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Abstract

In this paper we develop a general framework to analyze state space models with time-

varying system matrices, where time variation is driven by the score of the conditional

likelihood. We derive a new filter that allows for the simultaneous estimation of the

state vector and of the time-varying matrices. We use this method to study the time-

varying relationship between the price dividend ratio, expected stock returns and expected

dividend growth in the US since 1880. We find a significant increase in the long-run

equilibrium value of the price dividend ratio over time, associated with a fall in the long-

run expected rate of return on stocks. The latter can be attributed mainly to a decrease

in the natural rate of interest, as the long-run risk premium has only slightly fallen.
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1 Introduction

A decade after the Great Recession the global economy is mired in an environment of low real

interest rates, low growth and high stock valuations. Whether this is a “new normal” is a

question that is at the center of a new research agenda on macro-financial trends in a changing

environment (Caballero et al., 2017). The issue of structural breaks is back in the spotlight,

as it is the use of time series models that allow for parameter instability. In this paper we

contribute to this debate by developing a general method to analyze state space models where

parameters change over time and by applying this method to study the evolving relationship

between stock valuations, stock returns and dividend growth.

The econometric method that we propose posits a law of motion for the parameters that

is a linear function of the score of the conditional likelihood, following Creal et al. (2008) and

Harvey (2013). We derive the analytical expressions for a new set of recursions that, running

in parallel with the Kalman Filter (KF), update at each point in time both the vector of

time-varying parameters (TVP) and the latent states. Within this framework, the likelihood

of any Gaussian state space model with TVP is available in closed form and the model can be

estimated by maximum likelihood (ML). A unique feature of our method is that it can easily

handle parameter constraints, which might arise from economic theory or from a deliberate

choice of the econometrician. Constraints are taken into account directly in the estimation

algorithm through a Jacobian function. Finally, missing observations, mixed frequencies and

the shrinkage of the TVP towards desired values are easily dealt with. A Monte Carlo exercise

shows that the method can replicate the salient features of various data generating processes.

In particular, our method delivers constant coefficients when the data are simulated from a

fixed coefficient model, and tracks time variation in parameters when this is present in the

data.

We are not the first ones to tackle the issue of parameter variation in state space models.

Harvey et al. (1992), Koopman et al. (2010), Eickmeier et al. (2015) and Koop and Korobilis



(2013) estimate state space models with TVP using either Maximum Likelihood or forgetting

factors. All these papers focus on specific models for which they develop ad-hoc estimation

methods. The algorithm that we develop in this paper is instead general and can be used to

analyze any model that can be cast in state space form. A second strand of the literature

analyzes models with TVP using Bayesian simulation techniques (see e.g., Cogley and Sargent,

2005; Stock and Watson, 2007; Durbin and Koopman, 2012). In some settings, our method

presents a distinctive advantage with respect to these methods, as the likelihood of the model

can always be computed using the standard Kalman filter, even in presence of non-linear

restrictions in the time varying parameters. Restrictions on the system matrices of the state

space are embedded in the updating steps of the unobserved components and of the model

parameters with no additional computational costs.

We use the methodology developed in the first part of the paper to revisit the relation-

ship between the price dividend ratio, the return on stocks and dividend growth in present

value models. State space models are particularly attractive to study present value relation-

ships because they handle efficiently complex dynamics, while avoiding over-parameterization

(Binsbergen and Koijen, 2010). We estimate a generalization of the Campbell and Shiller de-

composition (Campbell and Shiller, 1988), which allows for time variation in the steady state

of expected dividend growth and of the expected return on stocks (and therefore the steady

state price dividend ratio as in Lettau and Nieuwerburgh, 2008) as well as in the conditional

variance of the shocks (as in Piatti and Trojani, 2017). We show that expected returns and,

to a lesser extent, expected dividend growth, exhibit slow moving steady states. Expected re-

turns, in particular, have experienced a continuous decline in their long-run equilibrium value.

This decline accelerated in the 1960s and in the 1990s, prior to the stock market crashes of

the early 1970s and 2000s, and is reflected in an upward trend of long-run price dividend ratio,

which so far the literature failed to explain. An intuition for this result is sketched by Fama

and French (2002) in their seminal paper on the equity risk premium. They use long historical



data on dividend growth and dividend yields to obtain an estimate of expected stock returns

and of the implied risk premium. Upon noticing that dividend growth is broadly stationary

but that the price dividend ratio has instead risen considerably, they conclude that the only

logical explanation is a decline in expected returns. We provide an econometric method and a

model specification that formalizes their intuition and that confirms its empirical validity. We

also add to a growing literature on the relative role played by the natural rate of interest (r-

star) and the risk-premium in explaining long-term trends in the return on stocks (Greenwald

et al., 2019; Farhi and Gourio, 2018). We decompose long-run expected returns into a riskless

component and a risk premium and find that the former has remained relatively stable until

the beginning of the 1960s, to decrease rapidly thereafter. The long-run equity risk premium

has only slightly fallen, from 4 to 3 percent.

Structure of the paper. Section 2 constitutes the methodological body of the paper.

Section 3 discusses present value models with shifting steady states and provides details on the

model specification. Sections 4 and 5 present the empirical analysis. Section 6 concludes.

2 Score driven state space models

Let us assume that a given time series model has the following state space representation:

yt = Ztαt + εt, εt ∼ N (0, Ht),

αt = Ttαt−1 + ηt, ηt ∼ N (0, Qt), t = 1, ..., n,

(1)

where yt is the N × 1 vector of observed variables, εt is the N × 1 vector of measurement

errors, αt is the m × 1 vector of state variables and ηt is the corresponding m × 1 vector of

disturbances. The two disturbances are assumed to be Gaussian distributed and uncorrelated

for all time periods, that is E(εtη
′
s) = 0 for ∀t, s. This assumption can be relaxed at the cost

of a complication in the filtering formulae. The initial value of the state vector is also assumed

to be Gaussian, α0 ∼ N (a0, P0) and uncorrelated ∀t with εt and ηt.

Following Harvey (1989, sec. 3.1) it is usually assumed that the system matrices Zt, Ht, Tt



and Qt are non-stochastic. As a result the system (1) is linear with respect to the state vector.

Conditional on the information set Yt−1 = {yt−1, ..., y1} and on the vector of parameters θ, the

state vector and the observations are both Gaussian distributed; i.e. yt|Yt−1; θ ∼ N (Ztat, Ft)

and αt|Yt−1; θ ∼ N (at, Pt), and the log-likelihood function at time t is:

`t = log p(yt|Yt−1, θ) ∝ −
1

2

(
log |Ft|+ v′tF

−1
t vt

)
. (2)

The prediction error vt, its covariance matrix Ft, the conditional mean of the state vector at,

and its mean square error (MSE) matrix Pt, are recursively estimated by means of the KF:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

at|t = at + PtZ
′
tF
−1
t vt, Pt|t = Pt − PtZ ′tF−1t ZtPt,

at+1 = Tt+1at|t Pt+1 = Tt+1Pt|tT
′
t+1 +Qt+1, t = 1, ..., n.

(3)

Specifically, we have that at = E(αt|Yt−1, θ) is the so-called predictive filter with its MSE

matrix being Pt = E[(at−αt)(at−αt)′|Yt−1, θ], while at|t = E(αt|Yt, θ) is the so-called real time

filter with MSE equal to Pt|t = E[(at|t − αt)(at|t − αt)′|Yt−1, θ]. The state space model in (1)

is the so-called contemporaneous form used in Harvey (1989). Durbin and Koopman (2012)

use instead the so-called forward form. In this paper we prefer to use the former so that the

system matrices have all the same time dependency with respect to the vector of TVP. Using

the forward form, the time dependency of matrices T and Q needs to be adapted; for details

see Appendix A.

We assume that the changes in the system matrices over time are endogenous and depend on

past observations. Thus, although stochastic, the system matrices are predetermined, meaning

that conditional on past observation they can be regarded ad being fixed. As a result, the

model is still conditionally Gaussian like the one introduced by Harvey (1989, sec. 3.7.1).1

This setup has three attractive features. First, both the state vector and the observations

1The KF generates the conditional Gaussian distribution of the state vector where the mean is no longer
linear in the observations and the MSE (conditional error covariance) depends upon the particular realization
of the observations in the sample. Chen et al. (1989) state the necessary conditions in order for the KF to
generate the conditional mean and covariance of the Gaussian distributed state vector.



are conditionally Gaussian. Second, the likelihood function can be written in the form of the

prediction error decomposition (2) and computed by means of the KF (3). Third, although the

model is not linear in the observations, the KF delivers the minimum mean square estimates of

the state vector (see Harvey, 1989, p. 342). The key analytic challenge here is represented by

the joint updating of both the system matrices and of the state vector. To solve this problem,

we propose a new set of recursions that run in parallel with the KF.

2.1 Score driven system matrices

The time-varying elements of the system matrices in (1) are collected in the vector ft also

known as the TVP vector. As in Creal et al. (2008) and Harvey (2013), we posit the following

score driven law of motion for such vector:

ft+1 = c + Aft + Bst, st = St∇t, t = 1, ..., n, (4)

with

∇t =
∂`t
∂ft

, St = −Et

(
∂`2t

∂ft∂f ′t

)−1
, (5)

where `t is the conditional log-likelihood function of the model (1), ∇t is the score (gradient)

with respect to ft and the scaling matrix, St, is the inverse of the information matrix It.

In this case, st has zero conditional mean and conditional variance equal to the inverse of

the information matrix.2 The parameters in B determine the sensitivity of the time-varying

parameters to the score of the conditional likelihood, and therefore to the information contained

in the prediction error. The special case of constant system matrices is obtained by setting this

matrix to 0. The system matrices may contain both time-varying and constant elements. We

collect the latter in the vector θm. Thus, at each point in time, the system matrices depend

upon ft and θm, namely Zt = Z(ft, θm), Tt = T (ft, θm), Ht = H(ft, θm), and Qt = Q(ft, θm).

2Alternatively, one could choose St = I−1/2t , in which case the conditional variance of the score is equal
to the identity matrix. One can also set st = ∇t, in which case the score has conditional variance equal to
the information matrix. In general, to avoid numerical instability in the scaling matrix we replace St with its
smoothed counterpart S̃t = (1− κh)St + κhS̃t−1.



The score vector st is computed conditional on the information up to time t, thus the vector ft is

entirely determined by past observations and by the vector of static parameters θf = {c,A,B}.

Since the dynamic of the system matrices is observation-driven, i.e. entirely determined by

past observations and by the vector θ = (θ′f , θ
′
m)′, the model is conditional Gaussian and the

log-likelihood (2) can be evaluated recursively through the KF.

The gradient and the information matrix can be analytically compute by the expressions

presented below.

Result 1 Given the model (1)-(2), the score and the information matrix are:

∇t = 1
2

[
Ḟ ′t(Ft ⊗ Ft)−1vec(vtv

′
t − Ft)− 2V̇ ′t F

−1
t vt

]
It = 1

2

[
Ḟ ′t(Ft ⊗ Ft)−1Ḟt + 2V̇ ′t F

−1
t V̇t

]
, t = 1, ..., n,

(6)

where V̇t = ∂vt/∂f
′
t and Ḟt = ∂vec(Ft)/∂f

′
t measure the sensitivity of the prediction error vt

and its variance Ft with respect to ft. Proofs in Appendix A.1.

Notice that all the elements of the information matrix It are computed using information

up to time t − 1. On the other hand, the gradient ∇t contains the current observation yt via

the prediction error vt. The terms V̇t and Ḟt play a key role in the gradient ∇t. They measure

the sensitivity of, respectively, the first and second moment of the state vector with respect

to ft. Together with the variance of the prediction error (Ft) and with the curvature of the

conditional likelihood (proportional to It), they determine the impact that new information,

summarized in the prediction error vt, has on the TVP vector. Notice that vt and Ft are

recursively computed by means of the KF (3), while their Jacobian counterparts, V̇t and Ḟt,

are recursively computed through the new filter presented below.

Result 2 The Jacobian counterpart of the KF leads to the following set of expressions:

V̇t = −[(a′t ⊗ IN)Żt + (a′t−1|t−1 ⊗ Zt)Ṫt], t = 1, ..., n,

Ḟt = 2NN(ZtPt ⊗ IN)Żt + 2(Zt ⊗ Zt)Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t,
(7)

where Żt = ∂vec(Zt)/∂f
′
t, Ḣt = ∂vec(Ht)/∂f

′
t, Ṫt = ∂vec(Tt)/∂f

′
t and Q̇t = ∂vec(Qt)/∂f

′
t are

the Jacobians of the system matrices with respect to ft, and Nm is a symmetrizer matrix (i.e.,
for any n× n matrix, S, Nnvec(S) = vec[1

2
(S + S ′)]). Proofs in Appendix A.2.



Putting together Results 1 and 2, we can compute the scaled score st = St∇t and therefore

recursively estimate the vector ft using the the score-driven filter (4). Such auxiliary filter runs

in parallel with the standard KF (3) as explained in the Algorithm described below.

Algorithm for the score driven state space model
Initialize a0|0, a1, P0|0, P1, f1.
For t = 1, ..., n :

i. evaluate Zt, Tt, Ht, Qt, Żt, Ṫt, Ḣt, Q̇t

ii. compute vt, Ft, V̇t, Ḟt
iii. compute at|t, Pt|t, ∇t It, st
iv. compute ft+1

v. evaluate Zt+1, Tt+1, Ht+1, Qt+1

vi. compute at+1, Pt+1

The vector of parameters θ can be estimated by ML, that is θ̂ = arg max
∑n

t=1 `t(θ). Given

the above algorithm, the evaluation of the log-likelihood function is straightforward and the

maximization can be obtained numerically.3

Appendix B provides examples of popular models with TVP that have been used in the

literature and that can be analyzed within our framework. In particular we discuss the local-

level model with time-varying volatilities used by Stock and Watson (2007); the autoregressive

models and the vector autoregression with time-varying parameters (as in Koop and Korobilis,

2013). Appendix C shows, through a detailed Monte Carlo analysis, that our score driven

method successfully tracks parameters time variation for a variety of different Data Generating

Processes (DGPs). Importantly, the Monte Carlo exercise also highlights that, when the true

parameters do not change over time, the model correctly estimates them as constant.

2.2 Non-linearity in the system matrices

In many applications it is desirable to constrain the TVP at each point in time. Steady

state relationships, for instance, often imply non-linear parameters constraints that must be

taken into account when estimating the model. The score driven approach provides a general

framework to deal with such constraints. In this respect it presents a clear advantage over

3As in Creal et al. (2013, sec. 2.3) one can conjecture that the usual ML results hold.



alternative methods, including Bayesian ones. When the system matrices (Zt, Tt, Ht, Qt) are

a non-linear function of ft, the effect of these parameters on the score is mediated via the

Jacobians (Żt, Ṫt, Ḣt, Q̇t). Although the exact expression of the Jacobians is model specific,

we offer a flexible expression for dealing with them. Let Mt be a generic system matrix of

dimension r × c, and decompose this matrix as follows:

vec (Mt) = S0 + S1ψ(S2ft), (8)

where S0 is a rc×1 vector containing all the time-invariant elements in each of the entries of the

matrix Mt, S1 and S2 are selection matrices that select respectively the time-varying elements

of Mt and the sub-vector of ft belonging to Mt. Finally, ψ(·) denotes the mapping function,

also known as the link function, between ft and the corresponding elements in Mt embedding

parameter restrictions. Such function is assumed to be time-invariant, continuous, invertible,

twice differentiable, and its Jacobian matrix is denoted by Ψt. Given the representation (8),

the generic Jacobian matrix Ṁt can be computed as follows:

Ṁt =
∂vec(Mt)

∂f ′t
= S1ΨtS2. (9)

While equations (8)-(9) can be directly used to deal with Zt and Tt, when modelling a generic

covariance, Ωt, it is often useful to decompose this in terms of volatilities and correlations, i.e.

Ωt = DtRtDt, where Dt is the diagonal matrix containing the standard deviations and Rt is

the correlation matrix. Now Rt and Dt can be expressed in the form of (8), Ṙt and Ḋt can be

computed as in (9) and Ω̇t is computed using standard rules of matrix differentiation.

2.3 Shrinkage, mixed frequency data, correlated disturbances

As the dimension of the system grows, it could be desirable to impose some shrinkage on the

model parameters to avoid an increase in the estimation variance. In a Bayesian framework this

is achieved through the prior distribution. In a classical setting, like the one hereby adopted,

shrinkage can be achieved by means of stochastic constraints that lead to a mixed estimator



(Theil and Goldberger, 1961). In the appendix D we show how to modify the score-driven

algorithm in order to take into account shrinkage on model parameters.

The presence of missing observations and data sampled at mixed frequencies does not

present a particular challenge, as it only involves a re-weighing of the observations and temporal

aggregation. A detailed treatment of these issues is discussed in Appendix E. Finally, Appendix

F shows how to modify our algorithm in the presence of correlation between the innovations

of the measurement and transition equations.

3 Price dividend ratio, expected returns and expected

dividend growth

We use the method laid out above to study the relationship between the price dividend ratio, the

return on stocks and dividend growth. This topic provides the ideal setting for score driven

state space models. First, it involves present value relationships that can be conveniently

analyzed via state space models (Binsbergen and Koijen, 2010). Second, there is significant

evidence of instability in regressions of stock returns on the price dividend ratio (Paye and

Timmermann, 2006; Lettau and Nieuwerburgh, 2008), suggesting that a state space model

with TVP is the appropriate modelling choice. Third, the parameters that link these three

objects are subject to a set of non-linear restrictions that pose a non-trivial challenge for other

methods but can be easily dealt with in our framework. We start by recalling the steady state

relationship between the return on stocks, the price dividend ratio and dividend growth.

3.1 Stock return and time-varying steady states

Let Pt and Dt denote stock prices and dividends. From the simple definition of gross return of

an asset it follows that:

Rt+1 ≡
Pt+1 +Dt+1

Pt
=
Dt+1

Dt

Pt+1/Dt+1 + 1

Pt/Dt

. (10)



Lettau and Nieuwerburgh (2008) show that this implies the following relationship in logs:

pdt = gt − log(expµt − exp gt), (11)

where pdt, µt and gt denote the steady state level of the price dividend ratio, of the return on

stocks and of dividend growth, respectively.4 Equation (11) has two important implications.

First, changes in the steady state of the price dividend ratio reflect either changes in the steady

state of the return on stocks or in the steady state of dividend growth or in both. Second,

small changes in long-run growth (reflected in the steady state of dividend growth) and/or in

the steady state of returns have large effects on the steady state of the price dividend ratio.

3.2 Preliminary evidence on parameter instability

Lettau and Nieuwerburgh (2008) report evidence in support of the hypothesis that the long-

run mean of the price dividend ratio is subject to two structural breaks. In this section, we

extend their analysis by considering not only the price dividend ratio but also the return on

stocks and dividend growth and by testing for instability in the variance of these variables. Our

analysis is based on annual data between 1873 and 2018. Annual data for the Standard and

Poor Composite Stock Price Index and associated dividends are sourced from Robert Shiller’s

website.5 We deflate total returns and dividends using data on US CPI.

We start by testing the null hypothesis of no breaks against the alternative hypothesis of

one break (Bai and Perron, 2003). The results, reported in the top panel of Table 1, convey

two clear messages. First, the hypothesis of no breaks can not be rejected for returns and

dividend growth. The second result is that there is strong evidence of structural breaks in the

mean of the price dividend ratio. Two of the dates for which the Bai and Perron procedure

detects a break (1954 and 1995) are consistent with the findings in Lettau and Nieuwerburgh

4Lettau and Nieuwerburgh (2008) assume that, at the steady state, the level of the price dividend ratio is
constant (i.e. P/Dt+1 ≈ P/Dt). Moreover, denoting with DY t the steady state dividend yield, equation (11)

implies that DY t = Rt −Gt, consistent with the traditional Gordon model.
5http://www.econ.yale.edu/shiller/ (see Shiller, 1989, Ch.26 for a discussion).

http://www.econ.yale.edu/∼shiller/


(2008). Evidence of a third break in 1913 is somewhat weaker. In fact, the null hypothesis of

two breaks against the alternative of a third one cannot be rejected on the basis of sequential

break tests (Table 1, central panel). These sequential tests also cannot reject the null that the

mean of the return on stocks and of dividend growth has remained stable over time.

Last, we employ Nyblom (1989) test of the null hypothesis of constant parameters (both

mean and variance) against the alternative that the parameters follow a martingale. The test

detects significant shifts in the mean and volatility of the price dividend ratio as well as in the

volatility of dividend growth. This result casts doubts on the hypothesis of constant variances

maintained by Lettau and Nieuwerburgh (2008) and confirms that shifts in the steady state of

the price dividend ratio are a robust feature of the data.

3.3 A score driven present value model with drifting steady states

The structural breaks analysis leaves one question open, that is how to reconcile the evidence

of breaks in the price dividend ratio with the apparent stability of returns and dividend growth,

given that the former is a function of the latter two. A plausible explanation is that changes

in the long-run mean of returns and dividend growth are overshadowed by the presence of a

very volatile transitory component. In such an environment state of the art break tests have

low power against the alternative of no breaks (Cogley and Sargent, 2005). The changing

relationship between the price dividend ratio, returns and dividend growth could be better

captured by a flexible model that allows for gradual shifts in their long-run mean as well as in

their volatility, which we now specify.

Lettau and Nieuwerburgh (2008) generalize the Campbell and Shiller decomposition to

allow for time-varying steady states in expected returns and in expected dividend growth.

They show that a first order approximation of (10) around a time-varying steady state yields:6

pdt − pdt '
∞∑
j=1

ρjt(∆dt+j − gt)−
∞∑
j=1

ρjt(rt+j − µt), (12)

6Lettau and Nieuwerburgh (2008) assume that steady state log returns and dividend growth are martingales



where ρt = exp pdt/(1 + exp pdt) and, through pdt, depends on µt and gt according to (11).

Equation (12) shows that stock prices fall relative to dividends when there is bad news about

future cash flows, or when discount rates (i.e. expected returns) rise. Therefore, the price div-

idend ratio should forecast returns and dividend growth (Cochrane, 2008). Most importantly,

the presence of shifts in long-run expected returns and expected dividend growth implies that

the sensitivity of pdt− pdt to news about cash flows and discount rates also changes over time

(i.e. the higher the equilibrium level of the price dividend ratio, the higher ρt).

To take the model to the data one needs to make some additional assumptions on expected

returns and expected dividend growth. Binsbergen and Koijen (2010) assume that these ex-

pected values can be modeled as AR(1) processes. Here we depart from their specification and

assume that expected returns and expected dividend growth are the sum of a transitory and a

persistent component. The latter, which constitutes a shift in long-run expected returns and

expected dividend growth, is the key novelty of our model and we discuss it more in detail in

the next sub-section. Specifically, we assume that:

Et(∆dt+1) = gt+1|t + g̃t+1|t (13)

Et(rt+1) = µt+1|t + µ̃t+1|t, (14)

where the equilibrium levels of expected returns and expected dividend growth are defined as

limh→∞ Et(rt+h) = µt+1|t and limh→∞ Et(∆dt+h) = gt+1|t. Using the notation in Binsbergen

and Koijen (2010) we denote the transitory component of the expectations (g̃t+1|t and µ̃t+1|t)

with g̃t and µ̃t and assume that they can be characterized by simple AR(1) models:

g̃t+1 = φgg̃t + εg,t+1 (15)

µ̃t+1 = φµµ̃t + εµ,t+1. (16)

The present value relationship (12) implies that the transitory component of the price dividend

(i.e. Et(µt+j) = µt and Et(gt+j) = gt), as well as Et(pdt+j) = pdt and Et(ρt+j) = ρt, and that that deviations

from the mean price-dividend ratio are uncorrelated with ρt (i.e. Et[ρt+j(pdt+j − pdt)] = 0). The specification
of the model for µt and gt, that we describe below, is consistent with the martingale assumption. As for
pdt and ρt, Lettau and Nieuwerburgh (2008) show that the martingale assumption is satisfied to a very good
approximation for reasonable break processes for µt and gt.



ratio is related to µ̃t and g̃t:

pdt − pdt|t−1 ' −b1,t|t−1µ̃t + b2,t|t−1g̃t, (17)

with the following constraints on the parameters:

b1,t|t−1 =
1

1− ρt|t−1φµ
, b2,t|t−1 =

1

1− ρt|t−1φg
. (18)

Hence the loadings of the transitory component of the price dividend ratio are not only time-

varying, but also a non-linear function of the steady state level of the price dividend ratio.

These restrictions must be imposed exactly when estimating the model, a challenge that our

score driven modeling approach can easily overcome.

The decomposition of dividend growth into the expected dividend growth plus an unex-

pected shock, εd,t+1, provides the first measurement equation:

∆dt+1 − Et(∆dt+1) = εd,t+1. (19)

The second measurement equation is (17), which we augment with a measurement error νt ∼

N (0, σ2
ν) to take into account the approximation error associated with the solution of the

present value model. Moreover, we collect the three shocks in the vector εt = (εd,t, εg,t, εµ,t)
′,

respectively the shock to dividend growth, the shock to expected dividend growth and the

shock to expected returns. It is easy to see that they also map into unexpected changes in

returns, specifically:

rt+1 − Et(rt+1) = −ρt+1|tb1,t+1|tεµ,t+1 + ρt+1|tb2,t+1|tεg,t+1 + εd,t+1. (20)

3.3.1 Slow-moving trends and time-varying risk

We assume that long-run expected dividend growth and long-run expected returns are martin-

gales driven by the score of the conditional likelihood:

µt+1|t = µt|t−1 + bµsµ,t (21)

gt+1|t = gt|t−1 + bgsg,t, (22)

where sµ,t sg,t are the appropriate elements of the score vector. The steady states, µt|t−1 and

gt|t−1, are therefore updated (through the scaled score) using information on dividend growth



and on the price dividend ratio, as highlighted by equation (11), as well as the present value

restrictions embodied in equations (17)-(18), which imply that long-run returns and dividend

growth can also change, through ρt|t−1, the sensitivity of the transitory components of price

dividend ratio (pdt − pdt|t−1) to expected returns and dividend growth.

Last, we assume that the vector of shock εt is normally distributed with time-varying co-

variances that are themselves driven by the score. Formally, εt ∼ N (0,Ωt), and we decompose

the covariance matrix Ωt = DtRtDt, where Rt denotes the time-varying correlation matrix and

Dt = diag ([σd,t, σg,t, σµ,t]) contains the standard deviations. Whereas the three shocks could

be all correlated, not all elements of the covariance matrix can be separately identified. In Ap-

pendix G.1 we show that, in order to identify the model, one restriction needs to be imposed on

the correlations among the innovations of the model. Below, we follow Binsbergen and Koijen

(2010) and assume that the measurement error in dividend growth (εd,t) and the stochastic

disturbance in expected dividend growth (εg,t) are uncorrelated, i.e. Corr(εg,t, εd,t) = 0.

Inspired by Joe (2006), we take advantage of the mapping between the correlations and

the partial correlations. This allows us to constrain the partial correlations to lie in the unit

circle, and yet guarantees a well-defined correlation matrix in every period. Modeling partial

correlations has the additional advantage that we can easily impose that one of the correlation

coefficients is always zero: ordering the innovations so that the restriction is placed on the first

column of the correlation matrix, one has that %dg,t = πdg,t (where %ij and πij are, respectively,

the generic ij element of the correlation and partial correlation matrix) and the identification

restriction simply requires that πdg,t = 0,∀t. Therefore, through the Jacobian, the algorithm

translates the score of the likelihood with respect to the correlation matrix into the appropriate

updating of the unrestricted partial correlations. An alternative parametrization that guaran-

tees a positive-definite correlation matrix uses hyperspherical coordinates (Creal et al., 2011;

Buccheri et al., 2020). This implies constraining the partial correlations by the cosine function,

hence it is a special case of our approach. For full details on modelling the correlation matrix



through partial correlations see Appendix G.2.

3.3.2 State space representation and estimation

Let yt = (∆dt, pdt)
′ be the vector of observed variables and αt = (1, g̃t, µ̃t, g̃t−1, εd,t, εg,t, εµ,t)

′

be the state vector. The measurement equations of the model are (17) and (19). The law of

motion of the transitory components (15)-(16) and the definition of the innovations of the model

constitute the transition equations.7 The model can be set in the state space representation

(1), with the following specification of the system matrices:8

Zt =

 ḡt 0 0 1 1 0 0

pdt
1

1−ρtφg −
1

1−ρtφµ 0 0 0 0

 , (23)

T =



1 0 0 0 0 0 0

0 φg 0 0 0 0 0

0 0 φµ 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, (24)

εt = (0, νt)
′ and H = diag([0, σ2

ν ]). The innovations to the state vector are ηt = Sηεt, where

Sη is a selection matrix appropriately defined, and Qt = SηΩtS
′
η. The time-varying elements

of the system matrices Zt and Qt are collected in the vector:

ft = (µt, gt, log σd,t, log σg,t, log σµ,t, atanhπdµt , atanhπgµt )′ (25)

where atanh(·) denotes the inverse hyperbolic tangent so that the partial correlations πij,t ∈

(−1, 1), ∀t. The law of motion of ft is a restricted version of (4). Specifically, we assume A and

B to be diagonal and we further restrict some of the elements of c and A in accordance with

the random walk specification for the slow moving trends discussed in section 3.3.1. The model

7The measurement equation for the price dividend ratio and for dividend growth imply a measurement
equation for returns (20), which is therefore redundant for the estimation of the model.

8To simplify the notation, in this section any generic score driven time-varying parameter, xt|t−1, is simply



likelihood is computed using the KF, coupled with the updating algorithm for the score driven

parameters as discussed in section 2 and parameters are easily estimated by maximising this

likelihood. Confidence intervals are obtained following Blasques et al. (2016). Appendix G.3

provides details on the state space representation, the non-linear mapping between the score

driven time-varying parameters and the system matrices, as well as the associated Jacobians

that are required in the score driven filter.

4 Results

Parameter estimates. The estimation results are shown in Table 2. Expected returns have a

root of 0.829, which implies a half life of 4.7 years. Expected dividend growth is less persistent,

with an autoregressive root of 0.345, implying a half life of 1.7. These numbers are, as expected,

lower than those estimated by Binsbergen and Koijen (2010) and Piatti and Trojani (2017), as

part of the persistence is captured in our case by the shifts in the steady states. The volatility

and correlation for the innovations of the model map into an average volatility of the shocks

to returns of roughly 0.18 and correlation between the innovations to the return on stocks

and expected returns in a range between -0.6 and -0.7, in line with the estimates in Carvalho

et al. (2018). The variance of the measurement error of the price dividend ratio is negligible.

The second column reports the autoregressive roots of the five time-varying parameters that

are modelled as stationary processes, namely the three volatilities and the partial correlations.

All of them are far from having a unit root, justifying our modeling choice. The third column

presents the seven loadings on the score and the smoothing coefficient of the Hessian term. The

long-run mean of expected returns has a loading of 0.151 on the likelihood score, three times

as large as that of dividend growth (0.052). This is a signal that the low frequency component

of expected returns exhibits much more time variation than that of dividend growth. In sum,

expected returns are more predictable than expected dividend growth, they are characterized

by a slowly changing steady state and by a very persistent transitory component.



Filtered steady states. Figure 1 shows returns and dividend growth together with the

expected components. For both series, movements in the long-run steady states are completely

dominated by very volatile transitory shocks, and seem relatively flat. As we shall see below,

this is in fact not the case. Consistently with the parameter estimates in Table 2, expected

dividend growth is more volatile and falls considerably in recessions. It is worth stressing that

its fall in the 2008 recession is not exceptional by historical standards and is in fact significantly

milder than those observed in 1929 and during WWII. Expected returns, on the other hand,

are more persistent, with periods of high and low valuations spanning multiple recessions and

expansions of the business cycle.

Figure 2 shows the estimated trend components. These are the central results of our

empirical analysis. In the left panel we plot µt|t−1 and gt|t−1, which are estimated in our model

as score driven martingales. It is clear that what seemed to be a flat line, i.e. the permanent

component of expected returns, is in fact a downward sloping trend. It starts off at around 9

percent at the end of the 19th century and fluctuates between 7 and 8 percent until the 50s.

Thereafter it experiences two sharp falls: one between the 50s and the 70s, and one in the

90s, the former being interrupted by the stock market crash in 1973 and the latter by the

burst of the dotcom bubble in 2000. At the end of the sample, the long-run expected return

on stocks stands at around 4 percent, less than half of its initial value. The steady state of

expected dividend growth has also fallen slightly over the sample, from around 2 percent to 1.3

percent at the turn of the century, to then rebound to 1.5 percent. This minor fall in long-run

dividend growth is quantitatively consistent with the rise of alternative forms of payout (such

as shares repurchases and issuance) which have become quantitatively more important since

the 90s (see e.g., Boudoukh et al., 2007). The right hand side panel shows the implications

of these results for the steady state of the price dividend ratio. Our estimate of pdt has an

upward trend over the whole sample, with three large changes, one early in the sample, one

after WWII and one in the Nineties. These are indeed the dates for which the Bai and Perron



(2003)’s test detects significant structural breaks. However, structural break tests are unable

to offer a structural explanation for such an upward trend in valuations, nor can they provide a

narrative behind these episodes. Our model reveals that these long waves of strong valuations

have largely built on falling expected returns. The rally of stock prices in the 90s, in particular,

was associated with a sharp fall in discount rates. These results formalize and provide evidence

for the intuition put forward by Fama and French (2002). In their seminal paper on the equity

premium they notice that, between 1950 and 2000, realized average stock returns in excess of

the riskless interest rate have been substantially higher than the equity risk premium. Given

the relative stationarity of dividend growth, they argue that realized capital gains must have

come from a fall in discount rates. Our empirical analysis quantifies such shifts in long-run

discount rates and identifies their timing within a formal model.

Dynamic price dividend ratio decomposition. Figure 3 decomposes the cyclical com-

ponent of the price dividend ratio in a linear combination of the transitory components of

expected returns and of expected dividend growth, based on equation (17). The results are

quite striking. First, most of the cyclical variation in valuations is due to changes in expected

returns. In particular, high stock prices in the 60s and in the 90s were due to a slow fall (of

transitory nature) in the discount rate, which eventually reverted back towards its mean in the

bear markets of the early 70s and early 2000s. This finding is consistent with the relatively

higher persistence of µ̃t compared to g̃t (AR root of 0.829 versus 0.345) as well as with the fact

that changes in expected dividends affect both prices as well as actual dividends, with relative

little impact on valuations (Cochrane, 2011; Campbell and Ammer, 1993). Second, the role

of cash flows is episodic but non-negligible. A fall in cash flows expectations, for instance,

contributed as much as discount rates to the stock market crash in 1929 and in WWII. It had

an even larger role in explaining the 2008 crash.

denoted with xt.



Term Structure of expected returns and dividend growth. Iterating forward equa-

tions (15)-(16) we can obtain an expression for the average expected returns and expected

dividend growth over a given horizon n:

µ
(n)
t =

1

n
Et

[
n∑
j=1

rt+j

]
= µt+1|t +

1

n

1− φnµ
1− φµ

µ̃t (26)

g
(n)
t =

1

n
Et

[
n∑
j=1

∆dt+j

]
= gt+1|t +

1

n

1− φng
1− φg

g̃t. (27)

In Figure 4, left hand side panel, we plot expected returns at the ten years horizon (blue

dashed line) as well as the slope of the term structure of expected returns (red solid line), that

is the difference between average expected returns ten and two years out. At low frequencies,

expected returns inherit the properties of the shifting steady state µt|t−1: they fall from an

average of around 7 percent in the first part of the sample to around 2 percent at the end of

the sample. The slope, despite some short run movements, fluctuates around zero, suggesting

that over this period the whole term structure of discount rates has shifted downwards. The

level and the slope are clearly negatively correlated. This negative correlation is driven by a

number of a recessionary episodes in which long term discount rates rise but the slope falls,

i.e. discount rates rise more sharply at short than at long maturities. This evidence, consistent

with findings in Gormsen (2020), is directly connected to the predictability of returns: high

expected returns today predict low expected returns tomorrow.9 The right hand side panel

shows the level and the slope of the term structure of expected dividend growth. Long-term

expectations are rather smooth (much more than those of expected returns) and have remained

relatively stable at 2 percent,10 consistently with the relative stability of gt|t−1. The slope, on

the other hand, is countercyclical and quite volatile fluctuating between minus 10 to 10 percent,

a range that is almost five times as wide as that in which the slope of expected returns moves.

9These findings stand partially in contrast with those in Piatti and Trojani (2017) who keep the steady state
of expected returns constant. Keeping the steady state of expected returns constant has two consequences.
First, it constraints long-term expectations to remain relatively stable, the more the longer the horizon that
one considers. This is hard to reconcile with the secular upward trend in the price dividend ratio. Second, in a
model with constant steady states the terminal point of the term structure is fixed. This implies that a model
with constant steady states ends up overstating the predictability of returns, especially at very long horizons.

10Few rare exceptions when pessimistic expectations on cash flows persisted for more than 10 years include



Indeed, as shown in table 2, the volatility of shocks to g̃t is on average almost four times as

high as that of µ̃t (0.083 versus 0.024) and this is reflected in the volatility of expected annual

cash flows. This slope has some notable peaks, corresponding to sharp recessions, such as the

post WWI recession, the Great Depression, the 1973 recession and more recently the Great

Financial Crisis. Therefore, the term structure of dividend growth highlights that short-term

cash flows expectations fall substantially during recessions, but are anticipated to mean revert

relatively quickly. The countercyclicality of the slope of the term structure of dividend growth

expectations is in line with the finding of Binsbergen et al. (2013) who document similar

properties from dividend derivatives for the post 2003 sample. Appendix H zooms in on some

large stock market corrections and shows that discount rates shocks contributed greatly to the

severity of the recessions in 1929 and 2008.

5 Expected excess returns and the equilibrium real rate

The central result of our empirical analysis is that the long-run expected return on equity has

fallen over time. In this section, we elaborate further on this finding by splitting long-run

expected returns in a riskless component and a risk premium. A wealth of research has shown

that the natural rate has fallen dramatically not only in the US but also in a set of advanced

countries (Holston et al., 2017, and Del Negro et al., 2019).11

We follow Cochrane (2008) and rewrite the present value decomposition of the price dividend

ratio in equation (12) in terms of excess returns, by simply subtracting a measure of the safe real

rate of interest (let us call it rf ) from both expected discounted returns and expected discounted

dividend growth.12 Our baseline model can then be re-estimated using as observable variables

for the measurement equations the price dividend ratio and the difference between dividend

the height of the Great Depression, the oil price shock of 1973 and the Great Financial Crisis.
11Three main competing explanations have been put forward to rationalize the fall in equilibrium real rate: a

permanent decline in the rate of growth of the economy (secular stagnation), an increase in desired savings due to
aging population (saving glut) and a rise in economic risk (or a fall in its tolerance) that has raised the liquidity
and safety premium of safe assets like US Treasuries, see Del Negro et al. (2017) for an extensive discussion.

12Returns and dividend growth enter the decomposition with opposite signs, so that rft cancels out leaving
unaffected the price dividend ratio.



growth and rft .13 Besides this simple modification, the model is essentially unchanged, apart

from the fact that, following the suggestion in Campbell and Thompson (2008), we impose

the restriction that the long run equity premium needs to be always positive. This alternative

model provides us with three time series, pdt|t−1, g
ex
t|t−1, µ

ex
t|t−1 that measure, respectively, the

time-varying equilibrium price to dividend ratio for this alternative model specification, the

long-run expected excess dividend growth (i.e. the long-run expected dividend growth minus

the equilibrium riskless real rate) and the steady state equity risk premium or expected excess

return. A comforting result of this exercise is that the estimate of the equilibrium price to

dividend ratio that we retrieve using this alternative specification is very close to the one

obtained in the baseline model in Section 3 (see Appendix I for a comparison). Yet, we now

have a measure of the equilibrium excess returns µext|t−1. Subtracting this from µt|t−1 we can

then obtain a measure of the riskless long-run real rate, rt|t−1 = µt|t−1 − µext|t−1.14

The left panel of figure 5 shows that the long-run expected excess return, µext|t−1, has only

slightly fallen, from around 4 percent at the beginning of the 20th century, to reach a minimum

of 3 percent in 2000 and to rebound thereafter to around 3.5 percent. These numbers are in

the ballpark of the estimates provided by Avdis and Wachter (2017) who report an annual

equity premium of 3.86 per cent in the post WWII period and of around 4.5 in a longer sample

(1927-2011) as well as with the estimate of the equity risk premium (between 2.6 percent and

4.3 percent) for the period 1950-2000 in Fama and French (2002). These results are also in

line with Greenwald et al. (2019) who find that the fall in the equity premium played a limited

role in the overall fall in the equilibrium rate of return on stocks after the 80s. We add to

their analysis by showing that the trend in valuations is almost entirely driven by the fall in

the long-run riskless rate.

The implied long-run natural rate of interest rt, our measure of r-star, has remained stable

(between 3 and 4 percent) for about a century until 1960. It has then fallen by 1 full percentage

13A long series of the risk free rate is taken from Amit Goyal’s website http://www.hec.unil.ch/agoyal/.
14Alternatively one could compute the implied riskless real rate as rt|t−1 = gt|t−1 − gext|t−1. The two offer a

http://www.hec.unil.ch/agoyal/


point in the 60s, and by 2 percentage points in the 90s. Its terminal estimate is only slightly

above zero. The sudden fall in the equilibrium rate of interest after the 60s is also documented,

with a completely different method, by Del Negro et al. (2019). The behaviour of our measure

of r-star is qualitatively in line with that of Laubach and Williams (2003) and Holston et al.

(2017), also plotted in the chart.15

Concluding, our results confirm that the natural rate of interest has fallen substantially

over the last three decades, but add to previous studies by drawing a clear link between this

secular trend and the increase in stock valuations (Caballero et al., 2017).

6 Conclusions

State space models with time-varying parameters can help us better understanding the co-

movement in macro financial aggregates, in a world in which returns, long-run growth and asset

valuations appear to have undergone long-lasting shifts. These models present computational

as well as analytical challenges. In this paper we propose a method for analyzing state space

models with time-varying system matrices where the parameters are driven by the score of the

conditional likelihood. We derive a new set of recursions that, running in parallel with the KF,

update at each point in time both the vector of TVP and the latent states. A unique feature

of our method is that it can easily incorporate in the estimation a broad class of parameter

constraints. These are taken into account directly in the estimation algorithm through a

Jacobian function, without the need for rejection sampling or complicated filtering techniques.

A Monte Carlo analysis provides support for the proposed method. Recent empirical analyses

that use our method also testify its usefulness (Delle Monache et al., 2016; Buccheri et al.,

2020; Gorgi et al., 2019).

We have then used this framework to fill a gap in the literature that studies the relationship

similar picture, as we show in Appendix I. Figure 5 reports the average between these two alternative measures.
15Quantitatively, our measures are lower in the 60s and 70s. In defence of our results we point out that,

given our estimate of the expected return on equity, the level of r-star implied by the Laubach and Williams
(2003) model prior to the 90s would require a level of the equity risk premium substantially lower than what is
typically found in the literature.



between the price dividend ratio, the expected return on stocks and expected dividend growth

in present value models. Our estimates reveal that the secular upward trend in the price

dividend ratio, so far unexplained in the literature, is associated with a persistent decline

(from 9 to 4 percent) of the long-run expected return on stocks. A decomposition into a

riskless component and a risk premium further reveals that most of this decline (four percentage

points) is accounted for by the riskless component (i.e. the natural rate of interest, r-star),

that is virtually zero at the end of our sample. The long-term equity risk premium has instead

remained relatively stable over the past 150 years.

In sum, our work substantiates, and provides quantitative evidence for, the argument that

in a world of permanently low rates valuation rates will be persistently higher than in the past.

Falling productivity growth, scarcity of safe assets and population aging depress r-star and

risk-free rates, inducing investors to reach for yield and permanently lifting stock valuations

(Campbell and Sigalov, 2020).



Table 1: Structural Break Tests

rt ∆dt pdt

SupFT (k)

k=1 0.954 0.458 48.836∗∗∗

[1921] [1996] [1991]
k=2 1.078 0.365 49.804∗∗∗

[1921; 1962] [1918; 1944] [1954; 1995]
k=3 1.619 0.488 35.862∗∗∗

[1921; 1960; 1982] [1896; 1918; 1944] [1913; 1954; 1995]

SupFT (k + 1|k)

k=2 1.676 0.233 14.896∗∗∗

k=3 2.229 0.846 2.227

Udmax 1.619 0.488 49.804∗∗∗

Nyblom Test

µ 0.023 0.057 7.401∗∗∗

σ2 0.319 0.693∗∗ 2.608∗∗∗

Joint Lc 0.348 0.750 7.873∗∗∗

Note. SupFT (k) denotes the Bai and Perron (2003) test where the null hypothesis of no breaks is tested against
the alternatives of k = 1, 2, or 3 breaks. Dates in square brackets are the most likely break date(s) for each of
the specifications. SupFT (k + 1|k) denotes the test of k breaks against the alternative of k + 1 breaks. The
Ud max statistics is the result of testing the null hypothesis of absence of breaks against the alternative of an
unknown number of breaks. The bottom panel reports the Nyblom (1989) test that in the model: yt = µ+σεt,
either µ or σ are constant against the alternative that they evolve as random walks. The symbols ∗/∗∗/∗∗∗

indicate significance at the 10/5/1% level.

Table 2: Model Estimation Results

φµ 0.829 bµ 0.151
[0.010] [0.010]

φg 0.345 bg 0.052
[0.010] [0.010]

σ̄d 0.075 aσd 0.881 bσd 0.015
[0.074; 0.083] [0.026] [0.002]

σ̄g 0.083 aσg 0.899 bσg 0.012
[0.082; 0.127] [0.050] [0.004]

σ̄µ 0.024 aσµ 0.902 bσµ 0.014
[0.023; 0.040] [0.040] [0.004]

ρ̄d,µ 0.339 aπd,µ 0.820 bπd,µ 0.013
[0.280; 0.371] [0.068] [0.003]

ρ̄g,µ -0.232 aπg,µ 0.844 bπg,µ 0.017
[-0.253; -0.130] [0.040] [0.003]

σ2
ν 0.001 κh 0.020

[0.0005] [0.001]

Log Lik. 311.567

Note. First column: autoregressive coefficients of expected returns and expected dividend growth (φµ and
φg) and average (over the whole sample) estimates of the volatilities (σ̄d, σ̄g and σ̄µ) and correlations (ρ̄d,µ
and ρ̄g,µ) that form the matrix Qt. σ

2
ν is the volatility of the measurement error for the price dividend ratio.

The second and third columns show the estimates of the coefficients that enter the law of motion of the score
driven time-varying processes (4) where A and B are diagonal matrices, and the smoothing coefficient applied
to the Hessian term (κh). For each coefficient we report in square brackets the associated standard error. For
the average volatilities and correlations in the first column we report the 68% confidence interval from 1000
simulations of the model (calculated as in Blasques et al., 2016).



Figure 1: Expected Returns and Expected Dividend Growth
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Note. The panel on the left of Figure 1 shows the return on stocks (rt), expected returns (Et−1(rt)), and
the long-run component of expected returns (µ̄t|t−1). The panel on the right reports dividend growth (∆dt),
together with expected dividend growth (Et−1(∆dt)) and the long-run component of expected dividend
growth (ḡt|t−1). In both panels the colored bands denote the 68% confidence interval. Vertical shadows
indicate recessions as identified by the National Bureau of Economic Research (NBER).

Figure 2: Long-run Expected Returns, Expected Dividend Growth and Price-
Dividend Ratio
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Note. The panel on the left of Figure 2 shows long-run expected returns (µt|t−1, continuous blue line)
and long-run expected dividend growth (gt|t−1, broken red line). The implied long-run price dividend ratio,
obtained from µt|t−1 and gt|t−1 on the basis of equation (11), is shown in the panel on the right (green broken
line) together with the actual level of the (log) price dividend ratio (black solid line). Bands around the
estimates correspond to the 68% confidence interval obtained through simulation, as discussed in Blasques
et al. (2016). Vertical shadows indicate recessions as identified by the National Bureau of Economic Research
(NBER).



Figure 3: Price Dividend Ratio Decomposition
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Note. Figure 3 reports the decomposition of the transitory component of the price
dividend ratio into the contribution of the transitory components of, respectively,
expected returns and expected dividend growth according to equation (17). Verti-
cal shadows indicate recessions as identified by the National Bureau of Economic
Research (NBER).

Figure 4: Term Structure of Expected Returns and Expected Dividend Growth
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Note. Figure 4 reports with a broken blue line the level (i.e. 10 years) and with a continuous red line
the slope (i.e 10 year minus 2 years) of conditional expected returns (panel on the left) and of conditional
expected dividend growth (panel on the right). Vertical shadows indicate recessions as identified by the
National Bureau of Economic Research (NBER).



Figure 5: Long-Run Excess Return on Stocks and Long-Run Riskless Rate

1880 1900 1920 1940 1960 1980 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
LONG-RUN RETURN AND EQUITY PREMIUM LONG-RUN RISKLESS REAL RATE

1880 1900 1920 1940 1960 1980 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

Note. The panel on the left of Figure 5 reports in blue the long-run expected return on stocks
(µt|t−1) estimated using the baseline model specification described in Section 3 and in red the long
run equity premium (µext|t−1) estimated as described in Section 5. The panel on the right shows (blue

line) the long-run real riskless rate constructed as rt|t−1 = 0.5(µt|t−1−µext|t−1)+0.5(gt|t−1−gext|t−1).
The panel on the right also shows two alternative measures of r-star for the US, as estimated
in Laubach and Williams (2003) denoted with “LW” and in Holston et al. (2017) denoted with
“HLW”. Vertical shadows indicate recessions as identified by the National Bureau of Economic
Research (NBER).
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A Proofs

We follow the notation and the results in Abadir and Magnus (2005, ch. 13). Given a N ×m
matrix X, vec(X) is the vector obtained by stacking the columns of X one underneath the

other. The Nm × Nm commutation matrix CN,m is such that CN,mvec(X) = vec(X ′). For

N = m the m2 ×m2 commutation matrix is denoted by Cm. The identity matrix of order k is

denoted by Ik, and ‘⊗’ is the Kronecker product. Given a square matrix U , the symmetrizer

matrix is Nn = 1
2
(In2 + Cn) and Nnvec(U) = vec

[
1
2
(U + U ′)

]
.

A.1 Gradient and information matrix

The gradient vector is

∇t =

(
∂`t
∂f ′t

)′
= −1

2

[
∂ log |Ft|
∂f ′t

+
∂v′tF

−1
t vt

∂f ′t

]′
= −1

2

[
1

|Ft|
∂|Ft|

∂vec(Ft)′
∂vec(Ft)

∂f ′t
+
∂v′tF

−1
t vt

∂vt

∂vt
∂f ′t

+
∂v′tF

−1
t vt

∂vec(F−1t )′
∂vec(F−1t )

∂vec(Ft)′
∂vec(Ft)

∂f ′t

]′
= −1

2

[
vec(F−1t )′Ḟt + 2v′tF

−1
t V̇t − (v′t ⊗ v′t)(F−1t ⊗ F−1t )Ḟt

]′
=

1

2

[
Ḟ ′t(F

−1
t ⊗ F−1t )(vt ⊗ vt)− Ḟ ′t(F−1t ⊗ F−1t )vec(Ft)− 2V̇ ′t F

−1
t vt

]
=

1

2

[
Ḟ ′t(F

−1
t ⊗ F−1t )vec(vtv

′
t − Ft)− 2V̇ ′t F

−1
t vt

]
. (A.1)

We now compute the information matrix as the expected value of the Hessian matrix

It = −Et

[
∂2`t
∂ft∂f ′t

]
. (A.2)

From the third line of (A.1) we can write that

∇t = −1

2

[
Ḟ ′t [vec(F−1t )− vec(F−1t vtv

′
tF
−1
t )] + 2V̇ ′t F

−1
t vt

]
= −1

2

[
Ḟ ′tvec(F−1t − F−1t vtv

′
tF
−1
t ) + 2V̇ ′t F

−1
t vt

]
= −1

2

[
Ḟ ′tvec[F−1t (IN − vtv′tF−1t )] + 2V̇ ′t F

−1
t vt

]
= −1

2

[
Ḟ ′t(IN ⊗ F−1t )vec(IN − vtv′tF−1t ) + 2V̇ ′t F

−1
t vt

]
. (A.3)



The negative Hessian is equal to:

− ∂2`t
∂ft∂f ′t

=
1

2

∂Φt

∂f ′t
+
∂vec(V̇ ′t F

−1
t vt)

∂vec(V̇ ′t )
′

∂vec(V̇ ′t )

∂f ′t
(A.4)

+
∂vec(V̇ ′t F

−1
t vt)

∂vec(F−1t )

∂vec(F−1t )

∂vec(Ft)′
∂vec(Ft)

∂f ′t
+
∂vec(V̇ ′t F

−1
t vt)

∂vt

∂vt
∂f ′t

=
1

2

∂Φt

∂f ′t
+ (v′tF

−1
t ⊗ IN)V̈t − (vt ⊗ V̇t)′(F−1t ⊗ F−1t )Ḟt + V̇ ′t F

−1
t V̇t, (A.5)

where Φt = Ḟ ′t(IN ⊗ F−1t )vec(IN − vtv′tF−1t ). Let us now compute the following Jacobian:

∂Φt

∂f ′t
=

∂Φt

∂vec(Ḟ ′t)
′

∂vec(Ḟ ′t)

∂f ′t
+

∂Φt

∂vec(IN ⊗ F−1t )′
∂vec(IN ⊗ F−1t )

∂vec(F−1t )′
∂vec(F−1t )

∂vec(Ft)′
∂vec(Ft)

∂f ′t

− ∂Φt

∂vec(IN − vtv′tF−1t )′
∂vec(vtv

′
tF
−1
t )′

∂f ′t

=
[
vec(IN − vtv′tF−1t )′(I ⊗ F−1t )⊗ I

]
F̈t −

[
vec(IN − vtv′tF−1t )′ ⊗ Ḟ ′t

]
(F−1t ⊗ F−1t )Ḟt

−Ḟ ′t(I ⊗ F−1t )

[
∂vec(vtv

′
tF
−1
t )

∂vec(vtv′t)
′
∂vec(vtv

′
t)

∂v′t

∂vt
∂f ′t

+
∂vec(vtv

′
tF
−1
t )

∂vec(F−1t )′
∂vec(F−1t )

∂vec(Ft)′
∂vec(Ft)

∂f ′t

]
= [vec(IN − vtv′tF−1t )′(IN ⊗ F−1t )⊗ IN ]F̈t −

[
vec(IN − vtv′tF−1t )′ ⊗ Ḟ ′t

]
(F−1t ⊗ F−1t )Ḟt

−Ḟ ′t(F−1t ⊗ F−1t )(vt ⊗ IN + IN ⊗ vt)V̇t + Ḟ ′t(F
−1
t ⊗ F−1t vtv

′
tF
−1
t )Ḟt. (A.6)

where F̈t =
∂vec(Ḟ ′t )

∂f ′t
. Putting together (A.5) and (A.6) we obtain the following expression:

− ∂2`t
∂ftf ′t

=
1

2
[vec(IN − vtv′tF−1t )′(IN ⊗ F−1t )⊗ IN ]F̈t −

1

2

[
vec(IN − vtv′tF−1t )′ ⊗ Ḟ ′t

]
(F−1t ⊗ F−1t )Ḟt

−1

2
Ḟ ′t(F

−1
t ⊗ F−1t )(vt ⊗ IN + IN ⊗ vt)V̇t +

1

2
Ḟ ′t
(
F−1t ⊗ F−1t vtv

′
tF
−1
t

)
Ḟt

+(v′tF
−1
t ⊗ IN)V̈t − (vt ⊗ V̇t)′(F−1t ⊗ F−1t )Ḟt + V̇ ′t F

−1
t V̇t, (A.7)

where V̈t =
∂vec(V̇ ′t )

∂f ′t
. Following Harvey (1989, p.141), taking the conditional expectation

of (A.7) the fourth and the seventh term in (A.7) are the only nonzero elements and the

information matrix is equal to

It =
1

2
Ḟ ′t
(
F−1t ⊗ F−1t

)
Ḟt + V̇ ′t F

−1
t V̇t. (A.8)

A.2 Jacobians of the Kalman filter

Let us write the KF recursions (3) in terms of the predictive filter:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = Tt+1PtZ
′
tF
−1
t , Lt = Tt+1 −KtZt,

at+1 = Tt+1at +Ktvt Pt+1 = Tt+1PtL
′
t +Qt+1, t = 1, ..., n.

(A.9)



Given the model specific Jacobian matrices:

Żt =
∂vec(Zt)

∂f ′t
, Ḣt =

∂vec(Ht)

∂f ′t
, Ṫt =

∂vec(Tt)

∂f ′t
, Q̇t =

∂vec(Qt)

∂f ′t
,

we compute the following Jacobian matrices:

V̇t =
∂vt
∂f ′t

=

[
∂vt

∂vec(Zt)′
∂vec(Zt)

∂f ′t
+
∂vt
∂a′t

∂at
∂f ′t

]
= −[(a′t ⊗ IN)Żt + ZtȦt]. (A.10)

Ḟt =
∂vec(Ft)

∂f ′t
=

∂vec(Ft)

∂vec(Zt)′
∂vec(Zt)

∂f ′t
+
∂vec(Ft)

∂vec(Pt)′
∂vec(Pt)

∂f ′t
+ Ḣt

= 2NN(ZtPt ⊗ IN)Żt + (Zt ⊗ Zt)Ṗt + Ḣt. (A.11)

K̇t =
∂vec(Kt)

∂f ′t+1

=
∂vec(Kt)

∂vec(Tt+1)′
∂vec(Tt+1)

∂f ′t+1

= (F−1t ZtPt ⊗ Im)Ṫt+1. (A.12)

L̇t =
∂vec(Lt)

∂f ′t+1

=
∂vec(Lt)

∂vec(Tt+1)′
∂vec(Tt+1)

∂f ′t+1

+
∂vec(Lt)

∂vec(Kt)′
∂vec(Kt)

∂f ′t+1

= Ṫt+1 − (Z ′t ⊗ Im)K̇t. (A.13)

Ȧt+1 =
∂at+1

∂f ′t+1

=
∂Tt+1at

∂vec(Tt+1)′
∂vec(Tt+1)

∂f ′t+1

+
∂Ktvt

∂vec(Kt)′
∂vec(Kt)

∂f ′t+1

= (a′t ⊗ Im)Ṫt+1 + (v′t ⊗ Im)K̇t. (A.14)

Ṗt+1 =
∂vec(Pt+1)

∂f ′t+1

=
∂vec(Tt+1PtL

′
t)

∂vec(Tt+1)′
∂vec(Tt+1)

∂f ′t+1

+
∂vec(Tt+1PtL

′
t)

∂vec(L′t)
′

∂vec(L′t)

∂vec(Lt)′
∂vec(Lt)

∂f ′t+1

+ Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + (Im ⊗ Tt+1Pt)CmL̇t + Q̇t+1. (A.15)

Plugging (A.12) in (A.14) we obtain

Ȧt+1 = [(a′t ⊗ Im) + (v′tF
−1
t ZtPt ⊗ Im)]Ṫt+1

= [(a′t + v′tF
−1
t ZtPt)⊗ Im]Ṫt+1

= (a′t|t ⊗ Im)Ṫt+1. (A.16)



Plugging (A.12) and (A.13) in (A.15) we obtain

Ṗt+1 = (LtPt ⊗ Im)Ṫt+1 + (Im ⊗ Tt+1Pt)Cm[Im2 − (Z ′tF
−1
t ZtPt ⊗ Im)]Ṫt+1 + Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + Cm[(Tt+1Pt ⊗ Im)− (Tt+1PtZ
′
tF
−1
t ZtPt ⊗ Im)]Ṫt+1 + Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + Cm[(Tt+1Pt − Tt+1PtZ
′
tF
−1
t ZtPt)⊗ Im]Ṫt+1 + Q̇t+1

= (Tt+1Pt|t ⊗ Im)Ṫt+1 + Cm(Tt+1Pt|t ⊗ Im)Ṫt+1 + Q̇t+1

= 2Nm(Tt+1Pt|t ⊗ Im)Ṫt+1 + Q̇t+1. (A.17)

Note that expressions (A.10), (A.11), (A.16) and (A.17) can be be also obtained by differenti-

ating the recursions in (3), therefore avoiding the computation of (A.12)-(A.15). Shifting one

period backward (A.16) and substituting into (A.10) we obtain:

V̇t = −[(a′t ⊗ IN)Żt + (a′t−1|t−1 ⊗ Zt)Ṫt]. (A.18)

Shifting one period backward (A.17) and substituting into (A.11) we obtain

Ḟt = 2NN(ZtPt ⊗ IN)Żt + 2(Zt ⊗ Zt)Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t. (A.19)

A.3 State space model in forward form

Let us consider the state space model in the so-called forward form:

yt = Ztαt + εt, εt ∼ N (0, Ht),

αt+1 = Ttαt + ηt, ηt ∼ N (0, Qt), α1 ∼ N (a1, P1), t = 1, ..., n.
(A.20)

The log-likelihood function is the same as in (2), thus ∇t and It are the same as in (6). The

recursions in (3) are replaced by the following ones:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = TtPtZ
′
tF
−1
t , Lt = Tt −KtZt,

at+1 = Ttat +Ktvt Pt+1 = TtPtL
′
t +Qt, t = 1, ..., n.

(A.21)

Here we assume the following time dependency in the system matrices: Zt = Z(ft, θm), Ht =

H(ft, θm), but Tt = T (ft+1, θm) and Qt = Q(ft+1, θm). The formulae (A.10)-(A.19) remain

unchanged by simply replacing Tt+1, Ṫt+1, Qt+1, and Q̇t+1 with Tt, Ṫt, Qt, and Q̇t.

B Examples

In this section, we look at some examples of time-varying state space models that have been

considered in the literature and show how they can be analyzed with our score driven algorithm.

In particular, in section B.1 we consider the local level model with time-varying volatility, a



model that has been popularized by Stock and Watson (2007) to study inflation dynamics. In

section, B.2 we consider autoregressive processes with time-varying parameters.

B.1 Local level model

Let us consider the local level model with time-varying volatilities:

yt = µt + εt, εt ∼ N (0, σ2
ε,t),

µt = µt−1 + ηt, ηt ∼ N (0, σ2
η,t).

(B.1)

This model has been proposed by Stock and Watson (2007) to model US inflation. The

estimation of (B.1) using the score-driven approach was initially proposed by Creal et al.

(2008, sec. 4.4). Their algorithm, however, contains some inconsistencies and below we show

how it should be modified. First, the state vector and the system matrices are equal to αt = µt,

Zt = Tt = 1, Ht = σ2
ε,t, Qt = σ2

η,t. Thus, the application of the Kalman Filter leads to the

following recursions:

vt = yt − at, at+1 = at + ktvt,

dt = pt + σ2
ε,t, pt+1 = (1− kt)pt + σ2

η,t+1,

kt = pt/dt, t = 1, ..., n.

(B.2)

Second, the vector of time-varying parameters, which is recursively estimated using the score-

driven filter (4), is equal to ft = (log σε,t, log ση,t)
′. Third, the corresponding Jacobian matrices

are Ḣt =
(
2σ2

ε,t, 0
)
, Q̇t =

(
0, 2σ2

η,t

)
, Żt = Ṫt = (0, 0)′. Finally, the conditional log-likelihood is

equal to `t ∝ −1
2
(log dt + v2t /dt), and the gradient vector and information matrix in (6) are:1

∇t =
1

2d2t
ḋ′t(v

2
t − dt), It =

1

2d2t

[
ḋ′tḋt

]
, (B.3)

where ḋt =
(
2σ2

ε,t, 2σ
2
η,t

)
. The score’s driving mechanism is represented by (v2t − dt), that is

the deviation of the current estimate of the prediction error variance (by means of vt) from its

past estimate (dt). Such term is weighted by ḋt, which determines the different impact on the

two time-varying volatilities.2 A multivariate extension of the score driven model considered

in this section has been used by Buccheri et al. (2020) to model high-frequency multivariate

financial time-series.

1Note that the information matrix is singular. Therefore, it needs to be smoothed to be used as scaling
matrix.

2Note that the resulting algorithm is different from the one derived in Creal et al. (2008). In fact, the two
volatilities are only updated using information in the second moments of the data and the level of the prediction
error, vt, does not enter directly the filter.



B.2 Autoregressive models

Here, we consider models that are perfectly observable. In this case, our algorithm collapses to

the score-driven filter proposed in the literature by Blasques et al. (2014) and Delle Monache

and Petrella (2017). Let us consider the following autoregressive model with time-varying

parameters:

yt = φtyt−1 + ξt, ξt ∼ N (0, σ2
t ), (B.4)

the model can be easily cast in state space form by setting αt = yt, Zt = 1, εt = 0, Ht = 0,

Tt = φt, ηt = ξt and Qt = σ2
t . The vector of interest is ft = (φt, σ

2
t )
′, and the corresponding

Jacobians are Ṫt = (1, 0), Q̇t = (0, 1), Żt = Ḣt = 0. For simplicity we do not impose any

restrictions on ft.
3 Combining the KF (3) with the new filter (6)-(7) leads to the following

expression for the scaled-score vector:

st = I−1t ∇t =

[
1

y2t−1
(yt−1ξt)

(ξ2t − σ2
t )

]
. (B.5)

The driving process for the coefficient φt is the prediction error scaled by the regressor, while the

volatility σ2
t is driven by the squared prediction error. These match exactly those in Blasques

et al. (2014) and Delle Monache and Petrella (2017).

We can easily extend to the case of vector autoregressive model of order p:

yt = Φ1,tyt−1 + · · ·+ Φp,tyt−p + ct + ξt, ξt ∼ N (0,Γt). (B.6)

The SSF representation can be obtain by setting:

αt = (y′t, . . . , y
′
t−p, 1)′, Zt = I, Tt =



Φ1,t . . . Φp,t ct

I
. . .

I

0 0


, Qt =


Γt

0
. . .

0

 ,

where ft = (vec(Φt)
′, vec(Γt)

′)′, with Φt = [Φ1,t, . . . ,Φp,t, ct]. We therefore have that Żt =

Ḣt = 0, while Ṫt and Q̇t, are selection matrices. After some algebra, the scaled-score can be

specialized in two sub-vectors driving the coefficients and the volatilities:

st = I−1t ∇t =

[
(X ′tΓ

−1
t Xt)

−1X ′tΓ
−1
t ξt

vec(ξtξ
′
t)− vec(Γt)

]
, (B.7)

where Xt = (α′t−1 ⊗ I). Interestingly, the algorithm proposed by Koop and Korobilis (2013)

3Delle Monache and Petrella (2017) show how to impose stable roots.



can be obtained as a special case of ours by imposing some restrictions on the model. First, set

the law of motion (4) c = 0, A = I and let B depend on two scalar parameters (one driving the

coefficients and one the volatility). Second, replace the information matrix for the time-varying

coefficients by its smoothed estimator: Ĩc,t = (1− κ)Ĩc,t−1 + κ(X ′tΓ
−1
t Xt).

It is well known that VAR models tend to suffer from the ‘curse of dimensionality’ and

to overfit the data (see, e.g., Litterman, 1979; Doan et al., 1986). In the context of fixed

coefficients, Bayesian techniques are used to shrink the parameters, therefore reducing esti-

mation variance. Our algorithm can easily accommodate shrinkage, as detailed in Appendix

D. A regularized version of the model proposed by Koop and Korobilis (2013) can then be

easily obtained, where the parameters can be shrunk towards any type of prior that can be

reformulated in the form of stochastic constraints. These include the most popular priors typ-

ically considered in the Bayesian VAR literature, including the Minnesota prior, the sum of

coefficients prior and the long-run prior (see, e.g., Del Negro, 2012; Kapetanios et al., 2019).

C Monte Carlo exercise

The Monte Carlo exercise is based on a battery of simple bivariate models that share a common

component. We simulate two time series (y1,t and y2,t) that load (with parameters λ1,t and

λ2,t) on a common factor µt and are each affected by idiosyncratic noise. The common factor

evolves as an AR(1), with coefficient ρt. In this model, we look at the time variation of a subset

of parameters one at the time. Specifically, DGP1 lets the loading on the common factor vary

over time and keeps all the remaining parameters fixed. In DGP2 we keep both factor loadings

constant (λ1,t = 1 and λ2,t = 1) while allowing for time variation in the AR coefficient of the

common factor, ρt. In DGP3 and DGP4 we experiment with time-varying volatility, either in

the measurement or in the transition equations, keeping everything else fixed. In these latter

cases, the simulated model is a univariate signal plus noise model. In all cases, we consider two

different sample sizes, n = 250 and n = 500. As for the laws of motions for the TVPs entering

the various DGPs, we experiment with 6 different possibilities:

Case 1: CONSTANT ft = a1,∀t;
Case 2: SINE ft = a2 + b2 sin

(
2πt
T/2

)
;

Case 3: SINGLE STEP ft = a3 + b3 (t ≥ τ);

Case 4: DOUBLE STEP ft = a4 + b4I (t ≥ τ1) + c4I (t ≥ τ2);

Case 5: RAMP ft = a5 +
(

b5
T/c5

)
mod (t);

Case 6: AR(1) MODEL ft = a6(1− b6) + b6ft−1 + ξt, ξt ∼ N (0, c6);

where ft = λt in DGP1, ft = ρt in DGP2, ft = σ2
ε,t in DGP3, and ft = σ2

u,t in DGP4.4 We

4Moreover, ft in the AR(1) model is transformed to be within the unit circle for DGP2, and to be positive



start with a baseline case in which we keep the parameters constant over time. We then move

to four cases where the parameters change according to a deterministic process. In case 2 the

parameters follow a cyclical pattern determined by a sine function. In cases 3 and 4 we let

the parameters break at discrete points in time, allowing for either one or two breaks. We set

the location of the discrete breaks at given point in the sample. In the case of a single break,

this occurs in the middle of the sample. When we consider two breaks, they are located at 1/3

and 2/3 of the sample. Case 5 (RAMP) is a rather challenging case, whereby the parameters

increase for some time before returning abruptly to their starting levels. Finally, case 6 is

the only one in which we let the parameters vary stochastically, following a persistent AR(1)

model. We consider two cases, one with a near unit root process (i.e. with an AR root of

0.99) and a low variance, one with lower persistence (AR root of 0.97) but substantially higher

variance. We obtain very similar results in these two specifications. The DGPs that we design

are simple, in that time variation is introduced in all the channels in which it can manifest itself,

but only one at the time. By focusing on a single channel at the time, we can better identify the

situations in which our model either succeeds or fails at tracking parameter variation. Further

details on the calibration of the parameters are provided in the next subsections.

The results of the Monte Carlo exercise are shown in Table C.1. The table is organized

in four panels, corresponding to each of the four DGPs. On the left hand side of the table

we show the results for a sample size of n = 250, on the right hand side those obtained when

setting n = 500. For each DGP the analysis is based on 300 simulations. In each panel we

report the results obtained for the six alternative laws of motion described above. We base

our assessment on five different statistics, namely the Root Mean Squared Error (RMSEs),

the Mean Absolute Error (MAE), the correlation between actual and estimated coefficients,

the Coverage (i.e. percentage of times that the actual parameters fall in a given estimated

confidence interval) and the number of cases in which a pile-up occurs (#Pile-up). The last

statistics consists of the number of simulations in which the static coefficients that pre-multiply

the score end up being lower than 10−6, which we take as sufficient evidence that the estimated

parameters are effectively zero, i.e. that the model does not detect any time variation.

We highlight five results. First, for all the DGPs in which the true parameters are constant

the model performs extremely well. This means that the adaptive filter correctly collapses the

parameters to a constant. As a result, RMSEs and MAEs are virtually nil, the actual coverage

extremely precise and a pile-up at zero occurs in about 75 percent of the cases for the volatility

models and more than half of the cases for the loadings and AR coefficients.5 This result implies

that our estimation method does not generate spurious time variation in the coefficients when

for DGP3 and DGP4.
5For the latter two cases, in an additional 20% of the simulations the estimated parameters are virtually

constant, despite not being classified as a pile-up according to the criterion we have set above.



this is not present in the data generating process. Second, the pile-up problem is not of primary

concern for our estimator. The number of instances in which our method (incorrectly) concludes

that there is no time variation is basically zero in most cases. Third, for all the DGPs and

across all the specifications for the parameters we obtain extremely good coverage. Coverage

is almost perfect when time variation involves the autoregressive coefficients, somewhat lower

when it affects the volatility of the measurement and of the transition equation, in particular

when parameters break at discrete points in the sample. Fourth, across all DGPs the RAMP

specification is the one that the model finds more challenging to estimate. This specification

generally leads to low correlation between actual and estimated parameters, higher RMSEs

and MAEs and lower coverage. This is not surprising, since our model is, by construction,

designed to detect smooth changes, whereas in the RAMP model periods of small, continuous

changes are suddenly interrupted by large breaks. Fifth, the adaptive filter is very effective in

estimating time-varying loadings and autoregressive coefficients, but it is rather conservative

in the estimation of the time-varying variances, especially when these are driven by a near unit

root process. For this DGP, in one third of the cases the filter ends in a pile-up when the

sample is relatively small (T=250). However, when time variation is detected, the algorithm

yields relatively low RMSEs and MAEs and a satisfactory coverage. We take these results

as evidence that, in the case of time-varying variances, the algorithm needs relatively more

evidence of breaks in the parameters to move away from zero. A larger sample size (of the

type encountered in financial applications that use high frequency data) basically eliminates

the problem.

C.1 Specification of the DGPs

DGP1 - Time-Varying loadings[
y1,t

y2,t

]
=

[
1

λt

]
µt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I) ,

µt = 0.8µt−1 + ut ut,∼ N (0, 1) .

DGP2 - Time-Varying AR coefficient[
y1,t

y2,t

]
=

[
1

1

]
µt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I),

µt = ρtµt−1 + ut, ut ∼ N (0, 1).

DGP3 - Time-Varying Volatility in the measurement equation

yt = µt + εt, εt ∼ N (0, σ2
ε,t),

µt+1 = 0.8µt + ut, ut ∼ N (0, 1).



DGP4 - Time-Varying Volatility in the transition equation

yt = µt + εt, εt ∼ N (0, 1),

µt+1 = 0.8µt + ut, ut ∼ N (0, σ2
η,t).

C.2 Calibration

DGP1:Time-varying loadings

CONSTANT: a1 = 1;

SINE: a2 = 2, b2 = 1.5;

SINGLE STEP: a3 = 1, b3 = 2, τ = (2/5)n;

DOUBLE STEP: a4 = 1, b4 = c4 = 1.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 4, c5 = 2;

AR(1) [b6 = 0.99]: a6 = 1, b6 = 0.99, c6 = 0.082.

AR(1) [b6 = 0.97]: a6 = 1, b6 = 0.97, c6 = 30.242.

DGP2: Time-varying autoregressive coefficient

CONSTANT: a1 = 0.7;

SINE: a2 = 0, b2 = 0.7;

SINGLE STEP a3 = 0.8, b3 = −0.6, τ = (2/5)n;

DOUBLE STEP:a4 = 0.8, b4 = c4 = −0.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.3, b5 = −0.9. c5 = 2;

AR(1) [b6 = 0.99]: a6 = 0.2, b6 = 0.99, c6 = 0.082;

AR(1) [b6 = 0.97]: a6 = 0.2, b6 = 0.97, c6 = 0.242;

and in the latter two cases we also impose the restriction that |ρt| < 1.

DGP3 and DGP4: Time-varying volatilities

CONSTANT: a1 = 1;

SINE: a2 = 1, b2 = 0.9;

SINGLE STEP: a3 = 1, b3 = 4, τ = (2/5)n;

DOUBLE STEP:a4 = 1, b4 = c4 = 3, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 8, c5 = 2;

AR(1) [b6 = 0.99]: a6 = 0, b6 = 0.99, c6 = 0.082;

AR(1) [b6 = 0.97]: a6 = 0, b6 = 0.97, c6 = 0.242;

In DGP3 and DGP4, after having simulated the dynamic of the volatility the time-varying

volatilities are rescaled so as to have a fixed ratio between the measurement and transition

error variances equal to 1.

For each DGP we target 300 simulations. However, the actual number of samples changes



depending on the specifications. In the case of constant coefficients, where we would like to see

our estimator to end up in a pile-up situation as often as possible, we perform 300 simulations

and compute all the statistics on these samples. For the remaining specifications, on the other

hand, we keep on drawing artificial samples until we obtain 300 simulations in which the

estimated parameters are different from zero and compute RMSEs, MAEs, correlations and

coverage ratios on these 300 artificial samples. At the same time, we also keep track of the

number of times in which the pile-up problem arises. To better understand how we proceed,

let us take a concrete example, that is the bottom-left panel of Table 1 (DGP4, i.e. the model

with time-varying volatility in the transition equation, n = 250). In the first row we report the

results for the constant coefficient case. As explained, for this case we simulate 300 artificial

samples and estimate the model using our algorithm. It turns out that in 236 out of 300

simulations our estimation method ends up in a pile-up. The RMSEs, MAEs, Correlations and

Coverages, are estimated on all the 300 simulations. Now let us take in the same panel the

last line, referring to one of the AR(1) specifications. In this case we need to draw up to 314

samples to obtain 300 simulations in which the estimation algorithm does not end being stuck

in a region of the likelihood where the model loading is zero. Now, in this case all the remaining

statistics are computed on the 300 ‘good’ samples. We proceed in this way because we want

to appraise two different issues. The former is the percentage of cases in which the algorithm

ends up in the pile-up even if the true DGP implies time variation. The second is how well

it estimates the parameters conditional on the model correctly detecting time variation. The

two points are of independent interest. If we were to find that the model often ends up in

the pile-up but it is very precise when it does not, one could decide to force the algorithm to

stay away from zero, for instance by using a grid-based estimation method. This is the choice

made, for instance, by Koop and Korobilis (2013). Similarly, in their Monte Carlo Markov

Chain estimation, Stock and Watson (2007) reject draws in which the variances are very close

to zero.

In figures C.1-C.8 we report the simulated true process for the time-varying parameters (red

line), and the fan chart associated to the 5th, 10th, 20th, 30th, 40th, 60th, 70th, 80th, 90th and 95th

quantile of the filtered parameters. In the case of the AR(1) specification we focus on the more

persistent AR(1) DGP and report the difference between actual and estimated parameters.

The figures are based on 300 replications.



Table C.1: Monte Carlo Exercise

DGP 1: time-varying LOADINGS COEFFICIENT

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.003 0.003 0.678 0.900 165 0.000 0.000 0.680 0.900 180
SINE 0.473 0.380 0.909 0.636 0.852 0 0.386 0.305 0.940 0.648 0.868 0
SINGLE STEP 0.406 0.280 0.927 0.656 0.876 0 0.335 0.229 0.951 0.660 0.882 0
DOUBLE STEP 0.462 0.339 0.936 0.640 0.860 0 0.390 0.277 0.953 0.652 0.874 0
RAMP 0.695 0.461 0.723 0.648 0.856 0 0.575 0.367 0.817 0.658 0.870 0
AR(1) [b6 = 0.99] 0.265 0.213 0.727 0.676 0.892 0 0.274 0.217 0.807 0.676 0.892 0
AR(1) [b6 = 0.97] 0.523 0.415 0.803 0.660 0.872 0 0.527 0.413 0.828 0.662 0.872 0

DGP 2: time-varying AUTOREGRESSIVE COEFFICIENT

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.006 0.006 0.676 0.900 147 0.005 0.004 0.680 0.900 156
SINE 0.330 0.267 0.780 0.684 0.900 0 0.268 0.212 0.866 0.682 0.900 0
SINGLE STEP 0.228 0.166 0.769 0.684 0.900 0 0.203 0.140 0.811 0.686 0.902 0
DOUBLE STEP 0.240 0.185 0.872 0.684 0.900 0 0.209 0.160 0.892 0.686 0.900 0
RAMP 0.341 0.261 0.392 0.682 0.900 0 0.299 0.221 0.548 0.683 0.900 0
AR(1) [b6 = 0.99] 0.297 0.237 0.608 0.684 0.900 4 0.301 0.241 0.695 0.686 0.902 1
AR(1) [b6 = 0.97] 0.477 0.377 0.575 0.686 0.900 0 0.478 0.375 0.593 0.685 0.900 0

DGP 3: TIME-VARYING VOLATILITY - MEASUREMENT EQUATION ERROR

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.000 0.000 0.676 0.896 231 0.000 0.000 0.682 0.899 232
SINE 0.981 0.768 0.747 0.672 0.876 1 0.829 0.637 0.813 0.678 0.882 0
SINGLE STEP 0.808 0.605 0.843 0.618 0.848 0 0.659 0.477 0.883 0.652 0.870 0
DOUBLE STEP 0.702 0.551 0.856 0.628 0.848 0 0.595 0.460 0.889 0.648 0.870 0
RAMP 0.960 0.764 0.498 0.640 0.860 20 0.803 0.599 0.646 0.656 0.874 1
AR(1) [b6 = 0.99] 0.717 0.571 0.568 0.664 0.880 93 0.748 0.578 0.608 0.668 0.886 24
AR(1) [b6 = 0.97] 1.446 0.998 0.600 0.664 0.868 22 1.489 1.005 0.626 0.674 0.878 3

DGP 4: TIME-VARYING VOLATILITY - TRANSITION EQUATION ERROR

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.000 0.000 0.676 0.896 236 0.000 0.000 0.680 0.898 241
SINE 1.052 0.832 0.714 0.672 0.880 1 0.871 0.673 0.794 0.672 0.886 0
SINGLE STEP 0.829 0.614 0.834 0.644 0.864 0 0.680 0.485 0.874 0.656 0.878 0
DOUBLE STEP 0.754 0.592 0.849 0.644 0.868 0 0.620 0.481 0.885 0.656 0.876 0
RAMP 1.015 0.822 0.468 0.644 0.868 1 0.829 0.640 0.615 0.659 0.881 0
AR(1) [b6 = 0.99] 0.768 0.623 0.622 0.668 0.888 95 0.776 0.607 0.613 0.668 0.887 34
AR(1) [b6 = 0.97] 1.533 1.069 0.590 0.664 0.876 14 1.523 1.042 0.619 0.664 0.880 5

Note. The results shown in the first and in the second panel (DGP1 and DGP2) refer to a bivariate factor
model in which two variables are driven by a single common factor that evolves as an autoregressive process
of order 1. In the first case (DGP1) the loading of the second variable on the common factor varies over time
and all the other parameters are kept constant. In the second case (DGP2) the autoregressive component of
the common factor varies over time and all the other parameters are kept constant. The results shown in the
third and in the fourth panel (DGP3 and DGP4) refer to ARMA(1,1) models that are cast in state space and
feature time-varying variances of the random disturbance in, respectively, the measurement and the transition
equation. The abbreviations Corr. and Cov. stand, respectively for Correlation and Coverage, while # Pile-up
denotes the number of simulations in which the algorithm delivers constant parameters. The different laws of
motion of the parameters in the first column (Constant, Sine, Single Step, Double Step, Ramp and AR(1) are
described in Section 4).



Figure C.1: time-varying loadings, n=250
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Figure C.2: time-varying loadings, n=500



Figure C.3: time-varying autoregressive coefficients, n=250
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Figure C.4: time-varying autoregressive coefficients, n=500



Figure C.5: time-varying measurement equation error variance, n=250

0 100 200
1

1.2

1.4

1.6

1.8

2

2.2

  

CONSTANT

0 100 200
0

1

2

3

4

5

6

7

  

SINE FUNCTION

0 100 200
0

1

2

3

4

5

  

SINGLE STEP

0 100 200
0

1

2

3

4

5

  

DOUBLE STEP

0 100 200
0

1

2

3

4

5

6

  

RUMP

0 100 200
-2

-1

0

1

2

  

AR(1)

Figure C.6: time-varying measurement equation error variance, n=500



Figure C.7: time-varying transition equation error variance, n=250
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Figure C.8: time-varying transition equation error variance, n=500



D Shrinking the vector of parameters by the L2 penalty

As the dimension of the system grows, it could be desirable to impose some shrinkage on

the model parameters to avoid an increase in the estimation variance (Hastie et al., 2001).

Following (Theil and Goldberger, 1961), priors can be incorporated into the state space model

(1), with the score driven system matrices described by (4), augmenting the model using the

following Gaussian constraints:

rt = Rtft + ut ut ∼ N (0,Σt), (D.1)

where rt, Σt and Rt are known and the random disturbance ut is Gaussian and uncorrelated

with the other two disturbances εt and ηt. Since ut is Gaussian, the resulting penalty will be

quadratic with the matrix Σt regulating the degree of shrinkage; e.g for Σt →∞ the constraints

vanish, while for Σt → 0 the constraints hold exactly. The vector rt can be considered a vector of

artificial observations. The likelihood function for the vector of ‘augmented data’, ỹt = (y′t, r
′
t)
′

is equal to:

`pt = log p(ỹt|Yt−1, θ) ∝ −
1

2

(
log |Ft|+ v′tF

−1
t vt

)
− 1

2

(
log |Σt|+ u′tΣ

−1
t ut

)
, (D.2)

which can be interpreted as a ‘penalized likelihood’ with a quadratic penalty function. The

resulting ‘penalized’ score is:

spt = (Ipt )−1∇p
t = (It +R′tΣ

−1
t Rt)

−1(∇t +R′tΣ
−1
t ut). (D.3)

Using the Woodbury identity we obtain6:

(Ipt )−1 = (It +R′tΣ
−1
t Rt)

−1 = I−1t − I−1t R′t(RtI−1t R′t + Σt)
−1RtI−1t = (I −ΥtRt)I−1t , (D.4)

where Υt = I−1t R′t(RtI−1t R′t + Σt)
−1. Finally, we can express the penalized (regularized) score

as follows:

spt = (I −ΥtRt)st + Υtut, (D.5)

From the last expression it is straightforward to obtain the two polar cases for Σt → 0 and

Σt → ∞. To illustrate with a simple example how such ‘penalized score’ works let us define

Rt = I, rt = f̄ , and Σt = 1
λ
I so that the constraints reduce to ft ∼ N (f̄ , 1

λ
I). This corresponds

to a Ridge-type penalty with λ regulating the degree of penalization. The penalized score will

be spt = (I − Λt)st + Λt(f̄ − ft), where Λt = λ(It + λI)−1. If we assume a simple random-walk

law of motion for ft, that is ft+1 = ft + Bspt , and the information matrix equals to identity

6In case It is not invertible we use its smoothed estimator Ĩt = (1− κ)Ĩt−1 + κIt which is invertible.



matrix, the resulting regularized score-driven filter is:7

ft+1 =
Bλ

1 + λ
f̄ +

(
I − Bλ

1 + λ

)
ft +

B

1 + λ
st. (D.6)

The law of motion is now mean reverting towards the desired value f̄ . Everything else equal,

the larger is λ, the lower is the weight assigned to actual data and the more binding is the

constraint. Notice that the strategy of stochastic constraints is very flexible, and generalizes a

number of shrinkage methods, including Ridge regressions, Minnesota priors, sum of coefficients

priors as well as the long-run prior in Giannone et al. (2019). Kapetanios et al. (2019) discuss

in details these additional cases.

E Mixed frequencies and missing observations

Assume to have a data set containing missing observations. The observed vector is represented

by Wtyt, where Wt is an Nt × N selection matrix with 1 ≤ Nt ≤ N , meaning that at least

one observation is available at time t. Note that Wt is obtained by eliminating the i− th row

from IN when the i− th variable is missing. In this setting, at each time t the likelihood `t is

computed using Nt observations; i.e. `t = log p(Wtyt|Yt−1, θ), that is the marginal likelihood.

In practice, the score of the marginal likelihood is computed and the updating of ft is based on

the available information.8 Given this reparameterization, the measurement equation in (1) is

modified as follows:

Wtyt = WtZtαt +Wtεt, Wtεt ∼ N (0,WtHtW
′
t), (E.1)

and the first four expressions of the KF (3) are modified as follows:

vt = Wt(yt − Ztat), Ft = Wt(ZtPtZ
′
t +Ht)W

′
t ,

at|t = at + PtZ
′
tW
′
tF
−1
t vt, Pt|t = Pt − PtZ ′tW ′

tF
−1
t WtZtPt.

(E.2)

The expressions in (7) become

V̇t = −[(a′t ⊗Wt)Żt + (a′t−1|t−1 ⊗WtZt)Ṫt],

Ḟt = 2NNt(WtZtPt ⊗Wt)Żt + (WtZt ⊗WtZt)2Nm(TtPt−1|t−1 ⊗ Im)Ṫt

+(Wt ⊗Wt)Ḣt + (WtZt ⊗WtZt)Q̇t.

(E.3)

Mixed frequencies typically involve missing observations and temporal aggregation. The

case of mixed frequencies is of particular interest for a number of applications, like for instance

forecasting low frequency variables using higher frequency predictors (nowcasting). Indeed

low frequency indicators can be modeled as a latent process that is observed at regular low

7The same regularized filter can be obtained by setting ft ∼ N (f̄ , 1
λIt), which is the Litterman-type of prior.

8A formal discussion of dealing with missing values in score-driven models can be found in Lucas et al. (2016).



frequency intervals and missing at higher frequency dates. The relation between the observed

low frequency variable and the corresponding (latent) higher frequency indicator depends on

whether the variable is a flow or a stock and on how the variable is transformed before entering

the model. In all cases, the variable can be rewritten as a weighted average of the unobserved

high frequency indicator (see e.g., Banbura et al., 2013).

F Correlated disturbances

Let consider the case in which the disturbances in (1) are correlated, that is E(ηtε
′
t) = Gt. In

this case the following expressions in (3) need to be modififed:

Ft = ZtPtZ
′
t + ZtGt +G′tZ

′
t +Ht,

at|t = at + (PtZ
′
t +Gt)F

−1
t vt,

Pt|t = Pt − (PtZ
′
t +Gt)F

−1
t (PtZ

′
t +Gt)

′.

(F.1)

Therefore, the expression for Ḟt in (7) need to be modified as follows:

Ḟt = [2NN(ZtPt ⊗ IN) + (G′t ⊗ IN) + (IN ⊗G′t)CNm]Żt

+(Zt ⊗ Zt)2Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t

+[(IN ⊗ Zt) + (Zt ⊗ IN)CmN ]Ġt.

(F.2)

G Empirical application

G.1 Identification of the model

In this section, we consider the identification of the model presented in section 3. Let us start

by looking at the constant parameter version of the model:

pdt+1 = pd− b1µ̃t+1 + b2g̃t+1 + νt+1, νt+1 ∼ N (0, σ2
ν),

∆dt+1 = g + g̃t + εd,t+1,

µ̃t+1 = φµµ̃t + εµ,t+1,

g̃t+1 = φgg̃t + εg,t+1.

(G.1)

The measurement error νt is uncorrelated with the innovations of the model for which we

assume a general a covariance structure, εt = (εd,t, εµ,t, εg,t)
′ ∼ N (0,Ω). Below we discuss the

restrictions needed for this model to be identified.

Model (G.1) is equivalent to one estimated by Binsbergen and Koijen (2010), whose identi-

fication issue is discussed at lenght in Cochrane (2008), with the key difference being that we

have added the measurement error in the pdt equation. To be more precise, the specification

for ∆dt+1 implies an ARMA(1,1) process, while the model for pdt without the measurement

error νt is an ARMA(2,1). The resulting bivariate model is a restricted VARMA(2,1) with



five parameters9 to identify the covariance Ω. Specifically, we set one correlation to zero as

in Binsbergen and Koijen (2010) and Rytchkov (2012), i.e. Corr(εd,t, εg,t) = 0. Adding the

measurement error νt in the pdt equation, the additional parameter σ2
ν is identified by the ad-

ditional moving average coefficients.10 By introducing time-varying long-run mean pdt, and gt,

the implied reduced form models for pdt and ∆dt become ARIMA(2,1,3) and ARIMA(1,1,2),

respectively. Thus, the two additional moving average coefficients are used to identify the two

parameters, bµ and bg, scaling the score-driven filters for µt and gt in (21)-(22). Since our model

features a time-varying Ωt, at each point in time for a given covariance matrix Ω the model is

identified; i.e. the model is locally identified.

G.2 Modelling the correlation matrix by partial correlations

Here we show how to model a time-varying correlation matrix by imposing bounds on the

partial correlations. In order to save in notation we drop the subscript t. Let consider the

following covariance matrix Ω = DRD′, where D = diag([σ1, σ2, σ3)] and R is the correlation

matrix:

R =


1 %12 %13

%12 1 %23

%13 %23 1

 .
To ensure positive standard deviations we model δi = log σi so that σi = exp δi. For the

correlations we model γ = (γ12, γ13, γ23)
′, where γij = h(%ij) and h(·) is the inverse function of

the transformation %ij = ψr(γij) that we describe below.

A well defined correlation matrix R must be positive semidefinite with ones on the main

diagonal, this poses a non-trivial problem; see e.g. Budden et al. (2008). On the other hand, the

one-to-one mapping between the correlations and the partial correlations allows us to impose

simple constraints to the partial correlations. Inspired by Joe (2006), Daniels and Pourahmadi

(2009) and Lewandowski et al. (2009), we re-parametrize the correlation matrix with respect

to the partial correlation matrix. Specifically, R is positive semidefinite if the corresponding

partial correlation matrix

Π =


1 π12 π13

π12 1 π23

π13 π23 1


has all the elements πij ∈ (−1, 1), where πij are the partial correlations between variables i and

j. To satisfy those bounds on the partial correlations πij we use the Fisher transformation,

that is πij = tanh(γij), so that we model γij = atanhπij. The function mapping the elements

9The tree autoregressive coefficients and the two constants are identified by construction. The two moving
average coefficients and three parameters of the covariance matrix are used to identify the six elements of the
matrix Ω.

10Adding the measurement error νt, the reduced form model for pdt becomes an ARMA(2,2).



of R into the elements of Π is:11

%12 = π12, %13 = π13, %23 = π23

√
(1− π2

12)(1− π2
13) + π12π13. (G.2)

Thus, we perform two transformations:

%ij = ψr(γij) = ψr,2(ψr,1(γij)), (G.3)

where ψr,1(·) = tanh(·), ψr,2(·) is defined in (G.2). The resulting Jacobian is:

∂%

∂γ′
=

∂%

∂π′
∂π

∂γ′
=


1 0 0

0 1 0

κ12 κ13 κ23




1− π2
12 0 0

0 1− π2
13 0

0 0 1− π2
23

 ,
where

κ12 = π13 − π12π23

√
1− π2

13

1− π2
12

, κ13 = π12 − π13π23

√
1− π2

12

1− π2
13

, κ23 =
√

(1− π2
12)(1− π2

13).

Remark: If the partial correlations πij are bounded using the cosine function, i.e. ψr,1(·) =

cos γij, the transformation (G.3) turns out to be the same as the hyperspherical coordinates

used in, e.g., Creal et al. (2011) and Buccheri et al. (2020). This means that the use of

hyperspherical coordinates implies modelling inverse consine of the partial correlations. The

proof for a correlation matrix of general dimension is beyond the scope of this paper.

In our application, the identification of the model requires to set to zero one of the corre-

lations. Without loss of generality we set to zero the correlation between the first and second

innovation. Eploiting the mapping between the correlations and partial correlations we have

that π12 = 0 implies %12 = 0. Therefore, we model the following vectors % = (%13, %23)
′,

π = (π13, π23)
′, γ = (γ13, γ23)

′ The mapping between correlations and partial correlation is

%13 = π13, %23 = π23
√

1− π2
13, and the Jacobian is

∂%

∂γ′
=
√

1− π2
13

[√
1− π2

13 0

−π13π23 1− π2
23

]
.

G.3 State space, score driven vector and jacobians

The model in section 3 can be cast easily in state space form:

yt = Ztαt + εt, εt ∼ N (0, H),

αt = Tαt−1 + ηt, ηt ∼ N (0, Qt),

11See also Yule and Kendall (1965, ch. 12) and Anderson (1984, p. 41).



where

yt =

[
∆dt

pdt

]
, Zt =

[
ḡt 0 0 1 1 0 0

pdt
1

1−ρtφg −
1

1−ρtφµ 0 0 0 0

]
, H =

[
0 0

0 σ2
ν

]
,

αt =



1

g̃t,

µ̃t,

g̃t−1

εd,t

εg,t

εµ,t


, T =



1 0 0 0 0 0 0

0 φg 0 0 0 0 0

0 0 φµ 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, ηt = Sη


εd,t

εg,t

εµ,t

 , Sη =



0 0 0

0 1 0

0 0 1

0 0 0

1 0 0

0 1 0

0 0 1


,

Qt = SηΩtS
′
η, Ωt = DtRtDt, with Dt contains the standard deviations, and Rt denotes the

correlation matrix. The zero correlation between the measurement error in dividend growth

(εd,t) and the stochastic disturbance in expected dividend growth (εg,t), which is required for

the identification of the model, is appropriately imposed. The resulting matrices are is:

Dt =


σd,t 0 0

0 σg,t 0

0 0 σµ,t

 , Rt =


1 0 %dµ,t

0 1 %gµ,t

%dµ,t %gµ,t 1

 .
The vector of time-varying parameters is:

ft =


ϕt

δt

γt

 , ϕt =

[
µt,

gt

]
, δt =


log σd,t

log σg,t

log σµ,t

 , γt =

[
atanhπdµ,t

atanhπgµ,t

]
.

The vector ft follows the score driven model discussed in section 2, with the following specifi-

cation of the static parameters:

c = [0, 0, cσd , cσg , cσµ , cπd,µ , cπg,µ ]′,

A = diag([1, 1, aσd , aσg , aσµ , aπd,µ , aπg,µ ]),

B = diag([bµ, bg, bσd , bσg , bσµ , bπd,µ , bπg,µ ]).

Time variation in the Z matrix. Using the notation in section 2.2 we have that

vec(Zt) = S0,z + S1,zψz (S2,zft) ,



where

S0,z =



06×1

1

0

1

05×1


, S1,z =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

08×4


, S ′2,z =



1 0

0 1

0 0

0 0

0 0

0 0

0 0


,

ψz (ϕt) =


gt

pdt
1

1−ρtφg

− 1
1−ρtφµ

 , pdt = gt − log(expµt − exp gt), ρt =
exp pdt

1 + exp pdt
.

The Jacobian matrix is:

Żt = S1,zΨz,tS2,z, Ψz,t =


0 1
∂pdt
∂µt

∂pdt
∂gt

φg
(1−φgρt)2

∂ρt
∂µt

φg
(1−φgρt)2

∂ρt
∂gt

− φµ
(1−φµρt)2

∂ρt
∂µt

− φµ
(1−φµρt)2

∂ρt
∂gt

 ,
∂pdt
∂µt

= − expµt
expµt−exp gt

,
∂pdt
∂gt

= −∂pdt
∂µt

,
∂ρt
∂µt

= −ρt(1−ρt) expµt
expµt−exp gt

,
∂ρt
∂gt

= − ∂ρt
∂µt
.

Time variation in the Q matrix. Recall that the covariance matrix of the transition

equation is Qt = SηΩtS
′
η where Ωt = DtRtDt. Using the notation in Section 2.2, and the

standard rules of matrix differentiation, we have that:

Q̇t = (Sη ⊗ Sη)
[
(DtRt ⊗ I + I ⊗DtRt)Ḋt + (Dt ⊗Dt)Ṙt

]
.

We now express the matrices of volatilities and correlations as follows:

vec(Dt) = S1,dψd (S2,dft) , vec(Rt) = S0,r + S1,rψr (S2,rft) ,



where S1,d S2,d, S1,r, S2,r are selection matrices

S1,d =



1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1



, S ′2,d =



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


, S0,r =



1

0

0

0

1

0

0

0

1



, S1,r =



0 0

0 0

1 0

0 0

0 0

0 1

1 0

0 1

0 0



, S ′2,r =



0 0

0 0

0 0

0 0

0 0

1 0

0 1


.

The functions ψd(δt) and ψr(γt) and their Jacobians are described in section G.2. Specifically,

we have that:

Ḋt = S1,dΨd,tS2,d, Ṙt = S1,rΨr,tS2,r,

where

Ψd,t = Dt, Ψr,t =
√

1− π2
dµ,t

√1− π2
dµ,t 0

−πdµ,tπgµ,t 1− π2
gµ,t

 .



H Term structure of expected returns and dividend growth

in recessions

In Figure H.1 we plot the whole term structure of expected returns and expected dividend

growth for three historical episodes. In particular, we look at the year before the recession,

the peak of the recession and the year after the recession. We find that discount rates shocks,

especially at the short end of the curve, contributed greatly to the severity of the recessions in

1929 and 2008, while they played a relatively minor role in the 2001 recession episode. These

results are consistent with the narrative in Campbell et al. (2013).

Figure H.1: Expected Returns and Dividend Growth: Selected Episodes
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Note. Figure H.1 plots the term structure of expected return (left panel) and dividend growth (right panel)
around some specific events. In particular, the upper panel looks at the Great Depression, the middle panel
looks at the years around the 2001 recession and the bottom panel looks at the years of the Great Recession.



I Additional Results

Figure I.1: Term Structure of Expected Returns and Dividend Growth

Note. Figure I.1 plots the term structure of expected return and dividend growth.



Figure I.2: Steady State Comparisons
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Note. The left panel of Figure I.2 reports two alternative measures of the long-run riskless real rate that we
recover from the estimates in section 5. Specifically, µt|t−1 − µext|t−1 and gt|t−1 − gext|t−1. The estimates of

pdt|t−1 from the two models are reported in the panel on the right together with the (log) level of the price
dividend ratio.



Table I.1: Excess Return Model: Estimation Results

φµ 0.863 bµ 0.081
[0.007] [0.010]

φg 0.355 bg 0.053
[0.011] [0.007]

σ̄d 0.062 aσd 0.858 bσd 0.016
[0.061; 0.065] [0.023] [0.001]

σ̄g 0.097 aσg 0.765 bσg 0.012
[0.096; 0.104] [0.052] [0.003]

σ̄µ 0.019 aσµ 0.847 bσµ 0.015
[0.018; 0.024] [0.051] [0.003]

ρ̄d,µ 0.888 aπd,µ 0.980 bπd,µ 0.025
[0.660; 0.892] [0.010] [0.010]

ρ̄g,µ -0.001 aπg,µ 0.820 bπg,µ 0.025
[-0.026; -0.018] [0.047] [0.005]

σ2
ν 0.008 κh 0.020

[0.0002] [0.0001]

Log Lik. 322.232

Note. Table I.1 reports parameter estimates for the model estimated in section 5. First column: autoregressive
coefficients of expected returns and expected dividend growth (φµ and φg) and average (over the whole sample)
estimates of the volatilities (σ̄d, σ̄g and σ̄µ) and correlations (ρ̄d,µ and ρ̄g,µ) that form the matrix Qt. σ2

ν is
the volatility of the measurement error for the price dividend ratio. The second and third columns show the
estimates of the coefficients that enter the law of motion of the score driven time-varying processes (4) where A
and B are diagonal matrices, and the smoothing coefficient applied to the Hessian term (κh). For each coefficient
we report in square brackets the associated standard error. For the average volatilities and correlations in the
first column we report the 68% confidence interval from 1000 simulations of the model (calculated as in Blasques
et al., 2016).
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