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Abstract

The flexural-torsional buckling response and design of stainless steel I-section beam-
columns are investigated in this paper. First, a series of laboratory tests on laser-welded
stainless steel I-section beam-columns susceptible to flexural-torsional buckling is presented.
The results obtained are supplemented by further data generated by means of numerical
parametric studies on both conventionally arc-welded and laser-welded stainless steel mem-
bers covering a wide range of member slenderness and combinations of loading. Existing
provisions for the design of welded stainless steel I-section elements against flexural-torsional
buckling are then assessed and found to require improvement. Finally, new formulae for the
design of stainless steel I-section beam-columns susceptible to flexural-torsional buckling are
proposed. The new proposals yield improved accuracy and consistency over existing provi-
sions and their suitability for inclusion in the upcoming version of the European structural
stainless steel design code EN 1993-1-4 is confirmed by reliability analysis in accordance
with EN 1990.

Keywords: Beam-column tests, Buckling, Experiments, Flexural-torsional buckling,
Numerical modelling, Stainless steel, Testing

1. Introduction

Stainless steel is being increasingly utilised in the construction industry owing to its
excellent durability even in the harshest environmental conditions, sound mechanical prop-
erties and aesthetic appearance [1]. Thus far, cold-formed stainless steel elements have been
the primary product types used in construction, and have benefited from the most extensive
research and the widest coverage in structural stainless steel design standards [2-4]. How-
ever, the demands to achieve higher structural resistances for stainless steel members have
brought about the need for the use of larger sections fabricated through the welding of in-
dividual hot-rolled stainless steel plates. New manufacturing techniques for such members,
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such as high-precision laser-welding have also recently emerged. These developments have
created the need for developing a better understanding of the structural response of both
conventionally arc-welded and laser-welded stainless steel members, and this is the aim of
the present paper.

To investigate the structural behaviour of welded I-section stainless steel elements, a re-
search programme involving physical laboratory experiments, advanced numerical modelling
and development of design guidance was initiated by Gardner et al. [5], involving resid-
ual stress measurements, tensile coupon, stub column and column flexural buckling tests
[5], bending tests on laterally restrained beams [6] and tests on laterally-restrained beam-
columns [7]. This research resulted in the development of a new residual stress pattern [5],
column buckling curves [8] and beam-column design rules [7] for laser-welded stainless steel
elements. For the case of conventionally arc-welded stainless steel I-section beam-columns,
a series of physical experiments has been carried out by Yang et al. [9], which was comple-
mented by numerical studies and the development of design guidance. Zheng et al. [10] and
Burgan et al. [11] also reported a series of experiments on stainless steel welded I-section
members. However, to date, there have been no studies into the flexural-torsional buckling
response of welded stainless steel elements and there is thus currently an absence of verified
structural design guidance for this mode of failure.

Extending the work carried out on the behaviour of laser-welded stainless steel I-section
elements [5-8], a research study comprising (i) physical laboratory testing, (ii) advanced non-
linear finite element modelling and (iii) the development of design guidance for austenitic
stainless steel welded I-section beam-columns susceptible to flexural-torsional buckling is
presented in this paper. First, physical laboratory tests are reported on five laser-welded
stainless steel I-section beam-columns. Following the physical experimental programme,
shell finite element models able to replicate the response of welded I-section stainless steel
elements are created and validated against the experiments conducted in this study. Using
the validated finite element models, a wide range of parametric studies are performed con-
sidering various cross-section proportions, loading conditions and member slenderness. The
behaviour of both conventionally arc-welded and laser-welded stainless steel beam-columns
is considered. The accuracy of existing design methods for stainless steel I-section beam-
columns susceptible to flexural-torsional buckling — those set out in the European structural
stainless steel code EN 1993-1-4 [2] and the North American AISC Design Guide 27 [12] —
as well as those proposed by Greiner and Kettler [13] is investigated and shortcomings are
highlighted. Utilising the results from the physical laboratory tests and the comprehensive
parametric studies, a new design method for conventionally arc-welded and laser-welded
stainless steel beam-columns is proposed, whose accuracy, reliability and safety are thor-
oughly verified.

2. Experimental investigation

2.1. Introduction

To investigate the structural response of laser-welded stainless steel I-section beam-
columns susceptible to flexural-torsional buckling, a physical experimental programme was
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performed in the Structures Laboratory of Imperial College London. The testing programme
comprised five grade 1.4301 austenitic stainless steel laser-welded beam-column specimens
with an I-50 x50 x4 x4 cross-section; the measurements of the geometrical and material prop-
erties, initial geometric imperfections and residual stresses are presented. Falling into the
Class 1 category according to EN 1993-1-4 [2], the considered I-50x50x4x4 cross-section,
which adopts the following designation system: I - section height (k) x flange width (by)
x web thickness (t,,) x flange thickness (¢;), was fabricated through the laser-welding of
individual hot-rolled grade 1.4301 austenitic stainless steel plates. A detailed description of
the experimental setup and procedure, and the key findings of the experimental programme
are presented in this section.

2.2. Material properties

Both tensile and compressive material properties of the specimens were measured. As
reported in [5], the tensile material properties were obtained through tensile coupon tests
carried out in line with the provisions of EN ISO 6892 [14], whereas the compressive material
properties were determined by means of stub column tests, as detailed in [6]. The tensile
and compressive material properties of the specimens are set out in Table 1, where F is
the Young’s modulus, f, and fio are the 0.2% and 1% proof strengths respectively, f, is
the ultimate tensile strength, €, is the strain at the ultimate tensile strength, and € is
the fracture strain measured over the standard gauge length [14]. Gardner et al. [5] and
Bu and Gardner [6] fitted two-stage compound Ramberg-Osgood material models [15-17]
to the measured tensile and compressive stress-strain curves respectively; the fitted strain
hardening exponents n, m; o and m, [1] for both tension and compression are displayed in
Table 1. It should be noted that in the case of the compressive material properties, local
buckling of the stub columns prevented the attainment of f,, €, and €;. Thus, the Ramberg-
Osgood exponents n and m; o were fitted to the available stress-strain data up to the point
where local buckling occurred; beyond this point the stress-strain curve was extrapolated in
parallel with the corresponding tensile stress-strain curve up to the ultimate tensile stress
[6].

2.8. Residual stresses

In accordance with the procedure recommended by the Structural Stability Research
Council [18], the residual stresses existing in the laser-welded sections were measured by
means of the sectioning method [19] as described in detail in [5]. On the basis of the
measurements made in [5], as well as those made on laser-welded stainless steel T-sections
reported in [20], a generic residual stress pattern for laser-welded stainless steel I-sections
was put forward in [5]. The recommended residual stress pattern [5] is of the same general
form as that proposed for arc-welded stainless steel I-sections in [21]. This generic pattern is
illustrated in Fig. 1; the values of the parameters used in the generic residual stress pattern
for laser-welded I-sections [5] and conventionally arc-welded I-sections [21] are provided in
Table 2. As can be seen from the table, the laser-welded sections have lower residual stresses
than those fabricated through conventional arc-welding owing to the lower heat input and
higher-precision of the fabrication procedure. The residual stress pattern displayed in Fig.
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1 is used in conjunction with the corresponding parameters for laser-welded and arc-welded
stainless steel sections given in Table 2 in the finite element modelling presented in Section

3.

2.4. Flexural-torsional buckling tests on laser-welded I-section beam-columns

To examine the flexural-torsional buckling response and load carrying capacities of stain-
less steel structural elements, five laterally-unrestrained laser-welded grade 1.4301 austenitic
stainless steel I-section beam-columns subjected to axial compression plus major axis bend-
ing were tested in this study. One cross-section size, 1-50x50x4 x4, was considered in the
experimental programme and all the specimens had a nominal length of 1014 mm. Note
that since stainless steel I-sections are not typically available as hot-rolled products, welded
cross-sections are generally employed in their place. The tested profile is at the lighter
end of available section sizes and, although size effects have not been explicitly examined
herein, the proportions of this section are also representative of larger section sizes; a wider
range of proportions are considered in the numerical parametric study presented in Section
3.5. The axial loads were eccentrically applied to the specimens with eccentricity values
ranging between 5 mm and 150 mm, thereby enabling the simultaneous application of the
axial compression and major axis bending moments to the specimens with different bending
moment-to-axial compressive load ratios.

Prior to the testing of the specimens, their geometric properties were measured, which
are set out in Table 3, where i and b; are the overall depth and width of the cross-section,
tw and t; are the web and flange thickness respectively and L is the length of the specimen.
Note that the specimen IDs were specified such that their numbers correspond to those of the
specimens tested by [7] with the same eccentricity values. In accordance with the procedure
adopted by [22], the global geometric imperfections of the specimens were measured prior to
the member tests by (i) placing each specimen on a milling machine and (ii) using a Linear
Variable Displacement Transducer (LVDT) attached to the head of the milling machine to
measure the deviations along the longitudinal axis of the specimen, which was secured to
the moving machine bed. The global geometrical imperfections of the specimens about the
major axis, measured at their mid-heights, w, are provided in Table 3. Measurements of
initial local imperfections w; were not made for each test specimen, but the maximum local
imperfection magnitude, as obtained from measurements made on stub columns of the same
section size and cut from the same delivered batch, was 0.23 mm (i.e. w; = 0.23 mm)[5].

The experiments were carried out by means of an Instron Servo-hydraulic Testing Ma-
chine with a capacity of 2000 kN. Displacement control was used to drive the testing machine
at a constant rate of 0.4 mm/min. As illustrated in Fig. 2, knife edges and wedge plates
were utilised to establish pin-ended support conditions about the major axis at the top and
bottom ends. A pair of clamp plates were used at the ends to suppress the rotations about
the minor axis and twists, leading to pin-ended support conditions about the major axis and
fixed-ended support conditions about the minor axis for the specimens. End-plates with a
thickness of 12 mm were also welded to the specimens, which prevented any possible warping
deformations at the ends. The height of each pair of knife edges and wedge plates was 75
mm.



Based on the end-support conditions, the height of the each pair of knife edges and
wedge plates and the measured geometrical properties of the specimens, the in-plane (i.e.
in the plane of bending) and out-of-plane buckling lengths (i.e. L., and L. .) and the
non-dimensional slenderness of the specimens for the flexural buckling about the major Xy
and minor )\, axes and for lateral-torsional buckling Ao are provided in Table 4. Due to
the presence of the clamp plates restraining the end-rotations about the minor axis, the
minor axis buckling lengths L., , are equal to the half of the actual member lengths (i.e.
L., = L/2), while the major axis buckling lengths are equal to the member lengths plus the
total length of the wedge plates and knife edges at both ends (i.e. L., = L4150 mm). Note
that the non-dimensional slendernesses (i.e. Xy, ), and XLT) given in Table 4 were determined
using the compressive material properties of the specimens provided in Table 1. The non-
dimensional slenderness for the major axis and minor axis flexural buckling were calculated
by taking the square root of the ratios between the axial cross-section resistances Af, and
the corresponding elastic flexural buckling loads N, and N, . (i.e. Xy = /Af,/Ner, and
2 =./A fy/Ner,2), whereas the non-dimensional LTB slenderness was determined by taking
the square root of the ratios between major axis plastic bending moment resistances Wy, f,,
and the elastic critical buckling moments M., (i.e. App = Wiy fy/Mer)-

In the experiments, the desired initial load eccentricities were achieved by positioning the
specimens in the test rig such that the distances between the centrelines of the specimens
and the knife edges were equal to the target eccentricity values. The same initial loading
eccentricities were applied at both ends of the members, thus inducing a constant first-order
major axis bending moment in addition to axial compression.

To record the mid-height out-of-plane deflections and twists as a result of flexural-
torsional buckling in addition to the mid-height in-plane deformations, a series of string
potentiometers were employed. The configuration of the string potentiometers is shown in
Fig. 3. The combined measurements from the string potentiometers were used to determine
the mid-height deflections and twists of the specimens through simple geometrical relation-
ships. To measure the end rotations, two inclinometers were placed at the ends of the
specimens, while the end-shortening was recorded by means of a linear variable differential
transducer (LVDT) within the testing machine. As shown in Fig. 3, two strain gauges were
affixed to the middle of the flanges at the mid-height of the specimens, thereby recording the
maximum compressive and maximum tensile (or the minimum compressive, depending on
the magnitude of the eccentricity) longitudinal strains resulting from the major axis bending
moment and axial compression. Following the procedure described in [7], the strain gauges
were also utilised to measure the initial loading eccentricities using the following expression:

E[y (ﬁma:r: - 6min)
Em =
Ngqh

where I, is the second moment of area about the major axis, €,,4; and €,,;,, are the maximum
and minimum compressive strains recorded by the strain gauges, Ngq is the applied axial
load, w, is the measured global imperfection of the specimen at mid-height and u is the
in-plane mid-height deformation of the specimen. The measured values of the initial eccen-
tricities e,, are compared against the nominal target values e, in Table 3, showing that the
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measured eccentricities e, are very close to the nominal target values e,,. During testing, all
data were recorded at one-second intervals by means of the DATASCAN data acquisition
system.

A summary of the experimental findings is presented in Table 5, where Ny ;s and
M, it test are the ultimate axial compression and first-order major axis bending moment at
the member ends, respectively, obtained from the experiments and w5 1S the in-plane
deflection at the ultimate loads. Note that the ultimate first-order bending moment values
M, it test Were determined by multiplying the ultimate axial compression values Ny st by
the measured initial eccentricities ey, i.e. My it test = Nuittestem- As can be seen from Table
5, the greater the level of the eccentricity, the lower the axial ultimate load carrying capacity
Nuyit test of the specimen. The failure modes of the specimens are displayed in Fig. 4. The
applied axial load Ngg versus mid-height deformation paths of the specimens are provided
in Fig. 5 with respect to the in-plane deflection u, out-of-plane deflection v and twist 6 at
mid-height. The presented tests results are utilised in Section 3 for the validation of the
numerical models and in Sections 4 and 5 for the assessment of existing and new design
provisions, respectively.

3. Numerical modelling

3.1. Introduction

In this section, finite element models are created and validated against the experimental
results obtained in the previous section. The validated finite element models are employed
in the following sections to carry out extensive parametric studies into the flexural-torsional
buckling response of laser-welded and conventionally arc-welded austenitic stainless steel
beam columns, providing comprehensive structural performance data that is used to develop
a new design method for the flexural-torsional buckling assessment of welded stainless steel
members in Section 5.

3.2. Modelling assumptions

The finite element models were created using the finite element analysis software Abaqus
[23]. Denoted as S4R in the Abaqus element library [23], the four-noded general purpose,
reduced integration shell element, which allows for transverse shear deformations and finite
membrane strains, was used to create all the finite element models. The finite element
models were meshed by taking the element size equal to the cross-section thickness. To
avoid overlapping of the flange and web plates, the flange plates were offset by half the
flange thickness in accordance with the approach adopted by [24-26]. The default Simpson
integration method with five integration points through the thickness of the elements was
used. The Poisson’s ratio was taken as 0.3 in the elastic range and 0.5 in the plastic range by
defining the effective Poisson’s ratio as 0.5, thereby allowing for the change of cross-sectional
area under loading. The two-stage compound Ramberg-Osgood material model put forward
by Gardner and Ashraf [16] was utilised to define the material stress-strain curves, using the
experimentally measured engineering stress-strain properties and the corresponding fitted
Ramberg-Osgood parameters (i.e. n and ngo_1) provided in Table 1. Since the constitutive
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formulations of Abaqus [23] adopt the Cauchy (true) stress-strain assumption for the adopted
element type, the measured engineering stress-strain response (0,om —€2. ) was transformed
into the true stress-log plastic strain (o4, — €/,.) and input into Abaqus [23], where the
true stress values were determined as oyye = Opom (1 + €nom), While the log plastic strain
values were calculated as eﬁll = In(1+ €nom) — Orue/ E. Tt should be noted that for the case of
compression, the true stress-log plastic strain values (i.e. Utme,comp—eﬁ’comp) were determined
using the negative values of the engineering stresses o,,,, and strains €,,,,, and the absolute
values of Gyrue.comp — €in.comp Were input into Abaqus [23]. In the validation of the finite
element models, the measured compressive and tensile material properties were assigned
to the elements subjected to the compressive and tensile stresses respectively, which were
determined on the basis of the applied first-order bending moment and axial compression
values at the member ends. Note that this approximate allowance for anisotropy does not
take into account changes to the direction of loading (i.e. compression to tension and vice
versa) arising due to the development of second-order bending moments, though the effect
of this shortcoming is small because the degree of anisotropy is relatively mild.

The boundary conditions of the finite element models were defined in accordance with
those adopted in the experiments during the validation study. The degrees-of-freedom of
all the nodes constituting each end section were constrained to an eccentric reference point
by means of coupling constraints. The coordinates of the reference point were defined
considering the corresponding desired eccentricity values e,,; in the validation of the finite
element models, the e,, values provided in Table 3 were used. To represent the distance
between the end of the specimen and the tip of the knife-edge, the reference points were
offset longitudinally from each end by 75 mm. The boundary conditions were defined at
the reference points such that the pin-ended in-plane and fix-ended out-of-plane support
conditions were simulated in accordance with the experiments. The axial compression was
applied at the eccentric reference points, thereby subjecting the finite element models to
axial compression plus uniform first-order major axis bending.

3.3. Geometric imperfections and residual stresses

Utilising the lowest global and local buckling modes obtained from priorly performed
Linear Eigenvalue Analyses (LEA) to define the imperfection shapes, both global and local
geometric imperfections were included in the Geometrically and Materially Nonlinear Anal-
yses with Imperfections (GMNIA) of the finite element models. In the validation of the finite
element models, the corresponding measured in-plane global geometric imperfections w, at
the mid-height of the members given in Table 3 were used to scale the lowest global buckling
modes if they were in the in-plane direction, while the lowest global buckling modes were
scaled to 1/1000 of the member length L if they were in the out-of-plane direction. In the
parametric studies, the lowest global buckling modes were scaled to 1/1000 of the member
length L (i.e. w, = L/1000), in line with [27-29]. The local imperfections were assigned
to the finite element models using their corresponding lowest local buckling mode shapes.
While the local buckling modes were scaled to the experimentally measured maximum value
of w; = 0.23 mm for the considered I-50x50x4 x4 section in the validation study based on
the measurements presented in [5], they were scaled to 80% of the fabrication tolerances for
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welded steel members provided in EN 1090-2 [30] in accordance with the provisions of EN
1993-1-5 [31] in the parametric studies. Thus, the lowest local buckling modes were scaled
to 80% of 1/100 of the web heights h,, (i.e. w; = 0.8h,,/100) if the maximum normalised
deflections observed in the LEA were within the webs, while the lowest local buckling modes
were scaled to 80% of 1/100 of the flange widths b if the maximum normalised displace-
ments observed in the LEA were within the flanges (i.e. w; = 0.8b;/100). Examples of the
global and local buckling modes used to define the geometric imperfections in the finite el-
ement models are illustrated in Fig. 7. As can be seen from the figure, the global geometric
imperfection involves both initial out-of-straightness about the minor axis and twist.

Residual stresses were incorporated into the finite element models using the generic
residual stress pattern for welded I-sections shown in Fig. 1; the residual stresses were
applied to the finite element models within a separate step finalised with the achievement
of the equilibrium prior to the application of the loading. Both conventionally arc-welded
and laser-welded stainless steel members were considered by adopting the corresponding
model parameters given in Table 2. Owing to the nonlinear material stress-strain response
of stainless steel, the application of residual stresses results in permanent strains; hence
the residual plastic strains €., corresponding to the assigned residual stresses o,.; were
also applied to the finite element models. Considering the two-stage compound Ramberg-
Osgood stress-strain relationship [16] adopted in this paper, the following expression was
used to define the residual plastic strains €., at the cross-section integration points in the
finite element models [32]:

€resp = 0.002 (Uf) , 2)
Yy

where 0,., is the corresponding residual stress applied at the cross-section integration point.
The application of the residual plastic strains €., is necessary to ensure that the desired
residual stress pattern shown in Fig. 1 is achieved after the equilibrium load step.

3.4. Validation of numerical models

Comparisons of the ultimate loads from the finite element models Ny prp with those
obtained from the physical laboratory tests Ny iest presented in the previous section are
shown in Table 6, where the in-plane deflections at the ultimate loads determined through
the finite element models w,; pr are also compared against those observed in the experi-
ments Uy test- As can be seen from the table, the ultimate loads obtained from the finite
element models and the experiments are in close agreement in addition to a good correlation
between the numerically and experimentally determined in-plane deflections at the ultimate
loads, indicating that the finite element models are capable of accurately estimating the
ultimate load carrying capacities of the stainless steel members. Additionally, the load ver-
sus mid-height in-plane deflection, load versus mid-height out-of-plane deflection and load
versus mid-height twist paths obtained from the experiments and those determined through
the finite element models are shown in Fig. 5. It can be seen from the figures that the corre-
lation between the experimentally and numerically obtained load versus displacement paths
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is very good, confirming the ability of the finite element models to replicate the physical
response of stainless steel beam-columns experiencing flexural-torsional buckling. The load
versus mid-height strain paths obtained from the experiments and finite element models are
shown in Fig. 6 and can be seen to be also in good agreement. Discrepancies between the
experimental and numerical paths in Figs. 5 and 6, particularly for specimen 50 LTB-2,
are attributed to differences in local and global imperfections between the test specimens
and numerical simulations. While global imperfection magnitudes were measured for each
test specimen, only representative local imperfection magnitudes were obtained from mea-
surements on stub columns cut from the same delivered lengths of material. Furthermore,
detailed measurements of imperfection shapes were not made, but were assumed to follow
the form of the elastic buckling modes in the numerical analyses. The failure modes observed
in the experiments and the numerical models are compared in Fig. 8, where they can be
seen to be very similar. The models are therefore considered to be validated and suitable
for performing parametric studies, as presented in the following sub-section.

3.5. Parametric studies

Using the validated finite element models, extensive parametric studies considering a
wide range of cross-section shapes, cross-section slenderness, bending moment-to-axial com-
pressive load ratios and member slenderness were carried out to generate comprehensive
structural performance data for conventionally arc-welded and laser-welded austenitic stain-
less steel beam-columns. The standardised material properties for austenitic stainless steel
recommended in [33] and based on large number of data collected from the literature were
utilised in the parametric studies.

In the parametric studies, a constant cross-section depth equal to that of the test
specimens (i.e. h = 50 mm) was adopted, while four different flange widths were consid-
ered, leading to four cross-section aspect ratios h/bs equal to 1.0, 1.5, 2.0 and 3.0 (i.e.
h/bs = 1.0,1.5,2.0 and 3.0). For each cross-section aspect ratio, three different values of
flange thickness ¢ and web thickness t,, were selected to generate a range of local slender-
ness covering cross-sections from Class 1 to Class 3 according to the slenderness limits set
out in EN 1993-1-4 [2]. The flange and web thicknesses were selected such that the flange
plate slenderness )\, ; and the web plate slenderness A, ¢ of the modelled cross-sections were
essentially the same; the flange and web plate slenderness were determined from eqs. (3)
and (4) respectively, as given in EN 1993-1-5 [31]:

Aop =\ ful Fers (3)
Ao = A/ fy/ feran: (4)

in which, f., s and f. ., are the elastic buckling stresses of the flange and web plates, re-
spectively. Beam-columns with seven different lengths L were modelled for each consid-
ered cross-section; the lengths of the columns for the each cross-section were selected such
that their non-dimensional flexural buckling slendernesses about the minor axis A, ranged
between 0.4 and 2.0 in increments of 0.4. Two additional lengths for each cross-section
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corresponding to A\, = 0.2 and A\, = 1.0 were also taken into account. Five initial load-
ing eccentricities, as adopted in the experimental study, ranging between 5 mm and 150
mm (i.e. e, = 5,20,40,80 and 150 mm), were applied to each considered beam-columns,
thereby inducing a range of major-axis bending-to-axial compressive load ratios. The generic
residual stress pattern shown in Fig. 1 in conjunction with the corresponding parameters
for arc-welded and laser-welded sections were applied to the finite element models. In ac-
cordance with the numerical parametric studies carried out during the development of the
EN 1993-1-1 beam-column design rules [29], fork-end support conditions were also adopted
in the numerical parametric study models developed herein, as described in detail in [24].
All the considered members were subjected to axial compression plus constant major axis
bending. In Section 4, the results of the parametric studies are utilised to assess the accu-
racy of existing design methods for the flexural-torsional buckling of welded stainless steel
beam-columns, while in Section 5, the parametric results are used in the development and
verification of new design provisions.

4. Assessment of existing design rules for stainless steel I-section beam-columns
susceptible to flexural-torsional buckling

4.1. Introduction

In this section, three existing methods for the flexural-torsional buckling design of stain-
less steel beam-columns provided in (i) the European structural stainless steel design code
EN 1993-1-4 [2], (ii) AISC Design Guide 27 [12] and (iii) the proposals of Greiner and Ket-
tler [13] are assessed using both the experimental and numerical results obtained in this
paper. In the accuracy assessment of the existing design methods for arc-welded stainless
steel members, the experimental results provided by [9, 11, 34, 35] for laterally unrestrained
beam-columns, beams and columns are used, while the results obtained from the exper-
iments presented in this paper and those reported in [5] for columns buckling about the
minor axis are utilised to assess the existing design methods for laser-welded beam-columns.
As illustrated in Fig. 9, to assess the accuracy of each design method, the parameter € cor-
responding to the ratios of the ultimate axial load carrying capacities obtained from the
experiments and numerical models NN, to those obtained from the design method N, pyeq is
utilised, i.e. € = Ny, /Ny prea, Where the beam-columns are assumed to be under proportional
loading. Note that in Fig. 9, Ny rq and M, g4 are the column buckling and lateral-torsional
buckling strengths determined using each design method and represent the end points of
the design interaction curve, Ngq and M, gq are the proportionally increasing applied axial
loading and bending moment, and 6 is the radial angle describing the relationship between
the applied axial loading and bending moment, which is determined using the following

expression:
Ngq/N,
0= tan~! (ﬁ) | (5)
My ga/My Ra

Fig. 9 shows that depending on the dominance of the applied axial loading and bending,
the radial angle 6 varies between 0° and 90° where # = 0° and 6 = 90° correspond to pure
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bending and pure axial loading, respectively. A value of € = N, /Ny preq greater than 1.0
indicates the safe-sided strength prediction.

Using the e parameter, the accuracy of EN 1993-1-4 [2], AISC Design Guide 27 [12]
and the proposals of Greiner and Kettler [13] are assessed against numerical results for
conventionally arc-welded and laser-welded stainless steel beam-columns in Table 7, as well
as against the experimental results of the five laser-welded stainless steel beam-columns
obtained in this paper and the experimental results obtained for laterally unrestrained arc-
welded beam-columns, beams and columns by Burgan et al. [11] and Yang et al. [9]. Note
that in Table 7, €4y, €covs €mar and €, are the average, coefficient of variation, maximum
and minimum values of € obtained for each design method. In the following sections, these
three design methods will be briefly described and their accuracy with respect to the design
of stainless steel beam-columns is discussed.

4.2. European structural stainless steel design code EN 1993-1-4 [2]

The European structural stainless steel design code EN 1993-1-4 [2] provides the following
two set of equations for the design of beam-columns under axial compression plus uniaxial
major axis bending moment:

N M. N
Ed Yk, ( y,Ed T EdGN,y) <10, (6)
(Nb,Rd)min ﬂw,prl,yfy/7M1
Ngg M, ga + Ngden
— + k Y, YY) <1.0 7
(Np, Rd)min 1 her ( My, ra ) - (7)

where Ngg and M, gq are the design values of the compression force and maximum mo-
ment about the major axis, (N grd)min 1S the smallest design column buckling resistance
considering flexural buckling about the major axis and minor axis, torsional buckling and
torsional-flexural buckling, (Ny rq)min 1 is the smallest design column buckling resistance
considering flexural buckling about the minor axis, torsional buckling and torsional-flexural
buckling, ey, is the shift in the neutral axis when the cross-section is subjected to uniform
compression, which is equal to zero for I-sections, M} rq is the lateral-torsional buckling re-
sistance and W), is the plastic section modulus about the major axis. In eq. (6), B, is an
auxiliary coefficient, which is either equal to (i) 1.0 for cross-sections falling into the Class 1
and 2 categories (i.e. £, = 1.0 for Class 1 and 2 sections), (ii) the ratio of the elastic W,
to the plastic section moduli W, , about the major axis for cross-sections falling into the
Class 3 category (i.e. By = Wery /Wy, for Class 3 sections) or (iii) equal to the ratio of the
effective Weyy, to the plastic section moduli W, about the major axis for cross-sections
falling into the Class 4 category (i.e. Buy = Werpy/ Wiy for Class 4 sections). In eq. (6)
and eq. (7), k, and kpp are the interaction factors determined as:

- N N

ky=14+2(%, —05) =24 but 12<k, <1242 (8)
b,Rd,y b,Rd

krr = 1.0 (9)

where Nj rq, is the major axis column flexural buckling resistance.
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The accuracy of the EN 1993-1-4 [2] design provisions is assessed against the numeri-
cal and experimental results for laterally unrestrained arc-welded and laser-welded beam-
columns in Fig. 10, where the design column NV}, rq and beam M, r; buckling resistances are
determined using the existing column and beam buckling curves of EN 1993-1-4 [2]. In the
figure, the ratios of the experimentally and numerically obtained ultimate strengths N, to
those determined using EN 1993-1-4 [2] N, gcs (i.e. Nyu/Ny pes) are plotted against the ra-
dial angles 6 determined considering the EN 1993-1-4 [2] design interaction curves as shown
in Fig. 9. The accuracy of EN 1993-1-4 [2] is also shown in Table 7. As can be seen from Fig.
10 and Table 7, EN 1993-1-4 [2] leads to somewhat overly-conservative ultimate strength
predictions for laterally unrestrained stainless steel I-section beam-columns. Furthermore,
owing to the lack of distinction between laser-welded members and conventionally arc-welded
members, the strength predictions are more conservative for the laser-welded stainless steel
beam-columns due to their lower level of residual stress.

4.8. AISC Design Guide 27 [12]

In line with the design procedure set out in AISC 360-16 [36], the following equations
are given in AISC Design Guide 27 [12] for the design of stainless steel beam-columns under
combined axial loading and major axis bending:

NEd 8 My Ed NEd
OMykd g DEd 5 9 10
N, "9 M, O N, (10)
Ngqa My gq NEgqg
ed Bl pop 2B g9 11
oN, | M, N, (11)

where N, and M, , are the column buckling and beam buckling resistances, determined
considering both overall and local buckling effects. Note that the P — § effects should be
explicitly considered in the determination of the maximum major-axis bending moments
M, rq along the lengths of stainless steel elements in the application of the beam-column
design equations of AISC Design Guide 27 [12] unlike in the implementation of those given
in EN 1993-1-4 [2] where the P — ¢ effects are considered by means of the interaction factors
k, and krr. For the case of beam-columns under axial compression plus constant major
axis bending, the maximum major axis bending moment M, g4 located at the mid-height of
the member may be determined by amplifying the applied first order bending moments by
a factor of 1/(1 — Nga/Nery)-

An assessment of the AISC Design Guide 27 [12] design provisions is provided in Fig.
11 and Table 7. As can be seen from the figure and table, AISC Design Guide 27 [12] leads
to quite scattered ultimate strength predictions for stainless steel beam-columns such that
its accuracy is lower than that of EN 1993-1-4 [2]; this is largely attributed to the adopted
column buckling curve.

4.4. Greiner and Kettler [13] proposal

Following the format adopted in the interaction equations of EN 1993-1-1 [37], Greiner
and Kettler [13] put forward a two set of interaction equations (egs. (12) and (13)) for the
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design of laterally unrestrained stainless steel beam-columns susceptible to flexural-torsional
buckling through calibration to the results from nonlinear finite element modelling;:

NEgq M, gq

+k < 1.0, 12
Nyy rd yGEk My ra (12)
N, M,
Ed + kLT,G&K y.brd < 1.0, (13)
Nz, Rd bRd

in which N, pq is the minor axis column buckling resistance considering the minor axis
flexural, torsional and torsional-flexural buckling of a column, M) rq is the beam buckling
resistance and kgg i,y and kgg . are the interaction factors determined as follows:

byur = 0.9+ 2208 — 0.4) 2 but ky e < 0.9+ 242, (14)
b,y,Rd by, Rd
N 1.3
krraex =1 —0.4 ( Ed > _ (15)
b,z,Rd

The accuracy of the method put forward by Greiner and Kettler [13] in comparison to
the results from the experiments and nonlinear shell finite element modelling is illustrated in
Fig. 12, as well as in Table 7, for arc-welded and laser-welded laterally unrestrained beam-
columns. Note that in the application of the method of Greiner and Kettler [13], which
is limited to members with Class 1 and 2 cross-sections, the column and beam buckling
strengths (i.e. Npy pa, Nbzra and My pq) were determined on the basis of the buckling
curves provided in EN 1993-1-4 [2]. As can be seen from Fig. 12 and Table 7, the method
put forward by Greiner and Kettler [13] leads to more accurate strength predictions relative
to both EN 1993-1-4 [2] and AISC Design Guide 27 [12] for laterally unrestrained stainless
steel beam-columns. However, the results remain scattered and the method is only applicable
to members with Class 1 and 2 cross-sections, highlighting the need for an improved, general,
consistent and accurate design method for stainless steel beam-columns.

5. New design proposal for laterally unrestrained stainless steel welded I-section
beam-columns

5.1. Introduction

Aiming to achieve improved accuracy in the design of stainless steel beam-columns rel-
ative to the existing methods presented in the previous section, a new design method for
laterally unrestrained stainless steel welded I-section beam-columns is proposed in this sec-
tion. In line with [7, 38, 39], the general format of the beam-column interaction equations
presented in EN 1993-1-1 [37] was adopted, while improvement in the accuracy of the design
predictions was sought by (i) predicting more accurately the end-points of the interaction
curves (i.e. the column buckling and beam buckling resistances) and (ii) calibrating new
interaction factors leading to design interaction curves that more accurately reflect the ulti-
mate strengths of stainless steel beam-columns. Focus is initially placed on the arc-welded
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austenitic stainless steel beam-columns which have the more severe residual stresses relative
to the laser-welded members. It is anticipated that adaptation to laser-welded members can
be then achieved simply by updating the end-points, as proposed in [7]; alternatively, given
that the difference between the ultimate strengths of arc-welded and laser-welded members
is relatively small [7], the design provisions developed for arc-welded members could be
conservatively applied to laser-welded members.

5.2. New interaction equations for stainless steel welded I-section beam-columns susceptible
to flexural-torsional buckling

In accordance with the beam-column interaction equation format adopted for carbon

steel members in EN 1993-1-1 [37], the following beam-column interaction formulae are

proposed herein for the design laterally unrestrained I-section stainless steel beam-columns:

M,
+ kyyorop—— < 1.0 16
Nyy rd wp pr,Rd (16)
N M,
B ke prop 2P < 1.0 (17)
Ny 2 ra b,Rd

where Ky, prop and k. ,rop are the interaction factors used for the in-plane and out-of-plane
buckling assessment respectively, vy, is the partial safety factor for buckling which should
be taken as equal to 1.1 (i.e. a1 = 1.1) in accordance with EN 1993-1-4 [2], N, gra and
Ny . ra are the in-plane and out-of-plane column flexural buckling strengths and M, gy is
the beam lateral-torsional buckling strength. It should be noted that for the case of beam-
columns with the non-dimensional lateral-torsional buckling slenderness less than or equal
to 0.2 (i.e. for beam-columns with Az < 0.2), the use of cross-section bending moment
resistances determined through the continuous strength method M., as described in [7]
for the bending end point M, g4 is recommended (i.e. My g = Mesy, When A £0.2). The
bending moment resistances M}, rq can also be conservatively taken as equal to the cross-
section resistances determined through the provisions of EN 1993-1-4 [2] in these cases.
In the following subsections, the equations recommended for the determination of &y prop,
.y props Noy,rds Nb 2 ra and My rq are introduced.

5.3. Interaction factor kyyyrop used in in-plane buckling assessment of stainless steel beam-
columns
The interaction factor kyy ,rop used in the in-plane buckling assessment of stainless steel
beam-columns is provided below:

~ NEgq
kyy,prop =1+ Dl,y (>‘y - DZ,y) Ny
?y?
N
but  kyyprop <1+ D1y (Dsy — D2,y) ﬁv (18)
7y7

where Dy ,, Dy, and D;, are the auxiliary coefficients, which have been derived in [7]
through calibration against a large number of numerical and experimental results for laterally-
restrained stainless steel I-section beam-columns subjected to major axis bending plus uni-
form compression. The values of D;,, Dy, and Dj, recommended in [7] are provided in
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Table 8. The accuracy and reliability of using eq. (18) in conjunction with eq. (16) for the
in-plane instability assessment of stainless steel beam-columns have been verified against the
results obtained from physical experiments and finite element modelling for a wide range of
cases in [7]. Thus eq. (18) with the D ,, D, and Ds, coefficients put forward by [7] are
also adopted in this study for the determination of &y ,rop-

5.4. Buckling resistance of welded I-section stainless steel columns
Column buckling resistances Nj, rq used within the interaction equations provided in eq.
(16) and eq. (17) are determined by means of the equation below:
A
Noga = 22, (19)

TM1

in which y is the buckling reduction factor determined as:
1

Verfe-x

In eq. (20), Xg is the plateau slenderness for column buckling below which x = 1.0 and «a
is the imperfection factor, values for which are provided in Table 9 for the major axis (i.e.
in-plane) and minor axis (i.e. out-of-plane) buckling of arc-welded and laser-welded stainless
steel I-section columns. Note that the o and Ay values provided in Table 9 for laser-welded
columns were obtained through calibration against the results from physical experiments
and nonlinear finite element modelling in [8]. The values of o and Ay given in Table 9 for
conventionally arc-welded columns are the same as those provided in EN 1993-1-4 [2]; the
suitability of these values was also confirmed in [8].

<1.0 where ¢=0.5 [1 +a (A= X) +X2} : (20)

5.5. Lateral-torsional buckling resistance of welded I-section stainless steel beams

The lateral-torsional buckling (LTB) strengths of stainless steel beams M, g4, which are
utilised in eq. (17), are calculated using the following equation:

XLTWyfy

My ra =
M1

(21)
in which W, is the plastic W), elastic W, or effective W,s;, section modulus about the
major axis depending on the class of a cross-section according to [2] and xpr is the LTB
reduction factor. For the determination of .7, the use of the following expression, which
was originally put forward by Taras and Greiner [40] for carbon steel beams and is due to be
incorporated into the upcoming version of EN 1993-1-1 [37] (currently referred to as prEN
1993-1-1 [41]), is recommended:

1
<1.0

XLT = = =
orr + \/ Q%T —ALr

< 2
— A —
1+ arr (A, —0.2) < XLT) + A

z

where ¢ = 0.5
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where oy is the imperfection factor for LTB which should be taken as equal to apr =
0.214/Wery/Wer» < 0.64 as recommended for I-sections in prEN 1993-1-1 [41], W, . is the
elastic section modulus about the minor axis and )\, is the non-dimensional slenderness for
flexural buckling about the minor axis.

In Fig. 13 (a), the accuracy of the LTB assessment equation provided in prEN 1993-1-
1 [41] is assessed against the GMNIA results of fork-end supported arc-welded austenitic
stainless steel beams subjected to uniform bending with cross-section depth A = 50 mm and
cross-section aspect ratios equal to 1.0, 1.5, 2.0 and 3 (i.e. h/b;=1.0, 1.5, 2.0, 3.0). Three
different flange ¢ and web thickness t,, values were selected for the each considered aspect
ratio, resulting in twelve different cross-section profiles covering Class 1, 2 and 3 according
to EN 1993-1-4 [2]; the ¢; and t,, values were selected such that the non-dimensional plate
buckling slendernesses for flange and web plates were the same (i.e. A, ; = \,.). Fig. 13 (a)
shows that the LTB assessment equation provided in prEN 1993-1-1 [41], originally developed
for welded carbon steel beams, provides very accurate ultimate strength predictions also for
welded austenitic stainless steel beams. Thus, the adoption of this equation for the design of
austenitic stainless steel beams against LTB is recommended in this paper. The accuracy of
the LTB curve given in EN 1993-1-4 [2] is assessed in Fig. 13 (b), showing that EN 1993-1-4
2] leads to less accurate LTB strength predictions for austenitic stainless steel beams.

Assessment of the prEN 1993-1-1 [41] and EN 1993-1-4 [2] provisions for the LTB strength
predictions of fork-end supported arc-welded austenitic stainless steel I-section beams sub-
jected to uniform bending is also provided in Table 10, where S is the ratio of the ul-
timate strength determined by GMNIA to that obtained from the design methods (i.e.
S = Mut.re/Mp ra); Savs Seovs Smaz and Sy, are the average, coefficient of variation, max-
imum and minimum values of S for the considered beams in the table. Table 10 shows that
prEN 1993-1-1 [41] leads to considerably more accurate LTB strength predictions relative
to EN 1993-1-4 [2] for austenitic stainless steel beams.

5.6. Derivation of interaction factor k.yprop used in out-of-plane buckling assessment of
stainless steel beam-columns

Upon the establishment of the flexural buckling and lateral-torsional buckling assessment
equations for welded I-section stainless steel members, an expression for the interaction factor
K.y prop for the out-of-plane buckling assessment of stainless steel beam-columns subjected
to axial compression plus major axis bending is developed in this subsection. In line with
EN 1993-1-1 [37], the following format of equation is recommended in this paper for the

determination of the interaction factor k., prop:

T N N
Dy pr). 5 2 Dy prDs pr g 24
Kzyprop =1 — 1— D, LT but Keyprop <1 — 1— D, LT7 ’ (23)

where Dy rp, Dy rr and Ds pp are the auxiliary coefficients. The interaction factor k., prop
is calibrated herein against the numerically-derived interaction factors k., pp, the values
of which were determined from eq. (24), which is a rearrangement of eq. (17) in terms of
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zy,prop-

Nu FE ) Mb Rd
b g = 1 — =2 Rl 24
wiE ( Nb7z,Rd My,u,FE ( )

where N, rp and M, , rr are the ultimate axial loads and major axis bending moments
obtained through GMNIA of the stainless steel beam-columns and N, . g and M;, g are the
minor axis flexural buckling and lateral-torsional buckling resistances of the beam-columns
determined using eq. (20) and eq. (22), respectively.

During the calibration of k., ,rp, it Was observed that the values of the numerically-
generated out-of-plane interaction factors k., pp were dependent upon the cross-section
shape. For the case of beam-columns with Class 3 sections, the highest k., pgp values were
achieved for the cross-sections with the lowest aspect ratios (i.e. h/by values), whereas for
the case of beam-columns with Class 1 sections, the reverse was true. However, following the
same approach used by Greiner and Lindner [28, 29] in the calibration of the EN 1993-1-1
[37] beam-column interaction factors, safe-sided values for the auxiliary coefficients Dy 1,
Dy 1r and D3 1 are proposed herein based on the upper bound numerically-generated k., g
values, as given in Table 11. Comparisons between the numerically-generated k., pr values
and the proposed k., ,rop values for austenitic stainless steel beam-columns with different
cross-section shapes are given in Fig. 14, where n, is the ratio of the applied axial load Ngq
to the minor axis flexural buckling resistance N, , rq of the member (i.e. n, = Nga/Nb. . ra)-
Note that, as in previous research [7, 38], calculated resistances were used as the end points in
the derivation of the interaction factors, though similar results (following reliability analysis)
would be expected if numerical resistances had been used.

The accuracy of the proposals for arc-welded and laser-welded stainless steel beam-
columns subjected to axial compression plus uniform major axis bending is assessed in Fig.
15 and Table 12, considering the numerical GMNIA results generated herein in Section 3.5,
as well as the experimental results of [9, 11, 34] for arc-welded austenitic stainless steel
beam-columns and the experimental results presented in the current paper and in [5] for
laser-welded austenitic stainless steel beam-columns. Fig. 15 and Table 12 show that the
proposed design approach generally leads to accurate and safe-sided ultimate resistance
predictions for both arc-welded and laser-welded stainless steel beam-columns. As can be
seen by comparing Table 12 and Table 7, the values of €., obtained through the proposed
approach are smaller than those determined through all the existing design approaches (i.e.
EN 1993-1-4 [2], AISC Design Guide 27 [12] and the proposal of Greiner and Kettler [13]),
indicating more consistent resistance predictions. Furthermore, the €,, values are closer
to 1.0, indicating that the proposed approach is more accurate than the existing methods
for the design of austenitic stainless steel beam-columns. In the following subsection, the
reliability of the presented design proposals for austenitic stainless steel beam-columns is
assessed.
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6. Reliability analysis

In this section, the reliability of the proposed approach for the design of austenitic
stainless steel beam-columns is assessed following the procedure given in Annex D of EN
1990 [42], on the basis of the experimental and numerical results generated in this paper
and the experimental results provided in [7, 9-11]. The key parameters from the reliability
analysis are shown in Table 13, in which N is the number of experimental and numerical data
taken into consideration, b is the mean value correction factor, kq,, is the fractile factor which
is dependent upon the number of the data considered and Vj is the coefficient of variation
of the experimental and numerical ultimate strengths relative to the resistance prediction.
Note that the mean correction factor b was determined herein by taking the average of
the ratios of the experimental and numerical ultimate resistances to those predicted by the
proposed design method; unlike the least squares approach recommended in EN 1990 [42],
this avoids the bias of b towards the experimental or numerical results with larger ultimate
resistances [43, 44]. In accordance with the recommendations provided in [43], the material
overstrength factor, defined as the ratio of the mean yield strength f, ncqan to the nominal
yield strength f, om, was taken as fymean/ fynom = 1.30, while the coefficients of variation
of the yield strength Vy, and geometry Vieomerry, Were taken as 0.06 and 0.05 respectively
(i.e. Vi = 0.06 and Vieomerry = 0.05). Table 13 shows that the determined partial safety
factors v, are lower than or very close to the partial safety factor value of v, = 1.10
recommended in EN 1993-1-4 [2], indicating that the proposed method can be safely used
for the design of austenitic stainless steel beam-columns susceptible to flexural-torsional
buckling.

7. Summary of the design recommendations for codification

In this section, a summary of the proposals for the design of stainless steel beam-columns
is presented, based both on the research presented in this paper and other recent research
studies carried out within the steel structures research group at Imperial College London [7,
38, 45]. In addition to the design proposals presented herein for stainless steel I-section beam-
columns susceptible to flexural-torsional buckling, the following are also collated from the
literature: (i) the design proposals of [7] for laterally restrained stainless steel I-section beam-
columns subjected to major axis bending plus axial compression and minor axis bending plus
axial compression, (ii) the recommendations of [38] for the design of stainless steel beam-
columns with square hollow sections (SHS) and rectangular hollow sections (RHS) and (iii)
the design method of [45] for stainless steel beam-columns with circular hollow sections
(CHS). This covers the majority of the commonly employed cross-section types in practice.
For SHS, RHS and CHS beam-columns, interaction expressions have been developed for
austenitic, duplex and ferritic stainless steel members [38, 45]. However, for I-section beam-
columns, only austenitic stainless steel has been explored thus far. The proposals made
herein though would be expected to provide safe-sided strength predictions for duplex and
ferritic stainless steel I-section beam-columns owing to the lower degree of nonlinearity in
the material response of these grades compared to that of austenitic stainless steel. Further
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research is currently underway to develop specific proposals for duplex and ferritic stainless
steel I-section beam-columns.

Adopting the interaction equation format of prEN 1993-1-1 [41] to bring consistency
with carbon steel design, the following set of equations are recommended for the design of
stainless steel beam-columns:

N M, gq+ AM, M, pa+ AM,
Ed Tk y,Ed y,Ed + k. Lod .Ed <1.0 (25)
N T Py My, gk v M:.rk
Xy YM1 XLT YM1 M1
N M, AM, M, AM;
L, B TS g St FRTREL (26)
Rk y,Rk Mz Rk
Z 5 XLT =, YM1

where Ngg is the design value of the compression force and M, pq and M, g4 are the design
values of the maximum bending moments about the y-y and z-z axes along the member, Ny,
M, ri and M, gj, are the characteristic values of the cross-sectional resistance to compressive
axial force and bending moments about the y-y and z-z axes respectively, vy is the partial
factor for the resistance of members to instability assessed by member checks, taken as
v = 1.10, AM, gq and AM, gq are the moments due to the shift of the centroid axis for
Class 4 sections, x, and X, are the flexural buckling reduction factors from eq. (20) using
the corresponding a and Ay values for I-sections from Table 9 and those for CHS, SHS and
RHS from [38, 45], xrr is the lateral torsional buckling reduction factor from eq. (22) and
kyy, kyz, kzy, and k,, are the interaction factors.

The characteristic resistance to axial force Ngy is determined using the following equa-
tions as set out in EN 1993-1-4 [2]:

Npgi = Af, for Class 1, 2 or 3 section
Npir = Aesrfy, for Class 4 section

in which A and A,y are the full and effective cross-section areas, respectively. In eq. (25)
and eq. (26), the characteristic moment resistances M, g, and M, g may be calculated
according to the Continuous Strength Method (CSM) [46, 47| for I-sections, SHS, RHS and
CHS cross-sections as described in [7, 38, 45], provided the non-dimensional LTB slenderness
of the stainless steel beam-column A7 is less than the threshold value of XLT’O = 0.4, which
indicates that the member is not susceptible to flexural-torsional buckling as stated in [41]:

My,Rk’ = My,csm and Mz,Rk: = Mz,csm for XLT < XLT70 =04 (27)

where My csp and M, s are the major and minor axis bending moment resistances, re-
spectively, calculated according to the CSM. Alternatively for App < XLT,U and in all cases
when Ay > XLT’O = 0.4, the characteristic moment resistances M, g and M, g, may be
determined using the following expressions:

My g =Wpyfy, and M, gy =W, .f, for Class 1 and 2 sections
My ry = Wayf, and M, gy =Wg.f, for Class 3 sections
My rie = Weppyfy and M, gy = Wesp.f, for Class 4 sections (28)
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in which W, ., We . and Wess . are the plastic, elastic and effective section moduli about
the z-z axis.

Finally, the interaction factors ky,, ky., k., and k., employed in eq. (25) and (26) should
be calculated using Table 14 and Table 15. It is currently recommended that the moment
gradient factors Cy,,, Cy,. and Cy, 1 should be determined as described in prEN 1993-1-1
[41] for carbon steel beam-columns though further research is underway on this topic. Note
that the moment gradient factors C,, set out in prEN 1993-1-1 [41] for beam-columns under
unequal end-moments were originally derived considering the elastic buckling response of
members [29], and shown to provide safe and accurate resistance predictions when incorpo-
rated into the interaction factor expressions for steel beam-columns experiencing plasticity
[29]. In [39], it was also illustrated that use of these elastically-derived C,, factors in the in-
teraction factor expressions originally derived for SHS and RHS stainless steel beam-columns
under uniform bending also leads to safe and accurate ultimate strength predictions for those
under moment gradients. Given their elastic (i.e. material independent) origins and their
successful application to stainless steel SHS and RHS beam-columns, it is anticipated that
the use of the moment gradient factors provided in prEN 1993-1-1 [41] in the interaction
factor expressions derived herein for stainless steel I-section beam-columns under uniform
bending would also lead to safe and accurate results under moment gradients. However,
since further research is necessary to verify this, an explanatory note for the relevant inter-
action factor expressions in Table 14 and Table 15 is provided. The parameters n, and n,
used in Table 14 and Table 15 are calculated using the equations below:

NEd NEd

n,— —— n,= ——.
Y XyNRk/7M1 XzNRk:/’YM1

(29)
For cross-section types not addressed herein (e.g. angles, channels and lipped channels), use
of the beam-column design approach provided in EN 1993-1-3 [48] is recommended.

8. Conclusions

The flexural-torsional buckling response of austenitic stainless steel I-section beam-
columns has been investigated both experimentally and numerically in this paper. Initially,
five laboratory tests were carried out on laser-welded stainless steel beam-columns subjected
to axial compression with different loading eccentricities, thus subjecting the specimens to
different levels of axial compression and major axis bending moments. A detailed descrip-
tion of the test setup, experimental procedure, specimen properties and test results has been
presented. Finite element models of austenitic stainless steel I-section beam-columns were
created and validated against the experimental results. Parametric studies were then carried
out on both conventionally arc-welded and laser-welded austenitic stainless steel members
considering their different levels of residual stress; a range of the cross-section dimensions,
member slendernesses and loading conditions was examined. It was observed that the laser-
welded stainless steel beam-columns possess higher ultimate load carrying capacities relative
to the arc-welded stainless steel beam-columns due to the presence of lower residual stresses
in the former. On the basis of the results obtained from the numerical parametric studies,
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as well as the physical tests carried out both in this paper and collected from the literature
9, 11, 34], the accuracy and safety of the methods provided in the European structural
stainless steel design code EN 1993-1-4 [2], the American Institute of Steel Construction
(AISC) Design Guide 27 [12] and the approach proposed by Greiner and Kettler [13] for the
design of stainless steel beam-columns were assessed. It was observed that EN 1993-1-4 [2]
yields safe-sided but rather conservative ultimate strength predictions for austenitic stain-
less steel beam-columns susceptible to flexural-torsional buckling, while the design method
provided in AISC Design Guide 27 [12] provides less conservative and more scattered ulti-
mate strength predictions. Relative to EN 1993-1-1 [2] and AISC Design Guide 27 [12], the
method of Greiner and Kettler [13] provides more accurate ultimate strength predictions,
though further scope for improvement was still observed. Thus, on the basis of the results
from the numerical parametric studies together with the new and existing experiments, a
new design method leading to more accurate design predictions relative to the existing design
methods [2, 12, 13] for austenitic stainless steel beam-columns was developed. Verification
of the reliability of the new proposed design method in accordance with the procedure given
in EN 1990 [42] is illustrated. A summary of the design proposals set out in this paper and
from the recent research carried out in [38, 45] is also provided. The approach proposed in
this paper for the design of austenitic stainless steel beam-columns is consistent with the
approach for carbon steel in EN 1993-1-1 [37] and is expected to be incorporated into the
upcoming version of the European structural stainless steel design code EN 1993-1-4 [2].
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Figure 15 : Accuracy of the proposals for the ultimate resistance predictions of arc-welded
and laser-welded austenitic stainless steel beam-columns susceptible to flexural-torsional
buckling

25



Figure 1: Generic residual stress pattern utilised for welded-sections (+ve = tension, -ve = compression)

50 * 50 LTB-7

ab a
o>}
Ot
5
(A
Ot O'wt §d
Owce
hw
Ot Owt
\ |
Il
Of
b

Knife edge Loading

—>]

eccentricity

wedge plate \ :
M‘“

I ]
—

P

Clamp plate

Specimen

String pot =

T
T
T
I
I
I
|
|
I
I
I

Inclinometers
Clamp plate \
Wedge plate %

T
I
I
I
I
|
I
I
I
I
|
I
I
I
I
|
I
=
I
I
|
I
I
I
I
I
I
I
|
B
I
:

[ 1 ]
Knife edge ’ﬁ%

Figure 2: Test configuration
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Figure 3: Configuration of strain potentiometers and strain gauges used to measure deformations and strains
at the mid-height of the specimens
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(a) Front view

(b) Side view

Figure 4: Failure modes of the specimens, featuring flexural-torsional buckling
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Table 1: Summary of measured tensile and compressive material properties of I-50x50x4 x4 section
Compound R-O coefficients

E Ty fio Ju €u €f
(MPa) (MPa) (MPa) (MPa) (%) (%) ™ ™0 M
Tensile 190700 270 361 694 61 73 40 3.2 3.0
Compressive 206000 332 402 ; ; - T4 32 3.0

Table 2: Parameters used in the residual stress patterns for conventionally welded and laser-welded stainless
steel I-sections
Welding type Oft = Owt Ofec = Owe a b c d
Arc-welding [21] 0.8fy from equilibrium  0.225b; 0.050b; 0.0250h,, 0.225h,,
Laser-welding [5] 0.5fy from equilibrium  0.100b; 0.075b; 0.0375h,, 0.100A,,

Table 3: Measured geometric properties, imperfections and eccentricities of the specimens

bf tw tf L Wy €n €m
(mn)  (mm) (mm) (mm) (nm) (om) (mm) (mm)
1-50x50x4 x4 50 LTB 2 50.44 50.53 4.00 4.01 1012.2 0.30 9 5.81
I-50x50x4 x4 50 LTB 4 50.32 50.59 394 4.04 1014.0 0.06 20 21.67
1-50x50x4 x4 50 LTB 5 50.47 50.55 3.99 3.99 1013.0 0.04 40 42.40
I-50x50x 4 x4 50 LTB 6 50.35 50.57 4.02 4.01 1012.5 0.30 80 82.88
I-50x50x4 x4 50 LTB 7 50.30 50.62 4.00 4.01 1012.6 0.23 150 151.31

Cross-section  Specimen ID

Table 4: Critical buckling lengths of the test specimens and non-dimensional slenderness for major axis
flexural buckling A, minor axis flexural buckling A, and for lateral-torsional buckling (LTB) Arr
L Lcr,y Lcr,z ¥ < ~

(mm) (mm) (mm) Ay Az ALt
I-50x50x4 x4 50 LTB 2 1012.2 1162.2 506.1 0.73 0.53 043
1-50x50x4 x4 50 LTB 4 1014.0 1164.0 507.0 0.73 0.53 043
I-50x50x4 x4 50 LTB 5 1013.0 1163.0 506.5 0.73 0.53 0.44
1-50x50x4 x4 50 LTB 6 1012.5 1162.5 506.2 0.73 0.53 043
1-50x50x4 x4 50 LTB 7 1012.6 1162.6 506.3 0.73 0.53 0.43

Cross-section  Specimen ID

39



Table 5: Summary of experimental results for beam-column specimens

. . €n €m (Wg+€m) Nult,test My,ult,test Uult,test
Cross-section  Specimen 1D (mm)  (mm) (mm) (kN) (kNm) ~ (mm)
I-50x50x4 x4 50 LTB 2 5 5.81 6.11 104.30 0.61 9.87

I-50x50x4 x4 50 LTB 4 20 21.67  21.73 70.91 1.54 14.59
I-50x50x4 x4 50 LTB 5 40 42.40 4244 49.21 2.09 19.55
I-50x50x4 x4 50 LTB 6 80 82.88 83.18 31.08 2.58 26.42
I-50x50x4 x4 50 LTB 7 150  151.31 151.54  19.09 2.89 32.89

Table 6: Comparisons of ultimate loads obtained from experiments and finite element simulations
em Nult,test Nult,FE Nuig test Uulttest Uult, FE Wit test

(mm)  (kN) (kN) Nutre  (mm) (mm) Yt FE

1-50x50x4 x4 50 LTB 2 5.81 104.30 109.06 0.96 9.87 8.56 1.15

Cross-section  Specimen ID

I-50x50x4x4 50 LTB 4 21.67  70.91 72.66 0.98 14.59 16.55  0.88
1-50x50x4 x4 50 LTB 5 42.40 49.21 49.50 0.99 19.55 17.71 1.10
I-50x50x 4 x4 50 LTB 6 82.88 31.08 31.01 1.00 26.42  23.94 1.10
[-50x50x4x4 50 LTB 7 151.31  19.09 18.85 1.01 32.80 2877 1.14
Average 0.99 1.08

Cov 0.020 0.104

Table 7: Assessment of existing design methods for laterally-unrestrained stainless steel welded I-section
beam-columns
Design method Welding type Section class N €av €cov  €maz  €Emin

Arcwelded Class 1 &2 239 1.21 0.086 1.52 0.89
Class 3 158 1.14 0.065 1.38 0.98
Class 1 &2 243 1.25 0.081 1.51 1.01
Class 3 166 1.21 0.0v7 1.40 1.02
Class 1 &2 239 1.16 0.174 2.16 0.81
Class 3 158 1.09 0.142 1.51 0.85
Class 1 &2 243 1.19 0.166 1.71 0.91
Class 3 166 1.16 0.171 1.68 0.87
Class 1 &2 239 1.10 0.078 141 0.89

EN 1993-1-4 [2]

Laser-welded

Arc-welded
AISC Design Guide 27 [12]

Laser-welded

Arc-welded Class 3 i i i i i
Greiner and Kettler [13] Class 1 & 2243 1.11 0.104 1.36 0.90
Laser-welded
Class 3 - - - - -
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Table 8: Auxiliary coeflicients used to determine the interaction factors for the design of laterally un-
restrained I-section stainless steel beam-columns subjected to axial compression plus uniaxial major axis
bending

Buckling axis Auxiliary coefficients
Dy, 2.50
Buckling about y-y  Da, 0.35
axis (Kyy.prop) D3, 1.00

Table 9: Imperfection factors o and plateau lengths g recommended for the determination of buckling
resistances of conventionally arc-welded and laser-welded columns
Axis of buckling Welding type  « Ao
Arc-welded 049 0.20
Laser-welded 0.49 0.20
Arc-welded  0.76 0.20
Laser-welded 0.60 0.20

Major axis (y-y)

Minor axis (z-z)

Table 10: Assessment of LTB equations provided in prEN 1993-1-1 [41] and EN 1993-1-4 [2] for arc-welded
stainless steel beams under uniform bending

Design method N  Saw  Secov  Smazr Smin
prEN 1993-1-1 [41] 70 1.03 0.043 1.13 0.95
EN 1993-1-4 [2] 70 1.13 0.130 1.49 0.86

Table 11: Auxiliary coefficients used to determine the interaction factors for the design of laterally un-
restrained stainless steel I-section beam-columns subjected to axial compression plus uniaxial major axis
bending

Buckling axis Auxiliary coefficients
Buckling about z-z Dy rr 0.20
axis (k ) Dy 11 0.40
e Ds 17 0.80

Table 12: Assessment of proposed design method for laterally unrestrained welded austenitic stainless steel
beam-columns susceptible to flexural-torsional buckling
Design method Welding type Section class N €av €cov  €maz  €Emin
Class 1 &2 239 1.10 0.070 1.41 0.89
Arc-Welded Class 3 158 1.03 0051 1.15 0.92
Class 1 &2 243 1.12 0.063 1.34 0.99
Class 3 166 1.07 0.056 1.20 0.95

Proposal
Laser-Welded
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Table 13: Reliability analysis of the proposed design approach for arc-welded and laser-welded austenitic
stainless steel beam-columns susceptible to flexural-torsional buckling

Welding type Data N b kaqn Vs YM1
Arc-welded Experiments & FE 397 1.07 3.44 0.080 1.12
Experiments only 29 1.21 3.46 0.119 1.09

Experiments & FE 409 1.10 3.44 0.063 1.06
Experiments only 19 1.18 3.73 0.071 0.99

Laser-welded
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Table 14: Interaction factors k,, and k,. for eq. (25). Instability governed by buckling about the y-y axis

Typ.e of Interaction factor (kyy, ky-) Reference
section
Austenitic Duplex Ferritic
For A\, < 1.0:
kyy = Cmy[1+ _ _
I 2.50(Ay — 0.35)n,]
sections — [7]
For A, > 1.0:
Ky = Cony (14 . .
1.625n,)
For Xy < 1.3: For Xy < 1.4: For Xy < 1.6:
kyy = Crny[1+ kyy = Crny[1+ kyy = Cmy[1+
qpg 2000w =030, 150(%, —040)n,] 1300k, —045)n,)
[38]
& RHS ~
R For Ay 2 1.3: For X, > 1.4: For \, > 1.6:
kyy = Cpy(1+ _ _
v o kyy = Cmy(1+ kyy = Cmy(1+
2ny) 1.5n,) 1.495n,)
For A\, < 1.3: For A\, < 1.3: For A\, < 1.3:
Ky, ziC’my[l—l— Ky, ziCmy[l—l— Ky, zicmy[u
2500, — 0.30)n,]  2.00(%, — 0.38)n,]  1.90(X, — 0.35)n,]
CHS [45]
For Ay = 1.3: Fonls ForX >1.3:
k’yy = Cmy(].+ — C ( yy — Cmy(1+
2.5ny) 1 4n,) 1.805m,)
I-
sections
Ky SHS ky. = k.. (for k., see Table 15)
RHS
CHS

*Note that this formula has only been verified for members under uniform bending; for other
shapes of bending moment diagrams, the formulae has not been verified but use of the prEN
1993-1-1 [41] C}, factors are recommended at present.
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Table 15: Interaction factors k., and k., for eq. (26). Instability governed by buckling about the z-z axis

Typ.e of Interaction factor (k.y, k.-) Reference
section
Austenitic Duplex Ferritic
For A, < 0.8:
* 02X\ n _ _
I ka =1- Cror7—0.4
et — This
sections For >\Z 2 0.8: Study
* 0.16n — _
kzy kzy =1- Crrr—0.4
SHS
RHS ksy = kyy (for ky, see Table 14)
CHS
For A\, < 1.2: For \, < 1.2: For \, < 1.2:
I- 2.80(\; — 0.50)n,] 2.80(\; — 0.50)n,] 2.80(\, — 0.50)n.]
sections 7]
For A, = 1.2 For X, > 1.2: For X, > 1.2:
ks = Cimz(1+ Ko = Conz(14 ke = Cona(14
1.967.) 1.961.) 1.96n.)
For . < 1.3: For \, < 1.4: For )\, < 1.6:
kzz = mz[1+ kzz = mz[1+ kzz = mz[1+
SHS 2.00(A\, — 0.30)n.] 1.50(\; — 0.40)n,] 1.30(\; — 0.45)n.,]
38
ke  &RHS oo o - B [38]
or A, > 1.3: For A\, > 1.4: For A\, > 1.6:
kzz = sz(1+ kzz — mz(1_|_ kzz — mz(1+
2nz) 1.5n5) 1.495n.,)
For A\, < 1.3: For \, < 1.3: For \, < 1.3:
2.50(A; — 0.30)n] 2.00(A; — 0.38)n,] 1.90(\; — 0.35)n.]
CHS [45]

For A\, > 1.3:
kX, = Chz(1+
2.5n,)

For X\, > 1.3:
k%, = Chz(14
1.84n,)

For A, > 1.3:
k%, = Chnz (14
1.805n.)

*Note that this formula has only been verified for members under uniform bending; for other
shapes of bending moment diagrams, the formulae has not been verified but use of the prEN
1993-1-1 [41] C,, factors are recommended at present.
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