A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/136829

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

THE CONSTRUCTION AND USE

 OFMATHEMATICAL PROGRAMMING MODELS
FOR THE
ANALYSIS OF THE INTEGRATED INVESTMENT AND FINANCING DECISION

WITHIN A FIRM

David John Ashton

Submitted for the Degree of Doctor of Philosophy

School of Industrial and Business Studies University of Warwick

Coventry

JUNE 1978

ACKNOWLEDGEMENTS

I should like to express my sincere gratitude to my supervisor, Roger Fawthrop, for his unfailing support, Eriendship and advice. Equally I should like to express my sincere gratitude to Derek Atkins for his intellectual stimulation and for the many long hours of discussion without which this thesis would have been so much poorer. I should also like to thank Alan Fox, Brian Terry, Cyril Tomkins for their helpful comments on various sections and Tony Brearley for his guidance in the use of linear programing packages. Finally I should like to thank Mrs Hodgson for her patient interpretation and accurate typing of the script.

DFCLARATION

It is anticipated that some of the work in this theris alay be published as papers joint with D.R. Atkins. lork carried out by D.K. Atkins which has been included in this thesis is contained in separate sections and this fact is acknowledged in a footnote. The substance of Chapter two has already been published as "A re-cxamination of the Baumol-Quandt paradox" The Engineering Economist, Vol. 21. No. 3 while a sunary version of Chapter five has heen accepted for publication in the Journal of Business Finance and Accounting.
1 The Power and Limitations of Mathematical Morlels for the Appraisal of Capital Expenditure Decisions A Survey.
1.1 Introduction 1
1.2 Programming Models, Capital Budgeting andInterdependencies3
1.3 Profitability Indices, Pules of Thumb andApproximate Solutions to Capital budget'ngModels12
1.4 Economic objective functions, the valuation of investment opportunities and the finite horizon problem 18
1.5 A mathematical programming framework for lease cvaluetion 26
1.6 Towards a prectical planning system 34
1.7 A Financial Hlannirg Modrl 44
2 Interciependereics, llirschleifer, Baumol and Quandt
2.1 Intreduction 49
2.2 A Rrspecification and Numerical Counter rxamples 50
2.3 The Mattema+1こa! Theory 59
2.4 An Econonic Interpretation 65
2.5 Conclusion 74
3 Discounting Methods and Rule of Thurib Solutions to theCapital Budgeting Problem.
3.1 Introduction 77
3.2 The Weingartner Model 30
3.3 A Re-examination of Rule of Thumb Solutions to the Hard Rating Problem R6
3.4 A Rule of Thumb Soiution to Weingartner's llorizon Model 91
2. 5 The Chambers' No ${ }^{\text {a }}$ el 100
3. 6 The Impact of Additional Constraints 112
3.7 Conclusion 131
4 Economic Objective Functions, the Valuation of InvestmentOpportunities and the Finite horizon Problem.
4.1 Introduction 137
4.2 The Cost of Capital and Risk Adjusted Discount Rates 139
43 Valuation Models and the Structure of Objective Functions 144
4.4 The Cost of Capital: A General framework 153
4.5 The MM cost of capital formula for finite and irregular flows 165
4.6 Consistency and the elimination of ForumulationErrors172
4.7 Infinite Time Horizon Linear Programmes and Long Run Equilibrium Solutions 183
4.8 The Practical Implications of a Finite Horizon 203
4.9 Conclusion 213
5 The Valuation of a Financial Lease - A Mathematical Programing Framework.
5.1 Introduction 215
5.2 An Analytical Framework 217
5.3 Lease Evaluation in a Modigliani-Miller World 219
5.4 A Traditional Approach 222
5.5 Leasing in an Accounting Framework 226
5.6 The Times Covered Constraint 231
5.7 The Weingartner Model and Leasing 235
5.8 Leasing and financial policy considerations 239
5.9 Conclusion 244
6 Towards a practical planning system.
6.1 Introduction 247
6.2 The Structure of the Model 248
6.3 The Choice of multicriteria method 250
6.4 A Utility theory framework for Goal Programming 254
6.5 The Implementation 261
6.6 The Search Strategy 264
6.7 The Phase I Search 265
6.8 The Phase II Search 269
6.9 The Phase III Search 274
6.10 Conclusions 280
7 Conclusion 284
References 287
APPENDICES
I A Mathematical Statement of the Model 295
II Definitions and Notation 300
III The Initial Balance Sheet, Operating
Projections and Background Environment 306
IV Project Data 310
V The Structure of the Obje 315
VI A Systems Flow Chart - Single Criterion Model. 317
VII Input Parameters - Single Criterion Model 318
IX Solutions and Reports - Single Criterion Model 347
x A Systems Flow Chart - The Multicriteria Model 368

XI	Input Data - Multicriteria Model
XII	The Reporting Suite - Multicriteria Model 395
XIII	A Hierarchy of Information
XIV	Proof of the formula for reranking discounted benefits/costs at the internal rate of return of the marginally rejected project 412
XV	The Weingartner Model 414
XVI	The Closed Function Form of the Adjusted Present Value
XVII	An Analysis of the Dual Equations associated with the Accounting Variables 423
XVIII	The Chambers' Model 424
XIX	The Impact of the choice of Horizon on the Set of Investment Decisions
xX	Lease Analysis in the single criterion model 442

A!35 JTRACT

This thesis examines the contribution that mathematical programming-models can make to the solution of the joint problem of investment and financing within a firm. In particular it contrasts the performance of rules for investment appraisal which are based on discounting methodologies with the solutions which are obtainable from linear programming models. Using a methou of analysiss which exploits the relationship between the primal and dual solutions in such models, it argues that there are strong thecretical reasons why linear programong models will not generate solutions which are radically different from those which can be arrived at by simple discounting procedures. It concludes thot linear programing models in their current form add little to the practice of investment appraisal. It shows however, that such models provide a powerful framework for the developrent of normative decision rules for project appraisal within the broader contcixt of the firm's operating enviroment. The impact of alternative measures of debt capacity and the effect of finite and irresular cash flow patterns on the investment decision are all. consjdered using this framework. These idcas are then applied to the specific problem of the valuation of a financial lease contract. The final Chapter returns to the problem of using linear programming models for investhent appraisal and explores one way in which they might be restructured to be of practical assistance to corporate Einancial planners.

CHAPTER 1

The Power and limitations of Mathematical Programing Models for the Appraisal of Capital Expenditure Decisions - A Survey.

1.1 Introduction.

The last $f: d$ years have seen an increasing acceptance by business analysts of the appraisal of capital expenditure by discounting the cash flows estimated to be generated by such proposals. Yet despite its theoretical superiority over other more traditional methods of investment appraisal it still iemains open to a great deal of criticism both of a theoretical and practical nature (see for cxample fdelson(70)).

A parallel development of recent years has been the exploration and implamentation of computerised financial planning models. These have been developed partially to provide sutsidiary analysis to discounted cash flow (D.C.F.) appraisal and partially as a tool in their own right. In their simplest versions they take the form of a simulation model or rather, to use a more correct title, a financial statement generator in which the effect or: various decisions on selected financiai indicators can be readily assessed. Their virtue lies merely in the speed and power of computation rather than any inherent mathematical sophistication and it is probably for this reason that they have been fairly widely accepted in industry. Matheratical models in their more sophisticated versions usually take the form of linear programming (L.P.)

[^0]formulations of some aspect of the companies operations. The particular aspect of a company's operations that has attracted most attention is the capital expenditure decision. However, In spite of the fact that the initial formulation of the problem is now over ten years old, the survey work by Grinyer and wooller (75). Higgins and Finn (77) in the United Kingdon and the work of Naylor and Schauland(76) in the States indicate that che instances of its implementation are ctill relatively few.

The intention of this thesis is to evaluate the theoretical shortcomings of existing mathematical proyramming models* of the Envestment and financing decision, to analyse and extend their contribution to financial theory as normative frameworks for decision making and to indicate one possible future direction of development that might enhance their managerial acceptability.

The purpose of this chapter is mercly to survey the relerant background material and to summarize and underline the interlinking nature of the ideas which will be developed in the subsequent arguments. The main themes of the research will be introduced initially in the following sections with no attempt at a detailed analysis. They will then be investigated more thoroughly in a corresponding later chapter.

[^1]
1.2 Programming Models, Capital Budyeting and Interdependencies.

The main weakness of the early work carried out in the field of normative models for capital investment selection is the assumption of independency in project selection. Lloyd Amey (72) classifies the interdependencies that do arise in practice into four main categories and it is these interdependencies that will form the subject matter of this thesis. These categories are not mutually exclusive but form convenient groups giving rise to particular problems. Briefly they are:
(1) Physical dependence where feasibility and profitability of accepting any set affects the feasibility and profitability of accepting any different set.
(2) Dynamic and intertemporal dependerce arising from the timing of a particular investment.
(3) Serial dependence in that each invectment may affect all future investments.
(4) Capital Market imperfections which cause the nonseparability of the firms investment decisions and the stockholders consumptions preferences.

Lloyd Amey considers two projects and shows under conditions of perfect capital markets and with a cost of capital which is invariant with time then the internal rate of return criterion and net present value criterion with suitable modifications are able to cope with problems of mutual exclusivity, contingency and intertemporal dependence. He argues that modifications to such rules become impractical if tine number of such interdependencies is large and in these circumstances mathematical programming formulations bceome necessary. Hence mathematical programming
is introduced primarily to provide an efficient combinatorial search procedure over feasible subsets. It is the practicality of the search which causes us to resort the mathematical programming and not any inherent supe:iority of the solution. Indeed as we shall see in certain cases alternative and equally efficient search procedures exist. Nevertheless mathematical programming remains a powerful tool for dealing with interactive financial decisions. Unfortunately, the nature of the interactions in the case of financial models can cause severe problems of formulation. A particularly apposite example is afforded by the paradox associated with the choice of objective functions; in that if one t_{2} ies to maximize the net present value of a sei of projects which are subjected to budget constraints then since the dual values associated with the budget constraints give the correct discount rates to use in the objective function, one cannot specify the objective function until the dual is solved, ard one cannot solve the duai until the objective furction is known. It is worthwhile tracing the development of this problem historically since its affect on later workers in the field has been profound and a few subsequent writers* have not quoted the original paper by Baumol and Quandt (65) in which they first highlighted this paradox.

The problem of the selection of an optimal subset of frojects when the firm is precluded from undertaking all projects with a positive net present value at its cost of capital was discussed first by Lorie and Savage (55). Unfortunately, they arrived at a solution largely by trial and error and hence their method was

[^2]is introduced primarily to provide an efficient combinatorial search procedure over feasible subsets. It is the practicality of the search which sauses us to resort the mathematical programming and not any inherent supeifority of the solution. Indeed as we shall see in certain cases alternative and equally efficient search procedures exist. Nevertheless mathematical programming remains a powerful tool for dealing with interactive financial decisions.

Unfortunately, the nature of the interactions in the case of financial models can cause severe problems of formulation. A particularly apposite example is afforded by the paradox associated with the choice of objective functions; in that if one tz ies to maximize the net present value of a sei of projects which are subjected to budget constraints then since the dual values associated with the budget constraints give the correct discount rates to use in the objective function, one cannot specify the objective function until the dual is solved, and one cannot solve the duai until the objective function is known. It is worthwhile tracing the development of this problem historically since its affect on later workers in the field has been profound and a few subsequent writers* have not quoted the original paper by Baumol and Quandt (65) in which they first highlighted this paradox.

The problem of the selection of an optimal subset of projects when the firm is precluded from undertaking all projects with a positive net present value at its cost of capital was discussed first by Lorie and Savage (55). Unfortunately, they arrived at a solution largely by trial and error and hence their method was
*See for example Lustig and Schwab (68), Carleton (69), Elton (70), Myers (72), Merville and Tavis (73). Burton and Damon (74).
unsatisfactory Erom a computational point of view.
It was Weingartner (62) who was the first to demonstrate
that the Lorie-Savage problem could be formulated as
$\operatorname{Max} 2$

$$
\begin{equation*}
=\sum_{j=1}^{n} \hat{c}_{j} x_{j} \tag{1.2.1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{j=1}^{n} c_{t j} x_{j} \leq F_{t} t=0,1,2, H \quad(1.2 .2 .) \\
& 0 \leq x_{j} \leq 1, x_{j} \text { integer }
\end{align*}
$$

$-\sum_{t=0}^{\infty} c_{t j} /(1+r)^{t}$
where
\hat{c}_{j} is the net present value of project j
$c_{t j}$ is the net cash flow from project j in time t
$C_{r j}$ is the capital requircment of project f in tir.s t
F_{t} is the total capital available in t
r is the borrowing rate
and
x_{j} takes the :alue 1 if tha project is accepted and rexo otherwise.
In this form the solution to the problem can be found by integer programing methods. By relaxing the integer constraint on project selection and regarding the components of the vector x as the scale of accoptanse of an irdividual project the problem can be reformulated as a linear programming problem.

The importance of this step is twofold. The first and most important consequence is that powerful algorithms exist for computational solutions of linear programs. As wa shall see this relatively basic model can be extended easily to cope with constraints other than simple cash balance constraints. A second aspect of the formulation is one which we shall exploit extensively later. The formulation of the capital rationing problem by Weingartner is in terms of budgets and quantities of resources.

In this thesis formulations of this type will be referred to as the primal problem. Closely related to this primal problem is a dual problem which is in terms of prices and values of those resources. The mathematical relationship between the primal and dual problems is discussed extensively in the standard works on mathematical programing (see for example Beale(62), Dantzig(63), Hadley (62)). Of more immediate concern is the economic interpretation of the dual which gives information on the marginal value of additional funds.

The use of dual values to evaluate the cost of funds was considered first by Charnes, Cooper and Miller (59). They were concerned with the problem of a warelouse in which the primal objective function was undiscounted cumulative profits. In this case the corresponding dual variables took on the dimensions of interest rates. It was left to Bamal and quandt (op cit) to point out that the dual solution of the Weingartner problem gives the opportunity value of an extra $f 1$ in each of the constraint years. Thus this aual solution gives information on the marginal efficiency of capital and hence the appropriate disccunt rate to be used in each tine period. However, in the formulation of an objective function we have already assumed a particular discount rate. We thus have the Baumal and Quand: (65) paradox referred to above. Tney claimed that a more correct form of the discount factor would be ρ_{t} / ρ_{0} where $\rho_{t} \cdot \rho_{0}$ are the dual values associated with the budget constraints in year t and now respectively. This discount factor is the proposed replacement for ${ }^{1} /(1+r)^{t}$ in the computation of \hat{c}_{j}. In addition they argued that the capital outlays were merely the net cash outflows from the profect selection. Thus their formulation of the prob?em is as follows:
$\operatorname{Max} Z=\sum_{t=1}^{T} \sum_{j=1}^{n} \rho_{t} / \rho_{0} c_{t j} x_{j}$
s.t. $-\sum_{j=1}^{n} c_{j t} x_{j} \leq F_{t} \quad t=0, \ldots \ldots T$

They proved*that the corresponding dual formulation implied $\sum c_{j t} \rho_{t} \leq 0$ and concluded that the only solution to this problem was the trivial one with x and ρ identically zero.

Baumal and Quandt suggested a way out of this dilemma by reformulating the objective function such that it maximised the vtility of withdrawals from the firm. The revised formulation is:

$$
\begin{align*}
\operatorname{Max} Z & =\sum_{t} U_{t} W_{t} \tag{1.2.6}\\
\text { s.t. }- & \sum_{j} c_{j t} x_{j}+w_{t} \leq F_{t} \tag{1.2.7}
\end{align*}
$$

where U_{t} denotes the utility of a withdrawal in time t. The obvious criticism of this particular formulation is the difficulty of determining a utility function and as such it is essentially a nonoperational model.

Weingartner's own response to the Baumol-Quandt criticism was the terminal value model in which he maximises the post-horizon cash flows of the chosen project set. Thus the model is:
$\operatorname{Max} Z=\sum_{j=1}^{n} \hat{c}_{j} x_{j}$ ihere $\hat{c}_{j}=\sum_{t=H}^{\infty} \frac{c_{j t}}{(1+r)^{t-T}}$
subject to $-\sum c_{j t} x_{j} \leq F_{t} \quad t=0, \ldots \ldots E-1$
and

$$
\begin{equation*}
0 \leq x_{j} \leq 1 \quad j=1, \ldots \ldots, n \tag{1.2.10}
\end{equation*}
$$

* Their proof appears to contain an elementary error (Section 2.3).

This is an interesting way of avoiding the problem since the constraints run over this period ${ }^{ \pm}$to $\mathrm{H}-1$, and the objective function over the non-overlapping period H to ∞. In this case the duals are unrelated to the post-horizon discount rates. The model assumes in fact that the post-horizon discount rate is sufficiently distant to be approximated by a constant.

Ironically, it also implies that sufficient uncertainty surrounds the objective function to make the problem of the appropriate discount rate immaterial. Thus we are trying to maximise a linear function of the subset of the information about which we are least certain! An additional criticism is that it can also be shown that it is equivalent to the maximisation of net present value under assumptions of a perfect market. However, such assumptions would preclude any rationing of funds and under such conditions there is no need to resort to linear programing models since conventional discounting techniques are adequate.

A modified form of this objective function is that used by Chambers (67), in which he maximises the net present value of the dividend stream. His objective function is:

$$
\begin{equation*}
\operatorname{Max} z=\sum_{t=1}^{I t-1} \frac{D_{t}}{(1+i)^{E}}+\frac{V_{H}}{(1+i)^{H}} \tag{1.2.11}
\end{equation*}
$$

Here $D_{ \pm}$is the dividend in time period t and V_{H} is the terminal value of the firm. The discount rate in this case reflects the shareholders' time preference. It should be noted that the last two mentioned objective functions are both variants on a

[^3]more generalised form of maximising $f\left(D_{1}, D_{2}, \ldots, D_{E-1}, V_{H}\right)$ where f is a linear function. They are in essence of the same structure as Baumol and Quandt's maximisation of the utility of withdrawals. Many authors* have adopted this approach to the problem. They have resorted to the utility formulation of the problem and argued that the presence of capital markets imposes a well defined form for this utility function. While such an approach has strong theoretical justifications under assumptions of free access to capital markets it avoids, rather than resolves, the puradox and in a later paper when Chambers (72) modifies his model specifically to include financing opportunities as well as investment projects again resorts to a terminal value model so avoid interfependencies between discount rates and objective function valuation.

It is interesting at this stage to review one further** approach which has been suggested in the financial literature in which its origin lies in the original Lorie-Savage approuch to the problem. Its aim is to finc a solution to the one period capital budgeting problem of choosing a set of projects when the outlay in the first period is subject to a cash constraint. The projects are initially ranked at the firms cost of capital and the internal rate of return of the marginally rejected prcject is determined. The projects are re-ranked at this rate of return and the new marginally rejected project is determined. This process is continued until such time as there is no change in the accepted project list (i.e. those projects

[^4]with positive Net Fresent Value at che two discount rates). The idea behind this process is that the correct discount rate under capital rationing is the marginal productivity of capital or the internal rate of return of the marginally rejected project. This is in fact only a partial truth. The idea behind it appears to be based on an important paper by Hirschleifer (59) in which he discusses discount criteria and the appropriate discount rates to be used. One of his conclusions was that in cases where we are in a borrowing situation then the borrowing rate is the aporopriate rate, in cases where wo are in a lending situation then it is the iending rate, but in a capital rationing situation it is the marginal productivity of capital. While in itself chis might appear on obvious resי!lt it does have very important ramifications, much of the theoretical basis of the Baumol-quandt paper rests in their interpretation of the Hirschleifer paper. Atkins (72)has shown how this last approach can be reformulated as a mathematical programming problem. Thus the model is:
\[

$$
\begin{align*}
\operatorname{Max} z & =\sum_{j=1}^{n} \sum_{t=1}^{H} \frac{c_{i t} x_{i}}{(1+r)^{F}} \tag{1.2.12}\\
& -\sum_{j} c_{j o} x_{j} \leq \dot{F}_{0}
\end{align*}
$$
\]

and

$$
\begin{equation*}
0 \leq x_{j} \leq 1 \tag{1.2.14}
\end{equation*}
$$

where the subscript zero denotes a budget constraint in the first period only. In addition it is required that the discount factor $1 /(1+r)^{H}$ should equal ρ_{0}, the dual of the budget constraint. With this formulation the problem is solvable by the methods of parametric programming. Tie important point that this formulation shiws is that this assumes that the discount rate is a constant for all periods
and its value is determined by the constraint only in the first year. There is no reason to assume that the discount factor applicable to the first year should persist beyond that year. The work of Hirschleifer shows that the correct discount factor applicable from year to year depends upon the budget constraints and lending or borrowing opportunities in each of the years up to the horizon. This brings us full circle back to the problem of the relationship between the discount rates and the duals, and an understanding of this relationship ig a vital preprequisite to many of the ideas to be aeveloped in later chapters.

In chapter two a simple numerical example is chosen and it $1 s$ shown that it is possible to generate a solution in which the primal values are consistent with the dual values. By respecifying the problem, with greater attention being paid to a rigorous definition of the variables, it is shown that while Baumol and quandt managed to identify correctly one solution, they succeeded in identifying merely one solution of many. Moreover, the solution they identified was unfortunately the null vector solution. It is shown further by introducing projects which enable funds to be carried between periods then the solution is both unique and non-zero.

In this way it is possible to generate an internal pricevector or generalized discount rate measuring the intrinsic profitability of a project set. This idea is readily seen to be an extension of the internal rate of return concept applied to individual projects to encompass the multiproject multi-period constrained case. The requisite ideas to interpret this extension can be found in the paper by Hirschleifer (58) which has already been referred to, while the more general nature of this solution
provides us with a mechanism for analysing the multi-period case. Moreover, it is argued that Hirschleifer's work was a natural forerunner of the later mathematical programming approaches and such is the fundamental nature of his results that they form a recurrent theme throughout this thesis.

1.3 Profitability Indices, Rules of Thumb and Approximate Solutions to Capital Budgeting Models.

It has been argued in the previous section that conventional discounting technigues will in general break down under problems of capital rationing because of the interdependencies that arise. Tnis view of the inadequacy of discounting under guch circumstances and the consequent need for mathematical programming models is widely accepted by acziemics.

Thus Amey (72) in the paper already cited states
"in gencral a programing formilation is indispensable when there are interdependencies."

While Bromwich (70) in a survey of capital budgeting states
"The application of programing methods to capital rationing situations yields the set of investments, for each year, which maximises total net present worth in the face of scarce funds in the futuia. No rule of thumb criteria can do this satisfactorily because of the vast number of possible combinations of projects which could be involved." Nevertheless, despite their undoubted theoretical superiority, the rigid structure and prohibitive data requiremenis of many ip models is a severe limitation on their practical usefulness. Their implicit assumption of shareholder wealth maximization may well attribute ton much woight to this single erit.ertnn* and a naive

* This use of a single objective function to describe the organisational goals of the firm is discussed more fully in section 1.6 .
description of the planning process of the firm. A more likely description of the planning process is the view argued by such authors as Simon (57) or Hopwood (74) where profitability is merely one of many criteria which need to be considered; albeit an important one and as such acts as a constraint on the decision making process rather than the overriding purpose of any decision. In this sense discounting is a very effective tool since it attributes a numerical value to the profitability of a project. The decision to accept or reject any project can then be made against other criteria with a knowledge of the consequent impact on profitability. The other great restriction on the use of mathematical programming as a practical method of projert selection is the nred for a complete specification together with a centrally coordinated analysis of all project opportunities upto some planning horizon. Not only does such a prucess appear to have prohibitive data requirements but may well cut across existing organisational responsibilities. Hence although $i t$ could be argued that mathomatical programming is shunned merely because of organisational and data problems, a rather more disquieting observation is where this is not the case and authors cite numerical examples obtained from their models then their solutions appear to differ little from solutions which could be obtained by fairly simple rules of thumb.* In fact, not only is there often a large measure of agreement but also the difference usually seems to occur only among projects which are marginally acceptable and for the very projects which the decision to go ahead is most likely to be made on criteria other than the purely financial anvway.
* A rule of thumb here is used as an "umbrelia" term to include any form of analysis based on a discounting methodology.

Examination of the published solutions of two of the major contributions to this field provide confirmatory evidence of this point. Weingartner (op cit p. 183) in an attempt to illustrate the misleading nature of discounting techniques uses a molified form of his basic horizon model for the selection of the optimal subset from a set of 30 projects whose cash flows span twenty-six years. In the case where the decisions are made subjec to a simple upper bound on the amount of debt available in a period, 11 projects are included in this optimal set. However, out of the twelve projects ranked highest by an internal rate of return criterion eleven of them appear in the selected set. The only exception to this is a project ranked 9 with an internal rate of return of 11.03: compared with a cost of capital (rate on interest on debt) or 10%. In fact the solution would tend to suggest that even this project is only just excluded since it has the l.i-gest reduced cost of the excluded set.

In an attempt to integrate the investment and financing decisions, Chambers (71) develops a complex and realistic model which consists of the selection from a set of thirteen projects available in each of five years up to the planning hoxizon. The projects can be financed by combinations of debentures and rights issues. Also available as options to the firm are the possibilities of Investing either in the equity of other companies or short term government securities. The model incorporates the current United Kingdom tax system and selection is made subject to cash availability with debt availability =estricted by the book level of gearing. Thus the constraints impose a great deal of interdependency between project decisions since any project investment decision is \mathbf{l} ikely to affect any future investment decision because of the impact made
by its retained earnings on the book value of the equity and hence the debt capacity of the firm. The results quoted by Chambers are that the same ten out of the thirteen available projects are chosen in each year. The remainjing projectswhich are sometimes included and sometimes not, are ranked $10,12,13$ by an internal rate of return criterion. Chambers calculates the weighted average cost of capital assumung a fully geared position as 9.8\%, while the internal rate of return of these latter projects are 10.4\%, 9.6\% and 9.28 respectively. He finds also that this investment strategy is largely independent of the firms initial cash position and level of gearing.

While both authors correctly point out the incrnsistences of conventional discounting methods and analyse the dissimilarities of their solutions from those obtained by such methods, both gloss over the -emarkable degree of similarity. Thus it would appear that in the case of Weingartner's model a simple ranking by internal rate of return would have yielded a satisfactory, near optimal, solution and Chambers would have lost little if he had chosen projects with a positive net terminal value at the computed cost of capital. Thus neither model seems to offer a substantial improvemer: over elementary rules of thumb.

The question now arises whether these and similar results obtained on other models are simply freaks of particular data sets, or are inherent structural feature of such models. It is this task that occupies most of the third chapter but it must be pointed out that by concentrating on Weingartner's and Chambers" models, two models are being studied that have essentially the same basic structure. Both models are characterized by an objective function which is the maximization of the value of a firm where the
restriction placed on its investment schedule, apart from a cash balance requirement, is a limitation on the amount of debt it may incur by a debt capacity constraint. Despite considerable development and elaboration of the constraint set by the various writers ${ }^{*}$ in the field this characteristic structure of maximizing a measure of the value of a firm subject to cash availability and restrictions on the level of debt remains a basic subset. Hence an understanding of the relationship between the mathematical programming solutions of the Weingartner and Chambers models and the aiscounting formulae should be illuminating of more complex formulations.

In Weingartner's cmse the debt capacity restriction takes the form of a simple upper bound and in Chamber's case it is related to the book value of the assets. Another model apparently of the same Porm is where the restriction is a times interest coveres on the debt. However, this constraint does differ significantly from the o^{+}her constraines in that the limitation on the amount of debt here is solely a function of the (profitability) of tne investment decision. ${ }^{t}$ These three models cover the most commonly used accounting restrictions of the level of debt and the extension of the work to include theoretical financial market measures of debt capacity proves to be mathematically fairly simple.

The approach to be taken $c a n$ be best illustrated by the contrast of the Lorie-Savage(55) method of solving the capital rationing problem with that proposed by Weingartner. Lorie-Savage

* cee for example Bernhard (69). Hamilton and Moses (73) or Myers and rogue (74).
\dagger In Weingartner's model the debt capacity is clearly independent of the investmeni decision. While in the Chamber's model although dependent in part on the investment decision the debt capacity can always be increased by a further equity issue.
solved the one period case by a simple ranking procedure. Their solution to the two period case was also a type of ranking by using two indices, in this case the appropriate Lagrange multipliers for the budget constraints, which they arrived at by trial and error.

Weingartner cast the problem into a mathematical programing form and showed that the general n-period problem is capable of systematic solution. Both eechniques are search procedures, however Lorie and Savage were looking for the price-vector of the cash balances and could thus be considered to be a search of the dual spaces. On the other hand Weingartner and other writers who rely on linear programing formulations could be considered to be searchiry the primal space for the appropriate value of the decision vector.

The idea of searching for a constant price vector against which projects can be screened is not new. It has long been recognisct that under conditions of capital rationing it is necessary to introduce a modification tc the simple rule of thumb of accepting all projects with a positive net present value at the lending rate and the most appropriate modifications have been debated extensively in the literature.* The main weakness of much of this discussion is that it centres around fairly simple numerical examples, which are chosen mainly to illustrate a particular point rather than to provide a general analysis. ${ }^{\dagger}$

In the Weingartner case the dual search proves particularly revealing. The model incorporates almost the same set of assumptions as simple discounting methods, the only difference being the imposition

[^5]of a 'hard' constraint on debt availability and the dual analysis provides a rigorous framework for an examination of the necessa=y modification to discounting formulac in such situations.

In the Chambers' case, the dual search shows that a general analytical solution to the linear programming model is possible. Hence in both these cases the dual search procedure proves to be more efficient and more useful than the primal search procedure.

While an analytical treatment suffices to determine the dual feasible region for Chambers'and Weingartners' models it is difficult to extend this idea to more complex models. Nevertheless computational evidence will be cited to show the robustness of discounting irfices even in complex models. However, the puzpose of chapter three is not to develop rules of thumb to different kinds of models but rather to emphasise the power of conventional methods of appraisal, to gain irsight into the nature of the soluticrs to these models and to attempt to define more clearly their role in practical decision-making situations.

1.4 Economic objective functions, the valuation of investment opportunities and the finite horizo.l problem.

Although evidence was cited in the previous section that the numerical impact of interactions between the investment and financing decisions may be less intractabie than that suggested by many authors, the existence of this interaction where there are significant degrees of market imperfection* remains unquestioned. In any rigorous treatment of the theory of valuation of the firm the interaction needs to be treated explicitly.

[^6]A mathematical programing framework affords a potentially very powerful analytical tool for this. The advantage of mathematical programing models in this area is their representation of the economic value of the firm as the objective function and their explicit treatment of market imperfections as constraints. Many interesting and economically meaningful deductions can be made from these models by use of the Kuhn-Tucker conditions* for optimality.

The problem of valuation of the firm, within or withcut the context of mathematical programuing, is a core problem of financial theory. The purpose of this part of the thesis is not to tackle directly any of the fundamental issues but to show the contribution that mathematical programing can make to exploring the consequences and logical consistencies of a particular formulation.

This contribution will be discussed more extensively in chapter four. In this section the background material and the nature of one partifular problem will be discussed - the horizon truncation problem.

Of necessity any linear programming model of the firm must have a finite horizon. The properties required of this finite horizon focus precisely on the substance of chapter four tue conceptual problems arising from the interactions of capital market imperfections and the impact on the valuation formula used for the objective function. This aspect is best seen in 2 historical context and once again the work of Weingartner provides the most

[^7]appropriate vehicle.
As we have seen his original approach of maximizing the net present value of the project set was subject to Baumol-Quandt's criticism of inconsistenc: . Their suggested way out of the paradox of maximizing the utility of withdrawals from the firm by a model of the form*
\[

$$
\begin{equation*}
\operatorname{Max} \quad \sum U_{t} W_{t} \tag{1.4.1}
\end{equation*}
$$

\]

Subject to $-\sum c_{t j} x_{j}+W_{t} \leq F_{t}$
was rejected by Weingartner because of the problems of specification of an appropriate utility function. ${ }^{\dagger}$ Instrad he resorted to a horizon valuation model.
*The notation is the same as in section 1.2
\dagger As mentioned, later writers such as Myess (72) have identified U_{t} with the relative utility of total funds in time period t and thus with interest rates exogenously determined by the capital market. Thus Myers rewrites the model in the form
$\operatorname{Max} U_{t}\left[F_{t}+\left[c_{t j} x_{j}\right]\right.$
$=\sum U_{t} F_{t}+\operatorname{Max} \sum_{t} \sum_{j} U_{t} c_{t j} x_{j}$
subject to $\sum-G_{t j} x_{j} \leq F_{t}$
He argues that in a certain world, investors facing a prevailing interest rate K will all adjust their portfolios so that the following conditions hold

$$
\begin{equation*}
U_{t / U_{t+1}}=\frac{1}{(1+K)}>U_{t_{0}}=\frac{1}{(1+K)^{E}} \tag{1.4.6}
\end{equation*}
$$

Defining $U_{0}=1$ means that the firm can use the observed rate K to infer the marginal utilities required 1 ;' the Baumol and Quandt formulation.

Thus Weingartner's reformulated model was

$$
\begin{align*}
& \operatorname{Max} z=\sum_{j=1}^{n} \hat{c}_{j} x_{j}+v_{T}-w_{T} \tag{1,4.7}\\
& \text { 3.t. }-\sum_{j} c_{1 j} x_{j}+v_{1}-w_{1} \leq F_{1} \tag{1.4.8}\\
&-\sum_{j} c_{t j} x_{j}+\left(1+r_{L}\right) w_{t-1}-\left(1+r_{B}\right) v_{t-1}-w_{t}+v_{t} \leq F_{t} \\
& t=1, H-1 \tag{1.4.9}
\end{align*}
$$

$$
\begin{equation*}
w_{t} \leq B_{t} \quad t=1, \ldots \ldots, H-1 \tag{1.4.10}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq x_{j} \leq 1 \tag{1.4.11}
\end{equation*}
$$

$$
v_{y}
$$

(1.4.11)

$$
\begin{equation*}
r_{t}, \quad w_{t} \geq 0 \tag{1.4.12}
\end{equation*}
$$

$$
V t
$$

with the additional notation
$w_{t} \quad$ borrowing in period t.
$v_{t} \quad$ lending in period t.
r_{L} is the interest rate on lending.
r_{B} is the interest rate on borrowing.
$B_{t} \quad$ is a limit on the borrowing in t.
The scalar quantity \hat{c}_{j}, representing the post horizon value of cash flows is given by

$$
\begin{equation*}
e_{j}=\sum_{t=H}^{\infty} c_{t j} x_{j} / \prod_{\tau=H+1}^{t}\left(1+i_{\tau}\right) \tag{1.4.13}
\end{equation*}
$$

This approach gives rise to three important questions.
In what sense is the pursuit of optimal wealth at some future time compatible with maximization of the value of the firm now?

What is the significance of and the determinants of the choice of horizon?

What is the appropriate post-horizon valuation procedure?

A dual analysis of this model provides a foundation for the answers to these questions, the dual of the cash balance equation gives the marginal value of an extra $£ 1$ of earnings and thus the ratio of the duals in successive periods gives the interperiod discount rate at which projects ought to be screening. In effect the dual is the opportunity cost of capital. The relationship between $\rho_{t}{ }^{\prime \prime}$ the lending rate and the borrowing rate and the dual on the debt capacity $\left(\lambda_{t}\right)$ is

$$
\begin{equation*}
\left(1+r_{L}\right) \rho_{t+1} \leq \rho_{t} \leq\left(1+r_{B}\right) \rho_{t+1}+\lambda_{t} \tag{1.4.16}
\end{equation*}
$$

It should be emphasised that these duals are outputs from the optimum linear programing solutions. Thus where the firm is lending, the left hand inequality becomes an equality and $\rho_{t}=\left(1+r_{L}\right) \rho_{t+1}$; where the firm is borrowing with spare debt capacity $\rho_{t}=\left(1+r_{B}\right) \rho_{t+1}$ and where the firm is borrowing upto its limit $\rho_{t}=\left(1+r_{B}\right) \rho_{t+1}+\lambda_{t}$. Thus the opportunity cost of capital may be the lending rate, the borrowing rate or the marginal productivity of capital. The rarginal value of project j is given by $\mu_{j}=a_{j}-\sum_{t=1}^{H} c_{t j} \rho_{t}$. Here \hat{c}_{j} represents the value at H of post horizon cash flows and $c_{t j} \rho_{t}$ is the value of the cash flow from project f valued at ii. Hence μ_{j} is a generalization* of the net terminal value concept.

In answer to the first of these problems, Weingartner concluded that where borrowing and lending rates were equal with $r_{L}=r_{B}$ and borrowing is unrestricted ${ }^{\dagger}$ then maximazation of the terminal value * See Weingartner (74) p. 164 et seg. Page numbers refer to the 1974 edition, though the 1962 reference will be given where the historical context of the work is important.
t The inequality then implies $\quad \rho_{t}=(1+r) \rho_{t+1}$ or $\quad \rho_{t}=(1+r)^{H-t}$ with $\mu_{j}=\hat{c}_{j}-\sum_{t=1}^{H} c_{t j}^{(1+r)^{H-t}}$
of the firm was equivalent to the maximization of the net present value. However, this set of assumptions implies perfect capital markets and under such conditions a linear programiag formulation of the capital investment problem is unnecessary. In concitions of capital rationing Weingartner concluded that maximization of the net terminal value was not equal to maximization of the net present value of the project set.

The dual analysis reveals also the difficulty associated with a specification of a suitable valuation function for post horizon cash flows. As Weingartner states
"The rate taken to be appropriate in computing the horizon values \hat{c}_{j} is the lending-borrowing rate used in the model.s. However, this rate is not the proper one if there are effective limits on borrowing."

Thus Weingartner admits that while the currect discount rate is effectively incorporated into the valuation in the pre-horizon period it is not clear which of the borrowing, lending or marginal retes is the correct one in the post horizon period. Weingartner does provide a clear discussion of the requirements of an horizon, though little further guidance as to how one might determine such an horizon. Thus he states
"In order to unhook the infinite chains of actions and their consequences in the model of the firms investment decisions, we seek a point in time such that the decisions which call for implementation before this date will be exactly the same, whether or not events past that moment are treated explicitly or implicitly (and hence partially ignored). More concretely, and in terms of our model,
we seek a value of H such that the set of accepted projects having outlays or revenues in year H or sooner are exactly the same whether the model makes use of an infinite horizon or a horizon set at H.

In dynamic Models in general such a horizon does not necessarily exist or there may be many of them. If there are several the earliest having this property may be designated as the preferred one."

The discussion gives rise to a definition of a suitable horizon valuation - whichshall be termed the fundamental horizon valuation principle.

The horizon valuation is a satisfactory valuatics model if, for all optimal feasible solutions, the set of pre-horizon decisions with respect to that horizon would be unaltered for any other choice of horizol..

The existence of such a horizon will be discussed in Chapter Four.
Weingartner's appruach to the horizon cruncation problem implies that the horizon is an intrinsic property of the model and its determinants are found from within the model. The alternative approach is to regard the horizon as a function of the firms planning. Such an approach is exemplified jy Chambers (67) in his paper "The allocation of funds subject to restrictions on reported results's he states that
"the horizon is chosen as a date beyond which opportunities cannot be predicted with any confidence, no information is lost by ignoring interactions between projects after that date, or assuming that funds are reinvested at the standard rate. In this approach in which tile aim was to develop a model to
assist management with planning it was convenient to adopt the same planning horizon".

While this may not be totally satisfactory from a theoretical viewpoint it may well prove necessary in practice.

In the later paper (71) on 'The joint porblem of investment and finance'. he adopts a terminal valuation approach since
"This allows the marginal cost of capital in each year unto a planning horizon co be determined within the model"......

He suggests that at the horizon the net value of post horizon cash flows (NPVH)
"takes no account of any prospects for reinvesting some or part of the capital at more thar the marginal rate of return. In fact managers would normally expect to be able to invest substantial sums after the horizon at better than marginal rates, and this expectation would iurmally be shared by shareholders. It would seem to follow that NPVH understates the true value of funds available after the horizon."

Chambers recogitises that the interactive nature of post horizon decisions may affect the opportunity cost of cash flows and hence the valuation.

The investment valuation method implicit with both Weingartner and Chambers models can be represented by Figure 1.4.1. FIGURE 1.4.1.

In order to avoid problems associated with the Baumol and Quandt paradox the horizon in used artificially to separate out the constraint set and the valuation flows. The reduced cost associated with a project decision produced by a conventional linear programming analysis is a generalised net present value which is equal to the post-horizon cash flow contribution less the use of capital and debt capacity valued at their opportunity rates in the pre-horizon period. It should be noted that in both models the post horizon cash flow valuation is approximated by using a pre-determined average discount rate ans the debt capacity effects are totally ignored. It can be seen that neither of these models can satisfy the fundamental horizon principle. The implications and•limitations of such models will be discussed more extensively in chapter four; while the next section will introduce the idea of usimg a mathematical programing framework for the evaluation of a particular financing instrument - a finansial lease. 1.5 A mathematical programong framework for Lease* evaluation.

A financial lease is a noncancellable contractual commitment on the part of the lessee to make a series of payments to a lessor for the use of an asset. The lessee acquires most of the economic benefits resulting from the use of the asset though the lessor retains title to it. The payments made by the lessee to the lessor are such as to reimburse the lessor for the assets and the financing costs associated with the asset f, plus any administration costs and to give him a return on his financial investment. Hence the decision to lease a piece of equipment is at one and the same time the decision to acquire that same piece of equipment. The contractual nature of

[^8]a lease repayment schedule means that the firm is undertaking a form of debt financing while simulaneously it is acquiring an asset which will alter the future cash revenues patterns of the organisation. Thus by its very nature the lease contract is a prime example of an investment and financing instrument.

It would appear that the most suitable method for the evaluation is to snclude it within a mathematical programing model of the firm in which all the available investment and financing opportunities are considered simultaneously. While such an approach obviously offers a mechanism for il:tegrating the lease decision into a formal planning system, the analytical framework afforded by mathematical programming theory can make a major cont=ibution to the development of appropriate valuation formulae. The requisitive analysis is carried out in Chapter Five. In this section the relevant backgroun' and survey of some of the approaches suggested in the financial literature will be discussed.

The initial work of Vancil!63) was followed by a lull but more recently the attention of academics has refocussed on the lease-buy problem as is evidenced by a spate of papers purporting to solve the lease-buy decisions. This revival in interest in the cualuation of financial leases would appear to stem in part from its increasing prominence in the planned financing structure of U.K. firms.

As Fawthrop and Terry (76) point out:
"The growing prominence in the U.K. capital market is made clear by a recent estimate from the Equipment Leasing Association which suggests that the inaustry now provides equipment with an initial cost of approximately $£ 1,000$ million."

[^9]While the numerous writing of academics has resulted in little consensus as to the correct method of analysis of a lease. A common but by no means universally accepted approach is to compare the merits of lease financing with that of debt financing via a discounted present value method of the cash flows resulting from these alternatives. This gives rise to two particular measures of the cost of a lease which will prove of great value in our analysis. They are the interest rate on the lease and the after tax cost of the lease. The interest rate implied in a lease is just that rate of interest which when applied to the outstanding capital on the lease is such that the lease repayments mect both capital and interest. In order to make precise this definition and to fccilitate the subsequent discussions it is convenient to write down the algebraic expiessions for the lease-buy decision from the point of view of the lessee, using the following notations:
$P_{t}=$ Lease payment at the end of year $t(t=1,2, H)$
$b_{t}=$ Tax allowance on the assets during year $t(t=1,2, H)$
$I_{t}=$ Interest payment on debt at end of year $t(t=1, h)$
$R_{t}=$ Repayment of principal at the end of year ($t=1, H$)
$x=$ Debt interest rate
$A_{0}=$ Cost of asset
$w_{t}=$ Debt outstanding at the end of t
$T=$ Marginal tax rate on corporate net income
$H=$ Length of the lease contract
Hence we have the lease interest rate i_{L} defined by the equation

$$
\begin{equation*}
A_{0}=\sum_{t=1}^{H} \frac{P_{t}}{\left(1+i_{L}\right) t} \tag{1.5.5}
\end{equation*}
$$

and the after tax cost of the lease x_{L} defined by the equation

$$
\begin{equation*}
A_{0}=\sum_{t=1}^{H} \frac{P_{t}(1-T)+b_{t} T}{\left(1+r_{L}\right)^{t}} \tag{1.5.6}
\end{equation*}
$$

In general, academics* tend to reject such measures as internal rates of return in favour of net present value methods, though in this particular case under the most rigorous analysis the former measure provides a very good decision parameter.

MaO's analysis (69) exemplifies the more usual net present value approach. The discounted cost of a lease financing i-:

$$
\begin{equation*}
=\sum_{t=1}^{H} \frac{P_{t}(1-T)}{(1+K)^{L}} \tag{1.5.7}
\end{equation*}
$$

while the corresponding cost of debt financing is

$$
\begin{equation*}
\sum_{t=1}^{H} \frac{P_{t}-\left(I_{t}+b_{t}\right) T}{(1+K)^{T}}+w_{0} \tag{1.5.8}
\end{equation*}
$$

In the first expression only the lease payments are allowable against tax while in the second expression both depreciation charges and interest charges are allowable against tax. Hence from this analysis it can be seen that the value of the lease-buy decision is:

$$
\begin{equation*}
\sum_{t=1}^{H} \frac{P_{t}(1-T)}{(1+K)^{E}}-\sum_{t=1}^{H} \frac{P_{t}-\left(r_{t}+b_{t}\right) T}{(1+K)^{t}}-w_{0} \tag{1.5.9}
\end{equation*}
$$

So far nothing has been said about the appropriate discoust rate K to use and this remains the sentre of much of the controversy about lease analysis.

Mao suggests that K is the firms marginal investment returns an assumption which would imply that the lease is being considered under some state of capital rationing. The use of the margina?

[^10]investment return as the appropriate discount rate is
subject to much dispute. * Other writers such as Vancil adopt
an average cost of carital discount rate. Vancil, recognising that other sources of money are available, argues that it is desirable to eliminate the differences in the amounts of financing when comparing specific proposals. Since leasing provides more financing than debt the company will nave more fixed charges under the lease plan than under the debt plan. These higher fixed charges may prompt investors to discount earnings (or dividends) at different rates. Vancil's (61) approach is to compare leasing with borrowing only after the difference In the amounts of funds provided have been removed. At a particular time t, of a leasc repayment P_{t}. rw represents the fuputed interest expense while the remaining $P_{t}-I W_{t}$ represents repayment of the principal. In order to remove the difference in the amount of Einancing Lrovided by leasing and borrowing the Basic Interest approach focuses on the tax savings associated with the non-interest portion of the lease payments. Hence the cost of leasing under this approach is given by the difference between the price of the assets and the present value of the tax savings associated with the non-interest portion of the lease payments. This is given by the expression:
\[

$$
\begin{equation*}
A_{0}=\sum_{t=1}^{H} \frac{\left(P_{t}-r w_{t}\right)}{(1+K) E} \tag{1.510}
\end{equation*}
$$

\]

For the purpose of comparison, the present value of the alternative which is that of debt financing is just given by:

$$
\begin{equation*}
A_{0}=\sum_{t=1}^{H} \frac{W_{t}^{T}}{(1+K)^{E}} \tag{1.5.11}
\end{equation*}
$$

[^11]In this case the cost of interest charges on debt financing have been eliminated already and do not appear in the expression. Leasing here is viewed as an alternative to debt. One of the difficulties of such an approach is that of comparing difrering amounts of debt financing and loan repayment schedules.

Using a variation of Vancil's algorithm, Bower, Herringer and Williamsor (66) specifically tackle this problem by assuming that the loan payment schedule is the same configuration as the lease repayment schedule to 'wash out' this difference. The remaining details of their approach is of less interest to this brief survey than their choice of discount rate - both Vancil and Bower, Herringer and Williamson chose the'wighted average cost of capital.

It can be argued that conceptually it is wrong to use the cost of capital in making decisions between methods of financing. The cash flows under consideration are contractually fixed or are associated with tax savings and involve very little risk. It thus seems erroneous to use a cost of capital, which emobodies a risk premium for the firm as a whole. The counter-arguments of Vancil and BHW is that investors and creditors, in their valuation of the firm, recognise the difference in tax savings between the two methods. Because both investors and creditors determine the overall cost of capital the average cost of capital is the appropriate rate. A cynic might well remark that the debt rate is avoided because discounting at a debt rate would in general cause leasing to be sufficiently unattractive and that neither of these algorithens would yield results which would explain its popularity. The use of the average cost of capital gives rise to one further problem. Where there is significant portion of lease finance, which will be usually more expensive than debt finance,
then this fact ought to be reflected in the cost of capital rate. Thus the discount rate used in the above algorithms is dependent upon the decision to lease. Such an interdependency would appear to be insolvable, at least within the current framework.

F lease clearly alters the pattern of future cash flows available for reinvestment purposes. All the approaches discussed so far concentrate on the lease as a financing instrument and make no attempt to analyse the investment consequences of the lease decision. Fawthrop and Terizy (76) attempt to redress this omission by introducing the concept of residial balances. Their argument is that the cash inflows, net of tax and dividend payments, associated with the lease decision become a primary source of finance in the undertaking of further capital expenditure.

Any evaluation of $=$ lease should attribute to the lease the value of this additional capital. The resulting analysis separates the cash flows associated with a lease irito component cash flows and the resultant expression for the value of a lease takes the form:

```
PV (Lease) = PV (Net of tax operating cash flows)
+PV (Lease interest payments)
+PV (Repayments of Lease capital)
+PV (Earnings on Residual Capital Balances)
```

where PV stinds for the present value, evaluated at the weighted average cost of capital. . In common with Vancil the interest cost compnnent of the lease is separated out. The significant difference between this expression and the other expressions is the inclusion of revenue flows in the evaluation of the lease, via the earnings on the residual capital balances.

The residual capital balances need further explenation. The authors define these as:
"The residual amcunt of capital outstanding (on the lease) after successive cumulative repayments have been maden.

They argue that these balances represent funds which can be reinvested so that they earn the average return on assets enjoyed by the firm. This return is assumed to be at a rate above the cost of capital of the firm and as such the assumption is tacitly made that the firm is operating in a capital rationing situation. It is interesting to compare this last approach in which the investment alternatives are elucidated and valued at the marginal reinvestment rate before discour:ting at the weighted average cost of capital, with the firet approach by Mao in which the financing flows are elucidated and valued at the debt rate before discounting at the marginal reinvestment rate. Thus the emphasis has shifted from the lease-buy option as a financing decision to that of an investment decision, while the intervening aiscussion concentrated on the differing amounts ce debt available under the alternatives.

In surmary, the debate on lease evaluation centres on two key issues.

The first of these is the appropriate discount rate to use in the evaluation. Clearly the lease involves an investment decision which implies the use of funds at the appropriate reinvestment rates. It is also a financing decision which because of its riskless nature is very similar to a debt instrument and suggests discounting at a debt rate.

The second major issue is the impact that a lease may have on the debt capacity of the firm. Since it has been argued that a
lease is an alternative form of debt it will presumably affect the perceived capital structure of the firm. This change in capital structure should be reflected in any cost of capital used.

Both of these problems would seem intractable within the current framework.

The adyantage of a mathematical programing framework is in its ability to cope with these issues. Within such a framework the appropriate discount rate is determined by the decision set and Line debt displacement is reflected in the debt capacity constraint.

In chapter five a generalized expression which clearly defines tre relative rolcs of t:'e various discount ratcs and the debt capacity effects will be developed. The strength of this expression is in its ability to ensure a logical consistency between sets of assumptions about the nature of the capital markcts and the resulting valuation formulae. Hence it is relatively easy to explore alternative beliefs about the operation of the capital markets. It will be seen that under the most rigorous assumptions of perfect capital markets leasing is an unattractive proposition. While as imperfections, in either the capital markets or accounting measures of debt, are introduced into the assumptions then situations in which leasing would be an attractive proposition can be discerned.

1.6 Towards a practical planning system.

As was indicated in the introduction the survey work of Grinyer (72) and Higgins and Finn (77) in the United Kingdom and that of Gershef ski (70) and Naylor and Schauland (76) in the States has shown that while there exists many corporate financial models very few are of the mathematical programming type.*
-Grinyer found only one optimisiny model out of fifty models in his curvey while Gershefski suggests that 958 of the models he surveyed were of the simulation type - a resuit confirmed in the later survey of Naylus a Schaulend

The reasons for this soon emerge if we examine current idcas on the nature of the objectives and of the planning process within an organisation and contrast these with the structure of the objectives and planning process implicit in the two types of financial models.

The objective function normally chosen in most corporate financial mathematical programing models found in the literature is the maximisation of the value of the firm. This valuation criterion is in accordance with traditional economic thinking which assumes that the objective of the firm is the maximisation of the long run profits. However, the inadequacies of classical economic theories in accounting for the behaviour of the firm has led to a series of revisions of the concept of the firm as a profit maximiser.

One of the first major revisions was by Baumal(59) whose observations led him to conclude that firms do not devote all their energies to maximising piofits but rather that, as long as 2 satisfactory level of profits is attained, a compary will seek to maximise its sales revenue. The importance of this hypothesis is that the firm is no longer working towards a single objective but must balance two competing and not necessarily consistent joals. Baumol's idea is still primarily a description of the behaviour of the firm in the market place.

A more comprehensive and directly challenging attack on the economic theory of the firm arises from the work of organisational theorists. H.A. Simon(57) argues very persuasively that the omniscient rationality attributed to.economic man bears little resemblance to reality. A more accurate description of the behaviour of decision making within an organisation is that of a search for satisfactory solutions. In this model of behaviour the objective function becomes a two valued utility function: good enough or not good enough.

While most of the models that we have already discussed appear in part to incorporate these ideas by the inclusion of policy constraints such as a minimum level of return on capital. Simond (64) interpretation of these constraints is somewhat different. In his view decisions aie not directed towards a single goal but with discovering courses of action that help to satisfy a whole series of constraints. It is these constraints that motivate the decision maker and guire his search. In this sense the constraints are more 'goal like' than binding imits on the possible actions. Any planning mechanism ought thus to aii the decision maker to find 'satizfactory' plans with rerpect to these constraints or goals rather than to maximise a single criterionand regard the constraints as inviolate.

The foregoing discussion provides a key for the understanding of the high deqree of acceptability of simulition models. The characteristic feature of these simulation models is that they examine the consequence of a decision by producing a series of financial indicators. These indicators range from projected profit and loss statements, balance sheets sources and use of funds statements to merely a few financial ratios. Hence, by having an immediate analysis of the consequence of any decision, the decision maker can search rapidly through series of alternative plans hopefully to arrive at a satisfactory solution. Hence, the computer is merely performing, albeit many times faster, analysis traditionally carried by the accountant. Although their high degree of managerial acceptability may well stem from this emulation of traditional accounting methodologies it imposes
a severe limitation upon their power. In particular they are unable to provide much guidance in searches for alternative and possibly better solutions. Thus if a particular plan is unacceptable it is left to the user to input another series of decisions in the hope that this will improve the general level of performance. bihile it is true that certain models do incorporate decision rules*. These rules are usually simple pre-emptive lists such that ifa particular restriction is not satisfied in a period then the restriction is overcome by searcining through a preordered list of alternatives. A more sophisticated variation of this is the method of backward iteration (Grinyer and woller(75)) when previous decisions can be altered to overcome a restriction in a particular time period. Though again this can be seen as a limited search through a pre-ordere? list.

In contrast mathematical programming is a very powerful tool. Its main limitation is that before the search is commenced it is necessary to specify a minimum set of conditions which any plan must satisfy together $w i t h$ a single measure of the value of this plan. This prior specification of minimum conditions and a single criterion introduces an unfamiliar and,possibiy unacceptable, rigidity into tre planning system.

A further contrast between financial simulation models and mathematical programing models is in the nature and quantity of the information fiows between the model and the user.

[^12]Financial simulation models are characterised by requiring decision inputs from the user and output the information in the form of the consequent impact on the value of selected financial policy variables (e.g. return on capital, earnings per share). In linear programing models the information input is merely the data relating to the benefits and costs of various alternatives and the plan is output in the form of a set of decisions. In this case the impact on financial policy variables has to be determined separately. Hence, as currently used mathematical programming models search through decision space for a plan which maximizes a scalar measure of company performance whereas simulation models are used to search, even though that search is unstructured, over a vector of policy variables.

It is the contention of this section of the thesis that the acceptability of simulation models stems largely from their ability to provide an interactive search mechanism over a vector of policy variables. It is thus the aim of the final Chapter of this thesis to illustrate one mathod whereby mathematical programing algorithms may be used to enhance this search.

The remainder of this section concentrates on the approaches proposed so far in the literature in order to understand why they have failed to provide a viable alternative to either simulation or LP morels.

The work of Simon (57 and 64) Cyert and March(63) in developing a behavioural tr:ary of the fir.n finds its recognition in operational research methodology in the recent development of multi-criteria methods. These methods accept the multi-
criteria nature of many planning systemsand attempt to explore the various alternatives in a systematic fashion. Although this approach at first sight would appear to provide the appropriate planning mechanism a closer examination of the two mainstreams of research in this area indicate quite daunting implications for the management user.

The first of these approaches originates from the early work of Charnes, Cooper and Ijiri (63) in goal programming. In this approach the objective function usuaily takes the form of a weighted linear combination of deviations from a set of goals. While their formulation is intuitively appealing, its rather simplistic structure can give rise to anomalies caused by solution instabilities*. Another major difficulty is the

* A particularly apposite example is the case of attempting to maximise profits in each of twc years where tntal profits are limited to a fixed quantity. If the problem is formulated as

$$
\min (1+\varepsilon) z_{1}+z_{2}
$$

s.t.

$$
\begin{aligned}
& p_{1}+z_{1} \geq 1 \\
& p_{2}+z_{2} \geq 1 \\
& p_{1}+p_{2} \leq 1
\end{aligned}
$$

where p_{1}, p_{2} denote profits in each of the two consecutive years and z_{1}, z_{2} are shortfalls from target. The ratio $1+\varepsilon: 1$ expresses a preference for profits in year one over year two. Then the solution if $p=(0,1)$ for a positive value of ε and $p=(1,0)$ for a negative value. Thus an infinitesimal charge in the weights can completely alter the form of the solution. While this exaraple may seem trivial and unlikely to occur in practice the reverse appears to be true.
specification of a trade-off function between conflicting goals. This difficulty is compounded in the case of financial planning models because the goals are usually ratios introducing a nonlinearity into the problem.

The importance of ratios is fairly clear from the extent to which they are discussed in standard texts on financial analysis*. In addition there have been various publications which give ratio norms for various industrial categories. Although there is a plethora of ratios and their definitions :ary widely (Perrin(6f)) certain key ratios can be identified as particularly significant in corporate financial planning. Obvious examples are measures of profitability such as return on capital, earnings per share, measurement of debt levels such as gearing and times covered together measures of growth of sales and profit.

The idea of incorporating financial ratios into mathematical programing methods is not new. Chambers (67) in his paper 'Progranming the allocation of funds subject to restrictions on reported results' concludes:
"It became evident in discussions of the first aspect the effect on published results - that at least in the short run, managers were using several overlapping but distinct criteria to measure the firms' performance and the success of capital budgeting. On the other hand, they did not question the fundamental importance of cash flows which a project could be expected to generate. On the other hand, they were unwilling altogether to neglect the

[^13]changes which the project would bring about in other parts of the published accounts, derived on the basis not of cash flows but of accruals. They regard the accounting convention of assigning costs and revenues to the periods judged to give rise to them as defining rules of a game in which they wanted a good score."

However, in his particular model these ratios were hard constraints ard could not be violated. A more appropriate model according to the urganisational theorists would be one where constraints were not hard and could be broken if it seemed

Deneficial. While gon: programming ccritainly effords such a structure, the quantification of constraint violations is a fundamental problem a:sociated with the weights used in goal programming. These weights are the relative value that the decision maker attaches to deviation from one criterion as opposed to another and the difficulty of attaching sensible values to these weights In any realistic planning model has led many authors to abandon goal programing formulations for financial models. Such an attitude is characterised by Carleton, Dick and Downes(73).
"If the objective function in a goal programme has more than one argument, absolute priorities have to be imposed arbitsarily. Consequently, nonachievability of all the goals, when such is the programme solutions, leaves unanswered the important economic question of how objectives trade off against one another. In other words, finance theory, even applied gently, has something to contribute to management's undertaking of how financial policy requirements fit together. And goal programuing is a substantially lesa powerful tool than linear programing for accomplishing this.n

It would appear that if an operationally viable search tool is to be developed goal programing as it currently stands falls some way short.

The second mainctream of multi-objective research is the development of algorithms for the generation of efficient solutions. A solution is said to be efficient if the performance on a particular criterion can only be improved to the detriment of the performance on some other criterion.* Clearly the decision maker need only consider efficient solutions in his search for the most acceptable one. For linearly indegendent criteria Benayoun and Tergny(70) have shown that these eificient solutions are situated on the boundary of the feasible region. If the efficient solution lies at a vertex, it is referred to as an extreme efficient solution, otherwise it is referred to as a non-extreme efficient solution. Every multicriteria LP problem has only a finite number of extreme efficiert solutions but an infinite number of non-extreme solutions. Nonextreme efficient solutions can be expressed as convex combinations of extreme efficient solutions, but not all such combinations yield non-extreme efficient solutions. ${ }^{\dagger}$

While a fairly comprehensive survey of algorithms for the determination of sets of efficient solutions can be found in

* Mathomitically, if $\gamma_{i}(x)$, iEI denotes the criteria on which decision x is judged. Then solution x is efficient if and only if there is no other solution Y such than

$$
\gamma_{i}(y) \not \gamma_{i}(x) \quad \gamma_{i}
$$

and

$$
Y_{i}(y) \geqslant Y_{i}(x) \text { for some } i \in I
$$

${ }^{\dagger}$ See $Y u$ and zeleny (73) for a further discussion of this.

Thanassouilis (76) the basic limitation of the approach is self evident on consideration of the details of just two such algorithms. This limitation is a natural consequence of the fact that efficiency of solutions is a very weak form of comparison, leaving a large number of solutions to be considered before the final compromise solution can be selected. For example an algorithm which has been proposed by Yu and zeleny (73) . centres on the determination of all nondominated faces. Although strictly speaking such an approach should not be termed an algorithm, since it offers no guidance to the determination of a final solution even given that the 'best' face has been determined, a more disturbing feature is the computational implications of the approach. Thus the method essentially requires consideration of some 2^{m+n} systems of equations where m is the number of constraints specifying the feasible region and n the number of structural variables. Since the problem posed for solution in the last chapter consists of some 77 structural variables and 48 constraints, this method is seen as computationally infeasible.

Another algorithm, which has been proposed by Evans and Steuer (75) involves the determination of extreme efficient solutions. Briefly the method relies on the connectedness* of the efficient vertices and generates the complete series of efficient vertices by moving from vertex to vertes. A check for efficiency of vertex needs to be carried out at each stage and this itself requires the solution of a linear program. Again, such an algorithm proves computationally

[^14]prohibitive for most realistically sized problems.

It would seem that on the one hand goal programming methods confront the decision maker with a non determinable prior specification of trade-offs while the algorithmic searches of efficient solutions present the decision maker with a superabundance of alternatives. Thus, until the informational inputs required of the decision maker in goal programing can be reduced, or, until the algorithmic approach can be modified to produce appropriate and order subsets of possible efficient solutions, neither method can be sonsidered as practical.

In chapter four a utility framework for goal programming is examined. This frame:ork provides a powerful and insightful mechanism for the development of the tocls necessary for carrying out an interactive search of the set of efficient solutions. In the next section a realistically sized planning probler is proposec to provide the discipline of a precise contextual setting for a thorough test of these search procedures. It will be seen while a natural strategy evolves the essence of the meihod developed is in its flexibility of response to the decision makers preferences. In this way, a model is developed which may in the end begin to hridge the gap between mathematical programming models and simulation models.

1.7 A financial planning model.

The central theme of this thesis is the nature, impact and

* Steuer reports that a sample of 25 constraints, 50 variable problems with three objective functions had an average of 605 extreme efficient vertices and required 152 seconds of CPU time on an IBM 370/165 computer. However, the time required appears to increase exponentially with the size of the problem and he was unable to obtain complete sets of solutions in any reasonable time to problems-much larger than this.
resolution of the interdependencies that arise between the investment and the financing decision. In previous sections various aspects of these interdependencies have been introduced, though most of the subsequent discussion of necessity has centred around fairly simple models. Thus in section 1.3 it was suggested that models which consist only of a cash constraint and a debt capacity constraint may be 'solved' by a relatively straight forward application of discounting principles, though it is certainly far from clear how such discounting approaches might behave in more complex models. Section 1.4 introduced some of the problems that arose out of interdependencies between the form of the valuation model, the financing options and the constraint set. In particular it concentrated upon the effect of a finite horizon time. The extent to which this poses a problem in practice for large scale planning models remains unknown. A similar question emerges in the theory of leasc valuation. While analytical methods suffice for the development of valuation formulae in most of the models mentioned so far, such methods have proved inadequate when it comes to dealing with more elaborate models. This is of course a major weakness in the analysis since the leasing decision appears to be a result of a complex interaction of tax laws and debt availability determined largely by reporting standards. Finally the work of the last section suggests that the firm operates in an environment where its courses of action are constrained by consideration of the impact that they might have on a whole multiplicity of criteria. An exploration of this idea requires a model rich in detail but much less rigid in structure than the conventional linear programing models hitherto discussed.

Unfortunately, many of the models which have been used to illustrate the various aspects of the above problems are relatively trivial in nature and fail to provide adequate tegt material. In order to provide for a more comprehensive examination of the ideas developed in this thesis a realistically sized* programming model of the firm was developed.

The model was developed in two distinct forms. The first of these follows the traditional economic valuation approach where the objective $1 s$ the maximisation of shareholder wealth. In this model all the constraints are hard constraints in that a plan is infeasible unless it simultaneously satisíies all the constraints. The same data and basic structurc is also used to generatc a parallel version which takes the form of a 'goal' programming model. In this model all the financial restrictions or constraincs are 'soft' constraints and hence it is possible that all or any of these restrictions may not be riet in an acceptable plan.

The model provides a central test bed for the computational evaluation of the main ideas of this thesis and despite its size and complexity it plays a contributing rather than leading role in this thesis. In order to emphasise the nature of this role and avoid breaking up the theoretical arguments, a detailed statement of the model is reserved for the appendices with a discuspion of the structure of the objective function in the appropriate chapters. A short sumary of the main features of the model should suffice at this point, while a detailed mathematical statement can be found in appendix I.

[^15]As already stated, the model is a linear jrograming representation of the investment opportunities over time facing an organisation together with corresponding a set of financing alternatives. Briefly, it contains four groups of variables representing accounting quantities, financing and investment opportunities and variables associated with goals and targets. The accounting variables have been chosen at a level of detail that gives sufficient richness for the purpose in hand without an excessive amount of detail. Hence, while current assets are included at an aggregate level, capital assets are grouped into two categories to allow for different tax treatments. Also overáraft, dividends and tax payable are identifiea as separate elements composing the short term liabilities because of their importance as financing elements. For ti:e same reason long term capital and shareholders capital are separately identified also. The model has two main groups of constraints.
(a) A technological set consisting of the cash balance equations and accounting definitions.
(b) A financial policy set associated with the performances on certain key financial criteria such as return on capital, times interest covered, earnings and dividend per share.

Apart from the financing alternatives the firm is faced with a series of decisions to be made about investments in projects. There are 16 different projects in all, though since some of these projects are available in more than one year there are in fact up to 45 projects available over the eight year planning period. The projects are specified in terms of thoir contribution to sales, earnings, current assets and liabilities together with a statement
of their capital requirements in both building and land and plant and equipment. The internal rate of returri of these projects varies between 7.5% and $\mathbf{1 5 . 5 8}$. A complete summary of the projects occurs in appendix IV.

It is further assumed that the organisation at the start has already a series of on-going operations and future financing comitments such as planned long term debt requirements. Apart from these projections resulting from its current operations, the firm has a series of policy targets, for instance a minimum relurn dividend payout and capital in each year, and sales targets which it hopes to achicve over the planning period. A statement of these targets together with the other base data appears in appendix 1II. Also contained in appendix III is a statement of the taxation allowances which the organisation may claim and details of the assumptions made about the timing of the cash inflows and outflows during a year.

It will be seen that the model in itself is not original, indeed it would be difficult to generate a model which is completely different from all the many other models produced in this field. Clearly, the antecendents in the literature on whose ideas the model is based can be found in the pioneering work of Weingartner (62), the work of Chambers $(67,71)$ on the incorporation of financial constraints and equity issues, the share price valuation approach of Carleton(70) and the complexity and output procedures by Hamilton and Moses (73). The model is little more than a synthesis and extension of the features considered best in these models. Any unique nature lies in the use and emphasis of the morel and the structure of the objective functions necessary for goal programming.

CHAPTER 2.
Interdependencies, Hirschleifer, Baumol and Quandt.
2.1 Introduction.

In this chapter the nature of the interdependencies that arise between the set of investment decisions and the discount rate at the optimum in capital budgeting models is examined in detail. As was indicated in section 1.2 Baumol and Quandt (65) suggested that the dual values gave the correct discount rate or opportunity cost of funds to use in the formulation of the problem. The subsequent attempt to solve the problem reformulated in this way led them to suggest that there was no solution other than the null solution. The following section shuws how it is possible by paying particular attention to the assumptions and by careful definition of the mathematical variables to cite numerical counter examples with non-trivial solutions in which the discount rate is consistent with the dual value. Section 2.3 then. provides a formal mathematical treatment of the problem in which it is shown that in general there exists many consistent solutions and the numerical example is merely one of a particular subset of these solutions. Section 2.4 identifies the economic meaning of these solutions and the implications for discount methodology by relating the solutions to the fundamental paper by Birschleifer (58) on the theory of optimal investment decisions. It is argued In conclusion that this paper forms a basis for the development of mathematical programing approaches to the capital investment problem.
2.2 A Respecification and Numerical Counter-Examples.

The Baumol and Quandt model is, as already stated:

$$
\operatorname{Max} g=\sum_{j} \sum_{t} c_{j t}\left(\rho_{t} / \rho_{0}\right) x_{j}
$$

s.t. $\quad-\sum c_{j r} x_{j} \leqslant F_{t} \quad t=0,1,2 \ldots T$

The factor ρ_{t} / ρ_{0} which is the discount rate is arrived at by the following argument. If we were indifferent to either £100 now or fllo in one year's time, it would imply that we were discounting funds at 10\%. In general indifference between an amount S_{0} now and S_{1} in time pericd 1 where $S_{0}=K S_{1}$. implies a discount rate of K.

Thus briefly, Baumol and Quandt argue that within the mathematical programming framework the value in year zero of an additional s_{0} pounds is $s_{0} \frac{\partial Z}{\partial F_{0}}$ since each pound will add $\frac{\partial F}{\partial F_{0}}$ to the capitalised present value or tne earning stream, where Z denotes the discounted value of the firms earnings and F_{0} is the budget constraint in year zero. This indifierence between S_{0} in year zero and S_{1} in year 1 implies a discount fartor applying between year 0 and year 1 of $\frac{\partial Z}{\partial F_{1}} / \frac{\partial z}{\partial F_{0}}$ since S_{0} in year zero adds $S_{0} \frac{\partial Z}{\partial F_{0}}$ to the discounted value of the earnings stream and S_{1} in year 1 adds $S_{1} \frac{\partial Z}{\partial F_{1}}$ to the discounted value of the earning stream. Now $\frac{\partial z}{\partial F}$ is equal to the aual price (denoted by ρ_{t}) corresponding to the $t-$ th constraint. Thus writing D_{t} as the corresponding (one period) diecount factor we have $D_{t}=\rho_{t} / \rho_{t-1}$ and the present value of s_{t} (discounting for all t periods up to the present) as

$$
s_{0}=D_{1} D_{2} \ldots D_{t} s_{t}=\left(\rho_{t} / \rho_{0}\right) s_{t}
$$

Thus the discounting factor for funds in period t is ρ_{t} / ρ_{0}.

As already stated, Baumol and Quandt form the dual of their model and conclude that the only solution to the problem is the trivial one. However, their particular form of the model has some rather strange assumptions and by modifying and clarifying these assumptions the model takes on a form which has a non-trivial solution.

The three main modifications that need to be made to the Baumol and Quandt model are:
(i) An upper limit needs too be placed on the amount that can de invested in any onc project. This is rather more realistic than Baumol and Quandt's projects because even if a particular project was. unbounded it is unlikely to have a linear return to scale. The imposition of upper bounds allows a piece-wise linear approximation to the rcturns to the project to be made. It is in fact a generalisation or extension of the mode: rather than an additional restriction. The other point abont this restriction is that many of the conceptual ideas behind this formulation are contained in Hirschleifer's paper on the theory of optimal investment and in this paper he introduced the idea of ranking projects to enable the generation of a production function with diminishing returns to scale. While one could generalise or rather restrict the arguments to infinite linear projects it is mathematically of much less interest.

It should perhaps be noied that under this modification Baumol and Quandt's conclusion no longer follows.

Thus the dual of the formulation is:

$$
v_{j}-\sum_{t} c_{j t} \rho_{t} \geqslant 1 / \rho_{0} \sum_{t} a_{j t} \rho_{t}
$$

where v_{j} is the dual associated with $0 \leqslant x_{j} \leqslant 1$.
Then $\left(-1-1 / \rho_{0}\right) \sum_{t} c_{j t} \rho_{t} \geqslant-v_{f}$
and this no longer implies that $\int_{j} c_{j t} \rho_{t} \leqslant 0$
2.2.6.
for all j, a necessary condition in Baumol and quandt's proof.
(ii) Another clarification which is necessary is that there exists a 'market' mechanism for carrying money from one period to the next. It is thus convenient to make the simplest assumption that there exists an unbounded projec with the cash flow characteristics of -1 in period t and $1+1$ in period $t+1$ for all t. This is perfectly general, provided that if necessary i may be zero. The original Baumol and Quandt model provides no explicit mechanism for carrying forward money from one period to the next and they fail to clarify the position of any surplus funds.
(1:i) If we adopt the same arguments for relating the duals to the discount rates as Baumol and quandt. in that indifference between

$$
S_{t-1} \frac{\partial z}{\partial F_{t-1}} \quad \text { and } \quad S_{t} \frac{\partial z}{\partial F_{t}}
$$

effectively determines the discount rate. The only difference is the specific problem of wisen one of the duals vanishes. If $\frac{\partial z}{\partial F_{t}}=0$ then it does not mean that $f 1$ in year t is worthless since at least in the proposed modsl the pound can be loaned to the money market at an interest i until required nor does a $\frac{\partial z}{\partial F_{t-1}}=0$ imply that the prevailing one period rate is infinite. To avoid this problem of dividing by zero we can
use the equivalent form in the model that $\rho_{t}=u_{t} \rho_{0}$ where u_{t} is the discount factor as defined above. The reformulated model is z

$$
\begin{array}{lll}
\operatorname{Max} z & =\sum_{t} \sum_{j \in J} c_{j t} u_{t} x_{j} & 2.2 .7 . \\
\text { s.t. } & \sum_{j \in J} c_{j t} x_{j} \leqslant F_{t} & t=0,1, \ldots, T
\end{array}
$$

where J refers to the total investment opportunity set and J^{\prime} is the production subset.

In addition the constraint relating the duals to the discount rates are written $p_{t}=u_{t} \rho_{0} t=1, \ldots$. and where $u_{0}=1$. Before attempting to solve the general problem it would seem prudent to look at particular examples in order to gain some insight into the structure of any solutions.

The examples are so framed that the optimal investment schedule would appear to be fairly obvious. The rationale behind this Intuitive example is then examined in order co relate it to the previous analysis.

TABLE 2.2.1 Net Cash Inflows from Investments.

Project Time	$t=0$	$t=1$	$t=2$	Upper Bound
x_{1}	-1	1.1		
x_{2}	-1	2		1
x_{3}	-1	0	2.5	1
x_{4}		-1	2	1
x_{5}		-2	3	1
x_{6}		-1	1.1	
Budge		1	0	

Consider the investment opportunity get in Table 2.2 .1 where
(a) X_{1} and X_{6} represents investment in finance markets of 10%. These projects are assumed unbounded.
(b) u_{1} and u_{2} denote the 1 and 2 period discount rates.

Then the objective function is

$$
\begin{aligned}
\operatorname{Max} & =\left(-1+1.1 u_{1}\right) x_{1}+\left(-1+2 u_{1}\right) x_{2}+\left(11+2.5 u_{2}\right) x_{3} \\
& +\left(-u_{1}+2 u_{2}\right) x_{4}+\left(-2 u_{1}+3 u_{2}\right) x_{5}+\left(-u_{1}+1.1 u_{2}\right) x_{6} \quad 2.2 .10
\end{aligned}
$$

subject to

$$
\begin{align*}
& x_{1}+x_{2}+x_{3} \leqslant 4 \\
& x_{4}+2 x_{5}+x_{6}-2 x_{2}-1.1 x_{1}<1 \\
& -2.5 x_{3}-2 x_{4}-3 x_{5}-1.1 x_{1}<0 \\
& 0<x_{2}, x_{3}, x_{4}, x_{5}<1
\end{align*}
$$

2.2.13.
2.2.14.

If we look at the first year investment opportunities then clearly X_{2} is superior to X_{1} and a combination of X_{2} with either X_{4} or X_{5}, provided one has not already exhausted these projects, is superior $=0 X_{3}$. Thus it would seem the rationa: investment is to accept X_{2} at scale 2 , which exhausts the budget. This leaves 2 available for investment in period 1 , being the 1 from the budget and $\frac{4}{2} 2$ being the return in period 1 from X_{2}. Again it would seem that the rational investment schedule is to take X_{4} at full scale and x_{5} at scale 4 which exhausts the budget. Thus the optimal solution would appear to be

$$
x_{2}=1, x_{4}=1, x_{5}=4 \text { with } x_{1}=x_{3}=x_{6}=0
$$

What implications has this for the discount rates? Returning to the original argumencs of Baumol and quandt presumably the investoi would be indifferent between δ_{0} in year zero or $2 \delta_{0}$ in year 1 since an additional δ_{0} in year zero could be invested in project 2 to give in year 1. Thus it would appear that the appropriate discount factor is $\frac{1}{2}$ i.e. $u_{1}=4$. In year 1 the investur is presumably indifferent
between an extra δ_{1} in year 1 or an extra $3 / 2 \delta_{1}$ in year 2 since the best available opportunity is that of X_{5} where for each 2 units of investments in year 1, 3 units are returned in year 2. Thus the appropriate discount factor between 1 and 2 is $2 / 3$ and $u_{2}=1 / 3$ $\left(=2 / 3 \times u_{1}\right)$.

An obvious but fairly important point is the way in which the discount rate is determined by the marginally rejected projects. There are several other features to note.

TABLE: 2.2.2 The cash flows associated with the ontimal investment schedule.

Projects	$t=0$	$t=1$	$t=2$
X_{2}	$-\frac{1}{2}$	+1	
X_{4}		-1	2
X_{5}	$-\frac{1}{2}$	-1	3.5
Totals	1	4	$1 / 3$
Discount rates	$-\frac{1}{2}$	$-\frac{1}{2}$	$1.1 / 6$
Discount values			
\therefore Total N.P.V. is $\mathbf{C . 1 6 7}$			

If we look at the individual projects that constitute the optimum solution then we find that the si.p.V. of X_{4}, which is the only project accepted in full, is positive while the N.P.V. of X_{2} and X_{5}, which are the partially accepted projects, is zero and the N.P.V. of the rejected projects X_{1}, x_{3}, x_{6} is of course negative. Thus the discount rates as determined sort out the projects into the fully accepted, partially accepted and totally rejected projects which groupings then satisfy the budget constraints.

The discount rates can be more formally related to the duals by examining the effects of small increases in cash to the formulated linear programing problem, when the optimal solution is assumed to be $x_{1}=x_{5}=1$ and $x_{4}=1$. Then an extra δ_{0} in year 1 increases the objective function by an amount $\rho_{0} \delta_{0}$. If an extra δ_{0} were available it would alter the cash flow pattern since presumably it would be invested in X_{2} to increase the objective function value by an amount $\left(-1+2 u_{1}\right) \delta_{0}$. In addition the extra $2 \delta_{0}$ then made available in year 1 would then be invested in X_{5} to yield an extra $3 \delta_{0}$ in year 2 and make a net increase in the objective function value of ($-2 u_{1}+3 u_{2}$) δ_{0}.

We can thus write $\rho_{0} \delta_{0}=\left(-1+2 u_{1}\right) \delta_{0}+\left(-2 u_{1}+3 u_{2}\right) \delta_{0} \quad$ 2.2.16. A similar argument for an extra δ_{1} available in year 1 gives

$$
\rho_{1} \delta_{1}=4\left(-2 u_{1}+3 u_{2}\right) \delta_{1}
$$

2.2.17.

Since in year 2 there are effectivel \because no more investment
opportunities facing the firm

$$
\rho_{2}=0
$$

We have also assumed that $\rho_{2}=u_{2} \rho_{0}$ and that $\rho_{1}=u_{1} \rho_{0}$.
These five equations have tise unique solution

$$
u_{1}=1 / 2 u_{2} \quad=1 / 3 \quad \rho_{2}=\rho_{1}=\rho_{0}=0
$$

If we substitute for u_{1} and u_{2} in the objective function then indeed we sonfinm that

$$
2=-0.45 x_{1}+0 x_{2}-0.167 x_{3}+0.167 x_{4}+0 x_{5}-0.3 x_{6} \quad 2.2 .1 \varepsilon
$$ subject to the same constraints as before has the solution that the objective maximum is 0.167 which occurs when $X_{4}=1$ and the assoziated duals of each of the constraints is zero. This point is not surprising since the discount rate is determined by the marginally rejected projects X_{2} and X_{5} which thus have zero N.P.V. and extra funds would

merely be available for investment in these projects and woula contribute nothing to the objective function. These results could well be expected to hold for all cases and the following example provides further evidence of this.

Consider the effect of profect X_{3} having the following cash flow pattern. $-1,1,2.5 .$, and the budget constraint in year 1 being reduced to 0 , while being increased to 1 unit in year 0 . The complete investment opportunities are as in Table 2.2.3. TABLE 2.2.3

Project Time	$t=0$	$t=1$	$t=2$	Upper Bound
x_{1}	-1	1.1		
x_{2}	-1	2		1
x_{3}	-1	1	2.5	1
x_{4}		-1	2	1
x_{5}		-2	3	1
x_{6}		-1	1.1	
Budget	1	0	1	

If we choose to invest in project 2 then we could re-invest the 2 units made available in year 1 in projects X_{4} and X_{5} to give a total of 3.5 in year 2. If we undertook project X_{3} in year 0 then the 1 unit made available for re-investment in year 1 could be invensted in X_{4} to give a combined cash flow of 4.5 in year 2. The two investment schedules give resulting cash flows of $\mathbf{- 1}, 0$, 3.5 and $-1,0,4.5$, the latter being preferable, assuming reinvestment, to other alternatives and clearly then the optimal solution appears to be $x_{3}=1 \quad x_{4}=1$ with $x_{1}=x_{4}=x_{5}=x_{6}=0$. What discount rates do these projects imply? If we formulate orr L.P. model and carry out the procedure outlined previously then the following results apply:
$\operatorname{Max} z=\left(-1+1.1 u_{1}\right) x_{1}+\left(-1+2 u_{1}\right) x_{2}+\left(-1+u_{1}+2.5 u_{2}\right) x_{3}$
$+\left(-u_{1}+2 u_{2}\right) x_{4}+\left(-2 u_{1}+3 u_{2}\right) x_{5}+\left(-u_{1}+1.1 u_{2}\right) x_{6}$ 2.2.19.
subject to

$$
\begin{align*}
& x_{1}+x_{2}+x_{3} \leqslant 1 \\
& x_{4}+2 x_{5}+x_{6}-x_{3}-2 x_{2}-1.1 x_{1} \leqslant 1 \\
& -2.5 x_{3}-2 x_{4}-3 x_{5}-1.1 x_{4} \leqslant 0 \\
& 0 \leqslant x_{2}, x_{3}, x_{4}, x_{5} \leqslant 1
\end{align*}
$$

2.2.22.
2.2.23.

Again consider the effect of an additional $\delta_{0}{ }^{\prime} \delta_{1}$ in years 1 and 2 , where $\delta_{0}, \delta_{1} \geqslant 0$.

Tinen

	$\rho_{0} \delta_{0}$	$=\left(-1+2 u_{1}\right) \delta_{0}+\left(-2 u_{1}+3 u_{2}\right) \delta_{0}$	2.2.24.
i.e.	ρ_{0}	$=\left(-1+2 u_{1}\right)+\left(-2 u_{1}+3 u_{2}\right)$	2.2 .25
and	ρ_{1}	$=\frac{4}{2}\left(-2 \ddot{Z}_{1}+3 u_{2}\right)$	2.2 .26.
	ρ_{2}	$=0$	2.2 .27.
with	ρ_{2}	$=u_{2} \rho_{0}, \rho_{1}=u_{1} \rho$	2.2.28.

The solution is

$$
u_{1}=1 / 2, u_{2}=1 / 3, \rho_{0}=\rho_{1}=\rho_{2}=0
$$

If we discount the project cash flows at thesa rates then the N.P.V. of projects X_{1} and X_{6} is negative while the N.P.Y. of projects X_{3} and X_{4} is positive and the N.P.V. of X_{2} and X_{5} are zero. However, in this case we have integer solutions and in effect we have no marginally rejected projects. Now previously the discount rates were determined by the marginally rejected projects. If we examine the argument more closely we see that in evaluating the duals the additional assumption was nude that δ_{0}, δ_{1} were positive. If one were to ask the question what is the value of K such that one would be indifferent between paying out δ_{1} in year one or $k \delta_{1}$ in year 2 the answer, again assuming S_{1} is positive would not be a value of $k=2 / 3$ since a reduction of s_{1}
in the budget availability in year one would reduca the amount of money available in year 2 by $2 \delta_{1}$. In the first year the problem is even more complicated since a reduction in the current budget of $\boldsymbol{\delta}_{0}$ reduces the amount of money available in year 1 by δ_{0} and in year 2 by $2 \delta_{0}$. Again if we relate these to the duals the appropriate discount rates are:
with

$$
\begin{array}{ll}
\rho_{0}=\cdot\left(-1+u_{1}+2.5 u_{2}\right)+\left(-u_{1}+2 u_{2}\right) & 2.2 .30 . \\
\rho_{1}=-u_{1}+2 u_{2} & 2.2 .31 . \\
\rho_{2}=0 & \rho_{2}=u_{2} \rho_{0} \cdot \rho_{1}=u_{1} \rho_{0}
\end{array}
$$

The solution in this case is $u_{1}=4 / 9, u_{2}=2 / 9$. Discounting the projects at these rates then projects $X_{1}, X_{2}, x_{5}, x_{6}$ are negative while X_{3} and X_{4} are zero. There are of course two other soiutions; these are associated with either relaxing the constraint at zero while tightening the constraint in perici one, or alternatively, tightening the constraint at zero while relaxing the constraint in 1. Thus as a generalisation where the linear programming model results in a solution where the accepted projects in a particular period have integral values then the interperiod discount rate between that period and the following has two values depending on whether one is considering increments or decreases to the budgets constraints.

2.3 The Mathematical Theory*

Having considered some examples it is now appropriate to draw together the mathematical theory. There are really two cases to consider depending on whether funds can be 'carried forward' or not. For the sake of completeness both cases will be considered.

[^16] it is included here for completeness.

Using the same notation as above the problem is of finding U. p and x. such that

$$
\begin{array}{rlr}
\operatorname{Max} \pi= & \sum_{j} \sum_{t} u_{t} c_{j t} x_{j}=u^{\prime} c x & 2.3 .1 . \\
\text { and }-c x \leqslant F \\
& x_{j} \leqslant 1 \text { all } j \\
& x_{j} \geqslant 0 \quad u_{t} \geqslant 0, \text { and } p_{t} \geqslant 0 \text { for all } j \text { and } t & 2.3 .3 . \\
\text { and } \quad \rho_{t} \text { is the dual of budget constraint } F_{t} & 2.3 .4 . \\
\text { and } \rho_{t}=u_{t} \rho_{0} & 2.3 .5 .
\end{array}
$$

A solution (x, u) to this will be termed a consistent solution. That is, an investment schedule along with a set of discount rates that are in the correct relationship to the value of marginal budget changes and which together maximise the present value with respect to those disccint rates is a consistent solution.

Taking the general case first, if we can find x, u, p, v, w such that the following equations are satisfied, then by Kuhn-Tucker theory (x, u) is consistent.

$$
\begin{array}{lll}
\sum_{t} c_{j t} u_{t}+\sum_{t} c_{j t} \rho_{t}-v_{j}+w_{j}=0 & \text { all } j & 2.3 .6 . \\
\rho_{t}\left(F_{t}+\sum_{j} c_{j t} x_{j}\right)=0 & \text { all } t & 2.3 .7 \\
v_{j}\left(1-x_{j} j=0 \quad w_{j} x_{j}=0\right. & \text { all } j & 2.3 .8 . \\
\rho_{t} \geqslant 0 \text { etc. } & 2.3 .9 . \\
\rho_{t}=u_{t} \rho_{0} & 2.3 .10 . \\
-c x \leqslant F \text { and } x_{j} \leqslant 1 & \text { all } j & 2.3 .11 .
\end{array}
$$

Simplifying and using our knnwledge that we would expect ρ_{t} to be zero we have:

$$
\left(I+P_{0}\right) C \cdot u-I V+I H=0
$$

$$
\begin{aligned}
& f+C x \geqslant 0 \\
& v_{j}\left(1-x_{j}\right)=0 \quad w_{j} x_{j}=0 \quad 1 \geqslant x_{j} \geqslant 0
\end{aligned}
$$

Putting $y_{f}=1-x_{j}$ for convenience, we krow that any zero solution to the problem
such that

$$
\begin{aligned}
& \text { Min } y^{\prime} \cdot v+x^{\prime} \cdot \mathbf{w} \\
& \text { 2.3.15. } \\
& \left(1+p_{0}\right) C \cdot U-I V+I M=0 \\
& F+C x>0 \\
& x_{j}+y_{j}=1 \quad x_{j}, y_{j} \geqslant 0 \text { etc. } \\
& \text { 2.3.16. } \\
& \text { 2.3.17. } \\
& \text { 2.3.18. }
\end{aligned}
$$

is also a solution to the above, and vice-versa.

Lemman: The minimum of th2 quadratic p. q wherc each set of variables satisfy some linear equations $C p \leqslant C$ and $D q \leqslant d$ occurs at a point p^{*}, q^{*} which are vertices of their respective convex regions. Proof is trivial, e.g. write each as a linear combination of their vertices.

Thus in order to ensure that all consistent solutions have been found it is oniy necessary to inspect the vertices.

As an example consider the simple case of two projects over three years.

TABLE. 2.3

		-	T	
		0	1	2
project	1	-1	1	1
	2	-1	0	2.5
	M_{t}	1.5	0	0

Upper Bound

1
1
1

In this case spare cash in time period 1 is lost as it cannot be
used. Problem

$$
\begin{array}{rl}
\max \left(-x_{1}-x_{2}\right)+u_{1}\left(x_{1}\right)+u_{2}\left(x_{1}+2.5 x_{2}\right) & 2.3 .19 . \\
x_{1}+x_{2} \leqslant 1.5 & 2.3 .20 \\
y_{1}+x_{1}=1 & 2.3 .21 \\
y_{2}+x_{2}=1 & 2.3 .22 .
\end{array}
$$

(for simplicity we have sct $u_{0}=1$ and $0_{0}=0$)
the extra cptimality conditions are

$$
\begin{align*}
& -1+u_{1}+u_{2}-v_{1}+w_{1}=0 \\
& -1+2.5 u_{2}-v_{2}+w_{2}=0
\end{align*}
$$

and we wish to minimise $z=x_{1} \mathbf{w}_{1}+x_{2} \mathbf{w}_{2}+y_{1} \mathbf{v}_{1}+\mathbf{y}_{2} \mathbf{v}_{2}$
The vertices are shown in figures 2.41 below and each combination
investigated in takle 2.4.2.

Figures 2.3.1

Table 2.3.2. The Values of 2 :
(w,v)
(u)

| x | y | $(1,1,0,0)$
 $(0,0)$ | $(0,1,0,0)$
 $(1,0)$ | $(0,0,0,0)$
 $(.6,04)$ | $(0,0,0,1.5)$
 $(0,1)$ | $(.6,0,0,0)$
 $(0, .4)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(0,0)$ | $(1,1)$ | 0 | 0 | 0 | 1.5 | 0 |
| $(1,0)$ | $(0,1)$ | 1 | 0 | 0 | 1,5 | .6 |
| $(1,4)$ | $(0,4)$ | 1.5 | .5 | 0 | .75 | .6 |
| $(4,1)$ | $(4,0) *$ | 1.5 | 1 | 0 | 0 | .3 |
| $(0,1)$ | $(1,0)$ | 1 | 1 | 0 | 0 | 0 |

Thus we see that there exist many consistent solutions in general, remembering that the relevant linear combinations of the above are also consistent. Even if only those schedules are considered which exhaust the initial budget (marked *) there are three consistent solutions. To be complete the condition $u_{0}=1$ ought to be released and u_{2} set equal $)_{1}$ (say) so that solutions with $u_{0}=0$ can be generated. There is thus also a straightforward way of generating such consistent solutions if required. A dual vertex is chosen e.g. $u=(1,0,1)$ and the relevant L.P.e.g.

$$
\begin{aligned}
\operatorname{Max} 1 .\left(-x_{1}-x_{2}\right)+o\left(x_{1}\right)+1\left(x_{1}+2.5 x_{2}\right)=1.5 x_{2} & \text { 2.3.26. } \\
\text { s.t. } x_{1}+x_{2} \leqslant 1.5 & x_{1}+y_{1}=1 . \quad x_{2}+y_{2}=1
\end{aligned}
$$

is solved to give consistent solutions as above. Tris existence of consistent solutions is not guaranteed of course for each dual vertex as is shown in the example above when $U=(1,1 ; 0)$ and the projects must be chosen to exhaust the first year buiget.

If the practically more interesting case when excess finds can be 'carried forward' at a minimum market interest rate of $i(\geq 0)$ is considered, the use of net present value criteria in general assume the existence of such financial opportunities, so it would seem reasonable to include them initially as part of the project set. We thus have a new project associated with each year with cash ilows of -1 and $1+1$ in succeeding years. This implies that the budgets are entirely used in each except the last pericd and the objective function becomes

$$
\max . \quad u_{T} \sum_{j} \varepsilon_{j T} x_{j}+\sum_{t=0}^{T-1} u_{t} M_{t}
$$

Apart from the added constant this is very similar to the horizon value or in this case just terminal cash problem *
$\operatorname{Max} \sum_{\mathbf{j}} c_{\boldsymbol{j} T}:_{j}$
2.3.29.
and the two solutions are identical apart from the drals differing by a fixed proportion. As the horizon value problem has a unique solution, apart from alternative neighbouring optima, it can be used to find consistent solutions of the Baumol and quandt model with project bounds added. Thus in the 'carryover' case, not only can consistent solutions exist, but also can be found by the solution of is single horizon value maximisation linear programme. This theory can be illustrated by adding to the simple example two further 'carry forward' projects with $i=0$. Tite data is now as shown in Table 2.3.3.

TABLE 2.3.3.
Time
Upper bound

		0	1	2
project	1	-1	1	0
	2	-1	1	1
	3	-1	0	2.5
	4	0	-1	1

Budget M_{t}
1.5

0
0

The problem is

$$
\begin{array}{ll}
\max u_{2}\left(x_{2}+2.5 x_{3}+x_{4}\right) & 2.3 .30 . \\
x_{1}+x_{2}+x_{3} \leqslant 1.5 & 2.3 .31 \\
-x_{1}-x_{2}+x_{4} \leqslant 0 & 2.3 .32 . \\
x_{2}<1 \quad x_{3} \leqslant 1 & 2.3 .33 .
\end{array}
$$

such that

The solution to this is

$$
\begin{aligned}
& x_{1}=0 x_{2}=.5 x_{3}=1 x_{4}=.5 \\
& u_{0}=2 u_{T} \text { and } u_{1}=u_{2} e . g . u=(1, .5 . .5) 2.3 .35
\end{aligned}
$$

If the previous analysis of enumerating all vertices was undertaken, it would be seen that with five primal vertices and geven dual vertices only one of the corresponding thirty-five combinations war consistent. The use of this value of u in calculating the net present value of projects predicts correctly which projects would or would not be undertaken. They are also the dual values of the budget conscraints.

As important point must be noted with regard to this analysis. The dual equations, $C \cdot u-I V+I W=0 \quad u, v, w \geq 0$, strictiy define an unbounded cone, all the equations passing through the origin. This means that the only dual vertex is the origin. This certainly is a solution in general just as Baumol and guandt claim in their paper, but in order to span the dual space rays are needed as cone generators, and it is these latter that have provided the solutions.

2.4. An Economic Interpretation.

It is now worthwhile recapping the main ideas and seeing what conclusions can be drawn. The starting point was the same objective as Baumol and Quandt, that of attempting to find a solution to the problem of maximizing the net present value of the projects we accept subject to budget constraints, when the discount rate is determined by the dual evaluators. The first point to make is that as soon as we impose upper bounds to project investments and rewrite the relationship between the duals and the discount rates in the form $\rho_{t}=u_{t} \rho_{0}$ then the Baumol and Quandt analysis breaks down. In fact the logic breaks down even without the extensinn to include upper bounds. Thus Baumol and quandt used the fact that the dual equation

$$
\sum_{t} c_{j t} \rho_{t} \leqslant 0
$$

being also the coefficient of x_{j} in the objective function would
force $x_{j}=0$ and hence obtain the trivial solution. But it has been argued that because of what the model is trying to do one would expect that partially accepted projecte would have

$$
\sum_{t} c_{j t^{u}} u_{t}=0 \quad 2.4 .2
$$

and as an unbounded project will always be partially accepted if at all then x_{j} equal :o anywhere from zero to infinity would also be a solution, and hence solutions other than the trivial one exist. As has been shown it is possible to find solutions to such formulations whtch satisfy the akove conditions. Such sollitions have been called consistent solutions and it has teen proved that these solutions lie at the vertices of the project space. Where there are no specific projects for carrying cash ferward from one period to the next if has been found that there may be several quite different alternative solutions. In the casca where therc are carry forward projects then the problem can simply be reduced to the problem of maximizing the horizon value* which will in general have a unique linear programming solution.

It is interesting to note that the set of discount rates generated ir. this last case, which is of course the most frequently occurring in practice, removes some of the problems surrounding the re-investment assumption in discounting techniyues, (see for example Fawthrop (71)), since the re-investment assumption is stated explicitly and the future discount rates automatically reflect the re-investment assumprions. It is also worth noting at this stage another property of this set of discount rates. If we find the net present value of each of our projects at this set of discount rates, then our decision rule is quite simple. We reject projects with a negative net present value and accept those with a positive net present vaiue. Such a decision rule will automatically

[^17]satisfy our budget constraints and maximise our net present value. It should be added that this set of discount rates causes the dual evaluators to be zero, since the interperiod discount rates are determined by indifference to small increments in the budget constraints at the optimum. Thus the zero of the dual evaluators would seem to be an inherent feature of the model.

While these properties of our discount rates are all very satisfying as regards their internal consistency it does not prove the validity of the model when judged by external criteria and the implications of the findings as regards the specification of a theoretically correct objective function have yet to re discussed. Much of the theoretical underpinning of these moaels rests on Hirschleifer's (58) original analysis.

If we return to this analysis we find that he was concerned with decision rules which maximised utility of consumption and among the rules he considered were the net present value criterion and the internal rate of return criterion. His methodology was to use an isoquant framework to develop a theoretical understanding of the prohlem and it is worthwhile repeating here some of that analysis. Initially two particular cases will be cited, one in which the optimum is achieved by a mixture of investment in production opportunities followed by investment in capital markets, and the other in which the optimum is achieved by a combination of investment in production opportmities coupled with borrowing from the capital market.

Figure 2.4.1. illustrates the first of these cases

The axis W_{0}, W_{1} represent the amount of income available for consumption in time period 0 and time period 1. Income available for consumption at time period 0 may be transformed into income available for consumption in time period 1 by investing in the production opportunities Q PSN. The dashed line represents the market line and it is assumed that funds can be borrowed or lent at a constant interest rate i - the slope of the market line is $-(1+i) . U_{1}, U_{2}$ represent insreasing utilities of W_{0}, W_{1}. In the absence of market opportunities the decision would be starting with initial income $Q Q$ at time now to invest in productive opportunities upto the point S, when the utility of (W_{0}, W_{1}) would be maximised. In the presence of market opportunities then the decision would be to invest in production upto point P and then to lend to the market to point R when a position on the utility isoquant U_{2} which is higher than U_{1} could be achieved.

In the second case illustrated by Figurs 2.4.2. the decision in the absence of market opportunities would be invested in production opportunities upto level QS. The availability of the market line enables
production to be carried out until P followed by borrowing from the market along $P R$ enabling R to be reached which is on isoquant U_{2}.

It should be noted that in order to define a suitable production opportunity set the projects are ranked according to diminishing returns to scale. The criterion is the net increase in perical 1 for unit sacrifice now. Mathematically it can be represented by $\Delta W_{1} /\left(-\Delta W_{0}\right)-1$. At the optimum the slope of the productive function $-\frac{\partial W_{1}}{\partial W_{0}}$ gives the marginal productivity of capital. One particular rule that

Hirschleifer considers is that the firm should adopt all projects with a positive net present value at the market rate of interest. This is equivalent to choosing all projects such that $\Delta W_{O}+\Delta W_{1} /(1+1)$ is cositive or equivalently $-\partial W_{1} / \partial W_{0} \geqslant 1+1$. In the two cases discussed so far such a rule would cause selection of all production opportunities EQ, though it world indicate nothing directly about capital market decisions.

Hence the rule of accepting all projects with a [asitive net present value at the market rate is a correct one in such circumstances. Such a rule it should also be noted maximises the net present value of the chosen project set. Indeed the criterion maximisation of the net present value of income from the investment would give also the correct production investment decision, since this involves maximisation of $W 0+W_{1} /(1+i)$ which is a series of isoquants parallel to the market line, though as we shall see this criterion is not the correct one in general. It does not give the correct solution where the firm does not have access to market opportunities or at least has only limited access.

The particular case in which the firm does not have access to the capital is illustrated in Figure 2.4.3. shown below and it is convenient at this stage to relate these diagrams me:e directly to the mathematical programming approach.

Figure 2.4.3.

Hirschleifer's analysis indicates that the production set $Q R$ should be undertaken. A few preliminary remarks enables us to identify easily the correspondence between this analysis and the mathematical programing approaches to this problem. The first point
to note is that the ranking of projects is merely a device for finding efficient boundaries. Thus if the projects were ranked according to decreasing returns to scale we get the curve QPT and different choices of projects give the various points within the feasible region TRPQ. If we allowed further the possibility of not requiring income to be invested then the set of feasible alternatives is the area In the positive quadrant defined by TRQO. The trfect of introducing market opportunities is merely to alter the feasible regions. Thus Figure 2.4.1. can now be redrawn as Figure 2.4.4.

Figure 2.4.4.

and Figure 2.4.2. redrawn as Figure 2.4.5.
Figure 2.4.5.

In these last figures the same letters are used to refer to the corresponding points in Figures 2.4.1 and 2.4.2. Thus the straight portion (PT) of the efficient opportunity set represents capital market transactions. The slope of this line is of course just - ($1+i$).

At the optimum the appropriate discount rate is given in Hirschleifer's case by $-\frac{d W_{1}}{d W_{0}}$. In the mathematical programming case the ratio of the duals is $\frac{\partial u}{\partial W_{0}} / \frac{\partial u}{\partial W_{1}} \quad$ which is equal to
$d W_{1}$ $-\frac{d W_{1}}{d W_{0}}$. Thus there is a one to one correspondence between the mathematical programming formulations and Hirschleifer's isoquant analysis.

Such an observation provides us with a means for identifying the various resolutions of the paradox.

Myers (op cit) postulates that the external market imposes a well defined structure on the utility surfaces U_{1}, U_{2}. It causes the isoquants to take the form Wo $+W_{1} /(1+i)$. Under such conditions the maximisation of the present value of withdrawals is then the correct solution. Thus Myers assumes that although the firm does not have access to the market, the owners of the firm do. This approach effectively avoids the paradox since it still leaves unresolved the situation when the owners of the firm do not have access or at least only limited access to the capital market.

It should now begin to be clear how if we try to maximise the net present value of the opportunity set where the discount rate is the marginal productivity of capital then the net present value, in general, is positive and finize.

If we assume that the discount rate is determined by the marginal productivity of capital then at any particular point ($W_{0}^{*}, f\left(W_{0}^{*}\right)$)
where $W_{1}=f\left(W_{0}\right)$ defines the production function, the net present value of the adopted project set is

Hence W_{Q} is the potential income at time now. This expression becomes

$$
\frac{f\left(w_{0}^{*}\right)}{f\left(w_{0}^{*}\right)}-\left(w_{Q}-w_{0}^{*}\right)
$$

For the strictly convex monotonically decreasing function that we have postulated in our analysis such a function hiri its maximum value at point T, where $W_{0}^{*}=0$. At this point the magnitude of the slope or discount rate is smallest and the included project set is the largest. This is the solution that we have identified in which all available income is reinvested. In Figure 2.4.3. it corresponds with the adoption of all Eroductive investments QT.

- In the case where the production function is piece-wise linear the solution is not necessarily unique in that we may be indifferent to the scale of a project. Such a two-period solution is illustrated in Figure 2.4.6.

Figure 2.4.6.

Hence $A B, B C ; C D, D E$ represent projects, we are indifferent to the scale of project DE and the remaining projects when evaluated at the slope of DE make positive contributions to the net present value.

Figure 2.4.7

If Baumols and Quandt's original formulation of the two period case is considered in these terms (see Figure-2.4.7.), then since there are no scase constraints a particular project AB (say) would dominate all other projects. The discount rate would be determined by the slope $A B$ and the net present value would be zero since we are indifferent to all points on AB - the line of zero net present value when discounted $a=$ the gradient of $A B$.

2.5 Conclusion.

In the end perhaps none of this analysis now seems very profound. In reformulating the Baumol and quandt model we have defined a closed system whereby all cash generated in a period must be used in that period or carried forward to later periods. The only exception to this is the last period when the carry over mechanism does not apply. We can hardly expect such a model to make statements about our consumption
preference since consumption is never an alternative that we provide to the model. Nevertheless such is the nature of the analysis that it defines clearly the various roles played by the productive and market investment, our utility function and the emergent discount rates We see that the appropriate investment criterion is not the maximization of net present value of the project set, but rather, that of finding the appropriate discount rate which are determined by the gradients at the points of tangency between the highest isoquant and the production-investment-financing opportunity sct. Such a decision rule divides the project investment set into those which have positive present value, those which have negative present value and those which have zero net present value. The adoption then of all projects with a positive net present value will result in the highest isoquant being attained and while such a decision rule obviously maximises the luet present value of the accepted set at that rate, the converse is patcntly not true. The maximisation of che net present value will not automatically generate discount rates which will lead us to operate so that our utility is maximised

The foregoing discussion contains several important ideas which will be examined in some detail in later chapters. In chapter three, consideration will be given to methods of identifying the set of discount rates which correctly partitions projects into totally accepter, rejected and partially accepted subsets. It will be seen that frequently it is considerably easier to search for this set of discount rates first, and hence compute project acceptability, rather than to attempt to find the investment schedule directly. It is also clear from the discussion that if, as we presumably are, interested in the firm as a means of generating income for consumption in future periods, then we must be prepared to state explicitly our time preference for consumption. In chapter four
an attempt is made to consider the impact of capital market opportunities on this preference function. It will be seen that the existence of capital markets largely enables the consumption decisions to be uncoupled from the investment decision, though the extent of the achieved independency between the investment and consumption decisions is determined by the degree of perfection assumed in capital markets. In order to facilitate this discussion it is necessary to examine explicitly the impact of uncertainty on the valuation of income streams by introducing parameters specifying the degree of uncertainty of these streams. While quite an elaborate normative framework for decision making can be constructed by the introduction of a single measure of the risk of an income stream, in practice, the capital markets estimate the size and risk of income streams by consideration of a whole series of indicators. The final chapter of the thesis shows how it is possible to develop an algorithm where the investment and financing decisions are made in a pareto optimal fashion with regard to this set of indicators.

In summary the Baumol and quandt paradox appears to stem from a misconception of the nature of the net present value criterion. Nevertheless its resolution is an essential prerequisite to the discussion of the various models proposed in subsequent chapters of this thesis. Its resolution reassures us of the validity of the formulation, and the deductions made from, these models and an understanding of the paradox in terms of Hirschleifer's analysis provides us with a useful overview of some of the core issues facing mathematical programming in the development of models of the capital investment decision.

CHAPTER 3.
Discounting Methods and Rule of Thumb Solutions to the Capital Budgeting Problem.

3.1 Introduction

An appealing and potentially very powerful idea was identified in the last Chapter. If by some method we could discover the correct discount vector, then this vector would lead us immediately to the optimal investmert schedule since it could be used to partition the project set into threc categories consisting of accepted, rejected and marginal projects. Where the firm is operating in a perfect capital market under conciitions of certainty then the prevailing market rate provides the single parametcr racessary for the computation of this vec-or. In this case the rule project selection reduces to the familiar discounted net present value criterion at the market rate. In the more realistic case when assumptions of certainty in future operating income do not hold then restrictions are nomally imposed on the amount of borrowing (ur debt financing) that a firm may undertake. In such circumstances the discount vector is no longer simply related to a single market rate and it would seem necessary to employ some method for seeking out the appropriate vector. In mathematical programing formulations of the capital budgeting problem restrictions on the amount of debt financing that may be used are incorporated into the model in the form of explicit constraints and the search for a discount vector is nothing more than a search of the corresponding dual space.

If the only concern were the gaining of optimal solutions then the search of the dual space is usually no simpler than the direct detormination of the investment schedule tiv the more normal search
of the primal space and the foregoing observation is trivial. If however, a major concern in the appraisal of capital expenditure decisions is the generation of methods which can be used to filter or preselect projects for further scrutiny then the contrast between the primal and dual search is far from trivial. In fact a case will be argued that reasonably good and robust approximations or rules of thumb can be.generated more easily, and their strengths and weaknesses can be analysed more readily, through the medium of the dual. Eormulation than through the primal. In the models which will be investigated the success of the search over the dual feasible region rests on the existence of an exterior £inanciai market which provides either sources of capital or investments for surplus funds. It will be seen that the dual equations associated with these market instruments confine the dual feasible region so that it is sufficiently 'small', with relatively well defined boundaries, that an optimum or near optimum can be found with a minimum of computational effort.

In this Chapter consideration will be given to numerical solutions to the capital budgeting problem which can be achieved by simple rules of thumb derived from an analysis of the dual space. These solutions will be compared and contrasted with the formal solutions of the corresponding primal linear programming problem. In particular trree models will be discussed in some detail. These are the Weingartner (63) model, the Chambers (71) model and the model proposed in section 1.7 of this thesis.

The basic horizon model of Weingartner forms a natural starting point for such an analysis. Not only does it occupy a central place in the literature but it incorporates the same set of assumitions as conventional discounting methodologies, differing only in the
introduction of an additional, though crucial, assumption, of a
'hard' constraint on capital availability. Because of this it has become a yardstick against which rules of thumb may be measured. In section 3.2 the dual analysis is carried out for the Weingartner model. This analysis leads to a natural ranking of the projects for each particular time period. It is these rankings that form the basis of the search procedure proposed and a framework for the analysis of other rules of thumb.

In the section following the dual analysis is used as a framework for the examination of some of the other rules of thumb proposed in the literature. It is argued that while all are capable of giving the correct (optimal) solution under certain circumstances, none of the other methods can guarantee an optimal solution. However, It is further argued that the structure of the investment project set is such that most of these rules will qive reasonably close approximates to the optimal solution.

In section 3.4 , the method stemming from this dual analysis is anplied to Weingartners basic horizon model. The particular problem chosen is the one employed by Weingartner to illustrate the use of linear programming for the optimal choice of projects subject to a hard rationing constraint. It is seen that the Weingartner problem does not really provide an adequate test of the method since its solution can be virtualiy determined imediately by inspection of the rankings generated. A more testing problem is proposed where there are many attractive projects competing for very limited funds. In all there are forty-five projects available spread over eight time periods where capital zationing occurs in five of these periods. Nevertheless the method is able to generate the optimal solution to this problem without too much difficulty.

The Chambers model (op cit) is a different order of complexity from the Weingartner basic horizon model. Its restriction on debt is related to the book value of the assets and would thus appear inextricably tied up with the investment decisions. Despite this the dual analysis in section 3.5 of the market instruments, although algebraically tedious, yields a particularly simple decision rule which enables the project set to be classified into the three basic categories discussed earlier. Moreover, it is seen that this analysis proves considerably more insightful into the structure and nature of the solution than the straightforward application of a conventional linear programming algorithm.

The model propused in section 1.7 is of a different orde. of complexity again from the Chambers model. Not only does a times interest covered constraint more intimately link* the investment and the financing decision but there are in addition many other constraints on the investment and financing decisions. As one might anticipate the inccrporation of these additional constraints prevents a rigorous analytical treatment of the dual structure. Nevertheless it will be seen that a fairly crude approximation still leads to an acceptable decision rule. The implications of these observations for possible future directions of work in mathematical progranming formulations of the capital budgeting problem are examined in the concluding section.

3.2 The Weingartner Model

The basic horizon model of Weingartner with 'hard' constraints on the level of debt can be written as

[^18]$$
\operatorname{Max} \sum_{j=1}^{N} \hat{c}_{j} x_{j}+v_{T}-w_{T}
$$
subject to
$$
-\sum_{j} c_{1 j} x_{j}+r_{1}-w_{1} \leqslant F_{1}
$$
$-\int_{j} c_{t j} x_{j}-\left(1+r_{L}\right) v_{t-1}+v_{t}+\left(1+r_{B}\right) w_{t-1}-w_{t} \leqslant F_{t}$ ior $t=2 \ldots .$.
3.2.2.
$w_{t} \leqslant B_{t} \quad$ for $t=1, \ldots, T-1$
2.2 .3
$0<x_{j} \leqslant 1$ all $j=1, \ldots, N$ and $v_{t} w_{t} \geqslant$ for all $t \quad 3.2 .4$
where x_{j} denotes the scale of acceptance of project j
$c_{t j}$ is the cash inflow from project j in time period t
w_{t}, v_{t} denote borrowing and lending respectively in t
F_{t} is the cash flow available from existing 'old' projects
B_{t} is the upper limit on borrowing in period t
r_{B}, r_{L} are the borrowing and lending rate of interest respectively and $\hat{C}_{j}=\sum_{t=T+1}^{\infty} \frac{C_{t j}}{\left(1+r_{B}\right)^{t-T}}$ is the post horizon value $\mathbf{3 . 2 . 5}$

The dual equations corresponding to lending and horrowing are:

$$
\begin{array}{ll}
\rho_{t}-\left(1+r_{L}\right) \rho_{t+1} \geqslant 0 \quad \text { for } t=1, \ldots, T-1 & 3.2 .0 \\
-\rho_{t}+\left(1+r_{B}\right) \rho_{t+1}+\beta \geqslant 0 & 3.2 .7
\end{array}
$$

and $\rho_{T} \geq 1$
3.2.8

$$
-\rho_{T} \geqslant-1
$$

3.2.0
where ρ_{t} is the dual on the cash balance constraint and $\beta_{t} f_{0}$ the dual on the borrowing constraint. Inequalities 3.2.6 and 3.2.7 give

$$
\left(1+x_{L}\right) \rho_{t+1} \leqslant \rho_{t} \leqslant\left(1+r_{B}\right) \rho_{t+1}+\beta_{t}
$$

If we consider first the slightly simpler case where borrowing and lending rates are both equal to the single rate r. Then inequality 3.2.10 implies

$$
\rho_{t}=(1+r) \rho_{t+1}+B_{t} \quad t=1, \ldots, T-1 \text { and } \rho_{T}=1
$$

or

$$
\rho_{t}=(1+r)^{T-t}+\sum_{s=t}^{T-1}(1+r)^{s-t_{\beta}} s
$$

The reduced cost associated with project j is thus
$\varepsilon_{j}+\sum_{t=1}^{T} c_{t j} \rho_{t}=\hat{c}_{j}+\sum_{t=1}^{T} c_{t j}(1+r)^{T-t}+\sum_{s=1}^{T-1} \sum_{t=1}^{s} c_{t j}(1+r)^{s-t_{\hat{B}}}{ }_{s} \quad 3.2 .13$
and the decision rule is accept project f at full scale if the reduced cost is positive, reject if negative and partially accept when the reduced cost is zero. In the absence of capital budgeting constrairits then $\beta_{t}=0$ for all t, and the rule becomes the familiar net terminal value rule.

If the net terminal value of project j ds denoted by

$$
\mathrm{NIV}_{j}=\hat{c}_{j}+\sum_{t=1}^{T} c_{t j}(1+r)^{T-t}
$$

the discounted cost in time period t of expenditures to date on project j by

$$
T V_{j}(t)=-\sum_{s=1}^{t} c_{s j}(1+r)^{t-s}
$$

and the effective hudget limit formed from the debt limit in that year plus accumulated funds from 'old' projects by

$$
L_{t}=B_{t}+\sum_{s=1}^{t} F_{s}(1+r)^{t-s}
$$

then the dual of the original horizon model can be written as

$$
\operatorname{MIN} \sum_{j} \mu_{j}+\sum_{t} L_{t} \beta_{t}
$$

such that

$$
\begin{align*}
& \mu_{j} \geqslant N_{j V}-\sum_{t=1}^{T-1} T V_{j}(t) B_{t} \text { all } j \\
& \mu_{j} \geqslant 0 \text { all } j \quad B_{t} \geqslant 0 \text { all } t
\end{align*}
$$

where μ_{j} are the duals on the $x_{j} \leqslant 1$ constraints.
Furthermore if a project is accepted then the right hand side of inequality 3.2 .18 is positive. If the project is rejected the right hand side is sugative. Whereas if the project is partially accepted then the right hand side is zero. Thus the problem of chcosing the optimal project set can be reduced to one of finding the appropriate β-values. Once these β-values are known we can find those which will be accepted at their upper bounds, those that will be rejected, together with the partially accepted projects. A convenient way of looking at this is to consider the (hyper) planes in the β-space associated with each project defined by the equality

$$
\sum_{t=1}^{T-1} T V_{j}(t) B_{c}=N T V_{j}
$$

This can be illustrated in figure 3.2.1 for the two dimensional case by the simple example of the eight projects shown in Table 3.2.1. Thus project A requires cash outlays of $£ 100$ in year one, $£ 50$ in year two and $£ 30$ in year three. The horizon is coterminous with year three :nd the post horizon value of cash flows for project A is $\mathbf{£} 246$ at 10\%. Hence for project A we have the linear function

$$
40-100 \beta_{1}-160 \beta_{2}
$$

The equation defined by equating this expression to zero defines a line in the β-space (figure 3.2.1). Projects G,F do not begin until period 2 , hence their vertical plot, while project H has a negative net terminal value at $10 z$ and can be rejected without further consideratio: *.

Table 3.2.1 A simple example: PROJECT DATA

Capital Outlays

Project	Year 1	Year 2	Year 3	${ }^{\text {c }}$ j	1v(1)	TV (2)	NTV	IRR(8)
A	100	50	30	246	100	160	40	24
B	100	50	40	256	100	160	30	22
C	100	i00	100	351	100	210	20	16
D	50	10	10	89	50	65	8	16
E	50	50	50	162	50	105	2	11
F	-	50	40	100	0	50	5	20
G	-	100	60	175	0	115	5	15
H	100	50	20	193	100	160	-3	9
D_{i}	180	100	100	all figures in E				
B_{i}	100	100	∞					
L_{1}	280	398	428					

The positive quadrant is divided into two regions by each project line, one region away from the origin where

$$
N T v_{j}-\sum_{t=1}^{T-1} T v_{j}(t) B_{t}<0
$$

representing rejection and the other region where

$$
N T v_{j}-\sum_{t=1}^{T-1} T V_{j}(t) B_{t}>0
$$

representing acceptance. Hence in general for any set of B-ccordinates

[^19]lines passing to the left of that coordinate represent rejected projects and lines passing to the right of the coordinate represent accepted projects. It follows that any continuous monotonic nondecreasing function in the positive quadrant passing through the origin represents a ranking of the projects. As the origin in the β-space is approached along this curve the list of projects accepted at full scale increases.

FIGUFF 3.2.1 The R-space for the projects in Table 3.2.1.

3.3 A Re-examination of Rule of Thumb Solutions to the Hard

 Rationing ProblemtThe previous discassion provides us with the necessary framework for the rigorous examination of the various rules of thumb proposed in the literature.

Take for example the case where the only significant budget constraint is in the first year. This implies that all the duals B_{t} are zero apart from β_{1} and the solution to the dual L.P is given by merely accepting projects in the ranked order of $\frac{\mathrm{NTV}_{\boldsymbol{j}}}{\mathrm{TV}_{\boldsymbol{j}}(1)}$ which is the familiar ratio of terminal value to initial outlay, the Lorie-Savage (55) solution*. In figure one this rank is generated by descending the β_{1} axis.

On the other hand the ratio of discounted benefits to discounted benefits to discounted costs might be considered more appropriate for cash flows spread over several years**. This is equivalent to setting $B_{1}=0$ and $B_{2}>0$ in the example and can be achieved by the rank ${\underset{T V}{j}}_{\mathrm{NTV}_{j}(2)}$ or equivalently by using the rank defined by descending the B_{2} axis.

A third familiar rule of thumb is ranking projects by internal rate of return. This is equivalent to making another approximation to the dual, namely by putting $\beta_{t}=\beta_{t+1}(1+i) \quad t=1,2, \ldots, T-2$ 3.3.1 and

$$
B_{T-1}=(1-x)
$$

and using i as a parameter.
In terms of figure 3.2.1. this is equivalent to ranking along the parameterised curve

[^20]$$
B_{t}=(i-r)(1+i)^{T-1-t} \quad t=1, \ldots, T-1
$$
more simply for the two dimensional case under discussion
$$
B_{1}=B_{2}\left(1+r+\beta_{2}\right)
$$

Another frequently suggested rule is to rank by some measure as discounted benefits/discounted costs, that is by $\frac{\mathrm{NTV}_{\mathbf{f}}}{T V_{j}(T-1)}$ and to calculate the IRR of the marginally accepted project. The sugges:ion is now to rerank projects again by NTV/TV(T-1) but using the internal rate of return of the marginally rejected project as the new discount rate, in this case $r=202$ as the project is F. The idea behind this is that this rate is a better approximation to the 'true' opportunity cost of funds. The assumptions behind this idea were discussed in section 1.2. This is equivalent to a second approximation to the dual by making

$$
\begin{align*}
& B_{T-1}=\beta+(i-r) \\
& B_{T-2}=(i-r)(B+1+i) \\
& B_{t}=(1+i) B_{t i+1} \quad \text { for } t=1,2, \ldots, T-3 \\
& \text { 3.3.8 } \\
& B_{t}=(i-r)(B+1+i)(1+i)^{T-2-t} \quad \text { for } t=1,2, \ldots, T-3 \quad 3.3 .9
\end{align*}
$$

or
where i is now a constant, the internal rate of return of the marginally rejected project, in this case 208 and β is the parameter.*

In the example $i=0.2, r=0.1$ and the reranking is equivalent to ranking along the line definca by $\beta_{2}=\beta+0.1$
3.3.10

[^21]$$
B_{1}=0.1(\beta+1.2)
$$
or equivalently the line
$$
B_{1}=0.1 B_{2}+0.11
$$
which is shown dotted in the diagram. The new ranks, which could be calculated from the original data as being in the order A B F G D C E, corresponds to the ranks along this line. The implication behind this approach is of course to continue to rerank until no further changes occur.

It should now be plain that not only can many of the traditional rules of thumb be investigated by means of the approximations that they imply to the dual, but also conversely that almost any continuous monotonic non-decreasing function of the B_{t} 's has an implication as some form of ranking procedure. Now such an observation would be of practical significance only if rankings obtained from the various rules of thumb were roaghly similar.

In this type of model, this is likely to be true since the rankings in each period are computed from the relative values of $\mathrm{NTV}_{j} / \mathrm{TV}_{j}(t)$ where

$$
T V_{j}=-c_{t j}+(1+r) T V_{j}(t-1) \text { with } T V_{j}(t)=-c_{o j}
$$

Now TV_{j} is a weighted average of all previous cash flows where the least weight is given to the most recent. This smoothes the relative values of $\mathrm{TV}_{j}(t)$ and results in a stable ranking of projects. Further simplification occurs because we need only to consider the ranking of a project whilst $T V_{j}(t)>0$, i.e. whilst the projert is a net absorber of funds. Typically this is for only the first few
years of a project's life.
All these factors help to reduce the number of intersections of the lines and hence to reduce the number of alternative possible rankings. In this context it can be noted that the axis-ranks play a very special role in that they really define extreme project ranks and hence span all possible rankings. Thus if the axial ranks are quite similar so also will be any other rank, including such 'average' ranks as internal rate of return. This result alone can often simplify problems.

Take the example above, and accept projects in the ranked order along the axes β_{1} and B_{2}.

TABLE 3.2.2

	NTV/TV (1)	$\mathrm{NTV}_{\text {'TV (2) }}$
Totally accepied	A, B, G, F	A, B, D
Partially accepted	c	F
Rejected	D, E, (H)	C, E,G, (H)

Thus immediately A and B can be accepted, E and H rejected, leaving just C, D, F and G as possible marginal projects. In fact more than this can be claiined as can be seen by inspection of che actual NTV/TV(t) ratios as below.

Year 1
Year 2

Project C	0.20	0.09
D	0.16	0.12
F	∞	0.10
G	∞	0.05

Project F clearly dominates both C and G in the sense of having a higher rank in each year and will always be chosen in preference,
which leaves the principal choice to be between D and F or even both. In this way mere inspection of the axis ranks can often reduce the number of likely combinations down to very few. In this case only two real options remain, either to accept D completely and F partially at 0.26 or F completely with D at 0.43 , the latter being also the IRR solution incidently. This simple case also illustrates a point worthy of further consideration. Once the marginal projects have been identified, a task which it is argued is not laborious for most financial models, then the final choice is most likely to be made on the grounds of criteria other than tie purely financial. Thus the two remaining options above differ by about 48 in the final plan value, :which is likely to be of much less practical significance than many other features of projects D and F that have not been considered in this simple model.

A further observation supports the claim that in practice the number of plausible rankings might be quite small. In the large number of experiments carried out on these types of models in the development of this thesis seldom were there solutions in which the B_{t} are non-zcro in more than two or three years. In fact, Weingartner's own result, in which a twenty-six year horizon model ultimately had only one β_{t} non-zero is by no means untypical. It is, of course, simple enough to artificially generate a project set in which every β_{t} is positive, it need only contain as many projects as years. The point is that this seldom seems to occur on real project sets. This will be returned to below, but its practical importance will be emphasized here.

Firstly, knowing which B_{t} are likely positive means that the dominance analysis above need only be done in those years. Secondly, and somewhat conversely, the dominance analysis usually helps to highlight the years in which $B_{t}>0$ anyway. Thus in the example above, the two options of D or F partially accepted both imply year two as the bottleneck. In which case only the NTV/TV(2) ranking is relevant, leading to the optimal solution below

A	B	D	F	v_{1}	w_{1}	v_{2}	\mathbf{w}_{2}	D
Year 1 -100	-100	-50	0	0	70	0	0	180
Year $2-50$	- 50	-10	-14	0	-77	0	100	100
Return 246	256	89	22				-110	

where project A, B, D are fully accepted, with project F partially accepted at 28\%. Any deficit or surplus funds result in borrowing and lending decisions.

3.4 A rule of thumb solution to Weingartner's Horizon Model

A clain has been made above that the number of different plausible rankings is likely to be quite small and hence that many 'rules of thumb' such as IRR would be fairly robust in the sense of giving near optimal solutions for many different project sets. As such a claim must ultimately depend on the particular types of project sets under consideration no exact proof can be offered, only a case can be argued as has been done. This case has only been illustrated by a small example so far, so this section concludes with two large examples.

TABLE 3.4.2 The β-values for weingartner's data.

(i) Weingartners Horizon Model

This model considers 30 projects over twenty six years, although the horizon is drawn in year 21. The cash flows associated with projects are displayed in Table 9A. 1 on page 180 of Weingartner* (74) and this table is reproduced in appendix $x V$. Many of the projects can be eliminated from further ronsideration since they are simple investments returning less than the cost of capital. Thus only projects 1 to 9 inclusive and $15,16,23$ and 24 warrant further considcration. Tables 3.4.1 and 3.4.2 show the value of $T V_{j}(t)$ and the B-values** respectively for these projects. Where the project begins to make a net contribution to the firm having repaid the debt the ratio is not calculated. The final Σ row gives the sum of the $T V_{j}$ for the projects. It should be noted that the net funds required by projects exceeds those available only during the first three years. Hence the constraints on project selection need only be considered for years 1, 2 and 3. The square boxes indicate the first partially rejected project ranked individually in each of these years, so that all projects are immediately accepted except for projects 1, 4 and 23. The relevant ranks for these are summarized in Table 3.4.3.

TABLE 3.4.3.

	Year		
	1	2	3
1	6	7	8
Project 4	7	8	9
23	-	6	7

[^22]Project 23 dominates the others and is therefore accepted at its maximum scale of 0.7. The other two are rejected. This is identical to the LP solution shown in Table 9A. 6 on page 183 of Weingartner's text.

It is also worth noting that the internal rate of return solution, apart from upgrading project 23 to full scale would simply interchange projects 1 and 15, bringing the former in and taking the latter out. This would affect the total plan by only about 1.48. Hence while it has not been difficult to generate the optimal solution to the weingartner model by a simple search of the dual space though more important to notice is that even a solution obtained oy a simple ranking by T PR would have given reasonable results.

(ii) Example Two

The project data in appendix IV was generated from summary statistics of actual company cperations. The erimary purpose of this data was to provide realistic test material for the discussion in chapter six on the problems of large scale financial planning models in practice, though the irregularity of the resulting cash flow patterns makes it appropriate data for a more thorough testing of the ideas put forward in this chapter. A simultaneous reduction of both cash availability from existing projections and the cost of additional funds was made to ensure that borrowing was forced to its limit in most years. Appendices $I V \& X V$ containsall the relevant cash flow data and the results of a particular LP solution* to the Weingartner horizon model with''hard' upper bounds on debt availability can also be found in Appendix XV. In this solution the cost of borrowing was 98

[^23]
and the borrowing constraint was active in five out of the seven possible years.
The date necessary for a solution via the method outlined above
is sumarized in Table 3.4.5. Because of the volume of the data it
is convenient to break up the analysis into three distinct phases.
Phase I
In this phase the projects which will definitely be accepted and those that will definitely be rejected are identified. Thus projects which return less than the lending rate can be eliminated from further consideration. Hence project PRO5 available is years 2, 4, 6, project PR2l available in years 2, 5 and 6 and project PR23 available in years 1,5 and 6 are rejected immediately. Whilst from the axial NTV/TV rankirgs in eacl. year, 10 projects can k accepted without further analysis. This leaves 27 projects as possible contenders for marginal acceptance. The remaining funds available for each year from 2 to 7, the only likely bottlenecks are shown in Table 3.4.6.

TABLE 3.4.6 (In f.1000's) Total net capital available in each year.

		1	2	3	4	5	6	7	8
B_{t}		750	750	750	750	750	450	450	450
D_{t}		400	300	200	0	0	0	0	0
L_{t}		1150	1482	1741	1820	1906	1698	1798	1905
Capital	PHASE	I	469	1070	1056	1414	1091	1447	
Available									
for		(a)	-66	404	-118	-120	-78	144	
further	PHASE	II) (b)	-180	299	-27	-1	68	153	
investment		(c)	-281	357	9	-46	-40	96	
	PHASE	III	0	310	0	0	0	v	

Abstract

Phase II

Of the eight remaining projects competing for the available 469,000 in the second year, the three projects PROIY1, PRI2Y1 and PR13y2 dominate the others. As funds will only cover the acceptance of at most two of these three, the remaining five can be rejected. Phase II(a) continues with the alternatives of choosing PROlY1 and PR12Y1. Because of the dominance existing between projects available for starting in periods three and four PROl 74 and PR13Y3 are chosen and the others rejected. Phases II(b) and II(c; correspond to the other two alternatives. The remaining cash balances for the three alternatives are shown in Table 3.4.6, the negative balances can always be removed at a later stage by accepting parcial rather than whole projects. The critical years are now seen to be $2,4,5$ and 6 and the ratios for the three projects under consideration are shown in Table 3.4.7.

TABLE 3.4.7.

Yeats

PRO1Y1	0.44	0.28	0.39	2.14
PRI 2Y1	0.32	0.33	0.34	0.66
PR13Y2	0.28	0.57	0.70	20.03

It can be seen that PR12Y1 is almost dominated by the other two in these crucial years. Thus alternative II (b) is seen to be the most appropriate choice and the negative balances can be removed by accepting partial projects. Project PROIYl is choser at full scale rather than PR13Y2 because it has the higher ratio in the most crucial year, year two. The result is shown as step III. This result is in fact identical to the optimal 1 inear programming
solution. The final column indicates the IRR solution, in which for projects available in more than one year, preference is given to earlier years and it should be noted that this also differs little from the optimal solution for this particularly severe example. The value of the program loading by IRR is $£ 2664$ compared with the true optimal of $\mathbf{\text { E2671. It is perhaps this observation which is more }}$ disturbing than the fact that the trueoptimum has been obtained by a simple rule of thumb. While this exercise was carried out for further models with different initial cash flows and different irterest rates, similar results were obtained and it is not worth repeating the analysis here. When differences were allowed between the borrowing and lending rates then this introduced a certain degree of 'fuzziness' into the investment decision consisting of those projects whose β rankings differed at these two rates. The differences in fact were quite small and further were only relevant for these marginal projects whose investment decision overlapped a transition between a budjet surplus and a budget deficit. Again in 111 the cases examined the IRR provided a good ranking method for projects and this can be illustrated if once more we return to an example from Weingartners original work* Here Weingartner assumes at 10 borrowing rate and a 5t lending rate. The optimal project subsel according to the LP solution consists of 19 projects from the available 30, though selection by an IRR ranking would have produced only one error in project selection and would have been within 28 of the value contributed by the optimal project set.

The observations of this section at present are merely discomforting for the proponents of linear programming models but

[^24]against this it should be pointed out that this model represents pioneeringwork in the sield and is relatively unsophisticated. It would now seem appropriate to examine the decision power of linear programming models of a more complex and sophisticated nature.

3.5 The Chambers Model

In the previous section a claim was made, based on a straight forward analysis, that for Weingartners horizon model many simple rules of thumb give tolerably close solutions to the optimal. In this section a similar claim, albeit in a slightly different form, is made about another major class of models. Whereas the Weingartner model considered debt capacity to be determined by fixdd upper bounds, these models limit debt by restricting its value to be less than a fixed fraction of the value of equity in each year urvo the horizon. The example chosen is the well known model by Chambers (71) which was introduced briefly in section 1.3. In Chambers model both debt and equity are measured in terms of bcok (accounting) values*. Since a detailed discussion of the structure and results of the model is readily available in the original article it is not repeated here, though sumnary data relevant to the subsequent analysis can be found in appendix XVIII.

The model may be stated as **

$$
\begin{equation*}
\operatorname{Max} \sum_{t=1}^{H} \sum_{j=1}^{19} v_{t j} x_{t j} \tag{3.5.1.}
\end{equation*}
$$

[^25]subject to $L^{t} / E^{t} \leq g \quad t=1,2, \ldots . H$
\[

$$
\begin{equation*}
F_{0}^{t}+\sum_{s=1}^{t} \sum_{j} F_{s j}^{t} X_{s j}=D_{0}^{t}+N_{0}^{t} \quad t=1,2, \ldots \ldots H \tag{3.5.2}
\end{equation*}
$$

\]

$$
0 \leq x_{t j} \leq 1 \text { for } j=1, \ldots .14 \quad 0 \leq x_{t j} \text { for } j=15,17,18,19 *(3.5 .4)
$$

where L^{t} and E^{t} represent the total value of debt and the book value of equity a^{+}the end of period $t ; g$ is the specified leverage. The constraints F_{0}^{t}, D_{0}^{t} and N_{0}^{t} represent respectively funds flow from 'old' projects already on the books, dividend payments and debt repayments as planned at the outset. The $X_{t j}$ refer to the scale of project j begun in period t for $j=1, \ldots . .14$. The projects labelled $j=15,17,18,19$ will be considered in more detail below. The constants $V_{t j}$ and $F_{s j}^{t}$ refer respectively to the horizon valuation and the cash flows of each project. The dual equations associated with the financing and investment instruments of rights, debentures, market investments and government securitiss will be analysed individually.

The case of rights (Project 17)**

$$
\begin{align*}
v_{t, 17} & =-S_{t}(1+i) \quad \text { for } t=H \tag{3.5.5}\\
& =-S_{t}(1+i)^{H+1-t}+\sum_{1=t+1}^{H} d_{s}(1+i)^{H+1-S} \quad \text { for } t=1,2, \ldots H-1 \tag{3.5.6}
\end{align*}
$$

This term should be adjusted slightly to allow for flotation costs but this will be ignored below. S_{t} is the issue price in period t, i represents the return available to shareholders on comparable equity investments elsewhere and d_{t} is the dividend per share. The cash flow stream is given by

[^26]\[

$$
\begin{equation*}
F_{t, 17}^{*}=\left(-S_{t .}, d_{t+1}, d_{t+2}, \ldots \ldots .\right) \tag{3.5.7}
\end{equation*}
$$

\]

and the impact on equity by

$$
\begin{equation*}
E_{t, 17}=\left(S_{t}, s_{t}-d_{t+1}, s_{t}-d_{t+1}-d_{t+2}, \ldots \ldots .\right) \tag{3.5.8}
\end{equation*}
$$

Thus the dual equation, with ρ_{t} and ℓ_{t} as the duals on the cash balance and the gearing constraints respectively, is

$$
\begin{array}{r}
\left(-S_{t} P_{t}+\sum_{s=t=1}^{H} d_{s} \rho_{s}\right)-g\left(s_{t} \ell_{t}+\sum_{s=t+1}^{H}\left(S_{t}-\sum_{k=t+1}^{s} d_{r}\right) \ell_{s}\right) \\
2-s_{t}(1+1)^{H+1-t}+\sum_{s=t+1}^{H} d_{s}(1+1)^{H+1-s} \tag{3.5.9}
\end{array}
$$

Defining $L_{t}=\sum_{k=c}^{H} \ell_{k}$ and $\psi_{t}=(1+i)^{H+1-t}-\rho_{t}-g L_{t}$

Equation 3.5.9. simplifies to

$$
\begin{equation*}
s_{t} \psi_{t} \geq \sum_{s=t+1}^{H} i_{s} \psi_{s} \tag{3.5.11}
\end{equation*}
$$

or

$$
\begin{align*}
& s_{H} \psi_{H} \geq 0 \tag{3.5.12}\\
& s_{H-1} \psi_{H-1} \geq d_{H} \psi_{H} \quad \text { etc. } \tag{3.5.13}
\end{align*}
$$

which implies that all $\psi_{t} \geq 0$ or equivalently that

$$
\begin{equation*}
\rho_{t}+g L_{t} \leq(1+i)^{H+1-t} \tag{3.5.14}
\end{equation*}
$$

Investment in common stock (projeut 19)

The dual equation for investment in common stock with a return of r_{e} is straightforward, affecting as it does only the first cash cquation and the debt capacity permanently.*

$$
\begin{equation*}
\rho_{t}+g \sum_{s=t}^{H} \ell{ }_{t} \geq(1+i)^{H+1-t} \tag{3.5.15}
\end{equation*}
$$

[^27]This combined with the previous result for rights issue gives

$$
\begin{equation*}
\rho_{t}+g L_{t}=(1+i)^{H+1-t} \tag{3,5,16}
\end{equation*}
$$

Confirmation of this result and encouraging evidence of the correctness of the above analysis can be made by reference to the results in Table 5, page 277 of Chamber's article. The point is illustrated in Table 3.5.1. although a discussion will be postponed until after debentures have been considered.

TABLE 3.5.1 A Comparison of the Theoretical and Computed vilues of $\rho_{t}+\mathrm{gL}_{t} \cdot$

Year	ρ_{t}	\mathcal{I}_{t}^{*}	L_{t}	$\rho_{t}+h_{1} L_{t}$	$(1.12)^{6-t}$
1	1.507	0.262	0.535	1.774	1.762
2	1.437	0.070	0.273	1.573	1.573
3	1.308	0	0.203	1.409	1.405
4	1.153	0.038	0.203	1.254	1.254
5	1.038	0.165	0.165	1.120	1.120

Debentures (project 18)
Because of considerations of tax lags, flotation costs, the impact of interest payments on retained profits, the dual equations for debentures are algebraically tedious; nevertheless they 'respond" to the same approach. The cash stream associated with a unit ($£ 100,000$) debenture issue is

$$
\begin{equation*}
F_{t^{\prime}} 18=(100-f,-100 x(1-T) \ldots \ldots) \tag{3.5.17}
\end{equation*}
$$

where r is the debt rate, f the flotation costs, and T the corporation tax rate. The effect on equity is

$$
\begin{equation*}
E_{t, 16}=(f, r(1-T), r(1-T), \ldots \ldots) \tag{3.5.18}
\end{equation*}
$$

while the debt is permanently changed by 100.

[^28]The dual equations are

$$
-\rho_{t}(100-f)+\rho_{t+1} 100 r+\rho_{t+2} 100 r(1-r) \ldots \rho_{H} 100 r(1-T)
$$

$+(100+g r) \ell_{t}+\sum_{k=t+1}^{H}(100+g r+g 100+(1-T)(k-t)) \ell_{k}$
$\geq \begin{cases}-100+f+100 r T & \text { for } t=1, \ldots . H-1 \\ -100+f & \text { for } t=H\end{cases}$
(3.5.19)
(3.5.20)
or on rearrangement

$$
\begin{align*}
f\left(\rho_{t}+g L_{t}\right) & -100\left(\rho_{t}-L_{t}\right)+\rho_{t+1} 100 r T \tag{3.5.21}\\
& +100 r(1-T) \sum_{s=t+1}^{H}\left\{\rho_{s}+g L_{s}\right\} \geq\left\{\begin{array}{l}
-100+f+100 r T \\
-100+f
\end{array}\right. \tag{3.5.22}
\end{align*}
$$

Using the result in equation 3.5 .16 that

$$
\begin{align*}
& \rho_{t}+g L_{t}=(1+i)^{H+1-t} \\
& \rho_{t}-L_{t} \leq 1-\frac{f}{100}-r T+r(1-T) \sum_{s=t+1}^{H}(1+i)^{H+1-s} \\
&+\frac{f}{100}(1+i)^{H+1-t}+\rho_{t+1} r T \text { for } t=1, \ldots H-1 \tag{3.5.23}
\end{align*}
$$

or with $\frac{f}{100}+\frac{r(1-T)}{r}=K$

$$
\begin{equation*}
\rho_{t}-L_{t} \leq K\left\{(1+12)^{H+1-t}-1\right\}+(1-r)+\rho_{t+1} \leq T \tag{3.5.24}
\end{equation*}
$$

which gives on substituting the numerical values of the various parameters.

$$
\begin{align*}
\rho_{t}-L_{t} & \leq 1.002 & \text { for } t=1 \\
& \leq 1.073 & \text { for } t=2 \tag{3.5.26}\\
& \leq 1.114 & \text { for } t=3 \tag{3.5.27}\\
& \leq 1.164 & \text { for } t=4 \tag{3.5.28}\\
& \leq 1.221 & \text { for } t=5 \tag{3.5.29}
\end{align*}
$$

$$
(3.5 .25)
$$

One year government securities (project 15)

With the interest rate on securities as r_{L} and the corporate
tax rate of T, with a one year lag in payment then

$$
\begin{equation*}
F_{t, 15}^{*}=\left(1,-\left(1+r_{L}\right), r_{L} T\right) \tag{3,5.30}
\end{equation*}
$$

and the impact on nquity is

$$
\begin{equation*}
E_{t, 15}=\left(0, r_{L}(1-T), r_{L}(1-T), r_{L}(1-T), \ldots\right) \tag{3.5.31}
\end{equation*}
$$

Then for $t=1,2, \ldots . H^{-3}$

$$
\begin{equation*}
\rho_{t} \geq\left(1+r_{L}\right) \rho_{t+1}-r_{L} T \rho_{t+2}+g L_{t+1} \tag{3.5.32}
\end{equation*}
$$

Using the fact* that $L_{t} \geq 0$ and that $\rho_{t} \geq \rho_{t+1}$ then

$$
\begin{equation*}
\rho_{t} \geq\left[\frac{1+r_{L}}{2}+\frac{1+r_{L}}{2}\left\{1-\frac{4 r_{L_{1}} T}{(1+i)^{2}}, 2\right\}^{\frac{1}{2}+1}\right]^{H+1-t} \tag{3.5.33}
\end{equation*}
$$

or approximately

$$
\begin{equation*}
\rho_{i} \geq\left(1+r_{L}(1-T)\right)^{H+1-t} \tag{3.5.34}
\end{equation*}
$$

The results so far have been generated purely algebraically, but an economic interpretation gives some insight. For rights issue the total contribution of an extra $f l$ of rights to the objective value must be less than or equal to 12 per sent, since otherwise rights would be issued until it was no longer profitable to make further issues. The contribution of $f l$ of rights in relaxing the cash balance constraint is ρ_{t} and the contribution to relaxing the debt capacity constraint** is $\mu_{2 L_{t}}$. Hence the inequality $\rho_{t}+{ }_{2 L} L_{t} \leq(1.12)^{H+1-t}$.

* In fact the equality $\rho_{t}+g L_{t}=(1+i)^{H+1-t}$ could be used to impose a stronger lower bound of p_{t}, but the size of the correction scarcely warrants it.
** It should be noted that the right hand side of the leverage constraint is $0.5 F_{o}^{t}-L_{0}^{t}$ where $E_{0}^{t} L_{0}^{t}$ represents the Equity and Debt at time t resulting from the initial decisions. Thus an additional fl of equity relaxes this constraint by 0.5

Similarly the company can get a return of at least 128 by investing El in the equity of other companies. The opportunity cost of such an investment, which is $\rho_{t}+L_{t} L^{\prime}$ is thus at least 12 or as an inequality $\rho_{t}+\frac{1}{2} L_{t} \geq(1.12)^{H+1-t}$.

These last two results imply that $\rho_{t}+L_{t}=(1.12)^{H+1-t}$. This is because the firm can be considered in equilibrium with other firms in the market. The value of funds to the investor whether they are payments to the firm for rights or whether they are receipts in the form of dividends from other companies is 12\%. The precise division of the value of these funds between their effect on the leverage constraints depends on the other financing/investment decisions of the firm.

Since investment in 1 year government securities does not have a substantial impact on the debt capacity, the interperiod discount rate should be no less than 4% or $\rho_{t} \geq 1.04 \rho_{t+1}$. By similar reasoning to the case of rights issues, the total contribution of an extra fl of debt must be less than 4s. 4 The contxibution of $f 1$ of debt in relaxing the cash balance constraint is ρ_{t} and its iupact through a permanent reduction in debt capacity is L_{t}. Thus $p_{t}-L_{t} \leq(1.04)^{H+1-t}$. These inequalities differ from those derived earlier, but this intuitive approach ignores transaction costs, tax-lags and the effect of interest payments on retained profits (and hence equity reserves). The difference is fairly slight and it is convenient to use this intuitive approximation** to obtain just one more result. When debt is being issued, the inequality becomes an equality and so $\rho_{t}-L_{t}=(1.04)^{R+1-T}$. Combining this result

[^29]with $\rho_{t}+3 L_{t}=(1.12)^{H+1-t}$ and solving for ρ_{t} and L_{t} gives
\[

$$
\begin{array}{ll}
\rho_{t}=2 / 3(1.12)^{H+1-t}+1 / 3(1.04)^{H+1-t} \cdot & 3.5 .35 \\
L_{t}=2 / 3(1.12)^{H+1-t}-(1.04)^{H+1-t} & 3.5 .36
\end{array}
$$
\]

The first equation implies that where the firm is raising debt, even though the firm may not necessarily be at its leverage limit, then the appropriate discount rate is just a 'weighted average cost of capital', with the equity rate of 128 and the debt of 4% weighted in the ratio of 2:1.

The expression for L_{t} may be rewritten in the form $L_{t}=\rho_{t}-(1.04)^{H+1-t}$ and the leverage dual is spen as the difference beticen the weighted average cost of capital and the debt rate. Thus although the pure debt appears cheaper, ther $=$ is an opportunity cost associated with debt which is just equal to this difference.

Returning to the previous inequalities they may be summarized as below

The equity inequality (3.5.16) $\mu_{t}+3_{L_{t}}=(1.12)^{3+1-t}$ The debt inequalities (3.5.25-29)

$$
\begin{array}{r}
\rho_{t}-L_{t} \leq \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
1.071 .002 \\
1.221
\end{array}
$$

The inequality (3.5.34) for government securities

$$
\rho_{t} \geq(1.04) \rho_{t+1}
$$

This dual feasible region can be represented as shown in Figure 3.5.1.

FIGURE 3.5.1.

Figure 3.5.1. represents just the t 'th section of the dual space. The feasible region is just the hatched line. This enables a complete set of rectangular bounds corresponding to the end points of this 'truncated line' representing the dual feasible space to be calculated. The upper bounds on ρ_{t} together with the lower bounds on L_{t} arise from when the firm is raising debt. In the figure this occurs when the firm is 'operating' at the upper left-hand end of the hatched line. The lower bounds on L_{t} arise from when the firm is in a cash-surplus situation or operating at the lower right-hand end of the line. These bounds are shown in Table 3.5.2. together with the results obtained with the data in appendix $X V I$ and the results quoted from the original paper.*

[^30]table 3.5.2.

Year	lower	$\stackrel{\rho}{\text { actual }}$	upper	lower	$\stackrel{\text { L }}{\text { actual }}$	upper
1	1.573	1.576 (1.507)	1.582	0.361	0.367 (0.535)	1.138
2	1.155	1.408(1.437)	1.437	0.273	$0.339(0.273)$	0.843
3	1.114	1.30¢(1.308)	1.308	0.194	$0.197(0.203)$	0.362
4	1.075	1.157(1.153)	1.194	0.121	$0.197(0.203)$	0.362
5	1.036	1.036 (1.038)	1.081	0.077	$0.169(0.165)$	0.169

These results are encouraging evidence of the correctness of the analysis. In particular it should be noted that in periods 2 and 3 when the firm is raising debt the value of f_{t} is precisely that given by' the weighted average cost of capital.' The importance of these results is that they give an upper and lower bound on the 'value' of an individual project. This value is an adjusted net fzesent value in that it consists of project cash flows valued at the horizon plus an estimate of the contribution that these project cash flows make to the debt capacity. With these bounds, p\&ojects can be screened into those which will definitely be accepted (i.e. those whose lower bound is positive). those which may or may not be accepted, (these will have a negative lower bound but a positive upper bound) and those which will deEinitely be rejected (i.e. those with negative upper bounds). The result of this analysis is shown in Table 3.5.3.
table 3.5.3.
Project ${ }^{\text {D.C.F. }}$
butyued -on

1	2	43.8	0.6	44.4	-	-	-	52	Accept
2	3	67.3	0.7	67.0	-	-	-	84	Accept
3	4	102.5	2.5	105.0	-	-	-	128	Accept
4	1	79.6	6.6	86.2	-	-	-	110	Accept
5	6	9.2	1.8	11.0	-	-	-	23	Accept
6	10	-30.2	22.2	-8.0	10.5	-7.5	3.0	-2	$?$
7	8	-18.9	9.7	-9.2	18.4	-4.0	14.4	3	$?$
8	4	32.7	4.3	37.0	-	-	-	52	Accept
9	7	11.4	1.6	13.0	-	-	-	20	Accept
10	13	-26.4	-0.3	26.7	17.9	-0.1	17.8	-2	$?$
11	12	-27.0	-6.5	33.5	14.3	1.9	12.4	-7	$?$
12	11	-11.7	0.1	-11.6	22.4	0.2	22.2	4	$?$
$13 / 14$	9	1.1	-0.4	0.7	-	-	-	9	Accept

*These actual reduced costs have not bean published in Chambers (71) but can either be calculated
from the duals or, as these were, from the program, on data made available by Chambers.

In effect Table 3.5.3 presents a formal solution to the
Chambers model for all possible combinations of initial cash
flow positions and debt commitments. The final investment decision of course still depends upon the initial state of the firm and linear programming is a readily available mechanism for determining an optimum with respect to this initial state. The dual analysis yields little more than a sophisticated version of Hirchleifers (59) rule discussed in section 1.2 - 'where the firm is borrowing funds then the appropriate discount rate is the borrowing rate, where the firm is in surplus then the appropriate rate is the lending rate' - though in this case the actual discount rates were adjusted for the impact of ihe project on debt caracity.**

Clearly however, it would be presumptious to draw general conclusions from an examınation of just tho simple*** models and further discussion of the issues raised by the foregoing analysis will be postponed until a further and more complex model has been examined.

[^31]
3.6 The impact of additional constraints

This chapter has so far dealt with models which consisted only of cash balance constraints and debt capacity constraints. The particular model proposed in section 1.7, while maintaining this basic structure, has many additonal constraints. While some of these can be considered primarily as restrictions on the investment set for example the restriction on the return of capital is in this category - some of these such as dividend policy restrictions can * be considered as a restriction on the financial market opportunicies. Moreover, certain restrictions such as the times covered constraint, intimately connect investment profitability to the debt raising potential. The effect of these additional constraints is effectively to preclude a rigorous analytical treatment of the investment schedule In a manner similar to that carried out on the Weingartner and Chambers models. This is confirmed by a cursory examination of the impact of the non-debt capacity constraints. Clearly if the initial level of debt were very high it would be impossible to cover debt by the available projects; equally if the required minimum return on capital were pitched too high, again there would be no feasible solution and the dual space would be unbounded. Thus the impact on the nondebt capacity constraints can be major. Hence, in this case no rule of thumb (excluding the simplex algorithir and its variants) readily gives the correct solution. The question remains however, whether the use of such simple rules as selection by net present value or internal rates of return would break down completely, or whethcr they still remain fairly good rules and produce, if not optimal, at least reasonably good solutions. Such an answer would, by $\boldsymbol{i t s}$ very nature be specific to the model under discussion. Nevertheless it
may provide us with a justification for the use of financial linear programming models, equally it could well provide further evidence of the power of discounting methods.

The complexity of the duals leaves us with little alternative but to begin the analysis on a simplified model which retains the same basic structure. Such a model would consist of a cash balance equation plus a times covered constraint.* There are two forms of debt in the model developed. Examination of the runs included in the Appendices suggests that it is lorg term debc (which incidentally has the lower nominal rate) that is generally preferred. So it is
to this that our attention is turned first. An Ammediate problem is that the restriction on debt is related solely to project profitability no amount of equity can relieve this constraint unless a profitable project exists. The implication of this for our ar.jlysis is that we start by consijering intersections between investment opportunities and the debt opportunities in our dual analysis.

Consider a project beginning in time t which returns a constant infinite income stream with an internal rate of return m. If we further assume that the tax rate on earnings is 50% with no rax lag, then the associated dual equation*** is

$$
\rho_{t}-m \rho_{t+1}-2 m \lambda_{t+1}-m \rho_{t+2}-2 m \lambda_{t+1} \cdots \ldots \geq 20 \text { 3.6.1. }
$$

[^32]where λ_{t} is the dual on the times covered constraint .
The dual inequality associated with a nen-repayable debt
instrument of nominal rate r is of the form
$\rho_{t}+\left(\frac{r}{2}\right) \lambda_{t+1}+K r_{t+1}+(r / 2) \rho_{t+1}+K r \lambda_{t+2} \cdots \ldots \geq 0 \quad 3.6 .2$.

If we consider the situation in which debt is being raised and the limitation on the times covered constraint results on the marginal profect having an internal rate of return m, inequalities 3.6.1 and 3.6.2. then become equalities.

We can eliminate the debt duals by multiplying 3.6.4. by Kr and 3.6.5. by 2 m and adding these two equations. The resulting equation is of the form:
$\rho_{t}(K r-2 m)-\rho_{t+1}(K r m-m r)-\rho_{t+2}(K r m-m r) \ldots=0 \quad$ 3.6.3.

If we assume that a solution to the equation exists in the form $\rho_{t+1}=\pi \rho_{t}$ then the following characteristic equation results.

$$
\pi^{t}-a \pi^{t+1}-a \pi^{t+2} \ldots \ldots \ldots . .=0
$$

where

$$
a=\frac{m(k-1) r}{(k r-2 m)}
$$

or

$$
\pi^{t}\left(1-a z-a z^{2} \ldots \ldots \ldots \ldots . .\right)=0
$$

3.6.5.

[^33]which reduces to
$$
\pi^{t}\left(1-\frac{a \pi}{1-a \pi}\right)=0
$$
3.6.6.

Ignoring the trivial solution $\pi=0$ then

$$
\pi=\frac{1}{1+a}
$$

3.6.7.
which implies that

$$
\begin{align*}
\rho_{t}=\frac{\rho_{t+1}}{\pi} & =(1+a) \rho_{t+1} \\
& =\left[1+\frac{m(k-1) r}{(k r-2 m)}\right] \rho_{t+1}
\end{align*}
$$

If we ignore the impact of the non-debt capacity constraints then the dual inequatlites for the issue of dividends and rights lead to the single equality*

$$
\rho_{t}=(1+1) \rho_{t+1}
$$

where i denotes the equity rate.
Hence if the above analysis is correct, it would suggest that the internal rate of return of the marginal project (m) is given by the solution of

$$
1+i=1+\frac{m(K-1) x}{(K r-2 m)}
$$

or

$$
m=\frac{K r}{(K-1)+2 i}
$$

Projects with an internal rate of return above this value would be accepted, while projects with a lower internal rate of return would be rejected.

[^34]Since the derivation of this formula has been intuitive rather than rigorous, before proceeding it is worthwhile examining whether this fairly crude approach has any validity in practice. In the model under discussion the values of the parameters in the formula are $i=12 \%, r=8 \%, K=10 \%$. This gives a value of 10% as the appropriate cutoff rate. The model was run with all the financial reporting constraints suppressed except the times covered constraint. The results are illustrated in Figure 3.6.1. The horizontal axis is the internal rate of return of the project. A cross above the line denotes an accepted project, a cross below the line denotes a rejected project, marginal projects are marked on the line.

A vertical line of crosses arises because the projects are repeated in later years and thus there is more than one project with the same internal rate of return. The cutoff rate is in fact quite sharply defined at 8.78; there being only projects PRO2Y5 with an internal rate of return of 9.088 and PR25Y5 with an internal rate of return of 10.06% in direct violation of this cutoff rule.* It should be noted that there are several marginally accepted projects with relatively high internal rates of return. The reasons for this will be examined in detail later.

FIGURE 3.6.1.

[^35]The results are sufficiently encouraging that it is worthwhile extending this model to cover short term debt or overdraft. The dual inequalities associated with overdraft (nominal rate r_{s}) are

$$
-\rho_{t}+\left(1+r_{s / 2}\right) \rho_{t+1}+K r_{g} \lambda_{t+1} \geq 0 \quad t=1 \ldots, \ldots-1 \quad \text { (3.6.12) }
$$

If overdraft is being used as a financing instrument in time period t then

$$
\begin{equation*}
K r_{s} \lambda_{t+1}=\rho_{t}-\left(1+r_{s / 2}\right) \rho_{t+1} \tag{3.6.13}
\end{equation*}
$$

while for the marginal ("infinite") project inequality still holds. If we find the relationship between the discount rates in consecutive years then the same functional form as before holds with

$$
\begin{equation*}
\rho_{t}=\left[1+\frac{m(K-1) r}{\left(K r_{s}-2 m\right)}\right] \rho_{t+1} \tag{3.6.14}
\end{equation*}
$$

with r this time replaced by r_{s}
This gives an expression for the internal rate of return of the marginal project of

$$
\begin{equation*}
m=\frac{K r s^{i}}{(K-1) r+2 i} \tag{3'.6.15}
\end{equation*}
$$

since $r_{s}=12 \%$, the cut off rate for projects selected by overdraft only would be $m=10.9 \%$. Figure 4.6 .2 . shows projects selected by overdraft alone. Again it shows a fairly well defined cutoff rate of around 10.5%.

FIGURE 3.6.2.

This analysis also suggests that where the firm has both long term debt and overdraft available, most of the debt financing will take place by the one with the lower nominal rate. Such a result is confirmed readily by inspection of any of the linear programing solutions included in the appendices.

In general the introduction of other 'balance sheet' constraints will distant the cut off rates and may well blur its sharpness. Figures 3.6.3 and 3.6 .4 show project selection subject to all the constraints. The first of these is selction with nomal earnings from existing projects and the second illustrates selection where there is a $10 *$ reduction in earnings from existing projects.*

FIGURE 3.6.3.

FIGURE 3.6.4.

[^36]While the other constraints do have some distant effect, it is much less than might be expected and it is worthwhile trying to explain this. As in the previous models, discounting indices are merely ranking devices on the desirability of projects. The power of ranking methods in generating approximate LP solutions has been used by others, notably Senju and Toyopa (68) for the solution of integer programming problems. Fogler (72) has directly exploited this algorithm for the selection of optimal investment portfolios. He carried out a series of experiments using ranking procedures on an integer problem with 60 projects and 30 constraints. His conclusion was that the portfolio selected gave a 'total profit impressively high' (when compared with the true optimum). One of the key assumptions made by Foglex in explaining this, was that there was some degree of linear dependence between the constraining equations. Thus he argued that a project's use of a particular resource was roughly :=oportional to its use of other resources.

In the case under discussion here the development. of the analysis so far has rested largely on the fact that the cash flows are proportional to the pre-tax earnings. Examination of the other constraints shows that in the case of return on capital constraint the 'rumerator' is also proportional to the pre-tax earnings. This is also true of the earnings per share and the dividend cover constraints since here the numerator is proportional to the net profit after tax which in turn is roughly proportional to the pre-tax earnings. Thus the model here satisfies this condition* of the constraint set being linearly

[^37]dependent in some approximate way - though in the end the power of this single parameter of internal rate of return is still most impressive.

Table 3.6.1. provides a further illustration of this.
table 3.6.1. VALUE OF FIRM USING DIFFERENT IRR CUT-OFF RATES

Level of Earnings from Existing Projects	IRR CUT-GFF RATE								
	Optimum Value	68	74	81	94	10:	118	128	138
Normal	1984	1/60	1790	1848	1861	1.877	1842	1753	1752
Reduction by 58	1720	1523	1548	1583	1520	1534	1478	1497	1504
Reduction by 10%	1435	1186	1117	1327	1206	1235	1214	1202	1206
Increase by 58	2232	1986	2010	2101	2124	2138	1220	1994	1994

The projects are selected with dificrent internal rates of return used as a sut-off* and at different levels of earnings from existing projects. The maximum values as the cut-uff rates are varied are indicated by the boxed entries. In the case of normal earnings and a 58 increase in normal earnings, the maximum value does in fact occur at a cut-off rate of 10%. Thus the predicted rate indeed minimises the difference in value jetween the optimum solution ard the solution arrived at by a simple IRR cut-off rule. We can look at another
measure of difference between the solutions by looking at the size of the error in project selection. This error ($\mathrm{D}_{\mathrm{IRR}}$) can be defined as

$$
D_{I R R}=\sum_{j}\left|x_{j}^{(O P T)}-x_{j}^{(I R R)}\right|
$$

[^38]```
where }\mp@subsup{X}{j}{}\mathrm{ (OPT) is the scale at which project j is undertaken
 in the optimum (LP) solution;
 x (IRR)
 is the scale of acceptance of profect f for a
 particuler IRQ cut of rate.
```

This error norm is shown in Table 3.6.2. for various internal rates of return used as the cutoff.

TABLE 3.6.2. ERROR NORM FOR SCALE OF PROJECTS*

| Level of Earnings | IRR Cut-Off Rate |  |  |
| :--- | :---: | :---: | :---: |
| from Existing Projects | 88 | 108 | 128 |
| Normal Earnings | 5.79 | 11.73 | 17.73 |
| Decrease by 58 | 8.74 | 12.93 | 15.01 |
| Decrease by 108 | 9.61 | 10.95 | 11.35 |
| Increase hv 58 | 6.06 | 6.66 | 17.28 |

From table 3.6.2. it can be seen that minimising the error in the scale of project selection does not necessarily give the optimum solution with respect to maximisation of the value of the firm. The error in the scale of project selection tends to be minimised around 8\% while the loss in value arising out of imperfect selection tends to minimised** at around 108. Thus the dual analysis of the simplified which predicts that the appropriate internal rate of return cut-off rate is 10 appears to be well justified.

While selection by a simple IRR cut-off gives satisfactory solutions once the appropriate cut-off rate has been determined. The prior determination of this cut-off rate may be considered to be not an easy

[^39]task. The theme of this chapter has been that fairly simple rules of thumb give good ranking methods for use in a preliminary screening of projects. The projects can be then further scrutinized against other criteria before a final selection is made. It is possible to simulate such a decision procedure on the LP model. This is done by ranking the projects according to the internal rate of return and then including in the objective function a large positive multiple of this rank.* Since the simplex algorithm proceeds by including in the solution the non-basic variable with the largest reduced cost, this device ensures** that projects are loaded sequentially by their IRR ranks. Table 4.6.3. shows the results of such a procedure. If ti.e stopping criterion adupted is that the

TABLE 3.6.3. LOADING BY IRR RANKINGS

| normal earmings |  | EAPNINGS INCREASED by 108 |  | EARNINGS REDUCED by $10 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Iteration No.*** | Objective Value | Iteration No. | Objective Value | Iteration No. | Objective Value |
| 64 | 1841 | 56 | 2029 | 56 | 1289 |
| 65 | 1851 | 57 | 2050 | 57 | 1295 |
| 66 | 1855 | 58 | 2097 | 58 | 1296 |
| 67 | 1858 | 59 | 2097 | 59 | 1296 |
| 68 | 1866 | 60 | 2141 | 60 | 1287 |
| 69 | 1870 | 61 | 2146 | 61 | 1274 |
| 70 | 1868 | 62 | 2164 | 62 | 1277 |
| 71 | 1838 | 63 | 2190 | 63 | 1269 |
| 72. | 1840 | . 64 | 2203 | 64 | 1272 |
| 73 | 1839 | 65 | 2203 | 65 | 1275 |
| 74 | 1834 | 66 | 2202 | 66 | 1253 |
| 75 | 1827 | 67 | 2195 | 67 | 1238 |
| 76 | 1824 | 68 | 2142 | 68 | 1233 |
| 78 | 1800 | 69 | 2138 |  |  |
|  |  | 70 | 2122 |  |  |

[^40]loading of project ceases when the objective value falls in
two consecutive iterations then the following results are obtained.

TABLE 4.6.4 THE ADOPTION OF PROJECTIONS BY IRR RANKINGS

| Earnings Level | Optimum Level <br> (LP solution) | Value obtained <br> in Loading |
| :--- | :---: | :---: |
| Normal Earnings <br> Earnings increased <br> by 108 | 1984 | 1870 |
| Earnings reduced <br> by 108 | 2471 | 2203 |

Table 3.6.4. illustrates the sort of resilts that might be achieved using a financial statement generator, where a preliminary screening or ordering of the projects is carried out by an IRR criterion and final selection is made subject to a satisfactory performance on a whole host of other criteria. It further emphasises the powar of discounting indices particularly when used in conjunction with a financial statement generator.

In fairness the results look better than they really are. A more correct measure of the power of the methodology is in a comparison of the additional contribution to the value of the firm made by the adopted projects in each case. Considerations of feasibility make estimations of the value of the firm in the base case of no additional projects available difficult
however, by careful parameter specification to ensure that the optimisation procedure accords with this simple description.
*** The iteration number is the iteration number of primal dual algorithm used by XDLA. The initial basis is the optinul solution (not necessarily feasible) of the linear programme with all projects excluded.
to determine. However, in the case of normal earnings an optimum feasible solution without projects does exist and the corresponding value of the firm is E 1.30 m . Thus the optimal selection of projects increases the net present value of the firm by $\mathbf{f 0 . 6 8 m}$ whereas the rule of thumb selection just discussed only increases its value by $£ 0.57 \mathrm{~m}$. If we assume that the base value of the $f i r m$ in the case of above normal earnings and below normal earnings is £1.43m and $£ 1.17 \mathrm{~m}$ respectively.* Ther the rule of thumb added value is $£ 0.77 \mathrm{~m}$ and $£ 0.13 \mathrm{~m}$ compared with possible values of fl. C4m and $£ 0.26 \mathrm{~m}$ respectively. Whilst such a rule may be considered adequate at normal carnings and above, it performs fairly badly under conditions of low earnings.

If a comparison is made between optimum project selection and internal rates of return at differing levels of earnings then apparent anomalies are observed.

TABLE 3.6.5. OPTIMAL PROJECT SELECTION and INTERNAL RATES OF RETURN

| PROTECT | IRR | DECISION |  |  | PROSECT | IRR | DECISION |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Normal Earnings | +108 | -108 |  |  | Normal <br> Earnings | +108 | -108 |
| PROIY1 | 13.04 | $\checkmark$ | $\checkmark$ | $\checkmark$ | PRO2Y5 | 9.08 | x | X | x |
| PRO4Y1 | 15.59 | $\checkmark$ | $\checkmark$ | $\checkmark$ | PRO3Y 5 | 11.47 | $\checkmark$ | $\checkmark$ | 0.1 |
| PR12Y1 | 12.13 | $\checkmark$ | $\checkmark$ | X | PR11Y5 | 11.68 | 0.45 | 0.54 | x |
| PR13Y1 | 13.97 | $\checkmark$ | $\checkmark$ | $\downarrow$ | PR21Y5 | 5.22 | X | X | X |
| PR16Y1 | 8.62 | x | $x$ | x | PR23Y5 | 6.73 | x | x | x |
| PR22Y1 | 8.75 | $\checkmark$ | $\checkmark$ | $\checkmark$ | PRO4Y6 | 15.59 | $\checkmark$ | $\sqrt{7}$ | $\checkmark$ |
| PR23Y1 | 6.73 | $x$ | x | X | PR05Y6 | 7.41 | X | x | X |
| PRO3Y2 | 11.47 | $\checkmark$ | $\checkmark$ | 0.64 | Prily 6 | 11.68 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PRO4Y2 | 15.59 | $\checkmark$ | $\checkmark$ | X | PR14Y6 | 8.7 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PRO5Y2 | 7.41 | x | x | x | PR15Y6 | 10.06 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PR13Y2 | 13.97 | $\checkmark$ | $\checkmark$ | $\stackrel{\rightharpoonup}{*}$ | PR16Y6 | 8.62 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PR14Y2 | 8.7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | PR21Y6 | 5.22 | X | X | X |
| PR21Y2 | 5.22 | x | X | x | PR23Y6 | 6.73 | $\checkmark$ | 0.81 | 0.34 |
| PR24Y2 | 8.57 | x | X | X | PROIY7 | 13.04 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PRO2Y3 | 9.08 | $\checkmark$ | $\checkmark$ | x | PRO4Y7 | 15.59 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PRㄹ̇y | 11.68 | 0.49 | 0.39 | 0.63 | PR14Y7 | 8.7 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PR15y 3 | 10.06 | $\checkmark$ | $\checkmark$ | x | PR22Y7 | 8.75 | X | x | x |
| PROIY4 | 13.04 | $\checkmark$ | $\checkmark$ | $\checkmark$ | PRO2Y8 | 9.08 | x | X | x |
| PRO5Y4 | 7.41 | x | x | x | PR15Y8 | 10.06 | x | x | x |
| PRIIY4 | 11.68 | 0.33 | 0.39 | x | PR22Y8 | 8.75 | x | x | x |
| PR12Y4 | 12.13 | $\checkmark$ | $\checkmark$ | $\checkmark$ | PR25Y8 | 10.51 | x | X | $\mathbf{x}$ |
| PR13Y4 | 13.97 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  |
| PR14Y4 | 8.7 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  |
| PR22Y4 | 8.75 | ' | $\checkmark$ | $\checkmark$ |  |  |  |  |  |
| PR25Y4 | 10.5 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  |

[^41]Inspection of Table 3.6.5. shows that not only is the investment profile relatively stable over this range of earnings but also project 22 available in ycars 1, 4 and 8 with an internal rate of return of only 8.75 and project 14 available in years 2, 4 and 6 with an internal rate of return of 8.7 always tend to be included. On the other hand project 11 which is available in years 3, 4, 5 and 6 with an internal rate of return of 11.68 is marginal in years 3, 4 and 5. Clearly our analysis is inadequate unless we can explain these anomalies.

Returning to the dual analysis and ignoring all but the cash balance contribution and the debt capacity effects the reduced cost * ( $\mu_{j}$ ) of project $j$ beginning at time $t$ is given by

$$
\mu_{j}=c_{j t} \rho_{t}-c_{j t+1} \rho_{t+1} \cdots \cdots \cdots+\lambda_{t} e_{j t}+\lambda_{t+1} e_{j t+1} \cdots \cdots \text { (3.6.16) }
$$

where in addition to the usual notations $e_{j t}$. is the (book) earnings of project $j$ in feriod $t$ and $\lambda_{t}$ here denotes the dual Cf the times covered constraint.

In the absence of constraints other than that on debt capacity then the equity relationship

$$
\left.\rho_{t}=(1+i) \rho_{t+1} \text { (equation }(3.6 .9)\right)
$$

and the dual equality (equation (3.6.2.)) associated with the raising of long term debt still hold. Hence

$$
-\rho_{t}+r / 2 \rho_{t+1}+K r \lambda_{t+1}+r / 2 \rho_{t+2}+K r \lambda_{t+2} \ldots \ldots=0
$$

If we make the assumption** that $\lambda_{t}$ is proportional to $\rho_{t}$ (i.e. $\lambda_{t}=f \rho_{t}$ where $f$ is a constant) then the value of $f$ is given by the

[^42]solution of the equation
\[

$$
\begin{equation*}
\rho_{t}\left[-1+\frac{r}{2 i}+\frac{k r f}{i}\right]=0 \tag{3.6.17}
\end{equation*}
$$

\]

Thus $f$ is given by the expression

$$
\begin{equation*}
f=\left(\frac{2 i-r}{2 K r}\right) \tag{3.6.18}
\end{equation*}
$$

Substitution of this result into the expression for the reduced cost* of the project (equation 3.6.16) gives

$$
\begin{equation*}
\mu_{j}=N P V_{j}+£ \times E_{j} \tag{3.6.19}
\end{equation*}
$$

where $\mathrm{NPV}_{j}$ is the net present value of cash flows associated with project $j$ at the equity rate $i$ and $E_{j}$ is the value of che pre-tax earnings also discounted at $i$. Hence the present value (reduced cost) of a project is partially its net present value at the equity rate and partially a discounted earnings premium. The cash flow contribution can be adjusted for the finite horizon by rewriting NPV ${ }_{j}$ as $\mathrm{NPV}_{\mathbf{j}}+\mathrm{NPVH}_{j}$ where $\mathrm{NSV}_{\mathbf{j}}$ is the pre-horizon cash flows discounted at the equity rate and $\mathrm{NPVH}_{j}$ is the net present value of the post-horizon cash flows discounted at the appropriate rate.**

If numerical values*** of expression (3.6.19) are calculated they can be seen to accord fairly well with the actual values of the reduced cost produced by an LP solution. Table 3.6.6. illustrates this point for various solutions reflecting assumptions about the level of earnings from existing projects and the presence or otherwise of non-debt capacity constraints.

[^43]table 3.6.6. Observed and Predicted Reduced Cocts of Projects.

| -ursitcl | Cxisll +1.14 COATH ${ }^{-}$ HUTION | 1AINISt.ss DISt:CESTR - 1 12: x | मibleleci.u R1 川 (\%) caicis | Nurimal Ime <br> All. <br> CONSTHAINTS |  |  |  |  | 111 $113:$ CONENLD ONLI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pagiv | 9.1 | 60.1 | 69.2 | 20.8 | 33.2 | 5.6 | 33.5 | 35.1 | 51.7 |
| PROAII | 30.4 | 44.8 | 75.1 | G1.0 | 67.9 | 56.5 | 63.1 | 72.7 | 66.8 |
| P界12Y: | 1.5 | 4H.O | 19.5 | 11.4 | 2H.O | - 2.4 | 26.7 | 28.7 | 36.6 |
| PRISYI | 20.7 | 52.8 | 73.5 | 67.2 | 76. 7 | 58.4 | 79.2 | 89.9 | 70.6 |
| PRicri | -41.8 | 56.1 | 11.3 | -30.5 | -14.3 | -48. 1 | -16.4 | - 4.5 | 0 |
| Fm22Y1 | -15.3 | 70. 1 | 54.6 | 2.2 | 6.3 | 16.1 | 7.4 | 5.2 | -. 6 |
| Ph2:9\%1 | -45.1 | 47.4 | 2.4 | -15.7 | -2.1 | -11.8 | - 2.6 | - 3.4 | - 5.3 |
| PROSI2 | - 6.3 | 63.7 | 37.4 | 2.1 | 7.8 | 0 | 7.1 | 22.0 | 35.2 |
| 1-HOTY2 | 27.2 | 36.3 | 63.5 | 1.3 | 0 | - 3.7 | 0 | 28.6 | 42.8 |
| Prosiz | -59.5 | 47.6 | -11.9 | -49.5 | -56.0 | -61.9 | -5A. 7 | -30.5 | -26.9 |
|  | 18.3 | 47.0 | 65.0 | 12.2 | 24.6 | 23.2 | 21.3 | 32.3 | 31.2 |
| PR14Y2 | - 1.5 | 63.3 | 54.8 | 21.2 | 39.6 | 46.1 | 17.4 | 27.4 | 44.6 |
| HR2192 | -103.0 | 62.4 | -4, G | -81.1 | - 80.9 | -51.1 | -29.1 | -39.9 | -57.3 |
| PR21Y2 | 34. 2 | 31. 8 | 13.6 | -33.5 | -20.6 | -14.9 ' | -26.8 | -17.3 | 0 |
| \%-2023 | -11.3 | 19.2 | 4.3 | 1.8 | 0.3 | - 2.4 | 0.3 | 1.8 | 0.3 |
| raily | -2. | 2G.f | 24.1 | 0 | 13.9 | 0 | 16.0 | 0 | 16.0 |
| prest | -10.6 | 19.2 | 0.1 | 1.2 | 3.9 | - 6.6 | 4.0 | 1.3 | 3.9 |
| PROIY4 | 9.0 | 16.3 | 25.3 | 22.6 | 17.1 | 14.3 | 17.7 | 22.7 | 17.6 |
| proirt | -42.0 | 24.4 | -17.6 | -17.2 | -26 6 | - 19.1 | -26.6 | -16.7 | -26.6 |
| PR11Y4 | 1.8 | 16.4 | 14.2 | 0 | 7.3 | -17.1 | 7.3 | 0 | 7.3 |
| Presti | 1.1 | 17.8 | 21.4 | 15.8 | 12.5 | 1.9 | 12.5 | 15.4 | 12.6 |
|  | 13.9 | 34.9 | 49.6 | 33.3 | 49.1 | 18.5 | 43.6 | 34.2 | 43.4 |
| pelay | - 2.0 | 10.1 | ค. 1 | 7.4 | 21.3 | 3.6 | 21.3 | 7.2 | 21.2 |
| FR22vt | -10.1 | 16.7 | 6.6 | 5.6 | 2.1 | 6.6 | 2.1 | 5.2 | 2.1 |
| PR2JY4 | - 0.1 | 32.2 | 23.5 | 17.3 | 16.8 | 10.0 | $4 \mathrm{C}$. 8 | 15.3 | 15.9 |
| Prozy 5 | -10.1 | - 6 | - 0.3 | - 1.3 | - 4.1 | - 6.0 | - 4.1 | - 11 | - 1 |
| PROJY 3 | $3.3-$ | 21.6 | 22.4 | 6.5 | d. 6 | 0 | 8.6 | 6.9 | 0.7 |
| Phitys | 1.3 | 7.0 | \%. 3 | 0 | 1.9 | - 6.7 | 1.9 | 0 | 2.1 |
| PR2iv5 | -68.3 | 29.8 | -38.5 | -39.5 | -48.4 | -4.4.4 | -48.4 | -39.9 | -48.3 |
| PR2JY | -21.4 | 16.3 | - 3.1 | -13.9 | -14.9 | -18.1 | -14.9 | -14.3 | -14.8 |
| PR04Y 6 | 18.6 | 0.1 | 27.7 | -40.5 | 21.9 | 39.3 | 21.8 | 38.1 | 22.0 |
| Pm05Y6 | -33.4 | 8.5 | -24.9 | - 1.3 | -28.3 | - 4.2 | -28.3 | - 2.6 | -28.1 |
| PR11YG | 1.3 | - 0.6 | 0.7 | 27.8 | 0 | 37.8 | 0 | 23.8 | 0.1 |
| PR19Y6 | 5.3 | 11.1 | 16.7 | -. 3 | 3.2 | 0. 8 | 3.2 | 8. 8 | 3.3 |
| PRISys | - 4.7 | . 2.1 | 15.4 | 11.1 | - 3.5 | 9.4 | - 3.5 | 10.4 | - 3.5 |
| PRIfig | -19.6 | 2.4 | -17.2 | 7.0 | -19.2 | 4.3 | -10.9 | S. 3 | -18. |
| PR2IY6 | -62.0 | 19.3 | -47.7 | -17.7 | -48.8 | -20.5 | -48.8 | -20.4 | -48.7 |
| P923Y 6 | -22.6 | 10.6 | -12.0 | 1.2 | -15.6 | 0 | -13.6 | 0 | -15.6 |
| PROIY7 | 13.3 | - 0.8 | 12.4 | 13.1 | 9.2 | 12.5 | 0.1 | 13.2 | 9.1 |
| PRO4Y7 | 18.9 | 1.4 | 20.3 | 31.3 | 12.9 | 28.8 | 18.9 | 31.4 | 18.0 |
| PR14Y7 | - 3.4 | 6.6 | 25 | 3.2 | -0.3 | 2.1 | - 0.3 | 3.2 | -0.2 |
| PR22Y7 | - 7.2 | 6.2 | -7.2 | - 8.8 | -10.1 | - 9.4 | -10.1 | -8.0 | -10.1 |
| 8RO2Y | - 0.0 | 0.2 | - 4.7 | - 4.0 | - 4.7 | - 4.9 | $-4.8$ | -4.9 | - 4.7 |
| Pitsye | -2.0 | -0.4 | -2.4 | - 2.0 | -2.2 | -2.0 | - 2.2 | -2.0 | -2.2 |
| rR22Y8 | - 1.0 | J. 2 | -0.8 | -4.8 | - 3.0 | - 1.8 | - 3.0 | - 4.5 | - 2.9 |
| ? 12 L | - I. 6 | 3. 5 | - 1.6 | - 1.7 | -0.1 | - 1.7 | - 0.1 | - 1.6 | 0 |

This is seen to be particularly true where all the constraints other than the cash balance and debt capacity constraints are suppressed. In general the observed reduced cost is less than the predicted reduced cost. This is because in calculating the reduced cost it is assumed that the debt capacity constraint was always binding. In this analysis the debt capacity premium is nomally large (and positive) compared with the net present value.

In fact the net present value of the cash flows serves as a rough estimate of the lower bound of the reduced cost. The interperiod cash discount rate is approximately 128 whether the firm is borrowing or lendinc. Hence if the firm is always in a surplus position implying a zero value for the projects contribution to debt capacity then the reduced cost of the project is simply the discounted value of its cash flows at the (relatively high) 128 rate. fhereas if the firm is always in a deficit situation and forced to raise debt finance then the earnings premium makes a large positive contribution to the reduced cost of the projects. Therefore the predicted reduced costs of Table 3.6.6. which gives a full weighting to the earnings premium are effectively rough estimates* of the upper bounds of the reduced costs. Again this accords well with observation. In particular this analysis explains the relative attraction of certain projects with a low IRR (e.g. projects 14 and 22). since for both of these projects the debt capacity premium makes a substantial contribution te their overall value.

[^44]This is seen to be particularly true where all the constraints other than the cash balance and debt capacity constraints are suppressed. In general the observed reduced cost is less than the predicted reduced cost. This is because in calculating the reduced cost it is assumed that the debt capacity constraint was always binding. In this analysis the debt capacity premium is nomally large (and positive) compared with the net present value.

In fact the net prescnt value of the cash flows serves as a rough estimate of the lower bound of the reduced cost. The interperiod cash discount rate is approximately 128 whether the firm is borrowing or lending. Hence if the firm is always in a surplus position implying a zero value for the projects contribution to debt capacity then the reduced cost of the project is simply the discounted value of its cash flows at the (relatively high) 128 rate. Whereas if the firm is always in a.deficit situation and forced to raise debt finance then the earnings premium makes a large positive contribution to the reduced cost of the projects. Therefore the predicted reduced costs of Table 3.6.6. which gives a full weighting to the earnings premium are effectively rough estimates* of the upper bounds of the reduced costs. Again this accords well with observation. In particular this analysis explains the relative attraction of certain projects with a low IRR (e.g. projects 14 and 22), since for both of these projects the debt capacity premium makes a substantial contribution tc their overall value.

[^45]These predicted reduced costs should be a useful index of project profitability since they provide a measure of the attractiveness of a project with respect to the basic constraints of cash availability and debt capacity. In order to simulate the use of this index as a preliminary screening device, the linear programme was set up with a large weighting in the objective function proportional to the rank of the predicted reduced cost. Hence a term of the form $1000 \sum_{j}^{j}\left(\right.$ RANK $\left._{j}-N\right)$ was included in the objective function where RANK $_{j}$ denotes the rank $c=$ project $f$ according to its predicted reduced cost (see Table 3.6.6.) By varying the size of N using objective function parameterization the cut-off rank for project acceptability was altered. Again such a process of including projects into the investment schedule subject to a satisfactory performance on other financial criteria simulates an approach frequently adapted by users of financial statement generators. Table 3.6.7. shows the results of such an expuriment.

TABLE 3.6.7. VALUE OF THE FIRM SELECTION ON REDUCED COST RANKING

| N | Normal Earnings | Earnings plus 108 | Earnings less 10: |
| :---: | :---: | :---: | :---: |
| 10 11 | N/A | 2335 |  |
| 12 | 1881 | 2338 | N/A |
| 13 | 1883 | 2348 |  |
| 14 | -1887 | 2341 - |  |
| 15 | - $1888{ }^{-}$ | $2346{ }^{-}$ | 1349 |
| 16 | 1883 | - 2346 - | 1349 |
| 17 | 1858 | $2334{ }^{-}$ | $1323{ }^{-}$ |
| 18 | 1854 | 2308 | 1320 |
| 19 | 1874 | 2312 | 1322 |
| 20 | 1870 | 2320 | 1322 |
| 21 | 1873 | 2310 | 1305 |
| 22 | 1869 |  | 1321 |
| 23 | 1862 |  | 1328 |
| 24 | 1847 |  | 1327 |
| 25 | 1833 |  | 1314 |
| 26 |  |  | 1320 |
| 27 |  |  | 1316 |
| 28 |  | N/A | 1312 |
| 29 | S/A |  | 1294 |
| 30 |  |  |  |

It can be seen that in general the peak value of the firm occurs for a value of N around 15. Consideration of Table 3.6.6. shows that this solution corresponds to the adoption of all projects with a positive value for the predicted reduced cost. It can be seen also that this index is an improvement over the IRR index* in that the additional contribution to the value cf the firm of the adopted project set is now £0.58m, £0.91m and $£ 0.18 \mathrm{~m}$ for the case of normal earnings from original projects and earnings 10\% atove and below this figure respectively. This figure compares with the corresponding optimal fP solution of $£ 0.68 \mathrm{M}, \mathrm{f1.04M}$ and $£ 0.26 \mathrm{M}$. The question still remains whether such a solution is acceptable.

The suggested approach here is typical of that of financial statement generators Itissimple to use and understand and generates good, rather than optimal, project sets which satisfy general restrictions imposed on financial policy variables. These financial policy constraints themselves carry a cost of course and a further increase in the value of the firm is theoretically possible if the project set were chosen ignoring all but the restriction on debt capacity. In fact t!is cost is $£ 0.12 \mathrm{~m}$, $£ 0.15 \mathrm{M}$ and f 0.09 M in the particular cases considered here. Thus the loss due to using a non optimal but feasible solution method is less than the loss incurred because of considerations given 5 م financial policy.** Because of adverse reactions by the financial markets it is not usually possible to ignore restrictions or financial policy variables. Under such circumstances it is vitally important to have a method which is

[^46]capable of exploring Eully these constraints and here financial statement generators in conjunction with simple rules of thumb are frequently more flexible and more acceptable tools than complex and rigid LP models.

### 3.7 Conclusion

In this chapter just three models have been examincd in detail. They all have the same basic structure, being concerned with the optimal selection from a set of investment projects according to a discounted cash flow criterion modified by restrictions on debt availability. In addition, the last model discussed includes many further restrictions on the possible investment and financing strategies. Optimal or near optimal solutions to each of these models were generated by an analysis of the dual inequalities associated with the financing instruments. Apart from providing numerical solutions to these models the analysis provided ar. insight into the impact on project selection of different structures for the restriction on debt, thus establishing a formal correspondence between the solutions generated by LP algorithms and those based on a discounting methodology. In the case of the Weingartner model it was seen that many of the rules of thumb proposed in the literature are merely attempts at approximations to the dual solution; while for the Chambers model, the existence of a general (and economically sensible) analytical solution was determined. The greater complexity of the last model discussed meant that the analysis was intuitive and lacking in rigour. The aim here was to identify the principal determinants of project selection that
might serve as a preliminary screening device. Mathematical niceties were largely ignored and while some of the loose ends will be picked up in the next chapter the justification for the analysis must rest with the results generated.

However, the purpose of this chapter is certainly not to suggest that the methods of analysis developed here should replace linear programing approaches and a discussion of the relative merits of the two methods is an irrelevant side issue which Jiverts attention away from more important points.

The first of these is that for all three models there existed a class of projects whose acceptance is not doubted on purely ecc:omic grounds. Equal:y there existed a class uf projects whose inclusion could not be justified on purely economic grounds. In this sense none of the proposed methods, whether simple discounting procedures or formal mathematical programming treatments can really claim superiority. The identification of good and poor projects with respect to a net present value criterion is not really a problem. Any of the methods mentioned in this chapter will readily identify these two sets. If there is any superiority in mathematical programming solutions it is in their ease with which they can make decisions about projects whose inclusion or otherwise may make a marginal impact on the value of the firm. Thus it would seem that in their current form, linear programing models of the capital investment decision provide the proverbial sledgehammer with which to crack the capital investment nut.

It must, though, be stressed that this in no way denies the contribution of the models of Weingartner and Chambers to the development of the subject. Weingartneis's work, apart from
forming a basis of all subsequent models, provides the framework within which the methods of discounting can be examined. Chambers model makes a valuable theoretical contribution to the problem of the treatment of equity financing, as well as of project valuation under restrictions on the book value of debt by providing a means of valuing a project's effect on debt capacity. From this discussion, emerges a recognition of the important role which can be played by mathematical programming models in the theory of normative decisinn making. In particular this brings us to the second main point of this chapter - that a major contribution of these capital investment models is in the provision of a framework for a rigorous analytical treatment of the impact on project valuation of capital mrrket imperfections.

Weingartner (62) was aware of the analytical power of these models and he discussed at some length the effect on the optimal irvestment schedule of hard capital rationing. Bernhard (69) also makes extensive use of the analysis of the fual inequalities in his survey of capital budgeting models and more recently Myers (74) has used this approach for the valuation of projects in the light of modern developments in financial theory.

In chapter four this work will be drawn together in an attempt to move towards a more consistent theory of investment project appraisal. In particular two important and complementary ideas will be looked at within this primal-dual framework. These arc, firstly a generalization of the Modigliani : Miller cost of capital formula to deal with finite horizon projects and secondly an extension of the $M M$ fundamental principle of valuation to deal with optimal growth paths in infinite horizon planning situations.

Continuing in the same vein, chapter five extends the analysis on the impact of various debt capacity constraints on project valuation by looking in detail at the valuation of one specific type of project opportunity - the financial lease contract. Whereas the impact of debt capacity restrictions may be marginal for many capital investment opportunities this will certainly not be true for the leasing decision, which is a simultaneous investment and (debt) financing opportunity. A mathematical programong Zormulation affords a natural framework within which such analysis can be carried out.

While the foregoing discussion clearly reveals an important role for LP models in filance, the original intenion of this research and the explicit intention of most other workers in this field is the provision of management decision tools. If we now redirect our attention back to this issue and reconsider what was the intended primary role of $\mathrm{T} P$ models in finance we can discern two distinct lines of approach.

The first is to cling to the belief that the practical complexities of an actual planning situation are such that a $\mathrm{i} F$ formulation is still the only realistic way of determining an optimal plan and the existence of analytical solutions to simple models in no way invalidates the methodology.

Therc are two main objections to this belief. The first is the lack of evidence that complex LP models yield radically different resuits from fairly simple models. Certainly the evidence of this chapter suggests that even for relatively complex models simple discountinq rules still remain very useful indicators of the attractiveness of projects. Moreover the more elaboration of the constraint set may well detract fron, rather than enhance,
their usefulness. Such models require an a priori specification of a minimum set of conditions which must be fulfilled by any plan and would seem an inadequate reflection of the planning process. In fact the whole approach seems far too rigid and naive ever to gain managerial acceptance.

The alternative approach is to regard LP as merely one aid in the battery of tools which are available to financial planners. Thus Chambers (72) in a follow-up paper to the
'Joint problem of Investment and Finance' discusses how his particular model might be implemented. He suggests that his LP model is best used in conjunction with a financial statement generater. He:e the financial statcient generator is used tc explore alternative dividend policies while the LP model is used to select the optimal set of investment projects with respect to a particular dividend policy. While such a procedure is clearly a more acceptabie use of LP models than attempts to use them as all embracing central decision processes, it does subscribe to the notion of LP moaeis as preselection devices and it is their superiority in this role which has been subject to most qucstioning in this chapter.

In sumary, in their current form LP models of the investment and financing decision would appear at best to perform inadequately their intended primary prupose of being a major decision tool of corporate sinancial planners. The central problems surrounding their usage in such a role arises from their inability to address directly the main issues in the financial planning process. The need is for methods of identifying and of exploring alternative financial strategies. While LP models are very effective in identifying feasible (and optimal) plans with respect to a particular criterion, they are far too risid for the exploration

```
of alternative strategies. In contrast simulation models have proved very effective for the exploration of alternative strategies, though their main weakness is their inability to give direct guidance to other and possibly improved strategies. In chapter six the issue of developing a mechanism which directly tackles the problem of identifying and exploring efficient einancial strategies is discussed. The aim here is the development of a corporate financial planning model with the flexibility and managerial acceptability of a financial statement genccator, yet, which retains the powerful decision logic of a mathematical programming model.
```


## CHAPTER 4

Economic Objective functions, the Valuation of Investment Opportunities and the Finite Problem-

### 4.1 Introduction

In the previous chapter the discussion concentrated on the generation of approximate numerical solutions to LP models of the investment decision. The method of approximation was to take the discounted cash flow valuation of an investment project and, using Lagrangian multipliers, compute an adjustment for the projects contribution to debt capacity. This adjusted net present value incorporated the impact of the interactions which arise between the investment and financing decision under conditions of imperfect capital market.

Now among the core problems of modern corporate financial theory is the valuation of individual projects within the broader context of the firms total operating environment. While the problem is usually broached within the framework of perfect capital markets in equilibrium, it is the extent, and impact, of market imperfections that lead to severe analytical difficulties. Thus the emergence of mathematical programing models as a means of integrating the investment and financing decision, and of rigorously exploring the resultant interactions, provides a very powerful analytical tool for the development of more rigorous theories of valuation. In particular unlike more traditional methodologies of financial theory, where the arguments are developed in terms of infinite and,frequently constant, non-interacting income streans
and financing outflows, mathematical programming provides a means of dealing with irregular and finite transaction patterns.

In this Chapter the discussion will concentrate on the contribution of mathematical programing financial models to the development of normative models for project valuation.

The starting point for such a discussion is a brief resumé of approaches to the valuation of uncertain cash flows via the use of risk adjusted discount rates together with the implications of different capital structures for the investment decisions. The next section uses these ideas, which are central to financial theory,for the development of alternative formulations of objective functions which can be incorporated into mathematical programing models for financial planning. Within such a framework the formulations of Carleton (69), Weingartner (63) Chambers (71) and other authors are examined and from this framework a general theory of the sequential valuation of individual investment projects is developed. These ideas are extended to a more rigorous analysis of the cost of capital formula first derived by Modigliani and Miller and it is shown that their formula breaks down in general for the appraisal of finite or irregular investment cash flows. The remainder of the Chapter is devoted to various aspects of the horizon problem. Thus section 4.6 examines the way in which an analysis of the dual equations in the prehorizon period facilitates a consistent formulation of the horizon valuation, while the final two sections look at possible applications in financial modelling situations of the recently developed theory on the solutions to infinite time horizon LP models. Here both the nature of long run equilibrum solutions and the practical implications of using finite horizon approximations is examined in detail.

### 4.2 The Cost of Capital and Risk Adjusted Discount Rates.

Differences which arise in the form of the expression for the cost of capital result from the two different approaches* taken towards the valuation of total corporate cash flows. The first approach, the net operating income (NI) approach computes the value of the firm by capitalizing the income (dividend) stream accruing to the shareholders and adding to this the value of debt. The alternative approach, the net operating income (NOI) approach computes the value of the firm by directly capitalizing the net operating income of the firm. Both these approaches to the derivation of a cost of capital will be considered here since they provide an insight into the structure of valuation formulae commonly used in financial planning models. It is also a convenient point at which to define a notation which will be used throughout this Chapter.

$$
\text { Let } \begin{aligned}
v_{t} & =\text { Value**of the firm at time } t \\
\omega_{t} & =\text { Value of debt at time } t \\
\psi_{t} & =\text { value of equity. }
\end{aligned}
$$

The relationship between these values at any point in time is

$$
v_{t}=\omega_{t}+\psi_{t}
$$

4.2.1.
$1=$ Equity discount rate $r=$ (pretax) rate on the finms debt

* See Durand (59) or any modern standard text on financial management such as Van llorne (77) or Weston and Brigham (78).
** At this point the term 'value' has not been defined precisely; for instance whether it is book value or market value. The usage will be defined within the context of a particular argument. Neither will any precise interpretation of the various interest rates be offered until much later in the Chapter

In the simple analysis that follows it is assumed for convenience that the income generated by the firm will persist at its current level for all future time.** This implies no net new investment on the part of the firm. In addition there are no corporate taxes and all income is redistributed as dividends.

Let $x=$ The expected income from operations in each year
Then $x=r \omega+1 \psi$
4.2 .2.
and $\quad \frac{x}{v}=\frac{\Sigma w}{v}+\frac{i \psi}{v}$
4.2 .3.

If further $K$ denotes the fraction of debt in the capital structure. then the weighted average cost of capital -a can be defined as $\frac{x}{v}$.
Hence $a=K r+(1-K) 1$
4.2 .4

The debate on the cost of capital centres on the way in which i. $r$ and consequently a varies with the proportion of debt in the capital structure. Modigliani and Miller (58, 59) argue that under assumptions of a perfect capital market and no corporate taxes then the value of the firm and hence the value of the average cost of capital is independent of the degree and leverage. Their argument rests on the ability of an investor to undo corporate leverage by personal borrowing or lending. Against this Durand (59) questions the extent to which arbitrage can take place because of perceived differences between personal and corporate gearing, while Baxter (67) and Stiglitz (72) argue that non linear effects of bankruptcy costs will in the end imply an optimum debt equity

[^47]structure.
In contrast the traditionalists* argue that both the returns required by debt holders and by equity holders vary as the degree of 'financial risk' or gearing varies, but in such a way that at some stage the weighted average cost of capital has a minimum.

With the introduction of corporate taxes the value of the company is altered because of the tax deductability of the interest payments and thus the after tax earning where $T$ is the tax rate then

$$
\begin{align*}
x^{T} & =(x-r \omega)(1-T)+r \omega \\
& =x(1-T)+r T \omega
\end{align*}
$$

According to the NOI approach, so vigorously argued by Modigliani and Miller $(63,69)$, the expected income strean $x(1-T)$ should be capitalised at the constant rate $a_{0}$ where $a_{0}$ is the rate of capitalisation of a pure equity stream from the firm and the 'certain' tax savings stream should be capitalised at the 'risk-free' rate $r$. Thus the value of the firm is given by $v_{0}=\frac{(1-T) \bar{x}}{a_{0}}+T \omega \quad$ 4.2.6. and consists of the firm market value under all equity financing plus the present value of tax generated capital allowances.

In contrast the NI approach, adopted -by traditional: theorists argues that the after tax residual earnings should be capitalised at i,being that portion of the income attributable to shareholders, with the interest component capitalised at $r$.

This gives


Using as a definition** of the cost of capital $x(1-T) / v$ then these

[^48]two approaches give a value for the cost of capital of
$$
a=a_{0}(1-K T)
$$
in the Modigliani and Miller (MM) case and
$$
a=i(1-K)+K r(1-T)
$$
for the traditional case. While it can be seen that both of these costs of capital are functionally dependent on $K$, the traditionalist further argues that the variation of the equity rate and the debt rate with $K$ is such as to result in a minimisation of the cost of capital and a consequent maximisation of the value of the firm.

In the MM case the average cost of capital appears to decrease uniformly as the amount of debt increases to the point at which there would be no equity financing. A resolution of this paradox of bankruptcy is offered by Robichek and Myers (65) who argue that the possibility such that there is some limit on the proportion of debt in the capital structure. Thus both approaches introduce a debt capacity restriction which takes the form of a target limit on the percentage of debt in the total capital structure. The incorporation of such a restriction on debt turns out to have had a profound influence on the structure of mathematical programing models used for financial planning.

One further point which has been largely glossed over so fax in this thesis and is of particular relevance to this Chapter is the implicit assumptions made in the approach to the valuation of returns from risky investments. In essence, the approach adopted throughout this thesis has been to value a risky investment by discounting the expected cash flow stream resulting from the investment at a rate adjusted for the 'risk' of that stream. The theoretical justification for such an approach lies in the work of Sharpe (64), Litner (65) and Black (72) all of whom examined
the determinants of the market price of a security or risky asset under equilibrium portfolio conditions. Their work, on the capital asset pricing model (CAPM) uses a two parameter specification of risk in which it assumed that the investor is economically rational preferring more expected wealth to less expected wealth, and is risk averse, measuring risk by the standard deviation of the return from an investment. The development of the theory assumes perfect capital markets, homogeneous expectations of returns from investors and equality of borrowing and lending rates. The impact of relaxing some of the assumptions in capital asset pricing theory are discussed by, among others, Mao (71), Jensen (72). In the original, Sharpe, Litner and Black treatment of the CAPM a one-period horizon model is assumed. The extension to a multi-period model has been carried out by Brennan (73) and Farma (77) and it is this last mentioned author who provides both a detailed analysis of, and deviation of, the form of the valuation of risky investments used in this thesis. Farma's starting point is that according to CAP theory, the excess one-period return required of a risky investment over that of a risk free asset* is proportional to the excess market return** over a risk-free asset, where the constant of proportionality depends on the covariance of the return from the individual risky asset with that of the market portfolio. He then extends and generalizes this one-period model into a multi-period valuation model. A sufficient condition for the multi-period model to take the form of a discounted sum of expected cash flows at a constant

[^49]discount rate is that the risk-free rate is constant and known and that the future covariances of the cash flows from the investment with the market returns are also constant and known. In terms of most of the valuation models discussed in this thesis this condition is satisfied provided that the operating environment of the firm is stable and provided that the firm has a fixed (as measured in terms of risk) investment policy with respect to this environment.

### 4.3 Valuation models and the structure of Objective functions

As was discussed in the last section, two different approaches have been taken to the valuation of the firm. The approaches are the net income approach and the net operating income approach. Both of these need to be considered here since they give different, though not necessarily contradictory, forms for the cost of capital. In view of the furore created by the debate on the effects of capital structure on the cost of capital, the non-contradictory nature of the results emerging from some of the analysis to be presented in this chapter might seem surprising. The reasons for such results arise from the restrictive nature of the assumptions which are necessary in most linear programming models which are to be used for financial planning.

In essence such models are required to attribute a value row to a decision $z_{t}$ taken at time $t$ in the future. Thus it is necessary to identify a mapping $P V: z_{t}+v_{0}$ where $v_{0}$ is the value now of the decision $z_{t}$. The requirement that such a function is linear implies that the discount rate is a constant and independent of any decisions taken in the intervening period, including decisions taken about the capital structure. While such an assumption might seem prohibitively restrictive if LP models are being used for
the development of financial valuation theory, it must be viewed within the context of such models. The bagic structure of these models is that they consist of a valuation (objective) function and a debt capacity constraint. In general the relative cheapness of debt results in this debt capacity constraint being binding in most periods. Thus this produces the stable capital structure necessary for the assumption of constant discount rates.

The lack of contradiction between NI and NOI approaches is further a consequence of defining only two of the three interlinked discount rates which relate to debt, equity and operating flows. The third discount rate is a deduction from the model and is dependent on the structure of the model. It is important to stress this difference between discount rates which are deductions from a model and those which are either implicitly or explicitly prior specifications to a model, since this problem is a constant source of misunderstanding.

In particular the early attempts at the formulation of appropriate objective functions for use in mathematical programming models were subjected to the severe criticism of Baumol and Quandt of primaldual inconsistency*. The result of this was that the objective functions of the early models ** were solely horizon valuations. Thus the constraint set was specified over the pre-horizon period while the objective function merely valued the post-horizon effects. Hence the valuation of individual projects was such that the pre-horizon period valuation was carried out via a dual pricing mechanism while the post-horizon valuation was carried out using a predetermined constant equilibrium cost of capital.

[^50]
#### Abstract

Clearly such a methodology is unsatisfactory from a theoretical point of view, since the valuation is arbitrarily dependent on the horizon, and from the practical point of view, since here net present value methods are in general preferable to net terminal valuations. Fortunately it was possible in Chapter two to identify the source of this paradox and to provide a satisfactory resolution of it.

The paradox stemmed largely from a misinterpretation of the model where an attempt was made to make statements about consumption preferences from a model which specifically exciuded the consumption alternative. This error was further compounded by the assumptions that the firm and/or individual investors were excluded access to the capital market. Thus in order to make progress it is necessary to specify the nature of possible consumption functions* and market discount rates and to take cognizance of role of the capital market in the determination of these rates.

If we thus adopt the alternative model proposed by Baumol and Quandt of marimising the value of the utility of withdrawals, then we have in the notation introduced earlier


$$
\operatorname{MAX} \psi=\psi_{0}(D, E)
$$

4.3.1.

A well defined mathematical structure can be imposed on the function $\psi_{0}$ by reference to the fundamental principle of valuation as expounded by MM (61). The return to equity (i) can be defined in terms of the net increase in share price plus any dividends flows in relation to the initial share price. The relationship is thus

[^51]
4.3.2.
where $p_{t}$ price of shares at the start of period $t$ and $d_{t}$ is the net dividend per share paid at the end of period $t$.

Equation 4.3.2. can be rewritten in the form

$$
p_{t}=\frac{d_{t}+p_{t+1}}{(1+i)}
$$

If in addition the number of shares outstanding at the start of $t$ is $n_{t}$.

$$
\text { Then } \psi_{t}=n_{t} p_{t}=\frac{n_{t} d_{t}+n_{t} p_{t+1}}{(1+i)}
$$

and

$$
\begin{align*}
n_{t} p_{t+1} & =n_{t+1} p_{t+1}-\left(n_{t+1}-n_{t}\right) p_{t+1} \\
& =\psi_{t}-E_{t}
\end{align*}
$$

giving

$$
\psi_{t}=\frac{D_{t}-E_{t}+\psi_{t+1}}{(1+i)} \quad \text { where } D_{t}=n_{t} d_{t}
$$

Now while equation 4.3.2. defines the return on equity mathematically, the actual value of $i$ is exogenously determined by the capital market forces. These take into account the business* risk in the figms operating income and financial risk involved in the firnts capital structure. With the assumptions that the firm continues to invest in projects with the same degree of business risk and that the debt capacity constraint ensures a stable capital structure then $i$ can be regarded as a constant. If it is further assumed that all new issues are in the form of rights which are totally taken up by existing shareholders,** then the recursive use of

[^52]expression 4.3.8 gives a value for the equity of the form
$$
\psi_{0}=\sum_{t=1}^{H-1} \frac{D_{t}-E_{t}}{(1+i) E}+\frac{\psi_{H}}{(1+i)^{H}}
$$

In essence the capital market has imposed the necessary structure on the utility function of equation 4.3.1. This generates with a very convenient form of objective function for incorporation into linear programming models. The first two variables $D_{t}, E_{t}$ present no problems in evaluations since they are readily incorporated as decision variables within the model though of course $\psi_{H}$ does present the now familiar horizon value problens. This valuation formula was first developed by Carleton (70) and most of the models discussed so far can be considered to be specific examples of it. The derivation presented here is to clarify the assumptions and the context of the formula and to enable the limitation of any conclusions drawn from such a model to be clearly seen.

If we refer back to some of the models already discussed In the first Chapter, the objective function in the weingartner model is trivially maximize $\Psi_{H}=V_{H}(X)-\omega_{H}$ or the equity proportion of the post-horizon cash flows. Here $V_{H}(X)$ is the post-horizon value of the firms net operating income valued at the debt rate. The implications of such a model are that there is a predetermined dividend policy and that the firm is operating under conditions of perfect certainty.

Of more interest is the Chambers (71) model. In this model the net present value at the horizon (NPVH) of rights, as well as debt and project cash flows, are treated explicitly. In the valuation of equity and debt Chambers argues:
> 'Managers should be led to make a new rights issue only if there is some increase in the value of the firm to existing shareholders after giving subscribers to the new issue a return (in this example of 12 per cent). A NPVH of the new rights issue is, therefore, defined as that amount at the horizon which, taken together with the dividends to which they will be entitled over the planning period, gives a return of 12 per cent to new investors."

A similar argument is used to obtain NPVH for debentures issued in the planning period by discounting post-horizon cash flows associated with these at 4 per cent, while post-horizon cash flows from investment projects are discounted at a weighted average cost of capital.

Thus for rights the post-horizon value is the alternative cost to the shareholders of money they subscribe in $t$. This is given by

$$
\begin{gathered}
-p_{t}(1+i) \quad \text { for } t=H-1 \\
-\left[p_{t}(1+i)^{H-t}-\sum_{t=t+1}^{H-1} d_{t}(1+i)^{H-\tau}\right] \quad \text { for } t=1, H-2 \quad \text { 4.3.10. }
\end{gathered}
$$

where $p_{t}$ is the price of a unit of equity issued at $t$ and $d_{t}$ is the dividend per share which the firm plans to pay in $t$.

The whole valuation model in fact can readily be seen as an example of the analysis developed above. The model relating the value of future equity streams to the shareholders is

$$
\psi=\sum_{t=1}^{B-1} \frac{1}{(1+i)^{E}}\left(D_{t}-n_{t} p_{t}\right)+\frac{\Psi_{H}}{(1+i)^{H}}
$$

where the additional notation $n_{t}$ is the number of rights issued at time $t$. Since in the Chambers' model the dividend policy is predetermined then $D_{t}$ can be written in the form*

[^53]$$
D_{t}=D_{t}^{0}+d_{t} \sum_{\tau=2}^{t} n_{\tau}
$$
where $D_{t}{ }^{0}$ is the dividend planned on the existing shares.
Hence
$\psi_{0}=\sum_{t=1}^{H-1} \frac{1}{(1+i) t}\left[D_{t}^{0}+a_{t} \sum_{\tau=2}^{t} n_{\tau}-n_{t} p_{t}\right]+\frac{\psi_{H}}{(1+i)^{H}} \quad$ 4.3.13.
$=\sum_{t=1}^{H-1} \frac{D_{t}^{0}}{(1+i)^{E}}+\frac{1}{(1+i)^{H}}\left\{\sum_{t=1}^{H-1}\left[d_{t}(1+i)^{H-t} \sum_{\tau=2}^{t} n_{\tau}-n_{t} p_{t}(1+i)^{H-t}\right]+\psi_{H}\right\}$
$=\sum_{t=1}^{H-1} \frac{D_{t} 0}{(1+i)^{t}}+\frac{1}{(1+i)^{H}}\left\{\sum_{t=1}^{H-1} n_{t}\left(\sum_{\tau=t+1}^{H-1} d_{\tau}(1+i)^{H-\tau}-p_{t}(1+i)^{H-t}\right)+\psi_{H}\right\}$ 4.3.15.

The first term is just a constant and the expression in curly brackets
is just a constant times the following expression
$=\sum_{t=1}^{H-1} n_{t}\left[-p_{t}(1+i)^{H-t}+\sum_{\tau=t+1}^{H-1} d_{\tau}(1+i)^{H-\tau}\right]+\psi_{H}$
We still need a valuation for ${\underset{H}{H}}^{\text {the value of the equity portion }}$ of the firms terminal value. Referring back to the earlier work we have the equation 4.2.1.

$$
\psi_{H}=v_{H}-\omega_{H}
$$

$V_{H}$ is related to the value of the firms future after tax cash flows and $\omega_{H}$ refers to the debt servicing and repayment streams. By discounting the former at the weighted average cost of capital and the latter at the debt rate, Chambers is essentially adopting a traditional approach to valuation. It will be argued that such a valuation is consistent in the sense that all the valuation procedures used within this model are consistent with the explicit and implicit assumptions made about the behaviour of the capital markets. To justify this statement it will be necessary to develop
a more general framework for the analysis of the relationship between individual investment and financing projects which is implied by the structure of an LP. While this occupies most of the next two sections it is worth examining briefly a paper by Bhaskar (74) which illustrates some of the pitfalls involved in attempting to devise a consistent formulation of anancial linear programming model. In this paper Bhaskar attempts a rigorous analysis of the way in which borrowing and lending instruments might be incorporated into a capital budgeting model in the light of modern financial theory. However, his choice of a modified Weingartner model as the analytical framework is singularly unfortunate.

The model* as presented is

$$
\operatorname{Max} \sum_{j=1}^{n} \hat{c}_{j} x_{j}+\hat{c}_{v} v_{t}
$$

subject to

$$
\begin{align*}
& -\sum_{j=1}^{n} c_{t j} x_{j}+v_{t}-\left(1+r_{L}\right) v_{t-1}-\omega_{t}+\left(1+r_{B}\right) \omega_{t-1} \leq F_{t} \\
& \omega_{t} \leq B_{t} \\
& 0 \leq x_{j} \leq 1
\end{align*}
$$

The notation used is the standard one adopted in this thesis with the caveat that the interpretation of the coefficients in the objective function is slightly different. Here

$$
\hat{c}_{j}=\sum_{t=0}^{\infty} \frac{c_{t y}}{(1+a)^{E}}
$$

* This includes the minor modification of considering 1 year debt only. Bhaskar incorporates debt with a longer repayment period.
is the net present value (as opposed to net terminal value) at a weighted average cost of capital (a) while $\hat{c}_{v}=\frac{r L-a}{(1+a)^{r+1}}$ is similarly a net present value of El of lending at the same waighted average cost of capital. Two immediate problems present themselves within such a valuation framework. One is the choice of discount rates and the other is the implication that such discount rates carry about the capital markets.

The use of a weighted average cost of capital is motivated by the MM argument that the weighted average cost of capital funlike the equity rate) is independent of debt decisions in a perfect market. While the use of a constant weighted average cost of capital facilitates a linear structure, the MM hypothesis specifically assumes perfect capital markets. As Bhashar himself admits in a postscript
'is it valid to assume an MM type world in a (hard) capifal rationing situation? The problem here is that it may not be possible for arbitrage to take place because of capital rationing.'

This gives rise to the second main problem.
Bhashar in using a constant cost of capital has actually assumed that while the firm has limited access to the capital market fas implied by the constraint on debt ) the shareholders themselves have perfect access (i.e. unlimited personal borrowing or lending at the debt rate $r$ ). While this assumption might not seem totally unacceptable, Bhashar has made no provision in the model for the firm to raise further equity capital. Thus he has included shareholder investment/consumption preferences within the valuation procedure but omitted from the model the necessary mechanism whereby these preferences might be exercised.

There is also an inconsistency in the incorporation of lending into the model. The implication of the NOI income approach assumed by MM is that projects should be valued at a rate appropriate to their risk. The implication of this is that the lending project which consists of cash flows of -1 and $1+r_{L}$ should be discounted at $r_{L}$ the lending rate. It would thus disappear from the objective function. While Bhashar argues that such a solution is suboptimal using a two project counterexample*, he misses the point that the lending project has altered the business risk and thus the equity return require by shareholders.

Clearly if the intention is to use LP models for developing financial theory, or indeed, as a decision making aid, then a great deal of care must be taken in structuring the model. In the next section a framework is developed which allows for a more thorough analysis of the implicit assumptions made with LP models for financial planning and in section 4.6 illustrates the methodology applied to the model introduced in section 1.7.

### 4.4 The Cost of Capital : a General Framework

While empirical evidence on the cost of capital debate has proved inconclusive** the resolution of the issue is of less immediate importance to this thesis than the shortcomings of the theoretical analysis. In particular two of the assumptions which were made in the analysis presented in section 4.2 are sufficiently restrictive to invalidate the application of the cost of capital

[^54]formula in nearly all capital investment decisions. Clearly, a cost of capital formula whose derivation is subject to the assumption of no net new investment is not the most appropriate method for screening new capital investment projects. Further the assumption that the net contribution of the set of investment projects will be a constant income stream in perpetuity must be considered at best a very poor approximation to reality. Thus the task of this section is to present a method of analysis which does not require these assumptions.

With this aim in mind, consider the following model of the set of investment and financing decisions facing the firm

$$
\operatorname{MAX} \quad \psi(X, D, E, \omega)
$$

subject to cash balance restrictions

$$
\begin{array}{ll}
-\sum c_{0 j} x_{j}-\omega_{0}+D_{0}-E_{0} & =F_{0} \\
-\sum_{j} c_{t j} x_{j}-\omega_{t}+(1+r(1-T)) \omega_{t-1}+D_{t}-E_{t}=F_{t} \quad t=1, H
\end{array}
$$

and a restriction on the level of debt finances

$$
\omega_{t} \leq \phi_{t}(X, D, E)
$$

plus a scale constraint on the project

$$
0 \leq x_{j} \leq 1
$$

and the usual non-negativity conditions where the heavy type denotes vectors whose individual components are interpreter* as follows:

[^55]$D_{t}$ - dividend paid in time period $t$
$E_{t}$ - equity issued in time period $t$
$\omega_{t}$ - debt financing in period $t$
$x_{j}$ - scale of acceptance of investment $j$
and the other symbols are:
$c_{j t}$ - cash inflow from project $j$ in $t$
$F_{t}$ - funds from existing project
T - corporate tax rate
$\Phi_{t}$ - debt capacity in time period $t$
If we further denote by:
$\rho_{t}$ - shadow price on additional cash
$\lambda_{t}$ - shadow price on debt capacity
$\mu_{j}$ - shadow price on the scale of acceptance of project $j$
H - the planning horizon
then Kunn-Tucker optimality conditions give for dividends
$$
\rho_{t}-\sum_{t=0}^{H} \lambda_{t} \frac{\partial \phi_{t}}{\partial D_{t}} \geq \frac{\partial \psi}{\partial D_{t}}
$$
and for equity issues
$$
-\rho_{t}+\sum_{t=0}^{H} \lambda_{t} \frac{\partial \phi_{t}}{\partial E_{t}} \geq \frac{\partial \psi}{\partial E_{t}}
$$
while for debt the relevant inequality is
$$
-\rho_{t}+(1+r(1-T)) \rho_{t+1}+\lambda_{t} \geq \frac{\partial \psi}{\partial \omega_{t}}
$$
and that for the scale of acceptance of a project is
$$
\mu_{j} \geq \frac{\partial \psi}{\partial x_{j}}-\sum_{t=0}^{H} \rho_{t} c_{t j}-\sum_{t=0}^{H} \lambda_{t} \frac{\partial \phi}{\partial x_{j}}
$$

The right hand side of inequality 4.4:9 can be considered to be a generalisation* of the net present value concept to include the project contribution to debt capacity. Hence if the expression on the right hand side is positive then the project is included in the optimal solution, if the expression is negative then the project is rejected whereas a zero value results from partial acceptance. The project decision is thus dependent on its own direct contribution to the value of the firm $\frac{\partial \psi}{\partial x_{j}}$ and to the debt capacity $\frac{\partial \phi_{t}}{\partial x_{j}}$ as well as the marginal value of funds $\rho_{t}$ and the marginal value of extra debt $\lambda_{t}$.

In general both $\rho_{t}$ and $\lambda_{t}$ can be determined by consideration of the financing opportunities. Thus if we assume that equity issues can be treated as negative dividends** then this implies

$$
\frac{\partial \phi_{t}}{\partial D_{t}}=-\frac{\partial \phi_{t}}{\partial E_{t}}
$$

and

$$
\frac{\partial \psi}{\partial D_{t}}=-\frac{\partial \psi}{\partial E_{t}}
$$

giving

$$
\rho_{t}-\sum_{t=0}^{H} \lambda_{t} \frac{\partial \phi_{t}}{\partial D_{t}}=\frac{\partial \psi}{\partial D_{t}}
$$

while if debt financing is being undertaken, inequality 4.4.8 becomes an equality and we have

$$
-\rho_{t}+(1+r(1-T)) \rho_{t+1}+\lambda_{t}=\frac{\partial \psi}{\partial \omega_{t}}
$$

[^56]Equations 4.4.12 and 4.4.13 are usually sufficient to define $\rho_{t}$ and $\lambda_{t}$ from this we can deduce a value for the right hand side of inequality and hence the appropriate valuation formulae for the contribution from a potential investment.

These observations provide for a more rigorous definition of the term 'cost of capital' than that which is to be found in standard texts for use in capital investment appraisal.

If $f$ is a function $1 \int_{T=1}^{t}(1+u(\tau))$ of the parameters $u, t$ where $u=g\left(\rho, \lambda, \psi^{\prime}, \phi^{\prime}\right)$ such that for project $j$ involving net cash inflows $c_{j t}$ in $t$

$$
\begin{array}{rlrl}
\sum_{t=0}^{\infty} f(u, t) c_{j t} & <0 & u(t)>\rho_{t}^{*} \\
& =0 & u(t)=\rho_{t}^{*} \\
& <0 & u(t)<\rho_{t}^{*}
\end{array}
$$

then $\rho_{t}^{*}$ is the cost of capital. In the type of model being considered here $u$ and thus $\rho_{t}$ is in general a function $g$ of $P, \lambda, \psi^{\prime}, \phi^{\prime}$ where both the dual vectors $\rho, \lambda$ and the vectors of derivatives $\psi^{\prime}, \phi^{\prime}$ can in turn usually be expressed in terms of the interest and tax rates supplied to the model. There are two important points to be made about the valuation formula and cost of capital formula developed here.

The first is one to which frequent reference has already been made and will be only briefly mentioned again here. In finite horizon linear programing models where the impact of any decision extends beyond the horizon period the valuation formula, and hence the cost of capital, may depend on the choice of horizon. The second is that any investment project valuation formula is critically dependent on the assumptions of the impact of debt and
equity on the value of the firm and the value of debt capacity. Once these assumptions have been made then the appropriate formula for valuation of an investment project follows as a logical consequence. Such an observation provides a method of checking the consistency of the formulation, since presumably the resultant valuation of an investment project will reveal the nature of any implicit assumptions made about investment cash flows. Both these points will be briefly illustrated for the Chambers (71) model.

The valuation model used by Chambers has already been discussed in some detail in the previous section. The objective function $\psi$ is a discounted value of the cash flows associated with the issue of rights, debentures and investment projects. In contrast the debt capacity $\phi$ is a constant multiple $g$ of the book value of new equity and retained earnings and is thus affected by the issue of rights, profits retained from investments and such expenses as flotation costs of new financing.

The analysis of the dual equations associated with equity issues and with debt financing has already been carried out in section 3.5. It was shown that when debt financing was being used then the dual on the cash balance equation (equation 3.5.35) could be approximated by

$$
\rho_{t}=\frac{(1+i)^{H-t}+g(1+r(1-T))^{H-t}}{1+g}
$$

while if the firm was in a cash surplus situation in the sense that it was lending money to the fixed interest market, the cash balance dual was given by the expression (equation 3.5.34)

$$
\rho_{t}=[1+r(1-T)] \rho_{t+1}
$$

In both these cases, equation 3.5.36 , gave the debt capacity constraint dual as $\lambda_{t}=\frac{1}{g}\left[(1+i)^{H-t}-\rho_{t}\right]$.

The resulting project valuation, as represented by the reduced cost, thus values cash flows at the appropriate borrowing or lending rate upto the horizon. Moreover, the borrowing rate in the prehorizon period turns out to be a weighted average cost of capital rate where the weighting factor is based on a book value figure. In the post horizon period, there is no information as to whether the firm is in a cash surplus situation or a cash deficit situation. Chambers in fact chooses a weighted average cost of capital figure, where the weighting is again in terms of book values. Thus the model gives a consistency at least in the approach adopted, if notin the precise functional form, to valuation.

Some inconsistencies do arise but these are of a technical nature, arising from the finite horizon, rather than inconsistencies arising from the assumptions implied by the choice of valuation model and the nature of the restrictions on the use of debt. These do result in project valuation being norizon dependent, though this dependency is not critical.* Thus in the pre-horizon period the weighting is done after the 'time factor' has been applied to the equity and debt rates whereas in the post-horizon period the weighting is done prior to the application of a time factor. In addition while a project's (small) contribution to debt capacity is valued at shadow price on debt in the prehorizon period, this contribution is ignored post horizon.

[^57]Although the Chambers' model provides a specific illustration of some of the conclusions that can be drawn from a general approach to project valuation, this analysis alone does not justify the rather elaborate framework which has been developed in this section. The justification presented in the introduction to this section for the development of the framework was that the resulting valuation formulae, and hence any cost of capital deduced from it, are not dependent upon any assumed regularity of perpetuity of cash flows. In the next section it will be shown using a dual analysis, that the widely accepted MM cost of capital formula as represented by equation 4.2.8. does not hold for finite or non-constant cash flows.

### 4.5 The MM cost of capital formula for finite and irreqular flow.

Myers and Pogue (74) developed a model to be used for practical financial planning which they argue is in accordance with modern financial theory. In particular they sepcifically assume two basic postulates of capital market theory to hold namely*
"1. That the risk characteristics of a capital investment opportunity can be evaluated independently of the risk characteristics of the firm's existing assets or other opportunities.
2. The Modigliani-Miller result that the total market value of the firm is equal to its unlevered value plus the net present value of taxes saved due to debt financing."

[^58]For practical planning purposes, Myers and Pogue admit to a certain degree of market imperfections, introducing constraints on liquidity and dividend policy. However, in a separate paper Myers (74) considers only the impact of a constraint on debt capacity on the rules for project selections. Myers' main attention is on the theoretical structure of the model and his subsequent mathematical analysis is both obtuse and incomplete. In this subsection the model will be cast into a more convenient conceptual form and its implications will be explored using the ideas and methodology of section 4.4.

In essence Myers' model can be written
subject to

$$
\begin{aligned}
& -\sum_{j=1}^{n} c_{0 j} x_{j}-\omega_{0}+D_{0}-E_{0}=F_{0} \quad\left(\rho_{0}\right) \quad \text { 4.5.2. } \\
& -\sum_{j=1}^{n} c_{t j} x_{j}-\omega_{t}+(1+r(1-T)) \omega_{t-1}+D_{t}-E_{t}=0 \quad\left(\rho_{t}\right) \quad \text { 4.5.3. } \\
& \omega_{t} \leq K\left(v_{t}^{x}+v_{t}^{\omega}\right) \quad(t=0, H) \quad\left(\lambda_{t}\right) \\
& \left(1+a_{0}\right) v_{t-1} x=\sum_{j} c_{t j} x_{j}+v_{t}^{x} \quad(t=1, H)\left(\theta_{t}\right) \quad \text { 4.5.5.6 } \\
& (1+r) v_{t-1}^{\omega}=r T \omega_{t-1}+v_{t}^{\omega}(t=1, H)\left(\theta_{t}^{\omega}\right) \\
& 0 \leq x_{j} \leq 1 \quad\left(\mu_{j}\right) \\
& \text { 4.5.6. }
\end{aligned}
$$

plus the usual non-negativity conditions, except for $\theta_{t}^{X}, \theta_{t}^{\omega}$ which are free-variables,

Some preliminary comments on the structure of the model are necessary prior to any mathematical analysis. The objective function 4.5.1. is to maximize the market value of the firm where the market value according to $M M$ is the market value of the unlevered firm plus the present value of tax-savings. The market value of the unlevered firm is just the sum of the after tax cash flows from projects - $c_{t j}$ discounted at a rate $a_{0}$, which is assumed to be the appropriate rate for the particular risk of that project assuming a base-case of all equity financing.* The present value of tax savings is just the after tax cash flows on one year debt discounted at the rate $r$ and thus consists of the sum of terms like $-\frac{\omega_{t}}{(1+r)^{t}}+\frac{(1+r(1-T))}{(1+r)^{i+1}} \omega_{t}$. Hence the objective function is a direct consequence of the two postulates ennunciated at the beginning of this section.

Equations 4.5 .2 and 4.5 .3 just represent the familiar cash balance equations and do not present any particular problems. The restriction on the level of debt - equation 4.5.4. - is such that the debt at time $t$ must be less than some fraction $K$ of the total market value of the firm at time $t$. Hence it is assumed that the firm readjusts its debt level at the end of every period in terms of its total market value at that time and that this level is maintained during the next period. Equations 4.5.5. and 4.5.6. and thus merely convenient definitions of $v_{t}, v_{t}^{W}$ for carrying out the necessary revaluation of the firm in each period. In terms of the discussion of the previous section the total market**value of the firm (V) is defined in terms of $X$ and $\omega$ while the debt capacity $\phi$ is also

[^59]functionally dependent on the decision vectors $X$ and $\omega$. Since this analysis to be presented shortly is in terms of net present values the finite horizon does not present any problems in theoretical project valuations since $H$ can be defined to occur after the last of the projects cash flows. However, a full understanding of the model does not emerge until the effect of H tending to infinity is considered, and this will be done in section 4.7.

The assumption of dividend irrelevancy is reflected in the fact that the inclusion of the terms $D_{t}, E_{t}$ in the cash balance equations do not affect the value of the firm, hence $\frac{\partial V}{\partial D_{t}}=\frac{\partial V}{\partial E_{t}}=0$. An immediate consequence of this is that $\rho_{t}=0$ for all $t$ and this observation simplifies the analysis considerably.

However, since the mathematical analysis becomea algebraically complex it is perhaps easiest to illustrate the approach by considering investments lasting over periods 0 and 1 only. Now the dual inequalities for the initial debt and the initial value of the debt stream give respectively

$$
\begin{align*}
\lambda_{0}-r T \theta_{1}^{W} \geq \frac{r T}{1+r} & 4.5 .8 . \\
- & x \lambda_{0}+(1+r) \theta_{1}^{W} \geq 0
\end{align*}
$$

The solution of this system is

$$
\lambda_{0}=\frac{r T}{1+r(1-K T)}=\frac{r T}{1+r^{\prime}} \text { where } r^{\prime}=r(1-K T) \quad 4.5 .10
$$

and

$$
\theta_{1}^{W}=\frac{K \lambda_{0}}{1+x}
$$

The positive value to $\lambda_{0}$ tells us that the debt constraint is binding, as indeed one would expect in an MM world, since the tax shield on debt results in debt being relatively cheap.

Consider the case of a single project with investment $c_{0 j}=-1$ to be made now (time $t=0$ ) and an after tax cash flow of $c_{1 j}=1+x^{\prime}$ one year later*. The analysis of the dual inequalities associated with the scale of acceptance of a project gives the (generalized) net present value of this one period project taken at full scale** as

$$
\mu_{0}=\left(-1+\frac{1+x^{\prime}}{1+a_{0}}\right)+\left(1+x^{\prime}\right) \theta_{1}^{x}
$$

while the dual inequality associated with the value of the project income stream is

$$
-k \lambda_{0}+\left(1+a_{0}\right) \theta_{1}^{x} \geq 0
$$

Since this implies $\theta_{1}^{x}>0$ and thus $v^{x}>0$ the inequality becomes an equality from which

$$
\theta_{1}^{x}=\frac{K \lambda_{0}}{1+a_{0}}=\frac{K r T}{\left(1+a_{0}\right)\left(1+r^{\prime}\right)}
$$

Substitution of the values of $\lambda_{0}$ and $\theta_{1}{ }^{X}$ into equation 4.5.12 gives the generalized net present value of the project as

$$
-1+\left[\frac{1}{1+a_{0}}+\frac{K r T}{\left(1+x^{\prime}\right)\left(1+a_{0}\right)}\right]
$$

which implies in accordance with the definition of cost of capital in the last section, a screening rate for the one period project of

$$
\rho^{*}=a_{0}-r K T\left(\frac{1+a_{0}}{1+r}\right)
$$

This implies an after tax return of $x^{\prime}$. Thus if $x$ is the pre-tax
return then $x^{\prime}=x(1-T)$ and the pre-tax cash inflow is $\frac{1+x(1-T)}{1-T}$.
The analysis further assumes that there are also sufficient profits to take full advantage of tax allowances.
** Since in this case and in the subsequent analysis, the results apply to any project the distinguishing f subscript is omitted.

This is identical to the formula deduced by Myers (74).
It should be noted that in general that $\rho^{*}=a_{0}-r K T\binom{1+a_{0}}{1+r}>a_{0}-a_{0} K T=\hat{\rho}_{M M}$, the discount rate postulated by Modigliani and Miller. This analysis can be extended to determine the total value of income in any time period. Thus the dual inequalities for debt and the debt income stream at time $t$ are

$$
\begin{align*}
& \lambda_{t}-r T \theta_{t+1}^{W} \geq \frac{r T}{(1+r)^{t+1}} \\
& -r \lambda_{t}+(1+r) \theta_{t+1}^{W}-\theta_{t}^{W} \geq 0
\end{align*}
$$

The first of these implies that $\lambda_{t}>0$ and the debt constraint is always binding. This in turn implies that $v_{t}{ }^{W}>0$ and thus both of these inequalities become equalities.

A little algebraic manipulation yields the simple recurrence relationship

$$
\lambda_{t}[1+r(1-K T)]=\lambda_{t-1}
$$

from which it can be deduced that the shadow price on debt capacity is given by

$$
\lambda_{t}=\frac{r T}{\left(1+r^{\prime}\right) t+1}
$$

The contribution to debt capacity of an additional fl of income (i.e. after tax cash flow) in period $t$ is given by the dual $\theta_{t}{ }^{X}$ to the equation 4.5.5. which values the income stream. Consideration of this dual equality* gives

$$
-x \lambda_{t}+\left(1+a_{0}\right) \theta_{t+1}^{x}-\theta_{t}^{x}=0
$$

[^60]Hence

$$
\theta_{t}^{x}=\frac{K r T}{\left(1+a_{0}\right)\left(1+r^{\prime}\right)^{\tau}}+\frac{\theta_{t-1}^{x}}{\left(1+a_{0}\right)} \quad(t=2, \infty)
$$

Using the result of equation 4.5.14

$$
\theta_{1}^{X}=\frac{K_{r} T}{\left(1+a_{0}\right)\left(1+r^{\prime}\right)}
$$

then we get

$$
\begin{align*}
& \theta_{t}^{X}=\frac{K_{r T}}{\left(1+a_{0}\right)\left(1+r^{\prime}\right)^{t}}+\frac{K_{r T}}{\left(1+a_{0}\right)^{2}\left(1+r^{\prime}\right)^{t-I} \cdots \quad \cdots \frac{K r T}{\left(1+r^{\prime}\right)\left(1+a_{0}\right)^{t}}} \\
& =\frac{K_{r T}}{\left(1+a_{0}\right)\left(1+r^{\prime}\right)^{t}}\left[1-\left(\frac{1+r^{\prime}}{1+a_{0}}\right)^{t}\right] \\
& 1-\frac{1+r^{\prime}}{1+a_{0}} \\
& =\frac{K r T}{a_{0}-r^{\prime}}\left[\frac{1}{\left(1+r^{\prime}\right)^{t}}-\frac{1}{\left(1+a_{0}\right)^{t}}\right]
\end{align*}
$$

Thus an extra $f$ of income in period $t$ makes a direct contribution of $\frac{1}{\left(1+a_{0}\right)^{E}}$ to the value of the firm and an indirect contribution via its impact on the debt capacity of $\frac{K_{r T}}{\left(a_{0}-r^{\prime}\right)}\left[\frac{1}{\left(1+r^{\prime}\right)^{E}}-\frac{1}{\left(1+a_{0}\right) E}\right]$. Hence the appropriate discount factor for the cash flow $c_{t}$ in $t$ is

$$
\frac{1}{\left(1+a_{0}\right)^{E}}+\frac{K r T}{a_{0}-r^{\prime}}\left[\frac{1}{\left(1+r^{\prime}\right)^{t}}-\frac{1}{\left(1+a_{0}\right)^{t}}\right]
$$

This is the closed function form of the adjusted present value formula (APV) of Myers, and hence for convenience his nomenclature will be used. Myers (74) suggests the APV of a project can be computed from the recursive definition
$A P V_{t-s}=A_{t-s}+\frac{r T K}{1+r}\left(\operatorname{APV}_{t-s}-c_{t-s}\right)+\frac{r T K}{1+r}\left[\sum_{\tau=t-s+1}^{\tau-1} \frac{\left(\operatorname{APV}_{\tau}-c_{\tau}\right)}{(1+r)^{\tau-t+s}}\right]$
with

$$
A_{t-s-1}=c_{t-s-1}+\frac{A_{t-s}}{1+a_{0}}
$$

However, Myers states that the method of calculating the adjusted present value is tedious to work through manually and that objections to the practical use of APV might be made on both the basis of increased (mathematical) complexity and the difficulty of any easy interpretation of the formula. In Ashton and Atkins (78), Atkins shows that expression 4.5 .25 is a consequence of equations 4.5 .26 and 4.5.27, This alternative derivation is reproduced in appendix XVIII.

If $\alpha$ is defined by

$$
\alpha=\frac{a_{0}-r}{a_{0}-r^{\prime}}=1-\frac{r T K}{a_{0}-r^{\prime}}
$$

then expression 4.5 .25 can be rewritten
$A P V_{0}=(1-\alpha) \sum_{t=0}^{H} \frac{c_{t}}{\left(1+r^{\prime}\right)^{t}}+\alpha \sum_{t=0}^{H} \frac{c_{t}}{\left(1+a_{0}\right)}$
for a project of length $H$. While this last form is probably easiest for computational purposes its simplicity obscures any interpretation. If we use the expression for the projects contribution to debt capacity as represented by equation 4.5 .23 then APV $_{0}$ can be written as
$\frac{1}{\left(1+a_{0}\right) t}+\frac{K r T}{\left(1+r^{\prime}\right)^{E}} \cdot \frac{1}{\left(1+a_{0}\right)}+\frac{K r T}{\left(1+r^{\prime}\right)^{E-I}} \cdot \frac{1}{\left(1+a_{0}\right)^{2}} \cdots \frac{K r T}{\left(1+r^{\prime}\right)} \cdot \frac{1}{\left(1+a_{0}\right)^{E}} 4.5 .30$

Clearly the first term represents the value now of an uncertain cash flow $c_{t}$, t-periods hence. The second term can be interpreted as follows. The uncertain cash flow in $t$, has a value of $\frac{1}{\left(1+a_{0}\right)}$ in period $t-1$ and knowledge of this cash flow makes a contribution to the value of debt capacity now of $\frac{K r T}{\left(1+r^{\prime}\right)^{E}} \times \frac{1}{\left(1+a_{0}\right)}$. Hence the general term results from an uncertain cash flow in $t$ having value $\left.\mathbf{1}_{\left(1+a_{0}\right.}\right)^{\text {t-s }}$ at an interim period $s$ and knowledge of this cash flow increases the present value of debt capacity now by an amount

$$
\frac{K r T}{\left(1+r^{\prime}\right) s+I} \times \frac{1}{\left(1+a_{0}\right) t-s}
$$

This concept of the value of knowledge of future cash flows is a natural extension of the windfall gain concept of income discussed in Robichek and Myers (65).

By reverting to the form for the APV originally derived in equation 4.5.29 several results follow almost immediately. In the case where the project is a perpetuity with constant cash inflow stream where $C_{t}=\tilde{C}$ (say) $t=1,2 \ldots \infty$

$$
A P V_{0}=\left[\frac{1}{r^{\prime}}-\left(\frac{a_{0}-r}{a_{0}-r^{\prime}}\right) \frac{1}{r}+\left(\frac{a_{0}-r}{a_{0}-r^{\prime}}\right) \frac{1}{\rho_{0}}\right] \tilde{c}-I_{0}
$$

where $I_{0}$ is the initial investment

$$
\begin{align*}
& =\frac{\bar{C}}{\rho_{0} r^{\prime}}-I_{0}-\frac{\tilde{C}}{\rho_{0}(1-K T)}-I_{0} \\
& =\sum_{t=1}^{\infty} \frac{\tilde{C}}{(1+\hat{\rho}) E}-I_{0}
\end{align*}
$$

where $\hat{\rho}=\rho_{0}(1-K T)^{\prime}$ is the weighted average cost of capital according to Modigliani and Miller.

Where the cash flows can be regarded as equivalent in risk to that of borrowing, as in leasing cash flows then $a_{0}$ can be set equal to $r$. In this case for an asset costing $C_{0}$

$$
A P V_{0}=c_{0}-\sum_{t=1}^{H} \frac{c_{t}}{\left(1+r^{\prime}\right)^{E}}=c_{0}-\sum_{t=1}^{\mathrm{B}} \frac{c_{t}}{[1+r(1-T K)] E}
$$

Here $C_{t}$ is the case flows associated with the leasing decision consisting of after-tax lease repayments and loss of tax allowances. This is the result obtained by Myers ettial (74) using .a variation on the APV approach and will be rederived more directly in the next chapter by solving the appropriate particular case of the recurrence relationship 4.5.26 and 4.5.27.

The discount rate $p^{*}$ at which shareholders ought to screen cash flows from projects can be defined by the solution of equation (22) such that

$$
\sum_{t=0}^{H} \frac{c_{t}}{\left(1+p^{*}\right)^{E}}=A P V_{0}=(1-\alpha) \sum_{t=0}^{H} \frac{c_{t}}{\left(1+r^{0}\right)^{E}}+\alpha \sum_{t=0}^{H} \frac{c_{t}}{\left(1+a_{c}\right)^{t}}
$$

FIGURE 4.5.1 The relationship between the APV cut-off rate and the MM cost of capital

Discounted values of projects cash flows


While no general algebraic expression exists for the solution of such an expression it is relatively easy to show that for most investment projects such a solution does exist. Moreover, the computation of the solution is relatively trivial. The only additional notation necessary for this discussion is to define a net present value function by the equations

$$
f^{\prime}(x)=\sum_{t=0}^{T} \frac{C_{t}}{\left(1+\frac{2}{x}\right)^{t}} \quad(x>0)
$$

$f(0)=C_{0}$
$(x=0)$
4.5.38

It is clear from the above definition that the net present value of the cash flows at a discount rate $y, N P V(y)$, is just $f\left(\frac{1}{y}\right)$. It follows also from the above definition that

$$
A P V_{0}=(1-\alpha) f\left(\frac{1}{r}\right)+\alpha f\left(\frac{1}{a_{0}}\right)
$$

The function $f\left(\frac{1}{y}\right)$ is a continuous function of $y$ for non-nsyative values of $y$. Moreover for simple investment* it will be a concave monotonically increasing function. As $y$ increases (i.e. the discount rate tends to zero) the function will tend asymptotically to the positive value $\sum_{t=0}^{T} C_{t}$. TYpically the shape of the function is as in figure 4.5.1. where the two axes are the discounted values of the cash flow and the reciprocals of the discount rates.

The desired results follow almost immediately. APV ${ }_{0}$ is a weighted linear combination of $f\left({ }_{a_{0}}\right), f\left({ }^{1} r_{r}\right.$, where the weights $\alpha, 1-\alpha$ respectively are both positive and sum to unity. Hence $f\left(\frac{1}{r},\right)>A P V_{0}>f\left(\frac{1}{a_{0}}\right)$ and once $f\left(\frac{y}{y}\right)$ has been computed for appropriate values of $y$ in the range $\left(\frac{1}{a_{0}} \leq y \leq 1 / r^{\prime}\right), 1 / \rho^{*}$ which is the abscissa value** for which the function is

[^61]equal to $A P V_{o}$ can be found by interpolation.
Now
\[

$$
\begin{align*}
\frac{1-\alpha}{r^{*}}+\frac{a}{a_{0}} & =\left(1-\frac{a_{0}^{-r}}{a_{0}-r^{\prime}}\right) \frac{1}{r^{\prime}}+\left(\frac{a_{0}-r}{a_{0}^{-r^{\prime}}}\right)^{1 / a_{0}} \\
& =\frac{1}{a_{0}(1-T K)}=\frac{1}{\hat{\rho}}
\end{align*}
$$
\]

Hence, $1 / \hat{\rho}$ is also a linear combination of $1 / \rho_{0}, 1 / r *$ with weights $\alpha, 1-\alpha$. We can use the concavity of the function $f(y)$ to deduce the following result.

$$
\begin{align*}
f\left(\frac{1}{\rho^{*}}\right) & =A P v_{0} \\
& =(1-\alpha) f\left(\frac{1}{r^{\prime}}\right)+\alpha f\left(\frac{1}{\rho_{0}}\right) \\
& <f\left(\frac{1-\alpha}{r^{\prime}}+\frac{\alpha}{a_{0}}\right)=f\left(\frac{1}{\hat{\rho}}\right)
\end{align*}
$$

While the increasing monotonicity of further implies

$$
\frac{1}{\rho^{*}}<\frac{1}{\hat{\rho}}
$$

or

$$
\rho^{\star}>\hat{\rho}
$$

The result is a generalisation of the result observed by Myers for the one period case. All these results are illustrated in figure 4.5.1.

Thus it is seen that the MM cost of capital formula will in general break down when applied to projects whose cash flows are not constant perpetuities. There remains the problems of how one might compute or observe the rate $a_{0}$ and of its relationships to the equity and other rates. These issues will be discussed at some length in section 4.7, while the following section looks in detail at how the dual analysis might be extended to examine the 'consistency' of formulations of financial programing models in practice.

### 4.6 Consistency and the elimination of Formulation Errors.

The model introduced in section 1.7 and detailed in
appendices I III is fairly complex, and as such is liable to formulation errors. There are at least two different and very distinct methods of checking the consistency of the formulation. The first of these is the "traditional" double entry form. Here the consistency of the formulation is checked by constructing balance sheets and cash flow statements from the structural variables in the model. Such a method is primarily a method of checking the consistency of the technological set of equations (equations Al.1.1 to Al.1.14 of appendix $I$ ). In effect the report writer computes independently from the LP model the increase in shareholders' equity and the increase in liabilities together with the change in the net cash balance position which are brought about by the year on year decisions. The change in the capital provided is compared with the increase in the total assets of the firm as represented by the LP variable ASSETS $_{t}$ while the change in the cash balance position is compared with the net change in the LP variables MARK ${ }_{t}-$ OVDR $_{t}$. Appendix IX illustrates such a check.

In addition to any errors that might arise in the constraining equations, errors can, and do, arise in the formulation of the objective functions. Here the dual system of equations provide an interesting means of 'audit'.

The theoretical justification for the approach adopted again arises from the work of Hirschleifer. He showed that given free access to the capital markets the appropriate discount rate for investment appraisal was determined by the return required on the particular capital market instrument which was utilised in arriving at the investment decision. Further the discussion of chapter two
showed how this ciscount rate was simply related to the ratio of successive cash balance duals*. These ideas can be used to check that the single economic criterion used for valuing the firm (appendix $v \quad$ ) is consistent with the technological set of equations defining the accounting and cash flow relationships (equations Al.l.1 to Al.l Kof Appendix I )

The methodology is to find the relationship between the objective function coefficients and the duals on the cash balance equations on the financial policy constraints. The dual variables associated with the financial policy constraints (equation Al.21 to Al2.6 of appendix I) are then set to zero thereby simulating free access to the capital markets. The resulting relationship between the dual values on the cash balance constraints and the coefficient in the objective function provides a check on the consistency of the model structure.

The single economic criterion used in all but the penultimate chapter of this thesis is the maximization of the value of the net equity stream (i.e. dividends less rights issues) upto the horizon plus that portion of the horizon value of the firm which is attributable to the holders of equity. Thus the objective function takes the form

$$
\operatorname{MAX} \psi_{0}=\sum_{t=1}^{H-1} \frac{D V_{t}}{(1+i)^{t+1}}-\sum_{t=1}^{H} \frac{P \cdot R G_{t}}{(1+i)^{t}}+\frac{\Psi_{H}}{(1+i)^{H}} \quad 4.6 .1
$$

which for convenience of the subsequent discussion will be written

[^62]\[

$$
\begin{aligned}
& \left.\operatorname{MAX} \psi_{0}=\sum_{t=1}^{H} Z Q D_{t} \cdot D V_{t} Z_{t} \cdot R_{t}\right)+\frac{2 O V D R_{H} \cdot O V D R_{H}}{(1+i)^{H}} \\
& \frac{2 L_{H-1} \cdot \mathrm{ZLL}_{H-1}}{(1+i)^{H}}+\frac{\text { ZOVDR }_{H-1} \cdot O V D R_{H-1}}{(1+i)^{H}}+\frac{\text { ZMARK }_{H-1} \cdot \mathrm{ZMARK}_{H-1}}{(1+i)}
\end{aligned}
$$
\]

$$
+\frac{\text { ZMARK }_{H} \cdot \text { MARK }_{H}}{(1+1)^{H}}+\frac{\mathrm{ZDE}_{\mathrm{H}} \cdot D E_{H}}{(1+i)^{H}}+\frac{\mathrm{ZX}_{j} \cdot X_{j}}{(1+i)^{H}}
$$

where the individual contributions of the various investment and financing instruments are individually identified and are denoted by the prefix 2 .

Examination of equation 4.6.1. inmediately reveals some apparent anomalies in the valuation of pre-horizon equity flows. Dividends, but not rights, are omitted from the expression in the final year. Furthermore the dividend variable in $t$ is discounted by $1 /(1+i)$ t+1 whereas the rights stream is discounted by $1 /(1+i)$. An examination* of the dual equation soon reveals the reasons.

The dual equality corresponding to the issue of dividends (DV ${ }_{t}$ ) for periods 1 to $H$ is

$$
-C L_{t}+\rho_{t}-\operatorname{DTARG}_{t}-D C O V_{t}=Z D V_{t}
$$

and the equality (A17.5) for $C L_{t}$ in periods 1 to $H$ is

$$
C L_{t}=\rho_{t}-\rho_{t+1}-\alpha R_{t}+\beta E_{t}+\beta \text { LY }_{t}
$$

Hence $\rho_{t+1}=2 D V_{t}-\alpha$ ROCE $_{t}+\beta \operatorname{BLQDY}_{t} \quad(t=1, H)$
4.6.4.

For time period $t=H$, the corresponding equations are

$$
\rho_{H}-C L_{H}-\operatorname{DIARG}_{H}-\varepsilon \operatorname{DCOV}_{H}=2 D V_{H}
$$

4.6.5.
and

$$
C L_{H}=\rho_{H}-\alpha \operatorname{ROCE}_{H}+B L L_{Q D} X_{H}
$$

[^63]from which
$$
\mathrm{ZDV}_{H}=\alpha \operatorname{ROCE}_{\mathrm{H}}-\beta \mathrm{LQDY}_{\mathrm{H}}-\operatorname{DTARG}_{\mathrm{n}}-\varepsilon \operatorname{DCOV}_{H}
$$
4.6.6.

It follows from the initial discussion that we are interested in valuing dividends given free access to the capital markets. In effect this means that we can ignore the financial policy constraints and set their dual values to zero.

Thus ROCE $_{t}=\operatorname{LQDY}_{t}=\operatorname{DTARG}_{t}=\operatorname{DCOV}_{t}=$ ERPS $_{t}=0 \quad(t=1, H)$ 4.6.7.
This implies that

$$
\rho_{t}=2 D V_{t-1} \quad(t=1, H) \quad 4.6 .8
$$

and

$$
\mathrm{ZDV}_{\mathbf{H}}=0
$$

Since the implications of these last two equations are best considered in conjunction with the raising of equity capital, further discussion of equations 4.6 .8 and 4.6 .9 will be temporarily postponed.

For rights issued at price $P$ the dual inequality is

$$
-P \rho_{t}+E Q_{t} \geq Z R G_{t} \quad(t=1, H)
$$

while the dual equation associated with the number of shares outstanding ( NUM $_{t}$ ) is

$$
E Q_{t}-E Q_{t+1}+\delta E R P S_{t}-\omega \text { DTARG }_{t}=0 \quad(t=1, H)
$$

and

$$
\mathrm{EQ}_{\mathbf{H}}+\delta \text { ERPS }_{\mathbf{H}}-\omega \text { DTARG }_{\mathbf{H}}=0
$$

In the absence of financial policy considerations then the last two equations taken toqether with equation 4.6.10 lead to

$$
-\rho_{t} \leq \frac{\mathrm{ZRG}_{t}}{P} \quad(t=1, H)
$$

from which it follows that

$$
2 R G_{t} \leq-P . Z D V_{t-1} \quad(t=1, H)
$$

Where the inequality is an equality if rights are issued.
Consider first the apparently anomalous result that the objective function coefficient valuing dividends at the horizon is zero. The reason for this becomes clear if the definition of the dividend variable is re-examined. $D V_{H}$ represents the declared dividend at the horizon which is to be paid one year later in the post-horizon period it does not represent a cash flow. Its contribution to the value of the firm will be represented via an increase in short term market investments, being money set aside for dividends declared but not paid. The accrual nature of the dividend variable is reflected in the time lags between the two sides of equality 4.6.8. Here the objective function coefficient for dividends in $t$ is actually related to the cash balance dual in $t+1$. In the case of rights issues, $\mathrm{FG}_{t}$ represents the number of rights issued in time period $t$ and gives rise to an actual cash flow. As a consequence, there are no such time lags in the corresponding equations (equations 4.6.11 and 4.6.12) for rights.

It follows from the analysis of Hirschleifer that given the firm is actually issuing dividends or rights the interperiod discount factor is just $1+i$, i.e.


Since $\mathrm{RG}_{1}$ represents rights issued at the end of the first period it follows that

$$
\text { ZRG }_{1}=-\frac{P}{1+1}
$$

from which

$$
\text { zRG }_{t}=-\frac{P}{(1+i) t} \quad(t=1, H)
$$

and

$$
\mathrm{ZDV}_{t}=\frac{1}{(1+i)^{t+1}} \quad(t=1, H-1)
$$

with $2 D V_{H} \quad 0$ as before.
The foregoing analysis takes care of the equity streams and detaile consideration must now be given to the term $\Psi_{H}$. The portion of the horizon value which is attributable to the equity holders consists of the post-horizon operating cash flows from projects adopted in the prehorizon period, less the horizon value of debt. The horizon value of the investment projects is just the net post horizon cash flow from projects discounted back to the horizon at 10\%. A rate of 10\% was chosen in keeping with the earlier analysis of section where it was shown that a reasonable cut off rate for the screening of projects was loz. This would appear to be the most suitable rate since the model is largely concerned with accept/reject decisions. This rate, of course, was deduced from a dual analysis of the cash balance and Bebt constraints and itself is illustrative of another example of the use of cash balance duals in the valuation procedure.

If the objective function value of the short term investments is now considered, then for the variable OVDR $_{t}$, the following dual inequalities hold

$$
-R S . E A_{t}+C L_{t}+\gamma E C O V_{t} \geq \operatorname{zOVDR}_{t} \quad(t=1, H-1)
$$

and

$$
\mathrm{CL}_{\mathrm{H}}+\mathrm{\gamma ECOV}_{\mathrm{H}} \geq \operatorname{zoVDR}_{\mathrm{H}}
$$

$$
4.6 .18
$$

In addition we can use the equalities Al7.9 and Al7.17 for $C L_{t}$ and $E A_{t}$ to deduce
from which

$$
\text { ZRG }_{t}=-\frac{P}{(1+i) t} \quad(t=1, H)
$$

and


The foregoing analysis takes care of the equity streams and detaile consideration must now be given to the term $\Psi_{H}$. The portion of the horizon value which is attributable to the equity holders consists of the post-horizon operating cash flows, from projects adopted in the prehorizon period, less the horizon value of debt. The horizon value of the investment projects is just the net post horizon cash flow from projects discounted back to the horizon at 10\%. A rate of $10 \%$ was chosen in keeping with the earlier analysis of section where it was shown that a reasonable cut off rate for the screening of projects was 108. This would appear to be the most suitable rate since the model is largely concerned with accept/reject decisions. This rate, of course, was deduced from a dual analysis of the cash balance and debt constraints and itself is illustrative of another example of the use of cash balance duals in the valuation procedure.

If the objective function value of the short term investments is now considered, then for the variable OVDR $_{t}$, the following dual inequalities hold

$$
-R S . E A_{t}+C L_{t}+{\gamma E C O V_{t}}_{t} \text { ZOVDR }_{t} \quad(t=1, H-1) \quad 4.6 .17
$$

and

$$
\mathrm{CL}_{\mathrm{H}}+\mathrm{YECOV}_{\mathrm{H}} \geq \mathrm{ZOVDR}_{\mathrm{H}}
$$

In addition we can use the equalities Al7.9 and A17.17 for $C L_{t}$ and EA $t$ to deduce

$$
\begin{align*}
& \rho_{t}{ }^{2-Z O V D R}{ }_{t}+(1+R S) \rho_{t+1}+\text { TRS }_{t+2}-R S(1+\alpha T) \text { ROCE }_{t+1} \\
& +\operatorname{\alpha ROCE}_{t}-\operatorname{RS} . \mathrm{T}^{\operatorname{BLQDY}}{ }_{\mathrm{t}+1}+\mathrm{RS}(1-\mathrm{T}) \text { ERPS }_{\mathrm{t}+1} \\
& +\operatorname{RS}[1-\mathrm{T}] . \mathrm{DCO}_{\mathrm{t}+1}-\mathrm{RS}^{\mathrm{ECOO}}{ }_{\mathrm{t}+1}-\mathrm{YECOV}_{\mathrm{t}}(\mathrm{t}=1, \mathrm{H}-2) \\
& \rho_{\mathrm{H}-1} \geq- \text { ZOVDR }_{\mathrm{H}-1}+(1+\mathrm{RS}) \rho_{\mathrm{H}}
\end{align*}
$$

$$
\begin{aligned}
& + \text { OROCE }_{H-1}-\text { RS.T.BLQDY }{ }_{t+1}-\beta . \text { LQDY }_{t}
\end{aligned}
$$

$\rho_{H} \geq-$ ZOVDR $_{H}+\operatorname{\alpha ROCE}_{H}-\beta$. LODY $_{H}-$ YECOV $_{H}$
In the absence of financial policy constraints, then the relationship between the cash balance duals for $t=1, H-2$ when overdraft is being used is

$$
\rho_{t}=(1+R S) \rho_{t+1}-T . R S . \rho_{t+2}
$$

The interpretation of this equality is fairly simple. The $-(1+R S) \rho_{t+1}$
represents the repayment of debt plus interest in time $t+1$ of the debt taken out in $t$. The term $+T . R S . \rho_{t+2}$ represents the tax relief which occurs in time period $t+2$. If we are interested in the interperiod discount rate $\pi$ where $\rho_{t}=\pi \rho_{t+1}$ then $\pi$ is given by the solution of

$$
\pi^{2}-(1+R S) \pi+T . R S=0
$$

or

$$
\pi=\frac{(1+R S) \pm \sqrt{(1+R S)^{2}-4 \mathrm{TRS}} .}{2}
$$

Now RS and T. are small, being 0.12 and 0.5 respectively and we can approximate $\pi$ ignoring terms the order of (RS) ${ }^{3}$ by

$$
\pi=\frac{(1+R S) \pm\left[1+\frac{\mathrm{RS}^{2}}{2}+2 \mathrm{RS}(1-2 \mathrm{~T})-\frac{4(\mathrm{RS})^{2}}{8}(1-2 T)^{2}\right]}{2} 4.6 .24
$$

Considering only the positive square root* we have

$$
\pi=1+(1-T) R S+T \cdot R^{2}(1-T)
$$

Here the principal term in the interperiod discount rate is (1-T)RS, the after tax rate on debt, while the term $T(1-T) R S$ is a 'correction' due to lagged tax allowances. With RS $=0.12$ and $T=0.5$ then the interperiod discount rate is 1.0636 . The validity of the expression can be checked by examining the ratio of the cash balance duals when overdraft is being used in the absence of other constraints. Thus in the sample printout - Figure 4.6.1. - overdraft is being raised in period three and four. The cash balance cuals are 0.7105 and 0.6682 giving an interperiod discount factor of 1.0633.

FIGURE 4.6.1.

| NAME | R.H.S. | DUAL PRICE |
| :---: | ---: | ---: |
| CB1 | -4580.0000 | 0.8943 |
| CB2 | 0 | 0.8546 |
| CB3 | 0 | 0.7105 |
| CB4 | 0 | 0.6642 |
| CB5 | 0.00 .000 | 0.5687 |
| CB6 | 0 | 0.5087 |
| CB7 | 0 | 0.6525 |
| CB8 | 0 | 0.6040 |

This offers confirmation of the correctness of our analysis. The analysis now affords us with a mechanism for correctly determining the value of ZOVDR $_{H-1}$ and $Z^{2 O V D R} R_{H-2}$. If we assume that at the planning horizon the value of the firm must be reduced by the value of outstanding debt to give the value of the equity portion then we have $\mathrm{ZOVDR}_{H}=-1$ in equation 4.6.2.

[^64]In order to ensure consistency in the valuation then zOVDR $_{H-1}$ needs to be defined so that

$$
\rho_{H-1}=\pi \rho_{H}
$$

or

$$
\pi=- \text { zOVDR }_{H-1}-(1+R S)
$$

Thus

$$
\text { ZOVDR }_{H-1}=T . R S-T(1-T) R S^{2}
$$

Hence with RS $=0.12$ and $T=0.5$ then

$$
\text { zovDr }_{\mathrm{H}-1}=0.0572
$$

Although this term might seem somewhat peculiar it arises from the following cash flows shown schematically in the Figure 4.6.2.

FIGURE 4.6.2.

(H)

Thus $£ 1$ borrowed at the end of year $\mathrm{H}-1$ results in a cash outflow of RS in year $H$ consisting of interest payment with a reduction in the tax paid in the post horizon period (i.e. at the end of year $\mathrm{H}+1$ ) of T.RS. This tax relief when valued at the horizon by discounting at the effective rate on debt $\pi$ contributes

$$
\frac{T . R S}{1+(1-T) R S^{3}+T \cdot R S(1-T)}
$$

or ignoring terms of order (RS). ${ }^{3}$ T.RS - T(1-T)RS ${ }^{2}$ to the horizon value. A similar piece of analysis can be carried out for market investments. Here the interperiod discount rate in general is given by

Again this result can be confirmed by examination of the
cash balance duals where market investments are being raised.
Such a result is shown in figure 4.6.3. for $H=8$ where the ratio of the duals is 1.03622 against a theroretical value of 1.03625. This gives a value for the horizon value of short term investments taken out in period H-1 of $\mathbf{- 0 . 0 3 3 8}$ where this term again arises from tax payments made post horizon on the interest received in period H .

FIGURE 4.6.3.

| NAME |  | vallie | REIUCED COST |
| :---: | :---: | :---: | :---: |
| B MARK1 | + | 209.2234 | 0 |
| MARK2 | + | 0 | -0.0749 |
| B MARK3 | + | 361.3706 | 0 |
| B MARK 4 | + | 249.0143 | 0 |
| B MARKS | + | 275.8134 | 0 |
| B MARK6 | + | 1597.3600 | 0 |
| $B$ MARK? | + | 3460.3429 | 0 |
| 3 MARK8 | + | 7390.7397 | 0 |
| name |  | R.H.S. | PPICF |
| CLb |  | -902.0000 | 1.0000 |
| CB1 |  | -4580.0000 | 1.3642 |
| CB2 |  | 0 | 1.2605 |
| CB3 | ! | 0 | $1.195 \mathrm{~s} /$ |
| CB4 | ! | 0 | $1.1516)$ |
| CB5 |  | 1000.0000 | 1.1113 |
| CB6 |  | 0 | $1.0725^{\prime}$ |
| C88 |  | 0 | 1.0350 |
| C 88 |  | 0 | 1.0000 |

It should perhaps be further emphasised that not only does this analysis provide a mechanism for determining the appropriate value of the objective function for short term investments and loan, it also provides a method of structuring the technological constraint set. In particular a great deal of difficulty was encountered because the variable specification contained both transactions which were accruals and actual cash flows. The 'reasonableness' of equations 4.6.25 and 4.6.30 suggest that the current asset and current liabilities were indeed correctly incorporated into the model.

Finally the impact of long term debt must be considered. For long term debt (LI $L_{t}$ ) issued in period $t$ we have

$$
-\rho_{t}+D_{t}=L_{L} L_{t} \quad(t=1, H)
$$

4.6 .31
where $2 L_{t}$ is included since a 15 year debenture taken out in any of the eight prehorizon periods will always have some posthorizon cash tlows.

For long term debt outstanding in $t,\left(D E_{t}\right)$ we have the equality

$$
-R L \rho_{t+1}+(1-T) R L P R_{t+1}+D_{t}-D_{t+1}+Y_{E C O}{ }_{t}=0 \quad(t=1, H-1)
$$

and

$$
D_{H}+\gamma^{E C O} V_{H}=\frac{2 D E_{H}}{(1+i)^{H}}
$$

We can substitute in this for $P_{t+1}$ from equation A17.14 and $D_{t}$ from equation 4.6.31 to deduce

$$
\rho_{t}-(1+R L) \rho_{t+1}+T R L \rho_{t+2}+\alpha T . R L R O C E E_{t+1}+\beta R R L L Q D Y_{t+1}
$$

$+(1-T)$ RLERPS $_{t+1}+(1-T) R L \operatorname{DCON}_{t+1}$
$=2 L L_{t}-2 L L_{t+1} \quad(t=1, H-2)$
with

$$
\rho_{H-1}-(1+R L) \rho_{H}+T . R L \rho_{H}+(1-T) R L . E R P S_{H}+(1-T) R L P C O V_{H}
$$

$$
=Z_{H-1}-2 L L_{H}
$$

and

$$
\rho_{H}=\frac{\mathrm{ZDE}_{H}}{(1+i)^{H}}+\operatorname{rECOV}_{H}
$$

From which in the absence of other financial policy constraints wa have

$$
\begin{align*}
& \rho_{t}-(1+R L) \rho_{t+1}+T R L_{t+2}=2 L L_{t}-2 L L_{t+1} \\
& \rho_{H-1}-(1+R L) \rho_{H}=2 L L_{H-1}-2 L L_{H}
\end{align*}
$$

$$
\rho_{H}=\frac{z D E_{H}}{(1+i)^{H}}+\mathrm{VECOV}_{H}
$$

Again at the horizon it is convenient* to define $Z\left(D E_{H}\right)=-1$. We also make the assumption that while the firm is borrowing the interperiod discount rate is a constant $\pi$. The solution to the homogeneous part of equation 4.6 .35 gives a value for $\pi$ of

$$
\pi=1+(1-T) R L+T(1-T) R L^{2}
$$

Thus for consistency

$$
2 L L_{H-1}=T \cdot R L-T(1-T) R L^{2}
$$

and

$$
z L L_{t}=0 \quad(t=1, H-2 \text { and } t=H)
$$

Again the non-zero objective function coefficient arises from post-horizon tax relief on debt interest payments made in the pre-horizon period. In particular for the model under discussion with $\mathrm{RL}=0.08$ and $\mathrm{T}=0.05$

$$
z_{H-1}=0.0384
$$

4.7 Infinite Time Horizon Linear Programmes and Long Run Equilibrium Solutions

All the models referenced so far in this thesis have been finite horizon models where the investment and financing decisions are considered jointly over some finite planning period. As has already been demonstrated the net result of such an approach is that projects are valued at an internally determined opportunity cost of capital
*Strictly speaking the outstanding net of tax interest stream and the final repayment should be capitalized at the internal rate of return of the stream. In general and in this case in particular, the correction is negligible.
in the pre-horizon period but are valued by a pre-determined cost of capital in the post-horizon period. Hence in the case of Weingartner's horizon models and the Chambers' model where analytical solutions to the implied pre-horizon opportunity cost of capital were available it was possible to compare this solution with the post-horizon discount rate and to examine the nature of the post-horizon approximation in some detail.

Chambers is aware of the approximate nature of his post-horizon valuation procedures and addresses directly the way in which it might be improved both theoretically and practically. Thus he states*

MManagers would normally expect to be able to invest
substantial sums after the horizon at better than marginal rates,
..... NPVH understates the true value to the firm of funds available after the horizon"

He gives a careful analysis of the extra information needed to avoif such an undervaluation. He states that if details were available of the likely returns on future investment opportunities then an appropriate adjustment could be made providing of course that the capital market parameters do not change. Carleton (70) also considers in some detail how he might provide a reasonable post-horizon valuation. His solution to the horizon value problem is to assume that the firm enters a steady state growth situation and values the anticipated dividend stream using Gordon's (62) model. He further suggests several ways in which the growth rate can be extrapolated from, and made to be consistent with the pre-horizon performance.

[^65]A formalization of these two approaches would lead to the following infinite linear model:
$\operatorname{Max} c^{\prime} \cdot z^{0}+\pi c^{\prime} z^{1}+\pi^{2} c^{\prime} \cdot z^{2}$
4.7.1.
subject to

$$
\begin{array}{ll}
{[B] z^{1}} & \leq f_{0} \\
-[A] z^{1}+[B] z^{2} & \leq(1+g) f \\
-[A] z^{1}+[B] z^{2} & \leq(1+g)^{2} f
\end{array}
$$

where in this notation
$z^{t}$ - is a non-negative (column vector) of decisions (including financing decisions) taken at time $t$.
c' - is a (transposed) valuation vector
[B] - is the pre-horizon matrix of resources uses
[A] - is the matrix of post-horizon consequences
$f$ - vector of flows from existing operations, $f_{0}$ being the first period values.
$\pi$ - is a discount factor
and $g$ - is a growth factor
Thus the set of decisions facing the firm now can be considered as part of a set of decisions from a repeating set* of opportunities. The total decision set then can be seen as the first of a set of infinite decisions. The linear program to be solved can be thought of as an infinite ladder as represented by figure 4.7.1.

[^66]It should be emphasised that the above structure is merely an explicit formalization of the implicit assumptions of finite horizon valuation models. Thus implicit in the valuation models of Weingartner, Chambers, Carleton and other writers is the continuing existence of both the firm, future investments and the capital markets.

Furthermore it is generally assumed that there are no major changes at the horizon in the parameters describing the behaviour of these markets. Hence no radically new assumptions have been incorporated into the generalization of the existing approaches.

The infinite system of equations 4.7.1. and 4.7 .2 can be written in the more compact form

such that

$$
[B] z^{0} \leqslant f_{0}
$$

$$
4.7 .4
$$

$$
[B] z^{t}-[A] z^{t-1} \leq(1+g)^{t_{f}}
$$

$$
4.7 .5
$$

One immediate observation is that if $\eta$ is the dual vector associated with period 1 resource allocation, then the reduced finite LP

$\max _{z^{\circ}}\left\{\operatorname{co}^{\prime} z^{0}+\eta_{1}^{\prime}[A] z^{\circ}\right\}$
$[B] z^{\circ} \leq f_{0}$ 4.7.7.
gives the same decision set for the first period as that of the infinite LP describe by equations 4.7.3., 4.7.4 and 4.7.5. Such a valuation model would satisfy the postulated horizon principle. The difficulty remains, of course, of actually computing $\eta_{1}$. Most authors haveapproximated $\eta_{1}$ by a constant one-parameter cash discount vector. For example, Chambers uses the approximation $\eta_{1}(a)=$ $\left(\frac{1}{1+a}, \frac{1}{(1+a)^{2}} \ldots . \mid 0\right)$ where the weight average cost of capital a is used as a single parameter for valuating cash flows and the null vector is the valuation vector for the post horizon debt capacity effects.

The theory of infinite LP systems which can be represented by equations 4.7.3., 4.7.4. and 4.7.5. have been explored extensively by Evers (73, 74, 75, 76, 77) who discusses the existence of long run equilibrium solutions as well as mathods of generating horizon valuations such that the infinite model can be truncated in a way that satisfies the horizon principle.

Evers shows that under certain conditions* one of which is $\pi(1+g)<1$ then the decision vector $z^{t}$ and the dual vector $\eta^{t}$ to the infinite LP system converge in the sense that

$$
\begin{align*}
& z^{t} \rightarrow(1+g)^{t} \tilde{z} \\
& \eta^{t} \rightarrow(1+g)^{t} \tilde{\eta}
\end{align*}
$$

where $\tilde{\mathbf{Z}}$ and $\tilde{\boldsymbol{\eta}}$ are the equilibrium primal and dual vectors given by the solution to the system

[^67]\[

\left($$
\begin{array}{l}
{[B]-[A] /(1+g)}
\end{array}
$$\right) \tilde{z}+\tilde{y}=f
\]

4.7 .10
4.7 .11
where

$$
\tilde{v}^{\prime} \cdot \tilde{z}+\tilde{\eta}^{\prime} \cdot \tilde{\gamma}=0
$$

and
$\widetilde{\boldsymbol{v}}, \widetilde{z}, \tilde{\eta}, \widetilde{\mathbf{y}} \geq 0$
4.7 .13

The application of the theory to financial planning models can be illustrated by constructing a simple example. Thus with the objective function the maximation of the present value* of the future dividend stream the infinite horizon model is

$$
\operatorname{Max} \psi_{0}=\sum_{t=0}^{\infty} \frac{1}{(1+i)} D_{t}
$$

with a cash balance constraint**

$$
\begin{align*}
& x_{0}+D_{0}-\omega_{0} \leq F_{0} \quad\left(\rho_{0}\right) \\
& x_{t}-\left(1+x x^{\prime}\right) x_{t-1}+D_{t}+[1+r(1-T)] \omega_{t-1}-\omega_{t} \leq 0 \quad\left(\rho_{t}\right)
\end{align*}
$$

plus a debt capacity constraint where debt is limited by the value of the equity

$$
\omega_{t} \leq x \|_{t} \quad(t=0,1, \infty) \quad\left(\lambda_{t}\right)
$$

In addition MM's fundamental principle of valuation gives

$$
D_{t}+\psi_{t}-(1+i) \psi_{t-1}=0 \quad(t=0,1, \infty) \quad\left(\theta_{t}\right) \quad 4.7 .17
$$

If it is assumed that the firm has a growing set of opportunities then

$$
x_{t} \leq(1+g)^{t} \quad(t=0, \infty) \quad\left(\mu_{t}\right) \quad 4.7 .18
$$

[^68]Here it is assumed that projects consist of an investment of 1 followed by a return of $1+x(1-T)=1+x$ ' the following year. Thus the return from the project is constant, in keeping with the earlier discussion, but the scale of opportunities is increasing. Then it is relatively easy to identify that
$[B]=\left[\begin{array}{rrrr}1 & -1 & 0 & 1 \\ 0 & 1 & -K & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
and $[A]=\left[\begin{array}{cccc}0 & -(1+r) & 0 & 1 \\ 0 & 0 & -K & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
4.7 .19

The equilibrium combination* for this system is

$$
\begin{align*}
& \tilde{D}=\left(\frac{i-g}{1+g}\right) \psi \\
& \tilde{\omega}=K \psi \\
& \tilde{\psi}=\frac{x-g}{i-g+K r(1-T)-K g} \\
& \tilde{x}=1
\end{align*}
$$

when it is assumed $i>x^{\prime}>r(1-T)>g$ giving the equilibrium path on multiplying by $(1+g)^{t}$. In addition to the equilibrium solution identified above, there is the possibility that the original system may have a homogeneous solution which satisfies
and the general solution to the system is then the equilibrium solution plus the homogeneous solution. In this case the equation 4.7.14-18 give

[^69]\[

$$
\begin{align*}
D_{t}-\omega_{t}+x_{t} & =-(1+r(1-T)) \omega_{t}+\left(1+x^{\prime}\right) x_{t} \\
\omega_{t}-K \psi_{t} & =0 \\
D_{t}+\psi_{t} & =(1+i) \psi_{t-1} \\
x_{t} & =0
\end{align*}
$$
\]

A non-trivial solution to this system exists where

$$
\psi_{t}=\left[\frac{1+1+k(1+r(1-T))}{1+K}\right] \psi_{t-1}
$$

The expression in brackets is similar to the conventional weighted average cost of capital formula and will be denoted by a. The complete homogeneous solution then becomes

$$
\begin{align*}
& \psi_{t}=(1+a) \psi_{t-1} \\
& D_{t}=(1-a) \psi_{t} \\
& \omega_{t}=K \psi_{t} \\
& x_{t}=0
\end{align*}
$$

The difficulty here is obvious. This solution implies that the firm is growing at a rate $1+a$ which is greater than its growth in opportunities which are only growing at the rate g. Clearly such a situation is not acceptable. Also the debt is growing at the rate $1+a$ and would soon far outstrip the value of realisable assets (i.e. assets in place) which are only growing at the rate l+g. - a situation which would not be permitted in practice. The reason for this anomalous behaviour of the debt capacity constraint arises because the firm is able to borrow large amounts of funds at a rate $r$ against a 'promise' of increased future dividends and then to distribute these funds to shareholders with a preference rate 1. The increased future dividends are then met by further borrowing. Evers explores the conditions under which it is possible to
produce a valuation model such that the truncated LP gives the same solution as the infinite LP. He concludes that such a valuation is possible for systems where the square matrix $H$ defined by

$$
[H]=([\widetilde{B}]-\pi[\tilde{A}])^{-1}[\tilde{B}]
$$

has no eigenvalues $e_{1}$, such that

$$
12\left|\frac{e_{i}-1}{e_{i}}\right|>(1+g) \pi
$$

Here [A]], [B] are the matrices formed from [A] and [B] but with the colum and rows associated with non-basic components of the $(z, \eta)$ equilibrium combination deleted. In the example under discussion the eigenvalues of $H$ are 1 (three times) and $\frac{1+i}{1+r}\left(1+\frac{1}{K}\right)$.

Condition 4.7 .32 holds for $e=1$ in which case $\frac{e-1}{e}=0$ but the condition applied to last eigenvalue requires $\frac{i+K r(1-T)}{1+K}>a$ which contradicts the initial assumptions. The requisite truncation condition is always satisfied for systems for which the homogeneous solution is the null solution.

The problem is thus is to attempt to identify systems with trivial homogeneous solutions which have non-trivial equilibrium solutions. It was suggested that the 'South-Sea bubble" phenomernmwould not have occurred in practice because the debt would have been restricted by the value of assets in place.* Thus consider the model

$$
\operatorname{MAX} \sum_{t=0}^{\infty} \frac{D_{t}}{(1+1)^{t}}
$$

such that $x-(1+x) x_{t-1}+D_{t}-\omega_{t}+(1+r) \omega_{t} \leq 0$

$$
x_{t} \leq(1+g)^{t}
$$

[^70]Where the debt capacity is limited by the current value of assets, 1.e.

$$
\omega_{t} \leq K x_{t}
$$

This system gives rise to the following equilibrium equations with primal

$$
\begin{gather*}
\tilde{\mathrm{D}}+\frac{r-g}{1+g} \tilde{\pi}-\tilde{x} \frac{x-g}{1+g}+y_{1}=0 \\
\tilde{\omega}+y_{2}=\mathrm{x} \tilde{x} \\
\tilde{x}+y_{3}=1
\end{gather*}
$$

and dual

$$
\begin{gather*}
\tilde{\rho}-v_{1}=1 \\
-\tilde{\rho}\left(\frac{1-x}{1+i}\right)+\tilde{\lambda}-v_{2}=0 \\
\tilde{\rho}\left(\frac{i-x}{1+i}\right)-\tilde{\kappa}+\tilde{\mu}-v_{3}=0
\end{gather*}
$$

with complementarity and non-negativity conditions holding, the solution of this system is

$$
\widetilde{D}=\frac{x-K x+g(1-K)}{1+g} \quad \tilde{\rho}=1
$$

$$
\tilde{\omega}=\mathbf{x}
$$

$$
\tilde{\lambda}=\left(\frac{i-r}{1+i}\right)
$$

$\tilde{X}=1$

$$
\tilde{\mu}=\frac{K(i-r)-(i-x)}{1+i}
$$

provided $1>x>x>g$ and $\frac{i-x}{i-r}, \frac{x-g}{r-g}>x$
It is worthwhie interpreting these solutions in some detail. If an extra $£ 1$ is available then since there are no further investment opportunities the correct decision is to distribute that $E l$, hence $\tilde{\rho}=1$, ignoring the discount factor.

In contrast if an extra $£ 1$ of debt capacity becomes available then this results in an extra $£ 1$ now with interest $f r$ and capital repayable one year later giving a net present value of $\left(1-\frac{1+r}{1+i}\right)=\frac{i-r}{1+i}$.

Whereas if the scale of a project can be increased then the net present value of the investment is worth $-1+\frac{1+x}{1+i}$ but gives an increase in debt capacity valued at $K\left(1-\frac{1+r}{1+i}\right)$ with a net benefit of $\frac{K(i-r)-(i-x)}{1+i}$

It should be noted that if $x>\frac{x-i(1-K)}{K}$ or if $x<K r-g(1-K)$ then the equilibrium solution would be $\widehat{\mathbf{D}}=\widetilde{X}=\tilde{\omega}=0$. In these cases the firm would either not be able to raise loans sufficiently cheaply or the return on the assets would be insufficient to support debt finance. Under such circumstances the firm would quickly redistribute earnings from its existing assets to shareholders without making further investment and cease trading.

The model as represented by 4.7 .33 and 4.7 .34 is in fact considerably more general than might appear at first sight. While the debt capacity is restricted by the value of the assets in places, other restrictions on debt take a similar mathematical form. Thus if the restriction on debt was such that debt interest was to be more than $K_{t}$ times covered by income then the restriction would have taken the form

$$
\omega_{t} \leq(1+x) x_{t} / K_{t} r=K_{t}^{\prime} x_{t} \leq K_{t}^{\prime}(1+g)^{t}
$$

Alternatively, for a simple upper bound on debt the form would have been $\omega_{t} \leq(1+g)^{t} B$.

This last form is essentially Weingartner's model with the possibility of a uniform growth in both opportunities and debt
availability. Hence all these three models have a restriction on debt capacity of the form $\omega_{t} \leq(1+g)^{t} z$ and as such if $i>x>r$ will have a solution of the form above. These models are also wellbehaved in the sense that they have trivial homogeneous solutions thus the homogeneous solutions to the system defined by 4.7.33 and 4.7 .34 is

$$
D_{t}-\omega_{t}=-(1+r) \omega_{t-1}
$$

$$
\omega_{t}=0
$$

$$
x_{t}=0
$$

with solution $D_{t}=\omega_{t}=x_{t}=0$.

Thus such a model is capable of truncation in accordance with the horizon principle propounded.

This model as originally introduced by equation 4.7.33 and 4.7.34 related debt to the value of assets and could be considered a simplified version of the Chambers model with taxation and depreciation ignored. It should be noted that in this case the shadow price on debt $\frac{i-r}{1+i}$ is proportional to the difference between the equity and debt rates a structure very similar to that deduced in section 3.5 for the shadow price on debt in the pre-horizon period.

In Weingartner's version of 4.7 .33 and 4.7.34 $1=r$ and the equilibrium solution is $\tilde{\omega}=0, \tilde{D}=\frac{x-x}{i+g}, \tilde{x}=1$ with corresponding duals $\tilde{\rho}=1, \tilde{\lambda}=0, \tilde{\mu}=\frac{x-x}{1+x} \quad$ (assuming that the investment returns more than the debt rate). It should be noted that under such circumstances capital rationing no longer exists since the debt capacity dual is zero. This fact on reflection is not surprising. If the firm is capable of generating surplus funds after servicing its debt then given sufficient time in a suble
operating environment the firm will move into a permanent funds surplus situation.

Since in the Weingartner model debt has no intrinsic value,* once this point is reached no further debt will be raised.

A cursory glance at the literature on capital budgeting will reveal that nearly all Weingartner type models where numerical examples are included display a short run rationing phenomena.

The method of analysis discussed so far has concerned itself with long run equilibrium conditions whereas the real power of linear programing models is in the planning over relatively short time periods where the firm is essentially in a disequilibrium condition. In such cases the cost of capital as defined in section 4.4 may take completely different forms under such conditions of equilibrium and disequilibrium.

The following model should clarify the problem. Assume that the objective of the firm is the maximisation of the net present value of the dividend stream, where the upper limits on the level of debt is imposed by the suppliers of capital (i.e. both equity and loan capital). Therefore assume that debt must be less than a fixed percentage of the value of the firm as measured in terms of its (current) asset level, and,as measured by its market value. Here the market value is again simply the projected future dividend stream. It is further assumed that these restrictions are such that the resulting debt structure means that the lender of debt finance and the shareholders are happy with a constant return.** Hence the model is

```
* A consequence of no taxes and a world of certainty.
** It would be easy to extend the model to cover an increased step
 function for the debt rate as debt increased but for illustration
 purposes it is not considered necessary here.
```

$$
\begin{gather*}
\psi_{0}=\sum_{t=0}^{\infty} \frac{1}{(1+1) t} D_{t} \\
x_{0}+D_{0}-\omega_{0} \leq F_{0} \\
x_{t}-\left(1+x^{\prime}\right) x_{t-1}+D_{t}-\omega_{t}+(1+r) \omega_{t-1} \leq 0 \quad t=1, \infty \\
\psi_{t}+D_{t}-(1+1) \psi_{t-1}=0 \\
x_{t} \leq(1+g) t \\
\omega_{t} \leq K_{m} \psi_{t} \\
\omega_{t} \leq K_{B} x_{t}
\end{gather*}
$$

plus non-negativity conditions.
In the long run the debt will grow at the rate of growth of investment opportunities i.e. at $1+g$. The equilibrium conditions result from the debt restriction (inequality 4.7 .48 ) on the value of the assets and will be given by the equations of the last section. Thus in the long run the dividends will grow at ( $1+\mathrm{g}$ ), the rate of growth of opportunities.
FIGURE 4.7.2.


The equilibrium path for dividends thus is CD in Figure 4.7.2. and the dividend payment is given by

$$
\left[\frac{x^{\prime}-X_{B} r(1-T)+g\left(1+K_{B}\right)}{(1+g)}\right](1+g)^{t}
$$

If the initial flow of funds into the firm is such that it is unable to pay out the initial (equilibrium) dividend then the firm will use debt to grow at a rate faster than the growth in opportunities, provided that this does not violate the restriction imposed by its level of assets, until it reaches the equilibrium path. Hence if the initial optimum dividend payment is represented by the point A, the firm will move along the path AB until it meets the equilibrium path CD at B. Thus the complete solution of the firm's dividend decision is represented by the path ABD. Once the firm has reached its equilibrium path then the value of a project commenced in time period $t$ is

$$
\left(-1+\frac{1+x^{\prime}}{1+i}\right) \frac{(1+g)^{t}}{(1+i)^{t}}+\frac{K_{B}(i-r)}{(1+i)^{t+1}}
$$

which consists of its discountel cash flow value at the equity rate plus its debt capacity contribution.

However, while the firm is on the portion AB of its path then the above cost of capital formula do not apply. If we assume that the firm is using debt financing then the dual analysis yields

$$
\begin{array}{r}
-p_{t}+(1+x(1-T)) \rho_{t+1}+\lambda_{t}^{B}+\lambda_{t}^{M}=0 \\
\rho_{t}-(1+i) \rho_{t+1}-K_{B} \lambda_{t}^{B}+K_{M} \lambda_{t}^{M}=0
\end{array}
$$

Now under the assumption that the level of debt is determined by the market constraint $\lambda_{t}^{B}=0$ and the solution of 4.7.51 and 4.7.52 gives a value for $\rho_{t}$ of

$$
\rho_{t}=\left(\frac{1+K_{M} r(1-T)+i}{1+K_{M}}\right) \rho_{t+1}
$$

or

$$
\rho_{t}=\frac{1}{(1+a)^{E}} \quad \text { where } a=\frac{K_{M} r(1-T)+1}{1+K_{M}}
$$

Here a is the traditional weighted average cost of capital.

In this case the generalised NPV of the project is simply of the one period project is

$$
\mu_{t}=\left[-\frac{1}{(1+a) t}+\frac{1+x^{\prime}}{(1+a) t+1}\right]
$$

Equation 4.7.54 is of course the standard text book formula.
Hence it is seen not only is the cost of capital critically dependent on the restriction on debt capacity but the actual form that such a restriction takes may vary over the life cycle of the firm. In this particular case initially the firm is able to use debt financing to grow at a rate faster than its growth in opportunities but in the long run the finm must be restricted to grow at the same rate as its opportunities. It should also be noted that in the early phase of its growth the weighted average cost of capital is actually independent of the precise debt equity ratios but is the appropriate valuation rate for projects provided that the firm is using debt finance. This is a consequence of assuming that the equity and debt rates themselves are constant up to a fixed level of gearing and inelastic thereafter. Clearly such an assumption does place severe limitations on the conclusions that can be drawn from such models and this is a point which must be re-addressed In the final chapter. In addition the model just discussed was developed in a framework which does not strictly accord with modern financial theory and must therefore be considered as merely illustrative of the problems involved in long term and short term financial planning.

* Filton, Gruber and Leiber (75) explore the long run cost of capital in continuous time using control theory. However, they erroneuously assume the MM cost of capital formula to hold under different forms of dabt capacity restrictions.

The model developed by Myers and Pogue (74) and represented by the systems of equations $\mathbf{4 . 5 . 1}$ to $\mathbf{4 . 5 . 7}$ is in accord with modern financial theory and it would thus seem appropriate to explore the nature of any long run equilibrium solutions. For the convenience of the analysis it is convenient to assume only one investment project consisting of a unit outlay and a return of $1+x$ the following year. The model is represented by 4.5 .1 to 4.5 .7 can be then conveniently rewritten in the form

$$
\operatorname{Max} v_{0}=\sum_{t=0}^{\infty}\left(\frac{x-a}{(1+a) t+I} x_{t}+\frac{r T}{(1+r) t+I} \omega_{t}\right)
$$

subject to

$$
\begin{aligned}
& x_{0}-\omega_{0}+D_{0}-E_{0}=F_{0} \quad\left(\rho_{0}\right) \\
& x-\left(1+x^{\prime}\right) x_{t}-\omega_{t}+(1+r(1-T)) \omega_{t-1}+D_{t}-E_{t}=0 \quad(t=1, \infty) \quad\left(\rho_{t}\right) \\
& \omega_{t} \leq K\left(v_{t}^{x}+v_{t}^{\omega}\right) \quad(t=0, \infty) \quad\left(\lambda_{t}\right) \quad 4.7 .57 \\
& v_{t-1}^{X}-\left(1+x^{\prime}\right) x_{t-1}+x_{t}-v_{t}^{x}=0 \quad(t=1, \infty) \quad\left(\theta_{t}^{x}\right) \quad 4.7 .58 \\
& (1+r) v_{t-1}^{\omega}-r T \omega_{t-1}-v_{t}^{\omega}=0 \quad(t=1, \infty) \quad\left(\theta_{t}^{\omega}\right) \quad 4.7 .59 \\
& \begin{array}{ll}
x_{t} \leq(1+g)^{t} & 4.7 .60
\end{array}
\end{aligned}
$$

plus the usual non-negativity conditions, except for $\theta_{t}^{X}, \theta_{t}^{\omega}$ which are free variables.

The model as formulated in equations 4.7.55 to 4.7.60 differs significantly from the other models discussed in this section in that there exists two separate and non equal discount factors in the objective function. Thus the theory developed by Evers cannot be applied directly. However, if feasible solutions exist such that for the primal solution $z^{t} \rightarrow(1+g)^{t} \tilde{z}$ and for the dual solution
$\tilde{\eta}^{t} \rightarrow \pi^{t} \tilde{\eta}$ with complementarity holding then such a solution is optimal. Starting with the dual system such a solution turns out to be relatively easy to find. Thus we are seeking a solution with non-negative values for $\tilde{\lambda}, \tilde{\theta}^{X}, \theta^{N}, \tilde{\mu}$ such that ratio of successive dual values in a constant.

Now equation 4.5.19 for $\lambda_{t}$ gives

$$
\lambda_{t}=\frac{\lambda_{t-1}}{[1+r(1-K T)]}=\frac{r T}{[1+r(1-K T)] t+1}
$$

Thus we must take $\tilde{\lambda}=\frac{r T}{1+r}$, and the ratio of successive duals as $1 / 1+x$. for the equilibrium solution to be asymptotically consistent with the solution of section 4.5.

$$
\text { This implies } \hat{\theta}^{W}=1
$$

4.7 .61
and

$$
\tilde{\theta}^{X}=\frac{K r T}{a_{0} r^{\prime}}
$$

with

$$
\tilde{\mu}=\left(\frac{x^{\prime}-r}{1+r^{\prime}}\right) \frac{K r T}{a_{0}-r^{\prime}}
$$

For such a system to satisfy complementarity then all the primal inequalities must be equalities and thus

$$
\begin{align*}
& \tilde{x}=1 \\
& \widetilde{\omega}=K\left(\frac{r-g}{r^{\prime}-g}\right)\left(\frac{x^{\prime}-g}{a_{0}-g}\right)
\end{align*}
$$

while

$$
\begin{align*}
\tilde{\mathbf{v}} & =\tilde{\mathbf{v}}^{X}+\tilde{\mathbf{v}}^{\omega} \\
& =\left(\frac{r-g}{r^{\prime}-g}\right)\left(\frac{x^{\prime}-g}{a_{0}-g}\right)
\end{align*}
$$

Since this solution is primal-dual feasible and complementarity holds then it represents the long-run equilibrium path.

Apart from the $(1+g)^{t}$ growth factor the long run value of the firm is

$$
\tilde{v}=\left(\frac{x^{\prime}-g}{a_{0}-g}\right)\left(\frac{r-g}{r^{\prime}-g}\right)
$$

Now the net operating income in time period $t$ is $(1+g)^{t}\left(x^{\prime}-g\right)$ or a stream $x^{\prime}-g$ growing at the rate $1+g$ in perpetuity. Hence the implication is that to value to total income of the firm this stream should be discounted at a rate a where a is given by the solution to

$$
\tilde{v}=\left(\frac{x^{\prime}-g}{a_{0}-g}\right)\left(\frac{r-g}{r^{\prime}-g}\right)=\sum_{t=0}^{\infty} \frac{(1+g)^{t}\left(x^{\prime}-g\right)}{(1+a)^{t+1}}
$$

This gives a value to a of

$$
a=a_{0}(1-K T)-\operatorname{KTg}\left(\frac{a_{0}-r}{r-g}\right)
$$

If the income stream is constant, with $g=0$, then the above expression reduced to $a_{o}(1-K T)$ which is of course the MM formula. As was observed in section 4.5 the MM cost of capital is not correct for a non-constant stream, though except in simple cases analytical expressions do not exist for the cost of capital.

This pleothera of rates might appear somewhat confusing and so far the analysis has not indicated how or even whether it is possible to compute these rates from readily available data. Fortunately, it is relatively easy to relate the above rates to the return on equity and the cost of debt.

MM's fundamental principle of valuation as present in equation 4.3.8 defines the return on equity as

$$
i=\frac{D_{t}-E_{t}+\psi_{t}-\Psi_{t-1}}{\Psi_{t-1}}
$$

Then from the cash balance equation for the long run equilibrium path

$$
D_{t}-E_{t}=\left[\left(x^{\prime}-g\right)+\frac{K(r-g}{\left(x^{\prime}-g\right)}\left(g-r(1-+r)\left(\frac{i^{\prime}-g}{i_{0}^{-g}}\right)\right](1+g) \quad 4.6 .71\right.
$$

Also

$$
v_{t-1}=\left(\frac{r-g}{r^{\prime}-g}\right)\left(\frac{x^{\prime}-g}{a_{0}^{-g}}\right)(1+g)^{t-1}
$$

where

$$
\psi_{t-1}=v_{t-1}-\omega_{t-1}
$$

in accordance with the earlier definition contained in equation 4.2.1. This gives for 1 the expression

$$
i=\frac{\left(x^{\prime}-g\right)+\left[\frac{K(r-q)}{r^{\prime}-g}[g-r(1-K T)]\left(\frac{x^{\prime}-g}{a_{0}-g}\right)\right]}{\left(\frac{r-g}{r^{\prime}-g}\right)\left(\frac{x^{\prime}-g}{a_{0}-g}\right)^{(1-K)}}
$$

After some further algebraic manipulation, the following relationship emerges

$$
\begin{array}{rlr}
i(1-K)+K r(1-T) & =a_{0}-\frac{r K T}{r-g}\left(a_{0}-g\right) & 4.6 .74 \\
& =a_{0}(1-K T)-\frac{K T g}{r-g}\left(a_{0}-r\right) & 4.6 .75 \\
& =a_{0} & 4.6 .76
\end{array}
$$

Hence the conventional weighted average cost of capital formula still holds in this growth case provided the inadequacies of the MM cost of capital formula are accepted. Thus $a_{0}$ is computable from measurements of the equity return and the formulae as presented in this section are consistent. This provides some justification for the
comment made in the introduction to section 4.3 that the different forms for the cost of capital are not necessarily contradictory provided they arise from different but consistent approaches to the valuation problem.

### 4.8 The practical implications of a finite horizon

Frequent reference has already been made to the horizon problem. In particular two aspects have been of prime concern in this chapter. The first has been the impact of a finite horizon on the use of LP models in the development of theories of valuation. The second is the practical implications of using a finite horizon in financial planning models. It is this latter aspect which is now of immediate concern.

Two possible approaches to determining that horizon has already been discussed in section 1.5 . These are the pragmatic approach adopted by Chambers (71) who argues that the planning horizon in practice is largely determined by the firms forecasting ability and natural planning cycle and the theoretically appealing, though possibly non-implementable approach of Weingartner (63) who suggests that it is the point at which increasing the horizon yields no net benefit. The questions to be addressed in this section are twofold. What are the potential dangers in the Chambers approach and what are the problem of devising a practical methodology which conforms with Weingartner's definition of horizon?

It is assumed that in any implementation, whatever approach is adopted in determining the horizon, the model would be used on a rolling-horizon basis, whereby decisions would be tentatively made in all years upto some horizon but only the year-one decisions
would be implemented. At the end of year-one all data would be updated and tentative decisions again would be made upto the horizon advanced by one year. This time year two decisions would be implemented. The planning process would thus continue on this rolling-horizon basis, with planning being over several years, though with only immediate decisions being implemented. While such a process overcomes in part the static nature of LP planning models, it does not in itself solve the problem of how distant the horizon should be

In this section the suggestion of Weingartner that different horizon dates should be tried until one is found which does not (materially) affect the implemented decisions is explored. The exploration is carried out using the model proposed in section 1.7 and detailed in appendices $I$ to $V$. Such an exploration of course must be specific to this model and to the horizon valuation used; however, if this model is accepted as being of realistic complexity then the result of such experiments might give some indication as to the seriousness or otherwise of finite horizons in practical planning situations. It is also perhaps worth noting that although Weingartner's ideas on the determinants of the horizon have been widely accepted by other writers, there appears to have been no actual experimentation to determine its viability.

In order to simulate the rolling-horizon planning process the following set of experiments were carried out on the LP model.

The horizon was fixed successively at times upto eight years ahead* in steps of one year. The post-horizon valuation $\psi_{H}$ at each of these horizonswas just that described in section 4.6 and took the objective function took the form

[^71]

The LP model was set up so that it was possible to suppress any constraints occurring in the periods $t=i+1$ to $t=8$. Thus the constraint set was operative only over the pre-horizon period.

With the model set up as described and the horizon set at the value $H$, the optimal decision set for the periods $t=1$ to $H$ was found. The first year ( $t=1$ ) investment and financing opportunities were fixed at their solution values using a simple bounding procedure and the horizon was advanced one year. A new optimal solution with respect to both the horizon $H+1$ and the existing (or 'implemented') year-one decisions was found. The projects and investments for the second year ( $t=2$ ) were fixed at their optimal values. The process was repeated until the planning covered the whole eight year span hence simulating a 'rolling-horizon' decision procedure The experiment was repeated for values of H ranging from 1 to 8 in integer steps and for varying levels of earnings from existing projects.

It should be emphasised that the D-statistic*in Table 4.8.1. applies only to the first six years, since projects selected in years 7 and 8 are largely on a NPV criterion in any case. Further the results are strictly only true when the planning horizon in H years for projects implemented in time period $t$ such that $t+\mathbf{H} \leq 8$.

Tables 4.8.1. and 4.8 .2 shows the effect of various planning horizons on the error in project selection, as measured by the $D$ statistic and by the value of the plan. These results are diaplayed graphically in figures 4.8.1. and 4.8.2. Six years was chosen aince

[^72]TABLE 4.8.1. Error in project selection for different horizons

| LEVEL <br> OF EARNINGS | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Normal Earnings |  |  |  |  |  |  |  |
| Above Average Earnings | 7.44 | 7.44 | 2.51 | 1.1 | 0.74 | 0.74 | 0 |
| Below Average Earnings | 10.36 | 7.82 | 4.85 | 3.63 | 2.40 | 2.40 | 0 |

TABLE 4.8.2. Value of plan ( $£^{\prime} 000^{\prime}$ s)

| LEVEL <br> OF EARNINGS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Normal Earnings |  |  |  |  |  |  |  |  |
| Above Average EAME (H) Earnings |  |  |  |  |  |  |  |  |
| Below Average Earnings | 1215 | 1921 | 2022 | 2051 | 2063 | 2063 | 2063 | 2063 |

FIGURE 4.8.1.


FIGURE 4.8.2.

for H - 6 errors in project selection occurred only in the first two years, whereas for $H=7$ errors occurred in all the years upto the horizon. Full details of these results can be found in appendix XIX.

It is possible to examine how far ahead planning must take place . before a particular years decisions are unaffected and before a particular year's decisions are only marginally affected. This is shown in Table 4.8.3.

```
4.8.3. Planning Horizon*(H) necessary before a particular year's decisions are unchanged
```

| LEVEL OF EARNINGS YEAR OF DECISION ( | Normal |  | Above Average |  | Below Average |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Identical | Marginal | Identical | Marginal | Identical | Marginal |
| 1 | 4 | 4 | 7 | 4 | 7 | 4 |
| 2 | 6 | 1 | 3 | 3 | N/A | 5 |
| 3 | 6 | 1 | 7 | 3 | 5 | 1 |
| 4 | N/A | 3 | 5 | 2 | 2 | 2 |
| 5 | N/R | 1 | 1 | 1 | N/A | 3 |

Many of the conclusions to be drawn from these results are fairly obvious though it is worth speculating on possible explanations of these results to see if any general statements about financial planning models can be made.

As can be easily seen from figures 4.8.1. and 4.8.2. the more distant the planning horizon the greater the accuracy. In fact the indication is that in this particular case a horizon of four to five

- In this table, N/A (not available) means that the horizon time $H$ is such that $t+H$ is certainly greater than 8 years, while a 'marginal' difference in solutions means that the total size of the errors in the scale of project selection is less than unity.
years is sufficient and that information about other projects beyond this point is of no further value.

In this context it is important to stress the change in the nature of the information which takes place at the horizon. The assumption is that the expected value of a projects contribution to the firm does not change as the planning period unfolds and the horizon time recedes. All that changes is the information available about new and alternative opportunities. Thus the risk profile as measured by the expected return and the variance of the returns* does not alter, but rather, the uncertainty surrounding alternative opportunities is removed. Hence risk is differentiated from uncertainty by the existence or otherwise of knowledge about the probability distribution of returns (see Luce and Raiffa (57)). Using this terminology, the conclusion is that for this particular model the project decisions are largely independent of the actual planning horizon and the uncertainty implied by that horizon, provided that the planning horizon is more than five years hence. While this conclusion is of course specific to this model these results when considered in conjunction with those of chapter three suggest that certain more general conclusions might be drawn. In chapter three, it was argued that simple discounting rules break down only slowly as the complexity of models is increased. Now discounting techniques are horizon-independent valuation procedures using pre-determined interest rates. The model being discussed here is a straightforward extension of such a procedure. The investment project is valued using interest rates and resource shadow prices internally determined by investment and financing interactions in the pre-horizon

[^73]period, while a simple discounting procedure at some presdetermined rate is used for post-horizon valuation. The evidence of Chapter three suggested that the internally determined interest rates were relatively stable and could be approximated by easily computable constant parameter vectors. Thus, simple discounting rules were able to generate solutions whose value was in excess of 90 of the optimal value. This result is bettered by using a horizon of only three years within an LP model and lends further support to the argument developed in that chapter that it is only during the first few years of a project's life, while the project remains a net investment to the firm, that the accept-reject decision is doubtful. Once this initial investment period has been fully analysed any decision made about the project is unlikely to be revised in the light of further information about other opportunities. Hence a horizon of three to four years should suffice under such circumstances. One strength of LP models of course lies in their ability to rigorously analyse this initial period of a project's life.

Finally the increase in the value of the firm's plan is not proportionately reflected in the decrease in the error in the D-statistic. This suggests that the extension of the planning horizon merely enables a more accurate analysis of projects whose contribution to the firm is increasingly marginal. This merely re-echoes a point made throughout chapter three about the role of LP in discriminating between marginal projects.

While investment projects exhibit a remarkable degree of stability with respect to choice of horizon, the financing projects exhibit no such stability. Table 4.8.4. summarizes the change in the use of financing instruments between a one-year and an eight-year planning
horizon at a normal level of earnings from existing projects.

TABLE 4.8.4. Effect of planning horizon on financing

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OVERDRAFT | ONE-YEAR HORIZON | - | - | 223 | 166 | 249 | 88 | 240 | - |
|  | EIGHT-YEAR HORIZON | - | - | - | 26 | - | - | - | - |
| RIGHTS | ONE-YEAR HORIZON | 88 | 794 | 75 | 1 | 1 | - | - | - |
|  | EIGHT-YEAR HORIZON | 232 | 800 | - | - | - | - | - | - |
| LONG TERM DEBT | ONE-YEAR HORIZON | 374 | 2 | 11 | 1000 | 459 | 1000 | - | - |
|  | EIGHT-YEAR HORIZON | 483 | 4 | 619 | 1000 | 812 | 945 | 592 | - |

The most obvious comment concerns the relative use of overdraft and long term debt facilities. Short term financial planning, as represented by the one-year horizon model, requires much more use of the comparatively expensive overdraft financing. Planning over a longer term horizon results in the use of the cheaper long term debt. This particular point is perhaps the most crucial problem in the use of finite horizons. Although project selection remains robust with respect to the choice of horizon, financing alternatives appear not to. While it could be argued that the difference in costs between alternative forms of finance is small, this argument ignores the hidden cost of bankruptcy. Thus the incorporation of restrictions on possible financing alternatives in the pre-horizon period is largely to eliminate the possibility of such an occurrence and the choice of a financing strategy which is acceptable in the pre-horizon period could lead the firm into serious difficulties in the post-horizon period.

One approach to this problem is to use horizon posture constraints which ensure that the firm's financial structure at the horizon is such that difficulties are unlikely to occur in the post-horizon period. This approach suffers from being somewhat arbitrary, attaching no costs or benefits to deviations from the target structure, and does not directly tackle the essentially static nature of such a planning model. The alternative approach is to incorporate the effect of post-horizon constraints into the terminal valuation procedure. In fact this is the approach which is adopted in a joint and unpublished piece of research by the author in conjunction with Atkins, and as such, only the method and results will be outlined here.

The particular problem is whether the valuation algorithan can be devised which satisfied the fundamental horizon principle. While Evers provides an existence proof of such a valuation procedure he gives no indication as to how such a valuation formula might be devised in practice.

The infinite $L P$ system of equations can be recast into the mathematically equivalent form

$$
\psi_{0}\left(f_{0}\right)=\max _{z^{0}}\left\{c^{\prime} z^{0}+\pi \psi_{1}(s)\right\}
$$

such that

$$
[B] z^{\circ} \leq f_{0}
$$

and where

$$
s=(1+g) f_{0}-[A] z^{\circ}
$$

where $\psi_{o}\left(f_{0}\right)$ emphasises the dependence of the plan on the initial resource vector $f_{0}$ and $\psi_{1}(s)$ denotes the horizon valuation which is
dependent on the initial decisions. This structure
is in effect nothing more than an extension of MM's fundamental principle of valuation. Thus the dividend maximization model when recast into such a form becomes

$$
\psi_{0}\left(F_{0}\right)=\operatorname{Max}_{D_{1}}^{D_{1} \in \Gamma}\left\{\begin{array}{l}
D_{1} \\
1+i
\end{array} \frac{\psi_{1}\left(F_{0}\left(D_{1}\right)\right)}{1+1}\right\}
$$

where the vector $F_{0}\left(D_{1}\right)$ denotes the resources available in period one depending on the dividend paid out at the beginning of the period $\Gamma$ denotes the feasible set of dividends.

The above system is a dynamic programming formulation with a multidimensional state vector (Bellman and Drefus (62)). While such systems are frequently computationally intractable (Morin (77)) several factors enable reasonably good approximations to the solution to be generated for only a small increase in the computing time. Firstly for most financial models the solution, or at least the investment set, is relatively stable with respect to the vector s. Furthermore the solution derived using more conventional valuation formulae as well as the equilibrium solution of the infinite horizon model provide a series of good starting points. The procedure thus depends on the fact that $\psi$ is piecewise linear and convex and that initial approximations can be generated using the conventional valuation procedures and the equilibrium solutions to span the space of s. The algorithm then uses these values to generate new $(\psi, 8)$ combination improving the approximation to the function $\psi$. In effect the combinations $(\psi, s)$ represent states on the possible path as the firm moves towards the equilibrium combination ( $\boldsymbol{\psi}, \tilde{s}$ ). Once the firm reaches its equilibrium path it will remain on it.

Using such an algorithm, convergence turns out to be fairly rapid. Thus for a problem consisting of 10 projects and 8 financing opportunities subject to 5 pre-horizon constants only 25 was added to the computational time using this algorithm as opposed to a conventional terminal valuation procedure.

Although the set of investment decisions was only marginally affected using this horizon valuation procedure, the level of debt financing was altered by a factor of six. In the conventional form of the model the level of debt was restricted in the pre-horizon period by a times interest cover, though clearly there were no restrictions on the times covered factor in the post horizon period. Thus the incorporation of a 'post-horizon constraint' directly into the valuation procedure avoided the potential difficulty arising from a failure to cover interests payments adequately in the posthorizon period. The danger therefore of using finite horizon models in practice lies not in the investment opportunities foregone, but rather, from the possibility of accepting (financing) commitments which might seriously jeopardize the long term viability of the firm.

### 4.9 Conclusion

In this chapter the role of mathematical programing models in analysing the interactions between the investment and financing decision have been examined. Within this mathematical programing framework it has been possible to develop normative rules for the appraisal of investment projects. The main conclusions to be drawn from such an analysis are that any cost of capital formula used for project appraisal is critically dependent on the nature of the restrictions
placed on the level of debt and that the conventionally accepted MM cost of capital formula breaks down for finite or irregular cash flows. The methodology adopted further provided insight into the consistency and structuring of financial planning models. Also examined were the practical implications of a finite horizon in LP financial planning models. It was argued that the investment decision is largely independent of the planning horizon and that the use of finite horizons does not pose any severe limitations on the use of LP models for such purposes. However, the real problem in using such models appears to lie in the danger of undertaking financing commitments which might seriously jeopardize the future profitability of the enterprise. Fortunately, relatively minor changes to the computational procedures enable this particular problem to be overcome.

In summary this chapter has explored the contribution that linear programaing models can make to the extension of discounting techniques into situations where the capital markets impose restrictions on the access to borrowing. In the following chapter these ideas are further applied to the analysis of one particular financing instrument - a lease contract.

CHAPTER 5
THE VALUATION OF A FINANCIAL LEASE - A MATHEMATICAL PROGRAMMING FRAMEWORK.

### 5.1 Introduction.

One possible method of evaluating a lease in practice is to incorporate the lease as a project into a mathematical programang model of the firm in which all investment and financing decisions are considered simultaneously. While such an approach is certainly valid, the work of chapter 3 suggests that the solutions generated by many of these models show little or no improvement over discounting approaches. Moreover, this work, together with that of the last chapter, has shown that many linear programing formulations of the investment decision are equally capable of analytical or semianalytical solutions. Thus mathematical programming models of the investment and financing decisions provide more than a mere computational tool for lease evaluation; they provide a generalised framework in which analytical expressions for the value of a lease may be derived.

The derivation of these analytical expressions is by the use of the Kuhn-Tucker optimality conditions for constrained optimisation. In this chapter a general mathematical programing model of the firm will be developed and by the use of the Kuhn-Tucker conditions an expression for the value of a lease will be deduced. The mathematical programing approach is similar to that developed in the recent paper by Myers, Dill and Batisto (76) and this paper owes much to their excellent exposition.

The particular valuation model generated by Myers will be examined in some detail. Myers' work assumes that the correctness of Modigliani and Millers (MM) contention that the only value of debt
is in its tax shield, that dividend policy is irrelevant and that the assumptions of the capital asset pricing model holds.

In contrast the section following adopts a traditional approach to valuation and uses an analogous expression resting on the different assumptions of traditional financial theory. These two expressions are contrasted with "naive discounting" measures of the value of a lease and it is seen that the relative 'pureness' of the assumptions of the economic theory underlying the MM and traditional valuation models fail to provide an adequate rationale for leasing.

In the following sections various accounting measures of debt capacity are introduced. Thus the next section uses a mathematical programming model of the firm developed by Chambers (71) in which debt is measured in book value terms and the restriction of the use of debt in a restriction on the (book) level of leverage. This accounting valuation introduces sufficient imperfection into the measurement of debt that situations are identified when it is preferable to lease even though the after tax interest rate on lease finance is higher than that on debt finance. Of course, it could be argued that the financial markets are unlikely to use such a "naive" measure of debt such as book values preferring to relate the amount of debt to expected future earnings. The next section therefore modifies the Chambers' model so that the debt capacity is related to the future cash inflows. It is shown that rather than removing the arbitrariness from the book measures of debt capacity such a step compounds the problem and, depending on the precise nature of the times cover constraint, situations arise when leasing can seem very attractive indeed. The next model of valuation examined in Weingartner's basic horizon model (74) with simple bounds on debt availability. This model enables the impact of "hard" capital rationing on the lease ovaluation problem to be determined.


#### Abstract

All these models have the common basic structure where the only financial restriction is on debt availability. The model outlined in section 1.7 has many other constraints imposed on its investment and financing strategies and it is worthwhile examining the determinants of the lease decision in such circumstances. Although a rough analytical treatment of project selection was produced in chapter three it is proferable here to identify post ante the precise role played in the valuation by the various constraints. In section 5.8 a methodology is developed which separates out the contribution to the lease value of the various constraint gets. The final section draws together the conclusions arising from the various models and suggests that the economic analysis of the lease evaluation problem may well view leasing in too simplistic a framework. The main reasons for leasing that emerge from this chapter are the imperfections of accounting measures of debt, the non-availability of medium term financing opportunities and the need for balance sheet management.


### 5.2 An Analytical Framework.

We assume that the objective of the firm's management is the maximisation of the value $\psi$ of the firm at some, as yet, unspecified time, i.e. Max $\psi(x, L, V, w, D, E)$ subject to a cash balance constraint

$$
C_{t}(X, L, V, H, D, E) \leqslant F_{t}
$$

and a debt capacity constraint

$$
w_{t} \leqslant \phi_{t}(x, L, v, D, E)
$$

plus the scale constraints

$$
0 \leqslant L_{j} \leqslant x_{j} \leqslant 1
$$

5.2.3.

Here L denotes a vector of leasing opportunities, where the individual components of $L$ are associated with the scale of a particular lease opportunity. The rest of the notation is as before and is sumarized for convenience in appendix II.

The Kuhn-Tucker condition for optimality when applied to the leasing variable give

$$
\frac{\partial \psi}{\partial L_{j}}-\sum_{t=0}^{H} \rho_{t} \frac{\partial C_{t}}{\partial L_{j}}+\sum_{t=0}^{H} \lambda_{t} \frac{\partial \phi_{t}}{\partial L_{j}}-\mu_{j}^{L} \leqslant 0
$$

If project $j$ is leased then the inequality becomes an equality and the reduced cost ( $\mu_{j}{ }^{L}$ ) of the lease is given by

$$
\mu_{j}^{L}=\frac{\partial \psi}{\partial L_{j}}-\sum_{t=0}^{H} \rho_{t} \frac{\partial c_{t}}{\partial L_{j}}+\sum_{t=0}^{H} \lambda_{t} \frac{\partial \phi_{t}}{\partial L_{j}}
$$

If we look at the terms in more detail then we see that $0 / \frac{\partial L_{j}}{}$ is the direct marginal increase in the value of the company for each unit of leasing. $\frac{\partial C_{t}}{\partial L_{j}}$ is the cash flow associated with a unit of the lease and $\rho_{t}$ is the discounting or compounding factor, depending on whether the model is a net present value model or a terminal horizon model. Hence, the first two terms represent the 'pure' cash flow effects of the lease.

The term $\frac{\partial \phi_{t}}{\partial L_{j}}$ is the amount of debt capacity used up by the lease and $\lambda_{t}$ is the value associated with the debt capacity. Hence the role of $\mu_{j}{ }^{2}$ is akin to the role played by the dual on the project constraint and can be interpreted as the generalised net present value of the lease. If the right hand side of equation 5.2.5. is negative the lease ought not to be taken on, while if it is positive
the lease ought to be adopted. The only real problems are the values $\frac{\partial \psi}{\partial L_{j}}, \rho_{t}, \lambda_{t}$, and $\frac{\partial \phi_{t}}{\partial L_{j}}$. Their values are intimately linked to the valuation model adopted and the measure of debt capacity chosen. The remainder of this chapter is concerned with this problem.

### 5.3 Lease evaluation in a Modiligani - Miller World.

As already stated Myers assumes the correctness of MM's contention that the only value of debt is its tax shield, that dividend policy is irrelevant and that the assumptions of the capital was pricing model holds. He shows in a separate paper (Myers (74)) that the implications of such assumptions are that $\rho_{t}=0$. In addition the marginal value*of debt, where debt is one-year renewable, is given by $\lambda_{t}=\frac{r T}{(1+r) t+1}$ for all years in which debt is raised. The 'cheapness' of debt in the MM world would ensure that debt is always used to its limit and hence that the debt capacity constraint is always binding. The MM idea is that an upper limit on the amount of debt is imposed by the existence of a target ratio of the market value of debt to the market value of the firm.

A' complication arises because the market value of assets have differing risks attached to them. Thus we could identify the debt capacity $\phi_{t}$ with $K \psi_{t}$ where $K$ is the firms overall target debt ratio or with $\sum_{j} K_{j} \Psi_{j t}$ where $K_{j}$ is the debt ratio associated with a particular asset risk stream. For the time being we shall assume the latter more general form and discuss the problem again when we come to interpret our solution. It should also be noted that Myer's restriction on debt applied solely to 'pure' debt; his measure of debt does not include leasing - a point which is not at all clear from Myers' owen analysis. The impact of the lease on debt is via its impact on the market value of the firm. If we denote the value of fl leasing at

[^74]time $t$ by $V_{t}$ then we can use the adjusted present value approach, discussed in the last chapter.
\[

$$
\begin{align*}
& v_{t}=\frac{\partial \psi_{t}}{\partial L_{j}}+\sum_{\tau=t}^{H} \lambda_{\tau} \frac{\partial \phi_{t}}{\partial L_{j}} \\
& =A_{t}+\sum_{\tau=t}^{H} \frac{r T}{(1+r)^{T+1-t}} K_{L} v_{\tau}
\end{align*}
$$
\]

Here $\frac{\partial \phi_{t}}{\partial I_{j}}=K_{L} V_{\tau}$ where $K_{L}$ is the debt value ratio for the lease and $\frac{\partial \psi_{t}}{\partial L_{j}}=A_{t}$ where $A_{t}$ denotes just the net present value per $£ 1$ of leasing of the lease cash flows. The discount rate according to the capital asset pricing model would be the riskless rate r. This implies that

$$
A_{t}=\frac{A_{t+1}}{(1+r)}-\frac{b_{t} T+P_{t}(1-T)}{(1+r)}
$$

and

$$
\sum_{\tau=t}^{H} \frac{f V_{\tau}}{(1+r)^{t-t}}=f v_{t}+\frac{f}{(1+r)} \sum_{T=t+1}^{H} \frac{V_{\tau}}{(1+r)^{T-E-I}}
$$

where

$$
f=\frac{K_{L} r T}{(1+Y)}
$$

Hence combining equations 5.3.2-3-4 and 5 gives

$$
v_{t}=\frac{-\left(b_{t} T+P_{\tau}(1-T)\right)}{(1+r)}+f V_{t}+\frac{v_{t+1}}{(1+r)}
$$

5.3.6.

Hence

$$
v_{t}=\frac{-\left(b_{t} T+P_{t}(1-T)\right)}{\left[1+r\left(1-K_{L} T\right)\right]}+\frac{v_{t+1}}{\left[1+r\left(1-K_{L} T\right)\right]}
$$

Hence 5.3.7. relates the value of the lease at time to its value at time $t+1$ and the cash flows incurred by the lease contract in the intervening period. Now on termination of the lease the value of the lease is zero hence $V_{H}=0$.

Also

$$
v_{0}=c_{0}-\left[\frac{b_{1} T+p_{1}(1-T)}{1+r\left(1-K_{L} T\right)}\right]+\frac{v_{1}}{\left[1+r\left(1-K_{L} T\right)\right]}
$$

5.3.8.
where $c_{0}$ is the cost of the asset.
We can thus use the recurrence relationship (5.3.7.) together with the boundary conditions to generate the value of the lease as:

$$
v_{0}=c_{0}-\sum_{t=1}^{H} \frac{P_{t}(1-T)+b_{t} T}{\left[1+r\left(1-K_{L} T\right)\right]^{t}}
$$

which is Myers' formula, though Myers' own derivation is somewhat more complicated** The issue still remains as to the appropriate value of $K_{L}$.

If it is assumed that because of the contractural nature of lease repayments that a lease is associated with cash flows which are certain then it could be argued that the value of $K_{L}$ should be riskless value and be equal to unity. This approach then gives a value for the lease of

$$
v_{0}=c_{0}-\sum_{t=1}^{H} \frac{P_{t}(1-T)+b_{t} T}{[1+r(1-T)]^{E}}
$$

This is, of course, just the net present value of the after tax cash flows associated with the lease discounted at the after tax debt rate. Hence, the lease decisions with these assumptions would appear to be quite simple. If the after tax rate on debt is
*Strictly speaking this is the value per unit of leasing. For ease of reference the term value will be used.

* The formula could have been derived as a special case of the adjusted present value formula. The certain nature of the cash flows implies that $a_{0}=r$ and substitution of this value into expression 4.5.29. gives the desired form immediately. The formula was derived from firgt principles here in order that the various assumptions made could be cited explicitly.


#### Abstract

greater than this after tax cost of the lease it is preferable to lease rather than to use debt finance. If the cost of the lease is greater than the after tax debt rate then debt finance is cheaper. Since in general as Vancil (61) observes debt is usually a chaper form of finance than a lease; in a Modigliani-Miller world leasing is unattractive. Perhaps this rather simplistic result from a relatively sophisticated piece of analysis is disappointing: though on reflection, it is not surprising. Indeed it would perhaps be surprising if the assumptions of market perfections subsumed within this model led to any result other than the value of a lease is just the after tax cash flows discounted at the after tax debt rate. In a strict economic market view it is difficult to see that leasing is anything other than a relatively unattractive alternative*.


### 5.4 A Traditional Approach.

While a few authors have used the after tax cost of debt as the appropriate discount rate, many authors have used a weighted average cost of capital formula, where the weighting factor is a debt equity ratio. It is possible to redefine $\psi, \phi$ such that the mathematical programing formulation accords with this 'traditional' approach.

[^75]The particular model chose is the one of section*

$$
\operatorname{Max} \psi_{0}=\sum_{t=0}^{\infty} \frac{D_{t}-E_{t}}{(1+i) t}
$$

$$
\begin{aligned}
& \text { s.t. Project cash flows }+D_{t}-E_{t}-\left(w_{t}-w_{t-1}\right)+w_{t-1} r(1-T) \leqslant F_{t} \\
& \qquad w_{t} \leqslant K \psi_{t} \\
& (1+1) \psi_{t-1}=D_{t}-E_{t}+\psi_{t}
\end{aligned}
$$

where $\psi_{t}, D_{t}, E_{t}, w_{t} \geqslant 0$

The objective function in this case is the maximization of the net cash flows to the shareholders discounted at the (equity) rate $i$ where maximization is carried out subject to a restriction on the market values of debt and equity.

As we saw in section 4.7 a dual analysis of this model yields a value for $\rho_{t}=\frac{1}{(1+a) t} \quad$ where $\quad a=\frac{i+K r(1-T)}{1+K}$ and plays the role of the weighted average cost of capital. The shadow price on debt is given here by $\lambda_{t}=\frac{w-r(1-T)}{(1+a)^{t+1}}$

It should be noted that the lease interest rate plays no role in the weighted average cost of capital. This is because we have made the implicit assumption that while the lease may effect the value of the firm by affecting the future dividend streams it is assumed that it does not affect the perceived risk of that stream. In other words we have assumed that the return required by the

[^76]holders of equity and debt is not matemally affected by the lease decision. While this assumption may not be strictly justified it is difficult to incorporate alternative assumptions.

A more intractable difficulty is the effect that the lease has on the debt capacity. If the lease has no effect, then clearly the impact of the lease is merely via its effect on the cash balance equations and $\frac{\partial \phi}{\partial L_{j}}=0$. Also in this case $\frac{\partial \psi}{\partial L_{j}}=0$ since the firm is valued in terms of its net equity flows. The term $\frac{\partial C_{t}}{\partial L_{j}}$ ( $-C_{t}$ ) are just the depreciation tax shields and the lease repayments. They are given by the expression

$$
C_{t}=P_{t}(1-T)+b_{t} T \quad \text { 5.4.1. }
$$

This produces a value for the lease of $V_{0}=c_{0}-\sum_{t=1}^{H} \frac{P_{t}(1-T)+b_{t} T}{(1+a)^{2}}$ 5.4.2.
or just the incremental cash flows associated with the lease evaluated at a weighted average cost of capital. This analysis is, of course, equivalent merely to treating the lease as another project and as such is somewhat unsatisfactory since a lease may be viewed, in part, as an alternative to debt. If we assume that this is so and incorporate the value of the lease into the debt capacity constraint, so that this constraint now reads:

$$
w_{t}+v_{t} \leqslant k \psi_{t}
$$

Then the value of the lease at time $t$ is given by

$$
v_{t}=-\sum_{\tau=t}^{H} \frac{C_{t}}{(1+a)^{\tau-t}}+f \sum_{\tau=t}^{T} \frac{v_{\tau}}{(1+a)^{\tau-t}}
$$

where

$$
f=\frac{a-r(1-T)}{(1+w)}
$$

Then

$$
\begin{align*}
v_{t} & =c_{t}+f v_{t}-\frac{1}{(1+a)} \sum_{\tau=t+1}^{H} \frac{c_{\tau}+f v_{\tau}}{(1+w)^{t-(\tau+1)}} \\
& =c_{t}+f v_{t}+\frac{f}{(1+a)} v_{t+1} \\
& =v_{t}(1-f)=c_{t}+\frac{f}{(1+a)} v_{t+1}
\end{align*}
$$

Again with the same initial conditions and end conditions as in section 5.3 the value of the lease is given by

$$
v_{0}=c_{0}-\sum_{t=1}^{H} \frac{P_{t}(1-T)+b_{t} T}{[1+r(1-T)]^{t}}
$$

Thus in this case the value of the lease is just the after tax cash flows discounted at the debt rate. Neither result is surprising, if the lease makes no impact on debt capacity then it is merely another project and its value is just the incremental cash flows of the lease evaluated at the weighted average cost of capital. If the lease is treated as an alternative to debt then it must also be valued at the debt rate. While the latter treatment would seem preferable it is clear that in general the relative cheapness of debt would make the lease unattractive. Again within a framework of theoretical market valuations of assets and liabilities leasing is an unattractive instrument.

The foregoing analysis uses market values for measuring debt capacity in which the ability of the firm to support debt is related to future income streams. In general* financial markets actually

[^77]impose restrictions on the use of debt which are more closely related to accounting valuations. In these debt capacity is related to current income levels and existing asset-liability structures. The romainder of this chapter looks at lease evaluation methods where debt capacity is measured in more conventional accounting terms.

### 5.5 Leasing in an Accounting Framework.

The model of Chambers (71) is eminently suitable for the analysis of the impact of the accounting treatment of leases. The model incorporates the main features of the current U.K. tax system and the restriction placed on the level of debt is the book (accounting) value of gearing or leverage.

Moreover, as was shown in section 3.5, the linear programaing has a well defined dual feasible region which is capable of an analytical
treatment. However, one of the difficulties of this particular model is that the algebraic expressions for the duals associated with the cash balance constraints and the debt capacity constraints are cumbersome. Thus, the dual on the cash balance constraint* is given by the solution 3.5 .14 and 3.5 .24

$$
\rho_{t}=\frac{g}{1+g}(1+i)^{H-t}+\frac{1}{(1+g)}\left\{\frac{1-f}{100}-r T+r(1-T) \sum_{\tau=t+1}^{H}(1+i)^{H+1-\tau}\right\}
$$

while the dual on the debt capacity $\lambda_{t}$ is given by equation 3.5 .14

$$
\lambda_{t}=\frac{\left[(1+i)^{H-t}-p_{t}\right]}{(1+g)}
$$

[^78]Here $g$ denotes the level of gearing, $i$ the equity rate and $f$ the flotation costs associated with equity.

Since this (and most of the subsequent models to be discussed) are terminal valuation models in which the objective function is the maximization of the horizon value of the firm, it can be assumed, without loss of generality, that the horizon is coterminous with (or post dates) the last lease payment. This ensures that

$$
\frac{\partial \psi}{\partial L_{j}}=0
$$

The cash flows* associated with the lease repayments are $P_{t}(1-T)+b_{t} T$ and the book value of the lease at time $t$ is given by :

$$
\sum_{\tau=t+1}^{H-1} \frac{P_{\tau}}{\left(1+i_{L}\right)^{H-\tau}}
$$

where $i_{L}$ is the implied pre-tax interest rate on the lease (see section 1.5). In addition the decision to lease would affect the book value of retained earnings arising from the difference in lease repayment and depreciation ${ }^{\dagger}$ expenses, $b_{t}$. The value of this at time $t$ is:

$$
\sum_{T=1}^{t}\left(P_{t}-b_{t}\right)(1-T)
$$

[^79]Thus the net debt capacity effect is:

$$
\frac{\partial \phi_{t}}{\partial L_{j}}=\sum_{\tau=t+1}^{H-1} \frac{P_{\tau}}{\left(1+i_{L}\right)^{H-\tau}}+g \sum_{\tau=1}^{t}\left(P_{t}-b_{\tau}\right)(1-T)
$$

This defines all the terms of equation 5.2.4. though the resulting algebraic expression conveys little insight into the impact of such a valuation system on the lease decision. In order to gain some idea of the order of magnitude of the various effects, some numerical computations were carried out.

In Table 5.5.1, the net present value / $£ 100$ of lease is shown assuming a 12 equity rate, a limit on debt to equity of 50 and a 40 tax rate. The equity flotation costs were 38 and the lease was repaid in 5 equal annual instalments. Straight line depreciation over 5 years was assumed throughout.

Table 5.5.1 Net Present Values*/£100 Lease Finance in the Chamber Model.

| Lease Interest Rate |  | Debt (debenture) rate $\qquad$ <br> (3) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Before Tax (*) | After <br> Tax (E) | Nominal rate before tax Effective after tax | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|  |  |  | 3.3 | 4.0 | 4.6 | 5.3 | 5.9 | 6.5 | 7.1 | 7.7 |
| 6 | 3.7 |  | -0.3 | 1.1 | 2.6 | 4.0 | 5.5 | 6.9 | 8.4 | 9.8 |
| 8 | 5.0 |  | -3.1 | -1.6 | -0.1 | 1.3 | 2.8 | 4.3 | 5.7 | 7.2 |
| 10 | 6.2 |  | -5.9 | -4.4 | -2.9 | -1.4 | 0.1 | 1.6 | 3.1 | 4.6 |
| 12 | 7.5 |  | -8.7 | -7.2 | -5.7 | -4.2 | -2.7 | -2.3 | 0.3 | 1.9 |
| 14 | 8.7 |  | 11.6 | -10.1 | -8.6 | -7.0 | -5.5 | -4 | -2.4 | -0.9 |
| 16 | 9.9 |  | 14.5 | -13.0 | -11. 5 | -9.9 | -8.4 | -6.8 | -5.3 | -3.7 |
| 18 | 11.2 |  | 17.5 | -16.0 | -14.4 | -12.8 | -11.3 | -9.7 | -8.1 | -6.6 |
| 20 | 12.4 |  | 20.6 | -19.0 | -17.4 | -15.8 | -14.2 | -12.6 | -11.0 | -9.5 |

[^80]In table 5.5.1. it is assumed that the firm is always in a deficit situation. With such an assumption it can be seen that a lease is only attractive where its after tax rate is comparable with the after tax rat on debt. Thus in the original article where Chambers used a 6 betore tax (4\% after tax rate on debt) a lease does not become attractive until its after tax rate is down to 4.38.

At first sight even this may seem somewhat puzzling. Thus a firm finds it more attractive to lease a project at an after tax cost of 4.38 when debt is available at only 4\%. This point is imediately clarified if we write down the net cash flows together with the effects on debt capacity of an 'acquire plus buy with debt' as against on 'acquire via a lease' decision for £100 of assets. These are shown in Table 5.5.2.

Table 5.5.2. Comparison of cash flows and capacity effects.

| DECISION | 1 | 2 | 3 | 4 | 5 | POST <br> HORIZON |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Buy with debt <br> Debt servicing flows Use of debt capacity | $\left\lvert\, \begin{aligned} & 100 \\ & 101.5 \end{aligned}\right.$ | $\begin{gathered} (6) \\ 103.3 \end{gathered}$ | $\begin{gathered} (3.6) \\ 105.6 \end{gathered}$ | $\begin{gathered} (3.6) \\ 106.9 \end{gathered}$ | $\begin{gathered} (3.6) \\ 108.7 \end{gathered}$ | $(85.3)$ |
| Acquire via lease Lease servicing flows Use of debt capacity | $\left\lvert\, \begin{gathered} 100 \\ 101.5 \end{gathered}\right.$ | $\begin{gathered} \text { (23) } \\ 86 \end{gathered}$ | $\begin{aligned} & \text { (23) } \\ & 69.1 \end{aligned}$ | $\begin{aligned} & (23) \\ & 50.8 \end{aligned}$ | $\begin{aligned} & (23) \\ & 30.9 \end{aligned}$ | (23) |

While the net present values of the two cash flows streams differ little, both having an internal rate of return of about 4\%, the debt capacity effects differ markedly. If debentures are issued to fund the project the use of debt capacity increase over time.

This is because apart from the debt being assumed non-redeemable during the life of the project the servicing of this debt reduces profits and thus the book value of equity vià retained earnings. In the case of a lease, the lease repayments reduce the book value of the outstanding debt and hence release debt capacity, the reduction in retained earnings caused by the lease playing only a minor role.

The debt capacity is even more marked if it is assumed that the firm is in a cash deficit position for the first three years and a cash surplus for years 4 and 5. This case is shown in table 5.5.3.

Table 5.5.3. Net present values/Eloo Lease
Assuming the firm is in a cash deficit* position during first three years of the lease.

| Lease Interest Rate |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Before <br> Tax (3) | After <br> Tax ( $\%$ ) | Nominal rate before tax |  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|  |  | Effective after tax | 3.3 | 4.0 | 4.6 | 5.3 | 5.9 | 6.5 | 7.1 | 7.7 |
| 6 | 3.7 |  | 7.6 | 8.1 | 8.6 | 9.1 | 9.6 | 10.1 | 10.6 | 11.1 |
| 8 | 5.0 |  | 5.0 | 5.5 | 6.0 | 6.5 | 6.9 | 7.4 | 7.9 | 8.4 |
| 10 | 6.2 |  | 2.3 | 2.8 | 3.3 | 3.8 | 4.2 | 4.7 | 5.2 | 5.7 |
| 12 | 7.5 |  | -0.4 | 0.1 | 0.6 | 1.0 | 1.5 | 2.0 | 2.4 | 2.9 |
| 14 | 8.7 |  | -3.1 | -2.7 | -2.2 | -1.7 | -1.3 | -0.8 | -0.4 | 0.1 |
| 16 | 9.9 |  | -5.9 | -5.5 | -5.0 | -4.6 | -4.1 | -3.7 | -3.2 | -2.7 |
| 18 | 11.2 |  | -8.8 | -8.3 | -7.9 | -7.4 | -7.0 | -6.5 | -6.1 | -5.6 |
| 20 | 12.4 |  | -11.7 | -11.2 | -10.8 | -10.4 | -9.9 | -9.5 | -9.0 | -8.6 |

[^81]Under such circumstances, for instance, the rate at which leasing fails to be attractive when the after tax debt rate is 48 is now as high as 7.5\%.

### 5.6 The Times Covered Constraint.

The Chambers model discussed in the previous section uses as its restriction on debt capacity the level of the firm's gearing. One other frequently used restriction on the level of debt which we have identified, is the extent to which the interest costs are covered by the earnings of the firm. It is relatively easy to modify the Chamgers model so that the restriction on debt is in the form of a times interest covered. If we assume that the after tax interest payable is covered $K$ times by the net after tax operating cash inflows in that period, the dual inequalities for debenture issues at time $t$ are of the form:

$$
\begin{array}{lll}
-\rho_{t}+\sum_{\tau=t+1}^{H-1} r(1-T) \rho_{T}+\sum_{T=t}^{H} K r(1-T) \lambda_{T} \leqslant-1 & t=1, \ldots \ldots, H-1 & \text { 5.6.1. } \\
-\rho_{H}+K_{r}(1-T) \lambda_{H} \leqslant-1 & t=H & \text { 5.6.2. }
\end{array}
$$

The dual inequalities for rights issues lead us to the conclusion that:

$$
\rho_{t} \geqslant(1+i)^{H+1-t}
$$

5.6.3.

If we assume for the ease of analysis that the firm is in a deficit situation* throughout the period of the lease and it is raising both debt and equality in each year, then the above set of Inequalities become equalities. We can deduce that:

* A simंlar assumption, which was later relaxed, was made in the previous section

$$
\begin{gather*}
\rho_{t}=(1+i)^{H+1-t} \\
\lambda_{t}=\left[\frac{1-r(1-T)}{K r(1-T)}\right](1+i)^{H-t} \quad t=1,2 \ldots, H-1 \\
\lambda_{H}=\frac{1}{K_{r}(1-T)}
\end{gather*}
$$

There remains the problem of the measurement of the 'debt' associated with the lease. One possible alternative would be to examine the cover of the imputed interest portion of the lease. However, such an analysis is rejected here for two reasons. The first is that the purpose of this constraint is to relate more directly the ability of a firm to meet contractual payments out of its operating income. Under such circumstances the partitioning of one such payment into two cash flow streams (which are to be analysed differently) would seem nonsensical. The second objection is that such a treatment is in effect largely an accounting approach, apportioning repayment into interest plus repayment of principal, and as such is sirilar to the analysis already carried out on the Chambers model.

Equally, since a lease repayment is in part an interest payment and in part a repayment of capital it should not be unfairly treated (in comparison with debt) by assuming that the total lease payment must be covered K times by the net cash inflows.

The approach adopted is that the operating cash flows after tax and after lease repayments have been made must cover interest payable $K$ times. Such a restriction clearly suffers from fairly obvious drawbacks. The main one is the rather arbitrary division into a risky 'adjusted' income stream and fixed debt interest payments.

It has the very great advantage of computational simplicity. The analysis carried out, therefore, must be considered as illustrative of the approach rather than definitive.

The value of the lease becomes with $\frac{\partial \psi}{\partial L_{j}}=0$
$c_{\tilde{U}}(1+i)^{H+1}-\sum_{\tau=1}^{H}(1+i)^{H+1-\tau}\left[\rho_{\tau}(1-T)+b_{\tau} T\right]-\sum_{\tau=1}^{H-1}(1+i)^{H-\tau}\left[\rho_{\tau}(1-T)+b_{\tau} T\right]$

$$
\left[\frac{i-K r(1-T)}{K r(1-T)}\right]+\left[\rho_{H}(1-T)+b_{H} T\right] \frac{i}{K r(1-T)}
$$

which, ignoring the anomalous 'end effects' term for debt capacity of $\frac{1}{K r i(1-T)}$ instead of $\frac{i-r(1-T)}{K r i(1-T)}$, the expressions for the net terminal value of lease can be written as:
$(1+i)^{H+1}\left[{ }_{C_{0}}-\sum_{\tau=1}^{H}\left(\frac{P_{\tau}(1-T)+b_{T} T}{(1+i)^{T}}\right)\left(1+i+\frac{i-\tau(1-T)}{K r(1-T)}\right)\right]$

The expression in the square brackets is the net present value of the lease. It can be seen that this value is the net present value of the cash flows associated with the cost of the lease discounted at the equity rate plus a premium proportional to this net present value. Hence, while the lease repayment cash flows are evaluated at a relatively high equity rate, making the lease attractive, cognisance must be taken of the penalty associated with the use of the debt capacity.

Table 5.6.1. summarises the effect* of various debt rates, leasing rates together with times-interest covered factors on the net present value of $£ 100$ of leasing. The lease again is assumed repayable in equal instalments over five years.

TABLE 5.6.1. Value ${ }^{\dagger}$ of a lease under a times covered restriction on debt.

| DEBT TIMES <br> COVERED FACTOR | 0.20 | 0.24 | 0.28 | 0.32 | 0.36 | 0.40 | 0.44 | 0.48 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| covere | AFtER TAX DEbT RATES |  |  |  |  |  |  |  |
| 1 | 11.1 | 10.7 | 10.3 | 10.0 | 9.6 | 9.6 | 9.3 | 8.8 |
| 5 | 8.5 | 7.5 | 6.6 | 6.0 | 5.4 | 5.0 | 4.6 | 4.3 |
| 10 | 6.6 | 5.4 | 4.6 | 4.0 | 3.5 | 3.1 | 2.8 | 2.6 |
| 15 | 5.4 | 4.2 | 3.5 | 3.0 | 2.6 | 2.3 | 2.0 | 1.8 |
| 20 | 4.6 | 3.5 | 2.8 | 2.4 | 2.0 | 1.8 | 1.6 | 1.4 |
| LeASE RATES AFTER TAX (before tax in brackets) | £NPV / £100 OF LeASE |  |  |  |  |  |  |  |
| 3.7 (6) | 14.0 | 11.2 | 8.3 | 5.4 | 2.6 | -0.3 | -3.1 | -6.0 |
| $5.0(8)$ | 11.0 | 8.0 | 5.1 | 2.1 | -0.8 | -3.8 | -6.8 | -9.7 |
| 6.2 (10) | 7.9 | 4.9 | 1.8 | -1.3 | -4.3 | -7.4 | -10.5 | -13.6 |
| 7.5 (12) | 4.8 | 1.6 | -1.6 | -4.8 | -7.9 | -11.1 | -14.3 | -17.4 |
| 8.7 (14) | 1.6 | -1.7 | -5.0 | -8.3 | -11.6 | -14.8 | -18.1 | -21.4 |
| 9.9(16) | -1.7 | -5.1 | -8. 5 | -11.9 | -15.3 | -18.7 | -22.1 | -25.4 |
| 11.2(18) | -5.1 | -8.6 | -12.1 | -15.6 | -19.1 | -22.6 | -26.1 | -29.6 |
| 12.4 (20) | -8.4 | -12.0 | -15.7 | -19.3 | -22.9 | -26.5 | -30.1 | -33.6 |

[^82]```
\dagger Equity Rates (i) = 12t
Tax Rate (T) = 40%
```

$F=i+\frac{i-r(1-T)}{K X(1-T)} \quad$ denotes the debt times-covered factor.

The results are not surprising. If the debt rate is low or the times interest cover is low, then the gtructure of the debt capacity constraint favours leasing and leasing becomes quite an attractive proposition. Thus it is marginally worth leasing ($£ 1.6 \mathrm{NPV} / £ 100$ leasing) even if the after tax lease rate is 8.7 \% when the after tax debt is only 4.64 provided the cover required is 20. With a debt rate at 8,5t after tax, the cover needs to fall to 5 times for leasing still to be attractive. Again it is worth emphasising that such an analysis is merely illustrative of the problems and possible results of using a times interest cover restriction of debt. It must be remembered that the actual values computed rest heavily on the definition of 'times covered'.
5.7 The Weingartner Model and Leasing.

It has been seen that under certain circumstances leasing may be attractive, though this attraction would appear to stem from the ability of a lease to meet a medium term debt requirement or from a particularly favourable method of accounting for the impact of a lease on debt capacity. Even under such circumstances the attraction of a lease is frequently marginal. Two authors who have suggested that leasing may be particularly attractive where there is some form of hard capital rationing are Fawthrop and Terry (75). In this case Weingartner's basic horizon model provides the requisite analytical framework and it is thus appropriate to attempt a formal treatment of the lease decision within this model.

An immediate problem is the way in which the lease affects the debt capacity. For the sake of convenience it is assumed that the value of the one-year renewable debt plus the value of the after tax lease repayments should not exceed the borrowing limit in any one period. Thus the model adopted with the usual notation is:

$$
\begin{align*}
& \operatorname{MAX} \psi=\sum_{j} \hat{c}_{j} x_{j}+v_{H}-\omega_{H} \tag{5.7.1.}\\
& \text { subject to } \\
& -\sum_{j} c_{o j} L_{j}+\sum_{j} c_{o j} x_{j}+v_{0}-\omega_{0} \leqslant D_{0} \\
& \sum_{j} c_{t j} x_{j}-(1+r(1-T)) v_{t-1}+v_{t}+(1+r(1-T)) \omega_{t-1}-\omega_{t} \\
& \quad+\sum_{j}\left(P_{j t}(1-T)+b_{j} T\right) L_{j} \leqslant D_{t} \quad t=1,2, \ldots \ldots H \tag{5.7.3.}\\
& \omega_{t}+\sum_{j} P_{j t}(1-T) L_{j} \leqslant B_{t} \tag{5.7.4.}\\
& 0 \leqslant L_{j} \leqslant x_{j} \leqslant 1 \tag{5.7.5.}
\end{align*}
$$

Again, for ease of analysis, the lease is assumed to start in the first year and the last lease payment terminates prior to the horizon.

The dual analysis of lending and borrowing instruments give

$$
\begin{align*}
& \rho_{t}=(1+r(1-T)) \rho_{t+1}+\lambda_{t} \tag{5.7.6.}\\
& \rho_{t}=(1+r(1-T))^{H-t}+\sum_{\tau=t}^{H-1}(1+r(1-T))^{\tau-t} \lambda_{\tau} \tag{5.7.7.}
\end{align*}
$$

Hence the value of the lease (dropping the j subscript) is given by:

$$
c_{0}\left[[1+r(1-T)]^{H}+\sum_{t=0}^{H-1}(1+r(1-T))^{t} \lambda_{t}\right]-\sum_{t=1}^{H}\left(P_{t}(1-T)+b_{t} T\right)(1+r(1-T))^{H-t}
$$

$$
\begin{equation*}
-\sum_{t=1}^{H-1} \sum_{\tau=t}^{H-1}\left(P_{t}(1-T)+h_{t} T\right)(1+r(1-T))^{\tau-t} \lambda_{\tau}-\sum_{t=1}^{H-1} P_{t}(1-T) \lambda_{t} \tag{5.7.8.}
\end{equation*}
$$

Again these equations are somewhat cumbersome and in order to gain insight it is convenient to discuss the simplified situation where the debt constraint is binding only in the first period when the lease contract is made. In this case the lease is undertaken specifically to relieve the capital rationing in this year. The
value of the lease then becomes:

$$
\begin{align*}
& c_{0}\left[(1+r(1-T))^{H}+\lambda_{0}\right]-\sum_{t=1}^{H}\left(P_{t}(1-T)+b_{t} T\right\rangle(1+r)^{H-t} \\
= & {\left[c_{0}(1+r(1-T))^{H}-\sum_{t=1}^{H}\left(P_{t}(1-T)+b_{t} T\right)(1+r(1-T))^{H-t}\right]+c_{0} \lambda_{0} } \tag{5.7.9.}
\end{align*}
$$

Examination of this expression shows it to be the net terminal value of the lease cash flows at the market rate plus a premium, $c_{0} \lambda_{0}$. This premium is the funds made available by the use of a lease time the debt capacity shadow price. This shadow price is the net terminal value per unit of outlay on the marginal project. Thus the value of λ_{0} represents the (above average) return on a project which is only marginally accepted because of restrictions on funds.* It can be seen, therefore, that this premium plays a similar role to the residual capital balances suggested by Fawthrop and Terry.

Again the unwieldiness of the resulting algebraic expression for the value of a lease affords little in the way of a general understanding of the impact of the various parameters. One further complicating factor is that for an accurate computational analysis to be carried a detailed specification of all project cash flows and capital availability is necessary, and no simple general analysis is achievable.

However, the magnitude of the shadow price on debt in any year is intimately linked to the existence of marginal projects with above average rates of return and it is possible to produce a reasonable computational analysis, without the details specified above, by averaging out the debt capacity effects. Thus although in any full

[^83]analysis the inter-period discount rate varies from year to year depending on whether the debt capacity constraint is binding or not, we can assume* that $\rho_{\mathrm{t}}=\left(1+\mathrm{i}_{\mathrm{m}}\right) \rho_{\mathrm{t}+1}$ where i_{m} denotes the marginal reinvestment rate. This gives a value for ρ_{t} of:
$$
\rho_{\mathrm{L}}=\left(1+\mathrm{i}_{\mathrm{m}}\right)^{\mathrm{H}-\mathrm{t}}
$$
and a value for λ_{t} of:
\[

$$
\begin{equation*}
\lambda_{t}=(i-r(1-T)) \rho_{t+1}=(i-r(1-T))\left(1+i_{m}\right)^{H-t-1} \tag{5.7.11.}
\end{equation*}
$$

\]

with these assumptions the net terminal value of the lease becomes:

$$
c_{0}\left(1+i_{m}\right)^{H}-\sum_{t=1}^{H}\left(P_{t}(1-T)+b_{t} T\right)\left(1+i_{m}\right)^{H-t}-\sum_{t=1}^{H} P_{t}(1-T)\left(i-i_{r}(1-T)\right)\left(1+i_{m}\right)^{H-t-1}
$$

(5.7.12.)
and the net present value is obtained by dividing this last expression
by $1+r(1-T)^{\text {H }}$ giving
$\left[\frac{1+i_{m}}{1+r(1-T)}\right]^{H}\left\{C_{0}-\sum_{t=1}^{H} \frac{P_{t}(1-T)+b_{t} T}{\left(1+i_{m}\right)^{\tau}}-\sum_{t=1}^{H} \frac{P_{t}(1-T)(i-r(1-T))}{\left(1+i_{m}\right)^{t+1}}\right\}$

This expression relates the value of the lease to the repayments, capital allowances, debt rates and the above average return on projects.

Various values of this expression were computed for differing
lease rates and a debt rate tax of 10ヶ. The results are shown in table 5.7.1.
table 5.7.1:** The Net Present Value/£ 100 of lease at various marginal reinvestment rates and various lease interest rates.

Lease Before Tax	Interes After Tax	Reinvestment							
12	6.2	10.6	12.7	15	17.4	20	22.6	25.4	
14	7.3	8.3	10.4	12.6	14.9	17.4	20	22.6	
16	8.4	5.9	8	10.1	12.4	14.8	17.3	19.9	
18	9.5	3.5	5.5	7.6	9.8	12.1	14.5	17.1	
20	10.6	1.1	3	5	7.1	9.4	11.7	14.2	
22	11.7	-1.4	0.5	2.4	4.5	6.6	8.9	11.3	
24	12.8	-3.9	-2.1	-0.2	1.7	3.8	6	8.4	
26	13.9	-6.4	-4.7	-2.9	-1	1	3.1	5.4	
28	15.0	-9	-7.4	-5.6	-3.8	-1.9	0.2	2.4	
30	16.0	-11.6	-10	-8.4	-6.6	-4.8	-2.8	-0.7	
32	17.0	-14.2	-12.8	-11.2	-9.5	-7.7	-5.8	-3.8	
34	18.1	-16.9	-15.5	-14	-12.4	-10.7	-8.9	-6.9	
36	19.2	-19.6	-18.3	-16.8	-15.3	-13.7	$-11: 9$	-10.1	

* The implications and validity of this approximation to the dual solution was discussed in section 3.3. See also appendix XIV.
* The assumptions made in drawing up this table were:
(1$\}$ the lease repayments are in 5 equal instalments
(2) The tax rate is 50\% with no tax lag
(3) Straight ilne tax depreciation over the life of the lease.

It can be observed that the use of debt capacity by the lease means that the reinvestment rate must be slightly higher than the after tax cost of the lease before it is worthwhile leasing. Fairly clearly the higher this reinvestment rate the greater is the value of the lease. Fawthrop and Terry illustrate their algorithm with a reinvestment rate of 15 after tax and an after tax lease rate of 12%.

Attention must be drawn to the reason for leasing. It may seem somewhat puzzling that the lease is not dominated by debt in that fairly clearly since the debt is renewable on a one year basis a 'debt package' could be put together which should be cheaper. However, the assumptions made are that for a lease taken out at time t the impact of the lease on the debt capacity is not recognised until time $t+1$. While this may appear to invalidate the analysis since leasing is only made attractive by a favourable and somewhat arbitrary 'accounting' convention, this is only partially true. It may well be that one year (short-term) debt would not be available for the financing of a medium term project. Where this is so and the lease is used to overcome a medium term financing difficulty then the foregoing analysis is substantially correct.

5.8 Leasing and Einancial Policy Considerations.

It would seem worthwhile to conclude this chapter with an analysis of lease projects in the model proposed in section 1.7. Here the presence of a whole multitude of other constraints precludes a rigorous analytical solution and the approach adopted is somewhat different. The aim of the method developed is a post ante analysis of the impact of the various constraint sets on the value of a lease. This can be achieved by allowing lease financing to be available to a few of the projects. Because of the different tax allowances available on building and machinery four projects
were chosen, two where the capital investment was in buildings and, two where the capital investment was in machinery. Thus projects PRO4Y1, PRO3Y2, PRO4Y2, PRIlY3, were assumed available for leasing and the relevant costs per $£ 100$ of lease are shown in Table 5.8.1. together with the nominal (implied) interest rate.
table 5.8.1.

Name of Lease	Repayments/£l00 $(5$ year contract)	Nominal Interest Rate
LO4Y1	$£ 27.8$	12%
LO3Y2	$£ 28.0$	15.5%
LO4Y2	$£ 26.4$	10.0%
LllY3	$£ 30.2$	8.0%

As in section 5.6 it was assumed that the lease forms a prior claim on earnings and that the (pre-tax) earnings after lease payments must adequately cover interest charges before tax (in this case the cover is assumed 10 times). An analysis of the leases is shown in Table 5.8.2. The repayments represent a reduction in the (pre-tax) earnings of the projects while the capital cost causes a corresponding change in the book value of assets. Hence since the leases are specified in terms of these accounting variables it is necessary to develop a methodology by which the impact of changes in accounting variables can be translated into their cash flow contribution, their debt capacity contribution and their impact on the other financial policy constraints. This can be achieved by partitioning the dual vectors associated with earnings and changes in assets, into a cash flow component, a debt capacity component and a financial policy component. Calculation of the reduced cost of the lease projects then gives its net present value with these three components clearly identified.

In order to carry out such an analysis, the following identities which are derived from the dual analysis in appendix XVII are necessary.

$$
\begin{aligned}
& B L_{t}=\frac{1}{1.03}\left\{\mathrm{BL}_{\mathrm{t}+1}-0.0313 \mathrm{EA}_{\mathrm{t}}-0.2 \mathrm{TP}_{\mathrm{t}}+0.191 \mathrm{TP}_{\mathrm{t}+1}+0.04 \mathrm{TA}_{\mathrm{t}+1}\right. \\
& \left.-0.04 \mathrm{TA}_{t}-\rho_{t}+\rho_{t+1}+\alpha \mathrm{ROCE}_{t}\right\}(t=1,7) \\
& \text { (5.8.1.) } \\
& T A_{t}=T A_{t+1}-0.5 T P_{t} \quad(t=1,7) \\
& \text { (5.8.2.) } \\
& P E_{t}=0.75 \mathrm{PE}_{t+1}-0.25 E A_{t}-0.75\left(\rho_{t}-\rho_{t+1}\right)+0.5\left(\mathrm{PP}_{t}-\mathrm{TP}_{t+1}\right)(t=1.7) \\
& \text { (5.8.3.) } \\
& E A_{t}=\rho_{t}-T \rho_{t+1}-[1+\alpha T] \operatorname{ROCE}_{t}-T B L Q D Y Y \\
& -(1-T)^{\text {ERPS }}{ }_{t}+(1-T) \text { DCOV }_{t}-\text { ECOV }_{t}(t=1,7) \\
& \text { (5.8.4.) }
\end{aligned}
$$

together with the boundary conditions

$\mathrm{BL}_{8}=1-\rho_{8}$	0
$\mathrm{PE}_{8}=1-\rho_{8}$	0
$A_{B}=1$	0
$E A_{B}=\left(\rho_{8}\right.$	0

(5.8.8.)
where the partitions refer to the cash balance dual, the times cover dual and all other constraints respectively. Using backward recursion starting at $t=7$ the following partitioned dual vectors can be computed for the run in appendix $x X$, where the rows refer to the time periods.

	0.4937	0.0735	$0 \quad 1$
	0.4484	0.0840	-0.0042
	0.4001	0.1014	-0.0080
	0.3142	0	0
	0.3400	0.1253	+0.0326
	0.2269	0.0133	-
	10.4039	0	-
BL $=$	-0.6579	0.0009	-0.0111
	-0.5982	0.0009	-0.0092
	-0.5321	0.0010	-0.0068
	-0.4494	0.0015	-0.0039
	-0,4533	0.0133	-0.0039
	-0.3494	0.0065	-0.0004
	-0.3286	0	0

$$
\begin{align*}
\mathrm{BL}_{t}= & \frac{1}{1.03}\left\{\mathrm{BL}_{t+1}-0.0313 E A_{t}-0.2 \mathrm{TP}_{t}+0.191 \mathrm{TP}_{t+1}+0.04 \mathrm{TA}_{t+1}\right. \\
& \left.-0.04 \mathrm{TA}_{t}-\rho_{t}+\rho_{t+1}+\alpha \mathrm{ROCE}_{t}\right\}(t=1,7) \\
T A_{t}= & T A_{t+1}-0.5 \mathrm{TP}_{t} \quad(t=1,7)
\end{align*}
$$

$P E_{t}=0.75 P E_{t+1}-0.25 E A_{t}=0.75\left(\rho_{t}-\rho_{t+1}\right)+0.5\left(\mathrm{TP}_{t}-T P_{t+1}\right)(t=1.7)$
$E A_{t}=\rho_{t}-T \rho_{t+1}-[1+\alpha T] \operatorname{ROCE}_{t}-T \beta L L D X_{y}$

$$
\begin{equation*}
-(1-T) \text { ERPS }_{t}+(1-T) D C O V_{t}-\operatorname{ECOV}_{t}(t=1,7) \tag{5.8.4.}
\end{equation*}
$$

together with the boundary conditions

(5.8.7.)
(5.8.8.)
where the partitions refer to the cash balance dual, the times cover dual and all other constraints respectively. Using backward recursion starting at $t=7$ the following partitioned dual vectors can be computed for the run in appendix $X X$, where the rows refer to the time periods.

$E A$	$=\left(\begin{array}{lll}0.4937 & 0.0735 & 0 \\ 0.4484 & 0.0840 & -0.0042 \\ 0.4001 & 0.1014 & -0.0080 \\ 0.3142 & 0 & 0 \\ 0.3400 & 0.1253 & +0.0326 \\ 0.2269 & 0.0133 & - \\ 0.2149 & 0 & - \\ 0.4039 & 0 & - \\ & & \\ -0.6579 & 0.0009 & -0.0111 \\ -0.5982 & 0.0009 & -0.0092 \\ -0.5321 & 0.0010 & -0.0068 \\ -0.4494 & 0.0015 & -0.0039 \\ -0.4533 & 0.0133 & -0.0039 \\ -0.3494 & 0.0065 & -0.0004 \\ -0.3286 & 0 & 0 \\ -0.4043 & 0 & 0\end{array}\right)$

$P E=\left(\begin{array}{lll}-0.4944 & 0.0591 & -0.0015 \\ -0.4496 & 0.0543 & -0.0019 \\ -0.4005 & 0.0448 & -0.0014 \\ -0.3157 & -0.0259 & 0.0025 \\ -0.3360 & -0.0346 & 0.0267 \\ -0.2401 & -0.0033 & 0.0145 \\ -0.2148 & 0 & 0 \\ -0.4039 & 0 & 0 \\ 0 & 0.0735 & 0 \\ 0 & 0.0830 & 0 \\ 0 & 0.1014 & 0 \\ 0 & 0 & 0 \\ 0 & 0.1253 & 0 \\ 0 & 0.0133 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

TABLE 5.8.2. An analysis of the lease data.
Project LO4Y1 POST HORIZON VALUE* $=0 \quad$ AFTER TAX $\operatorname{COST}=11.98$

	1	2	3	4	5	6	7	8
Plant \& Equipment	250	130						
Repayments		(69.2)	(105)	(105)	(105)	(105)	(36)	
Tax Relief			34.6	52.5	52.5	52.5	52.5	18
Loss of Allowances		(125)	(65)					
Net Cash Flow	250	(64.2)	$(135.4)(52.5)$	(52.5)	(52.5)	16.5	18	

Project LO3Y2 POST HORIZON VALUE ${ }^{*}=-24.6$ AFTER TAX COST 4.8:

	1	2	3	4	5	6	7	8
Building \& Land		200						
Repayments			(56)	(56)	(56)	(56)	(56)	
Tax Relifef			(40)	28	28	28	28	28
Loss of Allowances			(4)	(4)	(4)	(4)	(4)	
Net Cash Flow		200	(96)	(32)	(32)	(32)	(32)	24

Project LO4Y2 POST HORIZON VALUE* $=11$ AFTER TAX COST 10.5%

	1	2	3	4	5	6	7	8
Plant \& Equipment Repayments Tax Relief Loss of Allowances		250	130					
Net Cash Flow			(66)	(100)	(100)	(100)	(100)	(34)
50	125	(65)	50	50	50	50		

Project Llly3 POST HORIZON VALUE $=6.5 \quad$ AFTER TAX COST 7.68

	1	2	3	4	5	6	7	8
Building Land			225					
Repayments				(68)	(68)	(68)	(68)	(68)
Tax Relief				45	34	34	34	34
Loss of Allowances				225	(113)	(38.5)	(38.5)	(38.5)
Net Cash Flow			(38.5)					

*Post horizon value is the post horizon cash flows associated with the lease discounted at 108. In general because the leases occur relatively early in the planning period these values are fairly small. The after tax cost is
the internal rate of return of the after tax cash flows as defined by
equation 1.5.6. in section 1.5

Examination of the vector for instance PE shows that $£ 1$ increase in the cost of plant and equipment say in year 5 decreases the net present value of the programe by f0.3439. This is in part of a change in the net present value of direct cash contribution $\mathbf{£ 0 . 3 3 6 0}$ which arises mainly out of the discounted cost of the asset less tax reliefs. In addition the effect of depreciation is to decrease the debt capacity by $£ 0.0346$ because of the consequent reduction in the reported earning. Finally the alteration in the capital base and to the reported earnings makes a net contribution to relaxing the other constraints of $\mathbf{£ 0 . 0 2 6 7}$. It is now easy to ascertain the individual components of a lease decision. If the vector $\mathrm{BL}^{\mathbf{L}}$, PE $^{\mathbf{L}}$, denote the amount of building and land leased and the amount of plant and equipment leased respectively over the planning period, while \underline{P} denotes the repayment schedule and NPVH_{L} the NPV of post horizon cash flows associated with the leased then the value of the lease (reduced cost) is

$$
\mathbf{V}^{L}=\mathrm{NPVH}_{L}-\underline{B L}^{\mathbf{L}} \cdot \underline{B L}-\underline{P E}^{\mathbf{L}} \cdot \underline{P E}-\underline{P} \cdot \underline{E A}-\underline{P} \cdot \underline{E C O V}
$$

Computation of this expression using the partitioned vectors give the individual contributions of the various constraints. These are shown in table 5.8.3.

TABLE 5.8.3.

SOURCE	NET PRESENT VALUES			
	LO4Y1	LO3Y2	LO4Y2	L11Y3
CASH	8.7	25.8	19.1	11.9
EARNINGS COVER	(40.1)	(27.1)	(22.0)	(19.7)
OTHERS	2.2	2.8	2.9	3.6
NET	(29.2)	1.6	0	(4.2)

The result of the computer run is that only project PRO3y2 with a positive reduced cost is leased at full scale while leases on projects PRO4Yl and PRIIY3 which would make negative net contributions are rejected. Project LO4Y2 is partially leased. Thus
only the cheapest lease, as measured by after tax cost is adopted. The after tax cost of this lease is 4.8\%. Lease LO4Y2 with an after tax cost of 10.5% breaks even. It is interesting to compare this with the after tax cost of long term debt at 4 and the after tax cost of overdraft at around 62. The above analysis gives some indication of the effect of the financial policy constraints on the lease decision. In both the case of the lease adopted at full scale and in the case of the partial lease it is their positive contribution to relaxing other constraints that prevent them from being rejected. While the above analysis is specific to this run, it is illustrative of a general methodology in which a lease is considered within the total planning framework. The particular analysis presented here shows how it is possible to ascertain the impact of any particular'subset of financial policy considerations on the value of the lease.
5.9 Conclusion.

The purpose of this chapter has been twofold. The first has been to present a general framework for the analysis of the lease-buy decision. The value of such a framework lies not in its ability to innovate new financial theory but rather in its ability to rigorously explore the ramifications of existing theory. It assumes a consistency in the lease valuation process by ensuring that the valuation is a direct and logical consequence of any initial set of assumptions. Hence within this framework it has been possible to explore the conventional discounted cash flow approaches to the lease-buy decision by looking at economic measures of debt capacity where debt capacity is measured in terms of future income or dividend streams. The relatively uncomplicated discount structures that emerge from such an analysis is not really surprising on reflection. The underlying assumptions of such approaches
are essentially simplistic in nature. A mathematical programming framework merely adds sophistication in the rigour of the analysis and not in any refinement of the assumptions made. Within such a framework leasing tends to be a relatively unattractive proposition. Of course, such a conclusion is reached without reference to the possible impact of differing tax rates on lessee and lessor or any discussion on the possible impact of the various patterns of capital allowances. It is acknowledged that these can have profound influences on the lease decision, a point which is thoroughly investigated by Myers et al (76). The emphasis of the discussion here has been to concentrate rather on other forms of market imperfections and this fulfills the second purpose of the chapter.

The two particular market imperfections that were discussed in detail were concerned with the problems associated with 'accounting' measures of debt and with the term of the loan not coinciding with a temporary shortage of capital.

In both the case of the Chambers' model, where debt was measured in terms of book 'accounting' values, and in the Weingartner model, where the debt limit was a 'hard' limit on fixed commitments, situations were identified where despite the relatively higher after tax cost of a lease when compared with the alternative debt financing, leasing still proved to be attractive. The subsequent analysis showed that this situation arose because the term of the lease was nore suitable to the particular financing requirements of the firm. In the Chambers' model the lease was most attractive when used as an instrument to overcome a temporary rationing situation. In the Weingartner model, which exemplified discounting approaches in a 'hard' capital rationing situation, the attraction of a lease rested in its ability to expand the pool of available finance. While in the latter a situation with hindsight it may seem obvious that leasing would prove to be attractive, the algorithm developed
are essentially simplistic in nature. A mathematical programming framework merely adds sophistication in the rigour of the analysis and not in any refinement of the assumptions made. Within such a Eramework leasing tends to be a relatively unattractive proposition. of course, such a conclusion is reached without reference to the possible impact of differing tax rates on lessee and lessor or any discussion on the possible impact of the various patterns of capital allowances. It is acknowledged that these can have profound influences on the lease decision, a point which is thoroughly investigated by Myers et al (76). The emphasis of the discussion here has been to concentrate rather on other forms of market imperfections and this fulfills the second purpose of the chapter.

The two particular market imperfections that were discussed in detail were concerned with the problems associated with 'accounting' measures of debt and with the term of the loan not coinciding with a temporary shortage of capital.

In both the case of the Chambers' model, where debt was measured in terms of book 'accounting' values, and in the Weingartner model, where the debt limit was a 'hard" limit on fixed commitments, situations were identified where despite the relatively higher after tax cost of a lease when compared with the alternative debt financing, leasing still proved to be attractive. The subsequent analysis showed that this situation arose because the term of the lease was more suitable to the particular financing requirements of the firm. In the Chambers' model the lease was most attractive when used as an instrument to overcome a temporary rationing situation. In the Weingartner model, which exemplified discounting approaches in a 'hard' capltal rationing situation, the attraction of a lease rested in its ability to expand the pool of available finance. While in the latter a situation with hindsight it may seem obvious that leasing would prove to be attractive, the algorithm developed
a formal analysis of this situation and clarified the roles played
by the debt interest rates and the marginal reinvestment rates.
Although the times covered constraint was introduced primarily as a method of relating more closely the income streams to future contractual obligations, the rather arbitrary from of the reuslting restriction negated this aim. Certainly situations were readily observable when leasing was very attractive but this depended very clearly on our measurement of the times covered factor. Thus in the end this section merely served to emphasise the severe limitations of deterministic or certainty equivalent analysis of the lease problem. A theoretically correct analysis of the impact of uncertainty would require a full specification of the variances and covariances of future income streams together with the costs of default on contractual commitments. At present such an analysis is not within the ambit of this thesis.

In the final section the analysis was extended to examine the impact of general financial policy consideration on the leasing decision. It was shown that within the context of a fairly realistic planning situation leasing may prove a valuable strategy - though this value arises from the informational content of the company's accounts and in such circumstances leasing presents a very useful 'window-dressing' mechanism which can mitigate in its favour.

In sumary it is difficult to see the attraction of leasing within a rational economic market framework. Certainly situations under which leasing should be taken have been identified in the paper but these stem from imperfect capital markets and what in effect amounts to a sort of 'off-balance sheet' financing caused by imperfections in accounting measurements. The irony is that the academic debates on leasing have concentrated upon attempts to 'purify' existing algorithms. This much sought after promised land may well turn out to be a desert.

Chapter 6. Towards a rractical planning system.

6.1 Introduction.

So far this thesis has concentrated entirely on the structural interdependencies and their relationship to financial theory which arise in the use of corporate financial mathematical programming models. Hopefully it has been shown that such models can make major contributions to our theoretical understanding of the capital investment decision. However, such a contribution is purely normative ard the models discussed so far ha: clearly failed to fulfil their original purpose of providing a comprehensive methodology for tackling the intricasies of corporate financial planning.

In this last context the only computer based models to have ac!ieved any degrec of success have been Eairly simplistic financial statement qenerators. From the point of view of the Operational Research scientist, the comilarative failure of mathematical programming models must be viewed with some disquiet. Operational research scientists have been unable, in effect, to provide Corporate Financial Management with a more sophisticated decision aid than the use of the computer as a consolidator of projected accounting and financial transactions.

A possible key reason for the comparative failure of the programing approach has already been identified. In section 1.6 attention was dawn to the difference between the nature of the search procedure in financial statement generators and mathematical programming models; mathematical programing models search through decision space for a plan which maximizes a scalar measure of the firm's financial performance whereas simulation models are used to search civer a vector of projected financial policy variables. The central hypothesis of
this Chapter is that a large degrec of the managerial acceptability of financial statement generators stems from this ability to explore a vector of financial policy variable. The basic intention of this last Chapter is to present one approach which shows how mathematical programing algorithms can be adapted to enhance the efficiency of this search over the vector of policy variables.

In section 6.2 a set of financial policy variables will be defined over which a search is to be carried out together with a aodel which enables the search to be accomplished. The section following then disclisses the problems that are likely to arise within such a model structure ald the limitation of the currently prnposed methods of vectrer optimisation. Section 6.4 develops a theory of the nature of multicriteria decicion making and section 6.5 suggesis how such a theory might be implemented. The remainder of the Chapter is concerned with possible approaches to the implementation of these ideas. However, because many of the problems identified remain unsolved,and their solutions would appear to require major extensions to the theory of multicriteria programming, the procedure is presented as a case study. Here, the various difficulties encountered are identified and discussed though in the end they have frequently to be circumvented by ad hoc procedures. In spite of the obvious shortcomings of the metrods devised it is hoped that this final Chapter opens up a new direction for further research rather than closes a hitherto promising aver:ue.

6.2 The Structure of the Model.

The model introduced in section 1.7 is a linear programming representation of the investment epportunities together with a set
of financing alternatives facing an organisation over an eight year
period. It has been used extensively in the earlier Chapters In a conventional linear programing format where the optimization was carried out using a scalar measure for evaluatinq the set of decisions. In this lattor form restrictions imposed on the value of financial policy variables were minimum conditions that any plan must meet and plans which did not belong to this feasible set were rejected from further consideration. Clearly the use of the model
in this way does not conform to the nature of the planning process as elucidated by organisational theorists.* In their description of the planning process decisions are not directed towards a single goai but are rather concrined with discovering courses of action which help satisfy a whole series of targets or constraints. These targets are not set a priori and constraints other than the technological set are not inviolate. Hence if we are to nudify the current model in line with this description-of the planning process, then the modifications should try to facilitate the identification and ordering of sets of satisfactory plans with respect to the financial policy constraints rather than to search out a single optimum.

It is relatively easy to adapt the model to try out these ideas. The existing constraints can be viewed as falling into one of two disjoint sets. These are a technological set consisting of cash balances and accounting definitions, and a policy variable set consisting of various financial criteria. This policy variable set is constructed from criteria measuring return on capital employed, earnings per share, dividend per share, liquidity, times interest covered, dividend cover, sales and profits. Only sales

[^84]and profits are new; the remaining policy variables have always been included but with minimum bounds imposed on their possible values. This minimum bound must now be removed and a more realistic mechanism for controlling their possible values be introduced since these eight policy variables in each of the eight years up to the planning horizon now constitute sixty-four criteria over which a search is to be carried out.
6.3 The choice of multicriteria method.

Even a brief reflection of this model serves to highlight some of the potential difficulties that are faced in the development of a comprehensive multicriteria methodology.
(a) Firstly, there is simply the problem of size, especially the number of criteria. Where numerical solutions to multiobjective problems are quoted, the actual problem tends to have relatively small number of criteria (Geoffrion, Dyer and Feinberg (72), Evans and Steuer (73)). The large number of criteria in financial planning stems from the decision makers desire to maintain control over both short term (liquidity) and longer term (sales growth) criteria and to be able to differentiate this control at a year by year level of detail.
(b) Many of the criteria are ratios, in fact six out of the eight basic criteria are making 48 ratios in all. The difficulties are obvious. The various approaches suggested in the literature were rejected; fractional programming methods (See Kornbluth (73)) were considered too cumbersome and expensive on computer time, neither are such methods readily available to practioners, substituting a surrogate fractional function (Hannan (77))
appeared to wildly inaccurate. In the end a sumewhat ad hoc approximation was substituted whose justification must rest in the results it produced. It did enable a linear search to be carried out over the efficient set of non linear solutions.
(c) Many of the criteria are interdependent, in the sense that regardless of the actual feasible investment set, criteria are functionally related via the accounting definitions. An extreme example of this is that earnings per share equals dividends per share times dividend cover. This type of problem is not removed by redefining the criteria set to remove any mathematical redundancies (Shubik (61)). For one thing such independencies are not always so explicit, being frequently related through timelags associated with tax and dividend payments; and sccondly, that would be to withdraw a step from the decision makers involvement. He has typically specified that the set of criteria is a minimum set with which he is prepared to interact and he wants to bu able to explore preferences with respect to them all.
(d) Finally these criteria are meaningful in financial and company terms. This comment is not as trite as it seems. The criteria cannot be handled as a homogenous group; at different stages of the exploration process different criteria will assume more significance and varied levels of aggregation or disaggregation will be appropriate:

This final souyce of difficulty is worth exploring further because
it will greatly influence the choice of a successful methodology.
Inus, particulariy in the early stages, the growth factor and average
level of criteria such as sales, profit and dividend per share
are liable to be much more important than an individual year's figures. In later stages when the overall plan strategy has been roughly determined, consideration may then be given to individual criteria in particular years. Further an examination of the criteria shows that they can be classified conveniently into three main sets. These are:
(i) Profitability Indices - return on capital employed, net profit after tax, sales, earnings per share.
(ii) Dividend Policy Variables - dividend per share and dividend cover.
(iii) Safety ratios - times interest covered, and liquidity.

The final form of the solution could be schematically represented by figure 6.3.1. where the criteria have been characterized by level, growth and stability of growth. Thus experiments with alternatives might cluster around broad strategies such as profitability indices versus safety indices or, within the setting of dividend policy; dividend per share against the risk measure implied by dividend cover. It is within such characteristics that the search for efficient solutions should be carried out. This observation provides both a structure to the search and a corresponding reduction in the size of the search space. FIGURE
6.3.1.

CRITERIA

The problems of size, ratios, interdependencies and intelligibility not only exposes the deficieucies of existing methodologies but has a profound influence on the actual choice of methodology. Two of the three main methodologies available were dismissed almost immediately as being, as of this date, unable to deal with realistically sized financial planning problems. These were, firstly, the a priori calibration of a utility function over the criteria (Bristin (66), Keeney (75)). This was not solely because of the nntorious difficulties involved in extracting and analysing appropriate data but equally because it went against the philosophy of interactive methods which financial management find attractive - that p.eferences are developed during the process of comparing alternative, not a priori. Secondly, methods which involved enumerating efficient vertices (Evans and Stueur (73) zeleny (74)) were also dismissed. With so many extreme vertices the methods for reducing them to a workable number seemed too crude and primitive for the type of structured search which was aimed for. Thus only the third type of methodology remained - that of interactively searching the decision maker's preferences. It is natural in financial planning to speak in terms of targets or goals; company performance as measured by such criteria as dividend cover, liquidity, or return on capital employed have target ratins adopted by custom and practice. In this sense as has been argued before, many of the constraints typically used in mathematical programming formulations are more goal-like than binding limits on possible courses of action. Hence an obvious choice of methodology is a goal programming formulation where it is understood that both weights on goals and goal deviations are available to be modified interactively. Tie goal constraints referred to herc are, of course, fust the financial policy variable
set discussed earlier in this section.
6.4 A Utility Theory Framework for Goal Programming.

In order to carry out effectively the above search p:ocedure
it is necessary to re-cxamine the various goal programming formulation
within a coherent and comprehensive framework - such a framework is found in utility theory. To this end consider the diagram below showing the position of targets in criteria space. For simplicity of exposition the argument is restricted to just two criteria. though gencralization to the multi-criteria case is fairly easy.

FIGURF 6.4.1.

CRITERJON TWO

CRITERION ONE

The dotted curves represent the decision makers utility indifference curves and prior to experimentation we have very scant knowledge of this indifference map. In general we know only his prior guesses of the target values and the relative importance attached to meeting ciose targets. In addition we can make certain further assumptions about the general nature of indifference curves such as convexity,
continuity and differentiability.
Having decided to use target programming we have already implied an approximation to the indifference curves $U\left(\gamma_{1}, \gamma_{2}\right)=$ constant, by concentrating attention on the disutility of underachievement given by

$$
\begin{equation*}
\operatorname{DU}\left(\gamma_{1}, \gamma_{2}\right)=\operatorname{MnX}\left\{0, U\left(T_{1}, T_{2}\right)-U\left(\gamma_{1}, \gamma_{2}\right)\right\} \tag{6.4.1.}
\end{equation*}
$$

within the target region defined by $Y_{i} \leqslant T_{i}$ for all. Outside the target region the form of $D U$ changes, a typical illustration is given in Figure 6.4.2.

γ_{1}

At any point on the curve $D U=$ constant, the slope of the tangent gives the relative tradeoffs between the criteria that the decision maker would accept at that level of the criteria. Thus a linear approximation to $D U$ of the form $\sum_{i} u_{i}\left(T_{i}-\gamma_{i}\right)$ would indicate that a reduction of $\frac{1}{u_{i}}$ in the underachievement of goal i would be just compensated by an increase of $\frac{1}{u_{j}}$ in the underachievement of goal f. Goal programming concentrates on this type of approximation where the u's play the part of goal weighting.

An alternative lincar approximation to the function $u\left(T_{1}-\gamma_{1}, T_{2}-\gamma_{2}\right)$
is the Chebychev norm of minimizing $\max \left\{u_{1}\left(T_{1}-Y_{1}\right), u_{2}\left(T_{2}-Y_{2}\right), 0\right.$?. This will be referced to as minimax programing where the aim is to minimize the maximum shortfall from target over all the criteria. Both of the approximations discussed so far can be considered specific examples of the general model

$$
\begin{equation*}
\operatorname{MIN}\left(\sum_{i}\left(z_{i}\right)^{p}\right)^{1 / p} \tag{6.4.2.}
\end{equation*}
$$

Such that

$$
\gamma_{i}(x)+{ }^{2} i_{u_{i}} \geqslant T_{i}
$$

$x \in \Gamma$

Or alternatively

$$
\begin{equation*}
\operatorname{MIN}\left[\left(\operatorname{MAX}\left[0, u_{i}\left(T_{i}-\gamma_{i}(x)\right]^{p}\right)^{1 / p}\right.\right. \tag{6.4.4.}
\end{equation*}
$$

$x \in \Gamma$

Where Γ denotes the feasible region and target overachievements are ignored. The goal programming formulation corresponds to the $p=1$ norm when we have

$$
\operatorname{MIN} \sum_{i} z_{i}
$$

s.t.

$$
Y_{i}(x)+z_{i} / u_{i} \geqslant T_{i} \quad \text { all } i \quad x \in \Gamma
$$

(6.4.6.)

[^85]This form is unsuitable for many uses, but with financial models it is positively misleading. To explain this consider the isoquants or this utility approximation shown in figure 6.4.3. with $\gamma(\Gamma)$ representing the image of I under γ_{i} for all $i=1,2$

FIGURE 6.4.3.

The linear approximation within the target region implies that only vertices arc possible contenders for 'solutions' and that slight changes in the u_{i} causes jumps, often major, in such solutions. If we return to the simple example of section 1.6 where an attempt sas made to maximize profits (p_{1}, P_{2}) in two consecutive years then the $p=1$ metric gives the following goal program to be solved for p_{1}, p_{2}

$$
\operatorname{MIN}(1+\varepsilon) z_{1}+z_{2}
$$

s.t.

$$
p_{1}+z_{1} \geqslant 1
$$

$$
p_{2}+z_{2} \geqslant 1
$$

$$
p_{2}+p_{2} \leqslant 1
$$

(6.4.9.)
(6.4.10.)

The solution is $f=(1,0)$ for positive values of ε and $f=(0,1)$ for negative values. Hence with this metric, infinitesimal changes in the preferences can completely alter the solution.

While an attractive choice for p might appear to be the $\mathrm{p}=2$ metric in which the objective is to minimize the weighted sum of the squares of deviations such a choice would lead to quadratic programming with a prohibitive increase in computer time. The other obvious choice resulting in a linear function is the $p^{-\infty}$ metric, and this is the minimix formulation

MIN z

(6.4.11.)
such that

$$
\begin{equation*}
Y_{i}(x)+\frac{z}{u_{i}} \geqslant T_{i} \quad \text { all } i \tag{6.4.12.}
\end{equation*}
$$

$x \in[$
or alternatively

$$
\begin{equation*}
\operatorname{MIN}_{x \in \Gamma}^{\operatorname{MAX}}\left\{0, u_{i}\left(T_{i}-\gamma_{i}(x)\right)\right\} \tag{6.4.13.}
\end{equation*}
$$

The isoquants are now right angles 'corners' anchored to a line through the target point of slope (..... $\frac{1}{u_{i}} \ldots .$.). This makes the solution point a continuous function of both the weights u_{i} and the targets T_{i}. This is illustrated in Figure 6.4.4.

FIGURE 6.4.4.

Referring to the simple example just quoted then the $p=\infty$ metric results in the division of profits in the two years being in the ratio of
$1+\varepsilon$: 1 . This ratio is both intuitively reasonable and is also continuous with respect to ε, where ε is in $[0, \infty)$.

Unfortunately, the existence of upper bounds in $\gamma(\Gamma)$ on the value of a criterion, as with $\gamma_{2}(x)$ in Figure 6.4.4. causes multiple solutions and the possibility of nonefficient solutions such as $\gamma=\left(0, b_{2}\right)$ above.

To overcome the inherent problems of both values of $p=1$ and $p=\infty$ extensive use of a linear hybrid formulation was made. This was

$$
\operatorname{MIN} \quad \alpha_{H} z+\sum z_{i}
$$

so that

$$
\begin{equation*}
\gamma_{i}(x)+\left(z+z_{i}: / u_{i} \geqslant T_{i} \text {. all } i\right. \tag{6.4.15.}
\end{equation*}
$$

$x \in \Gamma$

In this formulation if z were to decrease by δ ofithin the target region then each z_{i} needs to increase by δ and hence the objective changes by $-\alpha_{H} \delta+N * \delta$ where $N *$ is the number of the z_{i} that need to increase to allow 2 to decrease. When $\alpha_{H}<1$ we have minimix programming when $\alpha_{H} \geqslant N$ where N is the number of criteria, goal programing. As α_{H} varies between these extremes the isoquants associated with each value of α_{11} varies also. The effect of this is to 'smooth' the solution in that as α_{H} decreases the solution changes from a typical p=l goal programing form where weighted deviations from targets are at extreme value, to one whereby the weighted deviations tend to equal one another as with $p=\infty$ or minimax programing. This is a particularly useful property when an attempt is being made to plan overtime, since the degree of stability of a solution can be controlled by the single parameter α_{H}. Figurs 6.4.5. shows the effect of varying the α_{H} parameter in the model for the profit and sales target. In this experimental run, where only these last two policy variables were being concidered, increasing the value of α_{H}

FIGURE 6.4.5.

meant that the number of non-zero $z_{\text {SALFS, }} t$ and $z_{\text {pROFIT, }}$ increased resulting in a wider year by ycar variation.*

6.5 The Implementation.

It is clear that computer and software manufacturers have developed very efficient and sophisticated lineax programming algorithms, matrix generators and report writers. To throw away this accumulated experience and develop specific computer codes would have been to step away from implementation. However, the decision to use existing software does place limitations on the interactive process and the structuring of the model.

The interactive process used with the goal p:ogramming formulation was to adjust weights and targcts parametrically. Thus, for illustration treating only the extremes of goal programming with $p=1$ and minimax programming with $p=\infty$ we have objective function and right hand side parametrics respectively.
$p=1$. $p=0$
$\operatorname{MIN} \sum_{i} u_{i}\left(1+\lambda_{i}\right) y_{i}$
$Y_{i}(x)+y_{i} \geq T_{i}$
$r_{i}(x)+z_{i} \not w_{i}\left(1+\lambda_{i}\right)$
$x \in \Gamma$ (6.5.1.)
$x \in \Gamma$
(6.5.2.)

* In the actual run, their objective function employed goal programming for all the policy variables except sales and profit. The substructure of the model relating only to sales and profit was

$$
\operatorname{Min} \alpha_{H} I+\sum_{t} z_{\text {SALES }, t}+\sum_{t} z_{\text {PROFIT, }}
$$

where

$$
I=\operatorname{MAX}\left[{ }_{z} \text { SALES, }^{z_{\text {PROFIT }}}{ }^{]}\right.
$$

subject to

$$
\begin{aligned}
& \text { SALES }_{t}+\frac{\left(z_{\text {SALES } \left.^{+2} \text { SALES, }^{\prime}\right)}^{u_{\text {SALES, }}} \geqslant\right. \text { SALES TARGFT }}{t} \\
& \text { PROFIT }_{t}+\frac{\left(z_{\text {PROFIT }}+\frac{\left.Z_{\text {PROFIT }, t}\right)}{u_{\text {PROFIT, }}} \geqslant\right. \text { PROFIT TARGFTT }}{t}
\end{aligned}
$$

** The initial work was carried out using the IEL linear programming package XDLA at the Universily of Eirmingham, England. The work was completed using the IBM lincar proqramming package MPSX/370 at the University of Eritish Columbia, Candud.
where y_{i} has replaced ${ }^{z_{i}} \mathbf{u}_{i} \quad$ in 6.5.1.
Figure 6.5.1.

Usually eleven steps were taken in the parametric direction and the results filed for subsequent analvsis. A hierarchical structure of information was then made available from each run so that the decision maker was able to see the consequences of a decision In any detail required. This hierarchy consisted of:
(a) Average values over time of levels and growth (where relevant) of each of the criteria for each value of the parameter.
(b) The value of each criterion in each year for a partizular parameter value.
(c) Balance sheets, cash flow statements and profit and loss statements corresponding to any solution.
(d) The unanalysed linear programming solution.

This information was avaisable on a visuul display unit as required, though facilities existed for immediate hard copies of any
or all of this information. Some sample print-outs are included in appendix XIII. As far as the decision maker was concerned this output was comparable to the results of a cash flow simulation for cleven choices of options. The inputs required of course were much different.

The problom of ratio criterion in this application was only overcome by an ad hoc procedure which needs to be replaced by further theoretical research. Full details are given as they occur in the next saction but the principle is to convert the constraint

$$
\begin{equation*}
\frac{N_{i t}(x)}{D_{i t}(x)}+z_{i t} \geqslant T_{i t} \tag{6.5.3.}
\end{equation*}
$$

where $N_{i t}, D_{i t}$ are linear functions on x to
$\left\{N_{i t}(x)-D_{i t}(x) \cdot T_{i t}\right\}+z_{i t} L\left\{D_{i t}(x)\right\} \frac{T_{i t}}{100} \geqslant 0$

Where the suffixes refer to crite:ion i in time period t, $z_{i t}$ conveniently denotes a percentage shortfall from target $\mathbf{T}_{\text {it }}$ and $L\left\{D_{i t}(x)\right\}$ is the estimated likely value of the denominator $D_{\text {it }}(x)$ in the region of the 'optimal' solution. For many financial criteria such denominators display regular growth and a reasonably accurate prediction of their values over the planning period is not too difficult. Thus for the model proposed in this thesis the denominator is always one of the following: total net assets, current liabilities, number of shares issued, interest payable or dividend payments. The first three have a fairly large starting base and accumulate steadily though the last two can be more volatile and are more troublesome especially if a significant tranche of long term debt is repayable. The values of course of these denominators can be updated as the scarch progresses. furthermore the search will tend to become concentrated on a particular part of the efficient
surface when fairly accurate predictions of their likely values are possible.

It should be notwd however, that errors in the predicted value of the denominator merely affected the interval at which these solutions were filed for further analysis by the report writer. The report writer computed the precise value of the criteria at these solution points from the actual value of the denominators and not their expected value. In this way a non-linear search was controlled by a linear search procedure with a consequent gain in processing time but without loosing any of the structure inherent in the non-linearities.

6.6 The Scarcil Strategy.

The search procedure was originally envisaged as taking place over three distinct phases, which are described belon:
(i) Phase I

The primary purpose of this phase was to obtain rapidly a region of the efficient surface over which a more detailed search could be carried out. To achieve this a goal progranming approach was adopted between criteria but with a minimax approach within each criterion over time. Clearly while stability between criteria was not important, stability over time within a particular criterion was considered important. There was also a secondary purpose to this phase which was to determine rough orders of magnitude of the criteria weights. While the final solution over the other phases does not depend on the weights, the speed at which convergence is obtained clearly does. Throughout the search it was found to be importsint to keep the relative deviations of all the criteria from the targets roughly balanced.

(ii) Phase II

While phase I was concerned with determining the appropriate region over which to continue the search, phase II was concerned with a more detailed search of the average levels and the growth rates of an individual criterion. The method used was minimax programming between criteria and within criteria. This was necessary to remove some serious instabilities that had been observed in phase I.
(iii) Phase III

Ideally on exit from the second phase both levels of stability of growth rates should be satisfactory and there remains the possibility of tr=ing-off stability in qrowth for a criteris against the actual growth rate for the criteria. This was to be achieved in the third phase.

As it turned out even this three phase approach was too rigid. While phase I proved relatively straightforward the second and third phases were less so. This was largely because the next most appropriate step to take in a search procedure is a response to the current solution. In this case it depends on how the decision maker perceives the weaknesses of the current solution. Thus the essence of any multi-objective method is a flexibility in response.

> 6.7 The Phase I search
> This search was carried out using objective parametrics on the eight weights relating to the criteria. Stability between time periud within a particular criterion was maintainsd by using the minimax metric over time within a criterion. Hence the model was recast into the form

$$
\begin{equation*}
\operatorname{MIN} \sum_{i \in I} u_{i}\left(1+\lambda_{i}\right) z_{i} \tag{6.7.1.}
\end{equation*}
$$

so that

$$
\left\{N_{i t}(x)-T_{i t} D_{i t}(x)\right\}+L\left\{\frac{D_{i t}(x) T_{i t}}{100}\right\} z_{i} \geqslant 0 \text { all } 1, t \quad \text { (6.7.2.) }
$$

where u_{i} is the weighting on z_{i} and $T_{i t}$ is the target for criterion 1 in time period .. Thus although the criteria themselves are the ratio of the linear forms $N_{\text {it }}(x), D_{i t}(x)$, wheretrivially $D_{i t}(x) \equiv 1$ for sales and profit, they have been recast into a linear form by multiplying throughout by $D_{i t}(x)$ and using $L\left\{D_{i t}(x)\right)$ as the coefficient of z_{i}. It should also be noted that by including $T_{i t}$ in the coefficient of z_{i} the individual z_{i} 's represent maximum percentaqe deviates* from target for a particular criterion.

Initial values for u_{i} and $T_{i t}$ were set from discussions with the decision maker and values of $L\left\{D_{i t}(x)\right\}$ were available from preliminary experimentation with the mode!. The set of criteria I was also partitioned into $\{J, K, L\}$ and the initial parametrics defined:

$$
\begin{align*}
& \lambda_{i}=0 i \varepsilon L \\
& \lambda_{i}=\lambda i \varepsilon J \\
& \lambda_{i}=-\lambda i \varepsilon K \tag{6.7.3.}
\end{align*}
$$

and λ was made to vary from -1.0 to +1.0 in steps of 0.2 . Three experiments were run for different choices of $\{J, K\}$, a typinal result is shown in Appendix XIII and the results summarised showing the decision maker's best' choice over λ for each run are shown in Table 6.7.1.

[^86]Table 6.7.1.

CRITERIA	RESULTING OBJECTIVE WEIGHTS AT 'best' λ		
Sales	3.40	2.04	0.82
Return on Capital	3.80	2.28	3.65
Farnings per Share	4.00	2.40	2.40
Liquidity	3.40	4.20	4.20
Interest Cover	2.50	3.50	3.50
Dividend Cover	3.40	3.40	3.40
Dividend/Share	2.50	2.50	2.50
Net Profit	3.60	2.16	3.46
J: Set	Times intercst covered Liquidity	Sales	Sales
K: Set	Sales net profit return on capital earnings/share	Return on Capital Net profit	
'Best' value of paraneter	$\lambda=-0.4$	$\lambda=0.6$	$\lambda=0$

Each succeeding run of these three started from the previous 'best' choice of weights.

A serious difficulty, which illustrates the problem of instabilities in goal programing formulation arises if an attempt is made to explore alternative dividend policies with this particular formulation. The results of taking the set J to consist only of dividend over and K as dividend per share with the remaining criteria held constant in L is shown in Table 6.7.2. with an increased resolution of λ near the critical point. Thus between $\lambda=0.59$ and 0.60 a 2% variation in weights causes a 500% change on dividend cover und dividend per share doubles. This difficulty arises because the two dividend policy variables dividend per share and dividend cover are in direct orposition and are functionally related to a third criterion (viz. earnings per share). Thus depending upon the relative weights an attempt is
made to meet completely either the dividend/share target or the dividend cover target.

The effect is in fact even more exaggerated than in Table 6.7.2. which gives only average criteria values rather than values in Individual years. In this particular case the probiem is made worse because we are trying to find the minimum of the weighted sum of maximum deviations from the target of each criterion, i.e.

Because of the linear nature of the trade-offs assumed ir. goal programming it may be preferable to continue to reduce the maximum deviation for a single criterion on a target in one period, even though a satisfactory average for that criterion has already been achieved airr irrelevant of the fact that the levels on other criteria are no longer acceptable. It should be. emphasised though that this difficulty is merely illustrative of the general problem of instabilities in goal programming formulation. For this reason the remaining searches were carried out using a minimax structure.

Table 6.7.2. CRITERIA VALUES
(AVERAGES OVER THE EIGHT YEARS)

λ	1.0	0.8	$0^{\circ} 6^{\circ}$	8. 59	0.58	0.56	0.54	0.52	0.4	0.2	0.0
Earnings/Share	43.4	44.1	. 05	2.6	42.57	42.57	42.57	42.57	42.34	42.34	41.92
Dividend Cover	24.20	2.6	8.41	3.68 \%	3.63	3.63	3.46	3.45	3.09	3.09	3.10
Dividend/Share	6.85	6.50	6.77	1.50	12.26	12.65	12.65	12.65	13.66	13.66	13.62
Dividend	166	163	153	299	303	303	315	315	347	345	345

6.8 The Fhase II Scarch

One of the initial tasks of this phase was to explore possible dividend policies - throughout phase I a minimum dividend per share of £0.127* was imposed as a hard constraint. This constraint was merely an expedient to maintain a degree of stability in the dividend payout and to overcome the difficulties discussed in the preceeding few paragraphs while the weightings attached to the other criteria were explored. For this second phase the problem was reformulated as

$$
\begin{equation*}
\text { MIN } a_{H} z+\sum_{i \in I} z_{i} \tag{6.8.1.}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\{N_{i t}(x)=T_{i t} \quad v_{i t}(x)\right\}+L\left\{\frac{D_{i t} T_{i t}}{100 u_{i}}\right\}\left[z+z_{i}\right] \geqslant \lambda \delta_{1 t} \tag{6.8.2.}
\end{equation*}
$$

where the notation is as before, with the additional variables defined as
α_{H} - degree of hybridisation
$\delta_{i t}$ - defines the range of parametric variation.

A smooth transition from phase I to phase II was obtained by defining the new target levels to be equal to the final 'best' point of phase I i.e.

$$
T_{i t}=\frac{N_{i t}^{I}\left(x^{*}\right)}{D_{i t}^{I}\left(x^{*}\right)}
$$

This means that the initial target point is on the efficient surface and the subsequent parameterisation is such that it moves this target away from the efficient surface. The effect of this is illustrated schematically in Figure 6.8.1.

[^87]Figure 6.8.1.
$\gamma(J)$

This represents a search over the $\{J, K\}$ subjects of I with two runs
(i) $\quad \delta_{i t}=T_{i t} \cdot L\left\{D_{i t}(x)\right\} \quad i \varepsilon J$

- 0
ickul
(6.8.4.)
(ii)

$$
\begin{align*}
\delta_{i t} & =T_{i t}: L\left\{D_{i t}(x)\right\} & & i \in K \tag{6.8.4.}\\
& =0 & & i \varepsilon J U L
\end{align*}
$$

In each case λ varied from 0 to +1 in steps of 0.2 and the effect of this is to move the target first aiong the line $B C$ and then along the line $B D$. This enables a region of the efficient surface centred upon B to be explored.

As it turned out one of the most important factors governing the search. wins the choice of α_{H}. Too low a value meant that the search was subject to the implicit bound problem, while too high a vaiue resulted in the solution being insensitive to further changes in target levels. See figure 6.8.2.

Figure 6.8.1.
$\gamma(J)$

$\gamma(\mathrm{K})$
This represents a search over the $\{J, K\}$ subjects of I with two runs
(i)

$$
\begin{align*}
\delta_{i t} & =T_{i t} \cdot L\left\{D_{i t}(x)\right\} & & i \varepsilon J \tag{6.8.3.}\\
& =0 & & i \varepsilon K U L
\end{align*}
$$

(ii)

$$
\begin{align*}
\delta_{i t} & =T_{i t} \cdot L\left\{D_{i t}(x)\right\} & & i \in K \tag{6.8.4.}\\
& =0 & & i \in J U L
\end{align*}
$$

In each case λ varied from 0 to +1 in stepe of 0.2 and the effect of this is to move the target first along the line BC and then along the line BD. This enables a region of the efficient surface centred upon B to be explored.

As it turned out one of the most important factors governing the search was the choice of α_{H}. Too low a value meant that the search was aubject to the implicit bound problem, while too high a value resulted in the solution being insensitive to further changer in target levels. See figure 6.8.2.

FIGURE 6.8.2.

Table 6.8.3. shows the effect of such a parametric search on the dividend policy variables. The criteria not listed in the table wert roughly constant over the range of parameterisation. The first half of the table shows the effect of increasing the target on dividend per share while the second half shows the effect of increasing the target on dividend cover. A value for α_{H} of 1.5 was chosen, following an unsuccessful run ir. which a value of 3.5 for α_{H} resulted in the solution being insensitive to changes in the dividend per share target.

There are several points to note. The first and most important is that the instabilities associated with the previous goal programing formulation have been avoided. However, a secondary problem has arisen: the previously acceptable levels for the times interest cover and liquidity ratios fall to unacceptable levels as the dividend per share is increased. The cause of this is that the dividends in the early years are largely paid for iy long term borrowing, with the subsequent effect that the times interest covered falls to very low levels (~ 10.0) during this period before a growth in earnings begins to ease the situation.

At this stage of the search, it would be clearly preferable to explore the two dividend policy variables ir isolation, with the exploration making a minimal impact on the values of the other policy variables. This can be achieved by the method of sub-space hybridisation in which the hybridisation is carried out only on the non-parameterised eriteria. Further defining α_{H} to be sufficiently large (greater :han 6 in this case) we can obtain goal programing on the non-dividend policy variables with minimax on the dividend policy variables. The advantage of this is that goal programming is insensi:ive to changes in target levels, an alternative and equivalent view is that the parametric search is restricted to the dividend/share - dividend cover planes. The effect of such a parametric procedure is shown in Table 6.8.4.

As now can be seen from the table the liquidity and times intercst covered ratios do not fall to unacceptable levels as the dividend/share and dividend cover figures are altered. It also indicates the extent to which the dividend per share can be increased bcfore changes start to take place in other ratios. Having chosen a suitable dividend policy it turned out that while many of the criteria had satisfactory average levels, there remain unsatisfactory time trends in some of the criteria. Again the liqudity and times covered constraints were a major problem. These ratios in each of the eight time period fcr the previous best solution ($\lambda=0.2$ for dividend cover) are shown in Table 6.8.5.

Table 6.8.3.	CRITERIA VALUES (AVERAGES OVER TIME)										
	Dividend/Share						Dividend cover				
λ	1	0.8	0.6	0.4	0.2	0.0	0.2	0.4	0.6	0.8	1.0
Liquidity	1.89	1.9	1.93	1.94	1.96	2.01	2.00	2.04	2.09	2.11	2.16
Times covered	10.62	11.22	11.89	12.97	13.60	14.79	14.36	13.62	12.98	13.29	15.26
Dividend cover	1.74	1.84	1.95	2.09	2.23	2.40	2.77	3.27	4.06	5.27	7.09
Dividend/Share	23.81	24.06	22.39	20.69	19.02	17.22	15.81	13.90	11.71	9.49	7.24
Dividend	619	585	551	516	480	441	383	315	245	190	145

Table 6.8.4.	CRITERIA VALUES (AVERAGES OVER TIME)									
	Dividend/Share					Dividend cover				
λ	10.8	0.6	0.4	0.2	0.0	0.2	0.4	0.6	0.8	1.0
Liquidity	No		1.98	2.00	2.01	2.02	2.05	2.07	2.09	2.12
Times covered	Change		14.50	14.60	14.90	16.13	18.02	20.22	22.83	27.82
Dividend cover			2.13	2.21	2.40	2.69	3.10	3.66	4.43	5.56
Dividend/share	in		19.06	18.41	17.14	15.46	13.56	11.59	9.66	7.78
Dividend	Values		508	485	439	389	340	287	237	189

Clearly in the early years the times interest covered ratio is on the low side with the liquidity ratio on the low side in later years. The response to this is to define new average targets of $\mathbf{2 . 2 5}$ and $\mathbf{1 8 . 0}$ for liquidity and times interest covered respectively and then to redefine $\delta_{j t}$ for j corresponding to these two criteria, such that $\delta_{j t}>0$ in years t when this average is not reached and $\delta_{j t}<0$ in the years when the averages were exceeded. Furthermore the size of $\delta_{j t}$ can be made proportional to shortfall (excess) and $\int_{t} \delta_{j t}=0$. This has the effect of shifting the two end points inwards towards the average. Table 6.8.6. shows the results of such a run.

Table 6.8.6.	CRITERIA VAIJUES							.	
Time Period	1	2	3	4	5	6	7	8	Average
Liquidity Times interest covered	2.60	2.25	2.10	2.08	2.03	2.65	2.05	2.04	2.15

The "jump" in time interest covered between years 4 and 5 is because a large repayment of long term debt occurs during period 5.

While this procedure does not fit nearly into the search scheme as originally proposed for phase II it illustrates the necessity of being able to respond to a particular feature of the solution rather than to stlaight jacket the responses of the decision maker. Thus it may be necessary to introduce a smoothing option at this stage as well as the 'de-smnothing' effect of phase III.

6.9 The Phase III Search*

The motivation behind the phase III search was that by the end of phase II the decision maker will have had opportunity to experiment at some length with iverage levels and growth rates and presumably would now like to relax certain criteria in certain years away from the 'smoothed' solution of phase II. Thus it is considered part of the skill of financial management to know when it is worth the risk of relaxing say liquidity of profit in early years in order to improve the medium term position or perhaps earnings cover the year before a major rebt repayment. The essence of the multiple criteria approach adopted here is not to pre-determine which years and which criteria to relax bui allow the most advantageous relaxations to be demonstrated by the algorithm. To do this the minimax metric

[^88]between years must be iropped and individual deviations $z_{i t}$ for each criteria in each year re-introduced. There are two major difficulties with attempting this. Firstly care must be taken to prevent the problems of instability associated with the p=1 goal programming model entering again. Hence a formulation of the type
\[

$$
\begin{gather*}
\text { MIN } \sum_{i} \sum_{t} z_{i t} \tag{6.9.1.}\\
\gamma_{i t}(x)+z_{i t} / u_{i t} \geqslant T_{i t} \text { all i,t } \tag{6.9.2.}
\end{gather*}
$$
\]

$x \in \Gamma$
cannot be contemplated for this reason. In addition such a formulation wuld lose control over the trade-ofis established between criteria. The secund difficulty arises because of the need to continue the phase III search from the provious 'best' solution found at the end of phase II. Tinis will not happen automatically. If the structure of the objective function is changed to permit this new exploration. Again, as in the previous phase, this type of issuc is one that is going to need to be addressed by all large scale applications of multicriteria optimisation in which some structured search is attempted. The methods adopted for this thesis are unlikely to be of general applicability but it is hoped they are instructive in representing one particular approach to these two difficulties.

The first step of phase III is the same as with phase II, to define the new target levels to be equal to their final 'best' point of phase II.

$$
\begin{equation*}
T_{i t}=\frac{N_{i t}^{I I}\left(x^{*}\right)}{D_{i t}^{I I}\left(x^{*}\right)} \tag{6.9.3.}
\end{equation*}
$$

This means that the target is actievable and efficient hence any objective function structure would reoptimise to the same point. The problem was thenreformulated as:

$$
\begin{equation*}
\text { MINIMIZE }\left(\alpha_{H}^{J} z^{J}+\sum_{i \in J} z_{i}\right)+\left(\alpha_{H}^{J} z^{J}+\lambda \sum_{i \in J} z_{i \dot{i}}\right) \tag{6.9.4.}
\end{equation*}
$$

so that
$\left\{N_{i t}(x)-T_{i t} \cdot D_{i t}(x)\right\}+E\left\{\frac{D_{i t} T_{i t}}{100 u_{i}}\right\}\left(z^{J}+z_{i}\right) \geqslant 0, \quad i \in J$
$\left\{N_{i t}(x)-T_{i t} D_{i t}(x)\right\}+E\left\{\frac{D_{i t} T_{i t}}{100 u_{i}}\right\}\left(z^{J^{\prime}}+z_{i t}\right) \geqslant 0 \quad i \in J^{\prime}$
$x \in \Gamma$

This structure needs some explanation. Initially we could have $J^{\prime}=\varnothing$ and $J=I$ and the structure would be identical to that of phase II (equations (6.8.1.) and (6.8.2.)), though the value of $\lambda \delta_{i t}$ in equation (6.8.2.) now has been incorporated into the phase III target of equations 6.9.5-6. If a series of experiments were done with different choices for J and J ' then those criteria left within J would still be dealt with as in phase II, while those criteria in J^{\prime} could improve their average values over time at the expense of introducing additional deviations $z_{i t}$ in particular years. The number of such deviations introduced can be controlled by the hybrid parameter λ. As λ is increased in integer steps by objeciive function parameterisation more and more $z_{i t}$ can enter leading to a less 'smooth' though hopefully, a more attractive solution. The criteria chosen for inclusion in J ' must be those with the least
liability to cause instability. Thus this procedure does not really allow for further exploration in the dividend policy criteria.

One last technical note needs to be added for completeness before presenting the results. The parameterisation with respect to λ cannot begin immediately because the target point is now on the efficient surface and there is no reason for changes in λ to affect the solution. The target point has therefore to be altered again and 'lifted away' from the efficient surface. To do this with minimal disruption of the current 'best' solution, the right-hand side parametrics of phase II were again used but with $\delta_{j t}$ chosen so that the value of the weighted deviations on all criteria remained balanced. Minor changes did in fact occur following redefinition of the criteria remaining in set J but these changes were not considered serious.

Three principal experiments were made with the choice of $J^{\prime \prime}$ as in Table 6.9.1. Each experiment started from the phasf II 'best' solution adjusted by 'lifting off' as above.

Table 6.9.1.

Experiment	Criteria in J^{\prime}
A	Farnings per share in each year. Sales in each year. Profit in each year
B	Those in A plus return on capital employed in each year.
C	Those in B plus the liquidity ratio

In Table 6.9.2. the number of individual deviations $z_{i t}\left(i \varepsilon J^{\prime}\right)$ that entered as λ decreased over six steps is shown for each experiment. The last five columns show the number of years in which $z_{i t}$ entered for each criterion.

Table 6.9.2.

$\underset{\text { step }}{\lambda}$	$\begin{aligned} & \text { Value of } \\ & z_{J} \end{aligned}$	$\begin{gathered} \text { Value of } \\ z_{j}, \end{gathered}$	Number of deviations entered				
			Sales	Profit	Earnings per share	Return on Capital	Liquidity
A 1	30.85	22.56	0	0	0		
	30.15	12.53	0	0	2		
	30.99	10.40	0	0	2		
	33.76	0	0	3	3		
	30.38	0	0	3	4		
	28.26	0	1	4	4		
B 1	30.22	18.93	0	0	2	0	
	30.77	16.00	0	0	2	0	
	30.77	15.00	0	0	2	0	
	35.27	1.71	0	1	3	1	
	34.47	0	1	2	4	1	
	27.06	0	1	5	4	5	
C $\begin{array}{r}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}$	26.47	20.76	0	0	0	0	0
	26.96	19.53	0	0	2	0	0
	28.09	15.38	0	0	2	0	1
	28.09	15.38	0	0	2	0	1
	31.67	0	0	2	4	1	1
	22.77	0	1	6	4	5	5

The years in which it is attractive to relax earnings per share are years two and five. Both are difficult years; year two because initial outlays have still to generate adequate returns and year five because of the need to make a substantial debt repayment schedules in that year whilst maintaining growth. Heavy initial investment also explains a poor liquidity position in year five and the below average earnings in year five results in a poor return on capital employed. Other deviations arise because the sales target in year four and the profit targets in years two and eight are also difficult to meet. As a comparison of the "smoothed" and "unsmoothed" nature of the results, figure 6.9.1. shows the yearly values for profit, earnings, return and liqudity ratio fnr initial and final λ-values for experiment C. While Table 6.9.3. shows for this experiment the average values over time for λ-values of 1,5 and 6 . In

FIGURE 6.9.1.

PROFIT (£'000s)

LIQUIDITY RATIO

EARNINGS/SHARF. (£)

ROCE (7)

particular, a comparison of the values 1 and 5 for λ shows the pivotal role played by the earnings cover constraint.

Table 6.9.3. Average Values for λ-values of 1,5 and 6 in Experiment C.

λ	1	5	6
ROCE (8)	21.77	22.17	21.82
LQDY (in p)	17.98	2.02	2.01
ECOV (in	16.81	17.56	
ERPS	39.30	40.88	38.60
DCOV	2.62	2.64	2.70
DVPS (in p)	15.28	15.81	14.38
SALES (in £1000)	18844	19091	18453
PROFIT	1056	1103	1049
\quad (in $£ 1000)$			

A coinpasison of the actual investment decisions corresponding to the initial and final λ-values for experiment C shows substantial differences. Out of the 22 totally or partially accepted projects 10 have 3 change in scale of 25% or more, 5 of these having a change of 75% or more. Particuiarly noticeable is increased investment in year three with only a modest increase in financing. This damages the firm's performance in the midale years but allows the benefits to be reaped in the closing years.

6.10 Conclusions

In this Chapter an attempt has been made to look in detail at just one particular way in which mathematical programming methods might be modified to produce a more managezially acceptable decision tool for corporate financial planning. The essence of the strategy devised was that it should be responsive to the decision makers preferences. Hence the idea emerged that the decision maker should not only be able to indicate the currently most satisfactory solution
but should also bc able to give guidance to the desirable features of any improved solution and so direct the search into the appropriate region of the efficient surface. This strategy of responding to the perceived weaknesses of the existing solution ensured a rapid convergence to the final solution. Another feature of the method was the avoidance of inquiring directly into the decision makers trade-off preferences between criteria relying anstead on the decision maker to indicate the preferred alternative of an ordered set of efficient solutions.

Clearly there remain many weaknesses in the method outlined here, for example the objective function structures devised are frequently cumbersome, though here a matrix generator would have helped considerably. Only one solution strategy and a limited set of search tools were considered. There remain many other plausible strategies and additional multicriteris tools whicio wight prove useful. In the absence of any coherent and comprehensive framework on the properties of linear multicriteria structures the methods developed were of an ad hoc naturc. ilso in the end the important problem of controlling the intertemporal stability was resolved unsatisfactorily. While clearly the methodology as presented here is still a long way from implementation and in need of considerable rerinement in the search procedures. A comprehensive solution to all the weaknesses identified and the problems raised in this Chapter may not be necessary prior to trial implementation. A firm currently using a financial statement generator could have this type of multiobjective programme built on to the front so that the starement generator would now be a report writer to an LP. In the initial stages of development and implementation most of the investment and financing opportunities could be fixed at specific values within the model and the resulting tool would be indistinguishable as
but should also bc able to give guidance to the desirable features of any improved solution and so direct the search into the appropriate region of the efficient surface. This strategy of responding to the perceived weaknesses of the existing solution ensured a rapid convergence to the final solution. Another feature of the method was the avoidance of inquiring directly into the decision makers trade-off preferences between criteria relying instead on the decision maker to indicate the preferred alternative of an ordered set of efficient solutions.

Clearly there remain many weaknesses in the method outlined here; for example the objective function structures devised are frequently cumbersome, though here a matrix generator would have helped considerably. Only one solution strategy and a limited set of search tools were considered. There remain many other plausible strategies and additional multicriteris tools whici uight prove useful. In the absence of any coherent and comprchensive framework on the properties of linear multicriteria structures the methods developed were of an ad hoc nature. inlso in the end the important problem of controlling the intertemporal stability was resolved unsatisfactorily.

While clearly the methodology as presented here is still a long way from implementation and in need of considerable refinement in the search procedures. A comprehensive solution to all the weaknesses identified and the problems raised in this Chapter may not be necessary prior to trial inplementation. A firm currently using a financial statement generator could have this type of multiobjective programme built on to the front so that the starement generator would now be a report writer to an LP. In the initial stages of development and implementation most of the investment and financing opportunities sould be fixed at specific values within the moiel and the resulting tool would be indistinguishable as
far as the user was concerned. As the methodology advanced and requests for more and broader options were made, the control of the solution values could be made to depend increasingly on the manipulation of performance ratios. Thus acceptance and use of the system would be intimately linked with the managerial demands as well as with the evolution of the methodology.

In summary tue contribution of the woik of this Chapter to such a process is that it begins to address some of the practical and procedural issues involved in the use of a multicriteria approach to financial planning.

The contribution of this Chapter to the thesis is that it illustrates one possible avenue for the futurc constriction and use of a mathematical programming model for corporate financial planning.

Conclusion

This thesis has been so structured that the detailed conclusions have already been presented at the end of each chapter. However, it is perhaps worttwhile to take a more global perspective of the work and to see the relationships between, and the limitations of, these conclusions. To this end a brief review of the development of the thesis would seem appropriate.

In chapter two the theoretical foundations of much of the subsequent analysis were laid down. Here the nature of the relationship between the primal formulation of the investment and financing decision and the dual formulation was recxamined and clarified. The third chaptor was then able to exploit the structure of the dual solution to impose bounds on the primal solution. These bounds showed that for many models, whose objective function is based on a discounting methodology and where decisions are constrained by dc.bt capacity (and possibly other) considerations, the chosen set of investment projects is not radically different from that which could be obtained by the use of a simple rule of thumb.

It was this conclusion which directed the research into the exploration of two different, and quite distinct roles, which could be played by L.P. models in financial planning.

The first of these roles was the development of analytical tools for financial theory. Chapter four looked in detail at how L.P. models could be used as a framework for the normative appraisal of individual projects within the broader context of the firms total investment
and financing opportunity set. These ideas were extended in chapter
five to the analysis of a simultaneous investment and financing decision - that of a financial lease.

In contrast the last section explored a very different role for L.P. models and considered how they could be restructured to become more relevant and more effective decision tools for use by corporate financial planners. This analysis led to the formulation of an interactive goal programing system.

Both of these uses for L P. models have their obvious limitations and attendant unsolved problems and it would be irappropriate to conclude without drawing attention to these issues and indicating where future research might be darected.

The first of these problem areas is the development of an algorithm for solving horizon truncated financial plenning L.P. models in accordance with the horizon principle enunciated in the introductory chapter. The outlines of such an algorithm were briefiy reported in chapter four and although it apneared to work reasonably efficiently for the example cited in that section, a great deal of involved procramming would be necessary prior to a more general implementation.

The second problem area is the structuring of suitable objective functions for use in the goal programming search. Here it has been possible to develop a primitive algebra for the classification of objective functions in multi-criteria programing. Such an algebra provides alternative linear models which might be used in multicriteria programming for the generation of solution with particular structural features. As both of these developments form part of joint ongoing research with Atkins their details have not been included in this thesis.

The limitations on the use of linear models, as normative frameworks for financial theory or as interactive goal programing devices, are sufficiently serious that the particular formulations, though not necessarily the methodology, adopted in this paper would appear to afford little future until they can be overcome.

In using the model for the development of a normative theory of investment aprraisal it was necessary to adopt without further question many results based on a two moment equilibrium theory of capital markets. Thus the incorporation of uncertainty was principally via a risk adjusted discount rate coupled with restrictions on the level of debt. While such an dpproacn maintains linearity it does require the return on debt to be perfectly elastic upto some predetermined limit and perfectly inelastic thereafter, while the return on other financing instruments were required to be constant through this range. This simplification contradicts many of the assumptions of capital market theory and places a severe limitation on the validity of the conclusions which can be drawn from such models. The mere adoption of a step wise linear approximation to the risk return schedule is too crude for theoretical, though not necessarily for practical, purpcses.

In using the restructured model for multi-criteria programing the non-linearities introduced by financial ratios were larg=ly glossed over. Further research has sinown that, for the fractional criteria necessary to financial planning, the efficient region is not necessarily closed and might also include interior points. Such findings severely limit the use of the interactive goal-programming models presented hers and indseate that until the topology of the feasible region in multi-criteria fractional programming formulations is beiter underctood, it would be undise to continue with the
development of this particular programming methodology.
These two major limitations would thus seem to block, though hopefully only temporarily, further progress. It would thus seem an appropriato point at which to formally present the findings so far and to submit this thesis.

REFERENCES

Adelson, R.M., "Discounted cash flow - can we discount it - a critical examination". J.B.F. Summer 1970. Vol. 2 No. 2.

Amey, L.R., "Interdependencies in capital budgeting: a survey".Journal of business finance Vol. 4 No. 31972.

Ashton, D.J., and Atkins, D.R., "Interactions of Corporate Financing and Investment decisions - implications for capita budgeting a further comment". University of Bath. Working paper No. 2. 1978.

Ashton, D.J. and Atkins, D.R., "Rules of thumb versus linear programming in capital budgeting". Working paper 389. Faculty of Commerce and Business Administration, University of British Columbia, Vancouver, May 1976.

Atkins, D.R., "The relationship between the discount rate in capital budgeting and the opportunity cost of rational capital". School of Industrial and Business Studies, working paper No. 7 February 1972.

Atkins, D.R. and Ashton, D.J., "Discount rates in capital budgeting a re-examination of the Baumol and Quandt paradox". The Engineering Economist Vol. 21 No. 3 (1976) pp. 159-171.

Barges, A.A., "The effect of capital structure on the cost of capital". Prentice-Hall 63.

Baumol, W.J. "Business behaviour: value and growth". Macmillan, New York, 59.

Baumol, W.J. \& Quandt, R.E. "Investment and discrunt rates under capital rationing - a programming approach". Economic Journal Vol. 75 June 65 pp. 317-329.

Baxter, N.D. "Leverage, risk of ruin and the cost of capital". Journal of Finance 22 (September 1967) pp. 395-403.

Beale, E.M.L., "Mathematical programing in practice". Pitman 1968.

Beenhakker, H.L., "Discounting indices proposed for capital investment evaluation - a further examination". Engineering Economist Vol. 18 No. 3 (73).

Benayoun, R., Tergny, J.. "Mathematical programming with multiobjective functions: a solution by POP (progressive orientation procedure)". Metra 9, 1970.

Beranek, W., "The cost of capital, capital budgeting and maximization of shareholder wealth". J.Financial and Quantative Analysis. March 75.

Bernard, R.H., "Mathematical programming for capital budgeting .a survey generalisation and critique". J.Financial Quantitative Analysis. 4 No. 21969.

Bernard, D., Richard, H., "A comprehensive comparison and critique of discounting indices proposed for capital investment evaluation." The Engineering Economist Vol. 16 No. 31971.

Bhaskar, K.N. "Borrowing and Lending in a Mathematical Programming Model of Capital Budgeting". J.B.F.A. Summer 74, Vol 2., No. 2.

Black, F., "Capital market equilibrium with restricted borrowing". Journal of Business 45, July 1972.

Bower, R.S., "Issues in lease evaluation". Financial Management, 2. Winter 73, pp. 25-33.

Bower, R.S., Herringer, F.C., and Williamson, J.P., "Lease evaluation". Accounting Review 41 (April 1966) pp. 106-114.

Bristin, L.E. (66) "A method unifying multiple objective functions". Man.Sci. 12. 10.

Bromwich, M., "Capital budgeting - a survey". Journal of Business Finance, Autumn 70. Vol. 2. No. 3.

Burton, R.M. and Damon, W.W., "On the existence of a cost of capital under pure capital rationing". Journal of Finance 74.

Byrne, R.A., Cooper, W.W., Charnes, A., and Kortanek, K. "A chance constrained approach to capital budgeting with portfolio type payback, liquidity constraints, and horizon posture control". J.F.Q.A. Vol 11 No. 4 December 1967.

Carleton, W.T., "Linear programming and capital budgeting models a new interpretation". Journal of Finance XXIV No. 5 December 1969.

Carleton, W.T. "An analytical model for long range financial planning". The Journal of Finance, vol. 25, May 1970. pp. 271-335.

Carleton, W.T., Dick, C.L., Downes, D.H., "Financial policy model: Theory and Practice". Journal of Financial and Quantative Analysis December 1973.

Chambers, D.J., "Programming the allocation of funds subject to restrictions on reported results". O.R.Q. Vol 18. No. 4 December 1967.

Chambers, D.J., "The joint problem of investment and financing" O.R.Q. Vol 22 No. 3 September 1971.

Chambers, D.J. "Dividend plans and balance sheet management". Journal of business finance. Vol. 4 No. 31972

Chambers, D.J., Singhai, H.S., Taylor, B.D., and Wright, D.L. "Developing dividend policies with a computer teminal" Journal of Accounting and business research, Autumn 1971.

Charnes, Cooper, Ijiri, "Breakeven budgeting and programming to Goals". Journal of Accounting Research, Spring 1963, reprinted Livingstone, Management Planning and Control. (McGraw-Hill).

Charnes, A., Cooper N.W. and Miller M.M., "Applications of linear programing to financial budgeting and the costing of funds". Journal of Business XXXII No. 1 January 1959.

Cyert, R.M. and March, J.G., "A behavioural theory of the firm". Prentice Hall 1963.

Dantzig, G.B., "Linear programming and extensions". Princeton University Press, Princeton, New Jersey 1963.

Durand, D., "The cost of debt and equity funds for business". In Ezra Solomon (Ed.) The Management of Corporate Capital (New York : Free Press 59) pp. 91-116.

Durand, D., "The cost of capital, corporation finance, and the theory of investment : comment". The American Economic Review Vol. XLIX No. 4 September 1959. Reprinted S.H.Archer and C.A.D'Ambrosio - The theory of business finance - a book of readings - Macmillan. 1967.

Elton, E.J., "Capital rationing and external discount rates". Journal of Finance June 1970.

Elton, E.J., Gruber M.J., and Lieber, Z., "Valuation, optimum investment and financing for the firm subject to regulation". Journal of Finance Vol XXX No. 2 May 1975.

Evans, J.P. and Steuer R.E., "A revised simplex method for linear multiple objective programming". Math. Prog. Vol. 51975.

Evers, J.J.M., "Linear programming over an infinite horizon". Tilburg University Press (June 1973).

Evers, J.J.M., "Linear infinite horizon programing and Lemke's complementarity algorithm for the calculation of equilibrium combinations". Research memorandum 45,Tilburg Institute of Economics. November 1973.

Evers, J.J.M., "On the initial state vector in linear infinite horizon programming". Research memorandum 49, Tilburg Institute of Economics (1974).

Evers, J.J.M., "Optimization in normed vector spaces with applications to optimal economic growth theory." Research memorandum 50, Tilburg Institute of Economics (1974).

Evers, J.J.M., "On the existence of balanced solutions in optimal growth and investment problems". Research memorandum 51, Tilburg Institute of Economics (1974).

Evers, J.J.M., "A duality theory for convex $\left.{ }^{(}\right)$- horizon programing". Research memorandum 54 - rilburg Institute of Economics (1975).

Evers, J.J.M., "More with the Lemke-Howson complementarity algorithm". Department of applied mathematics working paper. University of Twente Holland July 1977.

Fama, E.F. "Risk-adjusted discount-rates and capital budgeting under uncertainty". Journal of Financial Economics 5 (1977) pp. 3-34.

Fawthrop, R.A., "Underlying problems in discounted cash flow appraisal". Accounting and Business Research - Sumener 1971.

Fawthrop, R.A. and Terry, B.T., "The evaluation of an integrated investment and lease decision". Journal of Business Finance and Accounting Vol 3 No. 2 Summer 1976.

Fogler, H.R., "Ranking techniques and capital budgeting". Accounting Review. January 1972.

Freeland, J.R. and Rosenblatt, M.J., "An analysis of linear progranming formulations for the capital rationing problem". Paper at the Joint Conference of TIMS and ORSA, San Francisco. May 9-11, 1977.

Geoffrion, A., "Proper efficiency and the theory of vector maximization". Journal of Mathematical Analysis and Applications Vol. 22 (1968) pp. 618-30.

Geoffrion, A.M. Dyer, J.S., and Feinberg, A., "An iterative approach for multicriterion optimisation with an application to the operation of an academic department". Man.Sci. 19.4 (1972) pp. 357-368.

Gershefski, G.W. "Corporate models - the state of the art". Management Science 1970.

Goldberg, S., "Introduction to difference equations". (New York : Wiley, 1958).

Gordon, M.J., "The investment, financing and valuation of the corporation", Homewood Ill : Irwin 1962.

Grinyer, P.H. and Wooller, J., "Corporate models today". Institute of Chartered Accountants, 1975.

Hadley, G., "Linear programuing", Addison-Wesley Publishing Co. 1962.
Hamilton, W. and Moses, M. "An optimisation model for corporate financial planning". O.R.S.A. May-June 1973.

Hannan, E.L. "Effects of substituting a linear goal for a fractional goal in the goal programing problem". Paper delivered at TIMS/ORSA San Francisco Meeting May 1977.

Higgins, J.C. and Finn, R. "Planning models in the U.K. : a survey". Omega Vol 5 No. 2, 1977.

Hillier, F.S., Lieberman, G.J., "Introduction to operations research". Holden-Day 1967.

Hirschleifer, J. "On the theory of optimal investment decisions". Journal of Political Economy 66 (August 1958).

Hopwood, A., "Accounting and human behaviour". Accountancy Age Publications Haymarket 1974.

Hoskins, C.G., "Benefit-cost ratios versus net present value: revisited". Journal of Business Finance. Vol. I No. 2. Summer 1974.

Ijiri, Y., "Management goals and accounting for control". NorthHolland Publishing Company 1965.

Ijiri, Y., Levy, F.K., Lyon, R.C., "A LP model for budgeting and financial planning". Journal of Accounting Research, Autumn 1963. reprinted Livingstone, Management Planning and Control, McGraw Hill.

Intriligator, M.D. "Mathematical optimization and economic theory". Prentic-Hall 1971.

Jensen, M.C. "Risk, the pricing of capital assets and the evaluation of investment portfolios". Journal of Business 42 (April 1969).

Jensen, M.C., "Capital markets: theory and evidence". Bell Journal of Economics and Management Science 3, Autumn 1972.

Keeney, R., "Examining corporate policy using multi-attribute utility analysis". Paper presented at the Multiple Criteria DecisionMaking Conference, Jouy-en-Jouas, May 1975.

Klamer, T., "Empirical evidence of the adoption of sophisticated capital budgeting techniques". Journal of Business, July 1972. pp. 387-397.

Kornbluth, J.S.H. "A survey of goal programing", Omega Vol. 1 No. 21973.

Lane, M.N.. "Goal programming and satisficing models in economic analysis". The University of Texas at Austin, Unpublished Ph.D. 1970.

Lev, B., "Financial statement analysis: a new approach." PrenticeHall, 1974.

Litner, J., "The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets". Review of Economics and Statistics 47. February 1965.

Lorie, J.H. and Savage, L.J., "Three problems in capital rationing". Journal of Business Vol. XXVIII October 1955.

Luce, R.D., and Raiffa, H., "Games and decisions". (New York : John Wiley, 1957).

Lustig, P. and Schwab, B., "A note on the application of LP to capital budgeting". J.F.Q.A., pp. 427-431. December 1968.

Mao, J.C.T., "Quantative analysis of financial decisions". The Macmillan Company 1969.

Mao, J.C.T., "Security pricing in an imperfect capital market". Journal of Financial and Quantative Analysis, 6, September 1971.

Merville, L.J. and Tavis, L.A., "A generalised model for capital investment". Journal of Finance, Vol XxviI No. 1 (March 1973).

Miller, M.H., and Modigliani, F., "Dividend policy, growth and the valuation of shares". Journal of Business 34, October 1961.

Modigiliani, F., and Miller, M.H., "The cost of capital, corporation finance, and the theory of investment". The American Economic Review, Vol XLVIII No. 3 (June 1958) Reprinted S.H.Archer and C.A.D'Ambrosio - The theory of business finance - A book of readings - Macmillan 1967.

Modigliani, F., and Miller, M.H., "The cost of capital, corporation finance, and the theory of investment : reply". The American Economic Review Vol XIIV No. 4 (September 1959) Reprinted, S.H.Archer and C.A.D'Ambrosio - The theory of business finance - A book of readings - Macmillan 1967.

Modigliani, F., and Miller, M., "Corporate income taxes and the cost of capital - a correction". The American Economic Review Vol. LII No. 3., June 1963.

Modigliani, F., and Miller, M.H., "Reply to Heins and Sprenkle" The American Economic Review - September 1969 pp. 592-95.

Morin, T.L., "Computational advances and reduction of dimensionality in dynamic programming : a survey". Paper delivered at TIMS XXIII meeting Athens 1977.

Myers, s.C., "A note on linear programing and capital budgeting". Journal of Finance, March 1972.

Myers, S.C., "Interactions of corporate financing and investment decisions - implications for capital budgeting". Journal of Finance, March 1974.

Myers, S.C., Dill, D.A. and Bautisto, A.J. "Valuation of financial lease contracts". Journal of Finance Vol. XXXI, June 1976 No. 3.

Myers, S.C., and Pogue, G.A., "A programming approach to corporate financial management". Journal of Finance, May 1974.

Myers, S.C., "The determinants of corporate borrowing". Journal of Financial Economics, January 1978.

Nantell, T.J. and Carlson, C.R. "The cost of capital as a weighted average". Journal of Finance, 30. December 1975.

Näslund, B'., "A model of capital budgeting under risk". The Journal of Business, April 1966.

Naylor, T.H. and Schauland, H., "A survey of users of corporate planning models". Management Science, Vol. 22 No. 9 May 1976.

Perrin, J.R. "Business success as measured by an accountant". Paper given at the British Association for the Advancement of Science. Economics Section - 1966.

Peterson, D.E., "A quantative framework for financial management". Irwin, 1969.

Quirin, G.D., "The capital expenditure decision" Irwin, Homewood, Illinois - 1967.

Robichek, A.A. and Myers, S.C.. "Optimal financing decisions". Englewood Cliffs, N.J. Prentice-Hall. 1965.

Schwab, B., and Lustig, P., "A comparative analysis of NPV and the benefit-cost ratio as measures of the economic desirability of investment". Journal of Finance June 1969. pp. 507-516.

Senju, S., and Toyopa, Y., "An approach to linear programming with 0-1 variables". Management Science, December 1968.

Sharpe, W.F., "Capital asset prices : a theory of market equilibrium under conditions of risk". Journal of Finance 19, September 1964.

Shubik, M., "Objective functions and models of corporate optimization". quarterly Journal of Economics 1961 pp. 345-375.

Simon, H.A. "Models of Man. New York". John Wiley and Sons Ltd., 1957.
Simon, H.A. "On the concept of organization goals". Administrative Science quarterly, 1964-65, reprinted in Readings in Management Decisions Ed. L.R.Amey, Longman 1973.

Solomon, E., "The theory of financial management". Columbia University press, New York 1963.

Steuer, R.E., "An interactive linear programming procedure employing an algorithm for the vector - maximum problem". College of Business Administration and Economics, University of Kentucky.

Stiglitz, J.E., "A re-examination of the MM Theorem". American Economic Review, December 1969.

Stiglitz, J.E. "Some aspects of the pure theory of corporate finance bankruptcies and takeovers". Bell Journal of Economics and Management Science, (Autumn 1972) pp. 458-482.

Terry, B., "Leasing, an international bibliography". Technisch Hogeschool Twente, Enshede, Holland, April 1976.

Thanassoulis, E., "Multi-criteria programming solution methods and associated problems". Centre for Industrial Economic and Business Research, University of Warwick, Working paper No. 69 September 1976.

Vancil, R.F., "Lease or borrow: new method of analysis". Harvard Business Review 39 (September-October 1961).

Vancil, R.F. "Leasing of industrial equipment" AcGraw-Hill. Book Co. Inc. 1963.

Van Horne, J.C. "Financial management and policy". Prentice-Hall Fourth edition 1977.

Weingartner, H.M., "Mathematical programing and the analysis of capital budgeting problems". Englewood Cliffs N.J. Prentice-Hall 1962 Republished Kershaw 1974.

Weingartner, H.M. "The excess present value index - a theoretical basis and critique". Journal of Accounting Research, Autumn 1963.

Weston, J.F., "A test of cost of capital propositions". The Southern Economic Journal Vol XxX No. 2 (October 1963) Reprinted S.M.Archer and C.A.D'Ambrosio - The theory of business finance A book of readings - MacMillan 1967.

Weston, J.F. and Brigham, E.F.. "Managerial finance".. (6th Edition) The Dryden Press (1978)

Yu, P.L. and zeleny, M. "The set of all nondominated solutions in the linear cases and a multicriteria simplex methods". Centre for System Science, University of Rochester. In Cochrane, J.L., Zeleny., M. (Eds.) Multicriteria Decision Making, University of South Carolina Press, S.C. 1973.

Zeleny, M. "Linear multiobjective programming". Springer-Verlag, (1974).

APPENDIX I

A Mathematical Statement of the Model.

The following set of equations constitute the model for periods 1 to 8. The source of the equation is given. The symbols in brackets give the corresponding row names which serve as variables in the computer model. The notation is defined in appendix II.

There are three distinct constraint sets. The first set consists of the accounting and technological constraints which are common to both the single criterion and the multicriteria model. The second set consists of the 'hard' constraints on financial policy variables used in the single criterion model only while the third set constitutes part of the goal programing structure used for exploring alternative financial strategies, and is exclusive to the multicriteria model.

1 Accounting and Technological Constraints

1.01 Sales (Total sales equals the sales from existing projects plus sales from new projects)

$$
\sum_{j} s_{j t} x_{j}-\text { SALES }=-S_{t}
$$

${ }^{[T S} t$
1.02 Building and Land (Book value of building and land equals new investments from projects plus existing investment less depreciation)

$$
\sum_{j} \mathrm{CBL}_{j \mathrm{jt}} \mathrm{x}_{j}-1.03 \mathrm{FABL}_{t}+\mathrm{FABL}_{t-1}=-\mathrm{CBLO}_{t} \quad{\int \mathrm{BL}_{t}}
$$

1.03 Plant and Equipment (As for building and Land)

$$
\sum_{j} \mathrm{CPE}_{j t} \mathrm{X}_{j}+\text { FAPE }_{t-1}-1.3333 \mathrm{FAPE}_{t}=- \text { CPFO}_{t} \quad \mathrm{CPE}_{t}
$$

1.04 Earnings (Earnings equals the earnings from existing and new projects less net short term interest payments less depreciation

$$
\sum_{j} \mathrm{EA}_{j} \mathrm{X}_{j}-0.0310 \mathrm{FABL}_{t}-0.3333 \mathrm{FAPE}_{t}-\text { EARN }_{t}-R S . O V D R_{t-1}+\text { RIMARK }_{t-1}=-E O_{t}
$$

1.05 Current Assets (Total current assets equals current assets from existing and new projects plus short term deposits)

$$
\sum_{j}\left(A P_{j t}+S T_{j t}\right) X_{j}+M A R K_{t}-\text { CURA }_{t}=-C A O_{t}
$$

1.06 Current Liabilities (Total current liabilities equals liabilities from old and new projects plus overdraft, dividends and taxation payable)

$$
\sum_{j}\left(A R_{j t} X_{j}\right)+O V D R_{t}-\operatorname{CURL}_{t}+\operatorname{TAX}_{t}=-\operatorname{CLO}_{t} \quad\left[C L_{t}\right.
$$

1.07 Number of Shares (Increase in the total number of shares outstanding equals shares plus rights issues)

$$
\begin{equation*}
-\int_{T \leqslant t} R G_{T}+N U M_{t}=N_{0} \tag{t}
\end{equation*}
$$

1.08 Debt (Increase in debt outstanding equals new debt less any debt repayments)
$-L L_{t}+D E_{t}-D E_{t-1}=-\operatorname{DERPO}_{t}$
$\left[D_{t}\right.$
1.09 Net Profit after Tax (Net book profit after tax equals
(1 - Tax rate) times taxable earnings)
$-0.5\left(E_{t}-R L . D E_{t-1}\right)+\operatorname{NPAT}_{t}=0$
[PR $_{t}$
1.10 Tax payable (Tax payable equals (1 - tax rate) times gross earnings less actual tax allowances)

$$
\begin{aligned}
\operatorname{TAX}_{t} & =\text { NPAT }_{t}-0.2 \mathrm{FABL}_{t-1}+0.191 F A B L_{t}-0.5 \mathrm{FAPE}_{t-1} \\
& +0.5 \mathrm{FAPE}_{t}+0.5 B L T A_{t}=\mathrm{TAO}_{t}
\end{aligned}
$$

1.11 Tax allowances (Tax allowances on buildings and land equals existing allowances plus any new allowances)

$$
0.04 \text { FABL }_{t-1}-0.04 \text { 1FABL }_{t}+\text { BLTA }_{t}-\text { BLTA }_{t-1}=0 \quad \text { [TA }_{t}
$$

1.12 Cash Balance (Total cash inflows equals total cash outflows)
$E_{t}-\operatorname{FABL}_{t}+\mathrm{FABL}_{t-1}-\mathrm{FAPE}_{t}+\mathrm{FAPE}_{t-1}-\mathrm{CA}_{t}+\mathrm{CA} \mathrm{t}_{\mathbf{t}}$
$+C L_{t}-C L_{t-1}+L L_{t}+1.6 R G_{t}-T A X_{t}-D V_{t}-R L D E_{t-1}=0 \quad\left[C B_{t}\right.$
1.13 Scale Constraint (A project can be taken on at any level up to full scale)
$0 \leq x_{j} \leq 1$
1.14 Non-negativity (All primal variables are constrained to be positive or zero)

2 Single Criterion Model - Financial Policy Variables
2.01 Return of Capital Employed (Earnings after depreciation and short term interest should be greater than α-times net book value of assets after depreciation)
$-E_{t}+\alpha\left(\right.$ FABL $\left._{t}+\operatorname{FAPE}_{t}+C A_{t}-\mathrm{CL}_{t}\right) \quad \leq 0 \quad$ [rOCE $_{t}$
2.02 Current Ratio (Ratio of current assets to current liabilities should be greater than B)
$-C A_{t}+B C L_{t}$
≤ 0
LLQDY $_{t}$
2.03 Times Covered (Earnings after depreciation and short term interest should be greater than γ times total interest payments on debt)
$-E_{t}+Y\left(R L . D E_{t-1}+\right.$ RS $_{\left.t-\text { OVDR }_{t-1}\right)} \leqslant 0 \quad$ [ECOV $_{t}$
2.04 Earnings per share (Net book profit after tax should be greater than δ_{t} times the number of shares)

- NPAT $_{t}+\delta_{t}$ NUM $_{t} \quad \leq 0 \quad$ EERPS $_{t}$
2.05 Dividend Cover (Dividends should be covered E times by distributable profit)
- NPAT $_{t}+$ EDIV $_{t} \quad \leq 0 \quad \operatorname{LDCOV}_{t}$
2.06 Dividend Target (Planned dividend/share should be met)

$$
\operatorname{DIV}_{t}-\text { DTARG }_{t} \cdot \text { NUM }_{t} \quad \leq 0 \quad \text { [DTARG }_{t}
$$

3.01 Return on Capital Employed (Where possible earnings after depreciation and short term interest should be greater than α_{t}-times net book value of assets after depreciation) $-E_{t}+\alpha_{t}$ (FABL $_{t}+$ FAPE $\left._{t}+\mathrm{CA}_{t}-\mathrm{CL}_{t}\right)-$ UROCE . ${ }^{2 E D} \leq 0$ [ROCE $_{t}$
3.02 Current Ratio (Where possible the ratio of current assets to current liabilities should be greater than β_{t})
$-C_{t}+B_{t} C L_{t}-U_{\text {LQDY }}$-ZED $\quad \leq 0$ [LQDY t
3.03 Times Covered (Where possible, earnings after depreciation and short term interest should be greater than γ_{t} times total interest payments on debt)
$-E_{t}+\gamma_{t}\left(R L . D E_{t-1}+R S . O V D R_{t-1}\right)-u_{E C O V} \cdot$ ZED ≤ 0 [ECOV $_{t}$
3.04 Earnings per share (Where possible the book profit after tax should be greater than δ_{t} times the number of shares) - NPAT $_{t}+\delta_{t} \cdot$ NUM $_{t}-\mathbf{u}_{\text {ERPS }}$.2ED ≤ 0 [ERPS $_{t}$
3.05 Dividend Cover (Where possible dividends should be covered ε times by distributable profit)
$-\operatorname{NPAT}_{t}+\varepsilon_{t}$ DIV $_{t}-\mathrm{U}_{\text {DCOV }_{t}}$.2ED
$\leq 0 \operatorname{[DCOV}_{t}$
3.06 Sales Target (Planned sales target should be aimed for)

SALES $_{t}+\mathbf{U}_{\text {ST }^{*}}$ ZED $\quad \geq$ SALES TARGET [STARG $_{t}$
3.07 Profit Target (Planned profit target should be aimed for)

NPAT $_{t}+U_{P T}$ 2ED $\quad \geq$ PROFIT TARGET $_{t}$ [PTARG $_{t}$
3.08 Dividend Target (Planned dividend/share should be met)

DrV $_{t}-$ DTARG $_{t} \cdot$ NUM $_{t}+U_{\cdot}$ DPS $\cdot 2 E D \quad \geq 0$ [DTARG $_{t}$

3.09 Upper limit on Growth (In the multicriteria model the

 total growth factor measured in terms of fixed and current assets should not be more than three times over the eightyear planning period)```
FABL
```


## APPENDIX II

Definitions and Notation

For ease of reference the definitions and notation are divided into two sections. The first section explains the notation which is used in the formulation of the model to be found in Appendix 1 and the variable names used in the computer program of which sample printouts are also to be found in the Appendices. The second section deals with the mathematical notation which is used in the main body of the thesis for the development of theoretical arguments.

Definitions and Notation of Variables used in the computer model.

| $\mathrm{AP}_{\mathbf{j t}}$ | - accounts payable on project $j$ in time period $t$. |
| :---: | :---: |
| $\mathrm{AR}_{\mathbf{j} t}$ | - accounts receivable on project $j$ in time period $t$. |
| $\mathrm{BLTA}_{t}$ | - accumulated tax allowances on building and land at time period $t$. |
| $\mathrm{CAO}_{t}$ | - value of working capital in time period $t$ resulting from operations already undertaken. |
| $\mathrm{CA}_{\mathbf{t}}$ | - total value of current assets at the end of time period $t$. |
| $\mathrm{CBL}_{j \mathrm{t}}$ | - capital expenditure on building and land on project $j$ in time period $t$. |
| $\mathrm{CBLO}_{t}$ | - capital expenditure on building and land from commitments already undertaken. |
| $\mathrm{CLO}_{t}$ | - value of creditors in time period $t$ resulting from operations already undertaken. |
| $\mathrm{CPEO}_{t}$ | - capital expenditure on building and land from commitments already undertaken. |
| $D E_{t}$ | - total value of long term in time period $t$. |
| $\mathrm{DEPRO}_{t}$ | - planned debt repayment in time period $t$. |


| DTARG ${ }_{\text {t }}$ DV te | - the dividend per share target in time period $t$. <br> - actual dividend declared in time period $t$. <br> Paid in time period $t+1$. |
| :---: | :---: |
| $E_{t}$ | - earnings in time period $t$ after depreciation and short term interest payments/receipts. |
| $E A_{j t}$ | - gross earnings in time period $t$ from project $\mathbf{j}$. |
| $\mathrm{FABL}_{t}$ | - book value of building and land at time period $t$. |
| $\mathrm{FAPE}_{t}$ | - book value of plant and equipment at time period $t$. |
| $L_{L}$ | - new long term debt taken out in time period $t$. |
| MARK | - short term deposits at the end of time period $t$. |
| $\mathrm{N}_{0}$ | - number of shares outstanding at the beginning of the planning period. |
| NPAT ${ }_{\text {c }}$ | - net book profit after tax in time period $t$. |
| $\mathrm{NUM}_{\mathbf{t}}$ | - number of shares outstanding at the end of time period $t$. |
| $\mathrm{OVDR}_{i}$ | - overdraft at the end of time period $t$. |
| $P R_{n} Y_{t}$ | - denotes project $n$ undertaken at time $t$. |
| PTARG $^{\text {t }}$ | - profit target for time period t. |
| $\mathrm{RG}_{\mathrm{t}}$ | - number of rights issued in time period t. |
| RI | - interest rate on short term deposits. |
| RL | - interest rate on long term debt. |
| RS | - interest rate on overdraft facilities. |
| $S_{j t}$ | - sales generated by project $j$ in time period $t$. |
| SALES $_{t}$ | - total sales in time period t. |
| $\mathrm{SO}_{t}$ | - sales in period $t$ from existing operations. |
| STARG $_{t}$ | - sales target for period t. |
| TAX $_{t}$ | - tax payable on operations for period t. |
| $\mathrm{TMO}_{\mathrm{L}}$ | - tax allowances in period $t$ from existing building and land. |

```
u
X
ZED
 - vector representing deviations from targets on the policy variables.
\(\alpha_{H}\)
\alpha
Bt - minimum value of current ratio in period t.
Y (- number of times earnings cover debt in period t.
\delta
\varepsilon
```

Definitions and Notation used in the development of the theoretical arguments in the main text

Below are two alphabetical lists (English and Greek) of the notation used in the main text. This summary is provided mainly for quick reference; the precise definition may vary with the context of the argument and any ambiguities should be resolved by reference to the local derinition. Heavy type used in the text indicates a vector and the list below should be interpreted as the components of these vectors where appropriate.
a
$A_{0}$
[A]
$\mathrm{APV}_{t}$
[B]
$a_{0} \quad$ - risk adjusted discount rate for the valuation of project cash flows assuming a base case of all equity financing.

- weighted average cost of capital.
- cost of an asset to be leased.
- matrix of resource outputs from the adoption of a set of decisions.
- adjusted present value in t.
- matrix of resource input from the adoption of a set of decisions.

| $b_{t}$ | - capital allowances available in period $t$ per unit of project adoption. |
| :---: | :---: |
| $B_{t}$ | - borrowing limit in Weingartner model. |
| $c_{t j}$ | - cash inflow from project $j$ in time period t. |
| $\hat{c}_{j}$ | - net present (terminal) value of project j. |
| $c_{\text {tj }}$ | - capital required by project $j$ in time period $t$. |
| $d_{t}$ | - dividend/share in time period $t$. |
| $\mathrm{D}_{t}$ | - total dividends paid by the firm in period $t$. |
| $\mathrm{D}_{\text {it }}(\mathrm{x})$ | - denominator-ratio criterion 1 in period t. |
| D-statistic | - Chebychev error norm for project selection. |
| $e_{j t}$ | - earnings from project $j$ in period $t$. |
| $E_{t}$ | - total value of equity issued in time period t. |
| $\pm$ | - flotation costs associated with equity issues or occasionally a constant multiplier. |
| $F_{t}, F_{0}^{t}$ | - funds available from existing projects in time period $t$. |
| $g$ | - level of gearing. |
| H | - planning horizon |
| i | - interest rate (usually of equity capital). |
| $1_{L}$ | - implied interest rate in lease financing. |
| $I_{t}$ | - total interest paid in $t$. |
| IRR | - internal rate of return. |
| j | - subscript used to denote project number. |
| $\mathbf{K}$ | - constant defining limit on capital structure. |
| L\{ \} | - likely or estimated value of a function. |
| $L_{j}$ | - scale of leasing project $j$. |
|  | - duals on leverage (gearing) in Chambers model. |
| $L_{t}\left(=\sum_{\tau=t}^{H} e_{\tau}\right)$ | - duals on leverage (gearing) in Chambers model. |
| m | - marginal reinvestment rate. |
| MM | - attributable to Modigliani and Miller. |


| $\mathrm{N}_{\text {it }}(\mathrm{x})$ | - numerator of ratio criterion $i$ in time period $t$. |
| :---: | :---: |
| $n_{t}$ | - number of shares issue in $t$. |
| NPV | - net present value. |
| NTV | - net terminal value. |
| $\mathbf{p}_{\mathbf{t}}$ | - issue price of a share in t. |
| $\mathrm{P}_{\mathrm{t}}$ | - (pre-tax) lease payment to be made in $t$. |
| $r$ | - interest rate (usually debt). |
| $r^{\prime}$ | $\underline{=} \mathrm{I}(1-\mathrm{KT})$. |
| $r_{B}$ | - borrowing interest rate. |
| $r_{\text {L }}$ | - lending interest rate. |
| $\mathrm{R}_{\mathbf{t}}$ | - repayment of principal of a loan or lease. |
| $S_{t}$ | - issue price in $t$ of a share. |
| T | - rate of Corporation tax. |
| $\mathrm{T}_{\text {it }}$ | - target for criterion $i$ in time period $t$. |
| $T V_{j}(t)$ | - compounded value of net funds to project $j$ at time $t$. |
| $u_{i}$ | - relative utility attached to criterion i. |
| 0 | - utility function. |
| $v_{t}$ | - fixed interest investment in t. |
| $v_{t}$ | - value of firm at time t. |
| $w_{t}$ | - level of debt in $t$. |
| $\mathrm{x}_{\mathbf{t}}$ | - income per unit investment in period t. |
| $x^{\prime}$ | - after tax income per unit investment. |
| $\mathrm{x}_{\mathrm{j}}$ | - scale of acceptance of project $j$. |
| 2 | - objective function. |
| $z_{i}, z_{t}, z_{i t}$ | - deviations (from criterion i) (in time period t) from target. |
| $z^{t}$ | - vector of decisions taken in $t$. |
| $\beta_{t}$ | - dual on the borrowing limit in time period t. |
| $\delta_{i t}$ | - incremental step on target $i$ in time period $t$. |


| $Y_{\text {it }}$ | - criterion function for criterion i in time period t. |
| :---: | :---: |
| I | - feasible region. |
| $\varepsilon$ | - used to denote small increment. |
| $\eta$ | - vector of dual variables. |
| $\theta_{t}^{W}$ | - dual on debt valuation stream at time $t$. |
| $\theta_{t}^{x}$ | - dual on income valuation stream at time $t$. |
| $\lambda_{t}$ | - dual on the debt capacity constraint at time $t$. |
| $\mu_{j}$ | - dual on the scale of acceptance of project $j$. |
| $\pi$ | - discount factor. |
| $\rho_{t}$ | - dual on cash balance constraint in time period $t$. |
| $\rho *$ | - cost of capital rate for the screening of projects. |
| $\phi_{t}$ | - function denoting debt capacity at time $t$. |
| $\psi_{t}$ | - function denoting the value of equity at time $t$. |
| $\omega_{t}$ | - level of debt at time $t$. |

## Appendix III

The Initial Balance Sheet, Operatine profections and the background Environment

Initial Balance Shect ( $\mathrm{E}^{\prime}, 00 \mathrm{~s}$ )

| SHAPE CAPITAL AND LONC-TERM DEBT ASSEIS |  |
| :--- | :--- |
| Share Capital | Fixed Assets |


| (2,000 E E1) | 2,000 |
| :--- | :--- |
| Reserves | 1,200 |
| Long-Term Debt | 1,500 |


| Land and Buildings | 1,634 <br> Plant and machinery |  |
| :--- | ---: | ---: |
|  | 881 |  |
|  | 2,515 | 2,515 |
|  |  |  |

Current Assets

| Short-Term Deposits | 800 |  |
| :--- | ---: | ---: |
| Debtors | 1,560 |  |
| Stock | 1,700 |  |
|  | 4,060 | 4,060 |

Less Current Liabilities

| Creditors | 1,120 |  |
| :--- | ---: | ---: |
| Tax | 370 |  |
| Overdraft | 100 |  |
| Dividend payable | 285 |  |
|  | 1,875 | $\frac{1,875}{2,185}$ |

4,700
TOTAL ASSETS
4,700

## INITIAL PROJECTIONS (E'000)

YEAR-1 YEAR-2 YEAR-3 YEAR-4 YEAR-5 YEAR-6 YEAR-7 YEAR-8
Sales from existing projects

Gross earnings from existing projects

Planned expenditure Building and Land

Tax allowances
Plant and equipment Working capital (Debtors and Stock) Creditors

| 11000 | 10000 | 9500 | 8800 | 8000 | 7500 | 7500 | 7000 |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| 1950 | 1850 | 1600 | 1560 | 1240 | 1220 | 1200 | 1000 |
| 400 | 600 | 500 | 200 | - | - | - | - |
| 130 | 130 | 130 | 120 | 120 | 120 | 120 | 100 |
| 600 | 500 | 400 | 400 | 400 | 400 | 400 | 400 |
| 3510 | 3588 | 3705 | 3432 | 3120 | 2925 | 2925 | 2730 |
| 1120 | 1145 | 1170 | 1095 | 1020 | 946 | 948 | 902 |

## Additional Data

(1) The initial market value of sharesis $£ 2$ and the rights issue price is El. 6 . No more than $\{0.8 \mathrm{~m}$ may be raised in the form of rights at any one time.
(ii) Long-term debt is available at 8 over 25 years upto Elm in any year.
(iii) There is a planned debt repayment of Elm in year 5.
(iv) Overdraft is available upto E 0.25 m in any year at $12 \%$ before tax.
(v) Excess funds may be placed on 1 year deposit at 7\%.
(vi) The sales during the current financial year were $E 10,550,000$ producing a net profit after tax of $£ 900,000$.
(vii) The initial value of tax allowances on building and land is $£ 130,000$.

The internally imposed financial constraints under which the firm operates* are as follows
(a) Return on capital imployed in any year must be greater than $18 \%$.
(b) The dividend cover should be greater than 1.5.
(c) The ratio of current assets to current liabilities must be greater than 1.8.
(d) The number of times that debt is covered should be greater than 10.
(e) The earnings/share and dividend per share figures in each year are:

|  | YEAR-1 | YEAR-2 | YEAR-3 | YEAR-4 | YEAR-5 | YEAR-6 | YEAR-7 | YEAR-8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Earnings per share <br> ( $£$ | 0.20 | 0.20 | 0.21 | 0.21 | 0.22 | 0.22 | 0.24 | 0.24 |
| Dividend per share <br> (E) | 0.130 | 0.135 | 0.140 | 0.145 | 0.150 | 0.155 | 0.160 | 0.165 |

Treatment of Taxation
There are two categories of capital assets. These are:
(a) Building and Land.
(b) Plant and Equipment.

Tax Allowances available
Building and land receive a first year allowance of 40 with $4 t$ of the initial total cost allowed on a straight-line basis thereafter.

Plant gra equpment receive a first year allowance of $100 \%$.

## Book Debreciation Rates

The book depreciation rates are 38 on building and land and $25 \%$ on plant and plant and equipment both on a reducing balance.
It is assumed that the rate of corporation tax is 50 and that there is a time lag of one year in payment.

[^89]
## Timing of Cash Flows

One of the problems associated with programming models is the mapping of continuous time into discrete time. It was decided because of:
(a) Projects had been developed in which all cash flows were recognised at the end of a period.
(b) The model was to be used for valuation and as such it was necessary to have well defined recognition points.
(c) The model was to be used to generate Balance Sheet information.
that the simplifying assumption of recognising all transactions at the end of a period was adopted.

Ficure A3.1 illustrate the implications of this approach.

## Figure A3.1 THE TIMINC OF CASH FLOHS

(i) SHORT-TERM INVESTIENTS

|  | MAPK $_{t}$ | INTEREST CAI ONER OVDR PEPAID 1 |  |
| :---: | :---: | :---: | :---: |
| PERICD t-1 | PEPIICD t | PEPRIOD $t+1$ |  |
|  | $11$$41$ |  |  |

(i1) LONG-qERM INVESTMENTS

OUTFLOWS

INFLOWS
(ii1) bALT:CE SLiEET IME:S

ASSFTS

LI, LILITIES


# Appendix IV <br> Project Data 

Table A4．1 Project Specification
The projects were specified by the following accounting data over their eight year liyes．

PRCJECT WO．PR 1

| SALES | 0 | 0 | 500 | 800 | 1000 | 1200 | 1200 | 1100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3JILDIJJノLAJD | 100 | 50 | 50 | 0 | 0 | 0 | 0 |  |
| PunivTESUIP：iENT | 0 | 80 | 70 | 0 | 0 | 0 | 0 | 0 |
| EATMIIJGS | 0 | 0 | 100 | 194 | 240 | 360 | 300 | 253 |
| CURRENT ASSETS | 0 | 0 | 200 | 357 | 393 | 439 | 424 | 404 |
| C＇J？nENT LIA3S＊ | 0 | 0 | 40 | 67 | 71 | 55 | 84 | 79 |

RROJECT NO．PR 2

| SALES | 310 | 670 | 700 | 690 | 650 | 520 | 590 | 530 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BHILDINS／IAAD | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PLANT／ENJIPIIEITT | 90 | 45 | 0 | 0 | 0 | 0 | 0 | 0 |
| EARIVINGS | 30 | 30 | 105 | 105 | 105 | 87 | 80 | 64 |
| CURRENT ASSETS | 123 | 234 | 297 | 294 | 266 | 251 | 251 | 195 |
| CURREHT LIA3S | 37 | 74 | 73 | 78 | 73 | 70 | 69 | 55 |

PRCJECT iso．pn 3

| SALES | 410 | 620 | 1800 | 1680 | 1740 | 1520 | 1310 | 1020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BJIL．DIJG／LajD | 200 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 100 | 80 | 0 | 0 | 0 | 0 | 0 | 0 |
| EATMI：JGS | 20 | 62 | 270 | 324 | 312 | 274 | 238 | 153 |
| CUSREIUT ASSETS | 149 | 257 | 714 | 692 | 718 | 629 | 607 | 497 |
| CLiRREyT LIA3S | 60 | 103 | 235 | 200 | 185 | 176 | 153 | 121 |

PROJECT NO．PR 4

| SALES | 300 | 760 | 980 | 910 | 830 | 760 | 710 | 690 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3＇ILDI：NG／LAJD | 75 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
| PLANT／EQÜIPIIE：IT | 250 | 130 | 0 | 0 | 0 | 0 | 0 | 0 |
| E4T：1N3S | 27 | 130 | 226 | 200 | 174 | 152 | 134 | 124 |
| C＇S？${ }^{\text {cht }}$ ASSETS | 77 | 139 | 317 | 305 | 278 | 244 | 232 | 224 |
|  | 45 | 108 | 123 | 118 | 109 | 110 | 107 | 23 |

？OJECT NU．PR 5

| ら．1LごS | 510 | 830 | 1250 | 1330 | 1350 | 1310 | 1230 | 200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W：LGolvs／LaND | 145 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| ：h．a．iT／EJJI Piteidt | 180 | 150 | 90 | 0 | 0 | 0 | 0 |  |
| 二b．．jliJgS | 54 | 116 | 22.1 | 266 | 270 | 250 | 330 | 192 |
| u：$\because=1$ ASSET5 | 123 | 362 | 535 | 595 | 591 | 550 | 498 | 451 |
|  | 35 | 90 | 124 | 130 | 141 | 135 | 126 | 127 |


| SALES | 120 | 270 | 750 | 1250 | 1300 | 1250 | 1000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EUELこI！JG／LA．JU | 225 | 0 | 0 | 0 | 0 | 0 |  |  |
|  | 120 | 100 | 75 | 0 | 0 | 0 | 0 | 0 |
| En？ill：us | 0 | 15 | 135 | 250 | 250 | 250 | 190 | 200 |
|  | 30 | 75 | 115 | 210 | 340 | 350 | 150 | 375 |
| CJRTE：UT LIABS | 20 | 6. | 95 | 105 | 140 | 170 | 195 | 200 |

PROJECT NO．？？ 12

|  | 120 | 390 | 530 | 760 | 1000 | 1010 | 1100 | 950 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SALES | 190 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| BUILDIWG／LAND | 190 | 70 | 50 | 30 | 10 | 10 | 0 |  |
| PLAIST／EOUIPHENT | 50 | 80 | 36 | 108 | 160 | 230 | 220 | 232 |
| EARNINGS | 4 | 190 |  |  |  |  |  |  |
| CIJRREIST ASSETS | 41 | 134 | 229 | 341 | 486 | 434 | 354 | 283 |
| CURRENT LIABS | 17 | 53 | 124 | 168 | 200 | 198 | 185 | 193 |

PROJECT NO．PR 13

| Sfules | 600 | 940 | 1560 | 1100 | 430 | 660 | 210 | 90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BUILJING／LAJJ | 250 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ma：NT／EQJIPidEilT | 140 | 120 | 70 | 0 | 0 | 0 | 0 | 0 |
| Ennolidjs | 72 | 160 | 453 | 242 | 48 | 112 | 36 | 9 |
| C＇J．3：0NT ASSETS | 174 | 236 | 518 | 451 | 166 | 233 | 61 | 39 |
| Cuาลอ：dT L1A35 | 50 | 102 | 180 | 121 | 85 | 103 | 25 | 10 |

PROJECT NO．P？ 14

| Sales | 500 | 1000 | 1250 | 1500 | 1500 | 1500 | 1250 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D！JILDIJS／LAND | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
| PLAITT／EOUIPISENT | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| EARINIJGS | 50 | 150 | 250 | 300 | 300 | 300 | 250 | 200 |
| CJ？．？EงT ASSETS | 120 | 210 | 300 | 390 | 490 | 550 | 630 | 670 |
|  | 43 | 80 | 120 | 160 | 200 | 200 | 200 | 120 |

BクOJECT HO．PR 15

| SALES | 230 | 680 | 720 | 710 | 730 | 680 | 720 | 710 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B：IILDİ：G／LAND | 50 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
| PLAMT／EnlsI PiiEitt | 60 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
| シャว．J11：Gs | 7 | 34 | 72 | 142 | $140^{\circ}$ | 123 | 137 | 142 |
| CuI？：İ：T ASSE\％S | 34 | 133 | 218 | 272 | 292 | 329 | 318 | 294 |
| CJ：？${ }^{\text {at }}$ L LIABS | 20 | 25 | 40 | 73 | 85 | 102 | 100 | 101 |

P：OJECT NO．PR 16

| SALES | 200 | 600 | 1000 | 1200 | 1200 | 1200 | 1200 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BJILDING／LA：D | 160 | 60 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 100 | 100 | 50 | 0 | 0 | 0 | 0 | 0 |
| E1： | 0 | $4 ?$ | 100 | 240 | 264 | 264 | 240 | 180 |
| C＇S3nEUT AJSETS | 65 | 315 | 365 | 4：9 | 450 | 463 | 451 | 100 |
| Cunrens Lan3s | 20 | 70 | 100 | 110 | 160 | 160 | 150 | 140 |


| SALES | 1200 | 2000 | 2000 | 2000 | 1300 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B＇JILDIはS／LAiJd | 300 | 0 | 0 | 0 |  |  | 1400 | 1000 |
| PLA：IT／ETUIPAEMT | 250 | 400 | 200 | 0 | 0 | 0 |  |  |
| EATivlNSS | 192 | 300 | 360 | 340 | 239 | 233 | 132 | 120 |
| CリRลEかT ASEこTS | 372 | 640 | 545 | 702 | 690 | 672 | 585 | 420 |
| CJR．E®：${ }^{\text {L }}$ LAコS | 181 | 279 | 290 | 235 | 263 | 241 | 219 | 475 189 |

PROJECT NO．PR 22

| SALES | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BUILDIHG／LAND | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PLANT／ERIITIEINT | 40 | 100 | 150 | 40 | 0 | 40 | 0 | 0 |
| BAFNIHGS | 100 | 100 | 110 | 110 | 105 | 100 | 110 | 105 |
| CURIEHT ASSETS | 150 | 154 | 163 | 159 | 178 | 176 | 173 | 166 |
| CURRENT LIABS | 69 | 73 | 69 | 67 | 68 | 68 | 66 | 61 |

ProJECT NO．PR 23

| SALES | 700 | 750 | 780 | 900 | 310 | 800 | 770 | 750 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BUILDING／LA：${ }^{\text {d }}$ | 125 | 65 | 0 | 0 | 0 | 3 | 0 |  |
| PLAUT／EQUI？ | 250 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
| EA7ividjs | 140 | 165 | 156 | 152 | 137 | 125 | 103 | 105 |
| CUマ？ごさ ASSETS | 210 | 244 | 234 | 310 | 315 | 313 | $2: 32$ | 257 |
| CJPRENT LIA3S | 100 | 100 | 112 | 115 | 121 | 121 | 120 | 100 |

PnOJECT HO．？ 24

| SALこS | 1200 | 1700 | 1560 | 1490 | 1495 | 1520 | 1530 | 1510 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B＇JILDİJG／LA： | 150 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
| P－AijT／ETJJPiajist | 250 | 200 | 100 | 50 | 0 | 0 | 0 | 0 |
| En：${ }^{\text {Plijg }}$ | 155 | 255 | 255 | 209 | 224 | 253 | 275 | $24 ?$ |
| CU．3TEITT ASSETS | 405 | 506 | 567 | 503 | 510 | 537 | 555 | 570 |
| C！コRこごす LIASS | 137 | 250 | 270 | 270 | 265 | 255 | 260 | 250 |

PPOJECT INO．PQ 25

| SALES | 1000 | 1200 | 1250 | 1250 | 1290 | 1300 | 1310 | 1300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BUILDI：IG／LAIJD | 125 | 25 | 0 | 50 | 0 | 0 | 0 |  |
| PLA：JT／EASIPIIENT | 150 | 150 | 0 | 150 | 0 | 0 | 0 | 0 |
| EARijliss．j | 140 | 220 | 230 | 240 | 220 | 190 | 150 | 120 |
| Cunneilt nssexs | 367 | 419 | 455 | 451 | 446 | 467 | 450 | 445 |
| C＇sR？EidT LInDs | 162 | 190 | 200 | 190 | 198 | 221 | 210 | 205 |

Table A4．2 The Cash Flows and IRR of the Projects．

$$
\begin{aligned}
& \text { a } \\
& \text { స్ స゙ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { の }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Basic } \\
& \text { Project } \\
& \text { Type } \\
& \text { (all cash flows in } \boldsymbol{\ell} 1000 \text { 's) }
\end{aligned}
$$

Table A4.3 The Availability of Profects
A tick indicates that a particular project was available in that year.

| YEAR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRI | $\checkmark$ |  |  | $\checkmark$ |  |  | $\checkmark$ |  |
| PR2 |  |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |
| PR3 |  | $\checkmark$ |  |  | $\downarrow$ |  |  |  |
| PR 4 | $\checkmark$ | $\checkmark$ |  |  |  | 1 | $\checkmark$ |  |
| PRS |  | $\checkmark$ |  | $\checkmark$ |  | $\downarrow$ |  |  |
| PR11 |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\downarrow$ |  |  |
| PR12 | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  |
| PR13 | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  |  |  |  |
| PR14 |  | $\checkmark$ |  | $\checkmark$ |  | 1 | $\downarrow$ |  |
| PR15 |  |  | $\checkmark$ |  |  |  |  | $\checkmark$ |
| PR16 | $\checkmark$ |  |  |  |  | 1 |  |  |
| PR21 |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  |  |
| PR22 | $\checkmark$ |  |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |
| PR23 | $\checkmark$ |  |  |  | $\checkmark$ | $\downarrow$ |  |  |
| PR24 | $\checkmark$ |  |  |  |  |  |  |  |
| PR 25 |  |  |  | $\checkmark$ |  |  |  | $\checkmark$ |

APPENDIX V
(1) The Structure of the Objective Function - Single Criterion Podel.

When the model was being used for the maximization of the value of the firm (chapters 3 - 5) the form of the objective function was

$$
\begin{aligned}
& \operatorname{MAX} \psi_{0}=\sum_{t=1}^{H-1} \frac{D V_{t}}{(1+i)^{t+1}}-\sum_{t=1}^{H} 1.6 \frac{R G_{t}}{(1+i)^{t}} \\
& +\frac{0.572 \text { OVDR }_{\mathrm{H}-1}+0.0384 \mathrm{LL}_{\mathrm{H}-1}-0.0338 \mathrm{MARK}_{\mathrm{H}-1}}{(1+i)^{\mathrm{H}}} \\
& -\left\{\frac{D E_{H}+O V D R_{H}}{(1+1)^{H}}\right\}+\frac{\text { MARK }_{H}}{(1+i)^{H}} \\
& +\sum_{j \varepsilon\left\{P R_{n} y_{t}\right\}} x_{j}\left(\sum_{\tau=H+1}^{\tau=8} \frac{c_{\tau j}}{(1+a)^{t-H}}\right)
\end{aligned}
$$

where $i$, the equity rate was $12 \%$ and $a$, the cost of capital for discounting project cash flows was 108 or $105 \%$ as detailed in the text.

The first two terms in A5.1 represent the net dividend flow to the equity holders. At the horizon the portion of the value of the firm attributable to the equity holders consists of the after tax cash flows less adjustments for the value of the outstanding fixed interest instruments. The value of the former is just the post-horizon after tax cash flows discounted at a, while the latter consists of the market value of the fixed interest instruments plus adjustments for unpaid taxation in $H-1$. The details of the derivation of the form of A5.1 are to be found in section 4.6.

## (ii) Selection by internal rate of return - structure of objective function

In section 3.6 the single criterion model was used to consider selection by IRR, the objective function took the form

$$
\begin{equation*}
\Psi_{0}+\sum_{j \varepsilon\left\{\mathcal{P R}_{n} Y_{\tau}\right\}}\left(1000 \times I R R_{j}\right) x_{j} \tag{A5. 2}
\end{equation*}
$$

where $\psi_{0}$ is as defined in equation 5.1, with $H=8$ and

$$
\begin{aligned}
I R R_{j} & =+1 & & \text { If IRR of project } j>i \\
& =-1 & & \text { If } I R R \text { of project } j<i
\end{aligned}
$$

where i denotes the cut-off rate for selection.
(iii) Selection by internal rate of return ranking

In this case the objective function took the form

$$
\psi_{0}+\sum_{j \in\left\{P_{n} Y_{t}\right\}}\left(1000 \times \operatorname{RANK}_{j}\right) X_{j}
$$

where RANK $_{j}$ was a number in the range 1 to 45 , corresponding to the ranking of project $j$ by an internal rate of return criterion. For projects which were available in more than one year, the project occurring first was given the highest ranking.

Arpendix VI
A Syatems Flow Chart $=$ The Siniole Criterion Model


## APPENDIX VII

A7.1 A Sample Control Deck.
A7.2 LP Input Data Listing

EXHIBIT A7.1 A SAMPLE CONTROL DECK










$\begin{array}{ll}3 & 8 \\ \vdots & 8 \\ \div & \div\end{array}$

-0.5000 RDCE 6
-0.5000 ROCES
-0.5000 ROCE6
$\begin{array}{ll}\text { \＃} & \text {－} \\ \text { O } \\ \text { O } & \text { C }\end{array}$
N
m
3
0
0
5
3
0
n
40
3
0
N
0
0
0
0
$-0.5000$
0
0
0
0
$-1.0000$
$-1.0000$
$-1.0000$
$-1.00100$
$-1.0000$
$-1.0000$
1.0900
1.0000
1．0000
（\＃EमF\＃r（a）135 moy

1．0000 ERPS2
1.0000 ERPS 3
1.0000 ERPS 4

| n |
| :---: |
| $\underset{\sim}{\boldsymbol{c}}$ |

1，0000 ERPS6
1.0000 FRPS7
 -
0
0
0
$\vdots$
$\div$
N．N
$\begin{array}{ll}0 & 0 \\ 5 & 0 \\ \vdots & 0 \\ \div & \div\end{array}$

shmilo ay 9wlasit

## VARIABLES

EA4
ECOV 6艺艺


 N 응릉 $\underset{a}{-}$ $\approx$
응～
응空品号皆 an
sia
an 응


LISTIMG EY COLUMMS
variables

COLYR Culym

3 N N




 $\underset{\sim}{*}$
 $\underset{\sim}{2}$ TAXA
FABLI
FABL2
fABL3
FABL4
感
FABL6
fABL?

\section*{| 82 | 80 |
| :--- | :--- |
| 05 | 0 |
| $\div 5$ |  |
| $\div 1$ | $\div 0$ |}

30
E.
$\therefore 8$
$\div 8$
$\begin{array}{ll}0 & 82 \\ 0 & 8 \\ 0 & \div 8\end{array}$





LISTING BY COLUNMS variables．



 3皆


0.1800
0.1800
0.1800
0.1800
1.0000 ROCES
1.0000 ROCEG
1.0000 ROEET
-1.0000 ROCES
-1.0000 ROCES
-1.0000 ROCE2

－0．1800
0.1800
-1.0000 ROGES 0.1800 $1.0000 \mathrm{eB3} \ldots$ 1．nono cern－：－

0.1800
$-\therefore .0000$ ROCE 4 $1,0000 \operatorname{cas}$
$00000000000000=0$＊＊＊＊＊ONO $000 * * * * 0 * 0000000000000$
-1.0000 CA4 $-1,0000$ CA4
1.3000 $0000 * *=00200000000000000$
$-1.0000 \cos \ldots . .$. 0000000000000000000000000
$-1.0000 \quad$ CB6 0000000000000000000000000 $000000 * 00000000000000000$
$-1.0000 \mathrm{CB7}$

0000300000000000000000000 -1.0009
1.3000
CLB 000000000000000001000000 0.1800
$9330110000^{\circ}$ に 23501 0000．1－ ${ }_{\mathbf{O}}^{\mathbf{0}}+$ ROCES 1.0000


## 

$\qquad$ $1.0000^{n} \mathrm{CAB} \ldots 1.0000 \mathrm{COS} \ldots \ldots .$. 1.0000
1.0000 -1.0000 DTARG3 1.0000 -1.0000 OTARG4 1.0000 -1.0000 DTARG5 1.00 N -1.0000 DTARG6 . 1.0000 $00000000000000 n 000000000-1,0000$ CB7 -1.0000 OTARG7 1.0000 -1.0000 OTARG7 1.0000
 0.2000 DTARG1
0.2000 OTARG2 $\quad-0.1350$
0.2100 drarg3 -0.1600
$-0.1450$
$-0.1500$
$-0.1550$
$-0.1600$
$-1.42 \mathrm{Av}$
$-1.2760$ $-1.1339$
$-1.0170$
$-0.9070$
$-0.8110$
$-0.7240$
-0.6466
-1.0000
ROL SET (ABAMBHY) COLUNM SET (AMBABBA)
0.2100 DTARE4

0.2200 OTARGA
 … 1.0000 EOB ........ $\mathbf{- 1 , 0 0 0 0 ~ E R P S ? ~}$

$-0.1650$
$-1.0000 \mathrm{COSJ}$
-1.0000 cosd
-1.0000 C08J 1.6000 _ 501 $\begin{array}{r}800.0000 \\ -1.4290 \\ \hline\end{array}$ 00**000000n00000000000000 =-… $-1 ; 2760$ c82
$0000 * E 0000 n 0000000000000$ $8.139 n$
-1.153
$\begin{array}{llll}800.0000 \\ -1.0170 \\ \text { Cn6 } & -1.0000 \text { E01 } & -1.0000 \text { coes }\end{array}$
-1.0000 COBd
응

$0000^{\circ}$ -


$800 * 000000000000000000$ …
800,0000

0.8110 CA6



-0.0800 PR2
000 0.0.e00.000000000000000
SM以
variables


- E. LISTING aY COLUANS
variables
cotya


154.0000
77.0000
73.00040
73.00 CO
OR． 110 OH
$C A 2 \quad 1$
珯む
으륻
50.0000
78.0000
$64.0 n 00$
68，
$-18.337$
$-18.337$
NOUぐロッ完完会 0
0
0
0
0
0 등 8 78
7
1
11
29
28
28
112
120 ．
 152.00100
105.0 niv 100.00 na $310.0 n n u$
$257.00 n 0$ 116.00110
100.00100



## 1225

 DUUE＇s－

品

등ㅁ응으응응 onvo
 －

40.0000
163.0000
73.0000
69.0000
66.0000



## vartables

空쿵 PR 23 YY

COLYA
UPDND

## pR03y2

 OLYR家 0851
Ts？ ～以
完 COS OB． PROSYZ COLYR
$00 * * * * 00000000000000000$ Z
39.5000
330.0000

| $\circ$ |
| :--- |
| 0 |
| 0 |
| 1 |


会会登
으응
$02 \cdot 9$ 1280.0000
$2 A 6.0000$
 cin

3.3000
10.0000
16.0000
2.0000



 응ㅇㅇ을ㅇㅇㅇㅇㅇㅇ mónidin in $\stackrel{2}{2}$


Nmべ心㇒⿱幺小心



ペぎぎ
30,0000
0.0000
5 ，0000
1,0000
1,0000 23

 으으으으́
0080
0
$0 * * * * * * 0000000000000000$ ．
§180 000 ${ }^{\circ}$ \＆
0
00
08
0.8
no
0 $n$
0
0
0
0
0




61.00000
121.0000 CL6 1.2117 ．．．．．．．．
$0 * * * * * 0000000000000000$

용ㅇㅇㅇㅇㅇㅇ응
 －O

## 

M

응응응ㅇ

－

응․
品
30
B．
0.0
$\vdots 0.0$
$01000^{\circ} 002$
000 E 65 ．

$0000.86=\ldots 9780$ 0006．66－



monnnunun
응ㅇㅇㅇㅇㅇㅇㅇㅇ
0000000
MiO
-1000
$0 * * * * 00000000000000000$
1.0000
65.0000
0 AJ 2
285.0000
23.9513

2580 V0N0． $28=$

LISTIMG aY COLUMMS
variables

을
을
告N

든을
－
Ts2
ジッ
嫘
ぐ が
a
를
0
0
0 PR13Y2

PR16Y2
pr21yz．

~Now
$800^{\circ}=$

| 88 |
| :--- |
| 88 |
| 80 |


i $1: 1$
ज

옹응




$\sim \sim N$
$\sim$



 (tr|tan: 135 Mallup


天






$$
\begin{aligned}
& 50.0000 \text { EA5 } \\
& 300.0000 \\
& 50.10000 \\
& 120.0000 \\
& \hline 8 E A 5 \\
& 160.0000 \\
& 160.0000 \\
& \text { CLE }
\end{aligned}
$$

$$
\begin{aligned}
& 00000005 \\
& 0005.96
\end{aligned}
$$

$$
3
$$

$$
\mathbb{E}_{\mathrm{u}}^{\infty}
$$

$$
000 * * * * 00 \cap 0000000000000
$$

94.0000
500.00000
500.0000
110.0000
$100.000 n$
154.0000
69.0000
68.0000

$$
\begin{aligned}
& \text { ORJ2 } \\
& \text { T } 55=
\end{aligned}
$$

$00 n \approx * * * 00000000000000000$

OONO***OONOOOROOOROOOOO

| $189.000 n$ |
| :--- |
| 310.4000 |
| ORJ2 |
| 30.000 |
| 56 |


88
0.8
30
50
80.0000
90.0000
247.01000
78.0000
. 12.000
0000 e***00000000000000000

COLYR
UPBNO
OB 11
TS
TS
EA
OL7
CA6
CAB
CLT
COLYR
UPBMO
을
in
CLS
CAK
CL6
81105 shcoyd
UPAND
OBJI
nn ño pellivs


610.0000
20.0000 EA6
287.6000 08J2 297.2000 0833
Pno2vs


R3


CULYR
HPRND


若
「
춘

paliyg COLYR
으웅
皆思
Pa21ys
PRO4Y6
prosys
paliyg


LISTIME aY COLUMMS LISTIME IV COLUMNS
VARIAALES
98.5516
315.0000

：
267.7000 OR16 222.0000



107.0000 0856 184.0000
$\begin{array}{lll}07.00 \cup 0 & 08 J 6 & 904.0000 \\ 50.0000 & \text { PEA } & 90.0090\end{array}$
08 Js
PFs $\quad \begin{array}{r}162,0000 \\ \end{array}$
$\begin{array}{rr}0816 \\ \text { PES } & 114.0000 \\ & 60.0000\end{array}$
$\begin{array}{lr}08.56 & 162,0000 \\ \text { PFs } & 60,0000\end{array}$
80.0000

343,9000
277.0000
50.0009
65.0000
50.0000
50.0000
60.0000
149.0000
100.0000
100.0600
73.0000
172.6000
50.0000
$117.9 n 00$
100.0000
 PR14Y7 COIVR

 こ
 UDOUUU．aUUNOODOORDOOODOD


 300.0000
$3100 . n 00 n$
$15 \%$
97令 127.2285 238.2000 0月J3 1001010000
210,11000
PET
00nOODKOOOROGDN0000000000
226．1100n OnJz
$226.1104 n$ ORJ2
310.0000 EAB
$1<5.0000$ C1．
000uUun．000200000000000000



S0.UONO PEA
0000u000u0000000000000000 150.7000 URJ2
500.000 O i 58
S00．0UUN TS8
100.0000 PEP
154．000n cL？$\quad 69.1000$ CLA
1
$\vdots$
1
－
．－．．．．．．．．．．．
$236.1000^{0833}$
20，uuno roird
U0000DA．UONOOODOU0000000U
$\begin{array}{ll}1.00100 \\ 137.1000 & 0 A 22 \\ 500.000 n & E A 8 \\ 150.0110 日 C & C L E\end{array}$
00nouvaruanuenonnodon000

## N゙



201． 70000 OR ORJ2
230.0000
KL．
KAA
COLYR
UPBND


울

PROLY7
PR14Y7
pr22y7
PROZY8
PR15yn
przzys
pr2sys

$$
\begin{aligned}
& 1,000 n \\
& 246,4000 \\
& \text { On } 22 \\
& 300,01110 n \\
& 100.0400 \\
& 120.018000 \\
& \text { BA8 }
\end{aligned}
$$

513.60000810
125.0000
167.8276


| $256,200000133^{-}$ |
| :--- |
| 30,0000 BL8 |
| 37,0000 conJ |

COLIMASET (RUBEEAME)

| -1acto.giva | EA4 |
| :---: | :---: |
| -12ac.00) | EA |
| -3705.090n |  |
| -2975.0700 | CA8 |
| 0n0n |  |
|  |  |




$-1546.06+50$
-Ta00.ícol
$-3+32.0064$

-273 c .0000 | 3 |
| :--- |
| 10 | -402.00~0

号 둔 2
$\overbrace{0}^{3}$
0
0

303
जै
जै
$-002.1 .604$

3
0
0
0
0
3
㿻
 3
5
5 4
4
4


## APPENDIX VIII THE REPORT WRITER-SINGLE CRITERION MODEL



```
'PROCFDURF'NEXTMUAP:
```



```
 M:DREAD:
```



```
 -ENDO:
 *PROCFDURE GHPPUT(A):
 -meal"*armaria:
 -REGIM*
 fupVTEXT(*('*')'):
```



```
 OFND':
 -PROCFDURE' PERION:
 'REGI*'
 *ELLIME(1):
```



```
 WRITETEXT('(''('2S')'DERIUB-5&ZDERIOD-6XXDEQIUR-7&&DERIUN-S')'V:
 NEWLIME(1):
 'EMD'!
 -DROCFDUREIACNIEVEMEMT(A,B):
 -aEA&''ARHAY'A,Bz
 -REGIV
 CMPYTFXT(*('*)*):
```



```
 HFWLImF(1):
 COPYTEXT('('*')*):
```



```
 MFELIWF(4):
 rupYTEXT(*('*)0):
```



```
 "m和:
 CFGGIM
 PEAL. MARUAYISALFF, FADN,MOAT,RG,LL,CB,NOCE,LORY,ECUV,EMPS,DCOV,DTARG,
 PTARG,STAKG,AZ,AR,A4,A5,AG,A7,AB(1:B)
 ,AA,AN,TAR,FARL,FAPE,CURA,GHRL,NVDR,MARK,DV,NUM,DF,PLTA,AI[OSRI:
 SELFLTINPUTE1):
 KFANTRAH(READERD):
 INTILL('(':ISTINGXBYXIU(UNW')'):
 INPILI:'('VAPIAPLFS')'):
 AENAYIH(RICE,R,'("FABL')", (*ROCE')'):
 ARRAYIm(LOAY,R,'(*CHRL")",('LQNY')"):
```




```
 AmRAYim(DCOV,R,"('DV')','('DCOV')'):
 ARRAY!
 OMEGIM*
 DATAI"(ERDS(J]."('MIIH')','('ERPS')'\:
 |NTIL('('DTAGG')'):
 SEIPCM:
 OTARG[J)IEREADS
 |FND'&
```



```
 IMTILL('('ECOVI')'):
 ECOVTTI:EREAD:
```




```
 DTAPG(I):=0TARG{I)-(-100.n):
```



```
 GOC&{1);EFOCF(i)+100.n;
 Ecovisj:EECNU{IjfR&:
 'EMD'8
 |NTILI('('SOL(tTION')')
 IATILL('('DUMO')*):
 INTILI("('DHMD')O)
 M:BGEAD:PAPFRTMROW:
```

STA日T：

14pUT（FAKO，N．（＇EARN＇）＇）：


14DUT（FABL，K，（＇EA解＇）＇）：

IMPUT（CURA，N，（（＇CIMA＇）＇）
14PUT（CURL。A，（＇CumL＇）＇）
14PUTIOVDR，M，（＇OVNB＇）＇）
1世PUT（MAKK，M，（ ${ }^{\circ}$ MARKロ）＇）：
1世PUTIDV，M，（f＇nV＇）＇）






COOYTFXT（＇（＇ROWXINFORMATION＇）＇）
SELFCTIMPUTIZ）：COMMENTV GEOS SNOULD PROVIDE CROF
HOM［0］：＝READ：
HFS：AEAD：
DF（U）：ARED

MARK［f］：EREAD：CURA［n］：＝READ：

＂COMAEMT＂BALAMCE SNEFT：
COPYTEAT（＇（＇＊）：\％：PERIGO：
CO．YTFXT（＇（＊＊）
UッTPUT（VU＇4）：AT【0！：ERES：
An\｛0\}: =0, "; AA\{U\}: =U.0:








 ＇ENO＂ 8
UHTPUT（AA）：
OHTPUT（AU）：
OHTPUT（A1）：
UHIPUT（NE）：
OUTPUT（A2）：
NEWLINF（2）：
COPYTEXT（＇í＊）＇）：NFWLINE（1）：
CODYTFXT（＇（＇$\left.\left.{ }^{\circ}\right)^{\circ}\right):$ NFWLINE（1）：
OUTPUT（FANL）：
OHTPUT（FAPE）：
COPYTFAT（＇（＇＊）＊）：世FWLINE（1）：
OITPPT（FARY）：
0UTPUT（A3）：
OHTPuT（CURA）：
COPYTFAT（＂（＂＊）＇）：WFWLINE（I）：
OUTPUT（Aん）：
OUTPUT（TAX）：
（OHTPUT（GVAM）：
OリTPUT（DV）：
OUIPUT（CURL）：
OUTPUT（AS）：
0リTPUT（AB）：
COMmFMT：PDOFITANN IOSS：


OHTPUT（SHLES）：





－－is i：aes seovon\｛i－1）：



－ENO＂：
outpur（al）：
OUTPUR（A2）：
OUTPUT（A3）：
OHTPUP（A6）：
olltpur（AS）：
OIITPUT（AG）：
OUTPUT（BPAT）：
OHTPUT（DV）：
OUTPUT（A7）：
WENLIMF（3）：
＇COMMENT＇CASM ELOW STATENE世T：
COPYTEXT（＇（＇＊＇）＇）：WFULIME（1）：
COPYTFXT（＇（＇＊＇）＇）：

 AL\｛： $3=$＝nE\｛1］－nETI－1）：
＊





4311：＝1．fong（1）：

＇En日＇
OUTPUT（A1）：
OUTPU：（AZ）：
UIITPUT（A6）：
OUTPUT（AS）：
OUTPUT（AO）：
CODVFFAT（＇（＇＊＇）＇）：




A6 1）：＝0ione（1－1）：

a7\｛1）：EIAD（1－1）：
AR（1）：＝AY（1－1）：

＂E日B＇：
Gutput（at）：
GIIPPUT（AZ）：
OllpPUT（A3）：
OHTPUT（AG）：
OUTPUT（AA）：
viltput（AT）：
OUTPUT（A5）：
OHTPUT（A6）：
＇COMmFNT＇INDICATOES：

MEWLINE（1）：


－CURL［1］）：
4！\｛1：＝4！！！e100．0：
12\｛1］：＝rupali）／CuR（II：



Anli］：arvilifmum［i］eino．0：
C ๓内＂：
COPYTEXT（＂（＂＊）＂）：PEATOO：
ATHIEVENENT（GCICE，AT）：
ACHIEVENFO：T（LODV．A2）：
ACMIFVFNFMT（ECOV，A3）：
ACHIEVENEYT（ERPS，A4）：
ACHIFNEMFNTEPCOV，ASII
ACHIENEMEMT（OTARG，AK）I
CCPYTEXT（＇（0））

SELECTI母DHP（1）！
WEXTOLHPI DADFATMEOWI＇GOPO＇STAMTE
＂FWO＂：
－FMD＇

## APPENDIX IX

A9.1 LP SOLUTION AT NORMAL EARNINGS
A9.2 FINANCIAL STATEMENTS AND RATIOANAYSIS AT NORMAL EARNINGS
A9.3 LP SOLNTION AT A TEN PER CENT INCREASING IN EARNING
A9.4 FINANCIAL STATEMENTS AND RATIOANALYSIS FOR A TEN PER CENTINCREASE IN EARNINGS
A9.5 LP SOLUTION AT A TEN PER CENT DECREASE IN EARNINGS
A9.6 financial statements for a tenPER CENT DECREASE IN EARNINGS

EXHIBIT A9.1 LP SOLUTION AT NORMAL EARNINGS




 $\underset{\sim}{\infty}$ $\stackrel{N}{3}$ e $\stackrel{a}{a}$ N $\stackrel{\circ}{-}$ 0
0
0
0 \% $m$ :


인

$$
\begin{array}{lll}
1 \\
\frac{1}{n} & 0 & 0 \\
& 0 & 1
\end{array}
$$

EXHibit A9.2 financial statemenis and ratio analysis at normal earnings
PERIOD-1 PERIOD-2 PERIOD-3 PERION-6 PRRIOD-5 PERIOD-6 PERIOD-7 PERIOD-8 1
0
0
0
0
0
0
0
0
0

$$
\begin{array}{r}
2233 \\
140
\end{array}
$$

$$
3033
$$ 11325

$$
-3033
$$

1i
N

$$
\begin{aligned}
& 1643 \\
& 1983
\end{aligned}
$$

$$
\begin{array}{r}
166 \\
0
\end{array}
$$

$$
3637
$$

$$
1686=2166
$$

$$
3252
$$

$$
12846
$$

$$
\frac{a}{\infty} \frac{a}{j}
$$

$$
507
$$

$$
6190
$$

$$
\begin{aligned}
& 3033 \\
& 620
\end{aligned}
$$

$$
10261
$$

$$
1225 R
$$

$$
\begin{array}{r}
620 \\
9467
\end{array}
$$

$$
\begin{array}{r}
3762 \\
12866
\end{array}
$$

$$
\begin{aligned}
& 6486 \\
& 3833
\end{aligned}
$$

$$
\begin{array}{r}
662 \\
9575
\end{array}
$$

$$
10037
$$ $3033:$

620 .5750 17036 13581 3318 5111 10848 $\ldots 661 \ldots 561^{\circ}$

$$
\stackrel{\infty}{\circ} \stackrel{0}{\infty}
$$

$$
\underset{\sim}{m} \underset{\sim}{\infty} \underset{\sim}{\circ} \underset{\sim}{\circ}
$$

$$
\underset{\sim}{n} \underset{\sim}{\infty} \quad 0 \underset{\sim}{N}
$$

$$
\stackrel{\circ}{\circ}
$$

$$
{ }_{0}^{0} \underset{\sim}{n} \underset{\sim}{N}
$$

$\begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}$

$$
\begin{aligned}
& 176
\end{aligned}
$$



## EXHIBIT A9.3 LP SOLUTION AT A TEN PER CENT INCREASE IN EARNINGS




EXHIBIT A9.4 FINANCIAL STATEMENTS AND RATIO ANALYSIS FOR A TEN PER CENT INCREASE TN EARNINGS
2698
in ผั ~ 1716 9289 N ~ $\frac{\stackrel{c}{5}}{\stackrel{-}{5}}$ 13812 ○~ PERIODS PERIOD-6 PERIOD-7 2698 4 3299幺 シ 6856 4050 680 10793 11473 $38 \mathrm{B2}$ ल - N 540
 10541

1279 2065 | N |
| :---: |
| m |
| in |
| m |
|  |



1

$$
\begin{aligned}
& \text { TAI } \\
& \text { SHARE CAPITAL } \\
& \text { SHARE PREMIUM }
\end{aligned}
$$

$$
\text { TAXATION EQUALISATION } \quad 567 \quad 1282 \quad 1736
$$

$$
\text { ReSERVES } 2387
$$

$$
\text { LONG TERM DEBT } 2225
$$

 TOTAL LIABILITIES $6563-8662$

## FIXED ASSETS

$$
2841
$$ 2698 2239

$$
\text { LAND AND BUILDINGS } 2669 \text {. } 3853-\quad 6580
$$

$$
\text { PLANT AND MACHINERY } 2274=1674=2715
$$

Current assets
SHORT TER K DEPOSITS $283 \quad 0$

$$
\begin{array}{r}
2698 \\
619 \\
2975 \\
4206 \\
6495 \\
14796
\end{array}
$$

$$
\begin{aligned}
& 2698 \\
& { }^{10} \\
& 2.4 \\
& \text { os } \\
& 336 \\
& \text { 12456 }
\end{aligned}
$$ DEBTORS AND STOCK $3072 \quad 4841$.8271 CURRENT ASSETS $\quad 48251$ current liabilities. CREDITORS tax

## overdraft


 $12856=16796$


$$
\begin{aligned}
& \text { 旁 }
\end{aligned}
$$

EXHIBIT A9.5 LP SOLUTION AT A TEN PER CENT DECREASE IN EARNINGS

|  | Uん1! |  |
| :---: | :---: | :---: |
| DHMP: GUPP | 114 |  |
|  | คทบ | SET |



COLUMN INFOKMATIOW


$\qquad$

EXHIBIT A9.6 FINANCIAL STATEMENTS FOR A TEN PER CENT INCREASE IN EARNINGS
DERIOD-A

PER!OD: 7
 ®
$\vdots$
$\infty$
$\infty$
 -12327: 13769
BALANCE SHEET (E'0005)
PERIOD-1 PERIOD-2 PERIOD-3 PERION-4 PERIOD-5
PERIOD-1
2197
119 1557 1757
6439
荌 ~
合
2325
766
है
"
3004
DUMP 115

|  |  | PER100－1 | Perton－2 | PERTOD－3 | PFR108－4 | PERIOD－5 | PERIOD－6 | PERIOD－7 | PER100－R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| return | Target | 1月．0 | －18．0 | 18.0 | 9月．0 | 18．0 | 1月．0 | 18．0 | 18.0 |
| ON | achieverant | 22.9 | 18.0 | 20.0 | 22.7 | 19.7 | 21.9 | 20.6 | 21.3 |
| CAPITAL | percent meviation | 27.2 | －0．0 | 10.9 | 26.7 | 9.6 | 21.5 | 16.3 | 18.2 |
|  | TARGET | 1.8 | 1.8 | 1.8 | 1. | 1. | 1. | 1.8 | ． $\mathrm{B}_{\text {－}}$－ |
| HouIDITY | achievfuent | 2.3 | 2.2 | 2.0 | 1.8 | 1.8 | 1. | 2.0 | 1.9 |
|  | percent neviation | 27.5 | 19.9 | 8.9 | 0.7 | 0.6 | －0． | d． 4 | $5.5{ }^{\circ}$ |
| times | tabget | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 11.0 | 10.0 |
| COVERED | achievement | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.3 | 10.0 | 10.7 |
|  | percfit neviation | 0.0 | －0．0 | －0．0 | 0.0 | 0.0 | 2.8 | $+0.0$ | 7.1 |
| Earnings | Target | 20.0 | 20.6 | 21.0 | 21.0 | 22.0 | 22.0 | 24.0 ． | 24.0 |
| DER | achievfment | 29.3 | 22.6 | 29.6 | 30.4 | 33,3 | 43.6 | 45.1 | 6月．3 |
| Share． | percemt nevtation | 46.3 | 13.2 | 41.0 | 87.6 | 51.2 | 9月． 1 | $8 \mathrm{~B}, 1$ | 101.2 |
| divideno | －target | ¢ 1.5 | 1.5 | 1.5 | 1.5 | 1. | 1.5 | 1.5 | 1.5 |
| Cove R | achievenemt | 2.3 | 1.5 | － 1.7 | 1.5 | 1.5 | 1.5 | 2.8 | 1.5 |
|  | percemt devtation | 50.0 | 0.0 | 11．4 | 0.0 | 0.0 | －0．0 | 8R． 1 | － 0.0 |
| OIVIPENO | Target | 13.0 | 13.5 | 14．0 | 14.5 | 15.0 | 13.5 | 16．0 | 16.5 |
| DER | achievfnewt | －13．0 | 15.1 | 17.7 | －26．3 | 22.2 | 29.1 | 16.0 | 32.2 |
| SHARE | pencemtage deviatiom | 0.0 | 11.8 | 20.6 | 81.1 | 67.9 | 87.5 | 0.0 | 95．2 |



A Systems Flow Chart - The Multicriteria Model


606060606060

| PRORLEM | goalmodelods |  | LIST(1) |  |  |  | date | 20107176 |  | time | 12/11/26 |  | PAGE | 0003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ROW SET |  |  | COLU | SET | (11) | (11848) |  |  |  |  |  |
| rou mames and number of mindereno flements |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| kernel rows |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BndDCOV7 BuDDVPS5 |  | BnDDCOVS SVDDVPS6 | $\begin{array}{r} 2 \\ -\quad 2 \end{array}$ | BNDPVPS1 BMDDVPS: | $2 \begin{aligned} & 2 \\ & 2 \end{aligned}$ | BNDOVPS2 -BMDDYPS |  | 2 | BNDDV |  | 2 | BMODVPS |  | 2 |
| COLUmm mames ano number of. non-2ero elements |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ROW SETS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ROUYR ROUYR | $\begin{array}{ll}02 & 15 \\ 08 & 115\end{array}$ | $\begin{aligned} & \text { ROUYR } \\ & \text { ROUYR } \end{aligned}$ | $\begin{aligned} & 25 \\ & 56 \end{aligned}$ | $\begin{array}{ll} \text { ROWYR } & 0 \\ \text { ROWYR } & 2 \end{array}$ |  | ROWYR |  | 62 | nourr | 06 | 79 | ROur | . 07 | 97 |
| vartables |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Salest | 2 Sa | salest | 2 | Sales 3 | - 2 | Salesa | - | 2 | Saless |  | 2 | Salest | * | 2 |
| Salfs | 2 SA | salesa | 2 | EARM, | 7 | EARNZ | * | 7 | EARMS | * | T | EARNG | * | 7 |
| earms | 7 E | EARH6 | 7 | EAR47 |  | Earns | * | 7 | MPATI |  | 7 | MPAT? | * | 7 |
| mpars | - 7 ND | NPAT6 | $?$ | mpars | 7 | npats | * | 7 | MPAT7 |  | 7 | mpats | * | 7 |
| Tax1 | + - 3 T | TAX2 | 3 | jax3 |  | TAX4 | * | 3 | taxs |  | 3 | Taxb | * | 3 |
|  | - $10{ }^{3}$ | TAXA | $1{ }^{3}$ | FABLI |  |  | * | 10 | FAAPL3 |  | 10 | FABL6 |  | 10 |
| fapes | - 8 | FAPEi | 8 | fapes | 8 | fapifg |  | 8 | fape? | + | , | fapes | * | 6 |
| Cural | + 6 Cl | Cliraz | 6 | cillas | 6 | CIJPA6 | * | 6 | curas | * | , | curag | * | 6 |
| curat | - 6 cl | CILRAE | 6 | CIIRLI |  | CIR1.2 |  | 6 | curl3 | * | 6 | c.118 ${ }^{\text {a }}$ | * | 6 |
| curcs | - $3^{6}$ | C.118Ló | ${ }^{6}$ | Curbl | 6 | Clirla | * | 6 | OVRR1 | * | 3 | OVDR2 | * | 3 |
| ovors | 3 OVD | OVDRG | 3 | OVDRS |  | ovorg | , | , | OVDR 7 |  | 3 | OVDRR | - |  |
| marki | 2 M | markz | 2 | MARE3 |  | mapry |  | 2 | marks |  | 2 | maure | * | 2 |
| MARK7 | 2 M | Mapk8 | 1 | ASSETS1 | 3 | ASSETS2 | + | 3 | Assets 3 | * | 3 | Assfist | * | 3 |
| ASSETSS | 3 - As | ASSETS6 | 3 | ASSETST | $\underline{3}$ | ASSETS | + | 3 | IMTR1 | * | 3 | 1MTR2 | + | 3 |
| intes | - 31 | ivirg |  | intrs |  | INTR6 |  | 3 | INTET | * | 3 | furns | * | 3 |
| DV1 | - 60 DV | DV2 | 6 | nv3 | 6 | DVG | * | 6 | dus |  | 6 | pre | * | 6 |
| DV7 | 6 DV | DVE | 6 | WIH1 | 6 | nime | + | 6 | mins 3 | * | 6 | Numb |  | 5 |
| nums | ${ }^{6} \mathrm{~N}$ | Nimb |  |  | 6 | NIIMA |  | 5 | RGI | * | 2 | 262 | + | 2 |
| R63 | 2 R | RG64 | - 2 | 865 | .. 2 | RG6 |  | $?$ | 067 | * | 2 | RGB | * | 2 |
| 6F1 | 5.0 | DE2 | 5 | DES | - 5 | DE4 | * | 5 | DES | * | 5 | DE6 | + | 5 |
| DEP | 5 D | DFA | 2 | 6 | 2 | 612 | + | 2 | 663 | * | 2 | 116 | + | 2 |
| 45 | - 2 l | Lth | 2 | 117 | $?$ | ILA | + | 2 | bltay | * | 3 | bltaz | - | 3 |
| ${ }^{81743}$ | - $3^{3}$ | blita | ${ }^{3}$ | blita | - ${ }^{3}$ | Alta |  | 3 | bltay |  | 3 | nltad | - | 2 |
| RET | - 13 | PpF | $\begin{array}{r}12 \\ \hline 11\end{array}$ | SAL | + 12 | EPS |  | 12 | LQD |  | 12 | INT | * | 13 |
| PVP16Y/ | 12 $+\quad 36 \quad 0$ $+\quad 3$ | Duc Pazary | 11 38 | PRO1Y1 PR23Y1 | 29 36 | PROGY9 PRO3Y2 |  | 36 31 | PR12Y1 PROGY2 |  | 40 | PR13Y1 PROSy PR1F | * | 36 32 |
| PR13y2 | - 32 | pelty | 37 | PR23Y1 | 36 32 | Prosyz Pr2GY? | + | 36 34 | PROGY2 PRO2Y3 |  | 32 27 | plusyz phliy | + | 32 27 |
| PR15Y3 | - $28 \quad 28$ P | proirs | -217 | prosra | + 226 | PR19Y6 | + $=$ | 23 | PR12Y4 | - | 26 | PR13Y4 | + | 24 |
| PR16Y6 | - 27 P | PR22Y6 | - 25 | PR25Y4 | - $\quad 26$ | PRO2Y5 | + | 19 | PRO3Y5 | - | 19 | PR1175 | + | 18 |
| Pr21YS | - 20 P | pre3rs | - 20 | PR04Y6 | + 16 | prosys |  | 16 | PR11Y6 |  |  | PR16Y6 |  | 17 |
| PR15YG PR16Y7 | - 16 P | Pribrg | -16. | PR21Y6 | + 16 | -PR23Y6 |  | 16 | PROIV7 |  | 3 | DA06r7 |  | $12$ |
| PR1GY7 | - 12 p | pa22r7 | 11 | Pno2rs | $+\mathrm{L} 6$ | E.pr1sya |  |  | PR22Y: | - 3 |  | PR2578 | - | 6 |









 On
08 J,
OS
TS

$\square$min
$\square$会$\ldots 0$
$\begin{array}{ll}06^{\circ} & \text { 81 } \\ \text { 80 }\end{array}$
2

ROCES
inOY
ind ..... 
N  흔

追 －
row mames and number of nov－zero elements

0007
"


$-1,0000$
$-1,0000$
-1.0000
-1.0000
-1.0000
$-1.0090$
-1.0000
-1.0000
1.0000
$\therefore 1.0000$
1.0000
-1.10000 PTAR56
-1.10000 000000000000000000000000 -
thsting ey columns
VARTABLES

-0.5000 ROCET
-1.0000
-0.5000 ROCES
-1.0000
-1.0000 MTARG1
-1.0000
ptangz -1.0000
-1.0000 -1.0900
-1.0000
$0000 *+0000 n 000 n 000000000$
1200.0002
1,0000 ERPS2
-1.0000 BNDOCOV2

- $000000000 \cup 00000000$

-1.0000 ENDROCES -
00000***OONOEONDNODODOOO
$-1.000 n$
$-1.000 n$
CRD
ENDOCE
$00 n 000$ - VOONOOONOOON00000
$\begin{array}{ll}-1.0000 & \text { CAT } \\ -1.0000 & \text { BWDDOCET }\end{array}$
$0000000.0500000000 n 00000$ -1.0000 CRS
-1.0000 BNOROCES
1000.000 n
-1.000 n
$1.00 n 0$ ERPS1
-1.0000 ANDOCOVI
1200.0007
$-1.000 n$
$-1.000 n$ PRRERPS2
00.0.e.e*00n0000N000n00000
ptarg 3
1.0000
PAGE 0008

LISTING BY COLUMNS


 $\stackrel{N}{2}$

2 $x$
$x_{0}^{x}$
0
0 = 足
$\frac{2}{2}$
en
en
$\stackrel{2}{2}$
COLYR
CL7
COLYR $_{\text {CLI }}$



LIVAN
91VAN
NPAT8
Taxi
Tax 3
$\stackrel{0}{*}$
n
TAX6
TAX7
Tax8:
FABLI
fabl2


| $\stackrel{\text { ® }}{ }$ | 1.14 |
| :---: | :---: |

$$
\begin{aligned}
& \text { DATE 20/07/76 TIMF } 12 / 19 \\
& \text { COLUMN SET (\#BHM\#NH) }
\end{aligned}
$$

CURA6
Curas
Curas
CUKA6
Curat

Curas

CurtI

Curl2
160039 Vd
22／15／26 3WIL

ROW SET（HBEBABE）… ．．．．．．．．．．．COLUMN SET（HABEBRA）

 $00 n 00 \cdot 00000000 n n 00 n 0 n 000$
-1.0000
-1.086
$-1000 n$ $0000=0 *=000000 n 0000000000$
-1.0000 CRS
$000000 * 000 n 000 n 000 n 00000$
-1.0000 C87

-1.0000 ENDLONY7 | $000000 n=00 n 000 n 0 n 0000000$ |
| :---: |
| -1.0000 |
| 18 |
| -1.0000 |
| BNOLONYB | -1.0000 BNOLENYB

$00 n 000 N O U O N O O O N 000000000$





 $\begin{array}{lll}250.0000 \\ 0.1200 \\ 0000000000 n 000 n 000000000 & 1.0000 & 0.1200\end{array}$ － 250.0000 $0-10,1200 \mathrm{CL7}$ 0． 1200 listing by colunms variablifs cuel3 colva

$$
2.50 n 0
$$権㤩边客 2権 CURL6 COLY total6

 ？ colve
Wus
ToIals $\stackrel{0}{2}$

 을
응
열 는 $\approx$
※
0
0 으를 UPANA COLYA
UPATM
EAT量最 ${ }_{91} 8$

Cunls．
Cunls
cunce

CuIts－

OVDR1
OVORE
ovons

릉
ovpas
ovors

PROBLFM GOALMODEL-05
LISTING BY COLUMNS

## vartables

## ASSETS6 COLYR


品 91033 ASSETST.
INTR1
IWTRS
jWTRG
INTRS:
INTR6

$$
=\text { INTRT }
$$


 colyr
ECOV2 cotyp colve
ECovs ECOVS
colyr Colve
ECOV7 colva
ecnve colyr BNDOCOVI CLIVR: BNoocov2 COLYR
CL3
BNDOCOV andocovs COLVE: C14
ANDOCOV6. colve.
ASSETSS

## INTRS

## ov1

3.5000
3.5000
3.5000 3.5000

$$
\begin{aligned}
& \stackrel{9}{\circ} \\
& 39 \mathrm{Va} \\
& \text { 12/11/27 } \\
& \text { time } \\
& \text { DATE 20/07/76 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LIST(1) } \\
& \text { ROW SET } \\
& \text { (a) } 4 \text { ह(M) }
\end{aligned}
$$

©
:

-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000


LISTING BY COLUMNS
VARIARLES

## IPBND


1.0000
1.0000
1.0000

## 000000000000009000000000

800.000 n
1.6000 . Eat
.
$00 * * * 0090000000000000$
00.0000 EA3
1.6000 E
800.0000
$1.6000 . E 05$
$00900=0.000000000$
800.0000
$\because \approx 1.6000$ E06
耍
amid
틀
3.
30
ㄹ
20
0
0
0
흐응응
COLYR
UPBND
CB7
COLYR
UPBND
CB8
${ }_{0}^{\circ}$

| COLYR |
| :--- |
| CB2 |


| 2 |
| :--- |
| 089 |
| 30 |

$\stackrel{8}{2}$
COLYR

COLYR
COLYR
C86


0.0809 _-
$0000 * * 0 * 00000000000000=\frac{1}{0.0400}=\frac{15}{0}=0$
0.0800 PR6 0.0400 05
$00000.0400 \quad 05 \quad 1.0000$

41
E
808
-
COLYR ...... OQde** $0 * 00000000000000 \frac{0.0400}{02}$
$00 * * * * 0 * 00000000000000 \ldots \ldots \ldots$ -0.0800
0.0800
1.0000 RG3 $R 67$
$R 68$.

DE2:
DE3

[^90]$0000000000000000000 \cdot 6$ WL $0005^{\circ} 0$
YO $00000^{\circ} b$
$0000000000000000^{\circ} 0000000$
 $00 * * * * 00000000000000000$
0.5000 TA3 $00000000000000000^{41} 0000000000$ $00000 * 000000000000000000$
0.5000 TAS
$00000 * 00000000000000000$ 000000000000000000000000
0.5000 TA6
$00000000000000 n 000000000$ $000000000000000 n 000 n 00000$
0.5000 TAT
$0000000 \times 00 n O 00 N 000000000$

 variables (20 -会 | 488 |
| :---: | :---: |
| 4 |

 COLYR $_{\text {TP }}$ COLYR COLYR colve
TP6皆 $\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$
DAGE 0017

0.1378
-1.0010
-1.0000

$2 B E$
RE
COE
-1.0000
-1.0000 O8
CO
E
E
N
08
88
88
08
80
$910.00 n 0$
690.0000
$200.00 n 0$

0.0258 08d3
1.0000 PTARGG
ptarga
$08 J 6$
STARG6
STARG8

$x+0$
20
0.0
$\cdots$
응웅
50
0
0
0
0

785
188
$E 44$
TIME_ 12/11/28
DATE 20/07/76
-1.0981
-1.0000
-1.1270
-1.0000
-1.0000
-0.0879
1.0000
1.0000
0.3820
-1.0000
-1.0000
을
0.
0.0
응
0

888
888
888
808
LISTIMG BY COLUMMS

## Vanlables


GOAL
PTARAI PTARES
GOAL
STARG1
STARGS
soal ERDS
ERPSS coAl
LoDY
LODYS
gOAL
OOJS
FCOYA
fCOYR GOAL
DTARG OTARGS
GOAL
ACOV2
nCOVG pno1y1


$888 \%$
688
6800

## 50-7300xาy09

ptance
ptange
ORJ
STAMG2
STAMGA
2
10
20
0
0
Onj9
LODYZ
GODYG
Ond
ECOVI
${ }^{2}$
DTARGE

1 1
1
1
1

## $08 J 6$ DIARG3

$n 2$
20
-2


900 08080
08
088
00
$0=$
0.0879
1.0000
1.0000
$n=$
$n 8$
$0-8$
58
80
80

686
608
060
2088
$\sim N 88$
-60
 com $\mathrm{m}^{\circ}$

2
$\vdots$
$\vdots$


[^91]


으으응g요


$$
-
$$
$0000^{\circ} 0015$

so-130047v09
tisting av columms

## variables

 <br> phosvz$=$

PROGY2}

0*******00n000n000000000 :
-

1
1
1
0
0
0
0
0
0
0

$\begin{array}{ll}300.0000 & \text { T } 53 \\ 830.000 n & \text { T } 57\end{array}$
E
등
듣
$\begin{array}{lll}317.000 n & \text { CA5 } & 305.0000 \\ 232.0000 & 6 L 2 & 65.0000 \\ 118.000 n & 616 & \ldots\end{array}$
$00 * * * 00000000000100000$




0 0**e**000n000n000000000

## zaEty

\section*{colve

UPGWO.

## colve UPGWO. <br> angdn 4102 <br> angdn 4102 <br> 182 - <br> 0410 <br> 




응으ㅇㅡㅡㅡㅡㅇ
～以ロ
！
cnnNomn


$$
\begin{aligned}
& 0000 \\
& 00000 \\
& .0000 \\
& 00000 \\
& 00100 \\
& 00000 \\
& 00000
\end{aligned}
$$

88
88
08
08
08
0
$0 * * * * * 0000000000000000$

## 



 으으의 ㅇ․ㅇ․․․․․






$1 \quad 1$

## 



0＊＊＊＊＊＊00n00000000000000

## 

 LISTING oy columns
vartantes

家



응응응으응ㅇㅇㅇ응


$$
1.85
$$ TSO

EAS
FA7
PE3
CA6
CAB
C15 pR14y？
paziy2

## pe24yz



 －－＋
proslen goalmodet－05
paozrs cotve

PAGE 0022

으ㅇㅡㅡ응응응


$0000^{\circ} 29$
$0000^{\circ} 826$
$00000^{\circ} 056$
$00000^{\circ} 09$
$0000^{\circ} 061$
$0000^{\circ} 005$




등ㅇㅇㅇㅇㅇㅇㅇ




c

64,0000
68,0000
$000 * *=00000000000000000$ ：－

$0000=0.00000000000000000$
LISTIME oy CULUMNS
variances
PK12Y6 COLYR



8
0000．0．000000000000000000
$c c$
$0_{0}$
0
0.
을
OOn．

000.0 .00000000000000000

## $$
\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}
$$ <br> 

官

$\qquad$

## $\circ$ ： ： ㅇ

$$
\begin{array}{r}
000=0.00000 \\
1.0000 \\
500.0000
\end{array}
$$

nome

$$
\begin{aligned}
& \begin{array}{c}
500.0000 \\
1500.0001 \\
300.000 \\
\text { EAS }
\end{array}
\end{aligned}
$$

1250.0000

$\underset{\sim}{\sim}$


000 e＊e＊00000000000000000



뜰


## ※

PR22Y4

DUOU＊ 0002

 1茥



16 10．0000 88
88
80
08
1
1
1
1 $\therefore \underset{\sim}{\circ}$
 750.0000
250.0000
75.0000
240.0000
105.0000 － $11_{1}^{1}$ 690.0040 $0000^{\circ}$ £ 2 35.0000



N世N心
nnen
运
$0000^{\circ} 000{ }^{-1}$

## $0000 * * * 00000000000000000$

120.0000 TS6 270.0000

$\begin{array}{rrr}1.0000 & & 620.0000 \\ 610.0000 & \text { PS6 } & 62.0000 \\ 20.0000 & E A 6 & \\ 200.000 n & \text { PF5 } & 100.0000 \\ 257.0000 & 6 A 7 & 714.0000 \\ 103.0000 & C 17 & 285.0000\end{array}$
$\begin{array}{rrr}1.0000 & & 620.0000 \\ 610.0000 & \text { PS6 } & 62.0000 \\ 20.0000 & \text { EA6 } & \\ 200.000 n & \text { PF5 } & 100.0000 \\ 257.0000 & 6 A 7 & \\ 103.000 n & 617 & \\ & & 285.0000 \\ & & \end{array}$
$\begin{array}{r}13.0000 \text { EAF } \\ 120.000 n \text { PFS } \\ 75.000 n \text { CAF } \\ \\ \hline\end{array}$



0000 －＊＊000000n020000000

 36.0000
180.0004
362.0000

| $\mathbf{2} 00.00000$ | TS6 |
| :--- | :--- |
| 140.0000 | EA6 |

0
0
0
08
8.
0.
0.
0.

－ット゚


## 明



©
요응

50.0000
165,0000
65.0000
246.0000
100.0000

00000
8
8
0
0
0
75.0000
97.0900
108.0000



## Vantanles

 COLYRUPBND UPBND $\operatorname{cnc}_{n} n=0$
colyr
UPBMO
TS5
EAS
PES
CA6
CL6
COLVA
UPBND
으를
※nñ
COLYR
UPEME
TS6
EAT
PE6
를
ジき

PROBLEM
DOW SET（AIMyIAES） Re3y5

## PR11v5

Ping4 6

920576



COLYA
UPAMA
TS8
CAR $\qquad$ calya UPOMD
TSA
CAB

COLYR
IIPHMA COLVA
IIPHMA
TSA PRTGY7

Pa22v7
Ps02YR
pe15ys
P125v8
pin22Y8
 -RIGMT MAND SIDES
Proalem goalmodelo0s
listing by columns
right hand simes
702.00000
$-6 n .0000$
-65.00000
-1000.0000
22480.0000
35370.0000
1275.0000
2000.0000 1
1000.0000 TP1

1


## MNM 0000 0000 0000 0000 0000 0000 0000 0000

 -6580.0000 C85$\qquad$
-

CBS
IPA
TPR
DA
STAR
STAR
PTAR
PTAR
LIST(1)
902.0008
N.

NiO ion
CL8
TP2
TPG
PR1
STARG1
STARGS
PTARG1
PTARG5 . $\ldots$ STATEMENT ANALYSIS

A12.2 PROGRAM FOR SUMMARY STATISTICS

EXHIBIT AL2．1 PROGRAM FOR COMPLETE FINANCIAL STATEMENT ANALYSIS


Doclumfer 1－1
22143 SU0
LINF STATFAEMT
0
1
2
3
4
4 0

27190175 CUAFILEO GY SALY MR． 34
＇INDUT＇U＝COI
＇InPUT＇ 1 TRO
－IAPUT＇ 2 ＝CRO
－OUTPITV O LPN
－COHIIALE＇
$2214310 n$
$27 / 10175$
COMDILED NY XALV MK．3A
LINE STATEMEMT
－tracfer
－HEGIH：
IMTEGER I．J．K．M：
－REAIRES，RICVLORS：
 ＇ARKAYI ：＇IMTEGEP＂M：＇EXTE世NAL＂：





－BEGIN＂
－INTEFEN：J：
NFこしJ•E（T）：


pause（yy）：
－EARO WFAOERR：

COMMEVT＇SVIPS OVE CUDUFNT INPUT STAEAM UVTIL CNAQACIEM IFMEUJAJELY
 CMAOACTEんS SKIPOEN：
－EEGIN

C（UGT：E ITSTHARD（SID，QUF）：
－IF＇TEST（I）＇THEN＂
－nfollo


FFれ1＇：



DIAFANSTIE CMINT OF VALIE REAO：
－aEGiN＂

100p：

vam：Rean：
－If：TEST（2）•TMEN•
－MEGIN：

－FWir＇
－END DATAJBZ



 SWITCHC U：GIVES DIACINSTIC PGIAT HE INE APMAV：
－DFG！${ }^{\circ}$
－GEAL＂NHMMV：＇INTFGEN＇J：



```
－ 0 tritio
3＊F1LL（STM）：
```



```
－THE日
```



```
SニIPCN：
```



```
Enn 」 LDOP：
＂If＂EEST（C）THEN＊
```





```
－EMO＊）
－EAD＂MSIM：
```





```
－InTEFEQ J：
```



```
－E由の＂AKAAVIM：
```




```
－BEGIM
```



```
－Eが ImpuT：
```






```
－FAD＂
－POUCEDUKE＊OUTPUT（A）：
－EAL＂•AROAY＊A8
－REG1＊＊
CUPYTEAT（＊（＊）＊）
```



```
－f⿴囗十
－patcraume pritions
－AtG1か。
MEWLIME（1）：
```




``` vE～LIHECT）
－Fmo＇：
－TROCFIOMF＇ACNIEVEMFMT（A，E）：
```



```
－neGi＊＊
COPYTEMT（＊（＇＊＊）\()\)
ctinet：
4tw18．4（1）：
rupritx（＊（＇＊）＊）：
```






```
－Fm0＂
－AEG14＊
```





```
SELFCTIMPIT（1）：
MEADIMAF（HEAGEMD）：
```









```
＂FUP＂d：
－PFG1m＂
```



```
\｜NT\＆L（＂（＇OTARG＊）＇）：
SKIPCM：
DTAMGIdIIERAB：
－EHD＇
```




ECUV (1): EREAD





DTAMG(I): : DTADG(i) (-100.0)
-EMD'
INTILL(*) (*OHTIOL*) ) :



STA円T:
10.PUT(SALES.d. ('SALES') ')
IMDUP(EAM', E. ('EARN')')
IOPUT(APAT, S. ('MDAT')')

1HPUI(TAK.ち. (FTAX') 8








inPUT(MG.n. ( ('Rfo)'):








MUH\{0]: EREAN:
CESIEPEAD:
DF!U」: = REAO:
FF(U):BREFD:


"CUMPENT" BALANCESHEET:

COUYTEKT('8'*')'):
OUTPUT(NUV):A1(O):menE:
AO(U): EU. U;AA(O)z=0.0:









-EMD':
ט॥TPUT(AA):
OथTPUT(AG):
OUTPIT(A1):
UITPUI(DE):
जリTPU, (A2):
NHTPU, (A2):
HFOLI F (2):




0リIPロリ(MAPロ):
OHIPUI(MABE
OHTHUT(AS):
OHTHUT(AS):
UHTPUT(CJDA):

いいTVUI(Aか):
OHIDUT(TAE):
Qinpurstix):
Unlpur (1unna)
Oilfur (ny):
Dillour(nv):
unthurictut):

unpuras):
untpur(an):




```
231 244
```







```
 A&\I|:EOS*OVDW\\=1)!
 4S{|):EFi<0&||-1):
 An{I):=FAPa(I)-AS(I];
```



```
 'Em0't
UUTPUTC*1)8
0.1TPuT(A2):
OlIPuT(43):
ullvur(ab):
witulli((5):
GITPU:(A0):
GITPup(abat):
OuTमup(nv):
0.trut(A7):
mfulive(3):
"CUMPFAT' CASN FLOM STATFMEMTI
C\capPVTFAT('('*')'):*&ULIME(1):
COPYTEXT('('*)'0):
*FUK'I:EI'STFP'1 'IMTIL'S 'DOOCBEGIN'
 A3(1): E(VNR{!]-OYNR(I-1)!
 AL(I):=nEII)-nF(1-1):
 A1(1): =EARN[1]*0.03UF*FABLII)
 \bullet0.3335-FAPE{I]+CUMLII)-CUNL{I-1)
 -CURA[1)-CNRA(I-1) +WS*UVOR(I-1)
 MAGK{!]-MAPK(I-1]-DVI|) कVII-I)
 -TAX[1]+TAX(I-1)-AB[I)-RI*HARK(I- ():
 A>(I):E日I*MARE(i-1):
 AS(f):=1.00日G(1)]
 AA[I]:EAIII]*A2[I] *A&IIJ*ASIII8
 "E*D*
 OUTPuT(at):
 UITPUT(A2):
 OIIP作(AG):
 0HTPu((a5):
 ourpur(A6):
 COPYTFXT(*('*')'):
 'foR' l:=1'stepig'UnTIL A'do'OAEGIG*
 A1(1):=9.n303-FAB((1)-FABL[|-1):
 A2(I):=1.35{3+FADF(I)-FAPE{I-1):
 A.{(I):=0S*OVDE{I-1]:
 AG(!):=R(\bulletDE(!-१):
 GO(i):ロNADK[{]-MARK(I-1)-OVDR(I)*OVDQ(I-1):
 A7[!]:-\A`[!-!):
 AN[I]: -nvt1-1]:
```



```
 'END':
```



```
 u!TPUT(A2):
 GIITPuT(A3):
 U口TPur(aG):
 0utput(as):
 UuTPUT(AD):
 outpur(as):
 QuTPuT(A6):
 CCOPPFMT* IMDIPATOPS%
```



```
 HFWLINE(1):
```




```
 -[しर(f1J):
 A1(I):=49{!]=100.0!
 4रII!:=CUGAIIJ/CUPII!I:
```




```
 as(Id:=tPa\(I)]DVII):
```



```
 *Fんn":
 CODVTEXT(*(**)*):DEGIUD:
 ACWIEVEHE:T(ROCE,A!):
 ACWIEVENE*T(&)NV,AZ)%
 ACHIEvRMLNT(EPOV,A3):
 ARMIEVEMFQ,T(IFOSGAG):
 ACHIEVEMEHT(DCRU.A5):
 ACHIEVE*EA「(BPAVG.AR):
 ACNIEVIME廿T(STARG.SALFS):
 ACNIEVF'IENI(PTARG,NPAT):
```



```
 GFFFIMPIT: CODMFMTV RELEASIMG -FDN OM CMAVMEL 2:
 S+LECTINPUT(I):
```



```
 -EMD':
 'rmD':
```


## EXHIBIT AL2.2 PROGRAM FOR SUMMARY STATISTICS


 pucumakt 1-1


1712012n
31/10175
COMRILEN BY XALV KR. JA
LIME STATEMENT
"REGIV"

- INTEFENC I,J,K,M:
-PEAL'RESIRIEEIMSI
- PROCFUIIRE VARPYFXT(A, A): 'VALUFD M:






- CEGBR'
'IqTEfifoid:
A以EIJAF(1):


Pausf(yy):




CMADACTFMS enipden:
- BEGIN'

COINI: I IISTHAKV(STP, PUF):
-IF'Jfitit) 'inen'


AINLIAETI): VALETEAT(BUF, CUAMT):
Call:
- EAND IMyILE




- HETIA"

incos:


vab:amFAr:
-1F' TESI(2) 'THEN*
- A (61\%
 - $\mathrm{BHDO}^{\circ}$ :
'EmかC Datalm:





```
 "efrija"
 |\mp@code{IFR&M' d:}
```



```
 CENMC ARQAYIm:
 'PROCFDINE' IMPITI(AHO,SIZE,STRS: 'VALUF'SI2E:
 GEEAL'MARPAY' ANR: 'INTEGER' SIZF: STRIMGOSTR:
 'mEGIN'
```



```
 "&N#" ImpuT:
```



M: =सERD:
-IF' "EO'M'THE円' WEXTHUMP 'ELSE' M: \#ms -
'FND':
-PROCFDUAF: PIIAL(AOD, SIZE,STR): 'VALUE' SIZE:

"BEGIN"
- QEAL' DUMmY: Bjiffger d

- AEGIM'
JMTILISTRI:

- THEN.

"FWD" J LCOP:
SR10C~:

- IF'TEST(Z) 'THEN"
- AEGI:'


- FND':
-Emが BSNHA!:



- aftin"





- ENO'



-EMD':
MFWLIWF(1):
SPACE(A):
- EMO":
- PROCEDHKF: OERION:
- MESIM"
MEVLIAF(1):


-EWLIWE(1):
-FND":
- REGIM"

PTAYG STARG,AZ,AY,AC,AS,AB,AT,ABCIIBI,SALES, WPAT

SF(FCTImpuT(1):
GFACTRAD(READERO):








mi=解AB:PAPERTMEOH:



STAFT：
MFWI！11（2）：



STAMGIIJ！OEAR：
＇rmin：
IMPUT（FAHM，M，＇（＇EARA＇）©）：



PTANG（I）：EDEAC：


IMPUT（CURA，B，（＇（CUHA＊）＇）：
14PIIT（CUKI．，K，＇（＇CIRRI＇）＇）：
（APUT（UVPD，h，＇（＇OVOH＇）＇）：






IHTIL（＂（＇PNOH（fK＇）？：

－fivto lapel：


DHAL（ECOV．力口＇（＇PNAEROV＇）＇3：







＇COMMF世T＂JMirators：


－Cunt（1））：
A1！1）：＝A11！） 100.6 ：



AS［I］：＝AP4T\｛IIIDVII］：
AOIIJ：anvilliAumilisino．o：


AA11）：＊！．0：
－END＇：
PEKION：
SPACE（6）：

PHTOUT（AG，FHDS）：

PITOUT（A9，MOCf）：
HPITETEKT（＂（＇f⿴UHTT＇）＇）：SPACE（2（0）：
PHTGHTGPAT，PTAKG：

PUTOUT（AH，AA）：

－litultacontaugi）：

purtur（as．ucov）：

PWTUUT（A3．ECOV）：

－utout（azatonv）：
WPITETHXC（＇SALES＂）＇：SPACF（21）：
puynurisalfs，giagri）：

plit（uT1a7．aA）：


－FMO＇：
－EnPO：
APEENDIX X111
A HIERARCHY OF INFORMATION
Al3.1 AVERAGE VALUES OF CRITERIA OVER TIME
A13.2 A SUMMARY OF CRITERIA FOR A PARTICULAR PARANETRIC VALUE
A13.3 A SUMMARY OF LP SOLUTION FOR A PARTICULAR PARAMETEIC VALUE
A13.4 A COMPLETE LP SOLUTION
A13.5 A COMPLETE ANALYSIS OF AN LP SCLUTION


EXHIBIT A13.2 THE CRITERIA FOR A PARTICULAR (L = 4) PARAMETRIC VALUE


0

EXHIBIT A．13．3 A SUMMARY OF LP SOLUTION FOR L＝ 4

SALES EAHN	$\begin{aligned} & 12800^{\prime} \\ & 1665 \end{aligned}$	$\begin{aligned} & 13763^{\circ} \\ & 160 h{ }^{\prime} \\ & \hline \end{aligned}$	$\begin{array}{r} 15117^{\circ} \\ 1876^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 1716 A^{\prime} \\ 2247 \end{array}$	$\begin{gathered} 19184^{\prime \prime} \\ ? 298^{\prime} \end{gathered}$	$\begin{array}{r} 2166 A^{\circ} \\ 263 \mathrm{H}_{\mathrm{P}} \end{array}$	$\begin{array}{r} 24457^{\circ} \\ 2814^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 27184^{\circ} \\ 3133^{\circ} \\ \hline \end{array}$
NPRT	$71 s^{\prime}$	$74{ }^{\text {1 }}$	$634 f$	$1119$	Tतार．	T219	1309\％	1468：
TAX	$1 \text { Ra? }$	237	598\％	$847^{\circ}$	677\％	807	933．	$1235{ }^{\circ}$
FARL	2500	3455	3975	4342	4740 ，	5114	5422？	5701.
FAPF	15 a\％	T173．	2175	2207	25APr	3081 ．	3505.	365\％．
CIIRA	4630	465月	552 R	64日！	69n7，	7655	月629，	9917.
CIIRL	1811	32A2？	2967	3417\％	3722	4188	4656.	51.62
TVITR		Thर？	$235_{r}$		$250$			
MAPK．	$550$					0 ？	$35^{\circ}$	1an
ASSFTS INTE	6907	7905	A711．	9613	10.407	11662，	12900.	14100
INTO－ DV	208\％	टत\％	2388	214．	27\％	227	227	197\％
DV	254	254	2038	347	356	016	244\％	$501 \%$
N／IIM	2000	2nnor	2000．	2000	2000	200n，	2000	2000．
$\begin{aligned} & R R_{1} \\ & \hline \end{aligned}$	2001	うnnif	2620\％	$2.678^{\prime \prime}$	246if	$2461^{\circ}$	2461 ？	461 ＂
LI	1101\％	$0^{\circ}$	$19^{8}$	58\％	783．	$0 \%$	0\％	n！
BLTA	5\％．	79.	104．	125.	565．	164.	181．	1व8．
RFT		13.053	49					
LDN		3T，¢3？	761					
INT		WSrsh	65					
Ers		11， 19 Ca	をu4					
DVC		1，7ht	38				－	
SAI		20，${ }^{\text {\％}}$ ，	35					
PRF		17， 315	90					
nVP		20.623						
Projri		${ }_{7} 789$	70					
PRouri		1,000	กn					
PRI3YI		0.650	74					
PR22Yt		IP0th	T\％					
PR23Y1		！ 1000	On					
PRO3Y2		1,000	O0					
PRT4T2		T．${ }^{\text {comm }}$	T10					
PR？AY？		Q．19？	29					
PRIGY4		1,000	100					
PPPZY＊		$0 \cdot 57$	505					
PR25Y4		1.000	100					
PROJY5		O，158	59？					
Prerty			T10					
PR23Y5		1， 000	On					
PROEY6		1．non	Ono					
PRIGYt		Thnn	¢0	－				
PR15Y6	．	1 pnnn	nn					
PRigrt		0． 351	26					
－Proptr		9．？ 5 ¢	Tएक					
PRosv7		1． 0 On	On					
PDIaYt		1．non	non					
PR？2Y\％		Ipnn	\％n					
Pponva		1．nnn	Ono					
PDigya		！pnn	nn					
		！ C （non	Ton					

EXHIBIT A13.4 A COHPLETE LP SOLUTION
PAODLEM DETAGOAL-D


COL SET

UPDE ROHMD DOAPCTIVE REDUCE EO 1600 $1606 n .0600$ 1AnOn, Adnu
230un, 0000
27non. 0000
5noun. 0000
33ntn. 00 nt
\$400n. 0010
$1000.10 n 0$
1200.0000

130 n .00 n 0
1400.0000

130n. 0000
180n. 00000
210.1 .00 no
2407.0000

PMOALFM DETAGOALEBI
SOIHTINM
bate 21100176
71月F

DATE 21／09／76 TIMF $12 / 57 / 20$ PAGE 0007
COL SET

－N N N N N N N N N
 － 2 2ED

$\stackrel{2}{5}$
$\underset{\sim}{\circ} \underset{\sim}{\circ}$
in
n
n
$\begin{array}{lc}\text { No } & 0 \\ 0 & 0 \\ 0\end{array}$

$\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$

PERIOD－S
气
$\cdots$ $\cdots$ $\stackrel{0}{0}$ 10265

우N N
278

3481 in | п |
| :--- |
| $\stackrel{\circ}{\circ}$ |

BALANCE SHEET（f＇000S）
PERIOD－2 PERIOD－3 DFRISN－6
$\underset{\sim}{\circ} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{N}$

皆
$\stackrel{\circ}{\sim}$
$\underset{\sim}{\circ}=\underset{\sim}{c}$
ㄷ．．云先
m
$\sim$
N
N
0
x
x
－in N $\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\circ}$ $\stackrel{m}{\infty} \underset{\sim}{\infty}$
－$\underset{\substack{\infty \\ 0}}{ }$ ※゙ $\underset{0}{2} 030$管

205月
35
450 $\cdots \underset{\sim}{N}$ 6275 N 13 ：3

412
N 4156 1211 1211
263
0
189 130
1593会 $\underset{\sim}{N}$

EXHIBIT A13．5 A COMPLETE ANALYSIS OE AN LP SOLUTION
SOLUTION PIGMT MAND SIDE OHST
$\begin{array}{ll}\text { ORJECTIVE GOAL．} & \\ \text { IOUER BOUNB } & \text { LOBMD }\end{array}$
LOBMD
UPBND IUPDER ROUMD solution

RO

## DUMP：DUMD 114

（ 4

SSETS
EIXED Assets
land and builetngs plant and machinepy Curpent assets
shont term neposits dfatoms and stock CURDENT ASSETS

Cumpent hantlities
CQEDITORS
TAX
OVEDDRAET
OIVIDEMD PAYABLE
CURPEMT LIARILITIES
MFT CURRENT ASSETS
TOTAL ASSETS


ACRIFVEMENT LEVFIS

716 dwno

1

## APPENDIX XIV

Proof of the fomulae for reranking by discounted benefits/discounted costs at the internal rate of return of the marginally rejected project.

Let this rate of return be $i$, and define the notation

$$
\mathrm{TV}_{j}(t, i)=-\sum_{g=1}^{t} c_{s j}(1+i)^{t-s}
$$

Then the required reranking by parameter $\beta$ means the approximation to the dual equations of

$$
\mu_{j}+B T V_{j}(T-1, i) \geq \hat{c}_{j}-T V_{j}(T, i)
$$

A14.2
or alternatively

$$
\mu_{j}+B T V_{j}(T-1, i) \geq \hat{c}_{j}+C_{T j}-(1+i) T V_{j}(T-1, i) \text { Al4.3 }
$$

Using the identity that

$$
T V_{j}(T-1, i)=T V_{j}(T-1, r)+(i-r) \sum_{t=1}^{T-2} T V_{j}(t, i)(1+i)^{T-2-t}
$$

Al4. 4
the equation can be rewritten as

$$
\begin{gathered}
\mu_{j}+(\beta+i-r) T V_{j}(T-1, r)+(i-r) \sum_{t=1}^{T-2}(1+i)^{T-2-t}(\beta+1+i) T V_{j}(t, r) \\
2 a_{j}-T V_{j}(T, r)=N T V_{j} \quad \text { A14.5 }
\end{gathered}
$$

Thus this is seen to be equivalent to having

$$
\begin{aligned}
& \beta_{T-1}=\beta+i-r \\
& \beta_{T-2}=(i-r)(\beta+1+i) \\
& \beta_{t}=(i-r)(\beta+1+i)(1+i)^{T-2-t} \text { for } t=1,2, \ldots T-3 \text { A14.6 }
\end{aligned}
$$

The internal rate of return approximation.

Using the identity

$$
(1+i)^{T-t}=(1+r)^{T-t}+(1-r)^{T-t-1} \sum_{s=0}^{T-t-s-1}(1+i)^{s}
$$

A14.7
and putting $\beta_{t}=(i-r)(1+i)^{T-1-t}$ the equations

$$
\sum_{t=1}^{T-1} T V_{j}(t) B_{t}=N T V_{j}
$$

become

$$
-\sum_{t=1}^{T} c_{t j}(1+r)^{T-t}-(i-r) \sum_{t=1}^{T-1}(1+i)^{T-1-t} \sum_{s=1}^{t} c_{B j}(1+r)^{t-s}=\hat{c}_{j} \quad \text { A14.9 }
$$

or

$$
-\sum_{t=1}^{T} c_{t j}\left\{(1+r)^{T-t}+(i-r)^{T-t-1} \sum_{s=0}^{T-t-s-1}(1+i)^{s}\right\}=\hat{c}_{j} \quad \text { A14.10 }
$$

or

$$
-\sum_{t=1}^{T} c_{t j}(1+i)^{T-t}=\hat{c}_{j}
$$

and $i$ is seen to be the internal rate of return of project $j$.

THE WEINGARTNER MODEL

A15. 1 CASH FLOW DATA USED BY WEINGARTNER
A15.2 THE LP INPUT DATA LISTING FOR THE MODEL USING THE PRON ECTS DETAILED IN APPENDIX IV

A15.3 THE OPTIMAL SOLUTION IN THE CASE OF SEVERE CAPITAL RATIONING

EXHIBIT A15.1 CASH FLOW DATA AND IRR OF PRONECTS USED BY
WEINGARTNER (EXTRACTED FROM "MATHEMATICAL PROGRAMMING aND THE ANALYSIS OF CAPITAL BUDGETING PROBLEMS" BY 日 M WEINGARTNER, KERSHAW EDITION, 1974, p.181-182)

CAEH FIOWS AgROCIATED W'ITH THIRTY HYPOTMETICAL ISVEGTMENT PRONECTE

Project Number	1	2	3	4	5	6	7	8	9	$\begin{gathered} \hline \text { Flow } \\ 10 \end{gathered}$	$\begin{gathered} \hline \text { in Year } \\ 11 \\ \hline \end{gathered}$	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	-100	20	20	20	19	19	18	16	14	11	6	-8														
2	-100	30	18	15	18	18	14	14	14	14	14	10	10	10	10	10	6	6	c 6	6	6					
3	- 100	15	15	15	15	15	13	13	13	13	13	11	11	11	11	11	9	0	9	9	9					
4	- 100	20	6	:1	7	16	5	14	18	3	20	2	22	8	10	18	6	9	14	$24$						
5	-100	-60	-60	80	74	60	56	44	30	14																
6	$-200$	25	23	25	25	23	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	23	25
7							-80	20	20	20	19	17	14	10	6	2										
-8									-60	-30	$-10$	45	34	25	16	12	8	-20	21	16	12	9	7	5	3	
-10			-120 18	$25$	$20$	30	35	30 -10	25	20	15	10	$3$													
10		-100	18	$17$	15	12	8	$-10$	18	17	15		$8$	$-10$	18	17	15	12	8							
11	$-150$	20	20	20	20	20	20	20	20	20	20	20														
12	- 100	20	18	16	14	12	10	4	-20	20	18	16	14	12	10	4										
13	-150	-75	-75	60	60	55	50	44	38	36	35	34	33	30	25	17	9									
14	-50	-100	-175	50	35	60	65	60	50	40	30	20	10	-25	50	41	35									
- 15	$-100$	$-150$	$-100$	10	20	30	40	60	00	60	60	60	60	10	60	60	60	$60$	$60$	$c 0$	60	60	60	co	60	60
$\cdots$								-95	-60	47	42				18	13										
17										-175	80	45	85	$25$	10	-40	45	35	$25$	$10$						
18	$-250$	45	45	40	30	23	20	15	10	$-40$	40	32	25	19	14	10	7	5								
19	-75	-75	-40	40	40	40	35	35 17	30	25	15	5														
20	-180	20	12	16	13	11	19	17	12	15	19	13	14	17	20	14	11	15	17	12						
21												-80	18	16	14	12	10	4	16	14	10	6				
22 -23		-85 -270	- $\begin{array}{r}20 \\ -100\end{array}$	$\begin{array}{r} 20 \\ 125 \end{array}$	$\begin{array}{r} 16 \\ 115 \end{array}$	$\begin{array}{r} 15 \\ 105 \end{array}$	$\begin{aligned} & 13 \\ & 80 \end{aligned}$	$\begin{aligned} & 10 \\ & 60 \end{aligned}$	$\begin{array}{r} 7 \\ 35 \end{array}$	28	15	10														
24 -25								-50	10	-40 10	15	13	$9$	- ${ }^{7}$	5	2										
26		-200	60	40	30	15	-25	-25	50	40	30	20	10													
27											-70	15	13	11	10	9	7	6	4	3	2					
28		-355	00	70	80	70	35	40	25	15	5															
20	-275	40	45	45	40	35	30	25	20	15	-75	35	30	25	20	15	10	5								
30	-140	20	20	18	16	14	11	8	-25	18	18	16	13	10	6	-25	16	161	14	11	8	5	2			

TADLE D.L. INTERNAL RATES OF EETURS AND
RANEG FOR THMEY INvEsTMENT PROJECTM

Projert So.	1	2	3	4	5	$\Delta$	7	8
$\begin{aligned} & \text { Raw (\%) } \\ & \text { Rank } \end{aligned}$	$\begin{gathered} 11.013 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 13.94 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 11.100 \\ 7 \end{gathered}$	$\begin{gathered} 16.02 \\ 13 \end{gathered}$	$\begin{gathered} 12.26 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 11.75 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 13.84 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 12.57 \\ 4 \end{gathered}$
Projert No.	!	10	11	12	13	14	15	10
Jate (\%) Rlank	$\begin{gathered} \hline 15.26 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0.07 \\ & 16 \\ & \hline \end{aligned}$	$7.10$	$\begin{aligned} & 8.85 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.76 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 4.22 } \\ & 15 \end{aligned}$	$\begin{gathered} 10.80 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 10.34 \\ 11 \\ \hline \end{gathered}$
I'rojert No.	17	18	II)	20	21	22	23	24
lante (\%)   Rank	$\begin{aligned} & 3.81 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.78 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.75 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.10 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.11 \\ & 21 \\ & \hline \end{aligned}$	$\begin{gathered} 11.04 \\ \hline \end{gathered}$	$\begin{gathered} 10.10 \\ 12 \\ \hline \end{gathered}$
Projeel No.	25	20	27	28	29	30		
Rate (\%) Rnnk	$\begin{aligned} & \hline 4.52 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.25 \\ & 211 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.50 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.71 \\ & : 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.44 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.1133 \\ & 23 \\ & \hline \end{aligned}$		

[^92]
## EXHIBIT A15．2 THE LP INPUT DATA LISTING FOR THE MODEL USING THE PROJECTS DETAILED IN APPENDIX 1V．

Ond（2）
由Ch（CBJ（2），6，1，1）， \＃CEM（CASH（－），A，1，1）
UGEN（IIMIT（ + ），$B, 1,1)$
UGEMS（ + ），9，1，1） $\qquad$
ㅍ․


$\qquad$
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．TW———
－cols
－
PH01r9， $18.19,-122.5$ ..... FP暲任，CBJ2，－122．5putivi，orsj3，－127．5PRG1V1，eßse， 111
pRG1Y9，EBJE，－1111
 －upenr． 1
pubyy，ח8． 1, －A6

DDIAYY，OAj3，－An
preavi，cajbe－5a
риッムY，CASh1，$-350,124,69,00,94,167$ ， 09,41
－（IPAN： 1

Pレ12v1，0RJ7，－01．2
pD17Y1，CB．13，－01：2
PD12v1，0as6，－9？


HIPBNC， 1

d：pNNN． 1


of 1 erv，Ca．13，$=25.7$
जん1АY१， 0 ค， $6,=77,3$
准












－llPRfR． 7

VLESYア，05．12，4R，？


ppu3y？，risshi，$-30.9,0, k, 130,113,202,104$ －OPRFI 1

vanky？， 5 H．t？，$=4.1$
pu：s 8 ？ 16.15 S．$-5 . A$

－IVBNH， 1
，11．－1

$, 11115,6,7,1,2,62,00^{\circ}, 8 . ?$
$-11,+1$



unisvie．ritile． 34.4

－liplimn．$i$
pu13ヶन．19．1．3．6


pussve．tade．3．U

－Hprilf． 1
－1く．－1

，1111位，72．72．72．72．72．72
.18 .1
patiry．lis．l1．－9159．8

PP14Y7． 14.15 .1 フY．4
pe14Y7．1．4」\＆．－117

－D：DEAisn， 1

perivi，rojz．07
QWノIVア．णBJF，NA． 7
PQ71v2．C日．luesn．s
由Divi，CASN2．－549．－11，19．．216．116．06．136 （1PRNW． 1



DR2GY7，OAJA．－1A．0

－EPPNB．
PRHFB，CR＋1．41．2
pouevx，חHJ3．4n．

quวサミ，
p QUZY3，TASH3，－196，－69，74，56，7K，37
－اमिसम． 1

pи11Y3．nyd？．171．8
คa11r3，（1） 3 ．127．1
－$-1+\cdots=-1+$

lPMAR． 1
pe15Yア，Cu11．114

015yz，C113．114．8
pu15Y3．（－11J6．11．7．6
－a 1 SY3，CASN3，－167，－93．64，RO，An，31
luenn． 1
مी196．08J1．347．8

peulra，ing its．346．9
De01va，ne， 6,312
OHIY\＆，rasnk，－110，－160，－178．52，120
（UPHWn．1
pqusy4．＂n」1．320．3
pacsra．तedz．333．4
peubra．find5．373．3
Pptisra，rpj6． 292
pulisya，CASH4，－3A1：－122．14，147，154 （lurimf． 1
pu11Y4．nn．11．254


DA！1Y6．n日j6．205．8
HPSTV6，CASH6， $\mathbf{- 3 5 5 , 1 9 , 1 4 \% , 1 0 4 , 7 6}$
0．DRMn． 1
pu17YG． 1 n．19．4n4

Q9i子と4．lloj3．3Us．5


IPIND． 1
PPi3v6．1日．II．114．7
D＂13v6，「EJ7．172．9

二元

－1～PロT



Norno.
t13ヶ4，Ul．ja， 52

－11114．106．52．3＜．5之．58
.13 .1

PP14YR，值，P．－AB：？


－1吅保． 1





－1 $1 \cdot \| \cdot 1$

म口くらv4．lins？．144
Ph」sy4．rn．1．145．2
pDi弓殳a．tuse．tid





मWhars．onje．tes
 －1叶新． 1





，1，pt 110． 1
pr－11ヶ4， 111.787 .4
जnitra．1．s．1\％．z．0／． 2
pи11ヶ5，（ins：．276．1



$$
.1 \cdot p \mathrm{PRO} \cdot 1
$$



Pमétry．f：0．15．36n


．1．pP．， $1 ., 1$


PPZ3YG．1יuJ3．196．4


－㳱四に， 1
Da\｜\＆yf．n日J1．314．7


pollarf．，I＇A．IA． 279
由QGAYK，（ASUA．$-550,124.69$
い日にが， 1

PPusve，1－BJz．eris． 1
POOSYA．OnJ3．543．9

PQUSVC， $\mathrm{CASN} \mathrm{\alpha,-341,-122,14}$

คи19マニ．（1甘」1．375．6
ppitve，inald．395．3
DE19Yん．13J3．387． 5

Pレitva，rASMK，－ $355.19,162$
－＂Dipin． 1


poibra．inds．1811．6


－lintijn．！


EXHIBIT A15.3 TIE OPIIMAL SOLUTION II: THE CASE OF SEVERE CAPITAL RATIONING



## APRENDIX XVI

The closed function form for the Adjusted Present Value

The general formula ${ }^{\dagger}$ for calculating the adjusted present value of a project is

$$
A P V_{0}=A_{0}+\sum_{t=1}^{T-1} \frac{T r L}{(1+r)^{t+1}} \times\left(A P V_{t}-C_{t}\right)
$$

A16. 1
where

$$
\begin{equation*}
A_{t}=\sum_{i=t}^{T} \frac{c_{t}}{\left(1+\rho_{0}\right)^{i-t}} \tag{A16. 2}
\end{equation*}
$$

Equations can be redefined by the recursive system Al6.1 and Al6.2.

$$
\begin{array}{rlr}
(1-f) A P V_{T-S-1}-\frac{A P V_{T-S}}{(1+r)} & =A_{T-S-1}-\frac{A_{T-S}}{(1+r)}-f C_{T-S-1} & \text { Al6.3 } \\
A_{T-S-1} & =C_{T-S-1}+\frac{A_{T-S}}{\left(1+\rho_{0}\right)} & \text { Al6.4 }
\end{array}
$$

Hence using equation Al6.4 to eliminate $A_{T-S-1}$ from Al6.3 gives.

$$
A P V_{T-S-1}-\frac{A P V_{T-S}}{(1+r)(1-f)}=C_{T-S-1}+\frac{A_{T-S}\left(r-\rho_{0}\right)}{(1+f)\left(1+\rho_{0}\right)(1+r)} \text { A16.5 }
$$

and using the result

$$
(1+r)(1-f)=1+r-r \tau L=1+r(1-\tau L) \equiv 1+r^{*}, \quad \text { Al6.6 }
$$

[^93]Then in general

$$
\begin{equation*}
A\left[V_{T-S-1}=\sum_{t=0}^{t=S+1} \frac{C T-S-1+t}{\left(1+r^{*}\right)^{t}}+\sum_{t=0}^{S} \frac{A_{T-S+t}\left(r-\rho_{0}\right)}{\left(1+\rho_{0}\right)\left(1+r^{*}\right)} t+1\right. \tag{A16. 7}
\end{equation*}
$$

and in particular by letting $S=T-1$

$$
A P V_{0}=\sum_{t=0}^{t=T} \frac{C_{t}}{\left(1+r^{*}\right) t}+\sum_{t=0}^{T} \frac{A_{t}\left(r-\rho_{0}\right)}{\left(1+\rho_{0}\right)\left(1+r^{*}\right) t}-\frac{A_{0}\left(r-\rho_{0}\right)}{\left(1+\rho_{0}\right)}
$$

A16. 8
where $\quad r^{*}=r(1-\tau L)$.

Now

$$
A_{t}=\sum_{i=t}^{T} \frac{c_{t}}{\left(1+\rho_{0}\right)} i-t
$$

and this expression can be substituted into the second term on the right hand side of Al6.8 to give

$$
A P V_{0}=\sum_{t=0}^{t=T} \frac{C_{t}}{\left(1+r^{*}\right)^{E}}+\sum_{t=0}^{T} \sum_{i=t}^{T} \frac{C_{t}\left(r-\rho_{0}\right)}{\left(1+\rho_{0}\right)^{i-t+1}\left(1+r^{*}\right)^{t}}-\frac{A_{0}\left(r-\rho_{0}\right)}{\left(1+p_{0}\right)} \quad \text { A16.9. }
$$

which on eliminating the second summation sign aan be reduced to.

$$
\begin{equation*}
A P V_{0}=\sum_{t=0}^{t=T} C_{t}\left[\frac{1}{\left(1+r^{*}\right)^{\tau}}+\frac{r-\rho_{0}}{\left(1+r^{*}\right)}\left(\frac{\frac{1}{\left(1+\rho_{0}\right)^{\tau}}-\frac{1}{\left(1+r^{*}\right)^{E}}}{1-\frac{1+\rho_{0}}{1+r^{*}}}\right)\right] \tag{A16. 10}
\end{equation*}
$$

Equation A16. 10 on rearrangement gives

$$
\begin{equation*}
A P V_{0}=\sum_{t=0}^{t=T} c_{t}\left[\frac{1}{\left(1+r^{*}\right)^{E}}\left(1-\frac{r-\rho_{0}}{r *-\rho_{0}}\right)+\frac{\left(r-\rho_{0}\right)}{\left(r *-\rho_{0}\right)} \frac{1}{\left(1+\rho_{0}\right)^{\tau}}\right] \tag{Al6. 11}
\end{equation*}
$$

II we put

$$
\begin{equation*}
\alpha=\frac{\rho_{0}^{-r}}{\rho_{0}^{-r *}}=1-\frac{r \tau L}{\rho_{0}-r^{*}} \tag{A16. 12}
\end{equation*}
$$

'Linen

## APPENDIX XVII

An analysis of the Dual Equation associated with the accounting variables

The following dual relationships apply $t=1,8$. The sourve of the equation is defined in the opening bracket.
$\left.\operatorname{EARN}_{t}\right)-E A_{t}+\rho_{t}-(1-T) P R_{t}-\operatorname{ROCE}_{t}-\operatorname{ECOV}_{t}=0$
A17. 1
$\left.\operatorname{NPAT}_{t}\right) \quad-\frac{\mathrm{T}_{\mathbf{t}} \mathrm{TP}_{t}}{(\mathbf{I}-\mathrm{T})}+\mathrm{PR}_{\mathrm{t}}-\mathrm{ERPS}_{t}-\mathrm{DCO}_{t}=0$
$\operatorname{TAX}_{t}{ }^{\prime} \quad C L_{t}-\rho_{t}+T P_{t}=0$
A17. 2
817.3
while the following equations apply $t=1,7$.
$\operatorname{CURA}_{t}$ ) $--C A_{t}-\rho_{t}+\rho_{t+1}+\alpha_{t}-\operatorname{ROCE}_{t}=0$
A17. 4
$\left.\operatorname{CURL}_{t}\right)-C L_{t}+\rho_{t}-\rho_{t+1}-\alpha_{t}-R O C E_{t}+\beta_{t}-L Q D Y_{t}=0$
A17.5
and finally
$\left.\operatorname{CURA}_{8}\right) \quad-C A_{B}-\rho_{8}+\alpha_{-R O C E}^{B}=0$
217.6
$\left.\operatorname{CURL}_{8}\right) \quad-\mathrm{CL}_{8}+\rho_{8}-\alpha_{8} \cdot \operatorname{ROCE}_{8}+\beta_{8} \cdot \operatorname{LQDY}_{t}=0$
From which the following identities can be deduced
$C L_{t}=\rho_{t}-\rho_{t+1}-\alpha_{t} \cdot$ ROCE $_{t}+\beta_{t} \cdot \operatorname{LQDY} \quad(t=1,7) \quad$ A17.8
$\mathrm{CL}_{8}=\rho_{8}-\alpha_{8} \cdot$ ROCE $_{8}+\beta_{8} \cdot$ LQDY $_{8}$
217.9
$C A_{t}=\rho_{t+1}-\rho_{t}+\alpha_{t} \cdot$ ROCE $_{t} \quad(t=1,7) \quad$ A17. 10
$C \lambda_{8}=-\rho_{8}+\alpha_{8} \cdot \operatorname{ROCE}_{8}$
$T P_{t}=\rho_{t+1}+\alpha_{t} \cdot$ ROCE $_{t}+\beta_{t} L_{Q D Y} \quad(t=1,7)$
$\mathrm{TP}_{8}=\alpha_{8} \cdot \mathrm{FOCE}_{8}+\beta_{8} \cdot \mathrm{LQDY}_{8}$
$P R_{t}=\frac{T}{1-T}\left[\rho_{t+1}+\alpha_{t}\right.$ ROCE $_{t}+\beta_{t}$ LQDY $\left._{t}\right]+$ ERPS $_{t}+\operatorname{DCOV}_{t} \quad(t=1,7) \quad$ A17. 14
$P R_{8}=\frac{T}{1-T}\left[\alpha_{8} \operatorname{ROCE}_{8}+\beta_{8} \cdot L_{Q D Y}\right]+E R P S_{8}+\operatorname{PCOV}_{8}$
$E A_{t}=\rho_{t}-T \cdot \rho_{t+1}-[1+\alpha T] . R_{O C E}-T \cdot B_{t} \cdot L Q D Y_{t}$
$+(1-T)$ ERPS $_{t}+(1-T) \operatorname{DCOV}_{t}-\operatorname{ECOV}_{t} \quad(t=1,7)$
$E_{8}=\rho_{8}-[1+\alpha T] \cdot$ ROCE $_{B}-T \cdot \beta_{8} \cdot$ LQDY $_{8}$
$+(1-T)$ ERPS $_{8}+(1-T)$ DCOV $_{8}-\mathrm{ECOV}_{8}$

## APPENDIXXVIII

THE CHAMBERS (71) MODEL

A18.1 LP INPUT DATA LISTING AND SOLUTION
A18. 2 THE LP SOLUTION WHERE
THE FIRM IS IN A
dEFICIT STATE IN EACH YEAR
A18.3 THE LP SOLUTION WHERE THE FIRM IS IN A SURPLUS STATE IN EACH YEAR

## EXHIBIT A18．1 LP INPUT DATA LISTING AND SOLUTION

```
PRURLEM CNAPISFWS INPUT
K1U6,C0S5.0.34.7.-4.5,-4.5,-4.5,-100.10.24.0.9
K1u7.Hんम:+ア.1
```



```
k1uf,ncif,-65,-5n,-27,-5
M10h.llownn,1
```



```
x!6%,nC5,-411,-40,-4%
Allo+C10%,041. 1
```



```
X\114,OC*,-<4,-2N,-27
X91!,|ん1 *1, %1
```




```
\11,01017%,1
x111,rus1,11,5,.,7,3,7,1,5,-20n,-160,-123,-74,-53
<111.nC%,-4n,-51,-44,-41
x112.15,-1
X1!2.110."Nti,1
x41?,r,0\r.149,..0.3.,.-1,5,-20n,-100,-140,-119,-91
x112,nc>,-40,-24,-21,-27
```



```
 .nr.1. .4%.66.46.4h
L112.13.1
x115,11p,*n,1
x115,C(151,iv.,...4.5,15,.,-196,-80,-46,-67
X113,SA1E:1,01
x113,nr.4,-<7,0,-13
X114,1+N1N+, 1
M114.1.UST.4H....-7.-14.3.....23.30
X114.SAIEE:, 1
X114,n:4,-43,-10
```



```
x115,访?,-n,8.6
 .HPHN|, 20ñ
x110.11DIMm,1
```



```
x11A,nc1,%&.17%.180.193.1.\s
```



```
 |いん%下.20^い
```



```
X118,0E1,5/.6,\7.6.57.0.57.0.57.6
```



```
X114,CuST,170,511,50,50,50,50,-100,-100,-100,-100,-100
 -Cnonr.ogera
```




```
x>u1,bcl,-<n,->z
k?uz,1.un.ul.,1
x\geqslantvz.rost.<43,........-20iv,-101.-198
MPu?, nC4,-4%,-42
K2%3.llomNr.1
Mi|$.1ust,3a7......-4....-560.--260.-179
```





```
x<u4,nC5,-4N,-A5,-63
```




X2LA，HDPY $\mathrm{C}, 1$

K200，nc3，－116，－8，+15
X7n7．HPんNH， 1

$\times 207$, DC 3，－63．－3A，－27
XPUR，IIPPAn， 1

X20：，nC4，－40，－46
x209．＂pryn． 1

K2UP，nf．6．－20，－2月
X210，DDI：An， 1


$x>11$, ＂OHYR， 1

2711．nc：．－41，－37．－64
x $212 . \operatorname{ln+mn} 1$

n217，ris．s．40，－2n，－21
x＞15，rrman． 1

X＜13．SAIESZ，－1
ג713，nck，－21


x214，SALES？．1
x216．ncs，－73

X215，nc3．－6．2．6

x210，＂UPNWN： 1







－UPAR：0，2nU
x5n1． 11 phan． 1
ג3u1．rist．140．．．．．．．．．．．．－1011．－8n
x3u1，nc5．－8：


x30ヶ，カC4．－60
x．3US．ICPAHR． 1

x3ns，rics．－0n
MJ04．11P日んに， 1

x304，rC4，－ $60,-64$


xTu5，मC\＆，－2 $6,-2 n$
X Sukolluivn， 1





X 3usplot on． 1

$x$ 548．nC4，－ 40








M111，nC4，－60，－ 37



X 315,110 f．a 11 ， 1


A31s．nc5，－2）




X315，nC4，－N，2．4

ג $317, \operatorname{cosy},-145.1, \ldots-70.5,-67,-55 \ldots .157,134.110$ －HPPAD．入190


loniln，l川いい

X4U1．110pmin． 1
X4til，fusf．148．．．．．．．0．0．0．01．14
1402，100＊N． 1

X405，llOPAT，1

x404，11pp17．1

ג4 ひ ，\｜pnin， 1





X 4 ！$A, I I P P$ the， 1


sい!!idu.
 $-29$
Buegirn on

Inven manmo

Deti 06/fis/1a
11ん4

UMO：ロリN～ 4

SClITIIM
CIGMT MASA SIDE
OAJECTIVE

## NQPE GOUNF

DATE 04／43176
TIPF 1


HOMt		
U	A319	，
U	$x \leqslant 10$	
	xS919	
v	$\times 117$	
4	$\times 113$	＊
－	M 114	
	XS14	
－	4317	
－	A31：	＊
	$\times 310$	
4	Maj ${ }^{\text {Ha }}$	
$\cup$	（4， 37	
$U$	44．7．	－
U	1436	
U	A4．19	
	abua	
0	440：	
U	x4．94	
U	$x+70$	
U	$x 410$	
U	X611	
0	1497	
U	$y+13$	
－	1496	
	$x+15$	
－	1417	
	8478	
	1449	
4	K5u＇	
v	y $\mathrm{yd}^{2}$	
U	250.	
$U$		
U	2545	
4	X SuA	
U	如的	
4	$\times 5.10$	
U	XSOO	
	X 5111	
$U$	M 111	
$U$	K 517	
4	4513	
－	H514	
－	4595	
	（ $>17$	
	めッ10	
	HS14	


V4し19	COUFF	HuUvD
1．9．300		
1．n．100		
0		
1．1）110		
1．fi．） 0		
1．0）0		
$\checkmark$		
1．\％ive		
12．3114		
11		
1．1．107		i／
1．1：10n		
1．${ }^{*}$ j00		
1．rill		
1．－1त		
9		
1． 2300		
1．1） 100		
1．${ }^{\text {10，}} 0$		
1．n）ハ0		
1．3100		
1．1．149		
1．$\therefore 190$		
1.0100		
0		
2．132		
0		310
0		
1．nino $=-$		
1．19100		
9．1200		
1．mull		
1．ninelu	5	－
1．indo		
1．6．3to		
1．r．ol0		
1．10100－＝＝		
0		
1．nnna－		
1． 1.110		
1．idfu		
5． 200		
7.6459		
0		
0		




TABLE A18.1 CASH BALANCE AND DEBT CAPACITY DUALS

YEAR	$\rho_{t}$	$I_{t}$	$\rho_{t}+{ }_{2} L_{t}$
1	1.5764	0.3673	1.7600
2	1.4076	0.3392	1.5772
3	1.3084	0.1968	1.4068
4	1.1570	0.1968	1.2554
5	1.0360	0.1688	1.1204

Here

$$
\begin{aligned}
& L_{t}=\sum_{t=t}^{5} \operatorname{LEV}_{t} \\
& \rho_{t}=\sum_{t=t}^{5} \operatorname{cash}_{t}
\end{aligned}
$$

and where $L E V_{t}$, CASH $_{t}$ are dual variables in the computer solution above and $\rho_{t}, L_{t}$ are as defined in section 3.5 .

EXHIBIT 18. 2 THE LP SOLUTION WHERE THE FIRM IS IN A DEFICIT STATE IN EACH YEAR



COBUAH IUFGRMATIUN

-14F		
0	4309	-
	$\times 371$	+
	4311	-
U	4 517	*
U	ג 38.5	-
B	X 316	-
	4395	-
-	431?	-
-		-
	1314	-
U	669	+
U	1407	-
$U$	1478	-
4	1404	-
U	7445	-
	m40n	-
$v$	M4 47	-
$\omega$	14Un	-
U	1400	-
$\cup$	$\times 410$	-
U	X611	
U	$\times 61 \%$	-
4	$\times 485$	-
$\cdots$	X 614	-
	X414	-
䟓	$\times 17$	-
-	X414	-
	K490	-
U	8504	-
U	M 20 ?	-
4	2503	-
4	2504	-
4	1504	-
	4506	-
4	4)07	-
U	碞um	-
4	m50.	-
	H510	*
1.	W511	-
14	2517	-
4	X54.	-
1	MS44	-
	H515	-
	- 1517	*
	ASTA	-
	4516	-
	- + ¢ ¢ IV	



LDEFGOUND
HPDEE NOUMO
Dajfctive neouefocost
PRUHLI, GNAHIGHS

S:11.11111k

QIfNT MAND STDE MEST +1.75900AASS AHJECTIVF COST
UPDEQ GJUINA UWBND
RUW SFT 《LEVT $-10$

COL SET

ROH INFORMATIOM


TABLE A18. 3 CASH BALANVE AND DEBT CAPACITY DUALS.

YEAR	$\rho_{t}$	$L_{t}$	$\rho_{t}+1_{2 L}$
1	1.5905	0.3569	1.7689
2	1.4407	0.2728	1.5771
3	1.3087	0.1961	1.4067
4	1.1889	0.1329	1.2553
5	1.0815	0.0778	1.1204

EXHIBIT A18.3 THE LP SOLUTION WHERE THE FIRM IS IN A SURPLUS STATE IN EACH YEAR





PIGNT Mant SIAE जhJECIIVE   ：HFEO ADM』！	$\begin{aligned} & \text { nust - } 3.5000 \text { enms6 } \\ & \text { cost } \\ & \text { UOBY } \end{aligned}$





CUL St
COtutim IItontirifun

NAMF			V4L1F
	可し6	－	1． 01500
	K514	＊	1.0010
4	X 811	＊	1． 11010
4	1317	－	1．4．4．04
4	M315	－	1． 60.10
－	X 516	＊	1．${ }^{\text {c }} 111$
－	H314	－	1.2797
	घ 117	－	11
	131界	＊	11
－	1817	－	47．781？
$v$	18409	－	1.1 .019
1	146？	＊	1．${ }^{\text {P } 61100}$
$\cup$	1443	－	1． 50010
U	）$\times$ ¢1／8	－	1．0．00
$\cup$	1 $\times 145$	－	1.4000
	14.16	－	11
U	1 8607	－	1．Abliout
4	1）60k	－	
4	1.1469	－	1．90nn
4	14617	－	1．＂6．18）
4	1．411	＊	1． 61.001
4	1.1612	＊	1．＂ran
U	1）45	－	1．＂0nn
－	14616	－	1．004\％
－	1．4．14	－	36．1917
E	1847	－	3．2045
	1610	＊	0
	M610	－	0
$U$	－Mu＊	＊	1．1：us0
$U$	1342	＊	1．0000
U	4 HSUS	－	1．5世6）
U	U AS114	－	1． 50110
4	4 ¢505	－	1．1＂616
U	－¢5uA	－	1．Acto
	－ 1307	－	
	4 xson	－	1．10000
	$\begin{array}{r} y 500 \\ 510 \end{array}$	－	1．0000
	－ 411	－	1．0020
	U 4517	－	1．nusu
	4 X51\％	－	1． 18010
	－ 414	－	1．ruto
	－ 4515	－	A6． 8652
	－X317	－	6． 0.443
	M318	－	0
	4519	－	n
	Of」ECIV＊		＜1711．5117

LHEFW HOHNO
uDoER M（1）Ima
1．0ク60
1．0．00to
1.10010
1.90124
$1.9 n 014$
$1.9 n 00$
1．nndo
2non．tand
200n． 01300
2non．nرolo



TABLE A18. 2 CASH BALANCE AND DEBT CAPACITY DUALS

YEAR	$\rho_{t}$	$I_{t}$	$\rho_{t}+\mu_{t} L_{t}$
1	1.2329	1.0543	1.7600
2	1.1749	0.8026	1.5762
3	1.1234	0.5532	1.400
4	1.0772	0.3563	1.2554
5	1.0360	0.1688	1.1204

[^94]

\%exs	1	2	3		${ }_{5}$	6	7	8		FR"Crain stuuams	1	2.		$4$	${ }^{1+1}$	6	7	8	
:aciyl	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		VnR 1		249	249	4					
Fx.cyi	$\checkmark$	$\checkmark$	1	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		VDR 2		206							
7517\%	$\checkmark$	1	1	$\checkmark$	1	$\checkmark$	1	1		ves 3	${ }^{223}$					26	26	26	6
	${ }_{x}$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$		vis 5	166 249					26	26		
7322\%1	$\times$	$\times$	$\times$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		Crer 6	88								
52-32	${ }_{0} \times 15$	$\hat{0.80}$	${ }^{\mathrm{x}}$	${ }^{\times}$	${ }^{x}$		$\times$			Vide 7	249								
Picoyy	1	0.80	0.35		0.42	$\checkmark$	,			Vca 8						218	218	219	
PiO42	\%	$\checkmark$	?	,	$\downarrow$	$\checkmark$	$\checkmark$	$\checkmark$		NRK 1	1					218	21	2.	
PROSY2	$\stackrel{n}{7}$	$\stackrel{1}{*}$	$\stackrel{1}{1}$	$\downarrow$	1	$\stackrel{1}{1}$	1			APk 2			2						
Pa13\%2	$\gamma$	1	1	1	1	1	1	$\checkmark$		Fipk 3	301	346							
20:428	$\times$	*	$x$	$\times$	$\times$	$\times$	$\times$	$\times$		RK 5	14	55							
12:2:42	$x$	$\underline{x}$	$\stackrel{\mathrm{x}}{\mathrm{x}} \mathrm{Cl}$	$x$	x	$x$	$\times$	$x$		akn 6	1619	1453	1206	1187	1277	2329	1329	1329	
$\cdots 273$	$\stackrel{x}{0}$	$\stackrel{\times}{1}$	- ${ }^{1}$	1	$\downarrow$	$\stackrel{\times}{1}$	${ }^{1}$	1		Wrk 7	${ }_{3151}$	2353 3590	2044 3440	2099 3557	2172 3651	2438 3979	2438 3979	2438 3979	
1512183		$\times$	$\times$	0.95	1	0.90	0.90	0.90	\% ${ }^{218}$	ck.	3151		3440	272	273	290	290	280	
\#:02:4	$\stackrel{7}{*}$	$\checkmark$	$\checkmark$	6.01	$\checkmark$	\%	7	$\checkmark$	DV	$v 2$	408	432	620	474	474	477	677	477	
Fecs54	$\times$	$\stackrel{*}{ }$	${ }^{x}$	6.01	${ }_{0} \times$	$x$	0.63	$\times$	DV	V 3	414	415	403	638	585	642	64.2	642	
12194	,		0.71	0.24	0.37	0.63	0.63	0.63	Di	* 4	429	431	768	746	636	745	74.5	695	
1512\%	,		1	$\checkmark$	$\checkmark$	$\checkmark$	1	$\checkmark$	Dv	v	504	621	668	699	699	870	870	870	
121344	$\times$	$\times$	1	$\checkmark$	\%	1	1	$\checkmark$	DV	N 6	869	474	472	477	464	485	485	485	
\%2\%\%4	$\times$	$\times$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	DV	v 8	1041	1002	1148	1181	1191	1251	2251	1251	
2:27\%4	$\downarrow$	$\checkmark$	1	1	1	1	1	1	KG	61	88	167	167	98	162	232	232	232	
:cery	$\stackrel{x}{1}$	$\stackrel{x}{1}$	$\stackrel{x}{1}$						${ }^{\text {RG }}$	$\mathrm{G}^{2}$	794	799	713	800	800	S00	600	3.0	
12\%)45	8	0.87	$\times$	0.37	0.32	0.33	0.33	0.33	${ }_{8 G}^{\text {RG }}$	G 3	75 1				5				
121145 52.145	$\times$	.	${ }^{\times}$	,	$\times$	$\times$	$\times$	$\times$	${ }_{8}^{86}$	$G$ 4	1	.	76	87					
3275	$\times$	r	${ }^{*}$	${ }^{*}$	$x$	$x$	$\times$	$\times$	RG	G 6									
22) 76	$\times$	$\times$	$\times$	*	$\stackrel{ }{ }$	$\checkmark$	7	$\checkmark$	RG	67									
	?	$\checkmark$	1	$\downarrow$	$\downarrow$	$\stackrel{1}{1}$	$\stackrel{1}{1}$	$\stackrel{1}{\downarrow}$	If	G-8	374	1		476	477	$483 \cdot$	483	483	
19.2485	$\times$	$\times$	$\downarrow$	$\checkmark$	$\checkmark$	$\downarrow$	$\checkmark$	$\downarrow$	12	12	2		359			4	4		4
1.1.156	$\times$	*	1	1	$\checkmark$	1	$\checkmark$	1	Li	[ 3	11	872	680	616	615	619	619	619	
50.1.35	$\times$	*	1	$\checkmark$	1	$\checkmark$	$\checkmark$	1	2L	4	1000	729	875	893	891	1000	1000	1000	
p: 2175	$\times$	*	$\times$	$x$		*	*	$\times$	2	25	459	538	707	732	737	812	812	812	2 W
. 172375	$\times$	*	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	L	5	1000	172	894	897	919	945	945	945	
									$\begin{aligned} & \text { Li } \\ & \text { R } \end{aligned}$	$\begin{aligned} & 5 \\ & \hline 10 \end{aligned}$		517	556	550	567	592	592	592	
	-						.				1915	1921	2022	2051	2063	2063	2063	2005	

TABLE A19.2 AN INCREASE IN THE LEVEL OF EARININGS FROM EXISTING PROJECTS OF TEN PERCERTT

TABLE A 19.3 A DECREASE IN THE LEVEL OF EARNINGS FROM EXISTING PROSECTS OF TEN PERCENT


## APPENDIX XX

## LEASE ANALYSIS IN THE SINGLE CRITERION MODEL

## A20.1 The LP Primal Solution (Investment prdects only) A20.2 The LP Dual Solution

EXHIBIT A2O.1 THE LP PRIMAL SOLUTION (INVESTMENT PROJECTS ONLY)


## EXHIBIT A2O. 2 THE LP DUAL SOLUTION



## ROU JWFIMMATION

为


$y^{2}+x^{6}$



[^0]:    * References givo author (s) and date of pub: cation. Where two or more articles are referenced by the same author in the same year then additional distinguishing symbols will be used.

[^1]:    *The discussion will in general be restricted to deterministic or certainly equivalent formulations, though considerations of uncertainty also affect other aspects of the formulation. Many of the constraints included in the models (e.g. restrictions the number of times fixed interest payments must be covered) and designed purposely to cope with uncertainty in future cash flows. However, specific discussion of stochastic financial models as exemplified in the work of Byrne, Charnes, Cooper and Kootanek (67) or Nasland (66) will be axcluded.

[^2]:    *See for example Lustig and Schwab (68), Carleton (69), Elton (70), Myers (72). Merville and Tavis (73), Burton and Damon (74).

[^3]:    * In the origina: formulation the constraint set ran from periods 0 to H . The particular formulation here follows a modification by Bernhard (69) who pointed out that the Baumol and guandt paradox then occurred in period $H$.

[^4]:    *For example, see Myers (72) or Elton (70)
    ** See quirin (67) or Lustig and Schwab (68).

[^5]:    * See for example Quirin (67), Schwab and Lustig (69), Bernhard (69) Beenhacker (73), Hoskins (74).
    $+$
    Two exceptions to this are the papers by Bernard (69), who uses a Eramework for analysis shinilar to that witich will be developed and the one by Lustig or Shwab (69), though in the end both of these successfully deal with situations where the capital rationing applies to the first time period only.

[^6]:    - The most significant arguments to the contrary embodied in the work of Modigliani and Miller (58) specifically assume perfect market conditions.

[^7]:    * Simple expositions of the Kuhn-Tucker conditions can be found in standard operational research texts such as Hillier and Lieberman (67)

[^8]:    * In the ensuing discussion it is assumed that a lease refers to a

    Enancial lease rather than an operating lease.

[^9]:    - Of the 75 articles cited by ferry (76) the majority of these have been published between 1973-1976.

[^10]:    * See Van Horne (77) p. 88.

[^11]:    - See Bower (73)

[^12]:    *See, for example, Chambers, Singhai, Taylor and Wright (71).

[^13]:    *See Lev (74), Van Horne (77)

[^14]:    *Connectedness in this context means that a neighbouring efficient vertex can be obtained from the current efficient vertex in only one simplex iteration.

[^15]:    *The final form of the model had over 360 variables with over 180 constraining and defining equations excluding simple bounds.

[^16]:    *This analysis was developed by Atkins in the paper by Ashton and Atkins (76),

[^17]:    * Sec Freeland and Rosenblatt (77) fur a general proof of this result.

[^18]:    * See footnota paqe 18 of this thesis.

[^19]:    * It is of course preferable to lend money to the capital market at lof than to invest in project $H$, ceteris paribus:

[^20]:    * Bernhard (71) zos sectly analysed this ratio using a method of analysis similar to the one developed here, though he failed to extend his analysis to the case where the binding constraint was other than in the first year.
    ** See ouirin (67)
    $t$ The socticn is based on analysis carried by Atkins in the paper by Ashton and Atkins (74).

[^21]:    *The proof of this was first derived by Atkins in the paper by Ashton and Atkins (74). It is reproduced in appendix XIV.

[^22]:    * References to page numbers are those of the Kershaw edition (published in 1974) of 'Mathematical Programming and the analysis of capital investment problems" by H.M. Weinqartner.
    ** Attention is drawn to the relative stability of the rankings implicit in these 8 -ratios.

[^23]:    * This solution and all the other LP solutions quoted in this chapter were found using the ICL package xDLA on the University of Birmingham's ICL1906 mackine.

[^24]:    * See Weingartncr (74) p. 189.

[^25]:    * Myers and Pogue (74) develop a similar model where debt and equity values are in accord with capital market valuations. An analysis of this will be postponed until the next chapter.
    ** See Chambers (71), p. 272

[^26]:    *Project 16 is an aquisition and will be omitted here for simplicity. ** The project numbers refer to the original article.

[^27]:    * But see Chambers, the comment below Table 3 page 275.

[^28]:    * The sign change is due to an inequality reversal.

[^29]:    * To be more accurate, for government securities $\rho_{t} 21.036 p_{t+1}$
    * The debenture equation is a fairly crude approximation which works reasonably wall over the limited range considered. It should be noted that the 4s used in this approximation is the IRR of the after tax flows and not the after tax nominal cost.

[^30]:    * The program results (see appendix XVIID differ slightly from those published by Chambers due to some slight discrepancies in the source data. Chambers' results are in parentheses.

[^31]:    * Linear programing solutions curresponding to extreme configurations of initial cash flows and debt commitments can be found in appendix XVI.
    ** It is perhaps worth emphasising that the linear programming solution was achieved only by the somewhat artificial device of assuming identical projects where available in each year. Such an assumption is not necessary for the solution arrived at by the dual analysis. Furthermore this dual analysis illustrates the falatively minor impact of assumptions made about future investment opportunities on current investment decisions.
    *** In fairness to the authors it should be mentioned that Chambers in an unpublished working paper and Weingartner in his book have proposed extensions to their basic moriels. The imact of these extensions will not be analysed here in detail since many of them have been incorporated into the next model to be discussed.

[^32]:    * Analysis of the dual inequalities associated with debt, equity and market investments can be found in Appendix XVII. Results from this analysis are merely quoted in this chapter.
    ** This constraint is assumed to be of the form that the earnings before tax and after depreviation must be s.t last $K$ times the interest on debt. See equation 2.03 of Appendix .
    *** This dual equation could be regarded as arising in two ways. One is that all profects can be analysed in terms of a constant earning stream and that this equation is related to a particular project. The altornative and probably more realistic analysis, is that the equations are average equations over all of the projects which commence in a particular time period.

[^33]:    * Methods for the solution of such difference equations are discussed extensively in standard texts (See for example Goldberg (58))

[^34]:    - See appendix XVII.

    This equality can be deduced easily by equating the non-deht capacity duals in the appropriate inequalities to zero.

[^35]:    * It should be noted that only the initial outlay from project PR25y8 occurs in the pre-horizon period. Hence, it hardly constitutes a valid counter-example since the accept-reject decision is largely a function of the post-horizon discount rate.

[^36]:    * Normal here is a convenient reference term for the case where earnings from existing projects are as in appendix III. It was chosen as a base case since it represented the lowest level of earnings for which a feasible solution existed in the absence of any investment projects. The usefulness of this as a base point will become self evident in the next chapter. Parametric analysis further showed that if earnings from existing projects were reduced by 21.28 there was no feasible solution even with all project opportunities present.

[^37]:    * Of the remaining constraints, clearly the dividend per share cunstraint is in no way proportional to the pre-tax earnings. However, this independence does mean that it has a minimal effect on project selection since it largely determines the cash disbursements from the firm and as such its major effect is in the financing strategy. The remaining constraint does exhibit a 'loose' relationship with pre-tax earnings since both the current liabilities and pre-tax earnings arg each roughly proportional to the level of sales.

[^38]:    * In the linear programme, the post horizon value of a project in the objective function was increased by a large mositive value for an internal rate of return greaier than the cut-off rate and a large negative value if the internal rate of return was less than the cutoff value. Thus selection was by feasibility than by internal rate of return then ontimal financing and investment in the usual way. A statement of the objective function can be found in appendix $V$.

[^39]:    * The final year (year 8) was omitted from the analysis since their selection was largely just an NPV criterion at 10\%. This implied an upper bound of 41.0 for the $D=s t a t i s t i c s$.
    ** When earnings from existing projects are reduced more new projects need to be introduced to maintain optimality. This accounts for the lower cut-off rate.

[^40]:    * The precise furmulation of this problem can be found in appendix
    ** In actual fact, the optimisation algorithms XDLA are considerably more sophisticated than this with block pricina, major and minor iterations plus many similar facilities incorporated as standard. It is possible
    (continued on page 123)

[^41]:    * The figures are estimates arrived at by caking values 108 above and below the $£ 1.30 \mathrm{~m}$ figure.

[^42]:    * Again this reduced cost has been calculated within the context of an "infinite" horizon model.
    ** This assumption is made purely on intuitive grounds. In the end the justification for it reshs on the results that it is able to generate.

[^43]:    * Some confidence is gained in the correctness of the analysis by a comparison of the structure of this expression with the corresponding but more rigorously derived expression for the reduced cost which will be found in 5.5 .
    ** A rate of 10 coinciding with the theoretical IRR cut off rate, was assimea throughout most of these computational experiments.
    *** Since debt capacity effects are ignored in the post-horizon LP solution for the sake of comparison $E_{j}$ consisted of only the pre-horizon earnings.

[^44]:    * The estimates are not precise as in the Chambers case because it is assumed that the debt capacity constraint is either binding in every year or binding in non precise estimate would require consideration of the debt capacity constraint in each year Indevendently.

[^45]:    * The estimates are not precise as in the Chambers case because it is assumed that the debt capacity constraint is either binding in every year or binding in noa precise estimate would require consideration of the debt capacity constraint in each year independently.

[^46]:    - There are subsudiary peaks which roughly coincide with the adoption of an identical number of projects to that of the optimal Lp solution. There are however slight discrepancies between the adofted sets in the two cases.
    ** In the case where financial policy considerations do not play a gignificant part in project selection we can revert to fairly aimple models and of course rule of thumb solutions.

[^47]:    * It should be pointed out that the analysis presented here follows one of the accepted patterns of analysis of financial theorists and is presented as a vehicle for introducing the concept of a cost of a capital. It will be argued that hecause of the excessively restricted assumptions made it is an inadequate theoretical framework for analysing the impact on investment decisions of debt financing.
    * Hence the $t$ subscript will be omitted in the remainder of this section.

[^48]:    * See for example Solomon (63)
    **It should be emphasised that this is merely one of many possible definitions (see Nantell and Carlson (75). An alternative definition will be provided in section 4.4.

[^49]:    * Typically it is argued that Goverrment stocks provide such a risk-free asset.
    ** This is the return expected from a portfolio of all the risky securities of the market held in proportion to their market value.

[^50]:    - See section 1.2
    ** See for example the discussion of Weingartner's and Chambers' models in section 1.4

[^51]:    - In fact as we shall see, under assumptions of perfect capital markets then the consumption decision is irrelevant to the investment decision.

[^52]:    * In keeping with the discussion in section 4.2, business risk must now be defined in terms of the covariance of the returns on the firm's project with the return on the market portfolio.
    ** This simplifying assumption is necessary since we are concerned with maximisation of shareholder wealth. If the body of shareholders were allowed to change, it is no longer clear how the possible conflicting interests of existing and future shareholders can be catered for.

[^53]:    - There appears to be a slight anomaly in the treatment of $t=1$ with $D_{1} \equiv D_{1} 0^{0}$. The reason for the form chosen should be apparent from the result.

[^54]:    * A rigorous development of a model incorporating the assumptions of modern financial theory will be presented and analysed in section 4.5 .
    ** See Durand (59); Weston (63).

[^55]:    * Again the notation is presented here for convenience and complete list of the mathematical notation used throughout this thesis can be found in appendix II.

[^56]:    *See Weingartner (74) or Peterson (69) p. 446 for a fuller discussion of this point. Extensive use has already been made of this idea in chapter III.
    **This assumption requires no difference in effective tax rates between dividends and retained earnings, no transaction costs and that all rights are taken up by existing shareholders. These assumptions are less restrictive than they might appear at first sight.

[^57]:    * Thus in Chapter three it was seen that valuing a project merely by discounting at the weighted average cost of capital, which is equivalent to a zero horizon time, did not lead to major distortions in the investment decision.

[^58]:    * ibid p. 580

[^59]:    *See Myers and Pogue ibid p. 587.
    **The use of total market value $V$ rather than the value of equity $\psi$ implies that the function $V$ such be substituted for $\psi$ in the analysis of the previous section.

[^60]:    *Since $v_{t}{ }_{\mathrm{X}}^{\mathrm{X}}>0$ the inequality is in fact an equality.

[^61]:    * See Mao (69) for a discussion of simple investments.
    ** The continuity of $f$ ensures the existence of such a discount rate.

[^62]:    * This statement does not contradict any of the arguments of this chapter. Here the assumption is being made of free access to one particular financial instrument. The rest of analysis presented in this chapter examines the interacting roles of various types of financial instruments where restrictions are placed on the use of these instruments.

[^63]:    * The work of this section rests heavily on the preliminary dual analysis which is carried out in appendix XVII.
    It is thus assumed in the subsequent discussion that $H \leq 8$.

[^64]:    *The boundary conditions are chosen so that only this root appears in practice.

[^65]:    * Ibid p. 286

[^66]:    *The period of this repeating set may of course be longer than a year. In the subsequent discussion it is convenient to consider the period as a year for simplicity of argument.

[^67]:    *For a discussion of these conditions see Evers (June 73 p. 13). It will be assumed in the subsequent discussions that these conditions are satisfied.

[^68]:    * It is, of course, necessary to assume that the shareholder requires a constant return from the firm. This assumption will be discussed in more detail later.
    *The symbols in brackets represent the dual variables.

[^69]:    *For the models discussed here the equilibrium solutions are relatively easy to find. A general algorithm based on complementarity theory for the numbrical computation of equilibrium is to be found in Evers (June 73, Nov. 73., July 77).

[^70]:    * Myers (78) in a paper "The Determinants of Corporate Borrowing" comes to a similar conclusion about the importance of the value of existing assets, using what appears to be a completely differant approach. In fact, there is some similarity in that both approaches make assumptions about how the providersof debt capital view promises of future income streams.

[^71]:    * This did of course assume that the initial decisions did become independent of the horizon within the eight year period. The somewhat arbitrary and expedient assumption is justified by the results later in this section.

[^72]:    - See section 3.6.

[^73]:    * This is implied by the use of a constant discount factor to value the project cash flows

[^74]:    *See equation 4.5.20

[^75]:    * Myers thoroughly explores the problem of the effects of differing tax rates on the lessee and lessor as well as the effects of different depreciation patterns and shows that this may give rise to circumstances when leasing is attractive. This chapter assumes throughout that the firm is paying tax at a standard rate on all its earnings and uses for the sake of numerical illustration on straight line depreciation. The purpose of the chapter is to identify reasons for leasing which do not arise solely because of particular advantageous tax situations.

[^76]:    * It may seem strange to choose a model which has been subject to such severe criticism in the last chapter but it is a convenient vehicle for the analysis. We must of course assume that the firm is in a disequilibrium state and currently using debt to grow faster than the growth rate of opportunities. It must be further assumed that there are other restrictions on debt which are currently non binding but which will be the eventual determinants of the equilibrium values.

[^77]:    *See for example Barges (63).

[^78]:    * This is the dual where the firm is actually raising debt. It will be assumed temporarily that if the firm is leasing it remains in a deficit (debt raising) state implying that the funds required for investments in fixed assets exceed that generated by on-going operations. This restriction will be relaxed later.

[^79]:    * This is a minor inconsistency here since the debt dual is calculated assuming that there is a one year lag in tax payments while this calculation on the lease repayments assumes no tax lag. However, since the purpose of this section is to identify the circumstances under which leasing takes place it was not thought necessary to change this assumption for this section only. It will be seen that this difference is not crucial.
    t For the sake of convenience it is assumed that book and tax depreciation rates coincide.

[^80]:    *The net present value is related to the net terminal value by the factor $(1+1)^{H}$.

[^81]:    * The interperiod discount rate when the firm has surplus funds is calculated from $\rho=\left(1+i_{G}(1-T)\right) \rho_{t+i}$ where $i_{G}$ is the rate on Government stock. In this case $i_{G}$ was assumed to be 64. The dual on the debt capacity is calculated as before from the formula $\lambda_{t}=\frac{\left[(1+1)^{H+1-t}-\rho_{t}\right]}{(1+g)}$

[^82]:    * The Table relates the NPV/£100 of lease to the debt times covered factor and the after tax lease rate. Thus a debt times covered factor of 0.28 (column 3) is equivalent to a times covered value of 5 and an after tax debt of 6.6 t or to a times covered of 10 and an after tax debt rate of 4.61. At an after tax lease rate of 5 . both of these combinations give a positive net present value to the lease of $£ 5.1 / £ 100$ leased.

[^83]:    * In the case wharn the marginal project is the lease project then this oxprosuion further simplifies and the value of the lease becomes the not torminal value of the lease cash flows plus the net terminal valun of the uroject cash flows. This is merely because the lease ellahinn thin project which would then be rejected because of lack of funile to lin umidretaken.

[^84]:    * See section 1.6

[^85]:    * The work of this section was carried out in early 1974. In fact prior to this date it would appear that Lane (72) in an unpuhlished Ph.D. thesis also correctly identified the nature of the linear approximation implied by goal and minimax programming. However, he failed to iclentify the hybrid linear approximation to be discussed shortiy or to find an effective method for determining the parameters $T$ and $u$.

[^86]:    This resulted in the deviations having all tre seme order of magnitude while numerical values of the targets actually range from 0.11 (dividend/ share in year 1) to over 30,000 (sales in year 8).

[^87]:    * This figure was 10 below the current dividend per share level

[^88]:    The experiments in this section were carried out by D.R. Atkins.

[^89]:    * These constraints only apply to the single criterion model.

[^90]:    
    $00000000000000000+0.0000$

[^91]:    

    ## $\frac{0}{8}$

[^92]:    -These rate are computal by using the hurizun valuee at $10 \%$ of Tubla 9.l.3.

[^93]:    $\dagger$ S.C. Myers "Interactions of Corporate Financing and Investment Decisions Implications for Capital Budgeting" Journal of Finance XXIX no. 2 (March 1974) pp. 1-25. The mathematical notation is the same as in Myers' original paper except where stated.

[^94]:    THE IMPACT OF THE CHOICE OF HORIZON ON THE SET OF INVESTMENT AND FINANCING DECISIONS.

