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Abstract

Sequential Monte Carlo methods are a family of computational algorithms which use an ensemble of

weighted samples to approximate, in turn, each of a sequence of distributions and their associated normalizing

constants. These algorithms first came to prominence as efficient methods for approximating the optimal

filter in the context of hidden Markov models on general state spaces, online as observations become available,

but are very much more widely applicable. This article seeks to provide a high level overview of these

methods, introducing the methods themselves and some of their key theoretical properties before discussing

their application in a range of settings which include inference for hidden Markov models; Bayesian inference

more generally; maximum likelihood estimation and rare event estimation.

Keywords: approximate Bayesian computation; Bayesian inference; estimation; hidden Markov models;

sequential Monte Carlo.

1 Introduction

Sequential Monte Carlo (SMC) methods are a broad class of algorithms for approximating distributions

of interest, integrals with respect to those distributions and their normalizing constants. They employ an

ensemble of weighted samples which targets each of a sequence of distributions in turn. In some settings this

sequence arises naturally from the problem being addressed and in others it is specified as a design choice.

This chapter presents a generic framework in which these methods can be described, arguing that the vast

majority of SMC approaches admit an interpretation directly within this framework and that the remainder

require only small extensions of it, before dedicating some space to a number of major statistical applications

of these methods. A high-level view is taken, with many details left to references so that a broad overview

of this area can be provided. This allows us to showcase a number of the areas in which SMC finds natural

applications, not just the particle filtering setting in which it has particular prominence, but also in many

other contexts including Bayesian inference, approximate Bayesian computation and rare event estimation.
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2 Sequential Importance Sampling and Resampling

We will be interested in providing weighted sample approximations to each of a sequence of related distri-

butions in turn. In some settings each of these distributions will be interesting in its own right and might

arise naturally from a problem at hand; this is the case in the filtering context, explored in Section 3.1, for

example. In other cases, the sequence of distributions is a computational device with only the final distribu-

tion in the sequence being of independent interest but with the others used to allow it to be approximated

efficiently, typically by constructing a sequence which moves from a tractable distribution to that of interest.

We shall consider throughout probability distributions defined on Euclidean spaces which admit (Lebesgue)

densities; the generalization to arbitrary Polish spaces is essentially direct but significantly complicates the

required notation.

Consider a sequence of probability distributions, {πn}n∈N defined on an increasing sequence of state

spaces, Ẽn = ⊗np=1Ep with Ep = Rdp so that, for each n, πn is a density over Rd1+...+dn . Assume that

this sequence of densities may be evaluated up to a possibly unknown normalising constant, i.e. for each n,

πn = γn/Zn where γn : Ẽn → (0,∞) is an unnormalized probability density and Zn :=
∫
Ẽn

γn(x1:n)dx1:n

may not be available.

A simple importance sampling solution to the problem of approximating both πn and Zn would be to

draw some number, N , of independent samples from a proposal distribution Qn with respect to which πn

was absolutely continuous and to use it to approximate both of these quantities via the standard importance

sampling identities:

π̂Nn (ϕ) :=
1

N · ẐNn

N∑
i=1

γn(Xi
1:n)

Qn(Xi
1:n)

ϕ(Xi
1:n) ẐNn =

1

N

N∑
i=1

γn(Xi
1:n)

Qn(Xi
1:n)

,

where ϕ : Ẽn → R is any suitably integrable test function and π̂Nn (ϕ) denotes the N -particle approximation

of the expectation of ϕ(X1:n) with X1:n distributed according to πn.

However, if one seeks to approximate each distribution in turn such an approach seems wasteful. It is

natural in this context to consider Qn(x1:n) which can be decomposed as

Qn(x1:n) = q1(x1)q2(x2|x1) . . . qn(xn|x1:n−1).

In this case, given an importance weighted ensemble of samples, {W i
n−1, X

i
1:n−1}Ni=1, which targets πn−1 (and

which were drawn from Qn−1) one can extend the sample to approximate πn by drawing Xi
n ∼ qn(·|Xi

1:n−1)

independently for i = 1, . . . , N and updating the weights accordingly, setting

W i
n =

W i
n−1Gn(Xi

1:n)∑N
j=1W

j
n−1Gn(Xj

1:n)
,

where Gn(x1:n) := γn(x1:n)/γn−1(x1:n−1)qn(xn|x1:n−1) is termed the incremental weight function. (In most

settings in which SMC methods find application, further simplification arises via a Markovian decompo-

sition of the unnormalized target, γn(x1:n) = γn−1(x1:n−1)γn(xn|xn−1), and proposal, qn(xn|x1:n−1) =

qn(xn|xn−1), distributions which means that Gn(x1:n) = Gn(xn−1:n) = γn(xn|xn−1)/qn(xn|xn−1).) This
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gives a mechanism by which each distribution can be approximated in turn, at a computational cost per

iteration which does not increase with n. However, this sequential importance sampling (SIS) strategy is of

limited direct usefulness because the variance of the importance weights and associated estimators will grow

with the length of the sequence [1], typically exponentially [2], and only sequences of modest length can be

approximated adequately using a reasonable sample size.

In order to make further progress, it is necessary to constrain the class of problems which we hope to

solve a little. In particular, approximating πn(x1:n) is a task which becomes harder and harder as n increases

because the dimension of the space on which these distributions are defined is growing. If we instead settle

for approximating only the final time marginal of these distributions πn(xn) =
∫
πn(x1:n)dx1:n−1 then

we arrive at a sequence of problems which are of comparable difficulty. Within this regime, an approach

known as resampling can be combined with the sequential importance sampling strategy described above.

Resampling is a process by which a weighted sample {W i
n, X

i
1:n} is replaced with the equally-weighted

population {1/N, X̃i
1:n} in such a way that the expected number of copies of each member of the original

ensemble is proportional to its weight. A simple algorithmic description of this generic Sequential Importance

Resampling (SIR) scheme is provided in Algorithm 1. In practice, in the sequential setting described above,

in which Gn(x1:n) is dependent on only xn−1:n, it is not necessary to store the entire history of the surviving

particles as a direct implementation of this algorithm would suggest, a feature which is important in the

filtering context described in Section 3.1.1, for example; when one does need to store the entire history of

every surviving particle space-efficient methods for doing so exist [3].

Algorithm 1 The generic sequential importance resampling algorithm.

Initialization: n = 1
Sample X1

1 , . . . , X
N
1 ∼ q1.

Compute W i
1 = G1(X

i
1)/

∑N
j=1 G1(X

j
1) for i = 1, . . . , N .

Iteration: n← n+ 1
Resample (W i

n−1, X
i
1:n−1)

N
i=1 to obtain (1/N, X̃i

1:n−1)
N
i=1.

Sample Xi
n ∼ qn(·|X̃i

1:n−1) for i = 1, . . . , N .

Concatenate Xi
1:n ← (X̃i

1:n−1, X
i
n) for i = 1, . . . , N .

Compute W i
n = Gn(X

i
1:n)/

∑N
j=1 Gn(X

j
1:n) for i = 1, . . . , N .

Where, to keep notation light, we slightly abusively allow Xi
1:n−1 to be overwritten with new values in the

concatenation step.

The simplest approach to resampling is known as multinomial resampling — because one can view the

number of copies made of each particle in the present generation under this scheme as a multinomial random

variable with N trials and categorical probabilities given by the vector of particle weights. Multinomial

resampling often features in theoretical work on sequential Monte Carlo. In practical implementations there

are often advantages to employing lower variance resampling schemes. One comparative review of common

resampling schemes [4] compares the properties of a number of simple schemes; more recently the properties

of a broad class of algorithms have been studied in detail [5] — and in both cases there is evidence that better

performance can be obtained by using more sophisticated schemes than the simple multinomial one. In the

particular case of finite state spaces, a specialised resampling scheme can be shown to outperform generic

techniques [6].
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Resampling is often viewed as a selection mechanism in which the “fittest” particle survive and are

replicated and the least fit produce no offspring. The act of resampling clearly introduces additional variance

into the estimators associated with SMC algorithms in the sense that one obtains better lower variance

estimates immediately before a resampling operation than immediately after it; however, the immediate

increase in variance is justified by the stability that it provides to the system in the future. Consequently, it

may be desirable to avoid resampling more often than is necessary — particularly if a simple scheme, such as

the multinomial one is being used. Occasional resampling, for example when the effective sample size [1] falls

below a threshold, is one way to limit the number of resampling events. This approach is widespread and

intuitive, but was only shown to inherit many favourable convergence properties from standard sequential

importance resampling schemes rather more recently [7]. Resampling only at some iterations makes no

fundamental change to the algorithm, but doing so at iterations which are selected based upon the properties

of the collection of particles introduces some additional considerations which require additional steps to

justify theoretically (one successful strategy [7] being, essentially, to demonstrate that for large enough sample

sizes the times at which resampling occurs converge, almost surely, to a deterministic limit).

A number of estimators can be associated with this algorithm, one of the normalizing constant, Zn, of

γn:

ZNn =

n∏
p=1

1

N

N∑
i=1

Gp(X
i
p), (1)

and one of expectations with respect to each of the target distributions in turn:

πNn (ϕ) :=

N∑
i=1

W i
nϕ(Xi

n).

There is now a considerable literature on the theoretical properties of these algorithms, the rigorous

analysis of which dates back to the mid 1990s [8]. Methods within this broad general class can be profitably

interpreted as mean field approximations of Feynman-Kac formulæ [9;10] which provides an elegant framework

within which central limit theorem and law of large number results among many others have been obtained.

Direct analysis of these methods is, of course, also possible [11;12;13;14;15].

Although a detailed theoretical survey is beyond the scope of this article, it is convenient to sketch some

of the most prominent results as these provide a formal justification for the use of SMC methods. We

present below three results taken from a single monograph [9] by way of illustration; in each case variants

whose proofs hold under different (and often weaker) assumptions can also be found in the literature. The

unbiasedness of normalizing constant estimates is a consequence of Theorem 7.4.2 of the monograph and

holds under minimal conditions, although some care is required if the potential functions can take the value

zero. Corollary 7.4.2 of the monograph provides a strong law of large numbers for particle approximations.

The development in Chapter 9 of the monograph provides a central limit theorem.

Proposition 1 (Unbiasedness). If the potential functions are uniformly bounded above, supp≤n,xGp(x) <∞,

and the system has not become extinct (i.e. the associated weights have never all simultaneously taken the

value zero), then: E[ZNn ] = Zn.
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Proposition 2 (Strong Law of Large Numbers). Provided Gp is bounded above and away from zero for all

p ≤ n, or other technical conditions are met, for bounded measurable ϕ : En → R, πNn (ϕ)
a.s.→ πn(ϕ).

Proposition 3 (Central Limit Theorem). If the potential functions are uniformly bounded above and away

from zero, supp≤n,x,y Gp(x)/Gp(y) <∞, then, for bounded measurable ϕ,

√
N

[
πNn (ϕ)− πn(ϕ)

]
⇀ N (0, σ2

n(ϕ))

where ⇀ denotes convergence in distribution and the asymptotic variance σ2
n(ϕ) can be written either re-

cursively or as a sum of integral expressions. Explicit forms for the asymptotic variance can be found for

particle filters [12], auxiliary particle filters [16] and SMC Samplers [17], for example.

2.1 Extended State Spaces and SMC Samplers

It is often the case that we are interested in a sequence of distributions over a common space (rather than

distributions defined on spaces of increasing dimension) or even a single distribution, π. In order to use SMC

in the first of these cases it is necessary to define a sequence of distributions of the correct form to allow the

sequential importance resampling paradigm to be deployed while retaining the distributions of interest as

marginals; the second case can be handled by constructing an artificial sequence of distributions which lead

from a tractable distribution to that of interest. Examples of both cases in the context of Bayesian inference

are provided in Section 3.2.

An explicit technique for doing exactly this in some degree of generality was introduced by Del Moral,

Doucet and Jasra in 2006 [17]. Given a sequence of target distributions over some space, E, π1, . . . , πT ,

one can define a sequence of distributions over Ẽn = En, say, π̃1, . . . , π̃T such that π̃n is a distribution

over vectors of n elements of E, in such a way that they satisfy the requirements for the deployment of

SMC and such that they admit the distributions of interest as a marginal (and, in particular, the final time

marginal which SMC algorithms are best able to approximate). In order to do this, it is convenient to

introduce a sequence of Markov kernels L1. . . . , LT−1 which operate backwards in time so that we can define

π̃n(x1:n) = πn(xn)
1∏

p=n−1

Lp(xp+1, xp). If one denotes the proposal distribution at iteration n of such an

algorithm qn, then one arrives at importance weights:

Gn(x1:n) =
π̃n(x1:n)

π̃n−1(x1:n−1)qn(xn|xn−1)

=

πn(xn)
1∏

p=n−1

Lp(xp+1, xp)

πn−1(xn−1)
1∏

p=n−2

Lp(xp+1, xp)qn(xn|xn−1)

=
πn(xn)Ln−1(xn, xn−1)

πn−1(xn−1)qn(xn|xn−1)
.

The simple form of these weights and the lack of dependence on any but the final two coordinates is

a consequence of the Markovian approach to extending these distributions. The remaining question of

how to choose the backward kernels, Ln, can be (partially) answered by considering the variance of the

resulting importance weights [17]. The optimal choice for finite sample sizes is intractable as it depends on

the actual marginal sampling distribution of the particles at iteration n which is hard to characterise as a
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consequence of the resampling mechanism; but asymptotic arguments suggest that neglecting the departure

of the approximation from the target at time n is a reasonable way to proceed. This suggests a near optimal

strategy would be to choose

Lp(xp, xp−1) =
πp−1(xp−1)qp(xp|xp−1)∫

πp−1(x′p−1)qp(xp|x′p−1)dx′p−1

,

but in general this will lead to intractable importance weights (loosely speaking it can be seen as an attempt

to integrate out the history of the particle system). In the case in which qp is a πp-invariant Markov kernel1 a

small departure from the optimal expression gives rise to the time-reversal of qp with respect to its invariant

distribution:

Lp(xp, xp−1) =
πp(xp−1)qp(xp|xp−1)∫

πp−1(x′p−1)qp(xp|x′p−1)dx′p−1

=
πp(xp−1)

πp−1(xp)
,

which can be more readily used. This is a rather natural choice when one uses πp-invariant Markov kernels

in the proposal mechanism; indeed, this auxiliary kernel appears in the proof of a central limit theorem

for the resample-move algorithm [18]. In this particular setting one can also arrive at the same importance

weights using more direct arguments [19].

The ease with which adaptation can be incorporated within SMC methods is one of their great strengths

and several strategies have been proposed [20;21;22;23] and theoretical support provided [24]. There are two

areas in which adaptation is most commonly employed: first within the sequence of target distributions

(in settings in which a single distribution is of ultimate interest) and in the parameters of the proposal

distribution employed at each step. Appropriate adaptive methods naturally vary between contexts, but

at least in contexts in which one expects consecutive distributions within the sequence of targets to be

broadly “similar” and Metropolis-Hastings kernels are used there are two common approaches to tuning the

proposal distribution: using the particle population at time n− 1 to estimate the moments of the target at

that time and to employ a proposal at time n which would be optimal, for example, for a Gaussian target

with those moments; or, to adjust the proposal scale whenever the acceptance rate falls outside some target

region (motivated by optimal scaling considerations). In settings in which one builds an artificial sequence

of distributions in order to reach a single distribution of interest it is common practice to specify a sequence

of distributions which differ from one another by approximately equal amounts; strategies which control the

effective sample size (or variants in the case of occasional resampling [25]) aim, essentially, to control the

χ-squared discrepancy between consecutive distributions, which is intuitively appealing if not, in general,

optimal.

2.2 Particle MCMC and Related Methods

The particle MCMC [26] approach essentially employs SMC algorithms within MCMC algorithms — in some

sense the counterpart of the use of MCMC moves within SMC algorithms — in order to provide good

proposal distributions. It is intuitive that as SMC provides good approximations to its target distributions

1Including those, like those arising from Metropolis-like accept-reject mechanisms, which do not admit Lebesgue densi-
ties; a more careful treatment allows it to be established that absolute continuity of πp(xp)Lp−1(xp, xp−1) with respect to
πp−1(xp−1)qp(xp|xp−1) is all that is really required and the time reversal kernel described here readily satisfies that requirement.
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that it could provide good approximations to, for example, block-Gibbs sampler proposals and intractable

marginal distributions but considerable care is required to justify this: one cannot simply use approximations

naively within an MCMC algorithm and expect to obtain the correct invariant distribution.

In order to justify this type of algorithm it is necessary to characterize the distribution of all of the random

variables generated in the running of an SMC algorithm and to do this it is convenient to reinterpret the

resampling slightly as sampling an ancestor for each member of the resulting population. Having done this,

the joint distribution over the variables simulated in the proposal step and in the selection of ancestors

can be characterized straightforwardly allowing for a variety of MCMC algorithms which make use of SMC

as a constituent part to be justified by an extended state space construction in which the distribution of

interested is admitted as a marginal and the additional variables involved in the SMC algorithm can be

viewed as auxiliary variables.

More precisely, let ap = (a1p, . . . , a
N
p ) denote the vector of time p ancestors of the particles at time p+1 so

that, for example, xip+1 is an offspring of x
aip
p . Similarly, let xp = (x1p, . . . , x

N
p ). For simplicity, consider the

case in which qp(xp|x1:p−1) = qp(xp|xp−1) and Gp(x1:p) = Gp(xp−1, xp); the general case follows by identical

arguments but with somewhat more cumbersome notational requirements. The random variables simulated

in the course of running Algorithm 1 up to time n are the states x1:n ∈
∏n
p=1E

N
p and a1:n−1 ∈ {1, . . . , N}Nn

and have the joint distribution

ψn(x1:n,a1:n−1) :=

N∏
i=1

q1(xi1) ·
n∏
p=2

[
r(ap−1|wp−1)

N∏
i=1

qp(x
i
p|x

aip
p−1)

]

where r(·|w) denotes the conditional distribution of ancestors arising from a resampling operation with weight

vector w and the weight vectors are included to simplify the notation but are formally redundant as wp =

(w1
p, . . . , w

N
p ) is a deterministic function of x1:p and a1:p−1 with wip = Gp(x

aip−1

p−1 , x
i
p)/

∑N
j=1Gp(x

a
j
p−1

p−1 , x
j
p) in

the context described. For a concrete example of such a construction, consider the case in which multinomial

resampling is used, in which case

r(ap−1|wp−1) =

N∏
i=1

w
aip−1

p−1 .

Two broad categories of algorithms arise from the use of this construction within an MCMC context.

Algorithms within the first category mimic a marginal form of Metropolis-Hastings algorithm in settings

in which a completed likelihood is tractable but the marginal one is not; such particle Marginal Metropolis

Hastings (PMMH) algorithms can be justified directly as pseudo-marginal algorithms [27], noting that the

normalizing constant estimates provided by SMC algorithms are unbiased, or via the type of auxiliary variable

construction described above. Algorithms in the second category mimic an idealised block-Gibbs sampler in

which the full vector of random variables being updated are drawn from their joint conditional distribution;

these algorithms are a little more complex requiring the introduction of so-called conditional SMC (cSMC)

algorithms and admitting a justification as partially collapsed Gibbs samplers [28]. The cSMC algorithm

corresponds essentially to an SMC algorithm which is modified so one particular particle trajectory is fixed

in advance and guaranteed to survive through resampling steps; although notationally awkward to describe



Sequential Monte Carlo Adam M. Johansen 8

in full generality, such algorithms are simple to implement and enjoy good mixing properties, potentially

justifying a little additional implementation effort.

cSMC algorithms warrant a little discussion in their own right; it can be shown that running a cSMC

algorithm and drawing a single particle trajectory from the resulting weighted ensemble corresponds to a

Markov kernel which is invariant with respect to a particular distribution (the smoothing distribution in

the context of hidden Markov models as described in Section 3.1.2) and can enjoy uniform ergodicity [29].

The basic algorithm can be further improved in many cases by sampling not from the population of par-

ticle trajectories obtained naturally by the resampling mechanism but employing a backward simulation

approach [30] reminiscent of the backward simulation smoother described in Section 3.1.2, or a forward-only

representation of the same known as ancestor sampling [31] — and with these modifications it can be possible

to employ very modest population sizes.

The SMC2 algorithm [32] embeds the particle MCMC approach within a sequential Monte Carlo sampler

and, to some extent, allows for online parameter estimation within state space models. Roughly speaking,

a data-tempered SMC sampler is used to approximate the distribution over the parameter space with the

importance weights associated with this algorithm being obtained from an ensemble of particle filters ap-

proximating the distribution in the latent variable space although, of course, some care is needed in dealing

with the details.

3 SMC in Statistical Contexts

3.1 SMC for Hidden Markov Models

Perhaps the most widely known application of SMC methods is to Bayesian inference for general state

space hidden Markov models (HMMs) or state-space models (SSMs) as they are sometimes known. This

approach dates back at least to the early 1990s [33;34] along with the term bootstrap filter [34] and interacting

particle filter [8]. One fairly recent survey of SMC [2] in the HMM context demonstrates that almost all

particle filtering methods can be viewed within the simple SIR framework described above, which is also the

perspective which we take here.

Consider an Rdx−valued discrete-time Markov process {Xn}n≥1 such that

X1 ∼ µ (x1) and Xn| (Xn−1 = xn−1) ∼ f (xn|xn−1) (2)

where “∼” means distributed according to, µ (x) is a probability density function and f (x|x′) denotes the

probability density associated with moving from x′ to x. We are interested in estimating {Xn}n≥1 but only

have access to the Rdy−valued process {Yn}n≥1. We assume that, given {Xn}n≥1, the observations {Yn}n≥1

are statistically independent and their marginal densities are given by

Yn| (Xn = xn) ∼ g (yn|xn) . (3)

For the sake of simplicity, we have considered only the homogeneous case here; that is, the transition and



Sequential Monte Carlo Adam M. Johansen 9

observation densities are independent of the time index n. The extension to the inhomogeneous case is

straightforward.

There are several inferential problems associated with this class of models: filtering corresponds to the

sequential characterization of the law of the latent state, Xn at time n given observations y1:n for each n

as observations become available; smoothing to the characterization of the law of the entire vector of latent

states X1:n up until time n given observations y1:n again often sequentially as observations become available;

prediction to the characterization of the law of Xn+p for p ≥ 1 given observations y1:n for each n and can

often be treated as a straightforward extension of filtering; and parameter estimation corresponds to the

estimation of static model parameters which do not evolve over time. Until Section 3.1.3 it will be assumed

that any model parameters are known.

3.1.1 Filtering

Perhaps the most natural approach to filtering within the SMC framework described above is to simply set

γn(x1:n) = p(x1:n, y1:n) = µ(x1)g(y1|x1)

n∏
p=2

f(xn|xn−1)g(yn|xn),

where p denotes the joint density of the latent and observation processes over the time horizon indicated by

its arguments as well as associated conditional and marginal distributions as is common in this literature. In

this case, Zn = p(y1:n) and πn(x1:n) = p(x1:n|y1:n). If one also sets qn(xn|x1:n−1) ≡ f(xn|xn−1) one arrives

at a particularly simple algorithm known as the bootstrap particle filter.

There are numerous strategies to improve the performance of SMC in the context of filtering problems; a

number of the more prominent strategies are summarised below; for more details and a demonstration that

all of these methods can be viewed as SIR algorithms (sometimes on suitably extended state spaces), see [2].

Alternative Proposals can improve the performance of the algorithm; the locally optimal proposal qn(xn|x1:n−1) =

p(xn|xn−1, yn) minimizes the conditional variance of the importance weights within the class of algo-

rithms being considered here [35].

Auxiliary Particle Filters [36;16;37] attempt to further improve performance by deferring resampling until

after the influence of the next observation has been (partially) incorporated into the importance weights.

Lookahead methods [38] / block-sampling [39] techniques extend these ideas further into the future, albeit

at the expense of immediacy. They do this either by modifying the target distribution to approximately

incorporate the influence of several subsequent observations, or by sampling new values for the most

recently estimated states (using an extended state space construction similar to that employed within

SMC sampers) during each iteration to allow for the influence of the most recent observations to

be incorporated. Some recent work [40] attempts to address the difficulty of designing good high-

dimensional proposals via an iterative scheme appropriate only outside the online filtering framework;

this idea was recently explored more extensively outside the HMM context [41].

MCMC Moves can be included within particle filters. There are two broad approaches to the inclusion

of MCMC-based innovations within SMC algorithms. So-called resample-move [18] based approaches
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add a Markov kernel with respect to which the target distribution is invariant to each iteration of

the algorithm; this provides a mechanism to improve sample diversity, but doesn’t fundamentally

change the structure of the algorithm. Another approach, often termed sequential-MCMC replaces

the simulation of a collection of conditionally independent samples during each iteration with the

simulation of a Markov chain with an appropriate invariant distribution; such approaches have been

present in the literature for some time [42] and good empirical performance has been observed [43;44],

although convergence results appear to have become available only recently [45]. The ensemble HMM

method [46], in which a grid of points is obtained at each time via the simulation of a Markov chain of

an appropriate invariant distribution, prior to the performance of inference using that grid as a discrete

state space can be shown to be closely connected with sequential MCMC methods [47] combined with

particle MCMC.

There is also considerable work on the use of SMC for filtering in the continuous time setting, good

recent surveys [48;49] and references therein provide a good overview, but a detailed survey falls outside the

scope of this chapter.

3.1.2 Smoothing

In principle, Algorithm 1 applied to a sequence of target distributions coinciding with p(x1:n|y1:n) provides

an approximation of each smoothing distribution in turn. However, this naive approach sometimes known

as the “smoother mode” of the particle filter is doomed to fail eventually as it corresponds to an importance

sampling like approach on a space of ever increasing dimension. In fact, the situation is a little worse

as every resampling step reduces the number of unique paths at earlier times and eventually p(x1|y1:n) is

approximated by only a single surviving path. There has been considerable attention in the literature to the

problem of better approximating smoothing distributions.

Fixed-lag methods provide one simple approximate scheme [50] which allows for smoothing in an online

fashion as observations become available. Rather than attempting to approximate the distribution of xp

given all of the observations received, one settles for an approximation given all of the observations obtained

up until a time some fixed time after p, i.e. making the approximation p(xp|y1:n) ≈ p(xp|y1:min(p+L,n) which

is intuitively reasonbale for sufficiently large L provided that the process under study is sufficiently ergodic.

The resulting approximation error can be controlled under mixing assumptions, at least for the estimation

of additive functionals [51].

Several more sophisticated methods are possible, see [52]. In particular the forward-filtering backward-

simulation (FFBSi) approach which revolves around the decomposition of the smoothing distribution as

p(x1:n|y1:n) = p(xn|y1:n)

n−1∏
p=1

p(xp|y1:p, xp+1),

with

p(xp|xp+1, y1:p) =
p(xp|y1:p)f(xp|xp−1)

p(xp+1|y1:p)
.
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This allows us to write:

p(x1:n|y1:n) = p(xn|y1:n)

n−1∏
p=1

p(xp|y1:p)f(xp|xp−1)

p(xp|y1:p)
,

and within the SMC framework one can obtain a sample approximation of the smoothing distribution by first

running a standard particle filter forwards to the final time computing and storing all of the marginal filtering

distributions along the way and then to run a backward pass using a the resulting particle approximation

of p(xp|xp+1, y1:p). A theoretical analysis of this and related approaches is provided by [53].

The FFBSi approach has a computational cost of O(Nn) per backward sample path (where N is the

number of particles used in the forward filtering phase and n is the length of the time series) and hence a

cost of O(N2n) if one wishes to obtain an N -particle approximation. Some work has been done to mitigate

this in the literature, including a slightly different approximation of the distribution which can reduce the

cost to something linear in the sample size if one is interested in only marginal smoothing distributions [54]

and methods which allow efficient estimation of smoothing expectations of additive functionals [55;53;56].

Offline approaches to smoothing via particle MCMC, or iterated conditional SMC have recently been

developed [57] and are closely related to the problem of static parameter estimation which is discussed in the

next section.

3.1.3 Parameter Estimation

Estimating static parameters, i.e. those parameters which take a single value which is common to all time

points, is a challenging problem in the HMM context — particularly in online contexts. Online, here,

means providing an estimate each time a new observation is obtained which incorporates the influence of all

observations received to date at an iterative cost which is bounded in time. The particular difficulties arise

from the non-trivial dependence structure in which the static parameter and the entire latent state vector

has complex dependencies; the path degeneracy problem of the particle filter makes dealing with the full

joint distribution challenging.

Broadly speaking methods can be characterized as online or offline and make use of either maximum

likelihood or Bayesian approaches to parameter estimation. Offline inference, a competitor to MCMC for

the same problem is generally easier and likelihood-based methods are less computationally demanding than

fully Bayesian ones, especially in the online setting in which it is possible to leverage ideas based around

Fisher scoring on stochastic expectation maximisation algorithms. Good approaches to these problems are

somewhat specialised, but an excellent recent survey exists [58].

3.2 SMC for Bayesian Inference

There are many ways in which SMC finds application in the context of Bayesian inference; there is a good

recent review of methods applicable in the context of graphical models [59]. One common application of

SMC in the statistical literature is in the approximation of the Bayesian posterior distribution for some

parameter θ for which one has prior distribution p(θ) and a likelihood p(y|θ) where y denotes the full set of

data available.

Approaches to this problem date back in the statistics literature have existed for approximately two
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decades [19], with related ideas to be found in the earlier literature [60;61], and a framework incorporating this

and many other algorithms is provided by [17]. Two common approaches, widely identified as data tempering

and likelihood tempering, to the specification of a suitable sequence of distributions are widespread. In the

data tempering setting, one defines a sequence of distributions by adding additional observations at each

step, arriving at a sequence of partial posteriors of the form:

πn(θ) ∝ γn(θ) = p(θ)p(y1:mn |θ)

for some sequence (mn) of data sizes increasing from zero to the actual size of the data set; whereas in

likelihood tempering

πn(θ) ∝ γn(θ) = p(θ)p(y|θ)αn

for some monotonically increasing real-valued sequence, (αn), which increases from zero to one. Both mn

and αn can be specified adaptively.

In the context of Bayesian inference for static parameters with either of these sequences of target distri-

butions, it is natural to employ πn-invariant Markov kernels as the mutation element of the SMC algorithm

giving rise to incremental importance weights at time n of the form p(ymn−1+1:mn |θ) and p(y|θ)αn−αn−1 ,

respectively, if one operates within the SMC sampler framework using the time reversal of these invariant

Markov kernels as the associated auxiliary kernels.

Of course, the SMC framework provides very considerable flexibility and we need not be constrained

to sequences of distributions which temper from prior to posterior. In the context of generalised linear

mixed models, for example, it has been found that starting with a distribution motivated by quasilikelihood

arguments and moving from that to the posterior leads to somewhat better performance [62].

3.2.1 SMC for Model Comparison

Like parameter estimation in HMMs, Bayesian model comparison centres around some computation of the

marginal likelihoods; i.e. the marginal probability under a given model of observing the data actually

observed, with unknown model parameters marginalized out. In the context of any sequence of distributions

which begins with a properly normalized distribution over the space of unknown parameters and finishes

with the posterior characterized as the product of the complete likelihood and parameter priors divided by an

unknown normalizing constant, that normalizing constant corresponds exactly with the marginal likelihood

and is estimated unbiasedly by the associated SMC scheme via Equation (1) (i.e. Zn =
∫
γn(θ)dθ =∫

p(θ)p(y|θ)dθ when n is the final distribution within either the data- or likelihood-tempering schemes

described in Section 3.2), so that either mn corresponds to the size of the data set or αn = 1.

As the estimation of normalizing constants and marginal likelihoods is somewhat natural in the SMC

setting, these algorithms lend themselves to this problem. A number of different approaches to this problem

have been explored and found to perform well in many settings [25;63]. These approaches include simultane-

ously addressing model and parameter inference in a similar manner to reversible jump MCMC methods [64],

explicitly approximating the marginal likelihoods of each of a family of competing models and directly

computing the ratio of marginal likelihoods of pairs of competing models, the so-called Bayes factor.
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3.2.2 SMC for ABC

Approximate Bayesian Computation (ABC; introduced in [65]; recent survey [66]) is another area in which

SMC has been widely applied [67;21]. ABC is a technique for performing computational inference in settings

in which the likelihood cannot be evaluated but it is possible to simulate from the associated data generating

model for given parameter values. A detailed survey of ABC methods is outside the scope of this chapter,

but in essence the fit of a parameter value to a given data set is assessed by simulating a data set from the

generative model for that parameter value and comparing it with the actually observed data, typically by

determining the distance between summary statistics computed using the real and simulated datasets. For

example, by considering a target distribution of the form

πε(θ, y) = p(θ)f(y|θ)I[0,ε](d(S(y), S(yobs)))

where ε denotes a tolernace, θ the unknown parameters of interest, p(θ) a prior distribution, y the auxiliary

simulated data, f(y|θ) the modelled generative relationship between parameters and data, S a mapping from

the data space to a low-dimensional summary statistic space, d is some appropriate distance and yobs the

actually-observed data. In the SMC context it is natural to make use of a sequence of distributions which

require an increasing degree of fidelity between the observed and simulated data, i.e. considering a (possibly

adaptive) decreasing sequence of values of ε.

In an ABC context, the need to resimulate synthetic data whenever a new parameter value is proposed

limits the ability for SMC to benefit from local exploration as it does in standard Bayesian inferential settings;

one remedy to this is to adopt an appropriate non-centred parametrisation when this is possible [68].

It is also possible to compute estimates of model evidence within the ABC framework using SMC [69];

although considerable caution is required in doing so, particularly in the selection of summary statistics, and

interpreting the conclusions [69;70].

3.3 SMC for Maximum Likelihood Estimation

It is worthwhile noting that, although SMC like many Monte Carlo methods is widely used within the

Bayesian domain, it also finds application in other statistical paradigms.

Maximum likelihood estimation (MLE) is, at heart, an optimization problem and it is no surprise that

simulated-annealing like methods can be used in this context; within the marginal MLE setting SMC samplers

and data cloning provide one natural approach to this problem [71]. A more direct use of a simulated

annealing strategy was explored by [72], and a pseudomarginal [27] variant also shows promise [73]. All of these

approaches essentially involve the construction of a sequence of distributions which become progressively

more concentrated on the set of maximisers of the likelihood function and targetting this sequence using

SMC sampler algorithms.
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3.4 SMC for Rare Event Estimation

Estimating the probabilities of rare events (i.e. those with small probability of occurence) is a natural

application of SMC methods; in this context one can begin from the law of some underlying random variable

and move via a sequence of intermediate distributions to the restriction of that law to the rare event of

interest obtaining both an approximation of the probability of this event (via the normalizing constant of

this restriction) and also an approximation of the law of the random variable restricted to that set (via the

final particle set).

Sequential Monte Carlo provides natural approaches to the so-called dynamic rare event problem, in

which one is interested in establishing the probability that a Markov process hits a specified rare set of

interest before its next entrance into some recurrent set [74] and the static rare event problem in which the

question is whether a random variable/process takes a value within some set which has small probability

under its law [75;76;77]. In the dynamic case it is common to employ a sequence of intermediate distributions

in order to characterize the probability of hitting each of a sequence of increasingly rare sets before the

recurrent set; in the latter one simply needs to construct a sequence of distributions which begins with the

law of the random quantity of interest and becomes increasingly concentrated on the rare set of interest.

4 Selected Recent Developments

This chapter concludes with a brief summary of some exciting emerging topics within the field of SMC.

One, perhaps surprising, recent development is the emergence of methodology which permits the consis-

tent estimation of the variance and asympototic variance of SMC algorithms using the output from a single

realisation of the particle system [78;79]. This has recently been extended to the case of a class of adaptive

algorithms [80]. In the context of online inference in state space models a “fixed lag” approach was explored

by [81]. These methods provide an avenue to the characterization of the quality of estimates obtained from

SMC algorithms without recourse to multiple costly runs of those algorithms.

Considering the “genealogical properties” of SMC algorithms (i.e the trees which one obtains by tracing

back particles surviving until the current generation and producing a tree containing all particles in previous

generations which are ancestors to surviving particles) has provided another avenue to understanding the

behaviour of these algorithms. Both bounds on properties of these trees [3] and a characterization of the

limiting tree [82] have been obtained and provide information about storage costs of algorithms as well as

efficient data structures for storing the entire history of the currently surviving particles.

Efficient distributed implementation via modifications of the fundamentally synchronous resampling op-

eration [83;84;85] or via more fundamental changes to the methodology suitable for offline inference [86] has

been the subject of substantial recent research and further developments in this direction are to be expected

in the future.

Quasi-Monte Carlo (QMC) methods eschew the use of random numbers in favour of low discrepancy

sequences which seek, in a suitable sense, to fill space as regularly as possible. Levergaing these techniques

in an SMC setting is challenging, in part because of the increasing-state space justification of most SMC
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methods and in part due to complications arising from resampling, but substantial progress in this direction

was made in the form of Sequential Quasi-Monte Carlo [87], which employs quasi-Monte carlo within a

marginal framework, at iteration n sampling (ain−1, x
i
n) jointly according to r(ain−1|wn−1)qn(xin|x

ain−1
n−1 ), in

the notation of Section 2.2, via quasi-Monte Carlo methods. It shows particularly substantial performance

gains in relatively low-dimensional filtering type problems.
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