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Human probabilistic reasoning gets bad press. Decades 
of brilliant experiments, most notably by Daniel Kahneman 
and Amos Tversky (e.g., Kahneman, 2011; Kahneman, 
Slovic, & Tversky, 1982), have shown a plethora of ways 
in which people get into a terrible muddle when won-
dering how probable things are. Every psychologist has 
learned about anchoring, conservatism, the represen-
tativeness heuristic, and many other ways that people 
reveal their probabilistic incompetence. Creating prob-
ability theory in the first place was incredibly challeng-
ing, exercising great mathematical minds over several 
centuries (Hacking, 1990). Probabilistic reasoning is 
hard, and perhaps it should not be surprising that peo-
ple often do it badly. This view is the starting point for 
the whole field of judgment and decision-making ( JDM) 
and its cousin, behavioral economics.

Oddly, though, human probabilistic reasoning 
equally often gets good press. Indeed, many psycholo-
gists, neuroscientists, and artificial-intelligence research-
ers believe that probabilistic reasoning is, in fact, the 
secret of human intelligence. Indeed, one particularly 
important element of probability, Bayes’s theorem, has 
come to name an entire subfield: Bayesian cognitive 
science (e.g., Tenenbaum, Kemp, Griffiths, & Goodman, 
2011), spawning probabilistic models of perception 

(Kersten, Mamassian, & Yuille, 2004), categorization 
(Anderson, 1991; Lake, Salakhutdinov, & Tenenbaum, 
2015; Sanborn, Griffiths, & Navarro, 2010), reasoning 
and argumentation (Hahn & Oaksford, 2007; Oaksford 
& Chater, 1994, 2020), and intuitive physics (Battaglia, 
Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, 
& Griffiths, 2013). In parallel, neuroscientists have con-
ceived of the brain as a Bayesian inference machine 
(Doya, Ishii, Pouget, & Rao, 2007). Bayesian methods 
are also widespread beyond psychology—from eco-
nomics (Karni, 2011) to philosophy of science (Howson 
& Urbach, 2006).

What is going on? How can two of the most impor-
tant and influential research programs in psychology 
be built on entirely contradictory assumptions? If the 
human mind is a spectacularly powerful probabilistic-
inference machine, why do people fall into systematic 
and elementary probabilistic errors?
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Abstract
In Bayesian cognitive science, the mind is seen as a spectacular probabilistic-inference machine. But judgment and 
decision-making (JDM) researchers have spent half a century uncovering how dramatically and systematically people 
depart from rational norms. In this article, we outline recent research that opens up the possibility of an unexpected 
reconciliation. The key hypothesis is that the brain neither represents nor calculates with probabilities but approximates 
probabilistic calculations by drawing samples from memory or mental simulation. Sampling models diverge from 
perfect probabilistic calculations in ways that capture many classic JDM findings, which offers the hope of an integrated 
explanation of classic heuristics and biases, including availability, representativeness, and anchoring and adjustment.
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There are various approaches to resolving this puzzle 
(Oaksford & Chater, 2007). For example, we might pro-
pose that low-level, modular, repetitive processes (vision, 
motor, language processing) are Bayesian but that high-
level, effortful, general-purpose, central cognitive pro-
cesses are not. Alternatively, or additionally, we might 
suspect that the Bayesian brain operates only on data 
gathered by the senses and cannot deal with explicit 
probability problems formulated in words or symbols.

We are sympathetic to these viewpoints but note that 
when performance is measured in the same way, there 
is surprising similarity between low-level and high-level 
processes ( Jarvstad, Hahn, Rushton, & Warren, 2013). 
But is there a more direct approach? The Bayesian 
account of cognition cannot be taken literally, even when 
it is most successful. For example, a literal Bayesian 
approach to vision would require calculating the myriad 
probabilities of each possible layout of the environment, 
given a particular visual input, by applying Bayes’s theo-
rem. But these calculations are astronomically complex. 
So Bayesian computational models, and presumably the 
brain itself, can only be approximating optimal Bayesian 
calculations: For complex real-world problems, human 
rationality can only be bounded (i.e., restricted by com-
putational constraints, Gigerenzer & Selten, 2002; Lieder 
& Griffiths, 2020; Simon, 1955; and perhaps using heu-
ristics corresponds to Bayesian inference with extreme 
priors, Parpart, Jones, & Love, 2018).

Any approximation will, inevitably, generate mistakes—
this is what makes it an approximation after all. Rec-
onciliation of JDM research and Bayesian cognition 
would be possible if the way the brain approximates 
Bayesian calculations generates the very errors and 
biases that JDM research has uncovered.

A very natural and simple way of approximating 
Bayesian calculations, and one that is widely used in 
computational statistics and machine learning (so-called 
Monte Carlo methods), maps naturally onto the parallel 
hardware of the brain (Buesing, Bill, Nessler, & Maass, 
2011; Orbán, Berkes, Fiser, & Lengyel, 2016) and builds 
on well-established psychological processes of memory 
retrieval and mental simulation. Rather than attempting 
implausibly complex mathematical calculations using 
the laws of probability, the brain needs only to sample 
from a model of some aspect of the world (Bonawitz, 
Denison, Griffiths, & Gopnik, 2014; Griffiths, Vul, & 
Sanborn, 2012; Sanborn & Chater, 2016)—and, often, 
sampling is easy, even if Bayesian probability calcula-
tions are incredibly hard. If the brain could sample 
forever, then, in certain circumstances, the frequencies 
of the sample will come to match the “true” probabilities 
arbitrarily accurately. But, in reality, the size of the sam-
ple might be very small—perhaps even just one instance 
in some cases (Vul, Goodman, Griffiths, & Tenenbaum, 

2014). Hence, the sample will give only a rough clue 
about the “correct” probabilities—but still this clue may 
be enough to help the brain make “good enough” deci-
sions. The results of the sample can then be converted 
into choices or judgments. Indeed, assuming a small sam-
ple that is then converted either into estimates of prob-
ability or into confidence intervals has successfully 
explained how overconfidence effects strongly depend 
on how participants are asked to respond ( Juslin, 
Winman, & Hansson, 2007).

Deriving probabilities from frequencies drawn from 
samples is reminiscent of, but very different from, the 
frequentist interpretation of probability familiar from 
classical statistics and associated with Fisher and Neyman 
(Hacking, 1990). Whereas Bayesians interpret probabili-
ties as subjective degrees of belief of a particular agent 
or person, frequentists aim for a more “objective” inter-
pretation of probability in terms of limiting frequencies 
of repeated experiments in the external world (e.g., 
flipping a coin), which is independent of the individual. 
Sampling models in cognitive science are inherently 
tied to the psychology of the individual, depending on 
the individual’s probabilistic model from which the 
sample is drawn—thus, different agents with different 
internal models (or items retrieved from memory) will 
assign different probabilities to the same event. Thus, 
although sampling models involve frequencies, these 
frequencies approximate the subjective probabilities 
familiar to Bayesians, particularly those of unique 
events; these models do not embody a frequentist inter-
pretation of probability.

There is, however, an important distinction between 
cognitive models that apply “raw” relative frequencies, 
based on a mental sample (e.g., Costello & Watts, 2014), 
and those that take a Bayesian approach a step further 
(e.g., Zhu, Sanborn, & Chater, 2020) by integrating 
samples with background knowledge (in the spirit of 
Bayesian Monte Carlo in machine learning; Rasmussen 
& Ghahramani, 2003). This difference is especially 
important when sample sizes are small. But before 
exploring the distinctions between sampling models, 
we will first make broader comparisons between sam-
pling and the heuristics-and-biases literature.

Rethinking Probabilistic Irrationality: 
From the Matching Law to Heuristics 
and Biases

The sampling viewpoint predicts a variety of recalci-
trant patterns of apparently irrational behavior. Con-
sider probability matching: the tendency for people to 
predict the next item in a sequence in proportion to its 
probability rather than always picking the most prob-
able next item (e.g., Koehler & James, 2009). Suppose 
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the true probability of heads is two thirds and tails is 
one third. Always choosing the most probable option 
(heads) will be correct with probability 2 out of 3. But 
matching, that is, predicting heads two thirds of the 
time and tails one third of the time, will be correct with 
probability (2/3 × 2/3) + (1/3 × 1/3) = 5/9. Several 
authors have pointed out (e.g., Vul et al., 2014) that, 
although suboptimal, matching makes sense if we 
assume that people draw a single sample and simply 
follow that prediction.

A second consequence is that people will overesti-
mate items that are readily available in memory or easy 
to mentally simulate. Tversky and Kahneman (1973) 
found that words beginning with k are judged to be 
more frequent than words with k as the third letter, 
although they are much less common—because the first 
letter provides a much stronger retrieval cue, as would 
be expected from models of lexical access (e.g., 
Marslen-Wilson & Tyler, 1980). They also showed that 
when participants judge the number of paths through 
a maze, their judgments are strongly influenced by how 
easily the paths can be found (i.e., sampled through 
mental simulation). From this present viewpoint, Tversky 
and Kahneman’s “availability heuristic” is not a specific 
type of shortcut but a side effect of sampling.

Suppose we want to estimate whether HHHHHH or 
THTHHHT has the greater probability of being gener-
ated by a fair coin flip. If we could draw, say, a few 
thousand samples, we would conclude that the 
sequence of length six, HHHHHH, has a relative fre-
quency of about (1/2)6 = 1/64 and that the sequence 
of length seven, THTHHHT, has a relative frequency of 
about (1/2)7 = 1/128. But if we draw a few samples 
(e.g., of different lengths), it is unlikely that either 
sequence will be reproduced exactly. This type of prob-
lem can be addressed by so-called approximate Bayes-
ian computation (ABC; Beaumont, 2019), used for 
real-world problems (e.g., with speech waves or 
images) in which the chance of sampling an exact 
match with the data is close to nil. ABC counts up 
samples that are close enough to the data according to 
some similarity measure. Assuming that one unstruc-
tured mix of heads and tails is judged to be similar to 
another (irrespective of sequence length) and very dis-
similar from a “pure” sequence of heads, we would find  
that many more samples are similar to THTHHHT than 
HHHHHH, leading to the erroneous conclusion that the 
first sequence is more probable. Thus, sampling, com-
bined with independently testable assumptions about 
similarity, provides a novel explanation of the origin of 
the representativeness heuristic (Kahneman & Tversky, 
1972): that the probability of an item is judged by its 
similarity with respect to a category samples (whether 
lawyers or engineers, or sequences of random coin 
flips). Again, according to the sampling viewpoint, 

representativeness operates not as a specific mental 
shortcut (i.e., the representativeness heuristic) but as a 
side effect of judging probabilities by drawing mental 
samples to a “tolerance” based on similarity. Of course, 
this approach depends on psychological assumptions 
about similarity—but these can be independently 
evaluated.

So far, we have ignored a crucial aspect of sampling: 
Often one cannot easily draw independent samples 
from one’s probability distribution—but it is possible 
to draw a stream of samples, each of which is a variant 
on the last. Under certain conditions, then, if one sam-
ples long enough, one can fill out the whole probability 
distribution because the stream of samples gradually 
explores the whole distribution—and this is the justifi-
cation for the method, known as Markov chain Monte 
Carlo (MCMC), invented at Los Alamos laboratories 
(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 
1953). MCMC is now a workhorse of Bayesian compu-
tational models, including models of cognition—but it 
is also a psychologically natural hypothesis. After all, 
peoples’ memories and imaginations operate mostly by 
small “jumps” (Hills, Jones, & Todd, 2012)—retrieving 
or simulating a specific item tends to “prime” psycho-
logically similar items (this point is also captured in 
non-Bayesian sampling models; Costello & Watts, 2018).

Dasgupta, Schulz, and Gershman (2017) noted that 
if the brain uses small correlated samples, as generated 
by MCMC, then the resulting probability judgments will 
be powerfully affected by the starting point. Suppose 
a person wonders what proportion of animal species 
live in Africa. If the person is prompted to begin with 
lion, then the next few samples might be the associa-
tively related zebra, antelope, giraffe, and hippopota-
mus, all of which happen also to live in Africa, thus 
biasing the person’s estimate upward. If, by contrast, the 
person begins with squirrel or polar bear, the sample, 
and hence the person’s estimate, might be very different. 
All these effects would disappear if a person sampled 
forever—the person would rove about the entire represen-
tational space of animals eventually. But judgments need 
to be made quickly, from manageable, small samples.

Such effects of starting point of mental sampling can 
explain a wide variety of nuanced effects, including 
otherwise puzzling “unpacking effects” (e.g., Sloman, 
Rottenstreich, Wisniewski, Hadjichristidis, & Fox, 2004). 
For example, when people judge the probability of an 
event represented as a list of disjunctions of typical 
instances, this probability is inflated. For example, the 
probability of food poisoning, stomach flu, or any other 
gastrointestinal disease is judged to be higher than the 
probability of the logically equivalent gastrointestinal 
disease. But when the disjuncts are atypical, the oppo-
site effect arises. Thus, the probability of gastroenteritis, 
stomach cancer, or any other gastrointestinal disease is 
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judged to be lower than the probability of the single, 
logically equivalent, category of gastrointestinal dis-
ease. The intuitive insight behind Dasgupta et  al.’s 
(2017) model is that priming the sampling process with 
typical examples will help people generate or recall 
examples of the category by starting the search process 
in parts of the search space with a high proportion of 
category members. But priming the sampling process 
with atypical examples will hinder the generation of 
examples by starting the search process in parts of the 
space with a lower proportion of category members.

Dasgupta et  al. (2017) and Lieder, Griffiths, Huys, 
and Goodman (2018) also demonstrated that this pro-
cess leads to yet another of Tversky and Kahneman’s 
(1974) celebrated heuristics, anchoring and adjustment: 
that judgments are biased in the direction of a sug-
gested starting point. For example, in estimating the 
number of countries in the United Nations, a person 
will draw samples from a probability distribution over 
possible values but will be biased by the starting point 
suggested by an anchor number, even when that anchor 
has been generated by a random process (e.g., a rou-
lette wheel) and is clearly objectively irrelevant.

The heuristics-and-biases program captures a broad 
range of phenomena in a set of distinct heuristics. In 
the Bayesian sampling approach, by contrast, the aim 
is to explain these phenomena as arising from different 
aspects of a single process: accumulating and drawing 
conclusions from samples (whether from memory or 
an internal model). So, for example, the availability 
heuristic arises directly from some samples being more 
accessible than others; anchoring arises from the local, 
correlated nature of sampling; and the representative-
ness heuristic arises from the fact that people can typi-
cally expect to draw only samples that are similar, not 
identical, to a given outcome. But the sampling approach 
also has distinctive implications, such as (a) that averag-
ing repeated estimates by a single person should out-
perform any single best guess because people are 
repeatedly sampling from their own belief distribution 
(as shown by Vul & Pashler, 2008) and (b) that these 
biases will disappear if people are given the time and 
motivation necessary to draw a large enough sample.

Probability Judgment by Sampling

A particularly direct test of the Bayesian sampling 
approach is to ask how well it captures people’s explicit 
probability estimates. Our starting point is an important 
(but non-Bayesian) sampling model by Costello and 
Watts (2014), which provides an excellent fit to a variety 
of results. Costello and Watts began with the assump-
tion that people draw samples, from memory or other 
sources, and read off probabilities from the frequencies 

of different outcomes. But, crucially, they suggested 
that the sampling process is imperfect. Thus, trying to 
estimate how likely it is to snow on Christmas day, one 
may misremember some snowy Christmases as snow 
free, and the reverse. This mechanism produces a sim-
ple mechanism for explaining why small probabilities 
tend to be overestimated, for example. Suppose the 
probability of Christmas snow is 10% and suppose that 
a person happens to sample one snowy and nine non-
snowy days from memory. But if, say, 20% of days are 
misremembered, then it is likely that about two of the 
nonsnowy days may be recalled as snowy, thus boost-
ing the estimated amount of snow. The effect reverses 
when one estimates highly probable events, such as 
nonsnowy days. Thus, Costello and Watts explain the 
widely observed tendency for probability estimates to 
be pulled away from the extreme values (e.g., Erev & 
Wallsten, 1993).

Psychologists have, of course, proposed many other 
possible explanations for aversion to extreme probabili-
ties. Prospect theory, for example, assumes that deci-
sion weights are transformations of explicitly presented 
probabilities that demonstrate aversion to extremes 
(Kahneman & Tversky, 1979), and there are other 
approaches that also assume that noisy processing pro-
duces aversion to extreme probabilities (e.g., Erev, 
Wallsten, & Budescu, 1994; Hilbert, 2012). Costello and 
Watts (2014) noted that their sampling approach forces 
judgment biases to be symmetric because the chance 
that a sample is misrecalled is the same for any event. 
So if one’s misrecalled sample tends to overestimate 
snowy days, it would also underestimate nonsnowy 
days to just the same degree. Extending this line of think-
ing, Costello and Watts (2014) created a list of probabi-
listic “identities” over pairs of events, some of which 
have been shown to match human judgment data sur-
prisingly well and others from which the human data 
substantially deviate. These reliable matches and mis-
matches between human judgment and probability 
theory form a challenge to nonsampling models of 
probability distortion; Costello and Watts (2014, 2016, 
2018) have shown how a sampling model captures both 
the distortions and the patterns in human probability 
judgments—demonstrating that these judgments are, as 
they put it, “surprisingly rational” after all and that irra-
tional judgments are the result of noise.

Zhu et al. (2020) showed that a number of identical 
mean predictions can be derived from an even more 
“rational” model, the Bayesian sampler. Zhu et  al.’s 
starting point is that with small samples, reading off 
relative frequencies cannot be quite right. To illustrate, 
with a single sample, every event would have a prob-
ability of 1 (i.e., 1 out of 1) or 0 (0 out of 1). Instead, 
we need to moderate these extremes by combining 
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them with reasonable prior assumptions—treating the 
sample itself as data (as in Bayesian Monte Carlo; 
Rasmussen & Ghahramani, 2003) that should update 
prior assumptions. The effects of the prior are substan-
tial for small samples, but like the effects of starting 
point or autocorrelation discussed above, disappear for 
large samples. The natural Bayesian calculation here is 
extremely simple (linearly pulling probabilities away 
from the extremes) and perfectly mimics Costello and 
Watts’s (2014, 2016) mean predictions. It is more “ratio-
nal” because the deviations from probability theory 
result from using this prior to improve probability esti-
mates based on a small number of samples. Zhu et al. 
showed that the Bayesian sampler has distinctive pre-
dictions for conditional probabilities in which events 
are correlated (e.g., P(icy | frosty), where samples of 
frosty days will typically also be icy; see Fig. 1). This 
is because the Bayesian sampler directly samples from 
conditional probabilities rather than constructing con-
ditional probabilities from samples, and their empirical 
data support the Bayesian sampler model.

Another source of potential differentiation between 
the models concerns the reporting of extreme probabil-
ity values. Assuming sample sizes are reasonably small, 
Costello and Watts’s (2014, 2016) model predicts that 
all samples will or will not be instances of the event of 
interest—so that probabilities of 0 and 1 will be reported. 
The Bayesian sampler, by contrast, assumes that all 
probability judgments will be shrunk by Bayesian 

correction, so that 0 and 1 values should not be reported 
except through occasional response error or when gen-
erated through reasoning rather than sampling (e.g., if 
judging P(A or not A), which is clearly 1 through logical 
analysis alone). Exploring the prevalence of 0/1 prob-
ability judgments is therefore a promising direction for 
future research to distinguish between these sampling 
models.

The Prospect of Reconciliation?

The development of sampling models as psychological 
hypotheses provides a possible reconciliation between 
two apparently diametrically opposed traditions in psy-
chology and neighboring disciplines. Perhaps the ratio-
nal models of Bayesian cognitive science and the 
apparently nonrational findings of JDM research arise 
from a single source: a probabilistic mind based on 
sampling. If this is right, then both of these important 
research traditions may benefit from closer interaction. 
Data from JDM research, behavioral economics, and 
the gamut of apparent errors and biases across cogni-
tive and social psychology might turn out not to under-
mine rational models but rather to provide crucial 
insights into how Bayesian probabilistic calculations 
are approximated by the brain. Moreover, a Bayesian 
sampling framework may provide a unified and inte-
grated perspective for apparently unrelated heuristics 
and biases. It is too early to say how broad and deep 

Bayesian Sampler
Relative Frequency
Probability Theory Plus Noise

Fig. 1.  Experimental data and model predictions for probabilistic identities of icy and frosty weather events. Participants were asked to 
judge individual weather events in a random order, responding to questions of the form, “What is the probability that the weather will be 
[event X] on a random day in England?” Their weather-probability estimates, labeled “P(event X),” were then combined into probabilistic 
identities whose calculations are shown along the y-axis. The expected values of identities are shown in bars with 95% confidence intervals 
across participants. Probability theory predicts that the expected value for each identity should be 0. The overlaid dots are best-fitting-model 
predictions for three models (green squares: a baseline relative-frequency model, i.e., simply the proportion of samples with a particular 
property; blue triangles: the probability-theory-plus-noise model, developed by Costello and Watts, 2014, 2016; red dots: the Bayesian sam-
pler). This figure is adapted from Zhu, Sanborn, and Chater (2020).
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such unification might be. But we suggest that initial 
indications are sufficiently promising to suggest that the 
possibility of reconciliation should surely actively be 
explored.

Recommended Reading

Costello, F., & Watts, P. (2014). (See References). Outlines a 
sampling-based theory of probability judgment in which 
samples are sometimes misclassified, leading to system-
atic biases.

Dasgupta, I., Schulz, E., & Gershman, S. J. (2017). (See 
References). Shows how starting points matter in cog-
nitive models drawing small, correlated samples from 
memory.

Fiedler, K. (2000). Beware of samples! A cognitive-ecologi-
cal sampling approach to judgment biases. Psychological 
Review, 107, 659–676. Shows how the way in which 
samples are gathered generate a wide variety of often 
counterintuitive biases in judgment decision-making and 
social psychology.

Kahneman, D. (2011). (See References). A readable and 
authoritative introduction to judgment and decision-
making research from one of its pioneers.

Sanborn, A. N., & Chater, N. (2016). (See References). 
Proposes that the “Bayesian brain” operates by sampling 
rather than probabilistic calculation.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D.  
(2011). (See References). Outlines a Bayesian approach 
to human learning and cognition.

Transparency

Action Editor: Robert L. Goldstone
Editor: Robert L. Goldstone
Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of 
interest with respect to the authorship or the publication 
of this article.

Funding
A. Sanborn, J.-Q. Zhu, J. Spicer, J. Sundh, and P. León-
Villagrá were supported by a European Research Council 
consolidator grant (817492-SAMPLING). N. Chater was sup-
ported by the Economic and Social Research Council Net-
work for Integrated Behavioural Science (Grant ES/
P008976/1) and the Leverhulme Trust (Grant RP2012-
V-022). N. Chater, A. Sanborn, J.-Q. Zhu, and J. Spicer were 
supported by a Macroeconomics of the Sampling Brain 
grant in the Rebuilding Macroeconomics program from the 
National Institute for Economic and Social Research.

ORCID iD

Nick Chater  https://orcid.org/0000-0002-9745-0686

Acknowledgments

We thank three anonymous reviewers and the editor for 
extremely valuable suggestions that helped reshape and 
strengthen this article.

References

Anderson, J. R. (1991). The adaptive nature of human catego-
rization. Psychological Review, 98, 409–429.

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). 
Simulation as an engine of physical scene understanding. 
Proceedings of the National Academy of Sciences, USA, 
110, 18327–18332.

Beaumont, M. (2019). Approximate Bayesian computation. 
Annual Review of Statistics and Its Application, 6, 379–403.

Bonawitz, E., Denison, S., Griffiths, T. L., & Gopnik, A. (2014). 
Probabilistic models, learning algorithms, and response 
variability: Sampling in cognitive development. Trends in 
Cognitive Sciences, 18, 497–500.

Buesing, L., Bill, J., Nessler, B., & Maass, W. (2011). Neural 
dynamics as sampling: A model for stochastic compu-
tation in recurrent networks of spiking neurons. PLOS 
Computational Biology, 7(11), Article e1002211. doi:10 
.1371/journal.pcbi.1002211

Costello, F., & Watts, P. (2014). Surprisingly rational: 
Probability theory plus noise explains biases in judg-
ment. Psychological Review, 121, 463–480.

Costello, F., & Watts, P. (2016). People’s conditional prob-
ability judgments follow probability theory (plus noise). 
Cognitive Psychology, 89, 106–133.

Costello, F., & Watts, P. (2018). Invariants in probabilistic 
reasoning. Cognitive Psychology, 100, 1–16.

Dasgupta, I., Schulz, E., & Gershman, S. J. (2017). Where do 
hypotheses come from? Cognitive Psychology, 96, 1–25.

Doya, K., Ishii, S., Pouget, A., & Rao, R. P. (Eds.). (2007). 
Bayesian brain: Probabilistic approaches to neural cod-
ing. Cambridge, MA: MIT Press.

Erev, I., & Wallsten, T. S. (1993). The effect of explicit prob-
abilities on decision weights and on the reflection effect. 
Journal of Behavioral Decision Making, 6, 221–241.

Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). Simultaneous 
over- and underconfidence: The role of error in judgment 
processes. Psychological Review, 101, 519–527.

Gigerenzer, G., & Selten, R. (Eds.). (2002). Bounded ratio-
nality: The adaptive toolbox. Cambridge, MA: MIT Press.

Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging 
levels of analysis for probabilistic models of cognition. 
Current Directions in Psychological Science, 21, 263–268.

Hacking, I. (1990). The taming of chance. Cambridge, England: 
Cambridge University Press.

Hahn, U., & Oaksford, M. (2007). The rationality of informal 
argumentation: A Bayesian approach to reasoning falla-
cies. Psychological Review, 114, 704–732.

Hilbert, M. (2012). Toward a synthesis of cognitive biases: 
How noisy information processing can bias human deci-
sion making. Psychological Bulletin, 138, 211–237.

Hills, T. T., Jones, M. N., & Todd, P. M. (2012). Optimal for-
aging in semantic memory. Psychological Review, 119, 
431–440.

Howson, C., & Urbach, P. (2006). Scientific reasoning: The 
Bayesian approach (3rd ed.). Chicago, IL: Open Court 
Publishing.

Jarvstad, A., Hahn, U., Rushton, S. K., & Warren, P. A. (2013). 
Perceptuo-motor, cognitive, and description-based 

https://orcid.org/0000-0002-9745-0686


512	 Chater et al.

decision-making seem equally good. Proceedings of the 
National Academy of Sciences, USA, 110, 16271–16276.

Juslin, P., Winman, A., & Hansson, P. (2007). The naïve intui-
tive statistician: A naïve sampling model of intuitive con-
fidence intervals. Psychological Review, 114, 678–703.

Kahneman, D. (2011). Thinking, fast and slow. New York, 
NY: Macmillan.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment 
under uncertainty: Heuristics and biases. New York, NY: 
Cambridge University Press.

Kahneman, D., & Tversky, A. (1972). Subjective probability: 
A judgment of representativeness. Cognitive Psychology, 
3, 430–454.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An anal-
ysis of decision under risk. Econometrica, 47, 263–291.

Karni, E. (2011). A theory of Bayesian decision making with 
action-dependent subjective probabilities. Economic 
Theory, 48, 125–146.

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object percep-
tion as Bayesian inference. Annual Review of Psychology, 
55, 271–304.

Koehler, D. J., & James, G. (2009). Probability matching in 
choice under uncertainty: Intuition versus deliberation. 
Cognition, 113, 123–127.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). 
Human-level concept learning through probabilistic pro-
gram induction. Science, 350, 1332–1338.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analy-
sis: Understanding human cognition as the optimal use 
of limited computational resources. Behavioral & Brain 
Sciences, 43, Article e1. doi:10.1017/S0140525X1900061X

Lieder, F., Griffiths, T. L., Huys, Q. J., & Goodman, N. D. 
(2018). The anchoring bias reflects rational use of cognitive 
resources. Psychonomic Bulletin & Review, 25, 322–349.

Marslen-Wilson, W., & Tyler, L. K. (1980). The temporal 
structure of spoken language understanding. Cognition, 
8, 1–71.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, 
A. H., & Teller, E. (1953). Equation of state calculations 
by fast computing machines. The Journal of Chemical 
Physics, 21, 1087–1092.

Oaksford, M., & Chater, N. (1994). A rational analysis of the 
selection task as optimal data selection. Psychological 
Review, 101, 608–631.

Oaksford, M., & Chater, N. (2007). Bayesian rationality. 
Oxford, England: Oxford University Press.

Oaksford, M., & Chater, N. (2020). New paradigms in the 
psychology of reasoning. Annual Review of Psychology, 
71, 305–330.

Orbán, G., Berkes, P., Fiser, J., & Lengyel, M. (2016). Neural 
variability and sampling-based probabilistic representa-
tions in the visual cortex. Neuron, 92, 530–543.

Parpart, P., Jones, M., & Love, B. C. (2018). Heuristics as 
Bayesian inference under extreme priors. Cognitive 
Psychology, 102, 127–144.

Rasmussen, C. E., & Ghahramani, Z. (2003). Bayesian Monte 
Carlo. In S. Becker, S. Thrun, & K. Obermayer (Eds.), 
Advances in neural information processing systems 15 
(pp. 489–496). Cambridge, MA: MIT Press.

Sanborn, A. N., & Chater, N. (2016). Bayesian brains without 
probabilities. Trends in Cognitive Sciences, 20, 883–893.

Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational 
approximations to rational models: Alternative algorithms 
for category learning. Psychological Review, 117, 1144–1167.

Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). 
Reconciling intuitive physics and Newtonian mechanics 
for colliding objects. Psychological Review, 120, 411–437.

Simon, H. A. (1955). A behavioral model of rational choice. 
The Quarterly Journal of Economics, 69, 99–118.

Sloman, S., Rottenstreich, Y., Wisniewski, E., Hadjichristidis, 
C., & Fox, C. R. (2004). Typical versus atypical unpack-
ing and superadditive probability judgment. Journal of 
Experimental Psychology: Learning, Memory, and Cognition,  
30, 573–582.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D.  
(2011). How to grow a mind: Statistics, structure, and 
abstraction. Science, 331, 1279–1285.

Tversky, A., & Kahneman, D. (1973). Availability: A heu-
ristic for judging frequency and probability. Cognitive 
Psychology, 5, 207–232.

Tversky, A., & Kahneman, D. (1974). Judgment under uncer-
tainty: Heuristics and biases. Science, 185, 1124–1131.

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. 
(2014). One and done? Optimal decisions from very few 
samples. Cognitive Science, 38, 599–637.

Vul, E., & Pashler, H. (2008). Measuring the crowd within: 
Probabilistic representations within individuals. Psycho
logical Science, 19, 645–647.

Zhu, J.-Q., Sanborn, A. N., & Chater, N. (2020). The Bayesian 
sampler: Generic Bayesian inference causes incoherence 
in human probability judgments. Psychological Review. 
Advance online publication. doi:10.1037/rev0000190


