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A B S T R A C T

Human Leukocyte Antigen (HLA) molecules play a vital role helping our immune system to detect the presence
of pathogens. Previous work to try and ascertain which HLA alleles offer advantages against particular pathogens
has generated inconsistent results. We have constructed an epidemiological model to understand why this may
occur. The model captures the epidemiology of a multi strain pathogen for which the host's ability to generate
immunological memory responses to particular strains depends on that host's HLA genotype. We find that an
HLA allele's ability to protect against infection, as measured in a case control study, depends on the population
frequency of that HLA allele. Furthermore, our capability to detect associations between HLA alleles and in-
fection with a multi strain pathogen may be affected by the properties of the pathogen itself (i.e R0 and length of
infectious period). Both host and pathogen genetics must be considered in order to identify true HLA associa-
tions. However, in the absence of detailed pathogen genetic information, a negative correlation between the
frequency of an HLA type and its apparent protectiveness against disease caused by multi strain pathogen is a
strong indication that the HLA type in question is well adapted to a subset of strains of that pathogen.

1. Introduction

An individual's ability to fend off invading pathogens is affected by
their genotype. Co-evolution between humans and pathogens has gen-
erated extreme diversity in certain human genes, in particular the
Human Leokocyte antigens (HLAs) (Spurgin and Richardson, 2010;
Jeffery and Bangham, 2000; Hedrick, 2002; Pierini and Lenz, 2018)
making HLA loci the most polymorphic in the human genome
(Robinson et al., 2014). Understanding which HLA genotypes are best
adapted to which infectious diseases is an ongoing challenge. Here we
investigate how epidemiological and population genetic factors com-
bine to influence whether individual HLAs appear to protect against
infection with multi-strain pathogens.

HLA molecules play an integral role in the human immune system.
They are cell surface proteins containing a binding cleft. The binding
cleft is loaded with peptides sampled from either inside (class I HLA
molecules) or outside (class II HLA molecules) the cell (Horton et al.,
2004). T cell receptors bind to the HLA/peptide complex and if the
bound peptide is recognised as “non-self” by a T cell, this will trigger an
immune response. HLA molecules encoded by different alleles have
binding clefts with different properties. The specific peptide fragments
which are displayed by HLA molecules determine an individual's T cell

responses, thus HLA genotype acts as a bottleneck, which can shape
adaptive immunity.

HLA genotype has been shown to affect the outcome of a wide range
of infectious diseases (Tian et al., 2017; Dunstan et al., 2014; McLaren
et al., 2015; Sveinbjornsson et al., 2016; Hill et al., 1991; Thursz et al.,
1995; Oliveira-Cortez et al., 2016; Carrington and O'Brien, 2003). The
first HLA/infectious disease association was demonstrated for malaria:
HLA-Bw53 was associated with a reduced chance of developing severe
malaria disease in a population in The Gambia (Hill et al., 1991). Also
in The Gambia, HLA-DRB1*1302 was associated with a reduction in the
probability of developing persistent hepatitis B (HBV) infection (Thursz
et al., 1995). Various HLA alleles have been shown to affect the time to
Acquired Immune Deficiency Syndrome (AIDS) for Human Im-
munodeficiency Virus (HIV) infected individuals (Just, 1995); and in-
dividual amino acids in the binding clefts both HLA-A and HLA-B mo-
lecules can impact HIV setpoint viral load (McLaren et al., 2015). For
some common infections including mumps, childhood ear infections
and strep throat, a recent Genome Wide Association Study (GWAS)
suggests that HLA genotype may affect the probability of experiencing
symptomatic infection at all (Tian et al., 2017).

Studies which identify HLA-infectious disease associations typically
compare a group of individuals with an infectious disease phenotype
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(cases) to a group of individuals without it (controls) and examine
differences in the frequencies of HLA types in the two groups. An over
representation of a specific HLA type in the control group could be
because it has a protective effect. However, such case control studies do
not always give consistent results. A case control study of severe ma-
laria, similar to the previously mentioned study in The Gambia (Hill
et al., 1991), was performed in Mali (Lyke et al., 2011). The Mali study
did not find HLA-Bw53 to be protective against severe malaria but they
did find that HLA-A*30:01 and HLA-A*33:01 increased susceptibility to
developing severe malaria. Lyke et al noted that this discrepancy could
be due to different strains of malaria parasite circulating in Mali as
opposed to The Gambia. If specific HLA alleles are associated with
better immune responses to just a subset of pathogen strains, then the
effectiveness of HLA alleles will depend on which pathogen strains are
circulating in a population.

The interaction between host genotype and pathogen strain in de-
termining disease outcome is highlighted by recent studies of
Tuberculosis (TB). A case control study in the Chiang Rai province of
Thailand split TB patients into groups infected with modern strains of
TB and those infected with ancient strains of TB (Toyo-Oka et al., 2017)
(the ancient/modern distinction is based on the presence/absence of a
TbD1 deletion in the TB genome). They found HLA DRB1*09:01 to be
associated with protection from infection with modern strain tubercu-
losis. They did not find this association when they grouped patients
with modern and ancient tuberculosis strains together. A similar study
was performed in Cape Town, South Africa (Salie et al., 2013), distin-
guishing TB strains by restriction fragment length polymorphism gen-
otyping. Salie et al found that HLA class I types A*01, B*08 and C21

were all associated with increased susceptibility to Beijing strain TB;
B*27 and C1 were associated with lower susceptibility to the Beijing
strain.

The possible impact of HLA type on the epidemiology of infection
has been considered in terms of the maintenance of parasite diversity
(Gupta and Hill, 1995), and more recently in terms of the effect of HLA
type on pathogen R0 in different populations (Sambaturu et al., 2018).
Specifically, Sambaturu et al addressed the impact of HLA type on the
spread of H1N1 influenza (Sambaturu et al., 2018), by first classifying
HLA types by the range of influenza epitopes they are predicted to
present, (Mukherjee and Chandra, 2014), and then making the as-
sumption that the more viral epitopes a host can represent, the lower
that host's susceptibility to H1N1 influenza. They show that when a
population has a wide range of individual susceptibility to a strain of
H1N1 influenza, it can reduce the size of an epidemic from said strain of
H1N1 influenza. This previous work highlights the potential sig-
nificance of HLA diversity for public health. However, no previous
model has considered the epidemiological processes underlying why, if
an HLA type truly does affect infection, it might not always be detected
as having such an effect in a case control study.

MacPherson et al recently analysed the effect of pathogen diversity
and host-pathogen coevolution on the ability of genome wide associa-
tion studies (GWAS) to detect which host genes matter for infection
(MacPherson et al., 2018). They elegantly demonstrated that if pa-
thogen diversity is ignored, many important host loci will go un-
detected by GWAS. In the case of HLA genes, and the further compli-
cation of adaptive immunity, the problems highlighted by MacPherson
may be compounded.

Here we explore the case of a multi-strain pathogen for which the
presence of a specific HLA molecule in the host is necessary to develop
an effective memory immune response against a specific pathogen
strain. We identify the different epidemiological outcomes which arise
as a consequence of this HLA-strain relationship, when population HLA

frequencies vary. We simulate case control studies of infection, and
demonstrate the circumstances under which an HLA type offering an
advantage against a specific pathogen strain is likely to appear pro-
tective or risky against the prevailing local infection.

Neisseria meningitides, Streptococcus pneumoniae and Plasmodium
falciparum are examples of multi-strain pathogens where humans ex-
perience multiple infections; become immune to different strains, and
where T cell responses (and hence HLA type) are implicated in the
generation of protective immunity (Wiertz et al., 1996; Davenport
et al., 2003; Aslam et al., 2010; Aslam et al., 2011; Mordmüller et al.,
2017). Our model offers insight into how HLA/strain interactions may
impact the epidemiology of such systems. Our model further suggests a
technique to detect the existence of HLA/strain specific associations in a
system, even if the key properties distinguishing different strains are
not yet known.

2. Methods

2.1. The epidemiological model

We consider a pathogen which exists as at least two strains (1 and
2). We assume that the diploid HLA genotype of a host (ij) determines
whether or not that host will be able to develop a memory immune
response against a particular pathogen strain after infection. To model
these possible immune outcomes, we use SIR and SIS models which are
commonly used ordinary differential equation (ODE) models in epide-
miology (for a full review of such approaches, see (Keeling and Rohani,
2011)). If a host's genotype includes an HLA allele which allows the
recognition of strain i, that host will become immune to strain i fol-
lowing infection (SIR dynamics). If a host does not have an HLA allele
enabling them to recognise a pathogen strain, that host will not become
immune to that pathogen strain on recovery (SIS dynamics). This is a
simplifying assumption (although very stark MHC/pathogen strain re-
lationships are observed in nature specifically in chickens, as we detail
in the discussion). Our aim here is to ask the question: if certain HLA
types make the difference between mounting successful memory im-
mune responses or not (as simulated in the model), will this ever be
detectable by our current standard methodology (the case control
study)?.

The force of infection for pathogen strain i is λi. The rate of recovery
from pathogen strain i back to being susceptible is σi. The rate an in-
fected individual becomes immune to pathogen strain i is μi. We si-
mulate a population with a constant size, so births and deaths happen at
the same rate d. Pathogen induced mortality is not included in this
model. A flow chart of the model is given in Fig. 1.

We use a double letter notation to denote susceptibility (S), in-
fectiousness (I), immunity (R), to pathogen strain 1 (first letter) and to
pathogen strain 2 (second letter). For instance host IS is infected with
pathogen strain 1 and susceptible to pathogen strain 2; a host with SR is
susceptible to pathogen strain 1 and immune to pathogen strain 2. We
denote the proportion of the population susceptible to pathogen strain 1
and immune to pathogen strain 2 with genotype ij as NijSR. The total
proportion of a genotype in the population is

= + + + + +
+ + +

N N N N N N N
N N N ,

ij ij
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(1)

where the total size of the population is

= =N N 1.
i j

ij
, (2)

We denote the proportion of hosts who are infected with pathogen
strain i as Ii and we denote the proportion of hosts immune to pathogen
strain i as Ri.

1 HLA-C in this study was classified into C1 or C2, a distinction based on the
interaction between HLA-C and Killer-cell Immunoglobulin-like Receptor (KIR)
molecules.
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The transmission rate for pathogen strain i is notated as βi, therefore
the force of infection from pathogen strain i is

= I .i i i (4)

ODEs for this model can be found in Section 1 in the Appendix.
In order to scale the degree to which a host can be infected with

both pathogen strains simultaneously we introduce the parameter c.
When c = 0 coinfection is impossible. When c = 1 infection with one
pathogen strain has no effect on the rate a host becomes infected with
the other pathogen strain. In order to scale the strength of strain
transcending (and host-genotype-independent) immunity, we introduce
the parameter α. A proportion α of all recoveries enter the RR state and
a proportion (1 − α) recover according to the host's genotype (Fig. 1).

In Sections 3.1, 3.2 and 3.3 of the results, c = 0 and α = 0. In Section
3.4 we demonstrate the impact of varying these parameters.

Our host population is divided into different possible diploid HLA
genotypes (ij) at a single HLA locus. In our main model, we include two
pathogen strains (1 and 2) and two HLA alleles (1 and 2). We assume a
1:1 correspondence between HLA alleles and pathogen strains, meaning
that the presence of HLA allele 1 is necessary to mount a memory im-
mune response against pathogen strain 1.

We also extend our main model in two ways. We allow for three
possible pathogen strains (1, 2 and 3), with 3 corresponding HLA alleles
necessary for the recognition of each (see Section 2 of Appendix). We
also include a “perfect” or a “useless” HLA allele, recognising both or
neither of pathogen strains 1 and 2, alongside strain specific HLA 1 and
2 alleles (see Section 3 of Appendix).

A key parameter of all our models is HLA allele frequency. We no-
tate this as pi for allele i. The birth rates of different host genotypes are
in accordance with the Hardy-Weinberg principle (Relethford, 2012),
implying random mating within the population. In a two allele model,
the frequency of homozygotes (11 and 22) and heterozygotes (12), are
as follows:

=
=
=

N p
N p p
N p

2 (1 )
(1 ) .

11 1
2

12 1 1

22 1
2 (5)

Fig. 2 illustrates how the frequencies of each genotype vary as p1
varies between 0 and 1.

Starting frequencies of each genotype were assigned in these pro-
portions and the frequencies of each genotype remained unchanged
over time. Hardy-Weinberg proportions were similarly used for three
allele models, in which 3 homozygotes (11, 22 and 33) and 3 hetero-
zygotes (12, 23, 13) are possible. In three allele models we set
p2 = p3 = (1 − p1)/2. This means that as p1 is varied we allocate an
equal frequency to alleles 2 and 3. This maximises HLA diversity.

All results described here are obtained by numerically solving the
ODEs described above, using solver ode45 in Matlab and calculating
quantities from these numerically solved solutions. Matlab code to run
the two pathogen and three pathogen ODE models is available
in the following repository: github.com/ConnorFrancisWhite/
HLA_Infection_Association_Model_White_et al_2020.

(a) (b)

Fig. 1. The possible states of the population and pathways
between them. (a) is a flow chart of the possible paths a host
of any genotype ij can take from initially being susceptible to
all pathogen strains. (b) is a flow chart specifically for a host
whose genotype means they can only mount a memory im-
mune response against pathogen strain 1. This flow chart is a
case when α = 0.
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Fig. 2. The frequency of genotypes according to the Hardy-Weinberg principle.
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2.2. The odds ratio

The key feature of our model is that possession of a particular HLA
type is necessary in order for a host to develop a specific memory im-
mune response against a specific pathogen strain. That HLA type will
always be “protective” against infection with the strain it matches.
However, when assessing the protectiveness/riskiness of an allele or
genotype in a case control study, it is rare that such functional strain
definitions are already known. We wish to investigate how the interplay
between a diverse host and pathogen makes particular alleles risky or
protective against infection in general (i.e. infection with any strain),
since this is the property which will most likely be captured by case
control studies in practise.

The odds ratio for being infected with any strain given a host has a
specific allele i is calculated as follows:

=OR P I i
P I i

P I i
P I i

( | )
1 ( | )

/ ( | )
1 ( | )

.i

Here, P(I| i) is the proportion of hosts with allele i that are infected
and P I i( | ) is the proportion of hosts that do not have allele i that are
infected. If ORi < 1 allele i is protective against the prevailing local
infection. This method of calculating the odds ratio uses proportions of
the population at the steady state of the ODE model.

In Section 3.3 we investigate whether the effects we are modelling
could be detected in a real world study. We assume this real world
study involves 500 cases and 500 controls, and assign different numbers
of genotypes to both groups by multiplying relevant steady state pro-
portions from our model by 500. A standard method to calculate the
odds ratio for studies involving finite sample sizes of cases and controls,
which we denote as ORi′, is as follows:

= +
+

+
+

OR n I i g
n I i g

n I i g
n I i g

( | )
( | )

/ ( | )
( | )

.i

where n(I| i) is the number of people who are infected and have allele i.
n I i( | ) is the number of people who are not infected and have allele i.
n I i( | ) is the number of people who are infected and do not have allele
i. n I i( | ) is the number of people who are not infected and do not have
allele i. When g > 0 there is no undefined calculation for the odds ratio
even if the number of individuals in one of the categories is 0. A
commonly used value for g is g = 0.5 (Woolf, 1955; Gart, 1966).
(Woolf, 1955) also provides a method for calculating the confidence
interval for the odds ratio which we use in Section 3.3. In Figs. 8 and 9
we round our sample sizes to integer values to further simulate a real
world study.

3. Results

3.1. The protectiveness of a strain-specific HLA allele against infection is
related to the population frequency of that allele

We first consider one pathogen strain in a population that contains
two HLA alleles. Only one of these alleles (allele 1) allows a host to
generate a memory immune response against the pathogen strain. In
Fig. 3a we illustrate how varying HLA frequencies affects OR1, the odds
ratio for a genotype containing allele 1 being infected with any strain.

If only pathogen strain 1 is present OR1 is always below 1 for the
entire range of p1 values (0 < p1 < 1) (Fig. 3a, dashed line). The
distribution of HLA alleles within the population does not alter the fact
that allele 1 is beneficial. This result is intuitive, since the only circu-
lating pathogen strain is one to which hosts with allele 1 can develop
memory immunity. No matter how many hosts have allele 1, possessing
allele 1 will always make hosts less likely to be infected.

As noted in the introduction, however, many pathogens exist as
multiple strains. Let us suppose that among the pathogen variants, some
express an immunogenic peptide which can be bound by one HLA type,

and others express a different form of the immunogenic peptide which
can be bound by a different HLA type at the same HLA locus. We si-
mulate a two strain, two HLA type system, where HLA allele 1 is ne-
cessary to mount a memory immune response against strain 1, and HLA
allele 2 is necessary to mount a memory immune response against strain
2. Heterozygotes for alleles 1 and 2 (genotype 12) can generate a
memory immune response against both strains. Now as p1 is increased
OR1 goes from below 1 to above 1 (Fig. 3a, solid line). The frequency of
HLA allele 1 in the population is negatively correlated with its ability to
protect a host from the prevailing local infection. The same applies to
HLA allele 2 (Fig. 3b), noting that p2 = 1 − p1. To understand why this
is happening we need to look at the level of infection from each strain,
within the population as p1 varies.

If allele 1 is more frequent than allele 2, there are more hosts who
can become immune to pathogen strain 1 than hosts who can become
immune to pathogen strain 2. Pathogen strain 2 will be more successful
in such an environment. As p1 is increased (Fig. 4), the proportion of
hosts infected with pathogen strain 1 at equilibrium decreases and the
proportion of hosts infected with pathogen strain 2 increases. The dis-
tribution of HLA alleles in the population affects the pathogen strain
structure in the population. This explains why ORi is positively corre-
lated with the frequency of allele i.

In a 3 strain, 3 allele extension of the system, OR1 follows the same
trend found with the two pathogen strain model (Fig. 3a, dotted line).
As a further extension of the model, in the Supplementary Appendix, we
add a different type of third allele to the system where HLA alleles 1
and 2 confer the ability to recognise pathogen strains 1 and 2. This third
allele is either a “perfect” allele (conferring the ability to mount an
immune response against either strain 1 or strain 2) or a “useless” allele
(conferring no ability to mount any immune response).

The presence of the useless allele alongside alleles 1 and 2 and
strains 1 and 2 does not substantially alter the pattern shown in Fig. 3a
(see Fig. S2) The presence of the perfect allele likewise does not alter
the positive correlation between p1 and OR1, although it does reduce
the set of circumstances where HLA allele 1 is protective against the
prevailing local infection.

We finally tested a system including two pathogen strains, in which
HLA allele 1 recognises strain 1, and only the perfect or useless allele is
present alongside HLA allele 1. For both of these cases, OR1 did not
cross the value 1 for the entire range of p1 (Fig. S3). It would seem a
system requires at least two pathogen strains and the presence of at
least two HLA alleles that differ in their strain specificity in order for
OR1 to go from below 1 to above 1 as p1 is increased.

3.2. The more rapid the immune response associated with a particular HLA
allele against a particular pathogen strain, the less likely that HLA allele is to
appear protective

In the results just presented, genotypes containing allele 1 become
immune to strain 1 at exactly the same rate that genotypes containing
allele 2 become immune to strain 2. However, it is possible that HLA
molecules encoded by different HLA alleles differ in their fundamental
ability to activate T cells and allow hosts to clear infection. One way to
investigate this possibility within our framework is to allow each allele
to be associated with a different recovery rate. We retain the strain
specificity of the alleles in our main two strain, two allele model, but
hosts with allele 1 recover more quickly than hosts with allele 2 after
infection with their matched strain.

As shown in Fig. 5, increasing μ1 relative to μ2 (enhancing the re-
covery rate associated with allele 1), changes the behaviour of ORi
(compare dashed lines to solid lines). Lower allele frequencies are still
associated with greater protection against infection in general, but OR1
crosses the value 1 for a much smaller value of p1. The faster recovery
rate of allele 1 has caused allele 1 to be protective over a smaller region
of p1, and allele 2 to be protective over a greater range of values of p1.
This counter intuitive result is explained when we look at the level of
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infection of each pathogen strain at equilibrium (Fig. 6).
When μ1 > > μ2, pathogen 1 can only invade the system at low

levels of p1. The shorter duration of infection with pathogen strain 1
associated with allele 1 makes it harder for pathogen strain 1 to thrive.
This in turn causes pathogen strain 2 to be the only circulating pa-
thogen strain for the majority of p1 values. In this environment only
allele 2 will provide any protection.

These results demonstrate that, in a multi-strain pathogen system,
the protective effect of an HLA allele may arise from being associated
with a relatively slow recovery rate. Counter intuitively, this “poor”
HLA allele could end up being protective in a population due to it
helping one pathogen strain to out compete another.

3.3. Genotype/infection associations for HLAs which protect against specific
pathogen strains are only detectable under limited circumstances

To investigate how strain specificity of HLA/pathogen recognition
may impact our ability to detect HLA-infectious disease associations in
real world case control studies, we calculated 95% confidence intervals
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for OR1′, on the assumption of 500 infected cases and 500 disease-free
controls (see Methods for further details).

We considered three different systems containing only HLA alleles
recognising single pathogen strains. In a two HLA allele system where
just pathogen strain 1 is present, for most of the range of p1OR1′ has a
confidence interval small enough that a case control study would be
able to conclude that HLA type has an effect on infection (Fig. 7a). In a
two allele system where both strains 1 and 2 are present a case control
study would only identify that an HLA type protects against the pre-
vailing local infection for a smaller range of p1 (Fig. 7b). For the three
strain, three allele system, with these parameter values, there is an even
smaller range of values of p1 where a case control study of 500 cases
and 500 controls could declare if OR1′ is below 1. This effect arises
because the value of p1 at which the odds ratio moves from below 1 to
above 1 (henceforth pcrit), shifts to lower values of p1 as the complexity
of the system increases from two to three strains (examined further in
Section 4.2 of the Appendix).

Fig. S4 in Section 4.1 of the supplementary material illustrates the
behaviour of the system if only 100 cases and 100 controls are used.
Now, despite there still being a relationship between HLA frequency
and protectiveness (i.e. OR1 still correlates with p1), there is no fre-
quency of p1 at which the 95% confidence interval for OR1 does not
encompass 1. However, if we change the properties of the pathogen by
increasing R0, we do find values of p1 at which the 95% confidence
interval for OR1 does not include 1, even in the smaller case control
study (Fig. S5).

To further explore how pathogen properties affect the ability of case
control studies to detect protective or risky HLAs, we define Ω as the
difference between the maximum and minimum values of p1 at which
the odds ratio for HLA type 1 is significantly below (ΩB) or above (ΩA) 1
(which we take to be when the 95% confidence interval does not en-
compass 1). Ω therefore represents the ease with which a HLA protec-
tive (ΩB) or risky (ΩA) association against local prevailing infection
might be detected in our system. If Ω is large, then the detection of the
association is less dependent on a specific frequency of p1. Figs. 8 and 9
illustrates how ΩB and ΩA vary for different recovery rates and different
values of the basic reproductive number (R0) of the pathogen in the 2
strain/2 allele and 3 strain/3 allele scenarios. For these simulations
μi = σi = σ thus σ refers to all recovery rates in the system.

Figs. 8 and 9 shows that ΩB and ΩA are both 0 when the recovery
rate (σ) is low (black region). Detecting any HLA-infection association is
difficult if the infectious period is too long. This is unsurprising, because
the key to protection against infection in our system is the ability, or
not, of a host to mount a memory immune response. A pathogen which
has a recovery rate similar to the mortality rate of the host cannot
generate a strong HLA-dependent signal within such a system.

Fig. 8 relates to the two strain, two allele system. ΩB is a measure of
our ability to detect whether HLA type 1 is protective against the pre-
vailing local infection. Detecting a protective effect of HLA type 1 in a
two strain-two allele system requires that homozygotes without HLA
type 1 (e.g. genotype 22) bear the brunt of infections. This can only
occur if pathogen strain 1 (to which genotype 22 is especially vulner-
able) is circulating in the population. The ability to detect protective
associations over a wide range of p1 (a high value of ΩB in Fig. 8a)
implies that pathogen 1 is able to circulate at a reasonably high fre-
quency in the population even as the proportion of allele 1 becomes
relatively high. This requires there to remain a good balance between
strain 2,which benefits from the increased frequency of genotype 11,
and strain 1. The balance between the strains is affected by both R0 and
σ (explored in Section 4.2 of the Appendix). In most cases, increasing R0
increases the coexistence of the strains, which is reflected in the broad
relationship between R0 and ΩB seen in Fig. 8a.

Detecting that HLA type 1 is risky (i.e. increases susceptibility to the
prevailing local infection) in the two strain-two allele system (ΩA) re-
quires genotype 11 to bear the brunt of infections. This requires the
presence of a high level of pathogen strain 2 among circulating strains.
A high value of ΩA implies that pathogen 2 is able to dominate the
population even at relatively low frequencies of allele 1. This effect,
likewise, depends on the relative values of R0 and σ (see Section 4.2 of
Appendix). Broadly, the faster the recovery rate, the easier it is for one
pathogen strain to out-compete the other. ΩA, therefore, tends to in-
crease with increasing σ, as seen in Fig. 8b.

When we move from a two strain, two allele system to a three strain,
three allele system (Fig. 9), ΩB becomes smaller and ΩA becomes larger.
In other words, it has become easier to detect risky associations and
harder to detect protective associations. It also appears that so long as σ
and R0 are both above a certain threshold, they have little effect on ΩA

or ΩB. When we calculate an odds ratio for the effect of HLA-1 on in-
fection in a three allele-three strain system, we are comparing the
distribution of “HLA-1 containing genotypes” (11, 12, 13) and “non
HLA-1 containing genotypes” (22, 33, 23) among cases and controls.
Unlike in the two strain, two allele system, both sets of genotypes now
include heterozygotes as well as homozygotes, and both sets of geno-
types include a genotype particularly vulnerable to one of the strains
(genotype 11 and genotype 33 are both equally vulnerable to strain 2).
These factors increase the similarity of the two sets of genotypes being
compared by the odds ratio, and mean that a lower value of p1 is ne-
cessary for HLA-1 to be detected as protective against the prevailing
local infection. In Section 4.2 of the Appendix we derive an expression
for pcrit, the frequency at which an HLA type switches from being pro-
tective to being risky, and show that pcrit is more limited in the three
strain, three allele model than in the two strain, two allele model,

Fig. 7. OR1′ and its relationship with the frequency of HLA allele 1. The highlighted regions are the 95% confidence intervals for ORi′. (a) illustrates a system with
one pathogen strain and two HLA alleles in the population. (b) illustrates a system with two pathogen strains and two strain specific HLA alleles within the
population. (c) illustrates a system with three pathogen strains and three strain specific HLA alleles within a population. The confidence intervals were calculated
with a sample size of 500 cases and 500 controls (see Methods for further details). The parameter values are: d= 0.01, βi= 0.06, μi= 0.02 and σi= 0.02 (i= 1,2,3).
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accounting for the plateauing of Ω in Fig. 9.

3.4. Model behaviour is insensitive to co-infection, but breaks down at high
levels of strain transcending immunity

As noted in Section 2.2, parameter c controls the effect to which a
host can be infected simultaneously with two pathogen strains and α
controls the proportion of hosts infected with a pathogen who recover
to being immune to both pathogen strains (henceforth strain trans-
cending immunity). So far, we have displayed results where c = 0 and α
= 0.

Our key result is that the protectiveness of a strain-specific HLA
allele against the prevailing local infection caused by a multi-strain
pathogen is correlated with its population frequency. We define the

breakdown of this trend as the case where neither OR1 nor OR2 switch
from above/below to below/above 1 over the range of p1. Fig. 10 il-
lustrates when this breakdown occurs in the main two strain, two allele
model as c and α are varied. We also explore the impact of introducing a
discrepancy in fitness between the pathogen strains in the model,
achieved by varying the transmission parameter, β.

When there is only a small difference between β1 and β2 (Fig. 10a),
the relationship between HLA allele frequency and protectiveness
against infection exists at all levels of co-infection, and in the presence
of some strain transcending immunity, but not when strain trans-
cending immunity is complete (α = 1). As the fitness difference be-
tween the strains is increased, the relationship between HLA allele
frequency and the protectiveness of that allele against the prevailing
local infection breaks down at lower levels of strain transcending
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Fig. 8. A measure of how well protective (ΩB) or risky (ΩA) associations can be detected in simulated case control studies in the two strain, two allele system. Panel
(a) shows ΩB, panel (b) shows ΩA. R0 is increased from 2 to 10 along the y axis of each heat map, σ is increased logarithmically from 10−3 to 102 along the x axis of
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immunity, but this effect can be countered by allowing more co-infec-
tion to occur (Fig. 10b and c). Overall, the relationship we have iden-
tified requires that both strains of pathogen are able to co-circulate in
the population, over at least some values of p1. Both strains need to be
present in order to drive the relationship between HLA frequency and
protectiveness against local prevailing infection. Any process that pro-
motes co-circulation (e.g. co-infection) makes such a relationship more
likely, and any process which acts against co-circulation (e.g. fitness
differences between strains; strain transcending immunity) makes such
a relationship less likely.

4. Discussion

Population level differences in the protectiveness of HLAs against
infection with multi-strain pathogens may be a result of HLAs being
strain specific in their effects. Here we simulated such HLA-strain in-
teractions in a epidemiological model. We showed that the adaptation
of a multi strain pathogen to the HLAs of a host population will gen-
erate a negative association between the population frequency of an
HLA allele which is beneficial against a specific pathogen strain and the
protectiveness of that HLA type against the prevailing local infection.
We also showed that if certain HLA types cause hosts to recover from
infection with particular pathogen strains more quickly than other
HLAs, those HLAs are less likely to protect against infection in general,
since the strains against which those HLA types are particularly effec-
tive may be outcompeted by other pathogen strains in the population.

All of our simulations included HLA alleles/types which were
“protective” in the sense that they conferred the ability to mount an
immune response against a specific strain. However, despite these ex-
treme HLA-strain associations, we found that under a great many cir-
cumstances no association would be detected between HLA type and
infection in general in a typical case control study (Fig. 7 and Fig. S4).
This is because the frequencies of the prevailing pathogen strains adapt
to the HLAs present in the population. Previous efforts to use case
control studies to identify HLA-infection associations for multi strain
pathogens may have been hindered by such effects.

We presented results for two HLA allele and three HLA allele sys-
tems. Two and three alleles are far fewer than the diversity of HLA
alleles present in human populations (e.g. there are 100 HLA-B alleles
observed in the German population (Gonzalez-Galarza et al., 2010)).
However, classical definitions of HLA alleles, based on the amino acid
sequence of the HLA molecule, do not necessarily reflect functionally
relevant properties. Class I HLA alleles are grouped into 10 HLA su-
pertypes based on their binding capabilities (Sidney et al., 2008). As-
sociations between HLA supertypes and susceptibility to and severity of
tuberculosis have been found (Balamurugan et al., 2004). Other HLA

supertype associations have been found for HIV (Trachtenberg et al.,
2003; MacDonald et al., 2000). Functional grouping of HLA alleles has
also been performed for specific pathogens such as the H1N1 influenza.
Mukherjee et al classified the HLA diversity of human populations into
“response types” which are HLA class I genotypes that share similar
epitope binding pools to the H1N1 virus (Mukherjee and Chandra,
2014). If we were to classify HLA alleles by whether or not they were
able to bind a specific peptide sequence from an immmunodominant
epitope in a particular pathogen, then there would only be two types of
HLA: those that bind the peptide of interest and those that do not. Our
two allele and three allele systems (or more properly “two binding
type” and “three binding type” systems) can therefore deliver insights
into how HLA-strain systems operate, even if our simulated alleles are
not directly equivalent to known HLA alleles.

We focused on the impact of strain-specific HLA types which we
assumed to be mutually exclusive in their ability to protect against
different pathogen strains (i.e. where the ability to display an im-
munogenic peptide from strain 1 precludes the ability to display an
immunogenic peptide from strain 2). This has a precedent, albeit in a
non-human system. Experiments in chickens have shown that single
MHC types can be associated with completely opposite responses to
different pathogen strains (McBride et al., 1981). GB1 line chickens are
susceptible to rous sarcoma virus (RSV) subgroup C PR-RSV strain, but
resistant to rsv subgroup C B77 strain. GB2 line chickens (of a different
MHC type (Briles et al., 1982)) display exactly the opposite pattern
(resistant to PR-RSV but susceptible to B77).

MHC/HLA molecules exhibit a range of binding properties. Some
are specialist (binding only a narrow range of types of peptides), others
are more generalist (able to bind a wider range of peptides). It is pos-
sible that the maintenance of both generalist and specialist MHC/HLAs
in populations may be because each are best adapted to respond to
different types of pathogen (Chappell et al., 2015). Chappell et al
(Chappell et al., 2015) highlight Marek's disease in chickens as an ex-
ample of an infectious disease where generalist MHCs have been shown
to provide the best responses, and HIV in humans as an example where
specialist HLAs are associated with the most effective immune re-
sponses. Kaufman et al (Kaufman, 2018) gives review of generalist and
specalist MHC class I molecules. It might seem that, since generalists
can present a wide range of peptides, specialist MHCs/HLAs are re-
dundant and should not be maintained in populations. The continued
existence of specialist MHCs/HLAs can be understood if we suppose
that sometimes the best immune responses are associated with
mounting an immune response against a very particular pathogen
peptide. Even if a generalist MHC/HLA can present that peptide, it will
not necessarily present it as reliably and consistently as a specialist
MHC/HLA with narrower binding properties. As we described
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previously, our model applies to systems where it is beneficial for a host
HLA to present a particular immunodominant peptide, but where not
all HLAs are capable of doing this. This therefore implies the HLA types
in our model are relatively narrow in their binding (although we do not
mean this to imply they are specialised only to the hypothetical pa-
thogen at hand). As illustrated in Fig. S2, the inclusion of an HLA type
capable of presenting peptides from any of the strains in the system (the
“perfect allele”, which could also be called a generalist) does not
change our overall conclusions provided there are still at least 2 types of
more specialist HLA in the system.

Figs. 8 and 9 shows that it is plausible for a real world case control
study to detect a significant effect of a strain specific HLA type on in-
fection, driven by the processes modelled here. The only necessary
conditions are that the recovery rate of the pathogen is faster than the
background mortality rate of the host and the frequency of the HLA
type is within a certain range. However, defining “HLA type” is pro-
blematic, since the functionally relevant “HLA type” for a particular
pathogen might in fact be a set of HLAs encoded by a range of different
alleles, which share the property of being able to bind a critically im-
portant (and unknown to us) pathogen peptide. Nevertheless, our
model suggests a method to identify such systems. If the odds ratio for
being infected with a disease caused by a multi-strain pathogen changes
for the same HLA type or supertype in different populations, and if
there is a positive relationship between that odds ratio and the fre-
quency of that HLA type or supertype, this would be highly suggestive
that there are HLA -pathogen strain associations to be found.

In the introduction we noted three pathogens where our model is
likely to be particularly relevant: Neisseria meningitides, Streptococcus
pneumoniae and Plasmodium falciparum malaria. Existing work at-
tempting to link the risk of disease caused by these pathogens to host
genetics focuses on severe disease outcomes (invasive meningococcal or
pneumococcal disease or severe malaria), rather than infection (or
“carriage”) per se. Our model does not attempt to simulate the devel-
opment of severe infection. However, if severe disease is associated
with particular strains, and immunity to strains outside of this subset
does not prevent severe disease, our model can be interpreted in terms
of how HLAs impact the accumulation of immunity to just those strains
that are capable of causing severe disease. For Streptococcus pneumoniae
and Neisseria meningitides it is widely accepted that only a subset of
strains cause severe disease (Enright and Spratt, 1998; Peltola, 1983).
The situation for P. falciparum is complicated by the antigenic variation
P. falciparum exhibits during infection, but the presence of particular
group A var. genes in the genomes of parasites may determine their
potential to cause severe disease (Bull et al., 2008). We propose that a
correlation between population frequency of an HLA type and the odds
ratio for severe disease associated with the presence of that HLA type
would be suggestive of an HLA-strain relationship in any of these sys-
tems.

Our model fixed HLA frequencies within each simulation. Over the
longer term, HLA frequencies themselves must be evolving under se-
lection from pathogens (Jeffery and Bangham, 2000; Prugnolle et al.,
2005; Hertz et al., 2011). Extending our model into a co-evolutionary
framework (similar to those explored by Penman (Penman et al., 2013)
and MacPherson (MacPherson et al., 2018)) would deliver further in-
sights, especially into long term HLA supertype dynamics. We could
also increase the complexity of the model further to include for more
alleles or multiple linked HLA allele loci, which previous modelling
work has shown to enable a range of co- evolutionary outcomes
(Penman et al., 2013).

We have explored one way in which epidemiology may affect our
ability to detect the importance of HLA type in infectious disease.
However, other processes can also cause case control studies to gen-
erate conflicting results, including within-host adaptation of chronic
viral diseases and epistasis between HLAs and other loci. Within-host
adaptation of HIV to escape HLA restricted immune responses has
spilled over into population level adaptation that renders previously

protective HLA alleles non protective (Kawashima et al., 2009; Payne
et al., 2014). HLAs are also known to interact epistatically with Killer-
cell immunoglobulin-like receptors (KIRs) (Khakoo et al., 2004; Martin
et al., 2002), and failing to account for KIRs genotype could also lead to
HLA-infectious disease associations being overlooked.

Multi-strain pathogens include infections of vast public health sig-
nificance such as malaria, TB, influenza, and streptococcal and me-
ningococcal bacterial disease. A deeper understanding of the im-
munogenetics of such infections could pave the way to develop more
personalised vaccines or other control measures. However, finding as-
sociations between HLA alleles and these infectious diseases has been
an ongoing challenge. The model we present here explores the con-
sequences of one potential mechanism of HLA-pathogen interaction and
suggests a method to detect the signature of HLA-strain relationships in
combined analyses of case control studies in different populations.
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