ain* 

clusters. Be* was found to be of a notably higher intensity in both the 

cluster spectrum and the CID spectra of Bn*.



The Ion-molecule reactions oi Air»*

The chemisorption oi oxygen onto Ain* gives rise to a series of 

mixed aluminium - oxygen clusters of the form (AlnOn, >*, where n = 3 - 

26, m = 1, 2 . These were studied by Jarrold and Bower (120).

In addition they also investigated the collision induced decomposi­

tion of these clusters, with CID being seen to cause the preferential 

loss of neutral A120 units,

AlnO* ---------------- w-Ain—a* + AlaO

AlnOa*-------- ------- ►Aln-a* + A 120

---------------------»Ain-** + A120

This loss of A120 units was seen to be the dominant fragmentation 

pathway for all clusters except AlnQa*, n = 3, 14, where the major 

product was seen to be Al*. The dominance of the major of these 

fragmentation pathways is probably due to the very strong bonding in 

AlaO.

These CID results were also used to approximate the Interaction 

energies between Ain* and oxygen. These large interaction energies were 

seen to be similar over a range of cluster sizes and suggests that the 

oxygen atoms are multiple banded to a number of aluminium atoms around 

its chemisorption site. Similar conclusions were also reported by 

Pallmlonl et al. (121).
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The collision cross-sections of AlnOa* show the presence of minima 

at A13O2* and AlisOa*, suggesting that these species have enhanced 

stabilities. Jarrald (118) suggested that those species correspond to 

closed shell structures in which each oxygen atom involves two valence 

electrons from the cluster.

So AlisOa* = 40 valence electrons

AlsOa* = 22 valence electrons

The reactions of oxygen and aluminium clusters are seen to be 

dependent on collision energy and exhibit energy dependent threshold 

barriers. These thresholds are seen to increase between n = 3 and 7 and 

the drop for n = 8 (122) (123). l'he major product of these reactions

arise from cluster fragmentation, with very little oxygen incorporation 

being observed. For n = 3 to 6, AlaO* is seen to be the dominant 

product, while Air,-»* is the major product when n > 6, changing to Aln- 

»* for n > 13 except for Alls* which undergoes the loss of five 

aluminium atoms to give the magic number cluster Al,»*. The Ain-»* 

reaction pathway is thought to be a consequence of AI2O formation,

Ain* + Oa — ►Ain-»* + 2 AI2O

with Ain-»* and Al* arising from subsequent fragmentations. The lack of 

further fragmentations for n > 13 clusters, may be due to either the 

excess energy being lost via the numerous internal degrees of freedom 

present, or as a consequence of the rate of dissociation of the newly 

formed highly energetic Ala-0 moiety. If this is sufficiently large it



may not allow enough time for the excess energy to be transfered to the 

parent cluster.

The reaction of Air.“" with Da has also been studied, with the 

investigations showing the existence of significant kinetic energy 

thresholds for these reactions (124). The main products observed, at 3 

ev collision energy, were AloD^, Aln-iD-*, Aln-2* and for smaller 

clusters Al". For larger clusters ( n > 7 > the chemisorption of D2 

onto the clusters was seen and may result from their increased numbers 

of internal degrees of freedom allowing the faster dissipation of excess 

energy.

The thresholds for these reactions show notable odd / even 

alternation as well as abnormally high values for n = 13 and 23, which 

are proposed magic number clusters.

The anionic clusters of aluminium, Ain-, display many of the 

spectral characteristics seen for Air,'*, including pronounced odd / even 

alternation, and magic numbers. The positions of the magic number 

clusters are seen to be particularly inert and to correspond to close 

shell electronic and geometric structures.



1.9.9 VANADIUM, NIOBIUM AND TANTALUM CLUSTERS

The cluster spectra and reactions of these metals have been 

extensively studied and show that while there are many similarities 

between niobium and tantalum, they differ in character from those of 

vanadium clusters. In this section the aim is to discuss the 

differences that become apparent on descending a group.

Vanadium clusters have only been subjected to limited studies, 

which have shown vanadium-oxygen bonds in clusters to be stronger than 

vanadium-vanadium bonds (125). Vanadium, ( V In'", and vanadium-oxygen,

< V clusters have been reported to react with ethene in a similar

way, with dehydrogenation being the major process taking place, apart 

from V3* which promotes C - C bond cleavage (126). Dehydrogenation is 

also found to occur with cyclohexene to produce vanadium-benzene 

complexes (127).

Both pure vanadium clusters and those containing impurities, for 

example Vr,0 and VrX , were observed to react with Da by pseudo first 

order kinetics. The presence of the impurity atom was found to alter 

significantly the reactivities of the vanadium clusters, with the 

Induced change being characteristic of the impurity atom present. The 

presence of carbon in V»C dramatically reduces its reactivity towards Da 

but in V»C the opposite effect is observed, while for Vr.0 , n = 5 and 9, 

the reactivities are comparable with those of the corresponding Vr. 

clusters.
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The reactivities of Vn and Hb,-, towards D2 show size dependence, 

with evidence for the presence of structural isomers with libs, Hb, 1 and 

Hbia <128). The two different structural forms, in the case of Hbs and 

Hbia, showed one form to be highly reactive towards Da compared with the 

other, and similar evidence was observed for the reactions with Ha.

For Vr>, 3 < n < 32, no evidence of isomerism was found from the 

reactions with Da or Ha. A wide range of reactivities was observed for 

n < 15, with a dominant peak being found at Vs as well as the presence 

of pronounced odd/even alternation. At n > 20 the reactivities 

exhibited a more regular increase. Niobium clusters however showed 

marked blexponentlal depletion rates at n = 9, 11 and 12, indicating the 

presence of isomeric forms (5). The chemisorption rates for Tan, n <

30, displayed odd/even alternation for 3 < n ( 27, with the intermediate 

regions constituting troughs. T a n  showed evidence of isomerism. For 

their reactions with Ha, tantalum clusters were observed to be 

intermediate in behaviour between the low size-dependance of Vn and the 

highly size selective niobium clusters.

The presence of cluster impurities in the above reactions results 

in significant impurity characteristic effects, similar in nature to 

those demonstrated for Da. These effects were notably reduced with 

increasing values of 'n' as the influence of the impurity atoms on 

structural and electronic geometries becomes less pronounced. For Tan 

and Tar.0 the reactivity patterns converge at n * 13. The effects of 

charge on reaction rates were only found to produce minor changes in the 

reactivities of niobium clusters, for n < 28. Hb-s, Nb,a and Hbia* were
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it isobserved to clearly display isomeric iorms. In the case of Hbia~ 

suggested that isomeric iorms may exist, but that either their 

reactivities towards D2 may be too similar to enable their 

differentiation by their reactions or that the negative charge results 

in the preferential formation of only one isomer. l'he reactivities for 

all clusters regardless of charge state were seen to be temperature 

dependent, with their properties converging as cluster size increases, 

due to the high density of states leading to the charge being smeared 

out (129)

The reactions of vanadium, niobium and tantalum clusters with 

ethane show a simple monotonic increase in reactivity with cluster size, 

combined with a general decrease as the group is descended.

1.9.10 IROD CLUSTERS

The reaction of ( Fe )„* with molecular oxgyen yields a number of 

characteristic size-dependent cluster series, with the extent to which 

oxgyen is accommodated within the product cluster being seen to Increase 

with cluster size (130).

C FeO t < FeO
[ < FeO ) r»Q 1- 
C < FeO >„Oa ]- 
C < FeO >„0* ]-

)n0 ]- n = 3 - 9

n s 10 - 13

n * 14 - 22

n = 23 - 31
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Similar results have also been reported by Vhetten et al. who 

studied the reactions of neutral Iron clusters towords HaS and methane 

using colllsonally cooled and uncooled clusters (131). In these 

Investigations they showed the level of oxygen chemisorption for cooled 

clusters also to be dependent on the pressure of oxygen present. Thus 

for low Oz pressures the reaction is :

Fe„ + O2 -------* Fe„02 + C FenO )
1 small amounts >

while at high presures, the reaction is :

Fen + Oz ------- * FenO« + FenOs + . . . .

For experiments involving uncooled Fe„ clusters both products for 

the low-pressure reaction were observed in approximately equal 

intensities, suggesting a form of plasma-bound co-condensation reaction 

to occur in the latter case.

The reaction with H2S showed evidence of dissociative adsorption, 

in which H2S undergoes loss of hydrogen atoms. These reactions were 

shown to be exothermic and very similar in nature to those of O2. In 

the case of methane no reaction was observed, regardless of the pressure 

used.

The reactions of both neutral and monopositive iron clusters were 

found to be similar in character, with many size-dependent phenomena 

being enhanced for the charged clusters, suggesting the presence of an 

activation barrier. This in turn suggests that the reaction proceeds by 

activated chemisorption (132). These clusters also show a strong 

correlation between their reactivities and ionization potentials <133).



This relationship between cluster reactivity and ionization potential is 

a result of most dissociative chemisorptions involving some degree of 

electron donation from the cluster into the antibonding orbitals of the 

molecule to be adsorbed. Thus the smaller the ionization potential of 

the cluster, the greater the ease with which this electron transfer can 

take place (134).

For < Fe >n and < Fe In*, their reactivity patterns show similar 

distributions for n > 20, with a sharp increase in the region of n = 23 

and a subsequent leveling-off being observed. However for n < 20 their 

reactivity patterns are substantially different. ( Fe )n* shows a 

sudden sharp peak in the region of n = 4 -6, of similar reactivity to 

clusters in the n ) 20 region, while for clusters with n = 9 - 14 the 

reactivity is suppressed relative to their neighbours. This i6 in 

marked contrast to the neutral clusters which display a broad peak, n =

8 - 15, which has a maximum at n = 10.

The positive charge also shifts the sudden onset of reactivity to 

lower n values, being observed at n * 19, while both types of cluster 

show the presence of a kinetic Isotope effect. The above effects and 

size-dependent reactivities are a consequence of changes in the position 

and geometry of the clusters' Fermi level.

( Fe )r, has also been found to display highly size dependent 

reactivities towards D2, similar in character and format to their 

reactions with H3, while their reactions with CO were found to show a 

simple monotonic Increase in rate with cluster size. However they were



seen to be relatively inert towards Hz, only undergoing weak 

interactions with C Feu ) to form ( FeiiHz >.

1.9.11 COBALT CLUSTERS

These clusters have been widely studied and have been produced by 

both laser vapourization (135) and fast atom bombardment, FAB (136).

The former of these methods of generation has usually involved the laser 

vapourization of cobalt carbonyl compounds followed by CID and the mass 

selection of the resulting cobalt clusters. The reactions of the 

resulting ( Co In'*" species have been studied with various gas phase 

species.

The reaction of ( Co )r,- with Oz gives rise to a number of cluster 

series, with the dominant series being dependent on the initial cluster 

size. For example (137):

Co- + Oz ______» no reaction
Coa"*" + Oz ------► Co- + C0O21----COaÔ " + 0
C03’*’ + Oz ------>- Coz- + C0O2

(— '—*■ CozO- + CoO
— CozOz- + Co
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The major series produced can be described by the general formulae 

C ConOn-i 1* oxygen-deficient clusters

[ COnO., ] oxygen-equivalent clusters 

t COnOn+1 oxygen-rich clusters

The CID of these clusters shows the oxygen-equivalent species to 

undergo fragmentation involving the loss of < CoO )« units to form the 

charged ( CoO )v  ̂species for larger clusters; smaller clusters however 

were found to fragment to form oxygen-deficient clusters in addition to 

the pathway given above.

Large clusters
< CoO )„- --- ( CoO >y~ + < CoO >,

clusters
< CoO )„~ ----- > Co( CoO >y- + o 0 X o

Oxygen-deficient species however are observed to fragment to form 

charged oxygen-equivalent clusters.

< CO nO n-l >■*■ ----------------------> (  CoO + CO
I-------------- y < CoO >„-*'•• + Co < CoO >

It has been proposed that the CoO cluster units are ionic in 

character, so in smaller clusters the additional cobalt atom stabllzes 

the positive charge (138).

The reactions of pure cobalt clusters are also observed to exhibit 

size-dependent reactivities with a variety of species; this is most



evident in their reactions with Da. Neither the clusters with 

n = 1 or 2 react with Da, while Coa is highly reactive as regards the 

chemisorption of several Da molecules.

Coa+ + Da ------- t COaDa 3 + [ CoaD« 3 * + [ CoaDe 3

< small amounts >

The clusters n = 4 - 9 are also found to react with Da, but at a lower 

rate than with n = 3, but the clusters n = 9 - 16 are observed to be 

highly reactive towards Da forming clusters of the form;

1 < Co Da >m 3- n = 11, 12 m = 5

n = 13, 14 B II o>

n = 15, 16 m = 7

This suggests that a dramatic change occurs at n = 10 in cluBter

reactivity, with the clusters n = 10 - 16 being assumed to be Da- 

saturated and the binding being due to dissociative chemisorption; for 

reactions involving Ha, species with n = 3, 5 and n > 10 were found to 

be highly reactive via dissociative chemisorption, while all other 

clusters were almost unreactive.

Reactions Involving Na show a similar pattern to those of Da and 

Ha, but the rapid change in chemical reactivity was observed only to

occur at n “ 1 8 - 2 0  (135>.



The reactions of cobalt clusters and mixed metal-cobalt clusters

have been investigated with a number of organic species. Unlike Co*, 

C02* is found to be unreactlve towards alkanes, as well as ethene, 

propene, isobutene and butadiene, but reacts via dehydrogenation with 

larger clusters. Similar results were also reported by Jacobson et al. 

for CoFe*, which was generated by sequential ligand displacement 

reactions from Fe< CO )e (139). CoFe*, on reaction with benzene, forms 

CoFe< CsHs >2* which on collislonal activation produces Co( CeHe >2* and 

CoFe( CeHs >*. The trinuclear species Co2Fe* was observed to react 

differently towards alkanes by undergoing C - H bond activation. The 

reaction of Co2Fe* with cyclohexane to produce benzene was found to 

occur by thermal-dehydrogenation (140). Both Cos* and Co2Fe* were 

observed to abstract sequentialy three oxygen atoms from ethylene oxide 

molecules, whereas the dimers ( C02*, CoFe*, Fe2* were found only to 

extract two oxygen atoms. Similar work has also been performed by 

Freas et al. on cobalt-copper clusters (138) (141)(142).

Freas et al. have also reported the reactions of C02CO and found it 

to be significantly different from that of Co*, CoCO* and C02*. They 

suggested that this is a result of the CO ligand leading to polarization 

of the Co - Co bond and hence the increased reactivity being a 

consequence of the increased positive charge on the unbound Co atom 

(143).

Investigations of the reactivities of cobalt-oxygen clusters 

towards organic species have also been carried out (136). In their 

reactions with isobutane, the resulting species Involve the addition of



a single lsobutane unit, with the cluster reactivities displaying a 

dependence on the oxygen content of the cluster as well as its size.

CID studies showed the oxygen-deficient clusters to undergo 

dehydrogenation to form C ConOn-t1 Ca Ha ) I+, while the oxygen- 

equivalent species fragment by the loss of a neutral isobutane unit.

These differences in reactivity have been attributed to structural 

differences, in which oxygen-deficient clusters have cobalt atoms 

occupying terminal sites and hence are more accesible to reaction (136). 

Slmi;ar effects are also observed to occur at surface defects in 

crystals.

1.9.12 NICKEL CLUSTERS

These were first reported by Fayet and Woste, and were found to 

show an exponential decay in their intensities with Increasing cluster 

size (144). In addition to thi6 monotonic decrease, the spectral 

intensities did not exhibit any structural infornration, such as magic 

numbers or odd/even alternation effects. Laser induced dissociation 

studies also yielded limited information, with the sequential loss of 

single neutral nickel atoms being observed upon the absorption of each 

photon (145).

The reactivities of nickel clusters, towards Da were observed to 

show a mild monotonic increase with cluster 6ize (146). The reactions 

of < Ni clusters with CO results in the production of
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C< Hi >„< CO >„ and small amounts of C< Hi < CO >1 1

and C C Hi )r> C< CO The pressure dependence of these reactions

suggests that the major product is formed by a series of third-body 

association reactions, with the value of k Increasing with CO pressure 

until saturation occurs. For < Hi >«■*■ this was observed at k = 10 and 

for < Hi O13)* at k = 22. These results are in keeping with the 

electron counting rules predicted by PSEPT (75).

However the reaction of ( Hi Ir,"’" with C*Hio displays a size- 

dependant character. For small clusters the reaction results in 

dehydrogenation involving the loss of two hydrogen molecules.

< Hi >„- + C*H,o ----=► C < Hi >„< C*HS >]~ + H2 , n = 2 - 5

For n = 6 - 10, more extensive dehydrogenation takes place, with the 

dominant product resulting from the loss of three hydrogen molecules to 

give [< Hi CaH* ]*. In the case of atomic nickel however the 

reaction involves the cleavage of a C - C bond. Hence C - C bond 

cleavage is reduced with increasing cluster size in favour of 

dehydrogenation, the extent of which also Increases with cluster size. 

These reactions were found to be dependent on the Internal energies, of 

the cluster with colllslonal cooling resulting in enhanced 

dehydrogenation (147).

The results of above reactions, while showing the presence of size- 

dependent reactivities towards different species, do not yield any 

structural information. However Parks et al. reported the chemisorption



of ammonia and water over a large range of n values to display a number 

of very Important structural influences (148).

For HHa, the extent of reaction is observed to be pressure- 

dependent until saturation occurs, then under saturation conditions the 

cluster reactivities were lound to display marked minima at 1n‘ values 

that correspond to the magic numbers displayed by rare gas clusters.

The existence of these minima suggests that nickel clusters exist in 

three dimensional networks, of icosohedral geometry.

( Hi + HH:a ---------- =» [ < Hi >„( NHa )™ 1-

The resulting species display a range of m values for each n value, 

which decreases as n increases as a consequence of decreasing bond 

strength and the increasing importance of equilibrium effects. Plots of 

m', the average value of m, against n show similar distributions 

regardless of the ammonia pressure used; these were seen to display 

pronounced minima at n = 55, 71, 83, 92, 101, 116 and 147 as well as a

plateau region at n = 50 - 120. Each of these minima correspond to

m' = 12 suggesting the presence of strong structural Influences upon 

reactivity.

Seaburg et al. suggested that the binding of ammonia onto cluster 

surfaces occurred via the nitrogen atom, with H(<r> -» Hi (d) donation as

well as electrostatic attraction between the ammonia dipole and the

surface being maximised (149). This was shown to be so when ammonia 

binds onto a metal atom as opposed to a multiatom site and is strongly



supported by the slmilari ties between adsorption minima and the magic 

numbers exhibited by rare gas clusters, since these correspond to shell 

closures of Mackay icosohedral structures which have twelve apical 

atoms.

For < Ni the apical atoms will be six-coordinate, while face atoms

are eight-coordinate, hence favouring apical coordination.

These plots of m' against n also show the presence of three 

distinct region.

For n = 4 - 48, the structures adopted by the clusters are strongly 

Influenced by the extent of ammonia adsorption, since the adsorption 

energy is a significant fraction of the total cluster energy. When n <

7 the ammonia uptake is observed to occur in approximately a 1:1 ratio, 

while for n ) 7 a plateau region appears that extends up to n = 19. n = 

7 corresponds to a pentagonal bipyramidal structure, while n = 19 shows 

a m' value of twelve and a possible double-icosohedral structure.

Similar behaviour was also noted for n = 23, 26, 29, 32, etc.. Evidence 

was also found that the take up of ammonia also Induces structural 

changes at certain n values, with the level of conversion depending on 

the ammonia pressure. These structural changes may also bring about 

the decomposition of ammonia after its absorption, observed for n > 20. 

This behaviour is marked for n = 7 which induces the loss of between one 

and three hydrogen molecules from ammonia molecules.

For n = 49 - 147 a number of minima are observed, each of which 

corresponds to the absorption af twelve ammonia molecules, supporting
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the theory of absorption on apical sites. The clusters featuring Mn + 1 

metal atoms uniformly display an additional absorption site for a 

single ammonia molecule. This suggests that clusters in this region are 

strongly icosohedral in structure, although under certain conditions 

isomeric structures may occur.

For n = 116 - 160, at room temperature the adsorption pattern of 

ammonia is Inconsistent with an Icosohedral structure, with no m' minima 

being observed ot n = 147. However as the reaction temperature is 

Increased the presence of icosohedral-type absorption is observed, with 

a strong minimum for n = 147 at 82"c. This suggests that nickel 

clusters in this region can exist in a series of energy-dependent 

structures and may mark a change over the region with bulk-metal 

structural influences starting to play a more significant role.

The reaction of nickel clusters with water leads to the production 

of £ ( Si )„ HaO l"- as the dominant species, with the intensity 

distribution showing a similar character to that for ammonia, with the 

presence of strong absorption peaks at n = 36 and 39, with various 

plateau regions also being present. These variations in reactivity 

reflect shifts in the equilibrium for the reaction

< Hi >„- + HaO ---- > £ < Ni >„< HaO >1-

and suggests that equilibrium effects are more Important in these 

reactions than for ammonia. The resulting minima for water are observed 

for clusters containing one additional nickel atom than for ammonia.

n
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Hence water undergoes stronger binding to clusters containing a single 

metal ion outside its closed shell or 6ubshell, that is the binding 

takes place onto a nickel atom with the least possible M - M 

coordination. The above reactions show nickel clusters to exist in 

three-dimensional frameworks, based on icosohedral geometries. These 

structures are adopted in order to minimise energies in small clusters 

and are found to dominate the reactivities of mid-range clusters.

However for larger clusters bulk influences and the adoption of other 

low-energy structures cause isomerization and temperature dependence of 

their reactivities.

1.9.13 TREHDS IN METAL CLUSTER CHEMISTRY

The foregoing discussion shows cluster properties to be 

characteristic of the metal from which they are formed, with significant 

size dependences being observed in most cases.

Metals containing delocalized valence electrons are found to be 

described by jellium-type electron models, for example tensor harmonic 

theory and polyhedral skeletal electron-pair theory. This type of 

cluster encompasses such metals as the alkali metals, aluminium, silver 

and gold, and becomes increasingly applicable along the series of 

transition metals.

The importance of electronic structure to the stability of these 

clusters is observed to strongly influence their reactions and 

heterocluster properties. Martin et al. reported the properties of Na,



Cs, Ca and Ba oxide clusters (150>. The group I metal, sodium and 

caesium, oxide clusters showed the presence of strong decreases in 

cluster intensity after electron shell closures. In the case of caesium 

these clusters followed the general formulae I Cs2r>*-> J *, where Z =

8, 18, 34, 58,,,,i.e. the same electron counts as for the jelllum model 

( each oxygen atom is assumed to involve two cluster electrons in its 

bonding >. Calcium clusters however were observed to form ionic 'rock 

salt*- type lattice structures, while barium clusters show a tendency to 

adopt icosohedral structures.

This competition between geometrical and electronic influences on 

the cluster properties continues for transition metals, with certain 

metals showing distinct changes between bonding modes with increasing 

cluster size (102) (151). This transition is clearly demonstrated by 

mercury clusters. Small clusters, i.e. n < 13, show van der Vaals 

bonding changing to covalent in the region of 30 < n < 70 and then 

undergo a sudden transition to metallic character at n * 100. In the 

small clusters, as for atomic mercury which is lsoelectronlc with 

helium, the s/p energy gap is so large that sp hybridization is not 

energetically favourable and hence electronic influences only play a 

small role in their bonding (152). As the cluster size Increases, 

however, the valence band broadens allowing sp hybridization and confers 

an increasing covalent nature to the bonding present. On further 

Increases in cluster size, l.e. n « 70, the s-p splitting becomes so 

small that a transition to metallic bonding occurs. In this region, 90 

) n ) 100, the mean nearest neighbour distance for the atoms in the 

cluster is found to suddenly and rapidly decrease. This results from a
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Fig 1.9.7 A Dlagranmatlc Representation of the Electronic Band 
Structure for Mercury Clusters

The Hg atom has a 6s2 closed electronic shell, with the atomic lines 
broardening into 'bands' for the clusters. The band gap A(n) decreases 
as a function of the cluster size. The two bands overlap in the solid, 
giving mercury a metallic character. For large a the binding is of the 
Van der Vaals type, for intermediatly sized A the binding is covalent in 
character, with the binding becoming Increasingly metallic as A becomes 
negiable.
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increase in bandwidth and decrease in the 6s — 6p energy gap as the 

cluster size traverses this region. Hence a rapid electronic transition 

takes place, accompanied by a sudden shrinkage in interatomic distances 

(102)(153). Similar behaviour is also observed for beryllium clusters 

which undergo the initial van der Vaals-to-covalent transition at n * 4 

(151), while ( Zn is reported to be covalent in character 

(154)(155).

These changes in bonding regime and geometry dictate the 

reactivities and stabilities of cluster species. Small clusters have 

near-atomic behaviour, since the minimizing of the surface energy is the. 

dominant requirement for stability due to the large fraction of surface 

atoms. The properties of larger clusters gradually converge towards 

those of the bulk material as cluster size increases.

In rare gas clusters, atom — atom interaction potentials are 

relatively short range and cluster stability is directly related to 

cluster geometry, with clusters trying to maximise the number of their 

atom - atom bonds. This results in icosohedral packing. The stability 

of alkali and alkaline earth metal clusters however is dominated by 

their electronic shell structure with geometrical distortions enhancing 

their HOMO - LUMO energy gap.

This dependence of the structure and stability ofsmaller cluster on 

their electronic structure is demonstrated by vanadium which exhibits 

strong odd/even alternation and size-dependant reactivity changes in its 

smaller clusters; however these effects decrease with increasing cluster



size. Similar effects are also observed for vanadium clusters 

containing Impurity atoms, such as 0 and C. In this case the Influence 

of the Impurity atom Is observed to decrease as the cluster size 

Increases, and at n » 20 their effects are Insignificant. For 

Intermediate-size clusters, the ability to exist in a number of 

geometric and electronic isomers acts to stabilize the clusters. This 

reduces the dominance of electronic considerations. As the cluster size 

increases further, structural considerations gain in Importance as near­

bulk properties are opproached (148)(156)(157).

Changes in cluster binding, in addition to occurring almost 

linearly with size, also occur across periods. Cobalt clusters for the 

most part exhibit icosohedral structures, with the detailed dependence 

of structure on cluster size being complex, while no such behaviour is 

found for iron. Hlckel clusters, however, show definite icosohedral 

structures, with their reactions with ammonia clearly displaying the 

magic numbers known for rare gas clusters. This trend towards 

Icosohedral structures at the right hand side of the first transition 

series is a consequence of the decreased spatial extent and the 

Increased filling of the ‘ d‘ orbitals. If the bonding in nickel 

clusters is predominantly from the electrons in the spherically 

symmetrical 's' orbitals, then it may not be suprising to find the same 

structures as for clusters of the spherically symmetrical rare gas atoms 

(148).

Cluster binding energies are also observed to result in similar 

trends being displayed in cluster reactivities across a transition
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aseries. The early transition metal ions show, in their atomic form, 

marked tendency to undergo C-H bond activation and dehydrogenation 

reactions (158), while the later transition metals are selective towards 

C-C bond activation and alkyl elimination reactions (159)(160). Like V- 

vanadlum clusters undergo dehydrogenation reactions with ethene, with 

the exception of Va"-. Chromium clusters however are unreactive apart 

from Cra'“, while manganease is unreactive in all but its atomic form. 

Clusters of the later transition metals readily undergo dehydrogenation, 

with smaller nickel clusters also undergoing dealkylation reactions as 

does copper which also forms various complexes (147). Hence as cluster 

size increases, dehydrogenation becomes more favourable for all 

transition metals, with C-C bond cleavage being confined to the post­

nickel metals.

The later metals in the first transition series correspond to the 

idealized single electron model and show icosohedral tendancies. This 

behaviour is also demonstrated as their respective groups are decended, 

in addition to enhanced reactivities. This is shown by the nickel 

group: nickel undergoes dehydrogenation with butene while platinum 

clusters are capable of causing the dehydrogenation of benzene. However 

for complete filling of the ‘d ’ levels, covalent behaviour is observed, 

as shown for zinc and smaller mercury clusters.

As regards the post-transition metals, group IIIA shows similar 

reactivities and spectral phenomema (161), while groups IVA and VA show 

increasingly covalent tendencies. Lead clusters are observed to bind 

four ammonia molecules, of which the first two bond predominantly
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covalently while the third and fourth bond mainly by electrostatic 

Interactions. Similar behaviour is found for methanol and methylamine 

and has been attributed to 6s/6p hybridization.

The Increasing 'p' nature of the clusters leads to the formation of 

three-dimensional framework structures of the types demonstrated by 

carbon, silicon and antimony. These clusters are observed to exhibit 

clear preferences in forming certain cluster units and fragment by 

fission or the sequential loss of larger units as opposed to the 

monatomic dissociations more commonly observed (117).

In the case of antimony clusters, which are built from Sb« units, 

the mass spectra are dominated by peaks corresponding to ( Sb* >„-* 

clusters and evaporative dissociation is observed to occur via the loss 

of Sb* units. The stability of the Sb* moiety has been confirmed by 

ionization potentials and binding energies, which are well below those 

for antimony atoms in the bulk metal (162)(163>.

Hence the properties of many clusters can be described by their 

electronic structures, with their corresponding band gaps being one of 

the dominant factors in determining the geometry adopted. These can be 

described as;

a) Monovalent metals, which as a consequence of their dominant high 's' 

electron delocalization can be described by shell models. This applies 

to the later transition metals due to the increased contribution of the 

s orbitals.
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b) Divalent metals, in which a transition from van der Vaals to metallic 

structures is observed, as clearly demonstrated by mercury.

c) Small trivalent metals, The properties of small trivalent metal 

clusters, n < 10, are dominated by p-bonding, while in larger clusters 

the valence electrons become delocalized and shell models apply.

d> Late post-transition metals, in which the bonding i6 predominantly p- 

bonding, with electron counting rules of the form described by Wade 

applying <164). This is represented by antimony clusters



EXPERIMEITAL

2.1.1 THE MASS SPECTROMETERS

This work described in this thesis was carried out using a modified 

MS-50 double-focusing instrument and a 'Concept* four-sector instrument

< Kratos Analytical Instruments ). Both of these instruments utilise 

forward-geometry mass spectrometers and are fitted with a DS-90 data 

system. The bombarding atom beams were produced using a radially 

mounted Ion Tech Ltd. Saddle-field fast atom bombardment gas gun

< FAB-ll-HF >. The 'Concept' four-sector mass spectrometer consists of 

two horizontally-opposed forward-geometry mass spectrometers connected 

via a collision cell, termed the flexicell, in which ion-molecule 

reactions can be carried out. ( Fig 2.1.1 )

The flexicell consists of a series of slit plates, two post 

acceleration detectors, collectors and a collision cell, fig. 2.1.2 , 

and is situated between the resolving slit of the first mass 

spectrometer, MSI, and the source slit of the second mass spectrometer, 

MS2. The first of these sets of slits is the input lens which can be 

used to focus the ion beam emerging from the resolving slits of MSI onto 

a number of points enabling the operation indicated;

1> PAD1, when NS1 is used under normal operating conditions.
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2) To focus the ion beam onto a region within the collision cell, 

where it may undergo ion-molecule reactions with the collision gas.

The second major component is the collision cell, which consists 

essentially of a metal box containing input and output slits, on 

opposite sides. The collision cell may be maintained at earth potential 

or at a positive potential of up to 6kV, this potential being applied in 

order to reduce the energy of collisions between the incident ion beam 

and the collision gas and/or to accelerate the post-collision ions out 

of the cell towards the output lens and MS2.

The final major component is the output lens which consists of a 

number of 6llts which focus the post-collision ion beam onto the source 

slit of MS2. PAD2 allows the intensity of the ion beam emerging from 

the collision cell to be monitored before entering MS2.

By setting up the 'concept' 4-sector spectrometer in MS1/HS2 mode 

the collision cell enables collision-induced dissociation experiments to 

be carried out. In this kind of experiment ions emerging from the 

source are mass analysed by MSI to produce an intense ion beam of a 

given mass, parent ion, and are focused into the collision cell.

In the collision cell the ion beam undergoes collisions, with the 

essentially stationary collision gas, at a specified energy. The 

resulting ions, both parent and daughter ions, then pass via the output 

lens into MS2 which is operated as a standard double-focusing mass
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( t, E are double focusing points. )

Fig 2.1.1 The Ion Optics of the ,COHCEPT, 4 Sector
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Fig 2.1.2 The Flexicell
Plate and Slit arrangement

ion i
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spectrometer. The resulting spectrum shows the parent Ion, mass 

selected by MSI, and Its daughter fragment ions.

By varying the collision cell potential and the collision gas 

pressure, the energy and number of collisions taking place may be 

varied.

2.1.2 THE FAB GUH

The sampleifor both instruments were introduced into the ion source 

on a axially-mounted FAB probe fitted with either a copper or stainless 

steel tip. Here the sample underwent bombardment by a beam of highly 

energetic atoms produced by the FAB gun . This bombardment took place 

at a grazing angle of 15° to 20°, in order to produce maximum secondary 

ion yield in a forward direction (7) (8).

The ions formed were then accelerated at 8 kV and focused into a 

narrow beam before entering the mass spectrometer. The major factors 

affecting the rate at which equilibrium is reached following ionization 

can be summarised.

1) lon-molecule reactions may proceed between the newly ionized moiety 

and a neighbouring species. This reaction may result in various third- 

body reactions
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2> The energy content of a cluster increases as the neutral species

rearrangements to accommodate a newly-formed charge; this may lead to 
©

extensive evaporation dissociation as the cluster cools.

3) Kinetic energy release measurements have shown that clusters of 

neighbouring x-values have comparable internal energies.

4) The rates of unlmolecular dissociation decrease with time after the 

ionization event. This is because of the energy distribution of a 

cluster population, with the number of clusters having energies in 

excess of their dissociation threshold decreasing on cooling <165).

2.2 THE EFFECTS OF MATRICES OB VARIOUS ASPECTS OF THE FAB SPECTRUM

The FAB spectra obtained for various sample compounds have been 

studied with a range of matrix compounds and co-solvents. These have 

taken the forms of solutions or mulls, and have enabled the production 

of large numbers of spectral ions over prolonged periods of time. 

However, the choice of matrix and sample conditions have been found to 

influence the type and relative intensities of the species observed in 

the final spectrum. Hence the chemical properties of a given matrix 

and/or co-solvent may result in unrepresentative fragmentation patterns. 

Matrix peaks may also dominate or obscure vital spectral lnlomatlon by 

overlap or other misleading phenomena.
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Since the nature of the matrix and/or co-solvent is so important, a 

number of investigations have been carried out into the effects of 

various matrix compounds and co—solvents (53), In this study the 

effects of the physical constrants of the sample have been studied for a 

range of matrix compounds.

2.2.1 THE MATRIX COMPOUHDS

Investigations were carried out into the effects of various matrix 

compounds on the observed FAB spectra for a number of compounds, in 

addition to their effects on cluster formation. In the latter study the 

spectra obtained during the use of matrix compounds were directly 

compared with those obtained for a single crystal of uranyl nitrate and 

the near identical spectra obtained by the use of continuous flow FAB-MS 

for aqueous uranyl nitrate.

Samples containing dlmethylsulphoxide and related matrices were 

found to be dominated by matrix peaks and matrix adduct species, often 

making spectral interpretation unreliable, if not impossible. The 

spectral species were also observed in many cases to be non-reproducible 

and hence the use of these matrix compounds was assumed unjustifiable.

Glycerol and nitrobenzyl alcohol, being the most widely used FAB 

matrlcles, were found to give rise to largely reproducible FAB spectra 

over a range of cluster sizes. Adduct formation was in many cases 

significant and favoured the production of lower mass cluster species. 

However the use of glycerol, thioglycerol and nitrobenzyl alcohol was



useful, by allowing the comparison of the spectral species observed In 

the FAB spectra of a number of ligated metal complexes.

The use of sulpholane as a matrix compound was found to be 

unexpectedly useful In the study of both the fragmentation patterns of 

metal complexes and cluster formation. The spectra obtained closely 

resembled those obtained for pure complexes and compounds. Sulpholane 

was found to promote cluster formation without the formation of matrix 

adducts and to give rise to stable Intense ion beams over extended 

periods of time when dry, although when allowed to absorb large amounts 

of atmospheric water, beam intensities could be prone to instability. 

Uranyl compounds were also found to be directly soluble in sulpholane.

Over the range of matrix compounds studied their chemical character 

was found to significantly affect ion yields, their relative 

distributions and abundances as well as influencing, in some cases, the 

species present. Hatrlx compounds were found to act in a similar way to 

reagent gases in chemical ionization, CI-MS, by either enhancing or 

suppressing the yields of species, this was most notable for the 

processes leading to cluster formation. So the choice of matrix can 

directly affect the relative abundances of species by favouring a 

particular fragmentation pattern or reaction pathway. In order to 

safeguard against this, in the present study, the spectra described have 

been reproduced on several occasions and are the result of the computer 

averaging of many mass spectra. In addition the spectra obtained for 

several matrix compounds have been compared in order to guard against 

the effects of a single matrix compound.
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Fig 2.2.1 A Schematic Representation of the change in Total Ion 
Yield with Increasing amounts of Matrix Compounds
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2.2.2 THE EFFECT OF SAMPLE TEMPERATURE

The effect of sample temperature during bombardment was 

Investigated, this was carried out by assuming frozen samples to undergo 

uniform heating during bombardment. Hence the duration of bombardment 

can be assumed to be a measure of the relative temperatures experienced 

by samples.

The effect of the sample undergoing heating in this manner was to 

Influence the total ion yields. These were observed to rapidly increase 

during the early stages of bombardment, heating, before gradually 

decreasing. The period for which a sample produced near optimum ion 

yields was found to be prolonged by applying secondary cooling to the 

probe tip. Hence the ion yields were found to be temperature dependent. 

In addition, the period of bombardment required before optimum ion 

yields are produced is seen to vary between matrices. This suggests 

that ion yields are dependent on the relative rates of matrix removal.

If the rate of matrix sputtering i6 considered to be constant then the 

temperature of the sample will strongly Influence the evaporation of 

matrix which may be expected to Increase with sample temperature.

Sample temperature was not observed to be as significant for samples 

containing no matrix. Hence the effective lifetime of a given sample 

and the stability of the total ion yields can be enhanced by careful 

manipulation of the sample temperature during bombardment.
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2.2.3 THE EFFECT OF PROBE TIP SIZE

The cluster spectra for the uranyl and selected oxo-lanthanide ions 

were recorded using a range of probe tip diameters in order to 

Investigate the relationship between probe tip sizes and their relative 

ion yields.

Probe tip diameter Cross sectional area Ratio of areas

< m m -1 > (  mm~a  )

2.5 4 . 9 1 1

3 . 5 9 . 6 2 2

5 1 9 . 6 3 4

For a given sample size minimal changes were observed in ion yields on 

Increasing the cross sectional area of the probe tip in the absence of a 

matrix compound. However, on the addition of set amounts of matrix 

dramatic Increases in ion yields were observed with increasing probe tip 

size, with the 5 mm diameter probe tip producing approximately ten times 

that for the 2.5 mm probe tip.

For a fixed probe tip size the increase in ion yields were found to 

increase rapidly on the addition of small amounts of matrix. However 

the relative increase was observed to decline when excess matrix was 

present, thus showing signs of matrix saturation ( Fig. 2.2.1 ). This 

is similar to the behaviour displayed by ion yields with increasing 

sample concentration, with the position of the onset of saturation being 

Influenced by the addition of co-solventB.



Hence, If a sample of fixed size is assumed to form a uniform 

layer, then the total ion yield observed is found to be dependent on the 

amount of matrix present. This increase in ion yield is found to be due 

to an increase in the relative intensities of the higher mass clusters. 

This behaviour is most notable when sulpholane matrix is present. In 

addition the effective lifetime of a fixed sample size was found to be 

dependent on the matrix present, with samples being rejuvenated when 

recharged with fresh matrix. This shows that the total ion yield and 

extent of cluster formation is directly related to the type and amount 

of matrix present and less dependent on cluster size.

The behaviour described above gives rise to the question of why the 

choice of matrix, its relative abundance and the size of the probe tip 

should influence the relative intensities of the clusters produced so 

strongly. This was investigated by the use of a number of probe tips 

which had the same cross sectional areas as above, but however split to 

give two equal semicircular sectors. These were charged separately with 

matrix and pure sample, with care being taken to avoid cross 

contamination. The tip was then subjected to FAB in the usual manner. 

After bombardment one of these sectors was cleaned before réintroduction 

into the mass spectrometer to allow the analysis of the remaining loaded 

probe tip sector for traces of contamination. A series of similar 

experiments were repeated with several matrix compounds.

The resulting spectra displayed evidence of the formation of oxo- 

metal clusters and the associated matrix adducts similar in character to 

those observed using a single sector probe tip. This behaviour was most
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notable for dimethyl sulphoxlde and glycerol, and shows the presence of 

matrix induced reactions. However, very little evidence was observed to 

suggest that these adducts were formed by cross contamination between 

the probe tip sectors. The strong similarities in the FAB spectra 

produced to those resulting from the use of a standard probe tip 

suggesting that matrix induced adduct formation and cluster formation 

must be taking place in the gas phase above the probe tip.
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2.3 THE EFFECT OF SOURCE PRESSURE OB CLUSTER AHD ADDUCT FORMATIOH

A series of Investigations were carried out to explore the effect 

of increasing the gas pressure in the source during FAB, samples 

containing a range of matrlcies. During these experiments the source 

block was fitted with covers to reduce the source conductance, while 

additional buffer gases were introduced into the source using the 

standard Kratos Cl gas inlet system ( Fig. 2.3.1 ).

The effect of increasing the source pressure is best examined by 

considering its effects on various aspects of the resulting spectrum.

For samples containing no matrix, various pressures of argon gas were 

introduced as a buffer gas into the source during bombardment. For low 

argon pressures no notable effects on the distribution of clusters in 

the resulting spectrum was observed, although the total ion current 

showed a slight decrease with extended bombardment times.

As the buffer gas pressure was increased, in a stepwise manner, the 

total ion current was found to increase slowly with increasing source 

pressure. This behaviour continued until a critical pressure was 

reached after which a rapid increase in total ion current was observed 

for small increments in pressure. At very high pressures evidence of a 

gradual decrease in total ion currents was observed, reflecting source 

saturation ( Fig. 2.3.3 >.

Similarly, the presence of increasing buffer gas pressures in the 

source is found to influence the relative intensities of the cluster



species observed In the resulting spectrum. At very low buffer gas 

pressures and In the absence of a matrix compound a slight Increase in 

the relative Intensity in the cluster spectrum is observed. However, as 

the pressure increases the relative intensity of the higher mass 

clusters are observed to decrease rapidly. At higher buffer gas 

pressures evidence of fine structure in the distribution of the spectral 

intensities is observed, with possible odd/even alternation and enhanced 

spectral intensities for x = 3 being observed in the uranyl cluster 

spectrum. For samples containing a matrix compound or co-solvent, at 

low buffer gas pressures an increase in the relative intensities of the 

adducts formed is observed. However as the buffer gas pressure 

increases the number of observed adducts decrease, with no adducts being 

detected at high buffer gas pressures.

This suggests that the buffer gas may act so as to stablise the 

formation of the higher mass cluster at very low pressures, possibly by 

a third-body assisted association reaction,

K o - i -  + M + X ----------------------»  I t ,*  + X

with the excess exothermic energy being removed by the buffer gas. 

However on further increasing the buffer gas pressure the increased 

number of collisions increase the possibility of clusters undergoing 

collision induced dissociations or collisions resulting in the 

production of charged species. This i6 displayed in the increased 

relative intensities of the lower mass clusters and the corresponding 

increase in total ion currents observed.
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Fig 2.3.1 Diagramatic Representation of the Position of the Source 
Covers to reduce the Source Conductance, hence Allowing 
the Effect of Source Pressure on Cluster Formation to be 
Studied
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Fig 2.3.2 a> Gas Inlet Plate, Materials Stainless steal, all 
Dimensions in mm

b) Source Block Cover, Material 'PEEK', all Dimensions 
in mm
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c) Source Lens Plate, Material Stainless steal, 
all Dimensions in mm
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Fig 2.3.3 Schematic Representation of the Change In Total ion 
current, I, with Increasing Duration of Bombardment, 
T, at a lumber of Buffer Gas Pressures

p,< p;< p,< p4< p5



2.4.1 MATERIALS

All chemicalB used were of standard laboratory grade.

Uranyl nitrate hexahydrate 

Uranyl acetate dihydrate 

Uranium trioxide 

Thorium nitrate 

Lanthanum nitrate 

Cerium nitrate 

Praseodymium nitrate 

Samarium nitrate 

Europium nitrate 

Terbium nitrate 

Holmlum nitrate

Fisons

B. D. H

B. D. H

B.D. H

B. D. H

Aldrich

Aldrich

Aldrich

Aldrich

Aldrich

Aldrich

Lanthanum acetate B.D.H

Cerium acetate Strem

Praseodymium acetate Aldrich

Europium acetate Aldrich

Holmlum acetate Strem

Glycine 

L-Alanlne 

L-Valine 

L-Serine

Fisons

Aldrich

Sigma

Sigma

f
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L-Lysine Sigma

L-Proline Sigma

L-Glutamine Sigma

L-Glutamic acid B. D. H.

L-Tryptophan B. D. H.

Cysteine Sigma

Threone Aldrich

|3-Alanine Aldrich

a-Aminobutanoic acid Sigma

(3-Anrinobutanoic acid Sigma

K-Ajninobutanoic acid Sigma

Hexachloropropene Aldrich

Sulpholane B.D.H.
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2.4.2 PREPARATIONS

a) THE PREPARATION OF THE AMINO ACID COMPLEXES OF

DIOXOURANIUM(VI>

These were prepared by a standard method, in which uranyl 

nitrate hexahydrate was added to an aqueous solution of the ligand, in 

a 4 : 1 mole ratio (53). The resulting solution was then allowed to 

evaporate in a dark environment.

The resulting complexes for the amino acids took the form of 

bright yellow oils, apart from those corresponding to L-proline and L- 

tryptophane which formed yellow-brown oils (possibly due to their 

aromatic nature).

b> THE PREPARATION OF LANTHANIDE MALONATES

A standard method was used whereby a given mass of lanthanide 

nitrate was dissolved in a minimum volume of distilled water, to this 

malonolc acid was added ( in a 1 : 4 mole ratio respectively >. The 

resulting cloudy solution was evaporated and cooled until a white 

crystalline solid formed



c) THE PREPARATION OF URAHIUJt(IV>CHLORIDE, OCI* (53)

Uranium tetrachloride was prepared by the reaction of uranium 

trioxide with hexachloro-propene as a chlorinating agent, giving a 

final product of high purity and yield.

This was carried out by refluxing uranium trioxide (2. 5g> 

with 25 cm of hexachloropropene in a three-necked flask, under a 

nitrogen atmosphere, for six hours. The reaction mixture was heated 

slowly at first until the vigorous initial reaction had subsided, 

during which the temperature was kept below 373 K. The temperature 

was then allowed to increase slowly until a steady reflux occurred.

At this point a red-brown solid, UCle , was observed at the base of 

the flask; this was then observed to yield green UC1.» as the reflux 

continued. The resulting solid was filtered under a nitrogen 

atmosphere, washed with dry CCl« and dried under high vacuum. The 

resulting UC1.« was then sealed in an evacuated tube, due to its 

hydroscopic nature.

The compounds and complexes formed by the above reactions 

were analysed using a combination of infra red and UV/visible 

spectroscopy.
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3.1 THE LAHTHAHIDE ELEKEHTS

The lanthanide elements are the fourteen elements directly 

following lanthanum, La, and corresponding to the partial filling of the 

4f orbitals. The bonding undertaken by these elements usually does not 

involve the 4f orbitals which leads to the lanthanides showing a 

predominant +3 oxidation state and hence displaying similar chemical 

characteristics to lanthanum.

The major feature of the lanthanide series is the progressive 

decrease in the atomic and ionic radii across the series. lhis is 

commonly referred to as the lanthanide contraction and is a consequence 

of the Increasing effective nuclear charge experienced by each 4f 

electron due to imperfect shielding of the electron by the subshells. 

Although this leads to a regular reduction in metal radius, europium and 

ytterbium show significant deviations. This is a consequence of 

europium and ytterbium preferentially forming Ln3'*' ions as opposed to 

the Ln3* ions formed by other lanthanides; cerium exhibits a similar 

but opposite deviation with the formation of the Ce*- ion. The 

stabilities of these additional oxidation states is due to the enhanced 

stabilities of their filled and half-filled 4f orbitals.

Another consequence of the lanthanide contraction is the similarity 

in chemical behaviour between the lanthanides and the alkali / alkaline 

earth metals. Ce-*~ is the only stable tetravalent lanthanide ion in 

solution and solid compounds, although less stable Pr“* and Tb*~ can be

1 0 5



formed. Divalent europium, ytterbium, samarium and neodymium can be 

formed, with Eu2* being by far the most stable as a consequence of its 

4f7 electron configuration. In europium and ytterbium two electrons 

enter the conduction band resulting in larger cores and notably lower 

binding energies. SnF** and Bd2"1" can be viewed as trivalent ions with an 

extra electron forming a conduction band.

The similarities between the different lanthanide ions is clearly 

demonstrated by their oxide systems. For a trivalent lanthanide LnaOs 

is clearly the most stable oxide formed, existing in the following, 

three possible forms.

A-Type; This form is strongly favoured by the lighter lanthanides 

and consists of LnO-7- units which approximate to a capped octahedral 

geometry.

B-Type; This also consists of LnO? units, but of three types, two 

being capped trigonal prisms and one an octahedron. This type is 

favoured by the middle lanthanides.

C-Type; This is strongly related to the fluorite structure but with 

one quarter of the anions removed, thereby reducing the metal 

coordination from 8 to 6, and is favoured by middle and heavy 

lanthanides. The Ln^O» series are strongly basic, with the lighter 

members resembling the oxides of group IIA, and insoluble in water.

1 0 6



Cerium, praseodymium and terbium however tend to form the higher 

oxides CeOs, Pr®Oi1 and Tb^Ov respectively. The dioxides of these 

metals have a fluorite structure, forming a related series of 

nonstoichiometric phases between LnOi.e and Ln02. The lanthanide-oxygen 

systems for these metals show close similarities.

3.2 THE GAS PHASE CHEMISTRY OF THE LAHTHAHIDES.

The gas phase chemistry reported for the lanthanide metals is very 

limited, with lanthanide clusters first being reported by Selbln et al. 

REFS . They reported clusters formed by fast atom bombardment 

containing up to nine metal atoms for certain lanthanides, and the 

collision-induced dissociation spectra for ytterbium oxide clusters.

The latter, were found to fragment giving the YaO.»* species as the 

dominant daughter ion. The cluster spectrum of europium has since been 

described, with clusters containing nine metal atoms being detected 

<53). Similar work carried out by Daolio et al. using secondary ion 

mass spectrometry suggested the formation of polynuclear species (167).

3.3 LAHTHANIDE OXIDE SYSTEMS

3.3.1 CERIUM OXIDE

The compounds of the cerium-oxygen system lie between CeOi. e and 

CeOa, corresponding to a number of phases with each successive phase 

being stable over a wide range of cerium : oxygen ratios. At CeOi.a, a
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single A-type hexagonal phase is formed with a second C-type phase, p, 

being present at CeOi.ess. In the region of CeO, ,704 a third 

rhombohedral phase, 6, is formed; in general the p phase becomes the 

stable form at increasing temperatures. At CeOi.72 a second 

rhombohedral phase, y is formed, which in turn gives rise to a third 

rhombohedral phase, p, at CeO,.712. However in the region of CeOi.947, 

the final a phase is formed with a face-centred cubic structure (168).

3.3.2 PRASEODYMIUM OXIDE

Studies on the praseodymium-oxygen system have shown the existence 

of a number of phases, each displaying differences in their structural 

arrangements (170)(171)(172). In the composition range PraOa to Prs0,, 

a large number of complex phases exist. These belong to the series 

PrnOjn-2 and denote the change between body-centred cubic and face- 

centred cubic oxide structures, with the number of oxide phases present 

depending on temperature and pressure.

At high temperatures the oxide system contains the lowest number of 

phases; these are

Composition range Structure Phase

PrO,.. - PrO,.. A-Type 0

PrO,.. - PrO, .7 C-Type or

PrOi.7a - PrOa FCC a

1 0 8



As the temperature decreases additional phases are formed, with the 

rhombohedral i phase developing in the region of PrOi.7is and the 

triclinio P phase, based on the fluorite cell, developing at PrOilB3.

As temperatures are further reduced, other phases develop. The first of

these is the rhombohedral 9 phase at PrOi .7 7 - 7 while the non- 
stoichlometrlc region PrOi. e to PrOi. S3 develops into the two phases e 
and S respectively, each having a fluorite-type structure.

These intermediate phases formed at lower temperatures mark the 

ordered changeover region between body-centred cubic and face-centred 

cubic structures and demonstrates disorder-to-order transitions, with 

the C-type sesquoxlde f being formed at higher temperatures. This 

phase has a fluorite structure with approximatly 25% of its anion sites 

vacant and ordered.

3.3.3 TERBIUM OXIDE

The terbium-oxygen system shows the presence of a number of phases 

between TbO,.* and TbOa, marking the changeover between body-centred 

cubic and face-centred cubic structures.

At TbO,.* the major phase, <r, has a body-centred cubic structure, C 

type, which gradually absorbs oxygen to form a second rhombohedral 

phase, 6 , in the region of T b O , T h i s  in turn gives rise to a

complex third phase, Y, which has either a pseudotriclinic or
, . . .  ThOi On further addition of oxygen,pseudorhombohedral structure at T dU i
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the rhombohedral phase is formed at TbOi.se, while above this the 

final face-centred cubic a phase is formed <173)(174).

From the above discussion of the oxygen phase systems of cerium, 

praseodymium and terbium, many similarities can be observed;

1. LnOi,7i6 appears to mark a change from body-centred cubic to 

rhombohedral structures for all systems, with the praseodymium and 

terbium phases being iso-structural.

II. At LnOi.7s rhombohedral y phases are formed for cerium and 

terbium.

III. At LnOi.sa, praseodymium is face-centred cubic in structure while 

terbium and cerium are predominantly rhombohedral.

These points demonstrate that while all three systems are generally 

similar, the phases formed by terbium and cerium are very closely 

related. This might be expected since they each have a single unpaired 

4f electron, unlike praseodymium. The oxide system for the divalent 

lanthanides show a small number of phases to be formed between LnOi. o 
and LnO,. s with europium favouring the formation of EuO,,33.
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3.4 LAHTHAKIDE CLUSTERS

3.4.1 LAHTHANUX CLUSTERS

The F.A.B. spectra of lanthanum salts exhibit a series of cluster 

peaks that correspond to the general formula t < LaO >„ 0y 1 - as first 

reported by Selbln et al. (166). These clusters show an exponential 

decrease In Intensity with increasing number of lanthanum atoms, x.

In this work the lanthanum cluster spectrum derived from lanthanum 

nitrate ( Spec. 3.4.1 ) is dominated by the mono-lanthanum series, x = 

1, with the series showing ( La 0 ) to be the most abundant species 

present with a range of y values from 1 to 5 additional oxygen atoms.

In the di- and tri-lanthanum series the cluster species containing 

one additional oxygen atom, y = 1, was the most abundant, while the 

spectrum with y = 2 dominates in the sequences, x = 4 and x = 5. This 

intensity pattern continues with the most abundant species in each 

consecutive odd series being separated by a mass difference 

corresponding to the neutral < La O )20 unit for smaller clusters up to 

the series x = 9. For the poly-lanthanum clusters following the x = 9 

series however, the existence of the even-series clusters beyond x = 9 

is limited and shows a distinct decrease in intensity relative to the 

odd cluster series,finally disappearing at x = 12. This clearly 

demonstrates even clusters to exhibit lower stabilities than the odd 

clusters in this region. The dominant species in each odd series are
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again separated by a mass equivalent to C La 0 )a 0. This behaviour 

continues up to x = 25.

After x = 25 the next reproducible species observed is 

t C La 0 >27 Ois I"-, m/z = 4423, which implies the addition of 

< La 0 >20s to the most abundant species in the x = 25 series.

Ho reproducible peaks attributable to x = 29 and 31 species have 

been detected. However

[ ( La 0 >33 0,3 I*-, m/z = 5417, was observed at a higher intensity than

the x = 27 species.

The nature of the cluster species observed over various mass 

ranges, sample conditions and matrices gives rise to clear trends which 

may infer size-dependent stabilities and structural effects. As the 

cluster sizes increase, their intensities are found to decrease in an 

exponential character, with marked odd/even alternation clearly evident. 

However some of these size-dependent effects were found to be dependent 

on the matrix present, with the presence of a matrix being observed to 

Increase the degree of formation of higher-order cluster species. This 

may be due to the matrix participating in third-body association 

reactions, with the matrix being preferentially dissociated from the 

resulting clusters, during their subsequent structural rearrangement and 

fragmentation; thus no higher-order clusters are detected containing 

matrix molecules.
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Even-numbered clusters generally have an x : y ratio of 0.5, with 

their intensities decreasing with increasing cluster size so that they 

rapidly become undetectable above x = 9.

Odd clusters however demonstrate quite different behaviour which 

gives rise to a number of distinct regions as the cluster size increases 

( Fig. 3.4.1 ). The first of these regions shows x : y to Increase from 

1 to 9 and is characterised by the steady addition of ( LaO >2 O units 

between successive members of the odd-cluster series. The next series, 

x = 9 to 25, is characterised by the separation of the observed clusters 

by masses corresponding to < La 0 >2 O units and a x : y ratio of 0.44 

to 0.48 as the stepwise incorporation of additional oxygen atoms 

continues. However between x = 25 and 27, the addition of ( La 0 >2 Os 

leads to a sudden Increase in the x s y ratio from 0.48 for x = 25 to 

0.55 for x = 27. This abrupt increase in the x ! y ratio which is 

consistent with the coordination of a larger lanthanum-oxygen moiety, 

may signify a sudden change in configuration or structural arrangement. 

The x = 27 species were also noted to have markedly lower intensities 

than the preceding cluster series, while the series in the region of 

x = 28 to 33 were detected only with difficulty. This sudden drop in 

Intensity and the absence of later members of the series would suggest 

that an abrupt drop in cluster stability occurs at x = 25, while the 

repeated detection of the x = 33 species, C < La 0)a3 Oi»]-*-, m/z = 5417, 

implies the species to exhibit an enhanced stability relative to the 

preceding clusters, and may denote the attainment of an inherently more 

stable structural arrangement.



Range in X Range in Y Increase in Y Unit added

1 - 9 1 0,1 (LaO)

9 - 25 2 1 (L a O )p

25 - 27 2 3 (L a O )p 3

27 - 33 6 4 (L a O )p 4

Fig 3.4.1 The Ranges of x and y observed for Each Successive 
Serlesfor Lanthanum-Oxygen Clusters, [(LaO)«Ov]^



An additional series of clusters was repeatedly detected at lower 

intensities than the lanthanum-oxygen clusters described above. These 

lower-intensity species were detected over the region x = 9 to 18 and 

followed the same general formulae as the above clusters, but have an 

x : y ratio of approximately 0.125. The relative intensity of these 

species was very low and showed the usual exponential decay.

The collision-induced dissociation ( CID ) of a number of 

lanthanum-oxygen clusters was carried out using argon and xenon over a 

range of collision gas pressures, with the flexicell being maintained at 

a potential of 2 kV.

The CID spectra all displayed the same basic fragmentation 

patterns. In most cases only odd cluster species were observed, with 

the even species being of low Intensity if detected at all. These were 

separated by 336 amu, indicating that fragmentation takes place via the 

sequential loss of < La 0 )a 0 units between each successive odd 

daughter cluster. However the fact that the presence of even clusters 

depends on the collision gas pressure may suggest that the 

fragmentation occurs via the sequential loss of two neutral moieties 

between odd-cluster series as opposed to the loss of a single unit.

Further investigations have suggested that the fragmentation takes 

place via the initial loss of a ( La 0 > 0 unit from the odd cluster 

followed by the spontaneous loss of < La O > from the resulting even 

cluster. This is illustrated for I ( La O >io Os 1", which is found to
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follow the fragmentation path shown in Fig. 3.4.2 at 20 % transmission 

using argon as the collision gas < Spec. 3.4.2 >.

Thus the fragmentation of the lanthanum-oxygen clusters may occur 

via two possible dissociation pathways. At low collision gas pressures 

the sequential loss occurs of < La O )a O moieties from each successive 

odd daughter-cluster. Under the multiple—collision regime occurring at 

higher pressures, the lower-energy pathway involving the formation of an 

intermediate even cluster plays a more significant role, with the 

energetically-labile even cluster undergoing colllslonal stabllzatlon, 

For example;

Fig. 3.4.2

t ( La 0 )a Od 1 — — ■ Ra -----^ [ ( La 0 )e Oa ]

Ra

■---------  R,-----> [ ( U  0 >7 Oa )*

At low colllslonal gas pressures R, is equal to R2, since the 

resulting even clusters are formed with energies above their 

dissociation thresholds. However at higher pressures Ra decreases as 

C < La 0 >e Oa J* becomes increasingly colllsionally stabllzed.

The CID data combined with those from the high mass spectra of the 

lanthanum-oxygen clusters show odd clusters to be of higher stability
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than their neighbouring even clusters throughout the mass range studied. 

This is clearly demonstrated by the CID spectra. In addition the mass 

spectral data also suggest that 'magic-number' clusters of enhanced 

stability exist at x = 9, 25 and 33.

3.4.2 CERIUM CLUSTERS

The clusters formed by cerium were found to fit the general formula 

I ( Ce 0 )« Oy )*, with all the clusters observed existing as mono­

positive ions.

The spectra studied showed the presence of both odd and even 

cluster species, with the intensities of both decaying in a similar 

exponential manner and with each series of a given x value containing a 

number of clusters corresponding to a range of y values. This range of 

y values was found to decrease with increasing cluster size as measured 

by x.

The mono-cerium series, x = 1, displayed y values between 0 and 6, 

with Ce CT ( m/z = 156 ) being the dominant species observed, regardless 

of the nature or conditions of the matrix.

For the di- and tri-cerium clusters, the species containing one 

additional oxygen atom was found to be the most abundant, that is 

»/, = 328 and 484 respectively, while the x = 4 and 5 series showed 

clusters featuring y = 2 to be dominant. The y values increased further

to y = 3 for the series with x = 6.
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However the x = 7 series showed the cluster species 

[ ( Ce 0 >7 Oa m/z = 1140, and C < Ce 0 >r O* >-, m/z = 1172, to be

of higher intensity than the other clusters of the series. Similar 

behaviour was also displayed by the x = 8 series with the y = 3 and 6/7 

species showing higher relative intensities. The x = 9 cluster series 

showed a wide range of y values, i.e. with y = 0 to 9, with the y = 8 

species being the dominant, and the y = 4 species also showing enhanced 

intensities.

This pattern of behaviour continues for the x = 10 to 14 cluster 

series, with the more abundant clusters of each series steadily 

becoming more oxygenated as x Increases. At x = 15 however a further 

series of less oxygenated clusters was observed, with Intense peafcs 

being observed corresponding to y = 2/3, 7 and 13/14. For clusters of 

higher x value than x = 15, these three series were found to continue, 

gradually Increasing in oxygen content, y, with successive values of x. 

Evidence of slight odd/even alternation was also found.

The cluster intensity pattern became non-reproducible after x = 21, 

apart from the x = 26 species C ( Ce O )2S Oio 1* and 

C ( Ce 0 ) »  O n  1*

A graphical representation of the y values of the most Intense 
species from each sequence against their corresponding x values, Fig. 

3.5.8 , shows the existence of a simple linear relationship between x 

and y, similar to that shown by lanthanum clusters, for x up to
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approximately 15. After x = 15 this regular distribution splits to 

produce four neaz parallel sequences of cluster series.

3.4.4 PRASEODYMIUM CLUSTERS

In low-mass studies of the effects of different matrices and co­

solvents on the cluster formation and spectral intensities of 

praseodymium clusters, the < Pr 0 >~ ion, m/z = 157, was found to be the 

most abundant ion in all cases, with < Pr 0 ) 0.*- also being found 

prominent for all matrices.

The spectra for higher-order cluster series show similar trends 

with different matrices, but the Intensities of each cluster ion present 

are strongly dependent on the nature of the matrix and co-solvent 

present. Generally matrices containing dimethyl sulphoxlde ( DMSO ) 

produced higher cluster yields while glycerol suppressed cluster 

formation. However the major problem with the use of samples containing 

DMSO-based matrices is one of spectral domination by matrix ions and 

adducts, resulting in the masking of much spectral information. The 

presence of sulpholane as a matrix, however, not only promoted cluster 

ion formation but also gave spectra almost free of matrix peaks and 

adducts.

Experiments carried out concerning the amount of matrix needed to 

provide reproducible spectral peaks of adequate lifetime also 

demonstrated sulpholane to be ideally suited, with samples being

1 2 4
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rejuvenated by the subsequent addition of further sulpholane. The 

addition of dilute nitric acid to the sample in many cases Increased the 

ion yields of the lower-mass clusters and enhanced their stabilities.

The cluster spectrum for praseodymium shows marked odd/even 

alternation, from the x = 3 series onward, with even clusterso V
conslstently being between 30% and 50% the Intensity of neighbouring

A
odd clusters of the same y value. However discrepancies are observed 

for the clusters [ < Pr 0 )22 O n  1* and C ( Pr 0 >23 O n  l"*, and 

C C Pr 0 >34 O n  I* and [ < Pr 0 >3e Oi -r i*, which feature abrupt drops 

in the relative intensities of the corresponding odd clusters.

In addition to this odd/even alternation, a plot of the number of 

'additional' oxygen atoms present, y, against the number of praseodymium 

atoms present, x, in C ( Pr O )» Oy J* gives a straight line of 

gradient approximatly 0.5. This shows that one additional oxygen atom 

is incorporated for every two < Pr 0 > units; this can clearly be seen 

from the species detected, with each successive even cluster being 

accompanied by the addition of one extra oxygen atom. The data suggest 

the formation of odd clusters to be relatively favoured compared with 

even clusters, with the even clusters requiring additional oxygen atoms 

in order to stabllze their structures.

The CID spectra show the fragmentation to result preferentially in 

odd clusters, with the fragment ions displaying notable odd/even 

alternation. At low collision gas pressures the fragmentation only 

yielded odd clusters, but as the collision gas pressure was Increased
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even clusters were also detected. Under multiple-collision conditions 

the fragmentation pattern clearly demonstrated odd daughter-clusters to 

dissociate by the loss of neutral ( PrO ) units while even clusters lost 

neutral ( PrO > 0 moieties, Spec. 3.4.6.

Thus C1D studies show even clusters to need additional oxygen atoms 

to stabilize their structures. The effect of Increasing collision-gas 

pressure on the observed dissociation patterns suggests that similar 

fragmentation reactions to those shown by lanthanum clusters are taking 

place. These involve the presence of two possible dissociation pathways 

in which even clusters undergo collislonal stabllzation under multiple- 

collision conditions. In addition the enhanced stability of the odd 

clusters gives an explanation for the marked odd/even alternation 

observed in the cluster spectrum.

12 9



3.4.4 SAMARIUM CLUSTERS

Samarium exists as a series of seven natural isotopes, the mass of 

the most abundant being 151.9 amu at 26.63*. The isotopic splitting 

pattern was studied for each successive cluster series and recorded 

using a number of matrices. For all matrices, substantial amounts of 

adduct formation took place. Sulpholane was found to yield the most 

stable and reproducible splitting pattern, which showed a direct 

relationship in Intensity to the natural abundances ( table 3.4.1 >.

Similar behaviour was also found for the ( Sm 0 >»* and ( Sm 0 >2 

0~ clusters, the distribution patterns of which overlap, with the mass 

spectra recorded showing close similarities to those calculated from 

Isotope abundances assuming the statistical mixing of isotopes 

< spec. 3.4.7 ). This 6hows cluster formation to be independent of the 

Isotopes present, with the 'average' detected samarium peak approaching 

the value of the relative atomic mass as the cluster size increases.

The mass spectra, apart from showing substantial amounts of matrix 

adduct formation, also yielded a number of samarium-oxygen cluster 

series. These clusters followed the general formula t < Sm 0 >~ 0y 3*. 

with clusters up to x = 23 being recorded ( spec. 3.4.6 >.

The mass spectrum was dominated by ( Sm 0 >■*, m/z - 167. The other 

clusters showed an exponential decay in intensity which was interrupted 

by the x » 9 series, which displayed a uncommonly high relative 

intensity, in addition, a step in intensity was observed at x = 15.



Isotope % Nat. abundance % InL reference

143.9 3.16 3.59

146.9 15.07 16.18

147.9 11.27 12.18

148.9 13.84 14.48

149.9 7.47 7.83

151.9 26.63 25.21

153.9 22.53 20.40

Tabl 3.4.1 A Comparison Between the % natural Abundances of Samarium 
Isotopes and Their Relative Intensities as Detected



Spec 3.4.7 The Isotopic Distribution From Mass Spectral Data
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These abrupt intensity changes nay nark structural changes or the 

positions of magic numbers. Striking odd/even alternation is also 

present, with the odd x-value species displaying enhanced intensities 

and the data suggesting that the extra oxygen atoms are accommodated by 

even clusters in a similar manner to that demonstrated by praseodymium 

clusters.

1 3 4



3.4.5 EUROPIUM CLUSTERS

Atomic europium has one electron occupying each of its 4f 

subshells, leading to many differences in its chemistry from that of the 

other lanthanides, and also an extensive photochemistry. Europium 

exists as two natural Isotopes, of nearly equal natural abundance, which 

can be clearly distinguished in lower mass clusters and show relative 

intensities near to those expected from their abundances.

X Natural abundance X Internal Referance

' B1 Eu 47.82 48.2

1B2Eu 52.19 51.7

For higher mass clusters however, the isotopic distribution becomes 

disperse and statistical mixing leads to europium being best described 

by its relative atomic mass.

The mass spectra of europium salts were studied using a range of 

matrices, and showed the same basic cluster distribution pattern with 

the clusters being described by the general formula [( Eu 0 )» 0V 1 “,

< spec. 3.4.9 >.

The monoeuropium cluster series was, like the mass spectrum, 

dominated by the < Eu 0 )- ion. The [ ( Bu O ) O4 l4 species was also

found to display an increased relative Intensity in the presence of a 

sulpholane matrix. The bieuropium series showed the y = 0 peak to be

the most Intense, while the trieuropium series displayed a range of y
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values from -3 to +1 with the most intense species being the y = 0/1.

The x = 4 series showed a similar range in y with the dominant species 

being observed at y = 0. For x = 5 a range of y values from 0 to 2 was 

observed with 1 and 2 being found to be the most intense, while the 

x = 6 series was dominated by the y = 3 species. This Increase in the 

number of additional oxygen atoms present in the most abundant species 

of each subsequent x series was found to continue slowly. However this 

increase is non-uniform with the dominant peaks for the x = 4, 9, 12, 15 

and 20 series being observed to occur for clusters containing one less 

additional oxygen atom than the overall trend. These abnormalities 

occur however in the region of abnormal spectral intensities, with an 

abrupt decreases in spectral intensity being observed at x = 3, 10, 15, 

20. In the region x = 10 to 20 there is also evidence of even/odd 

alternation.

The behaviour exhibited by the europium- oxygen clusters has no 

parallel in the cluster chemistry shown by the other lanthanides and may 

be a result of the electronic structure of europium.

The CID spectra for europium were difficult to reproduce, with the 

incident beam intensities proving to be stable only over a narrow range 

of sample conditions of temperature and matrix content. The fragment 

clusters generally showed low relative intensities, with the range of y 

values present in each cluster series increasing with increasing 

collision gas pressure. Higher collision gas pressures were found to 

produce cluster series with lower y values.

1 3 7



The CID epecra studied displayed fragmentation patterns that 

differed significantly from those found for lanthanum and praseodymium 

clusters, with the levels of additional oxygen atoms being reduced 

rapidly with each successive fragmentation. Thl6 usually occurred by 

the loss of neutral < Eu 0 ) 0 units from both odd and even clusters to 

form cluster species of the type < Eu 0 Generally odd clusters

showed a larger range of y values for fragment clusters with 

C ( Eu 0 )■ Oi 3*. and [ < Eu 0 )» 0 1* is often found to be present, 

suggesting an enhanced stability for these species.



3.4.6 TERBIUM CLUSTERS

Terbium clusters were very readily farmed under all matrix 

conditions. The spectrum shows the cluster intensities to decrease 

rapidly and exponentially with Increasing cluster size < spec. 3.4.10 ). 

The clusters adhere to the general formula t < Tb O >« Oy ]- and 

display marked odd/even alternation.

A plot of y against x shows each successive even cluster usually to 

accommodate one additional oxygen atom, with the rate of take-up of 

additional oxygen atoms being found to be similar to that shown by 

praseodymium clusters.

1 3 9
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3.4.7 HOLMIUM CLUSTERS

The mass spectrum for holmium nitrate shows the presence of a 

series of clusters of general formula [ ( Ho 0 ), Oy ]* extending to

very high masses. These clusters show a slow, exponential-type decay in 

their intensities as well as definite odd/even alteration, with the 

intensities of the even cluster peaks being generally between 30% to 50% 

of the preceding odd clusters ( spec. 3.4.11 ).

Each cluster series shows only a limited range of y values, with 

each successive even-x cluster being observed to accommodate one 

additional oxygen atom. This is clearly demonstrated in their spectra.. 

Thus the rate of addition of additional oxygens to these clusters is 

equal to that found for lanthanum. However this uniform sequence 

displays an abnormality with the coordination of three additional oxygen 

atoms occurring between x = 19 and 23; furthermore the intensity of the 

even-series clusters drops suddenly after the slightly-increased 

intensity of the C < Ho 0 >22 O 12 I"- species. This suggests that the x 

= 21 series may be of higher relative stability, reducing the rate at 

which the x = 22 series clusters undergoes dissociation or 

fragmentation. Hence the increased number of additional oxygen atoms 

present may confer stability on the higher-mass clusters.

The rate at which y uniformly increases with respect to x after 

x = 21 is seen to be the same as before this step, with the most 

abundant species of each odd-cluster series observed containing one 

extra 'additional* oxygen atom.
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The CID spectra for holmium clusters showed the clusters to undergo 

the sequential loss of ( Ho 0 >2 O units between odd clusters, with even 

clusters being observed at higher collision gas pressures In a similar 

way to that displayed by lanthanum and praseodymium.
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3.5 DISCUSIOB OF RESULTS

3.5.1 PRASEODYMIUM AMD TERBIUM CLUSTERS

The cluster spectra and CID spectra for praseodymium and terbium 

clusters are very similar and show what would seem to be ideal behaviour 

for lanthanide oxide clusters, with the most intense clusters detected 

in these spectra, over a range of matrix conditions, featuring identical 

for values x and y.

For both metals, a plot of the number of additional oxygen atoms 

present, y, against the number of metal atoms in the cluster, x, gives 

linear relationships described by the equations

Y = 0.5X - 0.5 Eqn. 3.1

for the more intense odd clusters and

Y = 0.5X Eqn. 3.2

for the even clusters < Fig. 3.5.1 >. These equations clearly 

demonstrate that even clusters Incorporate additional oxygen atoms 

rather than odd clusters. The equation for even clusters also shows the 

ratio of metal-to-oxygen atoms present in the cluster, z, to be equal to 

z * 1.5 and hence correspond to the formation of LnaOa. This is also 

demonstrated by a plot of z against x, in which even clusters are found

1 4 4
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to display a constant value of z = 1.5, Independent of the number of 

metal atoms present, ( Fig. 3.5.2 > Vhile odd clusters are observed to 

display a nonlinear relationship, with the z values being seen to tend 

towords z = 1.5 at x = “>. In a plot of z against 1/x ,however, odd 

clusters are observed to show a linear Increase with cluster size and 

make an intercept with the y axis at z = 1.5 when x = «>, while even 

clusters display a constant z = 1.5 value, < Fig. 3.5.3 ). This 

relationship between the z values for odd clusters and their respective 

x values can be described by the equation

z = -0.5/x + 1.5 Eqn. 3.3

Hence the data shows both praseodymium and terbium to form clusters 

which have a tendency to form atomic combinations similar to that of the 

stable lanthanide oxide, Ln203.

In the case of even clusters, species corresponding to this formula 

are readily formed for x >2. However in the case of their neighbouring 

odd clusters, which are of higher Intensity, the z ratio only reaches 

z = 1.5 at large values of x. This suggests that the structures and 

stoichiometries adopted by these clusters relate directly to the 

dominant Ln^Os phase from very low x values, with the more stable 

structures being formed by the odd x value clusters.
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3.5.2 LAHTHAHUM CLUSTERS

The clusters formed by lanthanum showed a pattern of oxygen uptake 

roughly similar to praseodymium- and terbium-oxygen clusters, however a 

discontinuity in the oxygen content of the clusters occurs in the 

region of x = 10. This can be clearly observed In a plot of additional 

oxygen content y of the most intense species from each cluster series 

against their respective x values. Here the linear plots can be 

described by the equation

Y - 0.5X - 0.5 for odd clusters Eqn. 3.4

Y = 0.5X for even clusters Eqn. 3.5

However in the region of x = 8, y = 4 ,  a sudden Increase in the oxygen 

content of the clusters occurrs up to x = 10, y = 6, followed by a 

plateau region over which y remains constant. This plateau region 

extends to x = 12, with larger clusters again being described by the 

above equations. This behaviour does not extend beyond x = 25 after 

which no regular pattern is readily observed.

A graph of the lanthanum : oxygen atom ratio, z, against 1/x gives 

rise to two linear plots. For the even clusters the z values are 

observed to display a constant value of z * 1.5, which is independent of 

cluster size < Fig. 3.5.5 ). Odd clusters however are seen to show a 

gradual increase in z with increasing size, the relationship between z 

and x being described by the equation

1 4 9
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La :0Species L a :0  Species La:0  ’ Species

Lao 1-000 L* % :06 1-600 Laß-, 9 09 1 -473

LaO 2 0 1-500 La°n 0 6 1-543 LaO20 °10 1 • 5 00.

LaO 3 0 1-330 LaO 12 0 6 1-500 La°2i O10 1- 476

LaO ̂ °2 1-500 La°i3 0 6 1-461 L aO 2 2 °i 1 1-500

LaO °2 1-400 La014°7
1-500 La023 °11

1-478

La06 °3 1-500 La°i5 0 ? 1-466
La025 °12

1 • 480

LaO? °3 1-426 La016°8 1-50 0 La027 0 15 1- 550

LaOg 1-500 La017 Og 1-470 La033 °19 1-575

LaO g °5 1-5 55 La018°9 1-500

The most intense clusters from each series.

La : 0 

WHf

1-400 i »  l ~ i---------- r -i ---------- r
8 *10 'll 14 16 18 '20 22 24 26 28 '30 32

Fig 3.5.5 A 
La

Graphical Representatl 
I Ratio with x.
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when x i 7 and x > 13. In the region 8 i x i 12 a sharp peak Is 

observed to occur, centred on x = 10, the lower x-value edge of which 

can be extrapolated to z = 2 at x = », i.e.

z = -4.0/x + 2 Eqn. 3.7

This may denote the formation of a structural arrangement of higher 

stability and/or the possible existence of structural isomers. Although 

no direct significance could be given to the anomalous x = 33 species, 

the increased additional oxygen content of the x = 27 peak is likely to 

be due to the x = 25 cluster having a structurally stable arrangement.

z = -0.5/x + 1.5 Eqn. 3.6

3.5.3 HOLMIUM CLUSTERS

The oxygen content of holmium clusters shows an abrupt Increase in 

the region of x = 20 holmium atoms. The presence of this step can be 

clearly observed in a graphical plot of y against x , ( Fig. 3.5.6 ).

This shows two linear plots of equal gradient on either side of the 

x = 20 steps the clusters with x < 20 can be described by the equation

Y = 0.5X - 0.5 Eqn. 3.8

while clusters with x i 20 are described by the equation

152



Fig 3.5.6 The Variation in Additional Oxygen Atom Content with 
Cluster size for Holmium.
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Y 0.5X + 0.5 Eqn, 3.9

These correspond to HosaO^T-.s and HoaaChts.s respectively.

The existence of these is further demonstrated by a plot of the 

Ho ! 0 ratio, z, against 1/x, Fig. 3.5.7. This gives rise to three 

lines all converging at z = 1.5 as x -» ». The plot for the even 

clusters shows a constant z = 1.5 value and stops abruptly at x = 18. 

For odd clusters with x < 19, the cluster metal : oxygen atom ratio, z, 

is found to gradually increase in a similar manner to that displayed by 

praseodymium and terbium, however at x i 21 the metal : oxygen atom 

ratio, z, is observed to undergo a sudden Increase before slowly 

decreasing in value, tending towards z = 1.5 as the cluster size 

increases. The linear plots obtained for the odd clusters can be 

expressed by the equations

z = -0.5/x + 1.5, x < 19 Eqn. 3.10

z = 0.47/x + 1.5, x > 21 Eqn. 3.11

which represent H032CU7 . s and HoaaOu. • respectively.

That all these three plots tend to z = 1.5 at high values of x 

demonstrates the dominant trend to form the stoichiometry LnaOs. The 

abrupt increase in the cluster metal : oxygen atom ratio in the region 

of x = 20 and the abnormally high spectral Intensity of x = 21 cluster 

series suggest x * 21 clusters have enhanced stabilities relative to

1 5 4





neighbouring cluster series, with the additional oxygen atoms being 

accommodated to allow the clusters to adopt more stable structural 

arrangements. This may mark the completion of a structural shell, with 

additional units only being added in the form of H02Q3, hence x remains 

odd.

3.5.4 CERIUM CLUSTERS

In the case of cerium, the cluster spectrum shows the species 

present to become significantly different from those observed for the 

other lanthanide metals with increasing cluster size. This is clearly 

demonstrated by a plot of y against x for cerium clusters, Fig. 3.5.8.

In this plot two principal regions are observed; in the first, x <7, the 

clusters are seen to strongly resemble those observed for the other 

lanthanide metals. These clusters correspond to line 1 and can be 

described by the linear equation

Line 1 Y = 0.5X + 0 . 2 5  Eqn. 3.12

In the second principal region, x i 8, the dominant species are found to 

give rise to a series of linear relationships at successively higher x 

values. These plots are all of equal gradient and hence intercept the x 

axis at increasingly higher x values. These plots can be described by 

the linear equations

1 5 6



Fig 3.5.8 A Graphical Representation of the Variation in Additional 
Oxygen Atom Contents, y, with cluster size, x.
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Line 2 Y

Line 3 Y

Line 4 Y

Line 5 Y

X 1 Eqn. 3. 13
X 5 Eqn. 3. 14
X 8 Eqn. 3. 15
X 12 Eqn. 3. 16

The equal gradients of the multiple plots of the latter region suggests 

that they are 6trongly related, while corresponding to different 
structural forms.

Similar behaviour is also found in plots of the cerium : oxygen 

atom ratio, z, against 1/x for these clusters, < Fig. 3.5.9 ). These 

plots again show the presence of two distinct regions. The first of 

these regions represents the smaller clusters containing up to seven 

cerium atoms in which even x-clusters display a constant z = 1.5 value, 

while the z values for odd clusters show a slow Increase with Increasing 

x value so that z -* 1.5 when x -* «. The relationship between the metal 

: oxgyen atom ratio and cluster size can be described by the equation

s
Line 1 Z = -0.5/x + 1.5 Eqn. 3.17

This indicates that small cerium-oxide clusters prefer a LnjO-j 

stoichiometry, as shown by other lanthanide oxides.

In the second region, when x )8, the linear plots are found to 

converge at z * 2 when x -* w. These plot6 may denote the existence of a 

number of related stable clusters, with the relationship between their

1 5 8
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cerium : oxygen atom ratios and cluster size being expressed by the 
equations

Line 2 Z = -1/x + 2 Eqn. 3. 18
Line 3 Z = -5/x + 2 Eqn. 3. 19
Line 4 z = -8.6/x + 2. 04 Eqn. 3.20
Line 5 z = -11.2/x + 1.95 Eqn. 3.21

This shows these cluster series to tend towards Ln^Os stoichiometry,

which suggests that these clusters are able to attain a number of

structural configurations with increasing cluster size, x )8, each 

tending ultimately to the same stoichiometry.

In the case of cerium, parallels can be drawn between each of these 

plots and the dominant cerium oxide phases described by Bevan (168).

For the clusters x < 7, even clusters show stoichiometries described by 

CeaaCUe while odd clusters are described by CeaaCUrT.*. These correspond 

to the CeszCUe phase reported by Bevan and others to have a lanthanide 

A-type, hexagonal structure. For clusters with x > 8, the z-ratio 

distribution for the various cluster series described above show close 

agreement with those of the four most stable higher oxide phases,

C Fig. 3.5.10 >.

160



Fig 3.5.10 The Cerium : Oxygen System, CeaaOy'.
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Cluster z ratio Phase Cerium : Oxygen ratioStructure

line 2 1.968 a 1.821 - 2 FCC
line 3 1.843 0 1.792 - 1.947 Rhomb.
llne4 1.75 - 1.77 V 1.740 - 1.785 Rhomb.
line 5 1.57 - 1.63 C-Type 1.569 - 1.704 BCC

This suggests that the cerium oxide clusters formed during fast atom 

bombardment are related to known oxide phases and hence assume the same 

structural arrangements, with the plots 2, 3 ,4 and 5 representing the 

changeover between body-centred cubic and face-centred cubic structures.

3.5.5 EUROPIUM CLUSTERS

The data for europium clusters are very complex with no readily 

recognisable patterns being apparent. The distribution of the spectral 

intensities for the major cluster species in each cluster series 

decreases with increasing cluster size, with increased relative 

intensities being observed at x = 3, 7, 10, 15 and 20 followed by an 

abrupt drop in intensity, ( Fig. 3.5.11a >.

In a plot of the 'additional' oxygen atom content, y, against 

cluster size, x, an irregular increase in y with increasing x is found 

while approximate plateau regions are observed in the regions of x = 3, 

7, 11, 19 and 23. These points are related by the linear equation

1 6 2



b) The Change in Additional Oxygen Atom Content with 
Increasing Cluster Size.
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Y 0.5X + 0.5 Eqn. 3.22

a subsidiary maximum was also observed at x = 14, < Fig- 3.5.11b >.

These plateau regions align rather closely with the positions of 

the maxima in the relative intensities. This suggests that, as the 

cluster size Increases, structural considerations strongly Influence the 

value of y displayed and hence their relative intensities. Clusters 

exhibiting increased intensities, reflecting their more stable 

character, were found to involve the incorporation of larger numbers of 

additional oxygen atoms.

A plot of the europium : oxygen atom ratio, z, against 1/x,

< Fig. 3.5.12 ), features a complex relationship for odd clusters, while 

even clusters exhibit a constant value of z = 1.5. For the odd clusters 

with x ( 5 a linear Increase in z is observed as cluster size increases; 

this can be described by the equation

z = -0.5/x + 1.5 Eqn. 3.23

However for larger odd clusters, x ) 7, z is found to show a marked 

variation with increasing cluster size. This variation takes the form
Vof a<noscllatlon with the clusters corresponding to x = 5 + 4n lying on 

the same line as x = 5, while the clusters x = 7 + 4n lie on the line

z = 0.5/x + 1.5 Eqn. 3.24
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with the exception of x = 9 and 15 which correspond to

z -1.5/x + 1.5 Eqn. 3.25

The above three equations all show the europium : oxygen atom ratio to 

be equal to z = 1.5 for larger cluster sizes. This in turn suggests the 

ultimate formation of LnsOa stoichiometries when increasing numbers of 

cluster units associate. The most intense species corresponding to 

x - 9 and 15 have been found to contain fewer additional oxygen atoms 

and mark the positions of abnormalities in the intensity of the cluster 

spectrum of europium. This strongly suggests that these clusters mark 

the attainment of structural arrangements of enhanced stability.

3.5.6 SAMARIUM CLUSTERS

A plot of additional oxygen atom content, y, against cluster size, 

x i 23, for the more intense clusters of samarium gives rise to a number 

of distinct linear regions for both odd and even clusters,

< Fig. 3.5.13 >. The odd clusters were found to follow a plot of

over the whole range of x values recorded, with an additional plot also 

being observed for 5 ( x ( 15 which corresponds to

y 0. 5X 0.5 Eqn. 3.26

Y 0. 5X 1.5 Eqn. 3.27
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This suggests that odd clusters can exist in forms with a lower oxygen 

content up to x = 15, after which the former series is the more 

populated and hence of higher stability.

Even clusters however are found to show a number of distinct linear 

relationships which are dependent on cluster size. Clusters were 

initially observed to follow a

Y = 0.5X - 1 Eqn. 3.28

relationship for x < 10, then an abrupt Increase in additional oxygen 

atom content results in the detection of clusters with formulae 

consistent with the equation

Y = 0.5X Eqn, 3.29

At x = 15 however, the even clusters are found to revert to the 

relationship for x < 10.

Evidence of even clusters of higher oxygen atom content for 

4 < x i 12 is also present, with the x = 4 and 6 clusters following the 

line

Y = 0.5x + 2

while the clusters 6 < x < 12 correspond to

Eqn. 3.30
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Y 0.5x + 1 Eqn. 3.31

Hence even clusters can be seen to exist in several distinct size-

dependent regions. These are x < 6, 6 ( x ( 12, 10 < x ( 18 and 16 < x

with the series of lower oxygen content observed for x < 10 being 

consistent with the 16 i x cluster series.

Similar trends can also be observed in a plot of the samarium :

oxygen atom content, z, against 1/x, < Fig. 3.5.14 ), in which all the

clusters are seen to lie on lines radiating from z = 1.5 at 1/x = 0, 

that is x = Thus clusters tend progressively towards the formation

of LnzOa as cluster size increases. Various size-dependent 

abnormalities are present, centred approxiniatly on the regions x = 6,

10, 15, and 19, at which abrupt changes in samarium : oxygen atom ratio 

occur between neighbouring x-values.

The above graphs show the most distinct ranges in cluster:oxygen 

content to occur in the region of x = 10 and 15 which correlates with 

the size-dependent intensity and the abnormalities in the metal : oxygen 

atom ratio observed in the cluster spectrum for europium. This 

suggests that structural changes occur at these cluster sizes for these 

closely related lanthanide metals, with the increased intensities of a 

number of cluster species reflecting their enhanced stabilities.
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3.6 COHCLUSIOHS

The clusters observed for the lanthanide metals, although showing 

In some cases distinct behavioural Influences, are found to display a 

number of similar trends over the range of cluster sizes studied. This 

Is clearly demonstrated by the tendency of clusters to form atomic 

arrangements corresponding to Ln20i stoichiometries for all the 

lanthanide elements studied, over all or part of the cluster size range. 

This trend is consistent with the major lanthanide oxide found in the 

bulk phase and demonstrates the influence of bulk phase phemomena on 

small clusters. Other similarities between the clusters of the 

different lanthanide metals are found In the similar positions of some 

spectral abnormalities.

The cluster spectra obtained from most lanthanide metals display 

odd clusters which can be described by

z = ± 0.5/x + 1.5 Eqn. 3.32

with the negative gradient being predominant. This behaviour Is clearly 

shown by clusters based on praseodymium and terbium, whose even clusters 

display a constant ratio of z » 1.5 . However the odd clusters of these 

metal6 are observed to exhibit metal : oxygen atom ratios which are 

Blgnlficantly lower than their neighbouring even clusters. The rate at 

which the z ratio for the odd clusters Is found to increase to z = 1.5
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Is the sane for both metals and the other lanthanide metals studied to

at least x = 9.

Other similarities are also found to exist between various 

lanthanide metals and these generally occur in the region of x = 10, 15 

and 20. In the cluster spectrum of europium, intensity abnormalities in 

these regions are observed to coincide with the onset of plateau regions 

in the uptake of additional oxygen atoms and hence correspond to abrupt 

changes in the z ratios of these clusters. This behaviour is more 

abrupt for samarium clusters which show sudden changes in their z ratio 

over limited cluster size ranges. This is clearly demonstrated near 

x = 15, with both odd and even clusters showing marked changes in metal 

: oxygen atom ratios for x > 15. Both europium and samarium exhibit odd 

clusters corresponding to the relationship

z = -1.5/x + 1.5 Eqn. 3.33

for selected x values for x < 15.

The clusters observed for lanthanlum and holmlum are also found to 

show abnormalities in intensity. In the case of the lanthanum-oxygen 

clusters a sudden Increase in oxygen atom content for clusters in the 

region of 9 i x < 11 is found. This peak is centred on the x = 10 

cluster, which has the highest z ratio. The cluster spectrum for 

lanthanum is also observed to show an drop in intensity for the peak 

region and an Increase in intensity for x = 19; however no abnormality 

in intensity is found at x = 15. Holmlum clusters however show the

1 7 2



x = 21 cluster to be of enhanced stability and to coincide with a marked 

change in z ratio, with clusters of higher oxygen content being formed 

at x > 21. For cerium clusters, the initial sequence, 1, is found to 

intercept plots 2, 3, 4 and 5 in the regions of x = 1, 9, 15 and 20 

respectively.

In addition to the relative positions of the various spectral 

abnormalities observed, the upper detection limit for many clusters was 

found to be x = 23, with few larger clusters being detected. This may 

also mark the position of a barrier to cluster stability.

The presence of intense clusters containing lower oxygen atom 

contents in the spectra of europium and samarium may reflect their 

ability to form divalent ions and thus relate to phases with x < 1.5 

formed in the solid state. Hence the clusters corresponding to the line

z = -1.5/x + 1.5 Eqn. 3.34

may be due to the known solid state phase ̂ naO», z = 1.333.

In the case of cerium, which readily forms stable Ce-*̂  ions, close 

parallels can be drawn between the more Intense clusters observed and a 

number of phases present in the solid state cerium-oxygen phase system 

described by Bevan <168). These similarities can be found over a range 

of cluster sizes and reflect the stoichiometries of the more stable 

phases formed in the region z = 1.5 to 2. These limits in the cerium : 

oxygen atom ratio reflect the formation of CeaOa and Ce02 respectively.
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Although the oxide systems for praseodymium and terbium closely 

relate to that of cerium, the much reduced availability of the Ln2'*' 

state for these metals Is probably reflected In their lack of formation 

of higher-order oxide phases.

The various relationships described above between the metal !

oxygen atom ratios, z, and the number of metal atoms present, x, in the

corresponding clusters for the lanthanide metal6 investigated are all of 

a similar format and can be described by the general formula

z = 1.5 - C 3x - 2(x + y) ] 0.5/x Eqn. 3.35

in which y is the number of additional oxygen atoms present in each 

cluster containing x metal atoms. This equation assumes the presence of 

Ln3* metal ions and 02- as the principal oxidation states exhibited.

This is seen to be true in the case of praseodymium and terbium, with a

perfect correlation being found to exist between experimental and 

calculated data. For the lanthanide metals in which additional 

oxidation states are available, however, relationships exist which

- C 3x - 2<x + y> 1 > + 1 or < - 1 Eqn. 3.36

suggest that these clusters contain mixed oxidation states. This in 

turn fits the data for the cerium-oxygen clusters if allowances are made 

for the presence of Ce2'"", and Eu2"- and Sm22 for europium and samarium 

respectively.
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From Eqn. 3.35, an explanation for the presence of odd / even 

alternation can be deduced. For even clusters

C 3x - 2<x + y> ] = 0  Eqn. 3.37

and consequently z = 1.5, hence neutral clusters should have no unpaired 

electrons. This In turn suggests that monoposltlvely charged even 

clusters have a odd number of electrons, so are less stable due to the 

presence of the unpaired electron. In the case of clusters containing 

odd numbers of metal atoms, positively charged clusters would have even 

electron counts and hence enhanced stabilities. Similar behaviour Is 

found for clusters of silver and related metals (106)<107).

In this investigation, the presence of various structural forms 

have been observed for a number of lanthanide metal oxide clusters.

These are most clearly displayed by the different cluster relationships 

observed for cerium. This is a consequence of the availability of the 

+4 state and contrasts with the behaviour displayed by praseodymium and 

terbium oxide clusters despite the close similarities in their oxide

phase systems. This can be viewed by considering the relative energies
/and interactions between the potential energy hypersurfaces for the 

various possible cluster geometries.

In the case of the less complex cluster sequences, for example 

those exhibited by praseodymium and terbium oxide clusters, the odd 

clusters are observed to be the dominant species over the size range 

studied. This infers that these clusters are energetically more stable
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Fig 3.6.1 The Potential Energy Surface for Structure Si with 
Increasing Cluster Size

Fig 3.6.2 The Variation in the Potential Energy Surfaces for
Structures Si and S2 with Increasing Cluster Size, x.



than the even clusters In the same system; this however may be a 

consequence of their electronic structures. The structural arrangement 

adopted in both cases is the same and hence described by a single 

potential energy curve, < Fig. 3.6.1 ). The position of the energy 

minimum for this curve has been shown by laser excitation experiments 

conducted on other cluster systems to depend on the conditions of 

cluster formation.

As the cluster energy Increases, the average binding energy of each 

constituent cluster unit decreases, while the number of degrees of 

freedom through which excess energy may be dissipated Increases with 

cluster size. Hence at higher energies it becomes possible for clusters 

to undergo rearrangement to more energetically favourable structures,

with the level to which higher energy forms are adopted being dependent
<X

on the differences in energy between the two possible formsydnd the 

range of cluster sizes, x. for which these structures are more 

favourable, that is the extent of crossing of their relative potential 

energy hypersurfaces. In ( Fig. 3.6.2 ) the variation in the potential 

energy surfaces for structures S, and S3 with increasing x are 

described. Small clusters would be expected to exist in the more 

energetically favourable structure Si. As cluster size increases x -* 

xi, the relative energies of successive clusters Increase, so that at x 

= xi it becomes energetically favourable for the cluster to adopt 

structure S3 as x Increases. This may account for the sudden Increase 

in metal : oxygen atom ratio of x • 20 observed for holmlum.
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However if at a higher x value, x2| structure Si may again occur at 

a lower energy, resulting in the clusters again assuming structure S2 . 

This may be detected by the presence of a sharp discontinuity in the 

metal : oxygen atom ratio over a limited cluster size range, similar to 

that observed in the cluster spectrum of lanthanum in the region of 

x = 10.

This basic energy level model can be extended to describe the 

relative energies of the various phases found in the cerium-oxygen 

system, ( Fig. 3.5.8 >. While cerium oxide clusters are observed to 

behave like those of praseodymium and terbium oxide at small values of x 

(1); the cerium oxide clusters are also seen to have another possible 

structural form (2) which is adopted only at x j 7. This suggests that 

although clusters x < 7 are able to exist in both these forms, form 1 is 

more energetically stable. These forms are considered to correspond to 

A-type and face centred cubic structures respectively. As the cluster 

size increases,i.e. x > 7, the presence of the potential energy 

hypersurfaces for other possible structural forms become significant, 

which in turn leads to the formation of clusters corresponding to the 

rhombohedral phases, while clusters corresponding to sequences 2 and 5 

remain the most Intense, hence stable, species which in turn reflects 

the stabilities of their face-centred cubic and body-centred cubic 

structures. This behaviour is not exhibited by praseodymium and 

terbium, suggesting that these additional phases are at sufficently 

higher energies to make their formation energetically unfavourable.

This is probably due to their less accesible Ln*"* state. A similar





4.1 URAHYL CLUSTERS

The FAB mass spectra obtained from uranyl nitrate hexahydrate 

solution, recorded using a number of matrices and co-solvents, show the 

presence of a number of distinct sequences of peaks the masses of which 

correspond to multiples of that of UOa’', m/z = 270. These high mass 

species follow the general formulea [C UOa >x Ov l*, with the number of 

additional oxygen atoms, y, present increasing with increasing cluster 

size, x. High mass spectra containing peaks of notable intensity 

corresponding to clusters with x up to 37 were recorded using the first 

two sectors of a Kratos Concept 4 sector mass spectrometer, although 

some clusters of larger sizes were observed.

The relative intensities of successive cluster series were found to 

show a exponential decrease with increasing cluster size, with 

abnormalities in intensity being observed in the region of

X = 9, 14 - 16, 19 - 22, 25, 27, and 32

as well as possible odd/even alternation being observed at higher 

cluster sizes in most of the spectra studied. These intensity 

abnormalities in many cases are marked by the sudden onset of a decrease 

in intensity after a given cluster size or the presence of an 

anomalously high intensity of a particular cluster. As x Increases the 

corresponding number of additional oxygen atoms, y, present in the most 

Intense cluster of each successive series is observed to increase
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gradually. For a cluster with a given value of y C< UOa >* 0y, 

increases in x results in the intensity undergoing a rapid increase 

before decreasing exponentially on further increases in cluster size.

The Influence of matrix adduct formation on cluster size was also 

investigated for a number of matrices, with the presence of matrix 

adducts becoming more significant at larger cluster sizes.

A graphical plot of the variation in the number of additional 

oxygen atoms, y, present with increasing cluster size, x, gives rise to 

a number of distinct parallel linear lines. The first of these 

corresponds to clusters with odd values of x, which, with the exception 

of x = 27, can be described by the equation

Y = 0.5 X - 0.5 . Eqn. 4. 1

Clusters with even values of x show two size-dependent relationships 

corresponding to

Y * 0.5 X Eqn. 4.2

at smaller cluster sizes C x. = 2 - 15, and also 20 - 22, 28 >, and

Y » 0.5 X - 1 Eqn. 4.3

for larger cluster sizes < xj = 18, 24 - 26, 30 - , and also 14 >. 

These plots show uranyl clusters with even values of x initially to
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favour stoichiometries with uranium : oxygen atom ratios, z = 2.5, while 

larger clusters with even values of x preferentially form clusters with 

a reduced uranium : oxygen atom ratio. Clusters with odd values of x 

however adopt Intermediate z ratios regardless of their cluster size. 

This suggests that clusters with even values of x undergo a gradual 

change in stoichiometry, with the more stable larger clusters having 

reduced numbers of additional oxygen atoms. This reduction on relative 

y with increasing cluster size, and the relationship between the uranium 

: oxygen atom ratio and cluster size for odd clusters shows clusters to 

adopt particular structural arrangements in which z < 2.5.

A plot of the variation in the uranium : oxygen atom ratio, z, with 

cluster size, x, gives rise to a single relationship for odd clusters in 

which the uranium : oxygen atom ratio approaches z = 2.5 as x ^ “j at 

x = 25, however, a slight reduction in z is observed. A similar plot 

for even clusters gives rise to two distinct size-dependent 

relationships. . The first of these, corresponding to clusters of size 

x., is observed to show a constant value of z of 2.5 independent of 

cluster size. However as the cluster size increases a second 

relationship becomes dominant in which clusters of size xi display 

values of z - 2.5,' with z ^ 2.5 as x =* <*>.

A plot of the variation of the uranium : oxygen atom ratio, z, with 

the number of additional oxygen atoms, y, present gives rise to three 

plots. The first of these shows a constant value of z = 2.5 and 

corresponds to even clusters of the size range x„, while the other plots 

corresponding to even clusters of size xi and all odd clusters are
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observed to make intercepts at y = 0 and y = ® when z = 2.0 and z = 2.5 

respectively. This suggests that these clusters have structures which 

are based on UO2 units, i.e. z = 2. 0.

The size-dependent behaviour of the uranium : oxygen atom ratio, z, 

can be expressed clearly by examining the variation in the cluster z 

ratio with 1/x. The resulting graph yields three linear plots, with the 

relationship due to the odd clusters being expressed by the equation

Z = -0.49 / x + 2.49. Eqn. 4.4

This shows the uranium : oxygen atom ratio to Increase with the size 

of odd clusters size until z “ 2.5 for very large clusters. Small even 

clusters, corresponding to those of size x., display a constant value of 

z = 2.5, independent of cluster size, while the variation in z values 

for cluster of size Xi can be expressed by the equation

Z = -1 / x + 2.49. Eqn. 4.5

Hence small and very large even clusters are found to exhibit uranium 

! oxygen atom ratios of z = 2.5, while intermediate-sized clusters, 

still in the class xi, show values of z < 2.5. Thus when y = 0 the 

corresponding clusters show values of the uranium ! oxygen atom ratio of

X * x ., z ■ 2.5 , UaO,

X - X i , s - to O uo*

X - X», z a 2.5, UzOi
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Similarly clusters with odd values of x, while featuring z < 2.5 for

small clusters, exhibit z * 2.5 for very large clusters.

X = 1, z = 2. 0, UO2

X = C O , z Si 2.5, U20e

This dependance of cluster stoichiometry on cluster size, most notably 

for even clusters, suggests that the clusters may adopt differing 

structural arrangements over different size ranges. If so even clusters 

are initially observed to adopt U2OB stoichiometries independent of 

cluster size, with their neighbouring odd clusters exhibiting 

stoichiometries between U02 and U:20s . However for intermediate-sized 

clusters the presence of even clusters with reduced uranium : oxygen 

atom ratios gradually become more significant before becoming the 

dominant even cluster stoichiometries in the region of x = X i  “ 24.

Even clusters from this region in many cases are observed to show 

slightly lower relative intensities than neighbouring odd clusters.

If for the above uranium-oxygen clusters the uranium is assumed to 

be present as only U"®* and U®'*' ions and oxygen as CP~ then the above 

relationship between the uranium : oxygen atom ratio and cluster size 

can be described by the equation

Z = 2.5 - 0.5 / X [ 6X, + 4Xa - 2Y' ],Eqn. 4.6
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where xi + xa = x and y' is the total number of oxygen atoms present In 

a cluster of size x. So for even clusters of size x„, described by 

equation Eqn. 4.2

Z = 2.5 - 0.5 / X [ 6X, + 4Xa - 2Y‘ 3,Eqn. 4.7

if xi = xa then z = 2.5. For even clusters of size xi, described by 
equation Eqn. 4.3 , if xi = Xa then

Z = 2.5 - 0.5 / X t +23

that is

Z 2.5 - 1 / X Eqn. 4.8

and for odd clusters, descibed by equation Eqn. 4.1 , if xi = x2 then

Z = 2.5 - 0.5 / X [ +13 Eqn. 4.9

Hence if clusters have equal numbers of U4-* and ions, X i = x a ,

the resulting equations are Identical to those obtained graphically.

The above equations for even clusters, x. and xi, also show neutral even 

clusters to have even electron counts and hence singly-charged clusters 

contain unpaired electrons. However if xi = xa is substituted for odd 

clusters the resulting expression is in agreement with equation Eqn. 4.4 

and show monopositive odd clusters to contain no unpaired electrons, but 

if Xi = xa + 1 or xa = xi + 1  is substituted into the above equation,
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Eqn. 4.6, the resulting expression shows singly-charged odd clusters to 

contain an unpaired electron.

According to the above equation both odd and even clusters are 

found to contain unpaired electrons when singly charged so neither group 

of clusters initially exhibit higher stability electronic configurations 

resulting in no marked odd/even alternation. However the slight 

odd/even alternation has been observed for a limited range of x. values, 

this however may be due to relative instability of xi clusters at low 

mass or reduced Intensities due to the equilibrium position between x_ 

and xi structures for these cluster sizes.

The tendency for both odd and even uranyl clusters to approach a 

value of z = 2.5 at very large cluster sizes suggests that these 

clusters have structures and stoichiometries related to the various UaOc 

phases. These phases have been shown by Hoekstra et al. (175) to mark 

the changeover between fluorite-type structures and the lower density 

uranyl-bonded uranium-oxygen phase system at 2.4 < z < 2.5. In which 

UaOB exists in three major phases; a-UzO» which is dominated by uranyl- 

type bonding and 16 stable at lower temperatures and pressures, P-UzOe 

which has a hexagonal fluorite structure and the monoclinic K-UaO* 

phase. The latter two phases become increasingly stable at higher 

temperatures. Thus similarities can be found to exist between the 

cluster stoichiometries detected and the uranyl-fluorite phase boundary 

for the uranium-oxygen system which is marked by a sudden decrease in 

density for the uranyl-bonded phases.
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4.2 THE COLLISION INDUCED DECOMPOSITION OF URÀNYL CLUSTERS

The collision induced dissociation, CID, spectra for members of the 

octa-uranyl, x = 8, cluster series were studied at various pressures 

using argon as collision gas. The CID spectrum for C ( UOa )o Os ]- was 

observed to follow a single limited fragmentation pathway under single 

collision conditions, i.e. > 70% parent beam transmission, this showed 

the formation of daughter clusters consistent with the loss of neutral 

UOa units. On increasing the collision gas pressure so as to reduce the 

parent ion beam to 50% transmission the fragmentation was observed to 

result in the formation of daughter clusters for x = 8 to 1. The 

daughter clusters formed are consistent with a fragmentation pathway 

that Involves the initial loss of neutral UOa units followed by the loss 

of UOa units when the uranium : oxygen atom ratio, z, is equal to 

z = 2.0. On Increasing the collision gas pressure further, the clusters 

of lower x value were observed to undergo a number of possible 

fragmentations, again due to the loss of various combinations of neutral 

UO3 and UOa moieties, with z > 2.0 for the daughter clusters formed.

This behaviour was found to occur in the fragmentation pathways of 

higher mass clusters as the collision gas pressure was further 

Increased, with at approximately 30 % transmission the loss of neutral 

UO* units being observed in addition to UOa and UOa, with the 

C ( UChra Os J * parent cluster being seen to undergo the loss of both 

UOa and UO* moieties at < 10 % transmission conditions. The most 

Intense fragments, daughter clusters, and hence the dominant 

fragmentation pathway was found to be that shown at low collision gas 

pressures. This suggests that the initial sequential loss of UOa units
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until z = 2.0, followed by the loss of UOa units, to be the lowest 

energy fragmentation pathway available.

The cluster ion [ < UOa > 0 0« l"*", m/z = 2224, was also observed to 

follow the above fragmentation pattern during collision Induced 

di ssoc i at i on.

For all hexa-uranyl parent clusters studied the daughter clusters 

formed showed increased relative intensities for the odd clusters x = 1, 

3, 5 and 7, this observation being independent of the collision gas 

pressure used.

The CID spectra for a number of hepta-uranyl, x = 7, clusters were 

studied over a range of collision gas pressures. In these spectra the 

extent of fragmentation was found to increase with Increasing collision 

gas pressure, as also were the presence of additional fragmentation 

pathways developing. This is demonstrated by the large number of 

daughter clusters observed at low parent cluster transmittances, The 

dominant fragmentation pathway observed for most parent clusters in this 

series ( x = 7 ,  y = 0 to 6 ) involved the initial loss of neutral U03 

units followed by the loss of U02 units when z = 2.0.

However a number of exceptions were observed as follows.

For C ( UOa >7 0* the x = 5 daughter fragments were observed to

dossoclate by the loss of UCU neutral units to form C < UOa >.« 0* 

over a range of collision gas pressures. This may be a result of the
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x = 5 fragment cluster having an enhanced stability. The relative 

intensities of the x = 1, 3, 5 clusters were also found to be enhanced 

over the range of collision gas pressures used.

The CID speotra for C ( UOz >7 Os 1* Initially showed only limited 

fragmentation, with daughter clusters corresponding to x ) 3 being 

observed at approximately 70% transmittance. The relative intensities 

of these species showed an exponential decrease with decreasing cluster 

size. For 50% transmittance the daughter clusters, x = 1 to 6, were 

present, although their relative intensities showed sharp decreases 

following the fragmentation of the x = 3 and 5 daughter clusters. This 

is consistant with the spectra obtained at higher collision gas 

pressures, at which these odd cluster species are observed to have 

increased relative intensities, with the x = 3 daughter cluster being 

dominant.

For the ion [ ( U02 >7 0.» ]*, the fragmentation spectra shows the x = 3

and 5 daughter clusters to have Increased relative intensities. The 

daughter clusters corresponding to x < 3 only become significant when 

the parent ion beam attenuation exceeds 50%.
I

For C ( U02 >7 0® ]* the CID spectra at high parent cluster beam 

transmittances, i.e. which therefore experience only a few collisions, 

show only low daughter cluster intensities, which decrease exponentially 

with decreasing cluster size. On increasing the collision gas pressure 

however, the relative intensities of the low mass fragment clusters were 

observed to Increase. The increasing intensities of these low mass

1 9 4



4.
2.
2 

Th
e 

CI
D 
Sp
ec
tr
um
 f
or
 C
 
( 
U0
2 

)7
 O

s 
3*
, 

m/
z 

= 
19
70
, 

Ar
go
n 

Co
ll
is
io
n 
Ga
s,
 
Fl
ex
ic
el
l 

at
 2

KV
 a
nd
 3

0%
 T
ra
ns
mi
ta
nc
e



fragmente becomes more evident as the parent cluster beam transmittance 

drops below 30%. As the transmittances decrease further, the relative 

intensities of the daughter clusters are found to be Influenced by their 

structural stabilities. They also show the presence of additional 

fragmentation pathways. This occurs to such an extent that, when the 

transmittance approaches 10%, the odd clusters exhibit greatly enhanced 

intensities relative to neighbouring even clusters. This odd/even 

alternation may reflect Increased electronic or structural stabilities 

for odd clusters.

The fragmentations observed for C < UOa >7 O2 1* and [ < UO2 >7 0 3~

ions displayed a similar character to that shown by C < 002 >7 Oa 3 ♦, 

with the parent cluster undergoing the stepwise loss of neutral U03 and 

UO2 units. The resulting daughter clusters exhibited odd/even 

alternation at high collision gas pressures. However the CID spectra 

recorded for C < UOa >7 3^ were found to be significantly different at 

higher collision gas pressures. As transmittances of parent clusters 

approached 10% the intensity of the x = 6 fragment cluster was observed 

to decrease relative to the other clusters, while the intensities of the

daughter clusters corresponding to t < UOa >x O2 3* become more
«significant for x = 3, 4, 5. This Indicates the presence of an 

additional fragmentation pathway being adopted at high collision gas 

pressures, hence energies, for I < UO2 >7 3* clusters.

The fragments observed in all the CID spectra for I C UOa >7 Ov 3* 

were the same and corresponded to the general formula C ( UO2 >» Ov )*i 

with x and y being reduced on each successive fragmentation. For higher
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mass species the neutral unit lost was U03, with this moiety being lost 

sequentially until the resulting daughter cluster had a formula that 

corresponded to y = 0, i.e. z = 2.0. Then the successive loss of UOa 

units occurred until a residual UO2- species was formed. The character 

of the sequential loss of single neutral moieties, with the extent of 

fragmentation being directly proportional to the collision gas pressure, 

also gives a clear indication that the charge is retained on the larger 

dissociative fragment, namely the daughter cluster.

For the hexa-uranyl cluster series, [ ( UO2 ><=. 0V 1*, the collision

Induced dissociation is observed to follow a similar sequence of events 

to those displayed by the hepta- and octa-uranyl clusters. In which 

parent clusters fragment by the sequential loss of single neutral units, 

resulting in mono-positively charged daughter clusters the y values of 

which are dependent on that of their parent cluster. The extent to 

which this fragmentation takes place is directly related to the 

collision gas pressure present. The dominant fragmentation pattern 

involves the parent cluster, y > 1, undergoing the initial loss of UO3 

units until the uranium i oxygen atom ratio is equal to z = 2.0•, the 

resulting daughter clusters then undergo the loss of neutral UOa units 

ultimately resulting in the formation of the UOa* ion. As the collision 

gas pressure Increases the number of available fragmentation pathways 

increases, although that outlined above remains preferential. This 

behaviour is clearly demonstrated by comparing the numbers of additional 

oxygen atoms present in the daughter clusters formed on the collision- 

induced decomposition of the various hexa-uranyl parent clusters 

studied.

1 9 7
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Fig. 4.2.2 The variation in % Internal reference for the daughter

< UOa )e 0B J- at 30*. 20% and 10% trasmlttance

Species K/Z % Internal reference

30% 20% 10%

t < UOa >* Oe J* 1700 100. 0 100.0 70.2

C ( UOa >s O. 1- 1414 7. 4 15. 2 19.6

C < UOa >• Oa I* 1398 1.5 8.5 8.2

[ ( UOa >« Oa J* 1128 2.5 10.7 21.8

C < UOa >« □a 1- 1112 4.3 6.3 11.9

E ( UOa ) a Oa ] - 842 3. 7 13.8 20. 9

[ < UOa ) a O 3-4- 826 7. 6 21.3 33.3

t < UOa > a O 1-4- 556 3.8 13. 0 25. 1

[ ( UOa )a ]- 540 3.2 19.5 14. 0

[ ( UOa > ]* 270 7. 0 55.6 100. 0

The relative intensities also show odd clusters to be of notably 

higher intensity for parent clusters independent of the collision gas 

pressure used the exception to this being the [ ( UO2 >« Oa cluster,

the dominant species of the x = 6 series in the uranyl cluster spectrum. 

The daughter clusters of this species show a decreasing intensity with 

decreasing cluster size, x. [ ( UOa >e 0« ]* however was found to
undergo readily extensive fragmentation at low collision gas pressures, 

while the fragmentation of [ ( UOa >* O2 1 * is subdued relative to the

other x = 6 species over a range of collision gas pressures. The 

enhanced and reduced fragmentation of the species with y - 4 and 2

2 0 0



Fig 4.2.2 The Variation in Daughter Cluster Intensities with Decreasing 
Cluster size, x, for a Range of collision Gas Pressures
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respectively nay reflect their relative stabilities, being Influenced by 

the high stability of the y = 3 species.

The odd/even alternation displayed by the daughter clusters becomes 

more prominent as the attenuation of the parent cluster beam increases; 

this can be observed for the CID of t C U02 >6 Os J* with the 

intensities of daughter clusters being approximately twice that of 

neighbouring even daughter clusters at 30% transmittance. However at 

very high collision gas pressures the relative intensities of the even 

clusters increase gradually relative to their neighbouring odd clusters.

The CID spectra recorded for C < 002 )s 1* over a range of 
collision gas pressures display a similar relationship between the 

extent of fragmentation and the collision gas pressure to that shown by 

the more oxygenated x = 6 clusters. The intensities of all peaks 

increase with increasing collision gas pressure, with the x = 3 fragment 

cluster exhibiting enhanced intensities compared with other fragment 

clusters. However the favoured fragmentation pattern initially showed 

significant variations from that of other x = 6 parent clusters studied. 

These Include the [ < UOa >« J* parent cluster undergoing the initial 

loss of neutral UOa or UO units to form t < U02 >■ l* and 

C < 002 )■ 0 respectively before adopting a fragmentation pattern 

similar to that displayed by the other uranyl clusters, involving the 

loss of UOs and UO* units. At higher collision gas pressures no x = 5 

daughter clusters were detected, while the x = 4 daughter cluster 

displayed significantly increased relative intensities.

20  2



The fragmentation patterns displayed by members of the tetra- and 

penta-uranyl cluster series are similar to that shown by the parent 

clusters of higher mass described above. The CID spectra also show the 

tri-uranyl fragments to exhibit enhanced intensities at higher collision 

gas pressures, while the relative intensity of the bi-uranyl clusters 

decreases. In many cases a number of possible [ < UOa )a 0V 1♦ clusters

are formed, which shows the tetra-uranyl parent/daughter cluster to be 

able to undergo a number of different fragmentation pathways to form 

tri-uranyl daughter clusters of significant stability.

2 0 3



4.3 DISCUSSIOH OF RESULTS

From the above discussion of the CID spectra for the uranyl 

clusters at various collision gas pressures, a dominant fragmentation 

pattern for all the parent clusters studied becomes apparent. This 

involves parent clusters, C ( U02 >x Ov ]*, initially undergoing the 

loss of neutral U0» units to form C ( UOa )x-i 0y-i 1* daughter 

clusters. This single fragmentation is dominant at low collision gas 

pressures. On increasing this pressure the number of collisions 

undergone by each parent cluster increases and hence a larger number 

occur in which sufficient excitation energy is acquired by the parent 

cluster to result in reaction; this results in increased daughter 

cluster formation. The daughter clusters so formed may subsequently 

undergo the loss of a number of additional UO3 units until the uranium : 

oxygen atom ratio, z, of the product daughter clusters [ < UOa >x-n Ov-„ 

1 ■", ( where n is the number of dissociative collisions undergone by a

given cluster ion from its parent cluster stoichiometry ), nears 

z = 2 .0 .  Then the daughter clusters, 1 ( UOa ) x - r .  O y -n  1 *  fragment by
the stepwise loss of neutral UOa units, the extent to which 

fragmentation takes place being dependent on the collision gas pressure 

employed. At very high collision gas pressures collisions occur of 

sufficient energy for additional modes of fragmentation to become 

energetically accessible. This is demonstrated by the occurrence of UO2 

loss at increasingly larger daughter cluster sizes, z < 2 .0 .  In many 

cases the loss of neutral UO* moieties takes place from the x - 1 

cluster under these conditions. The extent to which fragmentation

2 0 4



occurs for a fixed collision gas pressure showed larger clusters, higher 

x value, to undergo fragmentation more readily. This suggests that as 

the cluster size Increases, there is a corresponding decrease in the 

relative binding energies of the constituent units.

As the collision gas pressure increases odd/even alternation 

becomes Increasingly evident for all clusters studied, with the series 

of daughter clusters with x = 3 displaying significantly enhanced 

relative intensities. This may reflect a greater stability of the 'odd* 

cluster, with the x = 3 daughter clusters being of notably higher 

relative stability. Similarly the extent of fragmentation and ease by 

which it occurs are found to be related to the y value of the parent 

clusters. This is demonstrated by the relative intensities of the 

daughter clusters formed from hexa-uranyl parent clusters, with parent 

clusters containing larger numbers of additional oxygen atoms displaying 

more extensive fragmentation at moderate collision gas pressures than 

clusters of low additional oxygen atom contents. Thus the level of 

oxygenation has a direct influence on the relative fragmentation rates 

of clusters of a given x-value, which suggests that the additional 

oxygen atoms may distort the cluster structure, reducing the relative 

binding energies of its constituent units.

The above results suggest that the structures and stoichiometries 

adopted by these clusters are controlled by energy relations between 

adjacent members of a series.

2 0 5



4 . 3 . 1  A  Graphical Representation of the Different fragment Cluster 
Sequences, Xb, and Their Size Relationship to the Humber of 
additional Oxygen Atoms Present, y.
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Graphical analysis of the preferred fragmentation pathways observed 

gives rise to a number of linear relationships, each denoting a given 

fragmentation series. These plots can be described by the general 

equation

Y = X Xs, Eqn. 4.10

where xs denotes the respective daughter cluster size when no additional 

oxygen atoms are present, i.e. z = 2.0, with &  = 1, 2, 3, 4 and 5 for 

the parent clusters studied. The variation in the uranium : oxygen atom 

ratio down these fragmentation pathways also gives rise to a number of 

linear relationships which can be characterised by the equation,

Z = -Xs/X - 3.0, Eqn. 4.11

when z * 2.0. From this equation, the fragmentation patterns are found 

to show a uranium ; oxygen atom ratio of z = 3.0 at very large parent 

cluster sizes. Such a ratio may Indicate that the daughter clusters, 

resulting from the fragmentation processes, and their respective parent 

clusters, have structures based on uranyl-type bonding with z = 3.0 

reflecting the stability of the uranium trloxlde phases.

2 0 8



4.4 THORIUM CLUSTERS

The fast atom bombardment mass spectra of various thorium salt6 

show the presence of cluster ions of notable intensity. These clusters 

have the general formula C < ThOa l* and have been recorded for 

x < 20, and show distinct odd/even alternation for x < 14. These 

clusters also show the presence of matrix adduct formation and 

incorporation of small numbers of additional oxygen atoms into lower 

mass clusters. These matrix adducts often domlna"te±he resulting 

spectra.

Such dioxothorium clusters relate directly to the dominant phase of 

the thorium-oxygen phase system, ThOa, which has a fluorite structure.

Z  0 9
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4.5 COHCLUSIOHS

The uranium-oxygen based clusters are found to follow the general 

formula C C UOa )« 0y 3^ and exhibit a tendency to adopt UaOs, z = 2.5, 

stoichiometries at larger cluster sizes. However the stoichiometries 

for even clusters are observed to show size-dependent behaviour with the 

smaller clusters, x., showing z = 2.5 Independent of cluster size, while 

clusters of size Xi display reduced levels of oxygenation. This 

behaviour is clearly demonstrated by the variation In the uranium : 

oxygen atom ratio, z, with 1/x, which shows Intermediate sized 'even* 

clusters, 10 < x i 26, to mark the change between these two uranium- 

oxygen regimes. This tendency of clusters to adopt stoichiometries 

corresponding to z = 2.5 may mark the boundary between the fluorite and 

uranyl-bonded oxide phases which occur in the solid state at z = 2.4.

In the solid state this boundary is also narked by a sudden decrease in 

density as uranyl bonding becomes dominant. The above data obtained 

from the mass spectral analysis suggests that the uranium-oxygen 

clusters predominantly contain uranyl-type bonding, with the 

discontinuity in the uranium : oxygen atom ratio for intermediate-sized 

'even* clusters denoting the onset of a phase change between the various 

UaOs phases.

The CID spectra show marked odd/even alternation, inferring that 

'odd* cluster lon6 have enhanced stabilities relative to neighbouring 

'even* clusters. This may be due to odd clusters having more stable 

structural arrangements. The CID 6pectra also show fragmentation to



occur via regular sequences of loss of neutral units so as to cause a 

reduction In the uranium : oxygen atom ratio for each successive 

fragmentation step. A graphical plot of the resulting fragmentation 

pathways, z against 1/x, gives rise to a series of linear plots that 

Intercept at z = 3.0 for larger cluster sizes while displaying an abrupt 

termination at z = 2.0 irrespective of the Initial parent cluster. The 

range in values of z observed for these fragmentation pathways may 

relate to uranyl—bonded units, and solid state uranium-oxygen phases 

reported, since z = 3.0 correlates directly with the uranyl bonded 

uranium trloxide phases, while z = 2. 0 may represent the UOa moiety 

which is known to have significant stability in its various forms.

Hence the relationships found for these clusters in both their mass 

spectral and C1D studies strongly suggest that the uranium-oxygen 

clusters are constructed from uranyl-based cluster unit6 with the 

resulting clusters showing a notable correlation to the solid state 

uranium-oxygen system, especially the stable U20B phases.
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5.1 THE FAB SPECTRA OF THE LAJfTHANIDE ACETATES

The FAB spectra for uranyl acetate dihydrate has been shown to 

feature two distinct families of clusters; the first of these being the 

previously described uranium-oxygen clusters while the second family of 

clusters were consistent with the association of one or more neutral 

UO2 units around a central monopositively charged uranyl acetate moiety. 

These central uranyl acetate species were found to be structurally 

significant <176).

The lanthanide acetate complexes have similar structures to that of 

uranyl acetate, with the central oxo-lanthanide ion being directly 

coordinated to two acetate ligands, which act as a bldentate species, 

and four monodentate ligand bridges.

The FAB mass spectra for various lanthanide acetates were recorded 

in order to investigate the possible formation of structurally 

significant spectral species. These spectra were recorded using a 

variety of matrices
I

5.1.1 LABTHAHUM ACETATE

The mass spectra for lanthanum acetate, LaO < CH3COO >3 . 6^0, 

shows, in addition to the previously described lanthanum-oxygen 

clusters, the presence of a number of related lanthanum acetate 

clusters. These clusters were found to have the general formula
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C C LaO )„ Oy ( CHsCOO )p 3 , with clusters corresponding to x i 1 6  

being recorded. The uranyl acetate species exhibited maximum values of 

p < 2, when no acetate fragments were present. Vhen p i 1, acetate 

fragments were observed; these are consistent with a fragmentation 

pathway involving the sequential fragmentation of a single acetate 

ligand before its complete dissociation.

[ < LaO >„ Oy < CHaCOO )p ]-

1
í C LaO >« Oy < CHaCOO < F l.  ) ] -

1
[ < LaO >x Oy < CHaCOO 3 -

The relative intensities for clusters containing coordinated ligand 

fragments suggests that ligand fragmentation takes place by the pathway:

[ CHaCOO 1 ---» C CHaCO 3 --- *■ l CHaO 3 -----» l CO 3

In higher order clusters, x < 1, the most Intense ligated species 

contains a single unfragmented ligand, p = 1

The above spectral species suggest that the two bidentately 

coordinated acetate ligands are located at the central lanthanum- oxygen 

ion, which has a structure that is consistent with the crystal structure 

reported for lanthanum acetate.

2 1 4



5.1.2 CBKIUX ACETATE

The crystal structure for cerium triacetate features ligand 

coordination similar in character to that described for lanthanum 

acetate, with two bldentate and four monodentate acetate ligands being 

involved <7>.

In the FAB spectra, the species observed adhere to the general 

formula t ( CeO >x Oy ( CHsCOO )p ]~, with the monoacetate clusters, 

p = 1 , being the most intense ligated clusters over the range of cluster 

sizes studied. However unlike the lanthanum clusters, cerium clusters 

were found corresponding to the coordination of up to three acetate 

ligands, p i 3, although associated ligand fragments consistent with 

only p i 2 were observed. This suggests that the third acetate ligand 

may undergo complete dissociation without undergoing fragmentation.

Hence the tris-acetate cluster may follow the fragmentation pathway

21 5



[ < CeO >x Ov < CHaCOO )a ]

J
[ < CeO >„ Ov < CHaCOO >a

1
t < CeO >x Ov < CHaCOO ) C Fi_) ]-

I
[ ( CeO >x Oy < CHaCOO ) ]-

1
[ < CeO > x  O v  < F l . 3 J *

1
[ ( CeO >x Ov 3*

with the Individual acetate ligands fragmenting in a similar manner to 

that observed in lanthanum acetate.

5.1.3 PRABSEODYMIUM ACETATE

The mass spectra for praeseodymium acetate displays the presence of 

several series of peaks above that for elemental praeseodymium. These 

were found to correspond to species of general formula
I

C < PrO >x Ov < CHaCOO >p ]*, where the relationship between the cluster 

size, x, and the number of additional oxygen atoms present, y, is as 

previously described, although a small number of lower intensity species 

with Increased y values were also observed. The former of these 

clusters shows the presence of up to two ligands, p < 2, with p < 1 

being present for clusters containing ligand fragments. The 

fragmentation pattern by which these are formed involves the initial

2 1 6
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loss of oxygen to form t CHaCOQ ], which in turn give ri6e to the most
v * *

Intense clusters contalng ligand fragments. These then undergo the 

subsequent loss of a methyl group before complete ligand dissociation.

t < PrO )*  Oy < CHaCOO >p 1 -

i r
[ < PrO >„ Oy < CHaCOO >p_i < CHaCO > ]-

1
t < PrO >x 0 y ( CHaCOO ) p - ,  C CO > 1~

1
t < PrO  >* Oy < CHaCOO 1*

5.1.4 TERBIUM ACETATE

The FAB spectra for terbium acetate show a number of ligated 

terbium oxide clusters that follow the general formula 

£ ( TbO )x Oy < CHaCOO >p ]*. The ligated clusters observed show the

presence of up to two unfragmented acetate ligands, p < 2, or the 

coordination of ligand fragments, Fi_, when p < 2. These fragments 

correspond to a ligand fragmentation pathway similar to that exhibited 

by lanthanum acetaite clusters for small values of x; however at larger x 

values, an additional fragmentation pathway becomes increasingly 

significant. This additional pathway involves the loss of a methyl 

group from the acetate to yield a coordinated COa group.

For small clusters

£ CHaCOO 1 --------------> [ CHaCO 1 ___________ ^  t CO J

21 8



For larger clusters the pattern Is:

t CH3COO ] --------M  COO ] ---------------- >  C CO ]

For all values of x however clusters corresponding to p = 1, and 

containing no fragmented ligands were found to be the most Intense.

5.1.5 HOLKIUM ACETATE

The spectrum for holmium acetate shows the presence of numerous 

ligated holmium oxide clusters of the general formula 

C < HoO >» Ov < CHaCOO >p ( Fu > I*, with with ligated clusters 

corresponding to x < 5 being detected. These clusters show the dominant 

ligated clusters to correspond to y = 1 , p = 1 for the range of cluster 

sizes studied.

At smaller cluster sizes, 1 < x < 3, clusters were observed to 

contain up to two acetate ligands or associated ligand fragments, with 

their relative intensities being found to decrease with increasing 

cluster size. However for x = 4 and 5 only mono-ligated clusters were 

observed. The coordinated acetate ligands were found to fragment in a 

similar manner to that shown by the lanthanum acetate clusters.

5.2 DISCUSSIOH OF RESULTS

In the spectra described above, the spectral species observed for 

several different lanthanide metals show the general formula 

C ( LnO )« 0y ( CH3COO >p < Fi_ > I*, over a range of cluster sizes, x.

21 9



For these clusters, the maximum ligand coordination was observed 

at p = 2, except for cerium with p = 3, In keeping with the lanthanide 

acetate crystal structures which show two acetate ligands to undergo 

bidentate coordination to the central oxometal cation. In the case of 

cerium, however, the availability of the Ce'»-’- state may lead to more 

extensive ligand coordination, although this additional ligand is 

dissociated without fragmentation to yield the more stable 

bis( acetate > species.

For the lanthanide acetate clusters, p ( 2, ligands were found to 

undergo fragmentation before complete dissociation, with the coordinated 

ligand fragments suggesting that two possible size-dependent 

fragmentation pathways may exist. The commonest of these, observed for 

all metals either at smaller < or ,in some cases, at all values of x 

detected, involves the Initial deoxygenation of the fragmenting acetate 

ligand, followed by the loss of a methyl group before complete 

dissociation.

C CHaCOO ] ---------------- 5>C CH3CO I --------------------- * • [ CO 3

However, at higher x values, for certain lanthanide acetates, 

ligands were observed to undergo fragmentation by an additional pathway 

Involving the initial loss of a methyl group.

C CH3 COO 3-------- *•[ COO 3----------- >> [ CO 3

This behaviour is most apparent for terbium acetate clusters.

2 2 0



The dependence on cluster size observed for these two possible 

ligand fragmentation patterns may reflect changes In ligand binding 

energies, with increasing cluster size making the additional 

fragmentation pathways more energetically favourable. Similarly the 

presence of up to one ligand fragment, Fi_, at all cluster sizes studied, 

further suggests the importance of energetic/structural considerations 

in ligand fragmentation.

The above trends suggest that lanthanide acetate clusters, over the 

range of cluster sizes studied, have shell type structures in which the 

central, singly-charged, ligated oxo-lanthanide ion is surrounded by a 

shell containing x - 1 neutral oxo-lanthanide moieties

5.3 LANTHANIDE KALONATES

The FAB mass spectral analysis of a number of lanthanide malonate 

complexes of the form C < LnO )a ( Mai Is.BHaO were recorded, with a 

variety of matrices and co-solvents. The resulting spectra displayed 

the presence of several series of peaks corresponding to the general 

formula C C LnO )» 0V ( Mai )p ( M > J-, where M represents the presence 

of a matrix adduct.

For these species, the mono-ligated clusters, p = 1, are always 

found to be the most abundant for the range of lanthanide metals 

studied, although larger praseodymium clusters containing up to three 

intact malonate ligands have been detected, reflecting the trls-llgated 

aqueous complex. Lanthanum malonate complexes gave rise to a limited
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range of ligated clusters with the presence of only a single malonate 

ligand or its associated fragments being observed, over the range of 

cluster sizes investigated. However the presence of this ligand was 

observed to stablize the y = 4 clusters for x i 2, as reflected in its 

Increased relative intensity. Similar behaviour was also observed for 

the spectral species formed by the europium and holmium malonates.

Cerium was observed to display mono- and bis-ligated clusters, although 

the second ligand was dissociated without fragmentation. The 

praseodymium malonate complex was however found to contain up to p - 3 

Intact malonate ligands at higher cluster sizes, x > 4, with the mono- 

ligated clusters being the most Intense. However the presence of 

coordinated ligand fragments was observed only for p < 1, thereby 

suggesting that the third ligand is dissociated as a neutral intact 

malonate species.

Ligand fragmentation was found to occur in a similar manner for the 

various lanthanide metals studied, with the associated ligand 

fragmentation pattern suggesting that the malonate ligands are 

coordinated strongly via one of their carboxylic acid groups. In 

addition, the presence of only one ligand fragment on each cluster also 

infers that fragmentation occurs in a stepwise manner. The ligand 

fragments observed correspond to the fragmentation pattern.
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5.4 AMIHO ACID COMPLEXES OF THE URAHYL IOH

The biological significance of transition metals is largely based 

on their ability to assume a number of different oxidation states and 

hence participate in a variety of redox reactions. In the case of heavy 

metals and the late transition metals, however, this ability to interact 

with blmolecules and thus influence a range of biological processes, can 

pose a environmental problem, and accordingly this type of interaction 

has undergone many studies <177).

The Importance of the reactions of uranyl ion with amino acids has 

meant that this system has been subjected to many investigations, with 

particular interest being directed towards the mode and extent of 

coordination (178) (179). For simple amino acids, coordination has been 

shown to occur via the carboxylate group, as opposed to the amino group, 

with the coordination being either mono- or bidentate in character.

Such complexes containing 1, 2, 3 and 4 amino acids have been reported, 

with the uranyl ion exhibiting hexagonal blpyramldal coordination. This 

is also supported by crystal structure analysis, which reveals that six 

oxygen atoms coordinate in the equatorial plane. The mass 6pectra of 

simple amino acid and hydroxlmate complexes of uranyl ion have also been 

described (54)(55) the former paper being based in the present author's 

M.Sc. thesis.

2 2 4



5.4. 1 URAHYL-< GLYCIHE > COMPLEX

Alcock et al. have reported the crystal structure for the complex 

formed between the uranyl ion and glycine, in which glycine was found to 

coordinate in two distinct ways, with the carboxylate groups of two 

glycine ligands acting as a bidentate, while the remaining glycine 

ligands coordinate monodentately (180).

The FAB spectra for the uranyl-glycine complex exhibit several 

series of peaks, each following the general formula

t ( UOa )x 0y < Gly )p I*, with p ( 4 coordinated amino acid ligands 

being observed. Hence there are two major processes occurring, the 

first of these involves the dissociation and fragmentation of ligands, 

while the second involves the formation of ligated cluster ions, x < 1.

These uranyl glycine complexes were found initially to eliminate 

intact neutral glycine ligands before undergoing the sequential loss of 

neutral ligand fragments followed by the complete dissociation of the 

resulting carboxylic acid residue. This ligand fragmentation involved 

glycine losing a amino-methane moiety, resulting in a coordinated COa 

group,

l OOC-CHa-HHa J --------------*• t OOC ] < - CH2EH3 )

This is clearly demonstrated by the ligated mono-uranyl species which 

follow the general formula ( ( UO3 )x ( Gly )p ( Fi_ ) 3 , where x = 1. 

These correspond to species containing up to four glycine ligands, which
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directly eliminate up to two neutral glycine ligands without any 

fragmentation being detected. However, species with p < 2 are observed 

to undergo ligand fragmentation before dissociation via the 

fragmentation pathway given above.

The [ < UOz )2 ( Gly ) 1* cluster, however, was found to undergo 

ligand fragmentation involving the initial loss of the amino group 

followed by the subsequent loss of the methyl group to yield a 

coordinated COz group. For larger clusters, x * 2, the mono-glycine 

clusters, p = 1, are found to be the most abundant, with slight evidence 

for the tris-glycine cluster being observed for x = 2. This glycine 

ligand is found to fragment by the loss of a neutral aminomethane moiety 

to yield bare uranium-oxygen clusters.

The FAB spectra recorded using a twin sector probe tip ( see 

section 2.2.3 ) were recorded, with one sector being loaded with uranyl 

nitrate solution and the other with glycine solution. The resulting 

spectra showed the presence of species similar to those described above, 

but at lower intensity. However more extensive fragmentation was found 

to have occurred, resulting in clusters containing p ) 2 ligand 

fragments.

5.4.2 URAIYL- ( a-, (3-ALAKISE 1 COMPLEXES

For a-alanine, similar spectral trends to those for glycine are 

observed, with the tris( a-alanine ) species showing Increased 

intensities relative to the bis- and tetrakls- species, while the

2 2 7



mono( a-alanlne > coordinated species remained the most abundant ligated 

uranyl cluster. However, unlike the uranyl-glycine species observed, 

a-alanlne was found to undergo the formation of a pentakls( a—alanine ) 

uranyl complex. In this, a-alanlne would be expected to act using 4 

monodentate ligands and a single bldentate ligand, resulting in the 

central uranyl ion attaining a maximum coordination number of six in its 

equatorial plane. Clusters of higher x-value were also observed; these 

showed the presence of several prominent species of the form 

[ < UO2 >* < a-alanine ) l*.

Coordinated a-alanine was observed to fragment via loss of a 

methyl group to yield an amino acid residue before undergoing further 

fragmentation resulting in a coordinated COa group before dissociation.

The mass spectra for the uranyl-< ^-alanine > complex showed many 

similarities to those exhibited by the a-alanine complex. The mono- 

ligated species were observed to be the most abundant, while the 

tris< (3-alanlne ) species were found to show enhanced relative 

intensities compared to neighbouring bis- and tetrakis- species. The 

penta-( (3-alanine > complex was again observed, but at a reduced 

intensity relative to that for the corresponding penta-< a-alanlne ) 

species.

FAB spectra obtained using a twin sector probe tip for the 

B-alanlne complex also showed the mono- and trls- ligated species to be 

of considerable intensity, however no pentakls species was observed.

2 2 8



The spectral Intensities were approximately 1/12 of those obtained using 

a standard FAB probe tip for otherwise identical reaction conditions.

From the coordinated fragments observed in both the above mass 

spectral Investigations on £-alanlne, the same pattern of events is 

evident, that is in which p—alanine initially undergoes fragmentation by 

the loss of its amino group before the successive loss of two methyl 

groups resulting in coordinated COa group which subsequently 

dissociates.

ot-Alanine

-CHa -CH-NHa

--- ? OOC-------CH---NHa -------*> 00C

0-Alanlne

-ITHa -CHa

OOC— CHa— CHa— »Ha -------------- *■ 00G— CHa— CHa ----------- *■ OOC— CHa

-CHa
> ’

OOC

The fragmentation patterns observed for a- and J3- alanine ligands shows 

the carboxylic acid residue to be powerfully bonded to the uranyl 

centre.
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5.5 URAHYL-< ct-,p-,y-AMIIOBUTANOIC ACID ) COMPLEXES

The mass spectra for the series of 
uranyl-< a, B, y-aminobutanolc acid > complexes were recorded to 

Investigate the effect of the position of the amino group on its 

coordinating ability and the resulting fragmentation pattern.

The uranyl-( a,p.y-aminobutanoic acid ) complexes were all bright 

yellow in colour and showed increasing levels of crystallinity as the 

distance between the functional groups increased. That is,

a-amlnobutanolc acid mid. viscosity oil.

p-aminobutanoic acid high viscosity oil.

y-aminobutanoic acid crystalline solid.

This shows the position of the amino group to significantly influence 

the level of crystallinity of the complex formed. Bombierl et al. 

reported the uranyl-( y-aminobutanoic acid > complex to be 

trls( y-amlnobutanato > dloxouranlum (VI> dlnltrate and to have a 

crystal structure in which three bidentate y-amlnobutanolc acid ligands 

coordinate in the equatorial plane of the uranyl ion, rendering the 

latter hexacoordinate in character (181).

The resulting mass spectra for the a- and p-amlnobutanoic acid 

complexes were dominated by the UOa"~ peak, m/z - 270, and showed the 

pressence of several uranyl-based cluster series, while the spectrum for 

the y-aminobutanolc acid complex was dominated by the m/z « 387 peak.

2 3 0



5.5. 1 URAHYL-< a-AMIHOBUTAHOIC ACID ) COMPLEXES

The mass spectra for the complex formed between a-amlnobutanolc 

acid and the uranyl Ion showed the pressence of monopositive species 

which can be described by the general formula

C ( UOa )x < a-amlnobutanolc acid )p ( F l  ) l*", with clusters 

corresponding to x < 4 being recorded. These species displayed a 

maximum ligand content of p = 3, when p < 3 coordinated ligand 

fragments, Fu, were also observed. The spectral intensities showed 

clusters with p = 1 to be the most abundant species, while the p = 3 

species also exhibited high relative intensities.

The spectral data shows each ligand to undergo fragmentation by 

the sequential loss of neutral fragments before dissociation.

1 < UO2 >x < a-amlnobutanolc acid >*.]■*'

I
1 < UOa >x < a-aminobutanoic acid )P-i < Fi_ ) 3*

I
C < U02 >x < a-aminobutanoic acid

In which the coordinated ligand fragments, Fl , are consistent with a 

a-amlnobutanolc acid undergoing fragmentation by the pathway,

CHa
ICHa CHaI I00C— CH--HHa -----» 00G—  CH— HH» ---- » CXXJ— CH— HH:, ----> OOC

2 3 1
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with clusters containing associated ligand fragments being detected over 

the size range 1 < x < 3. The most intense clusters containing ligand 

fragments were found to contain the amino acid residue, C OOC-CH-HH3 ] 

with the t 00C 1 fragment being more significant for clusters with 

smaller x values. The presence of an additional ligand fragment 

involving the loss of the amino group from the amino acid residue was 

observed at reduced relative intensity for the monouranyl cluster, 

x = 1.

5.5.2 URAHYL-< p-AMIHOBUTAHOIC ACID ) COMPLEXES

The mass spectrum showed the presence of several series of 

monopositive cluster series of general formulae

C ( UOz >x < p-aminobutanoic acid >p < Fi_ ) ]*, with x i 4 being 

observed. The monouranyl species, x = 1, shows the presence of species 

containing up to p ( 4 coordinated ligands, with the tetrakis- species 

being of low intensity compared with the other ligated species. The 

spectral intensities for ligated species corresponding to x = 1 show an 

exponential decrease in intensity with increasing p value for p < 3.

The higher order clusters, 2 < x ( 4, showed the bl6- and mono- 

(3-amlnobutanolc acid coordinated species to be formed, with the mono- 

B-amlnobutanolc acid clusters to be of higher intensity. The relative 

intensities of those clusters containing coordinated ligand fragments, 

x < 4, showed ligand fragmentation to occur predominantly by one of two

2 3 2 b
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possible pathways depending on the influence of the position of the 

amino groups on ligand binding. The dominant fragmentation pathway 

involves the sequential fragmentation of a given ligand before its 

complete dissociation, with ligands being found to fragment via the 

following sequence

-CH» -CH— HHs -CHa

OOG— CHz— CH— NH3 ---- > OOG— CHa— CH— HHs ---- *■ 00G-- CH3 ----* COO

in which the amino group loses methylamine moiety for low p value 

clusters, with the most intense coordinated ligand fragment observed 

being the C OOC-CHa 1 fragment. However as p increases, the presence of 

additional fragments of comparable intensity are found, suggesting that 

fragmentation by both possible pathways are of near equal probability.

5.5.3 URAHYL-< Y-AKIHOBUTARQIC ACID ) COMPLEXES

The uranyl-based species observed in the mass spectrum of the 

tris< y-amlnobutanato ) dloxouraniumCVI> complex are expressed by the 

general formula [  < U02 > x  < Y-aminobutanoic acid > *. (  F l  )  l * - , with

clusters consistent with x ( 4 being observed. The most abundant of 

these ligated clusters is the mono-Y~aminobutanato species, while 

clusters containing three Y-aminobutanoic acid ligands were observed to 

be of next highest intensity. In addition, although at much lower 

intensity, the tetrakis-< y-aminobutanolc acid > was also recorded.

2 3 3  b
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The clusters observed showed the presence of no coordinated ligand

fragments for p i 3, which suggests only weak binding for the fourth 

adducted fourth K-aminobutanoic acid ligand. For clusters containing 

p < 3 ligands, however, coordinated ligand fragments were observed which 

suggests that the ligands undergo sequential fragmentation via a pathway 

involving the Initial loss of the amino group followed by the stepwise 

loss of methyl units to yield a coordinated COa group. The lower mass 

fragments were found to be of high relative intensity, with the ethanolc 

fragment, *, being the most Intense.

t 00G—  CHa—  CHa— CHa— HHa 3

V
[ 00C— CHa----CHa----- CHa 3

v
[ 00C— CHa— CHa 1

I
[ 00C—  CHa 3 *

''
[ 00C 3

5.5.4 TREIDS OBSERVED IH THE URAHYL-( a, J3. y-AMINO BUTAHOIC ACID >

CLUSTERS FORKED.

The mass spectral data for the uranyl-< < a, f}. y-amlnobutanolc acid 

> complexes studied exhibit a number of discernible trends involving 

ligand coordination and fragmentation.
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1> The mass spectra show the mono-( a,0.Y )-amlnobutanolc acid 

clusters to be the most abundant ligated cluster In each x series, with 

the trls-n-amlnobutanolc acid species also being formed preferentialy. 

The enhanced relative Intensities for the latter of these being 

consistent with the central uranyl ion exhibiting hexa-coordination in 

its equatorial plane, with the C a.p.y >-aminobutanoic acid acting in a 

bidentate manner.

11) The relative intensities of the species observed are found to 

Increase with increasing separation of the HH2 and CO2H groups in the 

ligand.

(a-aminobutanoic acid) < (fS-amlnobutanoic acid) < (y-aminobutanolc acid)

This parallels the changes observed in the crystallinity of the

complexes formed, suggesting that a six-membered ring confers both 

special stability and ease of packing in the lattice.

ill) For higher order clusters, x > 1, up to three coordinated 

n-aminobutanoic acid ligands or associated ligand fragments were 

observed. This supports a model of the cluster structure whereby a 

singly charged, ligated, core is surrounded by a number of neutral UO2 

groups.

lv) Similar ligand dissociation and fragmentation pathways are 

observed, involving the sequential fragmentation of an individual ligand

23 5



rather than the consecutive stepwise fragmentation of all the ligands

present.

C ( UCh > x  < a , p.y-aminobutanoic acid )p ]

\C ( UO2 >:« ( a,p.y-aminobutanoic acid >P-i ( F,, ] */
\t < UO2 >x < a,p.y-aminobutanoic acid >p.-2 < Fr. > 1*\

[ ( UO2 >x ( a,p. y-aminobutanoic acid >p-i 1^

v> The fragmentation patterns observed show the amino group to

predominantly lose a methylamine moiety, although this behaviour 16 less 

distinct for < y-aminobutanoic acid >.

5.6 URAHYL-< SERIHE ) AHD < THREOHIHE ) COMPLEXES

Serine and threonine are closely related, water-soluble amino 

acids, both containing hydroxyl groups in their y-positions.

The FAB spectra for the uranyl-serlne complex feature a number of 

peaks of high relative intensity which correspond to the mono-, bis- and 

tris-llgated species as well as a low intensity peak due to the 

formation of the pentakis-serlne complex. No evidence for the tetrakls 

complex or its fragments were observed. The pattern of fragmentation 

ions observed suggests that the pentakls ligated species experienced the 

sequential loss of two neutral Intact serine ligands, resulting in the



formation of the more stable trls-llgated species. This subsequently 

undergoes ligand fragmentation, Involving the sequential loss of 

hydroxide and methyl groups or a single methanol molecule, resulting In 

a coordinated amino acid residue which dissociates following the loss of 

an amino or methylamine species.

The FAB spectrum for the uranyl-threonine complex shows the 

presence of species containing up to three threonine ligands, with the 

mono-threonine ligated clusters being of highest Intensity. The ligand 

fragmentation pattern observed is consistent with threonine undergoing 

the sequential loss of methyl and methanol groups, resulting in 

coordinated amino acid residues, which fragment to yield COa groups at 

lower values of x, before complete dissociation.
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5.7 SUMMARY OF THE FAB SPECTRA FOR URARYL-< AMIBO ACID >

COMPLEXES.

The FAB mass spectra for the uranyl-amlno acid complexes studied 

feature a number of similarities and display marked trends in their 

ligand dissociation and fragmentation patterns.

The observed species are observed to follow the general formula 

C ( UO2 )*< C amino acid >P < Fi_ ) I“", over a cluster size range x i 4. 

The ligated clusters contain up to five coordinated amino acid ligands, 

p < 5, with their relative intensities being

observed to vary with the number of ligands pressent. The mono-ligated 

clusters, p = 1, exhibited the highest intensities with the bis- 

clusters being at a slightly lower relative Intensity than that of the 

tris-llgated species. The tetrakls-specles are observed to display 

notably weaker intensities, that is, approximately equal to those of 

the pentakls- amino acid species.

The higher relative intensities displayed by the tris-amino acid

species are consistent with the expected Increased stability of the
\hexa-coordinate uranyl ion. This in turn shows the ligands to function 

as a bldentate species.

Higher mass cluster species, x > 1, containing up to three amino 

acid ligands, p < 3, or associated fragments, were detected, with the 

mono-ligated clusters being of notably higher relative Intensity. The 

presence of p < 3 amino acids in higher order clusters suggests that the

2 3 8



cluster structures consist of a single central coordinated uranyl ion, 

with a number of additional dioxouranium moieties forming a shell-like 

structure around this central ion.

The degree of ligation is also found to be dependent on the 

character of the amino acid present. Our results Indicate that the 

simpler amino acids show a decrease in relative intensity as the 

aliphatic side chain Increases in length; thl6 behaviour 1b demonstrated 

by comparison of the relative intensities for glycine, a-alanine and 

a-aminobutanoic acid. However species with more complex side chains, 

capable of forming more stable carbonium ions, are found to show higher 

intensities, which may be a consequence of their larger inductive 

effect. Other influences affecting the relative intensities of the 

ligated species formed are observed to be related to the position of the 

amino group in the amino acid. The data for the

a,0,y-amlnobutanoic acid complexes shows the relative intensities of a 

given species to Increase as the separation between the carboxylic acid 

and amino groups Increases. This behaviour is most obvious for the 

tris-ligated species; this pattern of behaviour is reflected in the 

Increased crystallinity of the y-aminobutanolc acid complex, possibly 

pointing to a common origin. Similarly, the intensities of the more 

ligated clusters containing 0-alallne are Increased relative to those 

incorporating a-alanlne although the effect is less marked. This 

influence is a consequence of the reduced acid strengths, with the pKa 

values for the ligands involved increasing as the separation between the 

carboxylic acid and the amino group increases. Similarly, the results 

obtained for serine and cysteine indicate that serine complexes are of

2 3 9



notably higher intensity at lower coordination. However, similar 

spectral species are observed for both ligands, with the tris-aminoacid 

species being of increased relative intensity and the presence of a 

pentakis-11gated species being observed. For threonine, which contains 

one more methyl group than serine, and which is slightly more acidic in 

character, similar trends are also seen, although only species 

containing up to three ligands or associated fragments,p < 3, are 

observed.
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Fig. 5.7.1 The fragmentation pattern observed for the uranyl-glycine

species observed in the mass spectra of tetrakis-( glycine ) uranyl 

nitrate.

For x = 1

t < UOa ) 1-

1 .

C < UOa ) ( Gly. >

For x > 1

t < UOa >* 1*

[ < UOa )» < 00C ) 1-

1
£ < UOa >« < Gly. > 3-

C

[

C

£

C

C

< UOa ) ( 00C )a ]*

( UOa ) ( Gly. ) < 00C >

< UOa ) < Gly. )a 1-

( UOa ) < Gly. >» J*

1
( UOa ) < Gly. >* 1*

1
( UOa ) < Gly. >• 1*

2 41



Fig. 5.7.2 The relative intensities, with respect to C 003 1

< m/z = 270 >, for the various uranyl-< amino acid 

studied

no. of amino acids, P-

0p<s acid 1 2 3 4 5

Gly. 25.6 4.5 5.8 3.2

a Ala. 21.5 3.8 4.9 0.9 1.0

» Ala. 16.6 2.9 5.2 1.2 0.5

Val. 32.6 14.8 14. 1 5.7 4.7

a ABA. 17.5 5. 0 1.9

» ABA. 32.3 16.2 2.6 1.6

» ABA. 20.9 7.7 3.8 0.9

Ser. 10.2 0.9 1.2 0. 9

The. 4.3 1.2 1.9

Cys. 1.6 0.7 1.0 0.2

clusters
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5.8 THE FAB MASS SPECTRUM OF URAEIUMCIV) CHLORIDE

The mass spectrum for UC1.* was recorded by FAB-MS using negative 

ion detection, for masses upto 3500 daltons with a number of matrix 

compounds and co-solvents. The resulting spectra are very rich in 

species and show the presence of a number of sequences of clusters of 

general formula [ UxCln 1~ as well as related species containing 

characteristic matrix adducts. Adduct species were found to be least 

significant for sulpholane when cooled, while dimethyl sulphoxlde gave 

rise to clusters containing methyl sulphoxlde moieties.

These [ U*Clr. 3~ cluster series were observed to decrease in 

relative intensity with increasing cluster size, x, with each cluster 

series containing species corresponding to a number of n values. The 

most intense cluster species in a series was found to Increase with 

increasing x value, with the range of n values observed also exhibiting 

a corresponding shift to higher values. For the x = 1 series, values of 

n consistent with between one and six chlorine atoms being present were 

observed, 1 1 n < 6, with the most Intense species being C UC1» I". The 

x = 2 series showed values of n = 3 to 8, with the n = 5 species being 

most Intense. This gradual Increase in the chlorine atom content with 

Increasing cluster size is observed to continue until the species with 

x = 5, which exhibits a slightly increased relative intensity, after 

which the increase becomes more gradual.

24 3
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This behaviour can be clearly demonstrated in a plot of the 

chlorine content, n, against cluster size, x, for the most abundant 

species observed for a given value of x. The resulting plot gives rise 

to two different size-dependent relationships, which are seen to 

intersect at x = 5. These relationships correspond to

n = 2x + 1  Eqn. 5.1

for lower mass clusters, x < 5, and for higher mass clusters, x ) 5, 

n = 1.5x + 3.5 Eqn. 5.2

This behaviour can also be represented graphically by a plot of the 

uranium : chlorine ratio, z, against cluster size, x. The resulting 

graph shows the presence of two distinct curves that Intersect at x = 5. 

In addition, when the ranges of z are also plotted they are found to 

give rise to two distinct regions for the compositions of uranium- 

chlorine clusters. In the first of these regions, x < 6, the lower and 

upper compositions are found to tend towards the plot observed for the 

most Intense clusters at x > 5. While in the second region, x ) 6, the 

limits of the composition range tend towards the curve due to the most 

intense cluster present for clusters of size x < 6.

This suggests that the range of values of n observed for each x 

value is strongly related to a stable stoichiometry compound and hence 

the stoichiometry of the more stable uranium-chlorine species present, 

although these may not always correspond to the most intense clusters.
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A plot of the uranium : chlorine atom ratio, z, against 1/x Is 

found to Illustrate the above clearly by giving rise to a number of 

size-dependent linear relationships centring on z = 1.5 and 2.0 at very 

high cluster sizes. For clusters of small x values, x < 5, the 

relationship can be described by the equation.

z = 1/x + 2.0 Eqn. 5.3

Vhlle the composition range boundaries for this cluster size range 

centre on z = 1.5, the upper composition range is described by the 

equation.

z = 5.5/x + 1.5 Eqn. 5.4

Vhlle the lower boundary is found to show odd/even alternation, with 

x = 2, 4, 6 and 8 showing a constant z value of z = 1,5, the lower 

boundary for x = 1, 3, 5 and 7 is described by the equation.

z = -0.5/x + 1.5 Eqn. 5.5

For clusters x ) 5 the linear relationship exhibited by the most 

Intense clusters corresponds to the equation.

z = 3.5/x + 1.5 Eqn. 5.6

2 4 8  a



1 -------1---------1--------1-------1---------r
2 4 6 8 10 12

Fig 5.8.2 Graphical Representation of the Variation ol
Uraniun : Chlorine Aton Ratio, z, with Cluster Size, 
for the Most Abundant Clusters In Each Series
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However the composition boundaries for this size range are observed to 

be centred arround z = 2.0, with no odd/even alternation being observed. 

The upper composition boundary is found to correspond to the equation

z = 2.0/x + 2.0 Eqn. 5.7

and the lower limit by

z = -0.5/x + 2.0 Eqn. 5.8

The upper and lower limits for the range of chlorine atom contents 

are found to be related to the ultimate stoichiometries formed by the 

most Intense clusters observed. This tendancy to attain equivalent 

compositions at high x values suggests the formation of particular 

crystal lattices or structural arrangements, with the preferred 

structure being dependant on cluster size. Since the relative cluster 

binding energies decrease with increasing cluster size, the dominant 

structural form exhibited is governed by energetic considerations.

Hence the changes in the linear relationships observed between z and 1/x 

at x « 5 may denote a change in structural arrangement of the cluster 

units to a structure that is more energetically favourable at larger 

cluster sizes, with the transition point between these structures being 

isoenergetlc.

Prior to this point, x < 5, the composition boundaries are 

Influenced by structural considerations for both possible structural 

arrangements, while at x J 5 the composition boundaries are strongly
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related to the dominant structure prior to rearrangement at x = 5. The 

level of this influence, x i 5 t x, suggests that these structural 

arrangements are of similar energies over the cluster size range 

studied, although the differences between them is large enough to cause 

a marked structural rearrangement at x = 5.
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6.1 CLUSTER CHEMISTRY

There are various means by which cluster formation can take place; 

these association reactions can generally be divided into two major 

groups. The first of these involves the formation of a charged species 

upon the association of a charged species with a number of neutral 

units. Examples of these associative ionization processes are,

a, X * + X -* X 2 T  + e~

Homonuclear associative ioniza'tlon

b, X * + yz -* xyz* + e~

Heteronuclear associative ionization

c, X * + yz -t xy"- + z + e~

Rearrangement ionization

d, X * + yz -* yz* + x + e~

Penning ionization

e, X * + yz -» r  + z + x + e~

Dissociative Penning ionization

i, X * + yz -» x^ + yz + e-

X * + yz -> x-“ + yz-

Collisional electron release

8 . X * + X * -* x~ + X + e“

X * ♦ X * -* x* + X "

X * ♦ X * -* X 2 *  +

/ Excited pair ionization

2 5 2



The second type of cluster formation reaction Involves the 

association of neutral units. The reactions resulting In cluster 

formation during fast atom bombardment are generally considered to 

belong to the second group.

Evidence suggests that during their initial growth, clusters are 

formed by a series of third-body-assisted energetic association 

reactions of the type

mn-i* + m + x -* nv,* + x

with the third party removing the excess exothermic energy and hence its 

role becomes less important as the cluster size increases, i.e. as the 

cluster itself is progressively more able to provide pathways for the 

dissipation of the energy released via its increased number of degrees 

of vibrational freedom. Similarly third-body reactions may also occur 

involving charged species. Excess cluster energy may also be lost via 

one or more fragmentation reactions, involving the dissociative loss of 

cluster units. This type of evaporative dissociation has been reported 

for a wide range of cluster systems,with several studies suggesting that 

structural magic numbers originate solely from the dynamic processes of 

unlmolecular dissociation, with unstable clusters undergoing 

fragmentation to form more stable combinations of atoms (65>. Examples 

of this are the 21-mer of water and the model of Echt et al. for gaseous 

clusters, which attributes magic numbers to the completion of

ico6ohedral structures <182>.



The ionization of neutral clusters, even at low energies, nay also 

Induce extensive fragmentation or rearrangement reactions concurrent 

with the ionization event. Hence the observed distributions of charged 

clusters may not accurately represent the situation of their neutral 

counterparts. This has been clearly demonstrated by the observation 

that the formation of a dimer ion within a rare gas cluster should 

release sufficient energy to evaporate dlssociatlvely a number of atoms 

from the newly formed cluster ion (84)(184). Similar behaviour has also 

been observed for ammonia clusters. These studies have shown the 

average kinetic energy release, and hence the binding energy, of cluster 

ions to decrease with increasing cluster size, and the dissociation 

rates of the clusters to be dependent on the time lapse after the 

ionlzation/cluster formation event. Chen et al. have suggested that 

clusters with metastable lifetimes too long for the fragmentation 

process to be described by statistical vibrational predissociation, may 

dissociate by tunnelling through a rotational barrier (186). This is 

likely even in clusters of heavy atoms or molecules, since such 

tunnelling is relatively insensitive to the mass of the escaping species 

(185).

Hence in addition to cluster formation reactions, the size 

distribution and the relative intensities of the resulting clusters are 

dependent on an array of factors, both thermodynamic, kinetic and 

structural, which influence the position and rate at which the 

equilibrium for cluster formation reaction is reached. The major 

factors affecting the rate at which equilibrium is reached following 

ionization can be summarised;
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i, Ion-molecule reactions may proceed between the newly Ionized entity 

and a neighbouring species. This reaction may result in various third- 

body reactions.

11, The energy content of a cluster Increases as the neutral species 

rearranges to accommodate a newly-formed charge; this may lead to 

extensive evaporative dissociation as the cluster cools.

ill, Kinetic energy release measurements have shown that clusters of 

neighbouring x-values have comparable vibrational energies.

iv, The rates of unimolecular dissociation decrease with time after the 

ionization event and hence the relative binding energies increase. This 

is because of the energy distribution of a cluster population, with the 

number of clusters having energies in excess of their dissociation 

threshold decreasing on cooling.
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6.2 COHCLUDIIG SUMMAKY

The variety of FAB-induced species detected during this research 

are found to follow a number of similar general trends, with the 

sequences of clusters formed showing a direct relationship to many bulk 

state phenomena. These singly-charged clusters are formed by gas phase 

association reactions and show the strong Influence of the energetics 

and patterns established for the bulk metal salts at small cluster 

Bizes. The cluster sizes at which these influences begin to emerge 

affect significantly the structures and reactions of a given class of 

clusters; indeed these are observed to depend strongly on the metal 

component, reflecting changes in the availability of energy states.

Monometallic species < x = 1 > are also found to exhibit 

coordination phenomena that are directly related to stabilities in the 

bulk state. The occurrence of many bulk state phenomena are best 

interpreted by consideration of the energetic Influences present during 

cluster formation and subsequent decomposition. This work has shown 

cluster formation to take place in the gas phase, via a number of third- 

body-assisted associative reactions;

Mr,— 1 + M + X ----- ► Mr, + X

where X acts as a third body.

2 5 6



During cluster formation In the presence of a matrix compound or 

co-solvent, the formation of matrix adducts can also take place to an 

extent depending on the relative Ionization energy of the matrix 

present.

The presence of certain matrix compounds Is also found to influence 

the relative intensities and distributions of differently sized 

clusters. However the use of sulpholane as a matrix compound is found 

to yield cluster spectra comparable with those formed from pure 

compounds, although the presence of impurities is observed to influence 

cluster formation. The effects of temperature and pressure on cluster 

formation are observed to be similar to those observed during chemical 

ionization, which supports the proposal of their essentially gas phase 

origin.

The clusters formed by one or more of these associative reactions 

are thought to undergo a number of possible energy-loss processes before 

dynamic equilibrium is established between cluster formation and 

fragmentation reactions. Additional reactions, including collislonal 

de-excitation and stablization reactions, as well as cluster 

rearrangements, enable the dissipation of excess energy. The resulting 

clusters have been shown to adopt preferentially to energetically-stable 

structural arrangements which are consistent with the metal salt phases 

in the bulk state. This behaviour is clearly demonstrated by 

considering the uranium-oxygen clusters reported above, where the 

clusters adopt stoichiometries that coincide with the sharp change in 

bulk density marking the transition between the fluorite and uranyl-

2 5 7



banded phases of UzQe. Similarly the clusters observed for a number of 

oxides of lanthanide metals are also found to display trends consistent 

with changes In their available oxidation states < and the resulting 

complexity of their oxide phases ) as well as the influence of the 

lanthanide contraction. These Include similarities in the positions of 

several spectral abnormalities and size-dependent phenomena, Including 

the adoption of z = 1.5, z = metal : oxygen atom ratio, at large values 

of x. However the availability of the M*- oxidation state for cerium 

results In the achlevment of z = 2.0, while the clusters based on 

europium and samarium tend towards the formation of oxygen-deficent 

clusters at x < 15, reflecting the availability of their M2*“ states.

The stoichiometries displayed by these clusters can be expressed by 

the equation

z = 1.5 - 0.5/x C 3 x - 2 ( x + y >  ] Eqn3.35

This expression can be used to explain several spectral phenomena and 

the formation of clusters containing lanthanide ions of mixed oxidation 

state. In addition it allows Insight to be gained into the relative 

stabilities of the clusters formed by interpreting possible electronic 

structures, as well as enabling direct parallels to be drawn between the 

clusters observed and the bulk-state lanthanlde-oxlde phases reported.

Similarly the uranium-oxygen atom clusters formed by the FAB of 

various uranyl salts can be described by the equation

2 5 8



z 2.5 0.5/x [ 6x, + 4 x 2  - 2y' ] Eqn4.7

Where xi and x2 respectively are taken as denoting the numbers of U*'* 

and U*-* ions in a given cluster, while y' refers to the total number of 

oxygen atoms present. This equation can be used to explain why no 

odd/even alternation is observed for uranyl clusters since both odd and 

even clusters are found to contain unpaired electrons, unlike the 

lanthanide-oxygen clusters. From the z values obtained, the uranium- 

oxygen atom clusters are found to coincide with the sharp change in 

density reported for the bulk state uranium-oxygen phases, which marks 

the change between fluorite and uranyl type bonding in the U20» phases. 

Similar results are also obtained for thorium-oxygen atom clusters as 

well as those observed for uranium-chlorine atom clusters.

In addition to the metal-oxygen and -chlorine clusters described, 

various clusters containing coordinated ligands and ligand fragments are 

also detected. These clusters displayed a number of similar trends, 

especially between clusters containing related ligands and often 

reflecting coordination stabilities in the bulk state. The ligated 

clusters formed by the FAB of a number of Uranyl-< amino acid > 

complexes all showed the trls-( amino acid > clusters to exhibit 

enhanced relative intensities, corresponding to the preferred hexa- 

coordination of the uranyl ion in its equatorial plane. This also shows 

the amino-acid ligands to function with a bidentate character. At 

larger cluster sizes, x > 1, species containing up to three amino-acid 

ligands or associated fragments were detected, with the mono-ligated 

clusters being of highest relative intensity. The extent and strength
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of ligand association has also been found to be dependent on the 

character of the amino acid ligands; this in many cases is found to be 

related to the stabilities of the carbonlum ions derived from the 

respective ligands. While the presence of p ( 3 ligated clusters in 

higher-mass species suggests that these species consist of a singly- 

charged ligated uranyl ion surrounded by a shell like structure of 

neutral dioxouranium moieties.

The spectra for the lanthanide acetates studied are found to 

display the presence of related species of general formula 

[ ( LnO >x Oy ( CHuCOO >p Fl_ ]*, with values of p < 2 being observed for 
all lanthanides, except cerium which exhibits p < 3. These ligand 

coordinations and their relative intensities reflect the reported 

crystal structures. In addition the dominant fragmentation pattern 

displayed by the acetate ligands is observed to be dependent on both the 

lanthanide metal present and the cluster size. This observation points 

to a dependence of the preferred ligand fragmentation pattern on the 

size, and hence stability, of the cluster. Similar results are also 

obtained for the lanthanide malonates and uranyl acetate clusters.
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6.3 FUTURE WORK

Future research into the nature, formation and decomposition 

mechanisms, and structures and stabilities of metal-oxygen and metal- 

halide clusters should aim to establish the energy differences between 

the different series of stoichiometries arising for each metal. This 

study could Include the use of mass analysed ion kinetic energy 

scan,KIKES, to investigate the energy relationship between the regions 

of intersection in the relative ion abundances of these series, and 

related size-dependant structural changes. Similar studies could be 

extended to related metal-oxide and metal-halide systems.

In addition, investigations into the structural influences of 

cluster size could also be carried out using a high pressure FAB 

source. In these studies, the admittance of reactive buffer gases 

into the source during bombardment may result in spectral species 

showing changes in their relative intensities and reveal Information 

about adduct formation. Also by using reactive buffer gases of known 

ionization potentials, information regarding the relative energies of 

the resulting species and their formation pathways may be obtained.

Similarly, investigations into the formation of ligated clusters 

may be carried out with the high pressure source. These studies will 

enable the interpretation of trends occurring as regards the extent of 

ligand coordination with respect to differing reagent gases and 

cluster sizes. Thâse investigations may in turn give information
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concerning the number and type of available sites for ligand 

coordination and their relative energies. These investigations could 

be usefully extended to related metals.

Other means of vapourising metal salts could be utilised, such as 

laser desorption or field desorption. Such approaches, which involve 

'softer' energising of the sample, may lead to greater retention of 

ligand moieties in the resulting cluster.
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