A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/136838

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
tention is drawn to the fact that the ht of this thesis rests with its author. is copy of the thesis has been supplied dition that anyone who consults it is ood to recognise that its copyright rests author and that no quotation from sis and no information derived from it published without the author's prior consent.

D 19276/77
Alkinson, G_{1}
Pr : 01

Page.	Line.
2	2
19	1
19	5
20	7
25	-5

```
For compact read complete.
Por a(m-n) read a(m-n,x).
For }\mp@subsup{T}{}{m-n}(A) read TT (m-n) (A).
zor "closure of its own interior"
read "interior of its own closure".
There is something missing from the
argument here. In addition to the graph
of }\varphi\mathrm{ being closed it is necessary that
for every }x\inX\mathrm{ there exists a neighbour-
hood U of }x\mathrm{ with }\overline{\varphi(U)}\mathrm{ compact. Let
C _ { i } \text { be a sequence of compact sets with}
UC}\mp@subsup{C}{i}{}=G; then \mp@subsup{\overline{O}}{a}{(}(\mp@subsup{x}{0}{},0) can be expressed
as the union of closed sets
    Y(\mp@subsup{O}{a}{a}}(\mp@subsup{x}{0}{},0)\cap(X\times\mp@subsup{C}{i}{}))
    It now follows from Baire's Theorem that
    U exists for some x ; the minimality of
    T proves it for all x.
    For }\mp@subsup{\pi}{X}{}(\mp@subsup{\overline{O}}{2}{}(y))\cap\ldots\mathrm{ read }\mp@subsup{\pi}{X}{}(\mp@subsup{\overline{0}}{a}{}(y)\cap\ldots..
    For "uncountable collection of cocycles"
    read "uncountable collection of pairwise
    non-conorologous cocycles".
    For x read Tram(x).
```


NON-COMPACT EXTEITSIONS

OF IRANSFORNATIONS

Giles Atkinson

Thesis submitted for the degree ol Doctcr of Philosophy
at the University of Marwick Nathematics Institute,
December 1976.

A siver-product extension of a transtormation $\sim: X \rightarrow X$ by an abelian group G is a transiormation $S: X \times G \rightarrow X \times G$ of the form $J(x, g)=(T(x), g+\psi(x))$, where $\psi: X \rightarrow G$ is a function. In the first part of this thesis X is a complete metric space, I is a minimal homeomorphism and ψ is a continuous function into a locally compact second countable abelian group. The orbit structure of S is studied with the help of an invariant from ergodic theory, the grouv of essential values or ratio set of the extending cocycle. Several types of possible orbit structure For S are described; the most interesting nocurs when 3 is topologically transitive. In the special case rinere X is compact and G is Euclidean it is showr that for any given there is a residual subset of functions which deîine topologically transitive extensions. Mecessary and sufficient conditions for s to be topologically transitime are obtained for the special case where is a translation on a torus. This generalises a theorem of Hedelund.

The second part of the thesis stuaies a collection of examples 0 measurable extonsions by the reals. The sbace X is the unit circle and T is rotation through the anole exp(2ri $)$ with $0<\alpha<1$. The function ψ is deŝinea by

$$
\begin{gathered}
\psi(\exp (2 \pi i x))=\chi(0, \beta)^{(x)-\beta} \\
\text { where } 0 \leqslant x<1 \text { and } 0<\beta<1 \text {. The set of pairs }(\alpha, \beta)
\end{gathered}
$$

for mich the resulting S is ergodic is proved to be a residual subset of the unit square which has Lebesgue measure one. The special case where α, β and 1 are integrally related is treated separately. Here the extensions are not ereodic but ergodic extensions by subgroups of the reals can be obtained from them.

Acknowledgement.
I am very graterul to my supervisor Dr. Klaus Schmidt for his advice, encouragement and, not least, his paiience. I also wish to thank Prof. Filliam Parry for the interest he has sho:m in my work and all the many others who have helped in the preparation of this thesis.

Declaration.
The material in Appendix A has been previously published in the form in which it appears here.

IHTRODUCTION

The subject of this thesis is the orbit strucure of skewproduct extensions of transformations by locally compact abelian sroups. Skew-product extensions are also known as cylinder transformations or cylindrical cascades. Although the title mentions only the non-compact case, extensions by compact groups are not excluded. Fiowever, none of the results in jhis thesis amounts to anything new when applied to extensions by compact grouns.

Apurt irom the first chapter the thesis falls naturally into two parts. (Chapter One contains the basic definitions Which are common to both parts.) The first of these, consisting of Chapter Two, is about continuous extensions of minimal homeomorphisms. Most of its results could be reformulated to accomodate extersions of topologically transitive homeomorphisms. However, there is little to be gained from this increase in generality. It would merely complicate matters without introducing anything essentially new.

Ifost writurs on continuous skew-products have concentrated on examples of topologically transitive extensions. An exception is the paper of Hedelund ([8]) which contains a complete analysis of real line extensions of minimal translations on the circle. Although these skew-products do not display the full range of possible orbit behavior, extensions of only moderately more complex transformations do so. It would therefore be sufficient to study only extensions of transformations on compact metric spaces.

However, much of our analysis holds for extensions of amy minimal transformation on a compact metric space. Accordingly, we begin with this general case and specialise to compset soaces as nescessmry.

The first section of Chapter Two contains the definitions oi some notation which iss used throughout the chapter. In the second section we consider the recurrence properties of continuous extensions. A skew-product extension is always either wholly conservative or wholly dissipative. The first of these possibilities is of greatest interest, and for the rest of the chapter we concentrate upon it.

The thirk section sees the introduction of our main tool, the group of essential values of the extending cocyole. Sssential values are defined in [15] for cocycles of a measure-class preserving action on a probability space. Our definition is derived from that of [15] by reolacing sets of positive measure with open sets. In cases where botin definitions are applicable the two groups may be quite different. This reflects the fact that, ever for simple examples, the metric and topological properties of non-compact skais-products can be completely different.

The main results of the third section show how a knowledge of the essential values of the extending cocycle gives a description of most orbit closures under the extension. By "most orbit closures" we mean that the union of the collection of orbit closures to which the description applies is a residual set. The section ends with two examples. They display the two important varieties of orbit behavior which were not describad by Hedelund in [8].

Abstract

In the fourth section we consider only extensions by $\mathbb{R}^{\text {n }}$ of minimal transionmations on compact metric spaces. This section is about the existence of topologically transitive extensions. Our first theorem shows that (with a suitable metric) the topologically transitive extensions

 form a residual suiset of the set of all conservative extensions. For the other main result in this section we specialise still further and consider only extensions of minimal translation on x torus. Here we prove a generalisation of the main theorem of [3] ; every nontrivial conservative \mathbb{R}^{n}-extension of a minimal translation is topologically transitive.The final section of Chapter two deals with the details of the orait structure of extensions. It turns out that the description obtained from the essential values in Section Three is complete only in the most trivial cases. There are usually points with oroits which do not fit this description. and they can make the orbit closure structure of an extension very comolicated.

The second part of the thesis, which consists of Chapter Three and the appendices, is Iess general in scope than the first. Chapter Mhree is about a collection of examples of discontinuous shew-product extensions. They are conservative real line extensions of irrational rotations on the circle and the extending functions tare only two values, on complementary intervals. These transformations preserve a natural measure and so provide an example for the theor" of metric properties of extensions developed in [15]. They
also nave conncctions with the theory of uniform distribution of sequences (for detaila see [14]). The second section of Chapter Tinree contains a proof that aImost all of these extensions are ergodic. The third section is concerned with a special case that arises naturally in the course of this proof. Here ergodic extensions are again obtained.

Appendix i is a reproduction of a short paper on measurable extensions of ergodic transformations. It contains a theorem wich gives a condition for a real line extension to be recurrent. Since publication of this paper I have discovered that a proof of the theorem is inherent in the first lemma of [10], although it is not explicitly statea.

The final part of the thesis, Apnendix B, is concerned With the proof of a lema in Chaoter Three. This lema is not proved because its proof is a slight modification of the proof of a well kom theorem. Instead, the details of tie modirication are given in this appendix.

Finally, a note about the numbering of results and statements: a number of the form. a.b.c.d refers to the d'th numberec statement of the cith result in Section b of Chapter 2 . Vithin Chapter a this vould be shortened to b.c.d and within Result a.b.c it would be shortened to (d). The numbers of results are similarly shortened so that the c'th result in Section b of Chapter a is refered to as b.c within that chapter and a.b.c outside it.

OHEDER O:
Jasic Def̃initions

This chapter contains the definitions and details of notation that are common to both parts of the thesis. Whe dėinitions nave t:No alternative readings, one applying to continuous extensions of minimal homeomorpinisms and the other applying to the measurable case. Where the two readings differ the text of the first is interrupted by the substitutions necessary to obtain the second. These interruptions are contained within double pointed brackets (\ll, \gg).

Definition 1.1.

Let $\left(X, Z_{\zeta}\right) \ll(r, \$, \mu) \gg$ be a comolete uncountable metric space <<nonatomic standard probability space>>. Let $T: X$ be a minimsl honeonornhism <<measure preserving automorphism>>. Let $(G,+)$ be a locally compact, second countable, abelian group. A function $a: \mathbb{Z} \times \bar{X} \rightarrow G$ is called a cocycle for T if it is continuous <<measurable>> and satisfies the cocycle
equation;

$$
\underline{m}(n+m, x)=a(n, x)+a\left(m, T^{n}(x)\right) \quad(n, m \in \mathbb{Z}, x \equiv x) .
$$

Fo= an coovole a let $a(1,$.$) denote the function wose$ value at x is $a(1, x)$. It is easy to see from the cocycle equation that the cocpcle is completely determined by this function. Indeed if $\psi: X \rightarrow G$ is any continuous <<measurable> Punction ve cen obtain a cocycle a by setting

$$
a(n, x)=\left\{\begin{array}{ll}
n-1 \\
i=0
\end{array}\left(T^{i}(x)\right) \quad \text { for } n>0, ~ \begin{array}{ll}
0 & \text { for } n=0 \\
-a\left(-n, r^{n}(x)\right) & \text { for } n<0
\end{array}\right.
$$

Definition 1.2.
Let $a: Z x \rightarrow G$ be a cocycle for $T: X \rightarrow X$. Tire cosycle a is callad a coboundary if there exists a continuous <<measurable>> function $\varphi: K \rightarrow G$ such that

$$
a(n, x)=\varphi\left(T^{n}(x)\right)-\varphi(x) \quad(n \in \mathbb{X}, x \in x)
$$

In this case a is said to be the coboundary of p. Similarly, a function $\psi: X \rightarrow G$ is said to be a coboundary if the unique cocycle (for T) $a: \bar{Z} \times X-G$ with $a(1,)=.\psi$ is a coboundary. Two cocycles or two functions, whose (pointivise) difference is a coboundary, are called cohomologous.

The nomenclature of Definitions 1.1 and 1.2 arises from the iact that cocycles and coboundaries, as defined here, belong to a cohomology theory. A cocycle, modulo the cobouadaries, is an element of the first cohomology group of tine intezers with coefficients in a certain \mathbb{Z}-module. This is the module of continuous <<measurable> functions: $X \rightarrow$, iiththe module action induced from the action of the porers of̂?

Definit゙o 1.2 .
Iet a: $\mathbb{Z X X}^{\prime} \rightarrow$ be a cocycle for $T: T \rightarrow X$. Let $Y=K \times G$. The Sker-2rozuct extension of T by (or, briefly, G-extension of g) detiined by a is the transformation $S_{a}: Y \rightarrow Y$ wita

$$
S_{3}(x, g)=(I(x), g+a(1, x)) \quad(x \in X, g \in G) .
$$

Ins cocycle a is called the extendine cocycle for
F_{a} and the function $a(1,$.$) is called the extending function.$ Z and T are know as the base souce and base transformation respectiveiy.

An extension is clearly a continuous <<measurable>> transformation. If I preserves a measure μ on X then S_{a} preserves the product measure $\boldsymbol{\mu} \times \boldsymbol{\lambda}$ on Y, where λ is the Hazr measure of G.

The reason for usinE a cocycle rather than just the extending function in Definition 1.3 is that the powers of S_{a} can be expressed by the cocycle;

$$
z_{2}^{n}(x, E)=\left(f^{n}(x), g+a(n, x)\right) \quad(n \in \mathbb{Z} x \in X, g \in G) .
$$

The importance of coboundaries in the study of extensions arises from the following lemma.

Terma 1.4.
Iet a and $b: \mathbb{Z} \times X \rightarrow G$ be cocycles for $T: X \rightarrow X$. Suppose that - is tine covoindary of a continuous 《measurable》 runction $\varphi: X \rightarrow F^{7}$. Let $a+b$ be the cocycle which is the pointwise sum or a and b. Let U:Y. . be the continuous <<measurable> transformation with

$$
\dot{u}(x, f)=\left(x, g+\varphi^{\prime}(x)\right) \quad(x \in X, g \subseteq a) .
$$

Then $U S_{2}=J_{a+b}$

Droo . For all $x \in X$ and $g \in G$,

$$
U \tilde{z}_{e}(x, g)=U(T(x), g+a(1, x))
$$

$$
\begin{aligned}
& =(I(x), g+a(1, x)+\varphi(T(x))) ; \\
j_{a+b} J(x, g) & =J_{a+b}(x, g+\varphi(x)) \\
& =(I(x), g+\varphi(x) \div a(1, x)+b(1, x)) \\
& =(T(x), g+a(1, x)+\varphi(T(x))) .
\end{aligned}
$$

The special case of Lemma 1.4 ware a is the zero cocycle is most important. It shows that if b is the coboundary of ϕ then every orbit under S_{b} is contained in some translate of the graph of φ. The orbit atructure of S_{b} is then similar to that of the trivial product of T and the identity transformation on G.

Before making the next definition we note that there is no loss of generality in assuming that if is metrisable. From here on wa shall assume that the topology of G is derived from a symetric invariant metric d_{G}.

The second readings of the next tio definitions are specialised forms of Definitions 3.1 and 3.13 of [15], which apoly to more general actions.

Definition 1.5.
Let a:Zx: \rightarrow be cocycle for $T: X \rightarrow X$. An element g of G is en essential value of a in, for e-iery $\boldsymbol{\varepsilon}>0$ and every non-eapty open set $A C X \lll e v e r y$ measurable set $A C X$ with $\boldsymbol{\mu}(A)>0 \ggg$, there exists an $n=\mathbb{Z}$ such that

$$
A \cap \mathbb{F}^{-n}(A) \cap\left\{x: X_{G}(a(n, x), \tilde{s})<\varepsilon\right\} \neq \not \subset
$$

$$
\left.\ll \mu^{\prime} A \cap T^{-n}(A) \cap\left\{x: d_{G}(a(n, x), E)<\varepsilon\right\}\right)>0 \gg .
$$

Iet ∞ be the extra point in the one point compactification of G. It is an essential value if for every compact set

CEs and every ron-empty open set $A=x \ll e v e r y$ measurable set $A<x$ rith $\mu(A)>0 \gg$, there exists an $n \in Z$ such that

$$
\begin{aligned}
A \cap I^{-n}(A) & \cap\{x: a(n, x) \neq 0\} \neq \varnothing \\
\ll \mu\left(A \cap D^{-n}(A)\right. & \cap\{x: a(n, x) \neq 0\}>0 \gg
\end{aligned}
$$

The set of all essential values of a is denoted by $\bar{E}(3)$. fe define: $\vec{E}(a)=\bar{E}(a) \cap G$.

Definition 1.6.
Let $a: Z X X \rightarrow$ be a cocycle for $T: X \rightarrow X$. The cocycle a is called racurrent if, for every $\varepsilon>0$ and every non-empty open set $A X \lll$ erery measurable set $A C X$ with $\mu(\dot{4})>0 \gg$, tirere exists an $n \equiv \boldsymbol{Z}, n \neq 0$, such that
$A \rightarrow T^{-n}(A) \cap\left\{x: a_{G}(a(n, x), 0)<\boldsymbol{s}\right\} \neq \neq$
$\ll \mu, T^{-n}(A) \cap\left\{x: a_{r_{T}}(a(n, x, 0)<\varepsilon\}\right)>0 \gg$.
A coevcle which is not recurrent is called transient.

Pinally, we fix the meaning of scme standard notation. The symjois X, f, m, r, a and J_{a} will alitays have the meanings of Jefinitions 1.1-1.3. The symbols π_{X} and π_{G} stand for the firist and second coordinate projections of Y :

$$
\begin{aligned}
& \pi_{X}: V \rightarrow X, \pi_{X}(x, g)=x ; \\
& \pi_{G}: Y \rightarrow G, \pi_{G}(X, G)=g .
\end{aligned}
$$

For each $h E G$ the translation on the second coordinate in Y is denoted $\mathrm{by} \mathrm{L}_{\mathrm{K}}$;

$$
I_{n}: T \rightarrow I, I_{h}(x, g)=(x, g+h) .
$$

The nore in \mathbb{R}^{n} is denoted by single bars (|,|) rather than the asual double bars (\|,\|). This is because double bars
are used for another purpose in Chapter Mhree. The
suoremum nori in \mathbb{R}^{n} is used throughout;
$\left|\left(v_{i}, \ldots, v_{n}\right)\right|=\sup _{1 \leqslant i \leqslant n}\left|v_{i}\right|$.
Finally, we give the usual meanings to the symbols \mathbb{Z}_{+},
$\mathbb{Z}_{-}, \mathbb{R}_{+}, \mathbb{R}_{-} ;$so $\mathbb{Z}_{+}=\{n=\mathbb{Z}: n>0\}$ etcetera.

Capien tivo

Contirvous Extensions of Minimal Homeomorohisms

Si. Introdiaction and notation.
In this chabter we explore the consequences for continuous extensions 0 f the definitions of Chapter One. The Iirst reading of Chapter One applies throughout and except at the end of $\$ 1$ all functions and transformations appearing here are continuous.

Ve no: introzuce some notation which is used throughout this chapter but not outside it. As X is a complete merric spece it is possible to introduce a complete metric on \bar{I};

$$
\dot{a}_{Y}\left((x, j),\left(x^{\prime}, g\right)\right)=\sup \left\{d_{X}(x, x), d_{G}(g, g)\right\}
$$

Ine open ball of redius ε about a point $y=\bar{i}$ is denoted by $3_{Y}(y, s) ;$ the meanings of $\mathcal{B}_{X}(X, \varepsilon)$ and $B_{G}(\mathcal{G}, \boldsymbol{\varepsilon})$ are analagous.

If $3 \times \mathbb{Z}$ is a cocycle for $T: X \rightarrow X$ then the orbit of a point $y=r$ under the emtension S_{a} is written $O_{a}(y)$. The oroit clcsure is then $\bar{O}_{z}(y)$ and $O_{B_{i}}^{+}(y), \bar{O}_{a}^{-}(y)$ denote the fcriard oritis and the closure of the backward orbit respectively.

Te conclude bu making a remark which is used implicitly at one or tivo places in this chapter. Nothing of importance is lost if ve replace tine group G by the closure of the subaroup generated $b j\{a(1, x): x \in x\}$. then X is compact ーnis means fuat ve may assume that G is separable and compsctly zenerated. The structure theorem for comeactiy Eenerntej, locelly compact, abelian eroups shows that sich a eroup đat do expressed as a product; $G=\mathbb{R}^{n} \times \mathbb{Z}^{m} \times(n, n \geqslant 0)$, wrue if is a compect roup.

\&2. Recurrence.

Definition 2.1.
Let Z be a topological space and let $3: Z \rightarrow 2$ be a homeomorohism. The S-wandering set, $f(S)$, is the set of points $z E Z$ for which there exists a neighbournood U, containing z, such that $\uparrow \cap g^{n}(J)=\neq$ for all $n \approx \mathbb{Z} n \neq 0$. The $\underline{\text { g-recurrent }}$ set is the set,

$$
R(S)=\left\{z \in Z: z \in\left\{\overline{\left.S^{n}(z): n>0\right\}} \cap \overline{\left\{S^{n}(z): n<0\right\}}\right\} .\right.
$$ The transformation σ is called conservative if $\because(\tilde{J})=\varnothing$ and dissipative if $g(S)=2$.

Lemma 2.2.
Let Z be a complete metric space and let $3:\} \rightarrow Z$ be a homeomorphisn. Then $R(S)$ and if(3) are invariant under s, $N(S)$ is open and $N(S) \cup F(\Sigma)$ is a residual set. Proof. See Gottschalk and Fedelund ([]), Theorem 7.24.

Delinition 2.1 is standard in Topological Dynamics. The next result gives the connection betireen the recurrence properties of an extension S_{a} and the recurrence of the extending cocycle, as defined in 1.1.6.

Procosition ?.2.
Let $T: K \rightarrow K$ be a minimal homeomorphism. Let $a: Z X X C G$ be a cocycle for I. Then one of the folloring statements is true:
(1) The extension J_{a} is corservative and a is recurrent;
(2) The extension \hat{S}_{a} is dissipative and a is trensient.

Also, the sets $\left.R\left(S_{a}\right), H_{S_{2}}\right)$ are invariant under S_{a} ani all the translations $I_{h}, h \equiv G$.

Proon. Fuppose that $Z\left(S_{a}\right) \neq \phi$; then for some $y ミ Y$ and $\varepsilon>0$, $B_{Y}(y, \boldsymbol{E}) \cap S_{e}^{n}\left(B_{Y}(y, \boldsymbol{\varepsilon})\right)=\boldsymbol{f}$ for all $n=\mathbb{Z}, n \neq 0$. As all the: translations $I_{h},(h \in G)$ commute with S_{2} this implies that

$$
S_{a}^{n_{a} I_{n}}\left(B_{Y}(y, \boldsymbol{\varepsilon})\right) \cap S_{a}^{m} I_{h}\left(B_{Y}(y, \boldsymbol{\varepsilon})\right)=\phi \quad(n, m \in \boldsymbol{Z}, n \neq \pi, h \in a) .
$$

But as is minimal,
$\left.\bigcup_{n \in \mathbb{Z}} \bigcup_{n} \equiv G S_{a}^{L_{n}} Z_{Y}(Y, \boldsymbol{E})\right)=Y$.
So $\because\left(S_{a}\right)=T$.
If have shom that if $N\left(s_{a}\right)$ is non-empty, then it is 2 Il of Y. To complete the proof we will that this nappens if and only if the cocycle a is transient.

If a is transtent, then for some non-ampty open set
$A \subset K$ and sone $\boldsymbol{\varepsilon}>0$,

$$
\pi_{X}\left(\left(A \times 3_{G}(0, \varepsilon)\right) \cap S_{a}^{n}\left(A \times x_{G}(0, \varepsilon)\right)\right)
$$

$=Z^{n}\left(A \cap Z^{-n}(A) \cap\left\{x: a(n, x) \in B_{G}(0, \varepsilon)\right\}\right)=d$,
for all $r_{i} \equiv \mathbb{Z}, n \neq 0$. So $N\left(S_{a}\right) \neq \phi$.
Conversely, if $\left(s_{a}\right) \neq \varnothing$ then it contains an open ball, $g_{V}(y, \boldsymbol{\xi})$. I $\varepsilon \pm \boldsymbol{\pi}_{Y S}(y)=x$, then

for all $n \in \mathbb{Z}, n \neq 0$ and a is transient.
The fingl statement of the lema is obvious.

Corollari 3.1.
Assure, in addition to the hypotieses of Lemma 2.3, that X is corpact. Then Statement (?) of 2.3 holds if and only
iti, for every compact set $C C G$ and every $x \in X$, the set |nミZ्Z: $a(n, x) \in\}$ is finite.

Eroof. If, for some $x \in X$ and some compact set $C \subset G$, the set $\{n: a(n, x) \in C\}$ is infinite then $O_{a}(x, 0) \cap(X \times C)$ has an accumiation point $y \in T$. For any neighbourhood U or y the set $\left\{n: U \cap s_{a}^{n}(U) \neq \nmid\right\}$ is infinite. Therefore $y \neq i\left(s_{a}\right)$ and statement 2.3 .1 holds.

Conversely, suppose that Statement 2.3 .1 is true. Then Iomme 2.2 shows that $R\left(J_{a}\right) \neq A$. As $R\left(S_{a}\right)$ is invariant under all the translations I_{h} we can choose an $x \in X$ such that $(x, C) \equiv R\left(S_{a}\right)$. This implies that if C is any compact neinnjourhood of the identity in G then $\{n: a(n, x) E 0\}$ is infinite.

Since statements 2.3 .1 and 2.3 .2 are mutually exclusive, the corollary is proved.
le now restrict, our attention to the special case where X is sompact and G is a closed subgroup of R. In this case the theory of ergodic sets makes it possible to determine netiner a cocycle a is recurrent in terms of the integrals oza(1, .).

Lemma 2.5.
Iet X be a compact metric space and let $a: \mathbb{Z} \times X \rightarrow \mathbb{R}$ be a socycle for $T: T \rightarrow$. Suponse there exists a sequence of posititre intecers (n_{i}) such that $n_{i}^{-1}\left|a\left(n_{i}, x\right)\right| \rightarrow 0$, for some $x E x$. Then therc exists a I-invariant Borel Frobability measure μ on X such that $\int a(1, \ldots) d \mu=0$ 。

Froof. It is a standard result in ergodic theory that if X is a compact Hausdorff space and $T: X \rightarrow X$ is a minimal homeonorphisn then there exists a T-invariant Borel projability measure on X . The usual proof of this theorem (see Oxtoby, [11], Theorem 2.i) shows that for any poini $x \in X$ there exists a sequence of positive integers (n_{i}^{\prime}) and a T-invariant Borel probability measure μ such that

$$
\left(1 / n_{i}\right) \sum_{j=0}^{n_{i}^{\prime}-1} \phi\left(T^{j}(x)\right) \rightarrow \int \rho d \mu,
$$

for every continuous function $\varphi: X \rightarrow R$. This proof is still valid if (n_{i}^{\prime}) is chosen as a subsequence of (n_{i}). he conclusion follows on setting $\varphi=a(1,$.$) .$

Lemma 2.6.
Let x be a compact metric space with $T: X \rightarrow X$ a minal homeomornhism. Let $a: \mathbb{Z} \times X \rightarrow R$ be a cocycle for T. Suppose that μ is a r-invariant Borel probobility measure on X and that T is ergodic rith resect to μ. Then if $\int a(1,). d \mu=0$ a is recurrent.

Proof. The theorem in Appendix A shows that a is recurrent in the sense of the second reading of Definition 1.1.6. It is therefore only necessary to sho: that the second reading implies the first. That is so because the support of μ is necessarily a closed M-inverient suoset of X. As T is minimal it must be ail of x; but then $\mu(A)>0$ for every non-enpty open se方 $A \subset \therefore$.

Leman 2.7.

Iet X be a compact metric space, with $T: X \rightarrow X$ a minimal homeomoryism. Let $a: \mathbb{Z X} X \rightarrow \mathbb{R}$ be a cocycle for n. For each r EE let $a^{(r)}$ be the cocycle with $a^{(r)}(n, x)=a(n, x)+n r$. Then the set $I=\left\{r \in R: a^{(r)}\right.$ is recurrent $\}$ is an interval.

Proof. Suppose that $r, t \in I$ and $r<s<t$. "e will show that sEI. Proposition 2.3 shows that the extensions $S_{a}(r)$ and $J_{a}(t)$ are conservative. By using Lema 2.2 and the Fact that the sets, $R\left(S_{2}(r)\right.$) and $R\left(S_{a}(t)\right)$ are invariant under all the tranlations I_{h}, we may choose a point $x \in X$ such that $(x, 0)=R\left(S_{a}(r)\right) \cap R\left(S_{a}(t)\right)$. Then there exist increasing sequences $\left(n_{i}\right)$ and $\left(m_{i}\right)$ such that $a^{(r)}\left(n_{i}, x\right) \rightarrow 0$ and $d^{(t)}\left(m_{i}, x\right) \rightarrow 0$. Because $a^{(s)}\left(n_{i}, x\right)-a^{(r)}\left(n_{i}, x\right) \rightarrow \infty$ and $a^{(s)}\left(m_{i}, x\right)-a^{(t)}\left(m_{i}, x\right) \rightarrow-\infty, a^{(s)}(n, x)$ must be positirye
 then the set $\left\{n>0:\left|a^{(s)}(n, x)\right| \leqslant M\right\}$ must be infinite. Corollery 2.4 shows that $a^{(s)}$ is recurrent.
pheorem 2.8
Let X be a compact metric space and let $T: X \rightarrow X$ be a minimal homeomorphism. Let $a: \mathcal{Z} \times \mathbb{R} \boldsymbol{R}$ be a cocycle for T. Then the folloring statements are equivalent:
(1) a is recurrent;
(2) For some $x E x, \operatorname{Lim}_{n} \operatorname{Inf} n^{-1}|a(n, x)|=0$;
(3) There exists a T-invariant Borel probability measure μ on X such that $\int a(1,). d \mu=0$.

Proof. Suppose (1) is true; then Proposition 2.3 shows that $R\left(S_{a}\right) \neq \not \subset$. Hence (2) is satisiied. If (2) holds then Lemma 2.5 proves (3).
fo: suppose that (3) is trie. Lemra 2.5 of [11] shows that μ can be expressed as an integral of T-invariant ergodic Borel probability measures. (An ergodic measure for T is a measure with respect to which T is ergoiic.) It follows that either there exists a - -invariant ergodic probability measure μ_{0} (possibly iâentical to μ) such that $\int a(1,.) d \mu_{0}=0$, or there exist two such measures μ_{1}, μ_{2} with

$$
r=\int a(1, .) d \mu_{1}<0<\int a(1, .) d \mu_{2}=t
$$

In the first case Lerma 2.6 shows that a is recurrent. In the second case it shows that $a^{(-r)}$ and $a^{\left(-\boldsymbol{H}_{\boldsymbol{m}}\right)}$ are recurrent. Statement (1) then follows froc J,emma 2.7:
\{3. Jssential values and extensions.

This section is concerned with the relationshiv betaeen the essential values of a cocycle and the oroperties of the extensior :rhich it deiines. If a is a transient cocycle then it is clear that $\infty \in \mathbb{E}(a)$. Corollary 3.9 will show that in fact $\bar{E}(a)=\{0, \infty\}$.

When a is a recurrent cocycle a moniedge of $\bar{\Xi}(\exists)$ and the essential values of a related coofcle, ※, yields a description of "most" orbit closures under S_{2}. mhis description is given by Theorem 3.?, its corollaries ani Propositions 3.10, 3.15 and 3.16 .
'e besin by establishing some elementary properties $0=$ the set $\operatorname{Si}(a)$.

Eronosition 3.1

Let $こ: \rightarrow \rightarrow$ je a minimal transformation and Iet z: $\mathbb{Z} \times X \rightarrow G$ pe a coonciefor $!$. Then $E(x)$ is a closeu suberoup of G.

Proof. It is clear that $\mathrm{E}(\mathrm{a})$ is closed. Juppose taat

Given any $\varepsilon>0$ and any non-empty open set $A=x$, let $n \in \boldsymbol{Z}$ be sucn that

$$
B=A \cap I^{-n}(A) \cap\left\{x: z(n, x) \in \Xi_{G}(h, \varepsilon / 2)\right\} \neq f .
$$

ts is on onen set there exists an $m \in \mathbb{Z}$ such that
$v=3 \cap \Gamma(3) \cap\left\{x: a(m, x)=3_{G}(z, \varepsilon / 2)\right\} \neq \neq$
If $:=n^{n}(3)$ then becruse $n^{-n}(x) \in C \subset B$,

$$
\begin{aligned}
a(m-n) & =a\left(n, T^{-n}(x)\right)+a(-n, x) \\
& =a\left(m, n^{n}(x)\right)-a\left(n, T^{-n}(x)\right) \\
& =B_{0}(\varepsilon, \varepsilon / 2)-B_{G}(h, \varepsilon / 2)=B_{G}(g-h, \varepsilon)
\end{aligned}
$$

Also $\quad T^{m-n}(x) \equiv T^{m}(I) \subset \therefore$. Therefore, $x \in\left(A \subset r^{n-n}(A) \subset\{x: a(m-n, x) \in 3(g-h, \varepsilon)\}\right) \neq \phi$.

Proposition 3.?.

Let a and $b: \mathbb{Z} X \rightarrow G$ be cocycles for a minimal transformation $Z: K \rightarrow \%$. Suppose that b is a coooundary; then $\bar{U}(a)=\bar{P}(a+0)$.

Proof. As -i is also a coboundary, it is only necessary to prove that $I(a) \subset S(a+b)$. Let $\phi: C \rightarrow$ be a continuous Iunction , ith $b(n, x)=\phi\left(\mathbb{I}^{n}(x) \vdots-\phi(x)\right.$ for aic $n \in \mathbb{Z}$ and $x \in x$. Fror any $\varepsilon>0$ and any non-ampty open set $A C X$ there exists a non-empty open subset 3 of A such that, for all $x, x ' E 3$, $D_{G}\left(\phi\left(x^{\prime}\right), \phi\left(x^{\prime}\right)\right)<\varepsilon / 2$. Thenever $n \in \mathbb{Z}$ and $x \equiv X$ are such that $x \equiv B \cap T^{-n}(B)$ we have:

$$
d_{G}(h(n, x), 0)=d_{C}\left(\varphi(x), \varphi^{n}(x)\right)<\varepsilon / 2
$$

$$
\begin{aligned}
& A \cap I^{-n}(A) \cap\left\{x:(a+0)(n, x) \in B_{G}(g, \varepsilon)\right\} \\
& \supset B \cap n(3) \cap\left\{x: a(n, x) \in B_{G}(g, \varepsilon / 2)\right\} \neq f
\end{aligned}
$$

So $\mathrm{E}(\mathrm{a}) \subset \because(a+b)$.
If $\infty \notin \mathcal{Z}(a+b)$ then there exists a compact sat $\subseteq \subset G$ ania nor-emoty open set $\because=$ z such that $(a+i b)(n, x) \in C$
 and choose 3 i in above. Then $C+\overline{3_{G}(O, \varepsilon)}$ is a compact subset of G and

$$
\begin{aligned}
a(n, x) & =(a+b)(n, x)-\rho\left(\pi^{n}(x)\right)+\varphi(x) \\
& =c+\overline{B_{C}(0, \varepsilon)}
\end{aligned}
$$

Menever $x \equiv 3 \cap T^{-n}(3)$. It follows that $\infty / \bar{i}(a)$. So $\bar{\Xi}(a) \subset \vec{i}(a+b)$ and the prool is complete.

Definition 3.3. Let Z be a topological space and let उ: $\because \rightarrow Z$ be a homeomorphism. A subset U of Z is called S-regular if it is the closure of its own interior and satisfies: $3(U)=U$.

Lenra 3. 2.
Iet $a: \mathbb{Z} x \rightarrow G$ be a cocycle for $T: A \rightarrow$. Let j_{a} be the the - -extension defined by T and a. Let U be the collection $0 \approx$ all $\mathrm{Ja}_{\mathrm{a}}-$ reสูular sets. Then
$\dot{L}(3)=\left\{5: I_{g}(U)=U, U \in \mathcal{U}\right\}$.

Proof. Suppose that $g \in A(a)$ and $U E \mathcal{U}$. Because $G(a)$ is a group it is onjy necessary to prove that $\mathrm{I}_{\mathrm{g}}(\mathrm{J}) \subset \mathrm{U}$. For
 Ié $y=(x, n)$ and consider the set

$$
J=\sum_{n=-\infty}^{\infty}\left\{B_{-}(x, E) \cap T^{-n}\left(B_{X}(x, \varepsilon)\right) \cap\left\{x: a(n, x) \in \eta_{G}(f g, \varepsilon / 2)\right\}\right) .
$$

This is a dense subset of $B_{r}(x, \varepsilon)$ beceuse $g E I(a)$. (If the complement of D in $\overline{3}_{x}(x, \varepsilon)$ contained an open set A then ッe HoMl neve

$$
A-\because^{-n}(4) \cap\left\{x: a(n, x) \in B_{G}(\varepsilon, \varepsilon / 2)\right\}=\notin
$$

for $212, \mathbb{Z}$.) ?ecause D is dense,

$$
I_{q}\left(\gamma_{Y}(\pi, \varepsilon / 2)\right) \subset_{n=-\infty} \overline{\bigcup_{Q}} s_{\mathrm{Q}}^{n}\left(3_{Y}(Y, \varepsilon)\right) \subset \bar{u}
$$

but $L_{i}(r, \varepsilon / 2)$) is open and so lies in the interior, u 0 F F. In particular, $I_{\xi}(y) \in U$. This arciment appliss to all $y \in U$; so ye have $I_{g}(U) C i$ as required.

Conversely, suppose that $I_{\rho_{j}}(J) \subset U$ for every $U=U$. For eny $\varepsilon>0$ and ron-empty open set $A \subset X$, the interior of

$$
\sum_{n=-\infty}^{\sum_{a}^{n}\left(1 \times \exists_{n}(0, \varepsilon / 2)\right)}
$$

is an j_{2} regular set. So for some $n \approx$

$$
\left(A \times B_{G}(\Xi, \varepsilon / 2)\right) \cap S_{2}^{n}\left(B_{G}(0, \varepsilon / 2)\right) \dot{f} \phi
$$

$$
\left.A \cap I^{-n}(A) \cap\left\{x: a(n, x) \in B_{G}(\not), \varepsilon\right)\right\} \neq \phi
$$

Soron1er: 3.2.
 That $I_{g}(U) \subset U$, for every $S_{a}-r e g u l a r$ set U; tian $g \equiv Z(3)$.

Ke:-na 3.5.

Let a: $\mathbb{Z} \times \forall \rightarrow G$ be a cocycle for a minimal trensiormation $Z: X \rightarrow X$. $\Sigma=亡 J_{e}$ be the corresponding $G-e x t e n s i o n$ of T. juppose that for some $x, x^{\prime} \in X$ and $f, h \in G$ the points ($x^{\prime}, \operatorname{nin}\left(x^{\prime}, n+g\right)$ both lisin $\bar{O}_{a}(x, 0)$. Then $\left.E E z i z\right)$.

Eroot. Iet ioe any $\tilde{\mathrm{B}}_{2}$-regular set; we shail sho: that $I_{g}(U) E_{N}^{\prime}$. Zet $\left(m_{j}\right)$ and $\left(m_{j}^{\prime}\right)$ be sequences with $S^{m} j(x, 0) \rightarrow(x, h)$
 sequerce $\left(n_{1}\right.$, such that $T^{n} i\left(x^{\prime}\right) \rightarrow$ and $\left(T^{n} i\left(x^{\prime}\right), f\right) \equiv \approx$ for aュ: : ? . aen for every $1 \geqslant 1$

$$
s_{3}^{n_{i}}+m^{n}\left(x, f-n-a\left(n_{i}, x^{\prime}\right)\right) \rightarrow\left(I^{n_{i}}\left(x^{\prime}\right), f\right)
$$

$$
a s \vdots \rightarrow \infty
$$

Jecause if onen and j_{2}-invariant tinis implies that for each $i \geqslant 1,\left(x, y-h-a\left(n_{i}, x\right)\right) \in U$. Jo
$I_{g}(: i, \vec{i})=(w, f+g)=\operatorname{Lim}_{i} \operatorname{Lim}_{j} S_{a}^{m i}+n_{i}\left(x, f-h-a\left(n_{i}, x^{n}\right)\right) \in \bar{U}$.
This argument applies to all $(W, \hat{f}) \in U$; so $I_{g}(U) \subset \bar{U}$. Sut $I_{j}(J)$ is open and so lies in the interior, U of \bar{U}. Je have $I_{g}(U) \subset U$ for all $U \in U$ and the conclusion follo:s from Corollary 3.6.

Theorea 3.7.
Let X be a complete metric space and let $T: X \rightarrow X$ be a minimal homeomorphism. Suppose that $2: \mathbb{Z} \times X \rightarrow G$ is a cocycle for T. Then the following statements are equivalent:
(i) s is an essential value of a;
(2) تhe $\operatorname{set}\left\{y \in Y: L_{R}(y) \in \bar{O}_{2}(y)\right\}$ is a residual suinset of Y which is invariant under J_{a} and the Groun of translations $\left\{L_{h}: h \in G\right\}$.
(3) There exists $y \in I$ with $I_{g}(y)=\bar{O}_{a}(v)$.

Exoof. Supgose that Statement (1) holds. Then for every $x=x$ and $\varepsilon>0$ there exists an $n \in \mathbb{Z}$ such tiato

$$
\exists_{X}(x, \varepsilon / 2) \cap T^{-n}\left(B_{X}(x, \varepsilon / 2)\right) \cap\left\{x: a(n, x) \Xi 3_{G}(z, \varepsilon)\right\} \neq \phi
$$

In terms $O \vec{i} \hat{3}_{a}$, this means that if

$$
P_{E}=\left\{x \in x: \operatorname{Inf}_{n} Z_{y}\left(J_{a}^{n}(x, 0),(x, g)\right)<\varepsilon\right\},
$$ ther. $P_{E} \cap \bar{S}_{X}(x, \varepsilon / 2) \neq \notin$. It follona that for every $\varepsilon>0$ F_{ε} is an oden Jense subsst of X. Let

P is $\begin{aligned} & \text { nesitial subset of } X \text {. Clearly }\end{aligned}$
$\left\{y: I_{f}(y) \equiv \overline{0}_{2}(y)\right\}=\{(x, h): x \in p, n \equiv G\} ;$
so Statement (2) holds.
Ths impication from Statement (2) to (3) is trivial. That Statement (1) follows from (3) is a direct consequence of Lemma 3.6.

Corollary 3.8.

Let X be a complete metric space and let $T: X \rightarrow X$ be a minimal homeomorphism. Suppose that $a: \mathcal{Z} \times \mathbb{X} \rightarrow G$ is a cocycle for T. Then the set $\left\{y: I_{g}\left(\bar{O}_{a}(y)\right)=\bar{O}_{a}(y), g \equiv E(a)\right\}$ is a residual subset of Y which is invariant under J_{a} and the group of translations $\left\{I_{h}: h \in G\right\}$.

Proof. Becarise G is second countable, it is separable. Therefore $\mathbb{T}(a)$ is separable; let $\left\{g_{i}: i \equiv \mathbb{Z}\right\}$ be a countable dense subset of $Z(a)$ With $\varepsilon_{-i}=-E_{i}(i \in \boldsymbol{Z})$. For any $g \in G$ and $y \in Y$, we have $I_{g}\left(\bar{O}_{a}(y)\right)=\bar{O}_{a}(y)$ if and only if $I_{e}(y), I_{-5}(y) \in \bar{o}_{2}(y)$. So

$$
\begin{aligned}
\left\{y: I_{E}\left(\bar{O}_{a}(y)\right)=\overline{0}_{a}(y), g \in \Psi(a)\right\} & =\bigcap_{i=-\infty}^{\infty}\left\{y: I_{e_{i}}\left(\bar{o}_{a}(y)\right)=\overline{0}_{a}(y)\right\} \\
& =\bigcap_{i=-\infty}^{\infty}\left\{y: I_{E_{i}}(y) \in \overline{0}_{a}(y)\right\} .
\end{aligned}
$$

The conclusion no:d follows from Statement 3.7.2 and Baire's Theorem.

Corollary 3.9.
Let $a: \mathbb{Z} \times \underset{A}{ } \rightarrow(G$ be cocycle for a minimal transformation $T: X \rightarrow X$. Suppose that $B(a) \neq\{0\}$; then a is recurrent.

2roof. Let, $\varepsilon=\mathbb{Z}(a), g \neq 0$; then for some $y \in Y, L_{g}(y) \in \bar{C}_{a}(y)$.
so Statement (2) holds.
Ins implication from Statement (2) to (3) is trivial. That Statement (1) follows from (3) is a direct consequence of Lemma 3.6.

Corollary 3.8.
Let X be a complete metric space and let $T: X \rightarrow X$ be a minimel homeomorphism. Suppose that $a: \mathbb{Z} \times \underset{A}{r} \rightarrow$ is a cocycle for T. Then the set $\left\{y: I_{g}\left(\overrightarrow{0}_{z}(y)\right)=\overline{0}_{a}(y), g \in E(a)\right\}$ is a residual subset of Y which is invariant under \mathcal{J}_{a} and the group of translations $\left\{I_{h}: h \in G\right\}$.

Proof. Because G is second countable, it is separable. Therefore $G(a)$ is separable; let $\left\{g_{i}: i \in \mathbb{Z}\right\}$ be a countable dense subset of $E(a)$ rith $g_{-i}=-E_{i}(i \in \mathbb{Z})$. For any $E \in G$ and $y \in Y$, we have $L_{E_{5}}\left(\bar{C}_{a}(y)\right)=\bar{O}_{a}(y)$ if and only if $I_{5}(y), I_{-5}(y) \in \overline{0}_{a}(y)$. So

$$
\left\{y: I_{E}\left(\bar{O}_{a}(y)\right)=\overline{\mathrm{O}}_{\mathrm{a}}(y), \underline{g} \in \mathrm{y}(\mathrm{a})\right\}=\bigcap_{i=-\infty}^{\infty}\left\{y: I_{e_{i}}\left(\overline{\mathrm{O}}_{\mathrm{a}}(y)\right)=\overline{\mathrm{O}}_{\mathrm{a}}(y)\right\}
$$

$$
=\bigcap_{i=-\infty}^{\infty}\left\{y: I_{\bar{E}_{i}}(y) \in \bar{o}_{a}(y)\right\} .
$$

The conclusion now follows from Statement 3.7.2 and Baire's Theorem.

Corollary 3.9.

Let $a: \mathbb{Z} \times X \rightarrow G$ be a cocycle for a minimal transformation $T: X \rightarrow X$. Suppose that $\mathrm{Z}(\mathrm{a}) \neq\{0\}$; then a is recurrent.

2roof. Iet $f \leq \Xi(a), g \neq 0$; then for some $y \in Y, L_{g}(y) \in \bar{O}_{a}(y)$.

This means that thsere exists a sequence $\left(n_{i}\right)$ such that $S_{a}^{n_{i}}(y) \rightarrow I_{\tilde{S}}(j)$. So, ir U is any nei ghbourhood of $I_{\tilde{E}}(y)$, the set $\left\{n: S_{a}^{n}(T) \cap U \neq d\right\}$ is infinite. This shows that $I_{G}(y) \neq T\left(S_{a}\right)$ and the conclusion follo:rs from Prowosition 2.3.

Corollamin 3.10.

Let X be a complete metric space and let $T: X \rightarrow X$ be a minimal homeomorohism. Suppose $a: \mathbb{Z} X X \rightarrow G$ is a cocycle For R; let S_{2} be the corresponding G-extension of T. Then S_{a} is tooologicaliy transitive if and only if $\Xi(a)=G$.

Proof. If S_{a} is topologically transitive then for some $y \in \mathrm{Z}, \overline{\mathrm{O}}(y)=1$. Weorem 3.7 shows that $\mathbb{E}(3)=G$.

Conversel.", suppose $\mathrm{E}(\mathrm{a})=\mathrm{G}$. Corollary 3.8 shois that for some $y \in Y^{\prime},\left\{I_{g}(y): E E c\right\} \subset \overline{0}_{a}(y)$. The fact that T is minimal impiies that $\bar{\sigma}_{a}(y)=Y$.

Theorem 3.7 and Corollary 3.8 do not rule out the vossibilitr that for some $\varepsilon E \geq(a)$ and $y \in Y, \bar{L}_{g}(y) \in \bar{O}_{a}(y)$ bxt $I_{-Z}(y) \neq \overline{0}_{a}(y)$. Te shall Eive an example for which this oceurs in $\$ 5$. Then G is not compact the existence of this and similar pheromena makes the statements of 3.7 and 3.8 tine best possible.

The rext result shows ho: coboundaries art characterised ur their escontial valuea. Its two coroliaries vill be usefolu in $\xi 1$ and $\$ 5$.

Provosition 3.11.
Let X je a complete metric space and let $\because: X \rightarrow X$ be a minimal homeomorphism. Suppose that, $a: \mathbb{Z} \times X \rightarrow G$ is a cocycle for ; then a is a coboundary iti and only if $\bar{B}(a)=\{0\}$.

Proof. Proposition 3.2 shows that if a is a coboundary then $\overline{\bar{B}}(2)=\overline{3}(0)=\{0\}$.

Conversely, suppose that $\overline{\vec{a}}(\mathrm{a})=\{0\}$. In particular, $\infty \bar{E}(a)$ so there exists a compact set $C \subset G$ and a non-empty open set $A \subset X$ such that $a(n, x) \in C$ whenever $x \in A^{\prime} \cap r^{-n}(A)$. Tir 3 point $x_{0} \in A$. Por every $x E A$ there is a sequence $\left(n_{i}\right)$ such that $r^{n}\left(x_{0}\right) \rightarrow x$ with $T^{n} i\left(x_{0}\right)$ A for all $i \geqslant 1$. This means thaj for all $i \geqslant 1, a\left(n_{i}, x_{0}\right) \in c$. Ne may assume, by raplecing (n_{i}) with a subsequence if necessary, that $a\left(n_{i}, x_{0}\right)$ and $\int_{a}^{n_{i}}\left(x_{0}, 0\right)$ converge.

The above argwnent apulies to svery $x \in A$, so re have Snom that $A \subset \pi_{X}\left(\bar{O}_{2}\left(x_{0}, 0\right)\right)$. Clearly $\pi_{X}\left(\bar{O}_{a}\left(x_{0}, 0\right)\right)$ is a n-invariant set. As it contains a no - empty open set

So for each $x \in X$ there exists $\varphi(x)$ such that $(\because, \phi(x)) \cong \bar{a}_{a}\left(x_{0}\right)$. Lemma 3.6 shows that aacn $\varphi(x)$ is vinue. Minis means that $\overline{0}_{2}\left(\dot{x}_{0}, 0\right)$ is the graph of a finction $\phi: \because-G$. Whe grach $0=\varphi$ is closed, so the function must be continuous. Also because $\bar{r}_{2}\left(x_{0}, 0\right)$ is invariant under S_{a},

$$
\begin{aligned}
s_{2}(x, \phi(x)) & =(?(x), \phi(x)+n(1, x)) \\
& =(\eta(x), \phi(n(x)))
\end{aligned}
$$

for all $x=\therefore$ so $\left.a(1, x)=\phi^{\prime \prime}(x)\right)-\phi^{\prime}(x)$ for all $x \in X$ and a is a coboundary.

Corollary 3.12.
Let X be a compact metric space and let $I: X \rightarrow X$ be a minimal homeomorphism. Iet G be a locally compact, second countable aoelizn groun which has no non-trivial compact subaroups. Is $\because \frac{\downarrow}{}$ a: $\mathbb{Z} \times \mathbb{X} \rightarrow G$ be a cocycle for $I T$ and suppose that for sone $x_{0} \equiv X$ there exists a compact set $C \subset($ with $a\left(n, x_{0}\right) \in C$ For all $n>0$. Then a is a coboundary.

Proof. Ve viII prove $\bar{\Xi}(a)=\{0\}$. Because of the special nature of G it is enough to show that $\infty \neq \overline{3}(a)$.

As X is compact we have $\overline{\left\{\eta^{n}\left(x_{0}\right): n>0\right\}}=\mathrm{K}$. Let
 ξ_{2} in argument very similar to that in the second paragraph of the proot of 3.11 shows that $\pi_{X}(\vec{P})=X$. Therefore for every $x \in X$ there exists $h(x) \in C$ such that $(x, h(x)) \in \Xi$. Hut then, for all $x \in$ is and $n \in \mathbb{Z}$

$$
a(n, x)=\pi_{G}\left(s_{2}^{n}(x, 0)\right)
$$

$$
=\pi_{G}\left(I_{-h}(x) S_{a}^{n} I_{h(x)}(x, 0)\right)
$$

$$
\Xi T T_{G}\left(I_{-1}(X)(F)\right) \subset C-C
$$

rhicn is comact. So wf $\overline{\mathrm{E}}(\mathrm{a})$ and a is a coboundary.

Corollary 3.13.

Let X be a complete metric space and let $\mathrm{I}: \mathrm{X} \rightarrow \mathrm{K}$ be a minimal homentorphism. Suppose that $a: \mathbb{Z} x \rightarrow \mathbb{R}$ is a cocycle for T which is not a cobownary. Then the set

$$
\mathbb{R}^{+}(a)=\left\{x: \operatorname{Sup}_{n \in \underset{\sim}{2}} a(n, x)<\infty\right\}
$$

is mospre.

Proon. For each $N \in \mathbb{Z}_{+}$let $\beta_{1}=\{x: a(n, x) \leqslant n \in \mathbb{Z}\}$. Each 3 is closea ani $3^{+}(a)=\bigcup_{i=1} B_{1}$. Fence, if $B^{+}(a)$ is not meagre some 3_{y} has non-emoty interion A. Suppose this is so and that for some $i \in \mathbb{Z}$ and $x \in \mathbb{X}, a(i, x)<-\pi$ with $\mathbb{Q}^{\ddagger}(x)$ A. Then for all $n=\mathbb{Z}$,

$$
\begin{aligned}
a(n, x) & =a(i, x)+a\left(n-i, n^{i}(x)\right) \\
& <a(i, x)+n<0 .
\end{aligned}
$$

This is clearly impossible, so we must have $a(n, x) \subseteq[-N, x]$ whenever $x \in A \cap \mathbb{T}^{-n}(A)$. This implies that $\infty \notin \bar{E}(a)$ and, as in tize prooz of $3.12, \overrightarrow{3}(a)=\{0\}$.

Qo complete our analysis of the relationship vetween essential raines and the prorerties of extensions we consiaer the qrotient group G/B(a). Because $\mathrm{E}(\mathrm{a})$ is closed the quotient is itself a locaily compect grow. The topolosy of $\int_{(/ E(a)}^{\sum 1}$ that defined by the metric α, where

$$
d(h+B(a), 5+B(a))=\operatorname{In}_{\underline{I} \in E(2)} \mathbb{d}_{G}(h-\tilde{E}, \tilde{I}) .
$$

 is the nativel projection. The essential values of II give some

Iexme 3.11.
Iet a: $\mathbb{Z} X$ - ; be a cocycle for a minimal transformation $\tilde{z}: \mathrm{K} \rightarrow \mathrm{Z}$. Let $\tilde{\mathrm{a}}$ be the cocycle definea abore. Then $\mathbb{E}(\tilde{Z})=\{0\}$.

Proof. Siprose that $h+\lambda(a) E E(\tilde{a})$; we shall show that $h \in z(a)$. Vor any non-empty open set $A C X$ and $\varepsilon>0$ there exists an $n \in \mathbb{Z}$ such that
$\bigcup_{\mathcal{E}(a)}\left(A \cap q^{-n}(A) \cap\left\{x: a(n, x) \in B_{G}(\varepsilon+h, \varepsilon / 2)\right\}\right)$
$=A \cap T^{-n}(A) \cap\left\{x: \tilde{a}(n, x) \equiv B_{G / Z(a)}(n+\mathcal{L}(a), E / 2)\right\}$
$\neq \phi$.
At least one set in this union must be non-emoty, so for some $g \in E(\exists)$,

$$
B=A \cap \mathbb{T}^{-n}(A) \cap\left\{x: a(n, x) \equiv B_{G}(\varepsilon+h, E / 2)\right\} \neq \phi
$$

Becauce $-g \subseteq E(a)$, there exists an $m \in \mathbb{Z}$ such that

$$
\begin{aligned}
& A \cap T^{-(m+n)}(A) \cap\left\{x: a(m+n, x) \in 3_{G}(h, \varepsilon)\right\} \\
> & T^{-n}\left(T^{n}(3) \cap T^{-m}\left(T^{n}(3)\right) \cap\left\{x: a(m, x) \in b_{G}(-5, \varepsilon)\right\}\right) \\
\neq & f
\end{aligned}
$$

hifs shons that $h \in(x)$ and the lemra is proved.

Proposition 3.15.
Jet, $a: \mathbb{Z} \times \rightarrow \rightarrow G$ be a cocyole for a minimal transfomation $T: C \rightarrow X$. Let $\tilde{Z}: \mathbb{Z} X \rightarrow C / X(a)$ be the cocycle defined above.

Proof. Suppose, to the contrary, that $\pi_{X}\left(\bar{O}_{a}(y)\right)=X$ for some $y \in J$. Let; $\Pi_{X}(y)=x$; then $T r_{X}^{-}\left(O_{\tilde{a}}(X, 0)\right)=X$. Jo for each $x^{\prime} \equiv x$, there exisis $\phi\left(x^{\prime}\right)$ such that $\left(z^{\prime}, \phi\left(x^{\prime}\right)\right) \equiv \overline{0}_{\mathbb{Z}}(x, 0)$. Iommas 3.5 and 3.11 shos that each $\varphi\left(x^{\prime}\right)$ is unique. The argument of the lisst nart of the proof of 3.11 shows that

Converselg, suppose that $\infty \neq \overline{\mathrm{E}}(\widetilde{\mathrm{a}})$. By usiñ Corollery 3.8 choose $x_{0} E$ so that $\bar{I}_{e}\left(\overline{0}_{2}\left(x_{0}, 0\right) j=\overline{0}_{2}\left(x_{0}, 0\right)\right.$ for all $E \therefore(x)$. Eroposition 3.11 and Iemma 3.14 together show that \cong is a coboundary. Iet $\tilde{\phi}: X \rightarrow G / E(a)$ be a continuous function inth $\phi\left(x_{0}\right)=0$ and $\tilde{3}(n, x)=\tilde{\varphi}\left(T^{n}(x)\right)-\tilde{\phi}(x)$ for 3 Il $n \in \mathbb{Z}$ and $x \in X$. For each $x \in X,(x, \tilde{\mathscr{\phi}}(x)) \equiv \overline{0} \tilde{a}\left(x_{0}, 0\right)$. Choose a sequence $\left(n_{i}\right)$ such that $\hat{S}_{\tilde{a}}^{n_{i}}\left(x_{0}, 0\right) \rightarrow(x, \tilde{\phi}(x))$ and rix $\phi(x) \equiv \tilde{\phi}(x)$. Tor each $i \geqslant 1$, there axists $g_{i} \in E(a)$ such that $a\left(n_{i}, x_{0}\right)+\varepsilon_{i} \rightarrow \phi(x)$. The choice of x_{0} implies that, for every $i \geqslant 1$,

$$
\left(T^{n_{i}}\left(x_{0}\right), \exists\left(n_{i}, x_{0}\right)+g_{i}\right)=L_{g_{i}}\left(n^{n_{i}}\left(x_{0}\right), a\left(n_{i}, x_{0}\right)\right)=\overline{0}_{z}\left(x_{0}, 0\right)
$$

The point $(x, \phi(x)$) is the limit of this sequence as $\dot{+} \rightarrow \infty$ ang so lies in $\overline{0}_{2}\left(x_{0}, 0\right)$. This areument aprlies to everu $x \in x$, so $\pi_{X}\left(\bar{O}_{2}\left(x_{0}, 0\right)\right)=x$.

The next result sumarises some facts that are ixeful in interpreting Proposition 3.15.

Troposivion 3.16.
Tef is be a complete metric space and let $I: I \rightarrow X$ oe a Minimal homeomorphism. Let $a: \mathbb{Z} \times X \rightarrow G$ be a cocycle for I
 -invariant union of nownere dense closed subsets of x. If the set $\left\{y: \pi_{X}\left(\bar{O}_{a}(y)\right)=\{ \}\right.$ is not empty then it is a dense $C_{8}-\operatorname{subset}^{6} \mathrm{~F}$ which is invariant under S_{a} and the groun of translations $\left\{I_{g}: g \in c\right\}$.

Proof. Decause G is locally compact and second countable, it can be szoressed as a countable union of compact sets; $G=\bigcup_{i=1}^{\infty} C_{i}$. Jor any $y \in Y, \pi_{X}\left(\bar{O}_{a}(y)\right)=\bigcup_{i=1}^{\infty}\left(\pi_{X}\left(\bar{O}_{a}(y)\right) \cap\left(X \times C_{i}\right)\right)$, so that $\pi_{X} \bar{O}_{3}(y)$) is a m-invariant union oin closed subsets of k. İ any of these nas non-empty interior then the fact that is minimal ensures that $\pi_{X}\left(\overrightarrow{0}_{2}(y)\right)=X$. This proves the Eirst assertion.

Now suppose that for some $y_{0} \in Y, \Pi_{X}\left(\overline{0}_{a}\left(y_{0}\right)\right)=X$.
$\overline{0}_{a}\left(y_{0}\right)$ is a closed subspace of Y and so is itself a complete separable rajric space. Let $\left\{U_{i}: i \geqslant 1\right\}$ be a countable basis for its topologr. Let $\widehat{\mathrm{S}}_{\mathrm{a}}$ denote the restriction of S_{2} to $\bar{a}_{2}\left(y_{0}\right)$.

$$
F=n_{i=1}^{\infty} \bigcup_{n=-\infty}^{\infty} \sum_{a}^{n}\left(U_{i}\right)
$$

so \bar{z} is a G_{b}-suoset of $\overline{\mathrm{O}}_{a}\left(\mathrm{y}_{0}\right)$ and it is clearly dense. The proisction $\pi_{X}(\nabla)$ is a dense resubset of X. For any $x \equiv \pi_{X}(B)$ there exists $y \equiv F$ with $\pi_{X}(y)=x$. Then for every $E\left\{G, \operatorname{Tr}_{x}\left(\bar{n}_{z x}(x, g)\right)=\pi_{X}\left(\bar{C}_{a x}(y)\right)=X\right.$. Therefore,

$$
\left\{\because: \pi_{X}\left(\bar{O}_{z 1}(y)\right)=x\right\}=\left\{(x, E): x \equiv \pi_{n}(z), g \equiv G\right\} .
$$ and this set iss of the required form.

At the end of this section we shall give an example of a recurrent cocyole 3 with $\overline{\mathcal{J}}(a)=\{0,0\}$. For such cocjoles Theoxer 3.- and Eropositions 3.15 and 3.16 give only a pertial jescription of the orbit closures under the corresponing extension. If the extenaing crovo f is compactiy arenerated or if X is connected then we may
assume that $G=R^{n} \times \mathbb{Z}^{m} \times C(n, m \geqslant 0)$, where C is a compact group. The cocycle a can then be regardea as the direct prodict of $n+m+1$ component cocycles. By applying Sorollary 3.13 (and the aralagous statement for orbits which are bounded belor) to each non-compact comoonent we obtain some additional information about S_{a}.

The derived cocycie \tilde{a} which was used in Proposition 3.15 is also useful in relating our results to the special case where G is compact. Let K be the unit circle in the complex plane and recall that a character of a topological Eroup G is a continuous homomorphism $G \rightarrow K$. If G is a locally compact sroup then the set of characters is itself a locally compact abelian group which is denoted $\therefore \hat{G}$. Then our extending froun is compact it is possibie to prove e stronger result than Corollary 3.10. In fact re can construct cocycies which give rise to minimal eytensions. As this result is usually stated in terms of \hat{A}, fe first prove a lema wich describes the relationship betraen essential values and eioments of $\hat{\tilde{r}}$.

Lenne 3.1 .

Iət 0 bo locally compact, second countable abelian Group. Ises $3: \mathbb{Z} X \rightarrow G$ be a cocycle for a minimal
transformation $m: T \rightarrow$. Juppose that of $\overline{\mathrm{E}}(\tilde{a})$; then for any γ 三̂tne Foloming statementis are equivalent:
(1) Na compositio cosjcle ba: $\mathbb{Z} \times K \rightarrow K$ is a
cosoundary;
(2) $3^{\prime}(a)=\operatorname{Ker}(\gamma)$.

Erooi. If \mathcal{X} is any character of of then it follows
imediately from Definition i. 1.5 that $\gamma(\Omega(a))=\Sigma(\gamma a)$.
Fence Erovosition 3.11 shovs that Statement (1) implies (2).
Because sof $\overline{2}(\tilde{3})$ Eroposition 3.11 and Iemma 3.14 show
that \tilde{i} is a coboundary. If γ is any character of G for
which (2) holds then we can put $\tilde{\gamma}(\xi+\Sigma(\Omega))=\gamma(g)(g \in G)$ and so define a character $\tilde{\gamma}$ of $G / z(a)$. Clearly
$\tilde{\gamma} \tilde{a}: \mathbb{Z} \times X \rightarrow K$ is a coooundary. For all $n \in \mathbb{Z}$ and $x \in X$ we have: $\gamma z(n, x)=\tilde{\gamma}(x(n, x)+z(a))=\tilde{\gamma} \tilde{\exists}(n, x)$.

So ra is a coboundary and Statement (1) holds for γ.

Proposition 3.13.
Iet G be a compact group and let $a: \mathbb{Z} \times \mathbb{X} \rightarrow G$ be a cocycle for a minimal transformation $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{X}$. The corresponding extension, S_{a}, is minimal if and only if there is no non-trivia? character $\gamma \in \widehat{C}$ such that $\gamma, \mathbb{Z} \times X \rightarrow$ is a coboundar.

Proot. The Proposition is proved in the case where X is compact as Gorollary 2 of [12]. In general, the argument in tiae second paraeraph of 3.11 shows that $\pi_{X}\left(\bar{O}_{a}(y)\right)=X$ for every $y \in \mathcal{Y}$. Choose $x_{0} \in X$ so that $I_{g}\left(\overline{0}_{a}\left(x_{0}, 0\right)\right)=\overline{0}_{a}\left(x_{0}, 0\right)$ for every $\tilde{E} E \mathrm{E}(\mathrm{a})$. Tor any $\mathrm{y} \subseteq \mathrm{Y}$ there exist elements $h, \tilde{c}_{0} \in G$ such thet $\left(x_{0}, h\right)=\bar{o}_{a}(y)$ and $I_{g_{0}}(y) \in \bar{o}_{a}\left(x_{0}, h\right)$. Theorer 3.7 Shows that $0_{0} \equiv E(a)$; so for any $g \in E(a)$,

$$
\bar{u}_{0}(y)=\overline{0}_{2}\left(x_{0}, h+g-g_{0}\right)=\bar{c}_{a}\left(x_{0}, h\right) \subset \bar{o}_{a}(y)
$$

As this inlis for every $y \in Y$, the minimality of T implies
that if $\exists\left(a^{\prime}\right)=G$ tinen J_{a} is minimal．Conversely，if J_{a} is minimal then Corollary 3.10 shows that $\mathrm{w}(\mathrm{a})=\mathrm{G}$ ． Lemma 3.17 shors that $E(a) \neq G$ if and only if there exists a non－triviai characteryミ̂́G such that γ a is a coboundary．
ie conclude this section fith tro illustrative examples． The second 0 these will show that the assumption，$\infty \hat{F}(\tilde{a})$ ， is necessary in Iemma 3．17．Nine set of characters $\gamma \in \hat{G}$ for wich xa is a coboundary is therefore not as useful as the group of essential values in studying non－compact group extensions．This collection of characters is in faこt related to a compact group extension－the extension 0 ？by the Bohr compactification of G thich arises rationaliy from the cocycle a．

In botin the follo：ing examples the extending group is the additire group of real numbers．The first example is an E－extension，S_{a} ．Of a minimal transformation of the
 bezeuse tine toris is a connectei space．There is therefoze no possibirity that there exists a coooundary b with $a(x, x)+b(x, x)=\mathbb{Z}$ for all $n \leq \mathbb{Z}$ and $x \in X$ ．Tnis possibilizy can occire in the base space of an extension is totally disconnectet．In that case the extension is merely a discluised form of a topologically transitive \mathbb{Z}－extension．

Tha construction of our examples requires an auxiliary Tensゴロッチェina．Let r be the unit circle as before and let $\alpha \equiv\left[\right.$ be any irrational number．Iet $H^{n} \rightarrow$ be the minimal transletion：$A^{\prime}(k)=x \cdot \exp (2 \pi-\alpha)$ ．Let $a^{\prime}: \mathbb{Z} \times \mathbb{K} \rightarrow$ Be a cocyale
for $]^{\prime}$ witin $E\left(a^{\prime}\right)=R$. The existonce oi such a cocycle iilll be demonstrated in the next section. We will also reaure a metric on K; the most suitable is the metric a_{K}, Ior mich $\mathrm{a}_{\mathrm{K}}(\exp (2 \pi i \beta)$, $\exp (2 \pi i \delta))$ is the distance Srom $\beta-S$ to the nearest integer $(\beta, \delta \in \mathbb{R})$.

Example 3.19.
Let $K=X^{2}$ and define $T: X \rightarrow X$ by the equation:

$$
I\left(x_{1}, k_{2}\right)=\left(T^{\prime}\left(k_{1}\right), k_{2} \cdot \exp \left(2 \pi i \cdot a^{\prime}\left(1, k_{1}\right)\right)\right.
$$

men I is a shew-product extension of T ' and is minimal b_{v} Proposition 3.13 and Lemma 3.17. Let $a: \mathbb{Z} \times X \rightarrow \mathbb{R}$ be the cocjcle for I with $a\left(n,\left(k_{1}, k_{2}\right)\right)=a^{\prime}\left(n, k_{q}\right)$. We will show tさat $\leq($ a $)=\mathbb{Z}$.

Fix anj meZ For any non-empty open set $A C K$ and anj

$$
\begin{aligned}
& \left.\left.\supset(A \cap)^{-n}(A) \cap\left\{k^{\prime}: a^{\prime}\left(n, k^{\prime}\right) E\right\}_{\mathbb{R}}(m, \varepsilon)\right\}\right) \times\{k\} \neq \phi .
\end{aligned}
$$

Fhis is Enorgen to show that $m E(a)$; so we have $\mathbb{Z}=\boldsymbol{E}(\mathrm{a}$) To see tiat $Z(a)=\mathbb{Z}$ observe that for any $\left(\left(k_{1}, k_{2}\right), t\right) \approx ?$,

$$
\begin{equation*}
\overline{0}_{a}\left(\left(k_{1}, k_{2}\right), r\right) \subset\left\{\left(\left(k_{1}^{\prime}, k_{2}^{\prime}\right), r^{\prime}\right): k_{2}^{\prime}=k_{2} \cdot \exp \left(\operatorname{iri}\left(r^{\prime}-r\right)\right)\right\} \tag{1}
\end{equation*}
$$ and anoly fieorem 3.7. If k_{1} is sucin that $\overline{\mathrm{C}}_{\mathrm{a}}\left(\mathrm{k}_{1}, 0\right)=\mathbb{R} \times \mathbb{R}$ then we cave equality in (1) for every $k_{2} \in \mathbb{L}$ and $r \in \mathbb{R}$. 30 "mosむ" orbit closures under s_{a} are of this form.

Our secorld example, which is constructed in a similer frahion to the first, is of a recurrent cocycle a with $\left.E_{(1)}^{\prime}\right)=\{0, \infty\}$.

Sxa＝cie 3．

Zais こine let $X=\mathrm{K}^{3}$ ．Chocse an irrational number β ani dezine $2: X \rightarrow Z$ by the eguation：
 \therefore in the previous example a is a minimal sinetrproina extension oz \mathfrak{Z}^{\prime} ．Define a cocyole a： $\mathbb{Z} \times X \rightarrow$ f for Z by：

$$
\equiv\left(n,\left(z_{1}, z_{2}, z_{3}\right)\right)=a^{\prime}\left(n, k_{1}\right) \quad\left(n \in \mathbb{Z}_{1}, x_{1}, z_{2}, z_{3} \equiv \pi\right) .
$$

For exch $\left(\left(v_{1}, v_{2}, v_{3}\right), r\right) \in v$ нe hare：
$\bar{v}_{2}\left(\left(z_{1}, v_{2}, z_{3}\right), r\right)=$

ce the trensEomation ：ith
$\hat{\imath}$
二〇is tranfocmation is a Z^{3}－extension of こ＇．IE … cain

 cenrot je $=$ coboundary．

玉: Nopolo ficelly transitive extensions.

It will be proved in the next section that an extension can never os animal if the base space is corppact and the extending group is non-compact. Honever such an extension may be topologically transitive. Examples of topologically transitive real line extensions have been Eiven for particuler base transformations by Besicovitch ([1, 2]) and Gottschalk and Iedelund ([5]) among others. Nore recently, siderov has shown in [16] that such extensions exist for every minimal transformation, whewe the extending sroup maf be any Banach space. (It ie clear that the definitions of Chapter one can be generalised to define sxtensions by any abelian group.) Siderov and Krygin have Eiso eiven examples of topoloeically transitive real line extenstions :ith various special properties ([6] and []..

In this section re restrict our attention to $\mathbb{R}^{\text {na }}$-ertensions OR transzormations on compact spaces. Iith this restriction We can srove results that are stronger than the simple existence of topolozically transitive extensions. Theorem 4.4 sho:is thet the collection of cocycles which give rise to topolosically transitive extensions is a residual subset 02 the set of all cocurrent cocycles, when the Iatter is equipped with a suitable metric. For a particular class of trensformations, the minimal translations on tori, Insoref 4.14 gives an even stronger statement; all hon-tritisi conservative extensions are topologically trensitive.

Tine Following lemma contains more than is necessary in the proof of Theorem 4.4 hut it will be useful in \$5. Corollary 4.2 is what is required here.

Leman 4.1 .

Let X se a compact metric space and $l e t T: X \rightarrow K$ be a minimal homeomorphism. Let $3: \mathbb{Z} \times X \rightarrow \mathbb{R}$ be a cocycle for T and suppose that for some $x_{0} \equiv X, \operatorname{Lim}_{n} n^{-1} a\left(n, x_{0}\right)=0$. Then For any $\check{\cong} \equiv \mathbb{R}, \varepsilon>0$ and $\eta>0$, there exists a $\delta \equiv \mathbb{R}, \eta>\delta>0$, a $x \in \mathbb{Z}_{+}$and a coboundary $b: \mathbb{Z} x \rightarrow G$ such that:
(i) $d_{X}\left(D^{i x}\left(x_{0}\right), x_{0}\right)<\eta$;
(2) $a\left(x, x_{0}\right)+b\left(k, x_{0}\right)=r$;
(3) $\sin _{x}|b(1, x)|<\varepsilon$;
(1) Tor all $r \in \mathbb{Z}, b\left(n, x_{0}\right)$ lies in the closed interval ai th endpoints zero and $r-a\left(k, x_{0}\right)$;
(5) $\quad\left(n, x_{0}\right)=0$ whenever $T^{n}\left(x_{0}\right) \equiv B_{X}\left(x_{0}, \delta\right)$.

Erocf. Those $x \in \mathbb{Z}_{+}$so that: (1) is satisfied; $k^{-1}\left|\exists\left(\varepsilon, x_{0}\right)\right|<\varepsilon / 2$; and $k^{-1}|r|<\varepsilon / 2$. The points $\mathrm{i}^{i}\left(x_{0}\right)$ $0 \leqslant \pm \leqslant 2 i-1$ are all distinct, so there exists a $\delta, \eta>\delta>0$, such that

$$
T^{i}\left(3_{X}\left(x_{0}, \delta\right)\right) \cap T^{j}\left(3_{X}\left(x_{0}, 8\right)\right)=1 \quad(0 \leq i, j \leqslant 2 \check{i}-1) \cdot-(6)
$$

Let $\varphi: \pi \rightarrow \mathbb{R}$ be a continuous function with $\varphi\left(x_{0}\right)=k^{-1}\left(r-a\left(k, x_{0}\right)\right)$
such that $\varphi(x)$ lies between zero and $\varphi\left(x_{0}\right)$ for all
$x \equiv z_{X} i x_{0}, 8$; and $\phi(x)=0$ for all $x \neq 3_{X}\left(x_{0}, 8\right)$. It is clear

$$
b(1, x)={ }_{i=0}^{k-i} \varphi\left(\rho^{-i}(x)\right)-\sum_{i=k}^{2} \phi\left(I^{-i}(x)\right) \quad(x \in x) .
$$

まされation（6）ensures that（3）is satisfied．Also for
\sin zn，

$$
\begin{aligned}
& \because(1, z)=\sum_{i=0}^{k=0}\left(\eta-\rho^{-k}\right)\left(I^{-i}(z)\right) \\
& =\sum_{i=0}^{i=0} \sum_{i=0}^{i}\left(\varphi I^{-i}-\phi^{-(i+1)}\right)\left(I^{-i}(x)\right) \\
& =\left(\sum_{i=0}^{k-i} \sum_{i=1}^{k} \phi^{-(i+j)}\right)(I(x))-\left(\sum_{i=0}^{k-1} \sum_{j=1}^{k} \boldsymbol{T}^{-(i+j)}\right)(x) .
\end{aligned}
$$

So b is a cobo\％ndary and if

$$
\begin{aligned}
& \psi(x)=\sum_{i=0}^{\sum-1} \sum_{i=1}^{k} \varphi^{-(i+j)}(x) \quad(x \in \mathbb{X}) \\
& \text { then } b(x, z)=\psi\left(I^{n}(x)\right)-\psi(x) \text { for all } n \in \mathbb{Z} \text { and } x E X \text {. Note } \\
& \text { that } \psi(x)=0 \text { dor all } z=B_{\gamma}\left(x_{0}, \delta\right) \text {. This implies that } \\
& z\left(n, x_{0}\right)=\psi \mathcal{H}^{n}\left(z_{0}\right) \text { for all } n \equiv \mathbb{Z} \text { so that (1) and (5) hold. } \\
& \text { Also, } \boldsymbol{\psi}\left(\therefore\left(z_{0}\right)\right)=r-a\left(1, x_{0}\right) \text {, so (2) is correct. }
\end{aligned}
$$

Corol2Eru 4.2 ．

$$
\begin{aligned}
& \text { set } \mathrm{X} \text { be } \equiv \text { compact metric space and let } I: \mathrm{X} \rightarrow \mathrm{X} \text { be e } \\
& \text { minimal ho䒑somorpais:. set } 3: \mathbb{Z} X \rightarrow \mathbb{R}^{Z} \text { be a cocycle for? } \\
& \text { End suppose the for some } z_{0} \in z, \operatorname{Lim}_{n} n^{-1}\left|E\left(n, z_{0}\right)\right|=0 \text {. } \\
& \text { Inch for an } \because \forall \mathbb{R}^{\Psi}, \varepsilon>0 \text { and } \eta>0 \text { there exists a } \delta>0 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\cdots z_{\left(z_{0}\right)}, z_{0}\right)<\eta_{1} ; \\
& (2)=\left(z, z_{0}\right)+b\left(x, x_{0}\right)=v \text {; } \\
& \text { (Z) } \operatorname{Son}_{\text {ER }}|=(1, x)|<\varepsilon \text {; } \\
& \text { (4) } z^{\prime}\left(n, x_{0}\right)=0 \text { whenever } T^{n}\left(x_{0}\right) \in 3_{X}\left(z_{0}, \delta\right) \text {. }
\end{aligned}
$$

Proof. Apoly lemma 1.1 to each component of a and v, using the same k and δ for each. This can be done because there is no upper bound on the choice of k in the proof of 4.1 and no lover bound (excent zero) on the choice of δ.

When Z is a compact metric space and $T: X \rightarrow X$ is a minimal homeomorphism there always exists at least one T-invariant ergolic prooability measure on X. Let μ be such a measure; for each $m \geqslant 1, Z_{\mu}^{1}\left(T, \mathbb{R}^{m}\right)$ will denote the set of cocycies $a=\left(a_{1}, \ldots, a_{m}\right): \mathbb{Z} \times X \rightarrow \mathbb{R}^{\text {nI }}$ for I with

$$
\int a_{i}(1, .) d \mu=0 \quad(1 \leqslant i \leqslant m)
$$

It is not known under what circumstances it is sufficient that a cocycle belongs to $Z_{\mu}^{1}\left(T, \mathbb{R}^{m}\right)$ for it to be recurrent. The ereodic theoren shows that for every $a \in Z_{\mu}^{1}\left(T, \mathbb{R}^{m}\right)$,

$$
\left.\mu\left(: x: \operatorname{Lim}_{n} n^{-1}|a(n, x)|=0\right\}\right)=1
$$

and this is enough to make Corollary 4.2 useful.
In orier to state the next Lemma we need a metric on $Z_{\mu}^{1}\left(T, \mathbb{R}^{m}\right)$. It is clear that the set $\left\{a(1, \ldots): a \in z_{\mu}^{1}\left(T, \mathbb{R}^{m}\right)\right\}$ is a closed subspace of the space of continuous functions $X \rightarrow \mathbb{R}^{m}$ (rith the usual metric). Therefore if we set
$d\left(a, a^{\prime}\right)=\operatorname{Sup}_{x \in X}\left|a(1, x)-a^{\prime}(1, x)\right| \quad\left(a, a^{\prime} \in z_{\mu}^{1}\left(T, \mathbb{R}^{\mathbb{R}}\right)\right.$,
$Z_{\mu}^{1}\left(\mathbb{T}, \mathbb{R}^{m}\right)$ becomes a complete metric space.

Lemma 4.3.
Let X be a compact metric space and let $T: X \rightarrow X$ be a minimal homeomorphism. Let μ be a T-invariant ergodic probabilit. measure on $\%$. For each $v \in \mathbb{R}^{n}(m \geqslant 1)$ le $T(v)$ be the set $\left\{a \leq Z_{\mu}^{1}\left(\eta, \mathbb{R}^{m}\right): v \in \mathcal{E}(a)\right\}$. Then each $Z(v)$ ($\mathrm{r}_{\mathrm{f}} \mathbb{R}^{m}$) is a residual subset of $\mu_{\mu}^{1}\left(\mathrm{~m}, \mathrm{R}^{\mathrm{ma}}\right)$.
=wo oi. Fix $v \in \mathbb{R}$. We shall first prove that $F(v)$ is a dense subset of $Z_{\mu}^{1}\left(\mathbb{T}, \mathbb{R}^{r i}\right)$. Given any $a \equiv Z_{\mu}^{1}\left(T, \mathbb{R}^{m}\right)$ and $\rho>0$, Te will construct a cooycle $b=Z_{\mu}^{1}\left(\eta, \mathbb{R}^{m}\right)$ such that $v \in E(a+b)$ and $d(a, a+b)<p$.

First fix an $x_{0} \in X$ such that $\operatorname{Lim}_{n} n^{-1}\left|a\left(n, x_{0}\right)\right|=0$. Ie choose a sequence of coboundaries ($b_{i}: \mathbb{Z} \times i \rightarrow \mathbb{R}^{\mathbb{Z}}$), a sequence or positive integers $\left(k_{i}\right)$, and a sequence of positive real numbers $\left(\boldsymbol{\delta}_{i}\right)$ inductively. Let b_{0} be the zero coboundary and let $k_{0}=1$ and $\delta_{0}=1$. No: suppose that $j_{0}, \ldots, b_{i-1}, k_{0}, \ldots, k_{i-1}$ and $\delta_{0}, \ldots, \delta_{i-1}$ have already been chosen. Using Corollary 4.2 we choose b_{i}, k_{i} and δ_{i} $\left(\right.$ ito $\left.S_{i-1}>\delta_{i}>0\right)$ such that:
(1) $\left.d_{0}\left(\operatorname{rem}^{2} \sum_{z_{0}}\right), x_{0}\right)<\operatorname{Inf}\left\{\delta_{i-1}, 2^{-i}\right\}$;
(2) $a\left(z_{i} \cdot x_{0}\right)+n_{i}\left(k_{i}, x_{0}\right)=v ;$
(3) $\operatorname{Sun}_{x \in X}\left|o_{i}(1, x)\right|<\rho / k_{i-1} 2^{i}$;
(1) $\vdots_{i}\left(n, x_{0}\right)=0$ whenever $n^{n}\left(x_{0}\right) \equiv B_{X}\left(x_{0}, \delta_{i}\right)$.

It =Orlons from (3) that the series of functions
${\underset{i}{=0}}_{\sum_{i}} b_{i}(1,$.$) converges uniformly. Let b: \mathbb{Z} \times \pi \rightarrow \mathbb{R}^{\text {m }}$ be the cosycie vito $b(1, \ldots)={\underset{i}{i=0}}_{\infty}^{\infty} b_{i}(1,$.$) ; then because b$ is a limit of covoindaries, $b \in z_{\mu}^{i}\left(\mathbb{T}, \mathbb{R}^{\mathbb{m}}\right)$. Condition (1) shows that Finensysen $0<i<j, T^{k_{i}}\left(x_{0}\right)=B_{X}\left(x_{0}, \delta_{j}\right)$ so that
$j^{\prime} x_{i}, x_{0}=\sum_{j=1}^{\infty} b_{j}\left(x_{i}, x_{0}\right)$. Also, Equation 4.1.6 together with
(1) ensures that $k_{0}<k_{1}<k_{2} \cdots$. Hence

$$
\begin{aligned}
\left|a\left(x_{i}, x_{0}\right)+b\left(k_{i}, x_{0}\right)-v\right| & =\left|\sum_{j=i+1}^{\infty} i_{j}\left(k_{i}, x_{0}\right)\right| \\
& \leqslant k_{i} \sum_{j=i+1}^{\infty} \operatorname{sun}_{x_{i}}\left|b_{j}(1, \bar{z})\right| \\
& <Q / 2^{i} .
\end{aligned}
$$

Together with (1) this shows that $S_{a+b}^{k_{i}}\left(x_{0}, 0\right) \rightarrow\left(x_{0}, v\right)$. Theoren 3.7 now implies that $v \in \mathbb{E}(a+b)$.
mo complete the proof we will show that $F(v)$ is a $G_{\delta}-$ subset of $z_{\mu}^{1}\left(\pi, \mathbb{R}^{m}\right)$. Let $\left\{U_{i}: i>1\right\}$ be a countable besis for the topology of X. It follows directly Irom Definition 1.1.5 that
$T(v)=\bigcap_{j=1}^{\infty} \bigcap_{i=1}^{\infty} \bigcup_{n=-\infty}^{\infty}\left\{a \in z_{\mu}^{1}\left(z, \mathbb{R}^{\text {In }}\right): U_{i} \cap I^{-n}\left(U_{i}\right) \cap\left\{x:|a(n, x)-v|<2^{-j}\right\} \neq \phi\right\}$. This is clearly of the required form.

Theonem 4. Sr.
Let X be a compact metric space and let $M: X \rightarrow X$ be a minimal homeomorphism. Let μ be any t-invariant ergodic Borel probability measure on X; then the set $\left\{a \equiv Z_{\mu}^{1}\left(\cap, \mathbb{R}^{m}\right): \quad \Xi(a)=\mathbb{R}^{m}\right\}$, is a residual subset $c \geq Z_{\mu}^{1}\left(\mathbb{T}, \mathbb{R}^{m}\right)$. Proof. Let $\left\{\mathrm{v}_{j}: j \geqslant 1\right\}$ be a countable dense subset of \mathbb{R}^{2}. If $\Omega=\bigcap_{j=1}^{\infty} F\left(v_{j}\right)$ then i it is clear that $t(a)=\mathbb{R}^{m}$. This is an intersection of residual sets and so is itselt residual.

Corozlery 4.5.
Let X be a compact metric space and let $T: X \rightarrow X$ de a minimal homeomorohise. Then for each $m \geqslant 1$, tirere exists un uncountable collection, H_{r} of cocycles such that $\mathscr{U}(a)=\mathbb{R}^{m}$ for each $a: \mathbb{Z} \times \mathrm{K} \rightarrow \mathbb{R}^{m}$ contained in H_{m}.

Froof. Iet μ be any T-invariant eradic probability measure on K . Choose a maximal collection of non-cohomologous cocycles H_{m} from the set

$$
F=\left\{a \Xi Z_{\mu}^{1}\left(T, \mathbb{R}^{\mathbb{R}}\right): E(a)=\mathbb{R}^{\mathrm{m}}\right\}
$$

AlI tine coboundaries for T lie in F^{c}, the complement of ? in $\mathbb{N}_{\dot{r}}^{1}\left(\mathbb{T}, \mathbb{R}^{\text {th }}\right)$, and this complement is a meagre set. Because \mathcal{I}_{m} is maximal $\mathrm{F}=\operatorname{U}_{\mathrm{a} \in \mathcal{H}_{\mathrm{m}}}\left\{a+\mathrm{b}: \mathrm{b} \in \mathbb{F}^{c}\right\}$; if H_{m} were countable this would express F as the union of a countable collection of measre sets. Saire's Theorem shows that this is imposaible, so H_{m} must be uncountable.

Corollary 4.6.

Let X be a compact metric space and let $T: X \rightarrow X$ be a minimel homeomorphism. Let μ be ary T-invariant eraodis Borel probability measure on X. Then both the set of coboundaries and the set of transient cocycles which lie in $z_{\mu}^{1}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ are meagre (as subsets of $Z_{\mu}^{1}\left(\mathbb{T}^{m}\right)$).

In all cocycle problems of topological dynamics or analysis it is interesting to know whether every recurrent coovele is a limit of coboundaries. In the present case Theorem 4.4 shows that there may be cocycles wich jive rise to topologically transitive extensions and are not the pointrise limit of any sequence of coboundaries. This is the case if there are two distinct T-invariant ergodic probability measures μ_{1} and μ_{2} on X. Every \mathbb{R}^{m}-raiued cocycle which is a limit of coboundaries then belongs to $\left.z_{\mu_{1}}^{1}\left(T, \mathbb{R}^{n}\right) \cap z_{\mu_{2}}^{2} T, \mathbb{R}^{m}\right)$, but Theorem 4.4 implies that
there are cocyoles in ${\underset{\sim}{\mu_{1}}}_{1}^{1}\left(T, \mathbb{R}^{n}\right) \Delta Z_{\mu_{2}}^{1}\left(T, \mathbb{R}^{m}\right)$ haich define topologically transitive extensions.

The rest of this section is about the $\mathbb{R}^{\mathbb{N}}$-extensions of some special transformations - the minimal translations on a torus. A theorem of Hedelund ([0], Theorem 14.13) states that if a real valued cocycle for one of thesa transformations is neither transient nor a coboundary then it aefines a topologically transitive extension. In Theorem 4.14 we extend this result to $\mathbb{R}^{\text {m}}$-extensions. The main part of the proof is contained in the followins sequence of lemmas. The first of these gives an additional criterion for an element of the extending group to be an essertial ralue.

Lemma 5.
Let K be a complete metric space añ let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{I}$ se a minimal homeomorphism. Let $a: \mathbb{Z} \times \because \rightarrow G$ be a coctrole for \mathbb{T}. Suppose that for some $x_{0}=X$ and $E \in G$,

$$
\tilde{\varepsilon}=\bigcap_{i=0}^{\infty} \bigcup_{n=-\infty}^{\infty}\left\{a(n, x): x \in P_{x}\left(x_{0}, 2^{-(i+1)}\right) n^{-n}\left(3_{x}\left(x_{0}, 2^{-i}\right)\right)\right\}
$$ Then $g \in E(a)$.

Proof. For any non-empty ofen set $A C X$ and any $\varepsilon>0$, there exists an integer, k, such that $T^{k}\left(x_{0}\right)$ EA. Snoose $i \in \mathbb{Z}_{+}$, sufficiently larce that $T^{k}\left(B_{X}\left(x_{0}, 2^{-i}\right)\right) C A$ anu $A_{G}\left(a(k, x), a\left(k, x^{\prime}\right)\right)<\boldsymbol{\varepsilon} / 2$ for $21 x, x^{\prime}=B_{x}\left(x_{0}, 2^{-i}\right)$. By assumption there exists an $x=P_{x^{\prime}}\left(x_{0}, 2^{-(i+1)}\right.$) and and an $n=\mathbb{Z}$ such that $T^{n}(x) \in \mathcal{P}_{X}\left(X_{0}, 2^{-i}\right)$ and $a(n, x) \equiv \mathcal{Z}_{\mathcal{G}}(g, \varepsilon / 2)$.

Let $x^{\prime}=T^{k}(x) ; \operatorname{then} T^{n}\left(x^{\prime}\right)=I^{2}\left(T^{n}(x)\right) \in R^{k}\left(B_{X}\left(x_{0}, 2^{-i}\right)\right) \subset A$.
Also by applying the cocjcle equation trice we have:

$$
\begin{aligned}
a\left(n, x^{\prime}\right) & =a\left(n, n^{k}(x)\right) \\
& =a(n+k, x)-a(k, x) \\
& =a(n, x)+a\left(\underline{k}, n^{n}(x)\right)-a(k, x) .
\end{aligned}
$$

So $d_{G}\left(a\left(n, x^{\prime}\right), g\right) \leqslant d_{G}(a(n, x), g)+d_{G}\left(a\left(n, a^{n}(x), a(k, x)\right)<\varepsilon\right.$. Fence, $x^{\prime} \in \sin \underbrace{-n}(\therefore) \cap\left\{x: a(n, x) \equiv Z_{G}(f, \varepsilon)\right\} \neq \downarrow$ and g is an essential value of a.

From here until the end of this section we rill always assume that the base space Z is a torus - a finite or countable product of circles. Each torus is a compact Biositan ground; Ne will write the group operation \#ưtigユicatively ard use "e" to denote the identity. The minima homeomorphism= $i: \% \rightarrow Z$ Gill de a translation, so that for some $x_{Y} \equiv X, Y(x)=x_{r_{i}} \quad(x \equiv \AA)$. A torus, like and other separate compact group, has a translation-invariant symmetric metric which defines its topology. ie shall use
 all x, a' $^{\prime}$ ミ.

Lemma A. .
 tat $\alpha(\Leftrightarrow)=\{0\}$. LEn for every $\in>0$ there exists an $\eta(\varepsilon)>0$ such that $|a(n, x)|<\subseteq$ for all $x \in x$, whenever $\left.a_{\chi}\left(r^{r}(e), e\right)<\eta \in\right)$ and $\{x:|a(r, x)|<E\} \neq 1$.

Eroof．For erary $n=\mathbb{Z}$ and x 天X，

$$
d_{X}\left(I^{i n}(e), e\right)=d_{X}\left(x_{工}^{n}, e\right)=d_{X}\left(x_{X}^{n}, x\right)=d_{X}\left(T^{n}(x), x\right)
$$

So wnenever $d_{X}\left(a^{n}(e), e\right)<2^{-i}, \quad T^{n}\left(3_{X}\left(x, 2^{-i}\right)\right) \subset B_{A}\left(x, 2^{-(i-1)}\right)$
For erery $\because E X$ ．For each $\varepsilon>0$ ，let $S(\varepsilon)=\left\{v \equiv \mathbb{R}^{m}:|r|=\varepsilon\right\}$ ．
Fhen，becuuss $S(\varepsilon) \cap \bar{F}(a)=\hat{f}$ ，Iemma 4．＇implies that for
all x 天 X ，

Finis is an intersection of compact sets，so the finite
intersection property shows that for each $x=7$ there existu
ar $i(x) \equiv \mathbb{Z}_{+} \quad \because i t h$

$$
\left\{3\left(n, x^{\prime}\right): x^{\prime} \in B_{x}\left(x, 2^{-i(x)}\right), a_{x}\left(2^{n}(\theta), e\right)<2^{-i(x)}\right\} \cap 3(\varepsilon)=f
$$

Iet $\boldsymbol{\eta}$（ $=\operatorname{In}_{i \leq i \leq i \leq} 2^{-i\left(\alpha_{j}\right)}$ ．
To：：singose that one of the sets $B_{X}\left(x_{j}, 2^{-i\left(z_{j}\right)}, \quad 1 \leqslant j \leqslant z\right.$
containz a point x fitit $|a(n, x)|<\varepsilon$ for so：e $r=\mathbb{Z}$ ºr

$$
\left(x \in x_{0}\left(x_{0}, 2^{-i\left(x_{j}\right)}\right):|a(n, x)|=\leq\right\}=f .
$$

žnotion．3o Por all $x \equiv B_{K}\left(x_{j}, 2^{-i\left(x_{j}\right)}\right)$ ，．e have $|3(n, x)|<\varepsilon$ ．
 $x^{i} n^{n}\left(e^{\prime}, \epsilon^{\prime}<\eta(\epsilon)\right.$ the set $\{x:|a(n, x)|<\varepsilon\}$ is a linion of some 0 tine oven balls $3_{X}\left(x_{j}, 2^{-i\left(x_{j}\right)}\right), 1 \leqslant 4 \leqslant k$ ．כэcriase K is conneated if this union is not empty then it mist be all cit．

Corollary 1.9.
Iet a:Z्Z $X \rightarrow \mathbb{R}$ be a cocycle for $I: Z \rightarrow$ and suppose that ri $Z(a)$, for some $r>0$. Then there exists an $\boldsymbol{\eta}(r)>0$ such that $|a(n, x)|<r$ for $a I I z E Z$, whenever $d_{X}\left(I^{n}(e), e\right)<\eta(r)$ and $\{x:|a(n, x)|<r\} \neq \$$.

Broz. Set $E=r$ in the proof of 4.8 .

Lemma 1.10.
Let $e: \mathbb{Z} \times \mathbb{X} \rightarrow \mathbb{R}^{\mathbb{m}}(m \geqslant 1)$ be a recurrent cocycle for
$Z: Z \rightarrow Z$. Suppose that $E(a)=\{0\}$. Then for any sequence of
Lutesers $\left(n_{i}\right)$ the following statements are equivalent:
(1) Bor all $\mathrm{y} E I$, the sequence $\left(\mathrm{J}_{\mathrm{a}}^{\mathrm{n}}(\mathrm{y})\right)$ converges;
(2) For some $z_{0} \in X$, the sequence $\left(3_{2}^{n_{i}}\left(z_{0}, 0\right)\right)$
converges;
(3) Ins sequence of functions $\left(a\left(n_{i},.\right)\right)$ converges
uniformly to a continuous Emotion $\phi:: \rightarrow \mathbb{R}^{\mathbb{D}}$ and
the sequence ($\left.2^{n} i(e)\right)$ converges.

Eco os. That Statement (1) Luplies (2) is trivial. Suppose
that statement (2) is true; then the sequences (an, $\left.x_{i}\right)$)
and $\left(n^{n}-\left(x_{0}\right)\right)$ converge. In particular they are cauchy
zequences, so for every $\varepsilon>0$ there exists an $\mathrm{N} \equiv \mathbb{Z}_{+}$such
that $\left|a\left(n_{1}, z_{0}\right)-a\left(n_{j}, x_{0}\right)\right|<\varepsilon$ and $d_{z}\left(n^{n} j\left(x_{0}\right), I^{n} j\left(x_{0}\right)\right)<\eta$, $)$
for all i, i> . Jut

$$
\left.11 \text { i, } n_{i}\left(x_{0}\right), n^{n} j\left(x_{0}\right)\right)=i_{X}\left(I^{n_{i}-n_{j}}(e), e\right)
$$

an the coorole equation shows that

$$
2\left(n_{i}, \sigma_{0}\right)-a\left(n_{j}, x_{0}\right)=2\left(n_{i}-n_{j}, n^{n_{j}}\left(z_{0}\right)\right) ;
$$

及etersing the arjument abote now shov thet the seyumos
（a，$\left.n_{i},.\right)$ ）is uniformly Gauchy ani so converges uniformiy
To Soユe continuous function $p: X \rightarrow \mathbb{R}^{7}$ ．The converesence of Z－（e））is clear．Zinally，it clearly zollows Erom the ショミミnitions oz＝and S_{a} that 3tatenent（3）iaplies（1）．

프…a 1.1 ．
Ze二 $\equiv: \mathbb{Z} X \rightarrow \mathbb{R}^{2} b e$ e reourrent coonols for $Z: Z \rightarrow Z$ and
suopose thaz Z（e）＝\｛0\}. Finen every orbit closurs under

OR 子

\qquad

$a_{i}\left(T^{-n} i(e), n^{-1}\right)=a_{X}\left(r^{n} i(e), \pi\right)<\delta$ and $\left|a\left(n_{i}, x\right)-\varphi(x)\right|<\varepsilon / 2$ Eor all x ミY and all $i \geqslant 1$ ．Then for all $x \in X$ and $i=1$ ve heve：
$\mid \varphi\left(n^{-1} x j+a\left(-n_{i}, x\right)\left|<\left|\varphi^{\prime}\left(m^{-1} x\right)-\mathcal{P}\left(T^{-n_{i}}(x)\right)\right|+\right| \varphi\left(T^{-n_{i}}(x)-a\left(n_{i}, m^{-n_{i}}(x)\right) \mid\right.\right.$
$<\varepsilon / 2+\varepsilon / 2=\varepsilon$.
So the seiuence $\left(a\left(-n_{i},.\right)\right)$ converges uniformly to the continuous Iunction $-\rho\left(w^{-1}\right.$ ．）．Also $T^{-n_{i}}(e) \rightarrow \mathrm{w}^{-1}$ ．Ine conaitions of statement（3）oi Lema 4.10 are satisfied so that $\left(S_{a}^{-n} i(x, 0)\right)$ converges for all $x \in X$ and $w^{-i} \equiv$ it． ie can not prove the lemma．Let $x, x^{\prime} \leqslant X$ and $v, v^{\prime} \in \mathbb{R}^{m}$ ． If $\left(X^{\prime}, V^{\prime}\right) E \bar{C}_{2}(x, v)$ then $x^{\prime} x^{-1} \in V ;$ so $x\left(x^{\prime}\right)^{-1} \in N$ and there exists $v^{\prime \prime} \equiv \mathbb{R}^{\text {in }}$ such that $\left(x, v^{\prime \prime}\right) \in \overline{0}_{a}\left(x^{\prime}, v^{\prime}\right)=\overline{0}_{a}(x, v)$ ． Theorem j．7 implies thet $r-\mathrm{v}^{\prime \prime} \in \mathrm{Z}(\mathrm{a})$ ，so $\mathrm{v}=\mathrm{v}$＂．It ＝0110． 5 that $\overline{\mathrm{O}}_{2}(x, y)=\overline{0}_{a}\left(x^{\prime}, v^{\prime}\right)$ and that this is a minimal かもうt closume．
our next lemma is a simplifiad form o：Theorem 7.050 ［J］．

䒑夫二a9 $\therefore 1 ?$

Let 弓 ，de locally compact topological space and let z：$\langle\rightarrow Z$ je a minital homeomorpism．Suppose that every $z E Z$ lies in tine closure of its o：m forvard orbit under S．Let \because be an osen set of Z with \bar{U} compact．Then there exists an $n=\mathbb{Z}_{+}$sucn that $U \cap\left\{S^{i+j}(z): 0 \leqslant j \leqslant N-1\right\} \neq \phi$ for all $i 三 \mathbb{Z}_{+}$and $z=U$ ．

Proof. Beeause S is minimal the orbit of any point $z \in Z$ is dense in 2 : because z is a limit point of its own forvari orbit, that forward orbit must itself be dense in Z. In nariicular if $z \equiv \bar{U}$ then the forvard orijit of z enters u. Nas implies that $\bar{U}=\bigcup_{j=1}^{\infty} S^{-j}(U)$. Since $\overline{\mathrm{U}}$ is convact there exists an $N \equiv \vec{Z}_{+}$such that $U=\bar{U}=\underset{i=1}{\cup} 3^{-j}(\mathrm{U})$.

Given any $z \equiv U$ we can use this ract to choose by intuction a sequence of positive integers (n_{1}) such that $3^{n}(z) \in U$ Aor every $I \geqslant 1$. Let $n_{0}=0$. If $n_{I}(I \geqslant 0)$ has been chosen so that $\sigma^{n_{1}}(z) \in U$ then there exists j with $1 \leqslant j \leqslant \pi$ such that $J^{n_{1}}(a) \equiv 3^{-j}(U)$. Iet $n_{1+i}=n_{1}+j$; than $S^{n_{i+1}}(z) \leqslant T$. If i is any positive integer then at least one 0 tine integers $i, i+1, \ldots, i+1$ is memoer of the sequence $\left(n_{l}\right)$. Tnis proves the lemma.

Lema 4.13.
Let $a: \mathbb{Z} \times X \rightarrow \mathbb{R}^{\boldsymbol{I}}$ be a recurrent cocyole for $G: X$ and suppose that $Z(a)=\{0\}$. Then a is a coboundarif.

Froci. Because a is recurrent Lemma 2.2 and Proposition 2.3 sinor that for some $x \in X$ there exists a sequence of positive integers $\left(n_{i}\right)$ such that $S_{a}^{n_{i}}(x, 0) \rightarrow(x, 0)$. It Follous from Leramas 4.3 and 4.10 that $\mathrm{S}_{\mathrm{a}}^{\mathrm{n}^{\prime}(\mathrm{y}) \rightarrow \mathrm{y}}$ Eor all $y=Y$. Tinis fact, tosether with Lema 4.í, shows thet for iny $x E X$ the reatriction oi s_{a} to $\overline{\mathrm{C}}_{\mathrm{a}}(\mathrm{x}, 0)$ satisfies the conditions of Lemm 4.i2. Let U be the set: $\bar{u}_{i}(x, 0) \cap\left(Z \times B_{\mathbb{R}^{m}}(0,1)\right)$. Lemea 4.12 then sho:rs that for
 of the lemae now follows from corollary 3.1 .

Theorem 4.14.
Let X be a torus with $\mathrm{C}: \mathrm{X} \rightarrow \mathrm{X}$ a minimal translation. Let $a: \mathbb{Z} \times X \rightarrow \mathbb{R}^{m}(m \geq 1)$ be a reourrent cocycle for 7 . Let J_{a} be the slew-product extension of rixined by 3. Then J_{a} is topologically transitive if and only if there is no non-zero linear functional $\psi: \mathbb{R}^{\text {m }} \rightarrow \mathbb{R}$ such that ψ a is a coboundart

Proof. It is clear that if such a linear functional sxists then 3_{a} is not topologically transitive. For if $\psi(v) \neq 0$ then for every $x=x,(x, v) \nmid \bar{o}_{a}(x, 0)$ as is sho:in b_{y} applyins wheorem 3.7 to ψ.

The converse :illl be proved by induction; :rasis grofe it in tine caso where m is exual to one. Jupose in this case that J_{a} is not topologically transitive. Then there exists an $r>0$ such that $r(a)$. Let $\eta(r)$ be the number raose existence was proved in Corollary 4.9. उecause ? is mininal and X is compact thera exists an $\pi=\mathbb{Z}_{+}$ Such that, $X=\prod_{j=0}^{M} T^{-j}\left(B_{X}(e, \eta(r))\right.$. So for all $i \in \mathbb{Z}$ there
 उefore we can apply Corollary 4.9 :e need to kno: that
 P-inveriant orel probability measure on X and it follo:s Erow heorer . 8 that $\int a(n,). d \mu=0$ for all $n=\mathbb{Z}$. aocaluse each a $(n,$.$) is a continuous function this inplies$ thit For some $x \sum x, \quad a(n, x)=0$. Corollary 4.9 no: $s=0: 15$ that zor every $i=\mathbb{Z}$ there exists an n aith $i \leqslant n \leqslant i+\cdots-1$

جheorem 4.14.
Let X be a torus with $\mathrm{I}: \mathrm{X} \rightarrow \mathrm{X}$ a minimal translation.
Let $3: \mathbb{Z} X \rightarrow \mathbb{R}^{m}(m \geq 1)$ be a recurrent socjole for I. Iet
\mathcal{S}_{3} be the s:ien-product extension of ? iefinea bu a. Inen
J_{a} is topologically transitive if end only if there is
no non-zero linear functional $\psi: \mathbb{R}^{\underline{2}} \rightarrow \mathbb{R}$ suci tias $\psi=$
is a coboundart

Enoof. It is clear that if such a Ineen Iunctional exists
then S_{2} is not topolosically trensitive. For if $\psi(\mathrm{v}) \neq 0$
foer For every $x \in z,(x, v) \neq \overline{0}_{a}(x, 0)$ as is shown oy
apzlying zheorem z. 7 to ψ,
Ane converse iiliI be proved bu iniuation; $\because=$ zins

this case thet j_{2} is not topoloazioaliy transitive. Shen

= is uininel ani Z is compect thene exiots an \because : \mathbb{Z}_{+}
Such the: $X={ }_{j=0}^{-i} I^{-i}\left(B_{X}(e, \eta(I))\right.$. So for eli i三 \mathbb{Z} there

$\{x:|a(n, z)|<r\} \neq \phi$. The Zaar zeasure μ is the wizue
Z-inverkant orel probebility meesure on X and $Z=$ follo:s

Goundse esca $u(n$,) is a continuous Anuntion this ingマies
fity Lor som: $x E X, \quad E(n, x)=0$. Corollary $4 \cdot 9$ now $s: 0 \% s$

such thet $|a(n, x)|<r$ Eor $311 x \in X$. Znerefore $\operatorname{Sup}_{x \rightarrow 2}|a(x, x)|<r+\cdots \cdot \sup |a(1, x)|$ and Corollamy 3.12 siovs that a is a coboundary.

Me now prope the induction step. Juppose the theorem is twue men m is equal to some positire integer k and Iet a: $\mathbb{Z} \times K \rightarrow \mathbb{R}^{K+1}$ be any recurrent cosjcle whose compositions iitia non-zero linear functionals are al工 non-trivial. In particular a is not a coboundary, so Iemma 4.13 sinors that $\mathrm{E}(\mathrm{a}) \neq\{0\}$. By choosing, ie necessary, a ne: coordinate basis in \mathbb{R}^{k+1} we may assume that $\{(0, \ldots, 0, n): n \in \mathbb{Z}\} \subset \mathbb{Z}(a)$. Let $a_{j}: \mathbb{Z} \times: \rightarrow \mathbb{R}, 1 \leqslant j \leqslant k+1$, be the components of a relatire to tive chosen coordinate
 It chearly 3ntisiles the hypotheses of the theorem; su tre extenstor S (Eq, ... , ar) is topologically transitive. Zn using corollarios 3.8 and 3.10 we can chooso an $x \in X$
 Is $_{i}\left(\overline{0}_{n}(\pi, 0)\right)=\overline{0}_{a}(x, 0)$ Ior all 叩E (0).

For eny $v=\left(v_{1}, \ldots, v_{k}\right) \equiv \mathbb{R}^{k}$ thore exists a seruance
 $i \geqslant 1$ let \dot{j}_{i} be the residue modulo one of $a_{k+1}\left(n_{i}, x\right)$. Each t_{i} Iies in the interval $[0,1]$ so we mar assume (Dy replacinc n_{i} by a subsequence if necessary) that
 x that son every $i \geqslant 1$,

$$
\left(r^{n}-(x),\left(a_{1}\left(n_{i}, x\right), \ldots, a_{1}\left(n_{i}, x\right), t_{i}\right)\right)=\bar{o}_{3}(x, 0)
$$

Thonefore bo taking the limit as $i \rightarrow \infty$,

$$
\left(x,\left(v_{1}, \ldots, v_{w}, t\right)\right)=\bar{o}_{2}(x, 0)
$$

and this is enough to show that $\left(v_{1}, \ldots, v_{k}, t\right) \equiv E(a)$ by using Theorem 3.7.

Te have no i proved that for every $v=\left(v_{1}, \ldots, v_{1}\right) \cong \mathbb{R}$ there exists $a t \in[0,1]$ such that $\left(v_{i}, \ldots, v_{k}, t\right)=3(a)$. is $Z(a)$ is a closed subs roup $0 \rightarrow \mathbb{R}^{2+1}$ it is possible to choose a ne: coordinate basis in \mathbb{R}^{K+1} so that

$$
\left\{\left(v_{1}, \ldots, v_{k}, n\right): v_{j} \in \mathbb{R}, 1 \leqslant j \leqslant k, n \in \mathbb{Z}\right\} \subset \mathbb{E}(a) .
$$

If the arement of the last two paragraphs is no: applies to a with the roles of a_{1} and a_{k+1} interchanged, then We have enough information about $E(a)$ to deduce that $\Xi(a)=\mathbb{R}^{k+1}$. Corollary 3.8 then completes the proof o: the theorem.

Before Theorem 4.11 can be applicl in the case nerve
 It is not anon whether it is sufficient for the haar intern of asch of the components to be zero. Iowever, in the case that $X=F$ Proposition $A \cdot 17$ does give a suancient condition for the cocycle to be recurrent. Definition 4.15 and Lemma 4.15 , which are required for its vnooむ゙, are stated in terms oi Morel measurable Ancintions because they are needed in Chapter whee.
verinition a. 10
TAt $\phi: T \rightarrow i R$ be a orel measurable function. The variation $0, \operatorname{Tar}(\varphi)$ is defined to be the variation of the function $\widehat{\varphi}:[0, i] \rightarrow \mathbb{R}$, ut t $\widehat{\phi}(\alpha)=\varphi(\exp (2 \pi i \alpha))$ For ever $\alpha \leqslant \mathbb{R}$.

Eemma 1.15. (The Denjoy-Koksma inequality.)
jet $\alpha \equiv \mathbb{R}$ be irrational and let $T: K \rightarrow K$ be the minimal homeomorohism vith $T(k)=k . \exp (2 \pi i \alpha)$ for all $k \in K$. Iet $\varphi: \mathbb{K} \rightarrow \mathbb{R}$ be a Borel measurable function those variation is finite (a function of bounded variation). Supoose thet p and q are integers with $q>0$ and $|q-p / q|<q^{-2}$. Then for ali $k \in \mathbb{R}$,

$$
\left|\sum_{i=0}^{q-1} \varphi\left(r^{i}(k)\right)-q \int \phi d \lambda\right| \leqslant \operatorname{Var}(\phi)
$$ where λ is the Haar measure on K.

Proof. See Denjoy ([5]).

Eronosition 4.17.
Let $\mathrm{B}: \mathrm{X} \rightarrow$ be a minimal translation on the circle and let $\exists: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}^{m}(m \geq 1)$ be a cocycle for m . Eet $a_{j}: \mathbb{Z} \times X \rightarrow \mathbb{R}$, $1 \leqslant j \leqslant m b e$ the components of t . If each of the functions a(1,.) has finite variation and zero Haar integral then a is a recurrent cocycle.

Proof. iet α be a positive irrational number such that $T(k)=k \cdot \exp (2 \pi i \alpha)$ for $\operatorname{all} k \in \pi$. Theorem I, chapter I of [3] shows that there are infinitely many pairs of coprine positive integers (p, q) such that $|\alpha-v / 1|<a^{-2}$. Iemma 4.16 when applied to each $a_{j}(a,$. shons that for every $k E K$ the set
$\left\{q:\left|a_{j}(q, k)\right| \leqslant \operatorname{Var}\left(a_{j}(1,0)\right), 1 \leqslant j \leqslant m\right\}$
is infinite. Corollary 2.4 now shows that a is recurrent.
§5. Orbit closures.

The results of 63 sho:red how the essential values of a recurrent cocycle describe "most" 0 the orbit closures under the corresponding extension. A non-compact extension of a transformation on a compact space alvays has some oroit closures which behare differentiy, unless its cocycle is a coboundary. In particular this means that these extensions are never minimal. In this section we examine these fine details of orbit structure and the question of whether non-compaet extensions possess minimal orbit closures.
iv shall assume that the base soace X is compact; this means that ve may also assume that our extending groun G is a product; $G=\mathbb{Z}^{n} \times \mathbb{R}^{\boldsymbol{Z}} \times 0 \quad(n, M \geqslant 0)$, where C is a conpact Eroup. Because of this Proposition 5.1 is stron- enough to prove the existence oi the Aonoonformist orjit closures menticned above. Both the statement and proof of this proosition are deriveu from Iemma 1 f. 09 of [[].

Frovosition 5.1.
Let X be a compact metric space and let $T: K \rightarrow X$ be a minimal homeomorphism. If a: $\mathbb{Z} \times X \rightarrow \mathbb{R}$ is a recurrent cocycle for T then there exists a point $x_{0} \approx X$ such that $a\left(n, x_{0}\right) \leqslant 0$ for all $n \in \mathbb{Z}$.
proon. IE 2 is a coboundary then there exists a continuous function $\phi:!\rightarrow \mathbb{R}$ such that $a(n, x)=\phi\left(\mathbb{N}^{n}(x)\right)-\phi(x)$ for all $n \equiv \mathbb{Z}$ and $x \equiv X$. Jet x_{0} be a point at which φ attains ivs maximun value; then clearly $a\left(n, z_{0}\right) \leqslant 0$ for all $r \in \mathbb{Z}$. Lion suppose that a is not a coboundary. Irooosition 2.3 and Corollar: 3.13 show that there exists an $x \in X$ with $(x, 0) \in R\left(J_{2}\right)$ and $\operatorname{Sin}_{n \in \mathbb{Z}} a(n, x)=\infty$. Because $(x, 0) \in R\left(S_{a}\right)$ there exist increasing sequences $n_{i} \rightarrow \infty, n_{i} \rightarrow \infty$ such that $a\left(n_{i}, x\right)<1$ and $a\left(-n_{i}^{\prime}, x\right)<1$ for all $i \geqslant 1$. For each $i \geqslant 1$ let $n_{i}^{\prime \prime},-n_{i}^{\prime}<n_{i}^{\prime \prime}<n_{i}$ be such that $a\left(n_{i}^{\prime \prime}, x\right) \geqslant a(n, x)$ for all n with $-n_{i}^{\prime}<n<n_{i}$. Ie e^{i} $x_{i}=i^{n} i^{\prime \prime}(x)$; then for all n with $-n_{i}^{\prime}-n_{i}^{\prime \prime}<n<n_{i}-n_{i}^{\prime \prime}$, we have $a\left(n, x_{i}\right)=a\left(n+n^{\prime \prime}, x\right)-a\left(n^{\prime \prime}, x\right) \leqslant 0$ because $-n_{i}<n_{i} n_{i}<n_{i}$. Зecause X is compact some subsequence of (x_{j}) muat converae to a point $x_{0} \leq \pi$. Call this subsequence (x_{i}); then for ever:r n E $a\left(n, x_{0}\right)=\operatorname{Lim}_{i} a\left(n, x_{i}^{\prime}\right) \leqslant 0$.

The set 0 points $3^{+}(a)=\left\{x: \operatorname{Sun}_{2} a(n, x)<\infty\right\}$ which Proposition 5.1 shows to be non-empty can have some peculiar proverties. (Of course anything which can be
 for wich a stetement similar to Proposition 5.1 can be proved.) hen $\therefore: \mathbb{Z} \times \mathbb{X} \rightarrow \mathbb{R}$ is a cocycle which is not a coboundery corollary 3.13 shows that $B^{+}(a)$ is the complement of a residual set. It ig therefore not unreasonable to consiaer that it is essentially negligible. However, because \because is compact there is always a T-inveriant ergodic
probability measure μ on X and this gives anotier method of assessing the importance of $B^{+}(a)$. In his paper [16] E.A. Siderov shows how to construct cocycles $\approx: \mathbb{Z} \times X \rightarrow \mathbb{R}$ such that $\mu\left(3^{+}(a)\right)=1$ for any minimal $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ with invariant ergodic measure μ. These cocycles are the coboundaries of functions that are measurable (with respect to the μ-completion of the Borel σ-algebra) but not continuous. Siderov also gives exmaples of cocjeles With $\mu\left(B^{+}(a)\right)=\mu\left(B^{-}(a)\right)=0$.

Another rather odd phenomenon is that it may be possible to deduce the existence of elements of $\mathbb{E}(a)$ from the behavior of a point Iying in $3^{+}(a)$. This is shown by the following example which is based on the methods of [16]. The method woris even when z is not compact.

Examole 2.2.
Let X os comolete metric space and let $P: X \rightarrow X$ be a minimal homeomorphism. Fix a point $\pi_{0} \in X$ which lies in the closure of its own forward orbit under T. ie will Wescribe a cooycle $a: \mathbb{Z} \times X \rightarrow \mathbb{R}$ with the property that $x_{0} \equiv 3(a)$ and $\left(x_{0},-1\right) \subseteq \overline{0}_{a}\left(x_{0}, 0\right)$; it will be defined as the limit of a series of coboundaries.

The coboundaries $b_{i}: \mathbb{Z} \times \mathbb{X} \rightarrow \mathbb{R}$ are chosen inductively. Let b_{0} be the zero cocycle and set $k_{0}=i, \delta_{0}=i$. Yon supoose that cohounderies b_{0}, \ldots, b_{i-1} positive interers k_{0}, \ldots, k_{i-1} and positive real numbers $\delta_{0}, \ldots, \delta_{i-1}$ have already been chosen. Usine Leina 4.1
choose a coboundary $\quad b_{i}: \mathbb{Z} \times Z \rightarrow \mathbb{R}, \quad k_{i} \in \mathbb{Z}_{+}$and δ_{i}
with $\delta_{i-1}>\delta_{i}>0$ to satisiy the conditions:
(1) $d_{x}\left(R^{k}\left(x_{0}\right), x_{0}\right)<\operatorname{Inf}\left\{2^{-i}, \delta_{i-1}\right\}$;
(2) $b_{i}\left(k_{i}, x_{0}\right)=-1$;
(3) $\sin _{x} \sum_{X}\left|b_{i}(1, x)\right|<1 / 2^{i} k_{i-1}$;
(4) Tor all $n \in \mathbb{Z}, 0 \geqslant b_{i}\left(n, x_{0}\right) \geqslant-1$;
(5) $b_{i}\left(n, x_{0}\right)=0$, whenever $m^{n}\left(x_{0}\right) \in B_{X}\left(x_{0}, \delta_{i}\right)$.
(Note that Conditions (1) and (5) make it possible to satisfy (4).) Condition (3) snsures that the series of Functions $\sum_{i=0}^{\infty} b_{i}(1,$.$) converges uniformly. Let a: \mathbb{Z} \times X \rightarrow \mathbb{R}$ be the cocvele with $a(1,)=.\sum_{i=0}^{\infty} b_{i}(1,$.$) ; then for all$ $n \in \mathbb{Z}$ and $x \in X, \quad a(n, x)=\sum_{i=0}^{\infty} b_{i}(n, x)$. It is clear from Condition (4) that $x_{0} \in 3^{+}(a)$. Condition (1 i implies that whenever $0<j<i$,
 if the k_{i} have all been chosen to be as small as possible then condition (1) and Equation 4.1.6 together imnly that $\underline{L}_{0} \leqslant k_{i} \leqslant k_{2} \ldots$. Therefore using Condition (3) we have:

$$
\begin{aligned}
\left|a\left(k_{i}, x_{0}\right)+1\right| & =\left|\sum_{j=i+1}^{\infty} b_{j}\left(k_{i}, x_{0}\right)\right| \\
& \leqslant k_{i} \sum_{j=i+1}^{\infty} \operatorname{Sup}_{x \in X}\left|b_{j}(1, x)\right| \\
& <\sum_{j=i+1}^{\infty} 2^{-j}=2^{-i}
\end{aligned}
$$

So $j_{a}^{k}\left(x_{0}, 0\right) \rightarrow\left(x_{0},-1\right)$; we have $\left(x_{0},-1\right) \equiv \overline{0}_{a}\left(x_{0}, 0\right)$ but $\left(x_{0}, 1\right) \notin \overline{0}_{\bar{a}}\left(x_{0}, 0\right)$.
?e no:t turn to the question of the existence of minimal o the base space 7 is compact we need only deal wìn extensions by Erouos of the form: $G=\mathbb{R}^{m} \times \mathbb{Z}^{n}$. In this case Lemma 4.12 yields the following result.

Proposition 5.3.

Let X be a compact metric space and let $T: X \rightarrow X$ be a minimal homeomorphism. Let G be a locally compact second countable aoalian group anici has no non-trivial compact subgroups and let $a: \mathbb{Z} X X \rightarrow G$ be a cocycle for T which is not a coboundery. Then if if is a minimal oriot closure under j_{a} there exist points $y_{+}, y y_{-} E$ such that $O_{e}^{+}\left(y_{-}\right)$ and $C_{a}^{-}\left(\sigma_{-}\right)$are discrete.

Proon. he shall prove the existence of Y_{+}. As $\mathrm{S}_{\mathrm{a}}^{-1}$ is a sxe.i-product extension of T^{-1} apolying this proof to $\mathrm{s}_{\mathrm{a}}^{-1}$ will prore the existence of J_{-}.

Suppose y_{+}does nnt exist; then for each J 三M the w-limit ssit of $\overline{\prod_{i=0}\left\{S_{a}^{n+i}(y): n \in \mathbb{Z}_{+}\right\}}$is a non-empty closed S_{a}-invariant set and is therefore equal to M . So for eaciv $\because E, y=\overline{0}_{2}^{+}(y)$. ix $y_{0}=(x, g) \in M$ and choose $\varepsilon>0$ suct that $\overline{\overline{3}_{G}(g, \varepsilon)}$ is compact. Let U be the set $M \cap(X \times 3,(r, \varepsilon))$ and apply Lemma 4.12 to U and the restriction $0=\mathrm{J}_{\mathrm{a}}$ to P . The lemma shows that there exisis

 all $i \in \mathbb{Z}_{T}, a(i, x)$ belongs to the compact set

$$
\overline{y_{0}(0 . \varepsilon)}+X \cdot\left\{0\left(1, x^{\prime}\right): x^{\prime} \in x\right\} .
$$

orgalary 3.i2 iow shons that a is a cobowdury. Ve have assumed that a is not a coboundary and this contradiction shois that y_{+}must exist.

3esicovitoin gives an examole in [2] of a topologically transitive real line extension which has some discrete orbits. Such orbits clearly constitute examples of minimal oroit closures. There is no knom example of a minimal onbit closire of a non-trivial extension by a non-compact Eroup irith $y_{+} \neq \gamma_{-}$. It is possible for such an extension to have no minimal orbit closures. Whe Pollowine proposition shows that this occurs for extersions of the cocreles of provosition A.i7.
-ronosition E.A.
Iet I: $\because \rightarrow$.- 3 a minimal translation on the circle and 1. $\ddagger: \mathbb{Z} \times \rightarrow \rightarrow \mathbb{R}^{2}(m \geq 1)$ be a cocycle for T which is not a conoindery. Let $a_{j}: Z \times T \rightarrow R, i \leqslant j \leqslant m$ be the components of a. If each of the Eunctions $a_{j}(1,$.$) has İinite variation and$ zaro Tanc intemal then S_{a} has no minimal orbit closures.

Proof. It is sinom in the course of the proof of Ero:csition 1.17 that, for every $k E K$ the set
$\left\{->0:\left|a_{j}(a, k)\right| \leqslant \operatorname{Var}\left(a_{j}(1,).\right), 1 \leqslant j \leqslant m\right\}$ is infinite. 访 follows that for every $Y \in Y$ the w-limit, set, $0 y$ is non-erptr consequently the point y_{+}of Eronosition 5.3 cannot exist.

CHAPTEA NAREA
A Class of Measurable Real Iine Bxtensions

§1．Introduction．

In this chapter we adopt the second reading of the definitions of Chapter Cne and use the results of［15］ to investigate a collection of concrete examples of real line extensions．Before we can describe these transformations it is necessary to introduee some notation．

For each real number x let $\langle x\rangle$ denote the fractional part of x ；the difference between x and the largest integer Which is less than or equal to x ．Let $\|x\|$ denote the distance from x to the nearest integer，so that $\|x\|=\operatorname{In} f\{\langle x\rangle, 1-<x\rangle\}$ ．Te will use the creek letters λ an：ν to stand for one and tro－diraensional Leveseue measice rospectively．These will be the onIy measures apoearine in this chapter，so 211 words and parases such as＂ergodic＂and＂almost all＂shoild be interpreted as referring to one of them．The Greek letters α, β ，and θ Will de usea for real numbers，usually lying in the interval $[0,1)$ ．As is usual the notation $\chi_{[0, \beta)}$ is used to indicite the charecteristic function of the ralifonen interval［0，β ）．Ve will Irequently need to refer to the half－open interval $[0,1$ ）and the open interval （ 0,1 ）；they will therefore be denoted $b y ~ X$ and X^{\prime} rempectively．
be are now ready to define the suioject matter of this chapter．

Dezinition 1.1 ．

Tor eacha三 x^{\prime} let $\sigma_{\alpha}: X \rightarrow$ he the trans？ormation with T $x(x)=\langle x+\alpha\rangle(x \in x)$ ．Bach T_{α} is an automorphisra of the standard probability space（ $\mathrm{X}, \mathbf{S}, \lambda$ ），where S is the Borel σ－algejra．Accordingly we defing $a: \mathbb{Z} \times \zeta \times X^{\prime} \times \mathbb{K}^{\prime} \rightarrow \mathbb{R}$ to be the unique Function which satisfies the conditions：
（1）$a(1, x, \alpha, \beta)=\chi_{[0, \beta)}(x)-\beta \quad\left(x \in X, \alpha, \beta \in X^{\prime}\right) ;$
（2）For every pair $(\alpha, \beta) \leqslant X^{\prime} \times X^{\prime}$ the function， $3(., \ldots, \alpha, \beta): \mathbb{Z} \times X \rightarrow \mathbb{R}$ is a cocycle for ${ }^{-} \alpha$ ．

Tor each pair $(\alpha, \beta) \in X^{\prime} \times X^{\prime}$ we will use the notation $J_{\alpha, \beta}$ as an aboreviation of $s_{a(\ldots, \ldots, \beta)}$ ，the akew－product extension $0 \pm \pi$ defined by $a(., \ldots, \alpha, \beta)$ ．

It is clear that for each $\alpha E X$ ，the transformation ${ }^{\prime} \alpha$ isisomorphic with the translation on the circis by exo（2 π i人）．Nen α is irrational＂is ergodic；the 3ytonsions $S_{\alpha, \beta}\left(\rho \leqslant X^{\prime}\right)$ thereiore provije an illusration for the thecry of extensions of ergodic automorphisms contaniner in［15］．Oun first two lemmas show that they are su゙ュiciently non－trivial to sarrant further investigrtion．
nema 1．2．
Let α and β oe elements of X ，with α irrational；then the cocycle $a(., \ldots, \alpha, p)$ is a coboundary if and only if there 3xicts a kE $\mathbb{Z}, k \neq 0$ ，such that $\beta=\langle k \alpha\rangle$ ．

Proo：．See Patersen（［1］）．

Ievan 1.3.
Let x and β be elements of x^{\prime} with α irrational; then the cocycle a(.,., $\boldsymbol{\alpha}, \boldsymbol{\beta}$) is recurrent.

Droof. Wis is an immediate consequence of the theorem in Aopendix A.

The cocycles $a(., \ldots, \boldsymbol{\alpha}, \boldsymbol{\beta}),\left(\boldsymbol{\alpha}, \boldsymbol{\beta} \in X^{\prime}\right)$ have been studied in [4], [10] and [15] in the special case where β is a rational fraction. The most general results are those of Donze; they mill be described in 33. In this chapter we are concerned with the more peneral case were β is iverional. In s? we prove two theorems which shor thato the set of rairs (α, β) for which $S_{\alpha, \beta}$ is ergotic contains alnost all of $X^{\prime} \times X^{\prime}$, in both the metric and the tooolorical sense. The results of $\mathbf{5} 3$ are concerned江识 the special case where there exist integers k and I such that $\langle x \alpha\rangle=\langle 1 \beta\rangle$. In this case we again obtain ercolic eztensions, but only after the cocycles have been modified.

In proving these results we use two main tools. The first or these is the theory of skew-nroduct extensions of an ereodic automorohism containeu in [15]; the second is the theory of iophantine approximation.

For exch positive integer q it is possibile to averoximate on irritional $\alpha \in X^{\prime}$ by choosing the
integer $p(0 \leqslant p \leqslant q)$ which minimises $|\alpha-p / q|$. If this is done then $q|\alpha-p / q|=|q \alpha-p|=\|q \alpha\|$. It is not difficult to see that for every irrational $\alpha, \operatorname{In} \underset{q}{ } \leqslant \boldsymbol{n}\|\alpha\| \rightarrow 0$ as $n \rightarrow \infty$. The speed of convergence gives a measure of how well α is approximated by rationals. The folloning result gives an estimate of this speed for almost all $\alpha \in X^{\prime}$.

Iemma 1.4.
Let \because be the set $\left\{\alpha \in X^{\prime}: \operatorname{Ing}_{q} \operatorname{Inf} q\|q x\|=0\right\}$; then $\lambda(i)=i$.

Proof. Phis follows immediately from Theorem I, Chapter VII Of [3] if the innction ψ which appears there is defined $y(\underline{a})=1 /$ a. Iog (1).

The definition of the set implies that if $\alpha \in$ W then there exists a sequence of pairs of coprime positive inteevers (p_{n}, r_{n}) such that $q_{n}^{2}\left|\alpha-p_{n} / q_{n}\right|=q_{n}\left\|q_{n} \alpha\right\| \rightarrow 0$ as $n \rightarrow \infty$. Ne shall make use of this fact in the next section.

S?. "AImost everywhere" theorems.

The aim of this section is to prove the following むwo theorems.

Theorem 2.1.
For eac' $(\alpha, \beta) \in X^{\prime} \times X^{\prime}$ let $S_{\alpha, \beta}$ be the sken-product extension of $T \alpha$ described in Definition 1.1 ; then the set of points $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ for which $S_{\alpha, \beta}$ is exgodic has measure one.

Mneorem 2.2.
For each $(\alpha, \beta) \in x^{\prime} \times$ let J_{α}, β be the sker-product. extension of 'adescribed in Definition 1.1; then the set on poinis (α, β) for which s α, β is ergodic is a residual subset of the complete metric space $[0,1] \times[0,1]$.

Corollary 5.4 of [15] shows that $S_{\alpha, \beta}$ is ergodic if and only if $a(a(\ldots, \alpha, \beta))=\mathbb{R}$. It begin the proof of Theorem 2.1 with a series of lemas which will show that $\mathcal{\nu}(\{(\alpha, \beta,: 1 \in \mathbb{E}(a(., \ldots, \beta, \beta)\})=1$. In the first four of these we shall work with a fixed but arbitrary irrational α

Lemmas 2.3.
Let and a be coprime positive integers and suppose that For some real number η with $0<\eta<1 / 2, q^{2}|a-y / a|<\eta$. Eon each integer k with $0 \leqslant|k| \leqslant q-1$ let \bar{k} se the residue of ky modulo q; then $|<k \times-\bar{x} / q|<\eta / q$ for all k with $0<|x|<q-i$.

For each integer i with $0 \leqslant i \leqslant a-1$ let $k_{i}\left(c \leqslant k_{i} \leqslant q-1\right)$ se the unique solution of the equation: $\bar{x}_{1}=i$ and $l \in$ $k_{i}^{\prime}\left(-(-1) \leqslant k_{i}^{\prime} \leqslant 0\right)$ be the unique solution of the equation: $\bar{x}_{i}^{\prime}=i$. Then

$$
0<\left\{\begin{array}{c}
<k_{1}^{\alpha>} \\
<k_{1}^{\prime \alpha}
\end{array}\right\}<\left\{\begin{array}{c}
<k_{2}^{\alpha>} \\
<k_{2}^{\prime \infty}
\end{array}\right\}<\ldots<\left[\begin{array}{c}
<k_{q-1}^{\alpha>} \\
<k_{q-1}^{\prime} \alpha>
\end{array}\right\}<1
$$

P002 - For arg k with $0 \leqslant|x| \leqslant q-1$ we have

$$
\begin{aligned}
|<\alpha \alpha\rangle-\bar{k} / q \mid & =|\langle k \alpha\rangle-<\operatorname{so} / q\rangle \mid \\
& \leqslant|k||\alpha-p / q| \\
& <q|\alpha-p / q|<\eta / q
\end{aligned}
$$

ard this proves the first assertion. The second assertion Folions From the combination of this with the trivial inequalities: $0<1 / \mathrm{g}<2 / q<\ldots<1-1 / \mathfrak{q}<1$.

The next lemma is the cornerstone of the proof of Theorem 2.1. before stating it we need to introduce an auxiliary transformation $\widehat{T}_{\alpha}: X \times X^{\prime} \rightarrow K \times X^{\prime}$ defined by: $\hat{S}_{\alpha}(x, \beta)=\left(T_{\alpha}(x), \beta\right)$. It is clear that \hat{M}_{α} preserves the Lebesgue measure on $X \times X^{\prime}$ and that $a(\ldots, \alpha, \ldots): \mathbb{Z} \times X \times \mathbb{K}^{\prime} \rightarrow \mathbb{R}$ is a coorole for \hat{T}_{α}.
-

Lemra 2.A.

Ist R be a closed rectancle of the form $\left[u_{1}, v_{1}\right] \times\left[u_{2}, v_{2}\right]$ thich is contained in $X \times X^{\prime}$. Let (p_{n}, q_{n}) be a sequence of pairs of coyrime positive integers with the property that $q_{n}^{2}\left|\alpha-p_{n} / q_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Then for every ε with $1 / 2>\varepsilon>0$,
$\operatorname{Lim}_{n} \operatorname{In} \operatorname{\nu }\left(R \cap \hat{T}_{\alpha}^{-q_{n}}(R) \cap\left\{(x, \beta):\left|1-\left|a\left(q_{n} \cdot x, \alpha, \beta\right)\right|\right|<\leqslant ;\right\rangle>\frac{\varepsilon^{2} \nu(R)}{64}\right.$.

Prooi. Suppose that n is sufficiently large that the following conditions are satisfied:
(1) $\left|\alpha-p_{n} / q_{n}\right|<\varepsilon / 2 q_{n}^{2}$;
(2) $\left\|q_{n} \alpha\right\|<\left(v_{1}-u_{1}\right) / 4$;
(3) $q_{n}>32 /\left(v_{1}-u_{1}\right)$;
(4) $q_{n}>16 /\left(v_{2}-u_{2}\right)$.
ie shall sho.i that
$\nu\left(R \cap \hat{T}_{\alpha}^{-a_{n}}(R) \cap\left|(x, \beta):\left|1-\left|a\left(q_{n}, x, \alpha, \beta\right)\right|\right|<\varepsilon\right\}\right)>\frac{\varepsilon^{2} \nu^{\prime}(R)}{54} . \quad-(5)$
ia befin $0 . y$ considering the discontinuities of the funation $a\left(a_{n}, \ldots, .,\right): \pi \times X^{\prime} \rightarrow \mathbb{R}$. The domain of this function may be extendet to $\mathbb{R} \times \mathrm{X}^{\prime}$ by defining
$a\left(q_{n}, x, \alpha, \beta\right)=a\left(q_{n},<x>, \alpha, \beta\right)$ for every $(x, \beta) \in \mathbb{R} \times x^{\prime}$. Tht Dos the set of points in $X \times X^{\prime}$ at which the extended function is discontinuous. Then $D=B \cup C$ where

$$
3=\bigcup_{i=0}^{q_{n}-1}\left\{(x, \beta) \equiv\left\{\times K^{\prime}: T_{\alpha}^{i}(x)=0\right\}\right.
$$

ins $\quad 0=\bigcup_{j=0}^{q_{n}^{-1}}\left\{(x, \beta) \equiv x \times r^{\prime}: r_{\alpha}^{j}(x)=\beta\right\}$.
nis is becauon $a\left(q_{n}, x, \alpha, \beta\right)={ }_{i=0}^{q_{n}-1} \chi_{[0, \beta)}\left(T_{\alpha}^{i}(x)\right)-q_{n} \beta$
for all $(x, \beta) \in X \times X^{\prime}$.

Whe intersection $0: 3$ and 0 contains exactly q_{n}^{2} points Mich we will name $c_{0,0}, \ldots, c_{q_{n_{1}}-1, q_{n}-1}$. Potentially there are tiso dilferent orderings on $B \cap \sigma$; the ordering innerited from the lericographic ordering of \mathbb{R}^{2} and the lexicosrapic ordering on the subscripts. Ve assign the names $c_{i, f}\left(0 \leqslant i, j \leqslant n_{n}-1\right)$ in such a tray that these two orderings coincide. For each pair of subscripts (i,j) there exists a peir of integers (i',j'(i)) with $0 \leqslant i^{\prime}, j^{\prime}(i) \leqslant q_{n}-1$ such that

$$
\begin{aligned}
c_{i, j} & =\left\{(x, \beta): T_{\alpha}^{i^{\prime}}(x)=0\right\} \cap\left\{(x, \beta): \eta_{\alpha}^{j}(i)(x)=\beta\right\} \\
& =\left(\left\langle-i^{\prime} \alpha\right\rangle,<\left(j^{\prime}(i)-i^{\prime}\right) \alpha=-\right) .
\end{aligned}
$$

It foIlonis from the secona statement of heranit 2.3 that
$\bar{i}=i \quad$ and $\overline{j^{\prime}(i)-i^{\prime}}=j \quad\left(\right.$ rith $p=p_{n} \quad$ and $\left.q=q_{n}\right) \cdot$ Fo, ach pair of auoscripts (i,j) $\left(0 \leqslant i, j \leq a_{n}-1\right)$ let $j_{i, j}$ be the point $\left.\left(<-i^{\prime} \alpha\right\rangle, j / q_{n}\right)$; then the aistance betreen $c_{i, j}$ and $b_{i, j}$ is $\left|<\left(j^{\prime}(i)-i^{\prime}\right) \alpha>-j / q_{n}\right|=\left|<\left(j^{\prime}(i)-i^{\prime}\right) \alpha>-\overline{\left(j^{\prime}(i)-i^{\prime}\right)} / q_{n}\right|$ $<\boldsymbol{E} / \ln _{n}$
as is shom of the finst assertion of Lema 2.3 ana Condition (1).

$$
\bigcup_{i=1}^{q_{n}-1}\left\{(x,<\beta>): x=x, \beta \equiv \mathbb{R},\left|\beta-\dot{i} / I_{n}\right|<\varepsilon_{/} / a_{n}\right\}
$$

Me diagran on the next papa shows a neighourhood oz a typical element $c_{i, j}$ of 3nc. It is assumed
that $1 \leqslant i \leqslant q_{n}-2$ and $1 \leqslant j \leqslant q_{n}-1$ so that $c_{i, j}$ does not lie close to the bowndary of $X \times X^{\prime}$. The vertical Iines represent part of 3 , the diagonal lines represent paint of C and the horizontal lines represent part of the boundary of z.

> X

Iet $U_{i, j}, V_{i, j}$ and $V_{i, j}$ be the interiors of the tro triangles and the irregular hexagon formed by the intersections of these lines, as shown. These sets are औell deeine: thenever $0 \leqslant i \leqslant q_{n}-2$ and $1 \leqslant j \leqslant q_{n}-1$; our next stey is to estimate theim measures. $U_{i, j}$ and $N_{i, j}$ are the intericrs of right-angled isoceles triancles, so Inepuelity (7) implies that

$$
\begin{equation*}
\varepsilon^{2} / 8 a_{n}^{2}<\nu\left(u_{i, j}\right), \nu\left(i_{i, j}\right)<9 \varepsilon^{2} / 8 q_{n}^{2} \tag{8}
\end{equation*}
$$

We a.lso have

$$
\mathcal{\nu}\left(\cup_{i, j} \cup T_{i, j} \cup N_{i, j}\right)=\left|<-i{ }^{\prime} \alpha>-<-(i+1)^{\prime} \alpha>\cdot\right| \cdot 2 \varepsilon / q_{n}
$$

and

$$
\begin{aligned}
\left|\left|\left\langle-i^{\prime} \alpha\right\rangle-\langle-(i+1) \cdot \alpha\rangle\right|-1 / q_{n}\right| & =\left|i i^{\prime}-(i+1) \cdot\right|\left|\alpha-p_{n} / q_{n}\right| \\
& <q_{n}\left|\alpha-p_{n} / q_{n}\right| \\
& <\varepsilon / 2 q_{n} .
\end{aligned}
$$

mherefore

$$
\boldsymbol{\varepsilon}(2-\boldsymbol{\varepsilon} / 2) / \underline{q}_{n}^{2}<\nu\left(U_{i, j} \cup Y_{i}, j \cup i_{i, j}\right)<\boldsymbol{\varepsilon}(2+\varepsilon / 2) / q_{n}^{2} .
$$

Combining this with Ineavality (8) we hatre

$$
\text { Ne: I Pt, I be tia collection or all index pairs }(i, j)
$$

$$
\text { with } 0 \leqslant i \leqslant a_{n}-2 \text { and } 1 \leqslant \therefore \leqslant a_{n}-1 \text { for wnich }
$$

$$
U_{i, j} \cup_{i, j} \|_{i, j} \subset \mathbb{R}_{i} \hat{i}_{\alpha}^{-a}(\bar{B}) \text {. Inequality (2) ensures }
$$

that

$$
\nu\left(\Omega \cap \hat{T}_{\alpha}^{\left.-q_{n(Q)}\right)>3 \nu(R) / 4}\right.
$$

and Ine:of $\because \sim \widehat{N}_{\alpha} \mathrm{n}(2)$ (by the collection of lines consisting Of J and the boundery of

$$
\begin{equation*}
\nu\left(\bigcup_{(i, j) \in I}\left(U_{i}, j \cup T_{i}, j \cup I_{i}, j\right)\right)>\varepsilon . \nu(R) / 2 . \tag{10}
\end{equation*}
$$

no complete the nroof os the lenma :re examine the values taken $w_{0} a\left(y_{n}, \ldots, \alpha,.\right)$ on the sets $U_{i, j}, V_{i, j}$ and $i_{i, j}$ Wen (i,j)三I.
nhe set it was chosen so that

$$
\begin{equation*}
\left\|a\left(q_{n}, x, \alpha, \beta\right) \ddot{i}=\right\| a_{n} \beta \|<\varepsilon \tag{11}
\end{equation*}
$$

for $a 11(x, \beta) \leqslant H$. Because $a\left(g_{n}, \ldots, \alpha\right)$ is continuous 0,1 $\operatorname{each} U_{i, j}(i, j)$ I $)$ ire can unamíuousiy define $u_{i, j}$ to be the nearest inteeze to $a\left(q_{n}, x, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)$ for any $(x, \beta) \equiv U_{i, j}$. The quantities $v_{i, f}$ and $W_{i, j}$ may be similarly derined for all (i, j) EI. It follows from Equation (6) that

$$
u_{i, j}-1=v_{i, j}=w_{i, j}+1
$$

for every (i,j) $E I$. For each $\beta \in X^{\prime}$ we now apply Lemma 2.4.í to Tand the Eunction wich sends $\exp (2 \pi i x) ~ † o$ $\chi_{[0, p)}(x)-\beta(x \in X)$. The result shons that $\left|a\left(q_{n}, x, \alpha, \beta\right)\right| \leqslant 2$ Por all $(x, \beta) \in X \times X^{\prime}$. Iquation ($1 \geqslant$) now implies that at least one or tine quantittes $\left|u_{i, j}\right|,\left|v_{i, j}\right|,\left|w_{i, j}\right|$ is equal to one Eor svery (i,j)EI. Inequality (5) foilo.rs from tha combination of this fact rith (9), (10) and (11).

Let $\left\{\right.$ U $\left._{i}: i \leqslant i<\infty\right\}$ be the collection of all closed subintervals of xinich nuve rational endooints. Is icX is any interval thon for every $\boldsymbol{\varepsilon}>0$ there exists an i such that $\lambda\left(i \Delta_{i}{ }_{i}\right)<\varepsilon$. ie shall maxe use of this property of $\left\{J_{i}\right\}$ i״ vroving Lema 2. .

Ierme 2.5 .
For all i $\leqslant \mathbb{Z}_{+}$, all ε with $1 / 2>\varepsilon>0$ and almost all $\beta \equiv X^{\prime}$ There existis an $n \in \mathbb{Z}_{+}$such that
$\left.\lambda\left(J_{i} \cap T_{\alpha}^{-\eta}\left(\bar{J}_{i}\right) \cap\left\{x:|1-| a i_{n}, x, o, \beta\right)| |<\varepsilon\right\}\right)>\frac{\varepsilon^{2} \lambda\left(J_{i}\right)}{128} . \quad-(1)$

Proon．Juppose this is Falsa．When for some iE \mathbb{Z}_{+}and $\boldsymbol{\varepsilon}=\mathrm{C}$ there crists a measumable set ifcelwith $\lambda(\mathbb{I})>0$ such that Inequality（1）Iails whenever $\beta \in$ if and $n \equiv \mathbb{Z}_{+}$． The Lebescue density theorem shoirs that there exists a closed interval $J \subset X$ with $\lambda(J M) / \lambda(J)<\varepsilon^{2} / 128$ ．When applied to the rectangle $\tau_{i}^{\top} \times J$ Lemm 2.4 shows that for all sufficiently large n the measure of the set $\left(v_{i} \times J\right) \cap \hat{T}_{\alpha}^{-q_{n}}\left(U_{i} \times J\right) \cap\left\{(x, \beta):\left|\left|a\left(q_{n}, x, x, \beta\right)\right|-1\right|<\varepsilon\right\}$ is Ereater tian $\varepsilon^{2} \lambda\left(\tilde{J}_{i}\right) \lambda(J) / 54$ ．Phis implies that for each such n the set of coints $\beta \in \mathcal{J}$ for which Inequality（1） holds hes measure greater than $\varepsilon^{2} \boldsymbol{\lambda}(J) / 64$ ．So Inequality（1） mist hold for some $\beta \in \mathbb{N}$ and $n \equiv \mathbb{Z}_{+}$；but this contredinos the deainition os T．So no wuch set can exisi；this proves the Ierma．

Iema 2．
For all i $\in \mathbb{Z}_{+}$，all $\boldsymbol{\varepsilon}$ with $1 / 2>\varepsilon>0$ and almost arl β ミ天 thare exiats an $m \in \mathbb{Z}$ such that

$$
\left.\lambda\left(J_{i}\right]_{\alpha}^{-m}\left(J_{i}\right) \cap\{x:|a(m, x, \alpha, \beta)-1|<\boldsymbol{\varepsilon}\}\right)>\varepsilon^{2} \lambda\left(J_{i}\right) / 255 .
$$

Frooe．ふupoose thit for some $i \in \mathbb{Z}_{+}, \varepsilon>0, \beta \in X^{\prime}$ and mE \mathbb{Z}_{+} chere exists 天 三 $J_{i} \cap T_{\alpha}^{-m}\left(J_{i}\right)$ with $||a(m, x, \alpha, \beta)|-1|<\varepsilon$ ． Nien eithor $|a(m, x, \alpha, \beta)-1|<\varepsilon$ or $|a(m, x, \alpha, \beta)+1|<\boldsymbol{\varepsilon}$ ． In the sononi cras $x=J_{i} \cap \mathbb{N}_{\alpha}^{m}\left(J_{i}\right)$ and $|a(-m, x, \alpha, \beta)-1|<\varepsilon$ ， so we cn substitute $-m$ for m ．mhe conclusion now folloms Erom Iorma 2．5．

Ieman 2.7.
Let (or, β, \Rightarrow any element of $X^{\prime} \times X^{\prime}$ and let $c: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ oe any IMnction. Let $r \in \mathbb{R}$ and suppose that for erery iE \mathbb{Z}_{+} and $\varepsilon>0$ there exists an $m \equiv \mathbb{Z}$ such that

$$
\lambda\left(J_{i} \sim न_{\alpha}^{-m}\left(J_{i}\right) \cap\{x:|\Omega(m, x, \alpha, \beta)-r|<\varepsilon\}\right)>c(\varepsilon) \lambda\left(J_{i}\right) .
$$

Zhan r ミ $2(a(., \ldots, \alpha))$.
=-002. Px $x>0$ and let $A C X$ be any measurable set
aith $\lambda(A)>$. Whoose $i \in \mathbb{Z}_{+}$such that
$\lambda\left(c_{i}^{c} \backslash i / \lambda\left(e_{i}\right)<c(\boldsymbol{\varepsilon}) / 3 ;\right.$ this is possible by the Ieoesgue density theorer. mere erists an $m \in \mathbb{Z}$ such jonat
$\lambda(A \cap-\alpha(\therefore))|x:|a(n, x, \alpha, \beta)-r| \cdots \in\}$
$\left.\geqslant \lambda\left(\cap \cap \mathcal{U}_{i}\right) \cap T_{\alpha}^{-r a}\left(A \cap J_{i}\right) \cap\{x:|a(m, x, \alpha, \beta)-r|<\varepsilon\}\right)$
$\geqslant \lambda\left(\bar{u}_{i} \cap 2_{\alpha}^{-n}\left(J_{i}\right) \cap\{x:|a(n, x, \alpha, \tilde{p})-r|<\varepsilon\}\right)$
$-\lambda\left({ }_{i} \backslash A\right)-\lambda\left(T_{\alpha}^{-}\left(\tau_{i} \backslash A\right)\right)$
$>c i \varepsilon) \lambda\left(J_{i}\right)-2 \lambda\left(J_{i} A\right)>c(\varepsilon) \lambda\left(J_{i}\right) / 3$.

Jemas 2.3.
 Hern F is meesurable and $\nu(F)=1$.

Proci. For each $\boldsymbol{\varepsilon}>0$ let $\varphi_{\varepsilon}: X^{\prime} \times X^{\prime} \rightarrow \mathbb{R}$ be the function iivi $\varphi_{\varepsilon}(\alpha, \beta)=$
$\operatorname{Inf}_{-1} \sup _{\left.\mathbb{Z}^{\lambda i} J_{i} \cap T_{\alpha}^{-10}\left(J_{i}\right) \cap\{x:|a(n, x, \alpha, \beta)-1|<\varepsilon\}\right) / \lambda\left(J_{i}\right) .}$ It is not dieficult to shor that each φ_{E} is a measurable function and this implies that the set

$$
F^{\prime}=\bigcap_{k>1}\left\{(\alpha, \beta): \varphi_{2-k}(\alpha, \beta)>0\right\}
$$

is measurable. Lemma 2.6 appiies to every $\alpha \in \#$ and Lemma 1.4 shows that $\lambda(0)=1$; so Tubini's theorem shows that $\nu\left(\Xi^{\prime}\right)=1$. Lemma 2.7 shows that $F^{\prime} C F$ and because Lebesgue reasure is complete this implies that F is eeasuraols and $\nu(Z)=1$.

For each $1 \equiv \mathbb{Z}_{+}$let $1^{-1} \cdot \mathbb{Z}=\{m / 1: m \in \mathbb{Z}\}$; then each $\underline{1}^{-1} \cdot \mathbb{Z}$ is a closed subgroup of \mathbb{R} and every non-trivial closed sujgroup which contains one is of this form. ie make use of this fact in proving the next two lemmas, which will enable us to deduce theorem 2.1 from Lemma 2.8 .

Lema 2.2.
Let T be an exgodic automorphism of the standard probability space (X, S, λ) and let $\bar{a}: \mathbb{Z} \times X \rightarrow \mathbb{R}$ be a cocjcle for T. Suppose that $1 E E(\bar{a}) \neq \mathbb{R}$; tion there exists an $1 \equiv \mathbb{Z}_{+}$such that $(\bar{a})=1^{-1} \cdot \mathbb{Z}$ and $\exp (2 \pi i l . \bar{a}(.,)):. \mathbb{Z} \times \mathbb{X} \rightarrow \mathbb{K}$ is a coboundary.

Proon．Lemar 3.301 ［15］shorss that $3(\overline{3})$ is a closed suacrouy $O=\mathbb{R}$ ：so there exists an $I \equiv \mathbb{Z}_{+}$with $(\bar{a})=I^{-1}, \mathbb{Z}_{0}$ Eroposition 3.12 of［ $[5]$ proves the existonce cf a cobcurary $b: \mathbb{Z} \times \underset{A}{ } \rightarrow \mathbb{R}$ such that $\bar{a}(n, x)+b(n, x) \in \sin$ for all $n \in \mathbb{Z}$ and $x \in X$ ．3ut then

$$
\exp (2 \pi i l . \bar{a}(., .))=\exp (2 \pi i l . b(., .))
$$

and this is a coboundary

Lama 2．10．
Let I be any positive inteeer and let $(\boldsymbol{\alpha}, \boldsymbol{\beta}) \in X^{\prime} \times K^{\prime}$ with α irrational．Then $\exp (2 \pi i 1, a(., \ldots, \beta)): \mathbb{Z} \times i \rightarrow K$ is a coioundary for I_{α} if and only if there exists a $x \in \mathbb{Z}$ such tiat $\langle\underline{y} \boldsymbol{z}\rangle=\langle 1 \beta\rangle$ ．

Proof．Suppose exp（2 $\pi^{\dot{2} 工 .2(., \ldots, \alpha, \beta))}$ is the cobounary of a reasumable Function $\psi: x \rightarrow \mathbb{R}$ ．Inen for all $x \equiv X$

$$
\begin{aligned}
\psi\left(m_{\alpha}(r)\right) / \psi^{\prime}(x) & \left.=\exp \left(2 \pi i 1\left(\chi_{[0, \beta}\right)(x)-\beta\right)\right) \\
& =\exp (-2 \pi i l \beta)
\end{aligned}
$$

This shows that exp $(-2 \pi i I \beta)$ is an eiEenvalue of the unitary operator that T_{α} induces on $I_{s}^{2}(X, S, \lambda)$ ．It is well knom tiat the spectern of this operator is $\{\exp (2 \pi i k \alpha): k=\mathbb{Z}\}$ ，so for some $k \in \mathbb{Z},\langle\mathbb{k} \alpha=\langle 1 \beta\rangle$ ．

Conversely if $\langle k \alpha\rangle=\langle I \beta\rangle$ then

$$
\begin{aligned}
\exp (2 \pi i l \cdot a(n, x, \alpha, \beta)) & =\exp (-2 \pi i l \beta) \\
& =\exp \left(-2 \pi i \ldots \cdot n_{\alpha}(x)\right) / \exp (-2 \pi i!x)
\end{aligned}
$$

for all $n ミ \mathbb{Z}$ and x ミR．

Lemas 2.9 and 2.10 sinw that if $(\alpha, \beta) \in X^{\prime} \times X^{\prime}$ and $1 \equiv \Sigma(0(\ldots, \ldots, \beta)) \neq \mathbb{R}$ then there exists a $k \equiv \mathbb{Z}$ and an $I \in \mathbb{Z}_{+}$ With $\langle x \boldsymbol{\alpha}\rangle=\langle I \beta\rangle$. A simple application of Jubini's theorem shois thet the set of points (α, β) for which this is true hes measure zero. The theoren now follors directly from our inema 2.8 and Corollary 5. 4 of [15].
, fe now turn to the task of proving Theorem 2.2; most of tine mori has already been done.

Lemma 2.11.
For each $i=\mathbb{Z}_{+}$and ε with $1 / 2>\varepsilon>0$ let $\varphi_{i, \varepsilon}: \mathbb{Z} \times X^{\prime} \times I^{\prime} \rightarrow \mathbb{R}$ be the function with
$\varphi_{i, \varepsilon}(m, \alpha, \beta)=\lambda\left(J_{i} \cap N_{\alpha}^{-m}\left(J_{i}\right) \cap\{x:|a(m, x, \alpha, \beta)-1|<\varepsilon\}\right)$.
Suppose that for some $\left(\alpha_{0}, \beta_{0}\right) \in X^{\prime} \times X^{\prime}$ there exist i, ε and $m \in \mathbb{Z}_{+}$ such that $\phi_{i, \varepsilon}\left(m, \alpha_{0}, \beta_{0}\right)>0$. When $\phi_{i, \varepsilon}(m, \ldots): X^{\prime} \times X^{\prime} \rightarrow \mathbb{R}$ is continuous at $\left(\alpha_{0}, \beta_{0}\right)$.

Proot. For all $x \in Y$

$$
a\left(m, x, \alpha_{0}, \beta_{0}\right)=\sum_{j=0}^{\infty} \chi_{\left[0, \beta_{0}\right)}\left(<x+j \alpha_{0}>\right)-m \beta_{0} .
$$

So for all $x \in\left\{, \quad\left\|a\left(m, x, \alpha_{0}, \beta_{0}\right)\right\|=\left\|-m \beta_{0}\right\|<\varepsilon\right.$. Let k be the nearest integer to $-\beta_{0}$ and surpose that β satisfies the inequality:

$$
\begin{equation*}
\left|\beta-\beta_{0}\right|<\left(\varepsilon-\left\|-m \beta_{0}\right\|\right) / m ; \tag{1}
\end{equation*}
$$

then k is the nearest integer to $-m \beta$ and $\|-m \beta\|<\varepsilon$.

This implies that for all $\alpha \equiv K^{\prime}$ and all $\beta \in K^{\prime}$ which satisfy Inequality (1),

$$
\varphi_{:, \varepsilon}(m, \alpha, \beta)=\lambda\left(J_{i} \cap \mathbb{T}_{\alpha}^{-m}\left(J_{i}\right) \cap\left\{x: \sum_{j=0}^{m-1} \chi_{[0, \beta)}(<x+j \alpha>)=k+1\right\}\right)
$$

30, for these (α, β),

$$
\begin{aligned}
& \left|\varphi_{i, \varepsilon}(m, \alpha, \beta)-\varphi_{i, \varepsilon}\left(m, \alpha_{0}, \beta_{0}\right)\right| \\
& \leqslant \\
& \quad \lambda\left(\left\{x: \sum_{j=0}^{m-1} \lambda_{[0, \beta)}^{\prime}(<x+j \alpha>) \neq \sum_{j=0}^{m-1} \chi_{\left[0, \beta_{0}\right)}\left(<x+j \alpha_{0}>\right)\right\}\right) \\
& \\
& \quad+\lambda\left(T_{\alpha}^{-m}\left(J_{i}\right) \Delta \mathbb{T}_{\alpha_{0}}^{-m}\left(J_{i}\right)\right) \\
& \leqslant \\
& \leqslant \\
& \leqslant \\
& \leqslant \\
& \leqslant m\left|\alpha-\alpha_{0}\right|+\sum_{j=0}^{m-1}\left|<-j \alpha>-<-j \alpha_{0}>\left|+\left|<\alpha-j \beta>-<\alpha_{0}\right|+\sum_{j=0}^{m-1} 2 j\right| \alpha-\alpha_{0}\right|+\left|\beta-\beta_{0}\right| \\
& \leqslant \\
& \leqslant m(m+1)\left|\alpha-\alpha_{0}\right|+m\left|\beta-\beta_{0}\right| .
\end{aligned}
$$

The set of points (α, β) for which this last inequality holds is an open neighbourhood of $\left(\alpha_{0}, \beta_{0}\right)$. The lemma is proved.

Lemma 2.12.
Let I be the set $\left\{(\alpha, \beta) \in x^{\prime} \times X^{\prime}: 1 \equiv Z(., \ldots, \alpha, \beta)\right\}$;
then is residual suoset of $[0,1] \times[0,1]$.

Proof. Tor each $i \equiv \mathbb{Z}_{+}$and ε with $1 / 2>\varepsilon>0$ let $G_{i, \varepsilon}$ be the set

$$
\left\{(\alpha, \beta): \sup _{\mathbb{m}} \theta_{i}, \varepsilon(m, \alpha, \beta)>\varepsilon^{2} \lambda\left(\tau_{i}\right) / 25 \bar{\sigma}\right\}
$$

It follows from Lemma 1.4 and Lemma 2.0 that each $G_{i, \varepsilon}$
is a dense subset of $[0,1] \times[0,1]$ and Iemma 2.11 shoms that it is an open set. Pherefore tha intersection

$$
\bigcap_{i=1}^{\infty} \bigcap_{i=2}^{\infty} G_{i, 2} k
$$

is a dense $G_{5}-$ subset of $[0,1] \times[0,1]$. Lemma 2.7 shows that this intersection is contained in \vec{F}.

Proof of wheorem 2.2.
It follous from Lemma 2.9 and Lema 2.10 that
$\{(\alpha, \beta): 1 \equiv \exists(a(., \ldots, \alpha, \beta)) \neq \mathbb{R}\} \subset \bigcup_{l=-\infty}^{\infty} \bigcup_{l=1}^{\infty}\{(\alpha, \beta):\langle k \alpha\rangle=\langle 1 \beta\rangle\}$.
Phis is clearly a countable union of nownere dense sets so Lemm 2.12 shons that $\{(\alpha, \beta): \mathcal{Z}(\ldots, \alpha, \beta)=\mathbb{R}\}$ is a residual subset of $[0,1] \times[0, i]$. The proot is completed o. Corpllary 5.4 of [15].

5. The specinl case: <kor> $=$ <lp.

Although Theorems 2.1 and 2.2 sion that most of the exiensions $\mathcal{S}_{\alpha, \beta}$ are ercodic they do not rield a single conerete exemple of an ercodic transformation. In this section we study the cocycle $a(., \ldots, \alpha, \beta)$ in the special cese where $\langle k \alpha\rangle=\langle I \beta\rangle$, for some $k \in \mathbb{Z}$ and $I \in \mathbb{Z}_{+}$. Lemat 2.10 shows that the corresponding extension is nerer ergodic but the reason for this is simple; it is possible to modify the cocycle by adding a suitable coboindary so as to obtain a ne: cocycle $a_{\alpha, \beta}^{\prime}: \mathbb{Z} x X \rightarrow 1^{-1}, \mathbb{Z}$. ife shall show that in "most" cases the new extension $\bar{J}_{\alpha, \beta}^{\prime}: X \times I^{-1} \cdot \mathbb{Z} \rightarrow X \times 1^{-1}, \mathbb{Z}$, which corresponds to this cooycle, is ergodic. Je also obtain an explicit description Of the quantities α and β, so it is possible to obtain concrete examples.

Ie shall use the following terminology: if x and β are two elements of X^{\prime} which satisfy an equation $\langle k \alpha\rangle=\langle l \beta\rangle$ then this equation is called reduced if there is no l^{\prime} properly dividing 1 and k dividing 1 such that $\left\langle k^{\prime} \alpha\right\rangle=\left\langle I^{\prime} \beta\right\rangle$.

Lerma 3.1.
Let $(\alpha, \beta) \equiv X^{\prime} \times X^{\prime}$ be a pair of irrational numbers thich satisfy the reduced equation $\langle k \alpha\rangle=\langle 1 \beta\rangle$ for some non-zero $k \in \mathbb{Z}$ and $l \equiv \mathbb{Z}_{+}$. Iet c be the highest common Factor of k and I; let $k^{\prime}=k / c$ and Let $I^{\prime}=I / c$. Then there exists an integer s with $-1<s<c$ and an irrational
number $\theta=k^{\prime}$ such that $\beta^{\prime}=<k^{\prime} \theta>$ and $\left.\alpha=<1^{\prime} \theta\right\rangle$ where $\beta^{\prime}=\beta+s^{\prime}$. ilso in i is not zero then it and c are cunrime.

Proof. Clearly $(k \alpha-l \boldsymbol{\beta}) \in \mathbb{Z}$; let s' be the residue of $(x \alpha-I \beta)$ modulo c and let a be oitiner s' or s'- 1 , whichever ensures that $\beta^{\prime}=\beta+s / L \in X^{\prime}$. Timen $\left.\left\langle I^{\prime} \beta^{\prime}\right\rangle=\left\langle I I^{\prime}(\beta+s / I)\right\rangle=\left\langle I^{\prime}<\beta+s^{\prime} / I\right\rangle\right\rangle=\left\langle I^{\prime} \beta+s^{\prime} / c\right\rangle$, so that

$$
\begin{aligned}
& \left.\left|<I^{\prime} \alpha\right\rangle-<I^{\prime} \beta^{\prime}\right\rangle \mid=\left\langle<x^{\prime} \alpha\right\rangle-\left\langle I^{\prime} \beta^{\prime}\right\rangle> \\
& \left.=\left\langle\left\langle k^{\prime} \alpha\right\rangle-<I^{\prime} \beta+s^{\prime} / c\right\rangle\right\rangle \\
& =\left\langle\left\langle k^{\prime} \alpha-I^{\prime} \beta\right\rangle-s^{\prime} / c\right\rangle \\
& =0 \text {. }
\end{aligned}
$$

So $d=k^{\prime} \alpha-l^{\prime} \beta^{\prime} \equiv \mathbb{Z}$ Because k^{\prime} and I' are coprime there exist, intoders u and v such that $u l^{\prime}-v^{\prime} x^{\prime}=d$. Then

$$
\begin{aligned}
I^{\prime}\left(\beta^{\prime}+u\right) & =d+v k^{\prime}+I^{\prime} \beta^{\prime} \\
\left(\beta^{\prime}+u\right) / k^{\prime} & =\left(I \beta^{\prime}+d\right) / I^{\prime} k^{\prime}+v / I^{\prime} . \\
\left(I^{\prime} \beta^{\prime}+d\right) / k^{\prime} & =\alpha, \\
\left(\beta^{\prime}+u\right) / k^{\prime} & =(\alpha+v) / I^{\prime} .
\end{aligned}
$$

20d

Lこさ $\theta=\left\langle(\alpha+v) / I^{\prime}\right\rangle$; then $\left\langle\right.$ I' $\left.^{\prime} \theta\right\rangle=\langle\alpha+\gamma\rangle=\alpha$ and
$\left\langle\mathrm{Li}{ }^{\prime} \theta\right\rangle=\left\langle\beta^{\prime}+u\right\rangle=\beta^{\prime}$.
Pinally, suppose that $j>1$ and j divides both s and c. Znen

$$
\begin{aligned}
\tau(k / j) \alpha\rangle & =\left\langle(c / j) k^{\prime} \alpha\right\rangle=\left\langle(c / j) I^{\prime} \beta^{\prime}\right\rangle=\langle(c / j)(I ' \beta+s / c)\rangle \\
& =\left\langle(c / j) I^{\prime} \beta\right\rangle=\langle(I / j) \beta\rangle
\end{aligned}
$$

mins is contrary to our assumption that the equation
$\langle\alpha\rangle=\langle 1 \beta\rangle$ is reduced. Therefore s and c are coprire.

By using Lemma 3.1 we can break the problem dom into four separate cases. Te assume that α and β are elements of K' which satisfy the reduced equation $\langle k \infty\rangle=\langle 1 \beta\rangle$ and that α is irrational.

Case 1: $1=1$.
In this case Lemma 1.2 shows that $a(., \ldots, \beta, \beta)$ is a coboundery.

Case 2: $k=0$.
Here $\langle I \beta\rangle=0$ so that $\beta=s / l$ where s and 1 are coprime and $1 \leqslant s \leqslant l-1$. The cocycle $a(., \ldots, \infty)$ clearly takes values only in the group $1^{-1} \cdot \mathbb{Z}$. Let $S_{\alpha, \beta}^{1}: X \times I^{-1} \cdot \mathbb{Z} \rightarrow \mathbb{K} \times I^{-1} \cdot \mathbb{Z}$ be the corresponding i^{-1}. \mathbb{Z}-extension of T_{α}. It follows from a theorem of Conze ([A], Theorem 5) that for each rational $\beta \in \mathbb{X}$ ' the extension $3_{\alpha, \beta}^{\prime}$ is ergodic for almost all α EX'. A stronger result, which is proved in both [4] and [15], holds when $k=0$ and $1=2$. Here $\beta=1 / 2$ and $3_{\alpha}^{\prime}, 1 / 2$ is ergodic for every irrational α EX'.

Case $3: ~ I \geq 2, k \neq 0,1$ divides k.
Here we have $c=1$ and $\theta=\alpha$ in Lemma 3.1; so $\beta^{\prime}=\left\langle h^{\prime} \alpha\right\rangle$ and $\beta=\left\langle x^{\prime} \alpha\right\rangle-s / 1$. Therefore for sill $\pi \leqslant \mathrm{X}$. $a(1, x, x, \beta)=\chi_{[0, \beta)}(x)-\beta$

$$
= \begin{cases}a\left(1, x, \alpha,<k^{\prime} \alpha>\right)-a(1,<x-\beta>, \alpha, s / 1) & \text { if } s>0 \\ a\left(1, x, \alpha,<k^{\prime} \alpha>\right)+a\left(1,<x-k^{\prime} \alpha>, \alpha,-s / 1\right) & \text { if } s<0\end{cases}
$$

The cocycle $a\left(., ., \alpha,<k^{\prime} \alpha>\right)$ is an Example of Gase 1 and is therefore a coboundary. Iet $a_{\alpha, \beta}^{\prime}: \mathbb{Z} \times X \rightarrow I^{-1} \cdot \mathbb{Z}$ be the cocycle aith

$$
a_{\alpha, \beta}^{\prime}(n, x)= \begin{cases}-a(n,<x-\beta>, \alpha, s / 1) & \text { if } s>0, \\ a\left(n,<x-k^{\prime} \alpha>, \alpha,-s / 1\right) & \text { if } s<0,\end{cases}
$$

for all $n \equiv \mathbb{Z}$ and $x \in X$. Let $S_{\alpha, \beta}^{\prime}$ be the $\mathcal{I}^{-1} \cdot \mathbb{Z}$-extension of i which is defined by $a_{\alpha, \beta}^{\prime}$. It is easy to see that $S_{\alpha, \beta}^{\prime}$ is conjugate to $S_{\alpha, 1,1 / 1}^{\prime}$ and so has the same ergodic properties. The study of the present case therefore rejuces to that of Case ?.

This is the most importart case and the main subject oこ this section.

Let $\varphi: \mathbb{Z} \times K \rightarrow \mathbb{R}$ be the function witin $\varphi(x)=-k x / 1$ and Let $b: \mathbb{Z} \times X \rightarrow \mathbb{R}$ be the corresponding coboundary for T_{α}. Let $a_{\alpha, \beta}^{\prime}=a(., \ldots, \beta)-b$; then for $a \geq I n \in \mathbb{Z}$ and $\mathrm{X} \in \mathrm{X}$,

$$
<I \cdot \exists_{\alpha, \beta}^{\prime}(n, x)>=\langle I(-n \beta-\phi(<x+n \alpha>) \div \varphi(x))\rangle
$$

$$
=\langle-\ln \beta+k(x+n \alpha)-k\rangle
$$

$$
=\langle-\ln \beta+k \operatorname{nn} \alpha\rangle
$$

$$
=\ln \left(1 \beta^{-}-k \alpha\right)>=0
$$

Jo a a ${ }_{\alpha}^{\prime}, \beta$ takes values only in $I^{-1} \cdot \mathbb{Z}$. Let $S_{\alpha, \beta}^{1}$ be the 1^{-1}. \mathbb{Z}-extension defined by $a_{\alpha, \beta}^{\prime}$; we shail show that $S_{\alpha, \beta}^{1}$ is ergodic under suitable conditions on α and β.

Lemma 3.2.

Let $\alpha, \beta \in X^{\prime}$ be two irrationals which satisfy the reduced equation $\langle k \alpha\rangle=\langle 1 \beta\rangle$ where $k \neq 0,1 \geqslant 2$ and 1 does not divide k. Let $s, c, k^{\prime}, 1^{\prime}, \beta^{\prime}$ and θ be the quantities defined in Lemma 3.1. Suppose that Linin Inf $a\left\|I I^{\prime} q \boldsymbol{\theta}\right\|=0$ so that there exists a sequence of pairs of coprime integers $\left(p_{n}, q_{n}\right)$ such that II' divides each q_{n} and ${ }_{-}^{2}\left|\theta-p_{n} / q_{n}\right| \rightarrow 0$. For each $n \geqslant 1$ let $r_{n}=q_{n} / 1$ and for each $\varepsilon>0$ define $D_{n, E}$ to be the set: $\left\{x:\left|a\left(c r_{n}, x, \alpha, \beta\right)-a\left(c r_{n}, x,<p_{n} / \operatorname{cr} r_{n}>,<\left(k^{\prime} p_{n}-s r_{n}\right) / q_{n}>\right)\right| \geqslant \in\right\}$. Then for every $\varepsilon>0, \lambda\left(D_{n, \varepsilon}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. For every $\varepsilon>0, n \geqslant 1$ and $x \in X$,

$$
\begin{aligned}
a\left(\operatorname{cr}_{n}, x, \alpha, \beta\right) & =\sum_{i=0}^{\operatorname{cr}_{n}-1} \chi_{[0, \beta)}(<x+i \alpha>)-\operatorname{cr}_{n} \beta \\
& =\operatorname{cr}_{n}-1 \sum_{i=0}^{0} \chi_{m=-\infty} \chi_{[-i \alpha, \beta-i \alpha)}(x+m)-\operatorname{cr}_{n} \beta-(1)
\end{aligned}
$$

and when n is sufficiently large,

$$
\begin{align*}
& a\left(c r_{n}, x,<p_{n} / c r_{n}>,<\left(k^{\prime} p_{n}-s r_{n}\right) / q_{n}>\right) \\
& =\sum_{i=0}^{c r_{n}-1} \chi_{\left[0,<\left(\varepsilon^{\prime} p_{n}-s r_{n}\right) / q_{n}>\right)}^{\left(\left(x+i<p_{n} / c r_{n}>\right)\right.} \quad-c r_{n}<\left(k^{\prime} p_{n}-s r_{n}\right) / q_{n}> \\
& =\sum_{i=0}^{c r_{n}{ }^{-1}} \stackrel{0}{\sum_{m=-\infty}} \times \underset{\left[-i<p_{n} / c r_{n}>,<k^{\prime} \underline{p}_{n} / q_{n}>-s / i-i<p_{n} / c r_{n}>\right)}{(x+m)} \\
& -c r_{n}<\left(k^{\prime} p_{n}-s r_{n}\right) / q_{n}>. \tag{2}
\end{align*}
$$

The identity $\left.<\left(k^{\prime} p_{n}-s r_{n}\right) / q_{n}\right\rangle=\left\langle k^{\prime} p_{n} / q_{n}\right\rangle-s / 1$, which is used in the third line, may be justified 3.3

Pollons：when n is large $\left\langle x^{\prime} p_{n} / q_{n}\right\rangle$ is a good approximation to β^{\prime} and the right hard side of the identity approximates β ． iTO：both sides of theidentity lie in X^{\prime} and they must be equal，as their difference is necessarily an integer．

Comparing the constant terms of（1）and（2）gives：

$$
\begin{aligned}
\left|\operatorname{lor}_{n}\left(<k^{\prime} p_{n} / q_{n}>-s / I\right)-c r_{n} \beta\right| & =c r_{n}\left|<k^{\prime} p_{n} / q_{n}>-\beta^{\prime}\right| \\
& =c r_{n}\left|<k^{\prime} p_{n} / q_{n}>-<k^{\prime} \theta>\right| \\
& \leqslant c r_{n}\left|k^{\prime}\right|\left|\theta-p_{n} / q_{n}\right| .
\end{aligned}
$$

This can be made less than any $\varepsilon>0$ by making n large．
Then this is done $D_{n, \varepsilon}$ is prescisely the set of points $x \in X$ for which the sums in Equations（1）and（2）differ． So for lerge n ，

$$
\begin{aligned}
\lambda\left(p_{n, \varepsilon}\right) & \leqslant{ }_{i=0}^{c r_{n}-1}\left(\left|i \alpha-i<o_{n} / c r_{n}>i+\right| \beta-i \alpha-<k_{n}^{\prime} p_{n} / q_{n}>+s / l-i<p_{n} /\left\langle r_{n}>i\right)\right. \\
& \leqslant{ }_{i=1}^{c r_{n}-i}\left(2 i \left|\alpha-<p_{n} / c r_{n}>\left|+\left|\beta^{\prime}-<k^{\prime} p_{n} / q_{n}>\right|\right)\right.\right. \\
& \leqslant c r_{n}\left(c r_{n}-1\right) l^{\prime}\left|\theta-p_{n} / q_{n}\right|+c r_{n}\left|k^{\prime}\right|\left|\theta-p_{n} / q_{n}\right| \\
& <\left(q_{n}^{2}+q_{n}\left|k^{\prime}\right|\right)\left|\theta-p_{n} / q_{n}\right| .
\end{aligned}
$$

Theorem 3．3．
Let $\alpha, \beta=$ K＇be two irrationals which satisiy the reduced equation $\langle x \alpha\rangle=\langle 1 \beta\rangle$ where $k \neq 0, I\rangle 2$ and I does not divide k ．Let I^{\prime} and θ be the quantities defined in Lemma 3.1 and suppose thet $\operatorname{Lim} \operatorname{Inf} G_{\|}\left\|I I^{\prime} q \theta\right\|=0$ ；then the $1^{-1} \cdot \mathbb{Z}$－extension of T_{α} ．inich is defined by $\mathrm{a}_{\alpha}^{\prime}, \beta$ is ergodic．

ProcE゙. We will ǐirst show that $\mathbb{Z}\left(a(\ldots, \ldots, \beta)=1^{-1} \cdot \mathbb{Z}\right.$. Let c, k and s be the quantities of Lemma 3.1 and let $\left(o_{n}\right),\left(a_{n}\right)$ and $\left(r_{n}\right)$ be the sequences of Lemma 3.2. For each $n \geqslant 1$ let h_{n} be the residue of $\mathrm{F}^{\prime} \mathrm{p}_{\mathrm{n}}-\mathrm{sr} r_{\mathrm{n}}$ modulo l^{\prime}. This number is never zero because $k ' p_{n}$ and l^{\prime} are always coprime whereas I^{\prime} always divides r_{n}. Following Jquation 3.2.2 we have, for sufficiently large n and all $x \in X$,

$$
\begin{align*}
& e\left(c r_{n}, x,<p_{n} / c r_{n}>,<\left(k^{\prime} p_{n}-s r_{n}\right) / q_{n}>\right) \\
& =\sum_{i=0}^{\sum_{m}^{n}-1} \sum_{m=-\infty}^{0} X(x+m) \\
& {\left[-i<\underline{o}_{n} / c r_{n}>,<k^{\prime} p_{n} / q_{n}>-s / 1-i<p_{n} / c r_{n}>\right)} \\
& -c r_{n}<\left(k ' p_{n}-s r_{n}\right) / q_{n}> \\
& =\sum_{j=0}^{c r_{n}-1} \sum_{m=0}^{1} \times(x+m) \\
& {\left[j / c r_{n}, j / c r_{n}+<\left(\operatorname{si} r_{n}-s r_{n}\right) / q_{n}>\right)} \\
& -\operatorname{cr}_{n}<\left(k^{\prime} p_{n}-s r_{n}\right) / q_{n}> \\
& ={\left.\underset{j=0}{\sum_{j}^{-1}} \chi_{\left[j 1 \prime / q_{n}\right.}^{(x)^{\prime}}\left(j I^{\prime}+h_{n}\right) / q_{n}\right)}_{-h_{n} / l^{\prime} .} \tag{1}
\end{align*}
$$

Tere the penultimate eauality follows from the fact that the sets $\left\{<-i<0_{n} / \operatorname{cr}_{n} \gg: 0 \leqslant i \leqslant c r_{n}-1\right\}$ and $\left\{j / 0 r_{n}: 0 \leqslant j \leqslant c r_{n}-1\right\}$ are identical. The final eqiality holds because, when both sides are considered as defining functions of x, they are both locally constant except for $2 \mathrm{or}_{\mathrm{n}}$ identical discontinuities and both have zero integra?.

For each n for which Equation (1) holds the quantity h_{n} has one of the values: 1,2, ... ,l'-1. By replacing
(p_{n}), (u_{n}) and (r_{n}) with suitable su'osequences we may $25 s u=$ that h_{n} is independent of n and has some constant value, in.

Ho. let J_{i} be any member of tine set $\left\{J_{i}: i \leqslant i<\infty\right\}$ mich ves usea in 62. Given any $\varepsilon>0$, choose $n \in \mathbb{Z}_{+}$ suミficiently large that Equation (1) nolds and the following inequalities are satisfied:
(2) $\lambda\left(D_{n, \varepsilon}\right)<\lambda\left(J_{i}\right) / 3$;
(3) $\operatorname{cr}_{\mathrm{n}}>4 \lambda\left(\mathrm{~J}_{\mathrm{i}}\right)$;
(4) $\lambda\left(J_{i} \cap{ }_{\alpha}^{-c n_{i}}\left(J_{i}\right)\right)>\lambda\left(\tau_{i}^{\top}\right) / 2$.

Lemma 3.2 shoms that it is possible to satisfy Ineruality (2) and tine fact that $\left\|\operatorname{cr}_{n} \alpha\right\|=\left\|a_{n}\right\|_{\|} \|-0$ shows that (4) may be setisfied.

Bauatio: (1) Ghons that the function

$$
a\left(\operatorname{cr}_{n}, \ldots,<p_{n} / \operatorname{cr}_{n}>,<\left(\because o_{n}-s r_{n}\right) / a_{n}>\right): x \rightarrow \mathbb{R}
$$

is pariodic, with period $1 / \mathrm{cr}_{\mathrm{n}}$. In each cycle it takes the value ($l^{\prime}-h$)/I' on an intervel of lensth h / l^{\prime} orn and tine value $-2 / 1^{\prime}$ on an interval $0=$ Ienstin ($l^{\prime}-h$)/I'cr n. Incauritities (3) and (1) imply that $J_{i} \cap \cap_{\alpha}^{-c r_{n}\left(u_{i}\right)}$ is an interval whose length is at least $2 / \mathrm{cr}_{\mathrm{n}}$ and which therefore contuins at least two complete cjcles. A simple argument no:i sho:s that the measure of the sat

is ereater than $2\left(I^{\prime}-h\right) \lambda\left(J_{i}\right) / 3 I^{\prime}$. Together inth Iemma 3.2 and Inequality (2) this implies that"
$\lambda\left(J_{i} \cap T_{\alpha}^{-c r_{n}}\left(J_{i}\right) \cap\left\{x:\left|a\left(\operatorname{cr}_{n}, x, \alpha, \beta\right)+h / I\right|<\varepsilon\right\}\right)>\frac{\left(I^{\prime}-n\right) \lambda\left(J_{i}\right)}{3 I^{\prime}}$
jince this is true for ever.j $i=\mathbb{Z}_{+}$and $\varepsilon>0$, Lema 2.7
 shous the:t $\left(I^{\prime}-h\right) / I^{\prime} E E(a(., ., \alpha, \beta))$ and it follows from Lama 3.3 of [15] that $1 \in \mathbb{Z}(a(., \ldots, \alpha, \beta))$. Lemma 2.9 and Lemat 2.10 now sho: that $E(a(\ldots, \ldots, \beta))=I^{-1}, \mathbb{Z}$, For othervise the equation $\langle k \alpha\rangle=\langle l \beta\rangle$ would not $b \in$ reálised.

As the coczcles $a_{\alpha, \beta}^{\prime}$ and $a(., \ldots, \beta$) difier only by a cobouniary Iema 3.? of [15] shows that they have the same essential values. Corollary 5. 4 of [15] completes the prooi.

It is not difficul to construct concrete examples whin sutiufu the conditions of rhaorer 3.3. In tive case mere $:=4$ and $I=20$ mave $1 I^{\prime}=100$ mat it is easy to find siditable ireationals α and β in terms of their decimal erpansions. jet $\left(i_{n}\right)$ be a sequence of positire interens with $i_{n+1} \geqslant 3 i_{n}+2 \quad(n \geqslant 1)$ and let, $\theta={ }_{n=1}^{\infty} 10^{-i_{n}}$. when ī $a_{n}=10^{i n}$,
$q_{n}\left\|1 \operatorname{coq}_{n} \theta\right\|=10^{i_{n}}\left\|10^{i_{n}+2} \sum_{j=1}^{\infty} 10^{-i} j\right\|=10^{2 i_{n}} \underset{j=n+1}{\infty} 10^{-i} j+2<2 \cdot 10^{-i_{n}}$.
3o in $\alpha=\left\langle I^{\prime} \theta\right\rangle=5 \theta$ and $\beta=\left\langle k^{\prime} \theta\right\rangle+s / c=\theta+1 / 4$ then α, β, k and 1 satisfy the conditions of Theorem 3.3 ant $3_{\alpha, \beta}$ is erfodic.

The condition Lim Inf all Il'q $\theta \|=0$ in theonen 3.3 nay appes to be rather restivictive but in foct this is not so. Fe conclude this chapter by proving an "almost everymere" version of Theorem 3.3. Jy usine the results
of Conee it i: possible to weal-en the conditions on in and 1.

Iema 3.4.
Let f' be the set $\left\{\theta E X: \operatorname{Lim} \operatorname{Inf} q \|\left\{q \theta \|=0, f E \mathbb{Z}_{+}\right\}\right.$; ther $\lambda\left(l^{\prime}\right)=1$.
\therefore mpoo: 0 Iemma 3.4 can be obtained by modifying the proof of minorem I, chapter VII of [3], the theorem that Wes used to prove Lema 1.4. Rather than reproduce part 0 [[3] nere we qive only the details of the modifications. Mey are contained in Appendix B.

Lemme 3.5.
Ief T うe tine set of all irrational nurabers $\alpha \in \mathrm{K}$ for Which the Follorine statement holds: iv $I^{*} \equiv \mathbb{Z}_{7}$ and $\theta \in X \cdot$ satisfy the equation $\left\langle I^{*} \theta\right\rangle=\alpha$ then $\theta \in I^{\prime}$. Then $\lambda(Y)=1$.

Eroog. Suppose that the lemma is false. Then there exists a. meesurable set $A=x$ irith $\lambda(A)>0$ and an integer $I^{*} \in \mathbb{Z}_{+}$ such that for every $\alpha \in A$ there exists θ IX'VI with $\left\langle I^{*} \theta\right\rangle=\alpha$. 3ut this implies that

$$
\lambda\left(X^{\prime} \backslash I^{\prime}\right) \geqslant \lambda\left(\left\{<1^{*} \theta>: \theta \in X^{\prime} \backslash i^{\prime}\right\}\right) / 1^{*} \geqslant \lambda(A) / 1^{*}>0
$$

in contradiction to Lemma 3.4. This contradiction proves the lemma.

Thanem 3.5.
For almost all irrational numbers $\alpha \in X^{\prime}$ tine follo:ing statement is true: let k and l be two integrers with $l \geqslant$? and let $\beta=\{$, be any solution of the reduced equation $\langle 1 / \alpha\rangle=\langle 1 \beta\rangle$; then the $1^{-1} \cdot \mathbb{Z}$-extension of T_{α} which is defined by the cocrale $a_{\alpha, \beta}^{\prime}$ is ergodic.

Eroof. As the union of a countable collection of sets of measure zero has measure zero itself, it is permissible to consider each pair (k, I) separately. If $k=0$ or if I divides in then we are dealing with an example of our Case 2 or sase 3. The conciusion then follows from -seorem 5 of [4]. If $k \neq 0$ and 1 does not diviae k then Ismat 3.5 shon thet the conditions of Theorem 3.3 are Satisiieg Eor almost aIl $\alpha \in$ K' $^{\prime}$.

RECURRENCE OF CO-CYCLES AND RANDOM WALKS

GILES ATKINSON

Skew-product exteasions of ergodic transformations by non-compact groups can be regarded as generalising the idea of random waiks on such groups. The purpose of this paper is to consider the generalisations of two results on random walks on the real line. 2 One of these carries over to skew-product extensions, the other does not.

Defnimon. Let (X, \mathscr{B}, μ) be a probabiity space, $f: X \rightarrow$ Ra measurable function and $T: X \rightarrow X$ an ergodic automorphism of (X, B, μ). We define the co-cycle for T given by f to be the function $a_{f}: \mathbb{Z} \times X \rightarrow \mathbb{R}$ with

$$
\begin{array}{ll}
a_{f}(n, x)=\sum_{t=0}^{n-1} f\left(T^{i}(x)\right) & \text { for } n>0, \\
a_{f}(0, x)=0 & \text { for all } x \in X, \\
a_{f}(n, x)=-a_{f}\left(-n, T^{n}(x)\right) \text { for } n<0 .
\end{array}
$$

The skew-product extension of T, determined by f, is the transformation $S_{f}: X \times \mathbb{R} \rightarrow X \times \mathbb{R} ;$

$$
S_{f}(x, t)=(T(x), t+f(x))
$$

The powers of S_{f} may be expressed in terms of the co-cycle a_{f};

$$
S_{f}^{n}(x, t)=\left(T^{n}(x), t+a_{f}(n, x)\right) .
$$

Finally we say that a_{f} is recurrent if and only if, for every $A \subseteq S$ with $\mu(A)>0$ and every $\varepsilon>0$, there exists an integer $n \neq 0$ such that

$$
\mu\left(A \cap T^{-n}(A) \cap\left\{x:\left|a_{j}(n, x)\right|<\varepsilon\right\}\right)>0 .
$$

Co-cycles which are not recurrent are called transient.
The structure of skew-product extensions into general locally compact abelian groups has been analysed by Schmidt in [1]. It is shown there that a co-cycle a_{f} is recurrent if and only if the corresponding extension S_{S} is conservative (Theorem 4,3).

A random walk on \mathbb{R}, which is defined by a probability measure λ, on \mathbb{R}, may be realised as a skew-product extension in the following way: let X be the space $\prod_{i=-\infty}^{\infty} \eta_{i}$ (each $\mathbb{R}_{i}=\mathrm{R}$), with the product Borel structure; let μ be the product of measures identical to \dot{x} in each factor; let T be the shift

$$
T\left(\ldots x_{0}, x_{1}, \ldots x_{i}, \ldots\right)=\left(\ldots x_{1}, x_{2}, \ldots x_{i+1}, \ldots\right)
$$

Finally we choose the function f to be the 0 ih coordinate projection;

$$
f\left(\ldots x_{0}, x_{1}, \ldots x_{0}, \ldots\right)=x_{0} .
$$

Received 3 September, 1975; revised 11 Febnaary, 1976.
[J. London Math. Soc. (2), 13 (1976). 486-4;8]

The correspondence between this skew-product extension and the random walk is completed by observing that successive values of $a_{f}(1, x)$ describe the positions of points performing the walk. By Proposition 4.6 of [1], the recurrence of a_{f} implies that almost all points return arbitrarily close to zero, infinitely often, under the action of S_{f}. This is equivalent to the usual definition of the persistence of random walks. The following theorem is an extension to co-cycles of [2; Theorem 4, p. 203].

Theorem. Suppose ($\mathrm{X},(, A, \mu$) is a mon-atomic probability space, $T: X \rightarrow X$ is an crsodic measure-presercing automorphism and $f: X \rightarrow ?$ is an integrable function. Then a_{f} is recurrent if and only if $j \int d \mu=0$.

Proof. Suppose $\int f d ; \neq 0$. The ergodic theorem, applied to f, shows that for almost all $x \in X$

$$
\operatorname{Lim}_{|n| \rightarrow \infty} n^{-1} a_{f}(\mu, x)=\int f d \mu
$$

Therefore, for some $N>0, \mu(B)>3 / 4$, where B is the set

$$
\left\{x:\left|a_{f}(n, x)\right| \geqslant 1 \text { for all }|m| \geqslant N\right\} .
$$

Anapplication of Rohlin's Theorem to T proves the existence of a set $E \in \mathscr{B}$ such that

$$
\mu\left(\bigcup_{n=0}^{N} T^{n}(E)\right)>3 / 4 \operatorname{and} E \cap T^{n}(E)=\varnothing, 1 \leqslant n \leqslant 4 N .
$$

At least one of the sets $T^{n}(E)$, with $N \leqslant n \leqslant 3 N$, must intersect B in a set of positive measure. Let A be such an iniersection. Clearly, $A \cap T^{-n}(A)=\varnothing$ for all $|n| \leqslant N$. As $A \subset B$, this implies that a_{f} cannot be recurrent.

Conversely suppose a_{f} is not recurrent. By Propasition 4.6 of [1], the set $M_{x}=\left\{n:\left|a_{f}(n, x)\right| \leqslant 1\right\}$ is finite for almost all $x \in X$. For each $n>0$ let $A_{n}=\left\{x: \operatorname{Card}\left(M_{x}\right) \leqslant n\right\}$; then there exists an N with $\mu\left(A_{y}\right)>1 / 2$. The ergodic theorem applied to the characteristic function of A_{N} shows that, for almost all $x \in X$, and for sufficientiy large n, over haif the points $T^{i}(x), 1 \leqslant i \leqslant n$, are in A_{v}. Each of the corresponding $a_{f}(i, x)$ has at most N others within distance one of it. Suppose there are r of these values; then any interval containing them must have length greater than $\left[(r-1) f^{\prime}(\mathrm{V}+1)\right]$. As $r>n^{i 2}$, this is greater than $(n-2) i(2(N+1))$. Hence for almost all $x \in X$, if n is sufficiently large

$$
\operatorname{Sup}_{0 \leqslant i \leqslant n}\left|a_{f}(i, x)\right|>\frac{n-2}{4(N+1)} .
$$

This implics thet for inñitely many $i>0,\left\{a_{f}(i, x) \mid>(i-2)(4(N+1))\right.$. An application of the crgodic theorem to f shows that

$$
\text { |f } f d \mu \geqslant 1 /(+(N+1)) .
$$

The theurem is proved.
For a random walk on the reals, defined by a probability measure i, the series $\sum_{n=0}^{n} j^{n n}(r)$ is important, where $\%^{n n}$ is the n-th convolution power of λ and I is the interal $[-1,1]$. In particular, the wath is recurrent in the sense of there being infinitely
many returns to zero with probability one, if and only if the series diverges (see [2; pp. 200-203]). The following example shows that this result does not extend to co-cycles.

Let $\tilde{T}:(0,1] \rightarrow(0,1]$ be a Borel automorphism which is ergodic with respect to Lebesgue measure. Put $X=\bigcup_{i=1}^{\infty}\left\{0, i^{-2}\right\} \times\{i\}$ and let μ be the product of the Lebesgue and counting measures, normalised so that $\mu(X)=1$. Let $T: X \rightarrow X$ be the ergodic transformation given by;

$$
T(x, i)= \begin{cases}(x, i+1) & \text { if } 0<x \leqslant(i+1)^{-2} \\ (T(x), 1) & \text { if }(i+1)^{-2}<x \leqslant 1\end{cases}
$$

Let a_{f} be the co-cycle deñned by the function;

$$
f(x, i)=\left\{\begin{array}{l}
0 \text { if } 0<x \leqslant(i+1)^{-2} \\
2 \text { if }(i+1)^{-2}<x \leqslant 1
\end{array}\right.
$$

Since $\int j d \mu=12 / \pi^{2}, a_{f}$ is transient. The series which corresponds to $\sum_{n=0}^{\infty} i^{* *}$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mu\left(\left\{x:\left|a_{f}(n, x)\right| \leqslant 1\right\}\right) & =\sum_{n=0}^{\infty} \mu\left(\left\{x: a_{f}(n, x)=0\right\}\right) \\
& =\sum_{n=0}^{\infty} \sum_{t=1}^{\infty} \mu\left(\left(0,(i+n)^{-2}\right] \times\{i)\right) \\
& =\left(6 / n^{2}\right) \sum_{n=0}^{\infty} \sum_{i=1}^{\infty}(i+n)^{-2}
\end{aligned}
$$

The term i^{-2} occurs exactly i times in this sum, which may therefore be written as $\sum_{i=1}^{\infty} i^{-1}$. The series diverges in spite of the fact that α_{f} is transient.

References

1. K. Sehmidt, "Cohomology and jkew-products of ergodic transformations" preprint (Warwick, 1974)
2. W. Feller, An introduction to probability theory and its applications. Volume two. Second edition (New York, 1971).

Mathematics Institute,
University of Warwick, Coventry CV4 7AL.

APPEYDEX B

Iemma 3．3．4：A do－it－yoursele sit．

```
To prove Lumma 3．3．4 it is enowh to snoit that for any
\(\lambda\left(\left\{\theta \leq K^{1}: \operatorname{Lim}_{q} \operatorname{Inf} q\|f q \theta\|=0\right\}\right)=1\).
This follows immediately from setting \(\psi(q)=1 / q \cdot \log (q)\)
in the following modified version of Theorem I，Chapter VII of［3］．
```

Theorem．
Let f be any positive integer and let $\psi(q)$ be a monotone jecreasing function of the integer variable $q>0$ with $0<\psi(q)<1 / 2$ ．Then the set of inequalities

$$
\left\|f_{q} \theta\right\|<\psi(q)
$$

has infinitely many integer solutions $q>0$ for almost no or almost all numbers θ according as $\sum \psi(a)$ coverges or diverges．

Ie shall only be concerned with proving the theorem in the divergent case．The proof of Cassels＇original formulation consists of five leinas（Lemmas 1－3 and 5－8） and a section entitled＂Proof of Theorem I（divergence， $n=1$ ）＂which contains two more lemas（Lemmas 8 and 9）． The alterations which must be made to these in order to obtain a proof of the above statement are set out below． They include the insertion of one entirely rew lema， Lemma 5＊。

Leman 1-
Funsiitute Iq for q wherever it appears with the exceptions of the first line of the proof and the expression $\psi(q)$.
Lemmas 2, 2 and 5 .
io change.
Before Lea 6 insert:

Lemma 5^{*}.
Let $\phi(1)$ be the number of integers $p, 0<p<q$ which are prime to q. When for all positive integers f,

$$
\phi\left(q^{f}\right) \geqslant \phi(q)
$$

Proof. Theorem 62 oi [7] states that

$$
\phi(m)=m \prod_{p \mid m}(1-1 / p),
$$

sincere the product is taken over prime numbers only. (As is usia, plo means that p divides m.) Therefore, taking proficts over crime p, we have:

$$
\begin{aligned}
\phi(q f) & =q f \prod_{p \mid q I}(1-1 / p) \\
& \geqslant \underset{p}{\prod_{p / f}}(1-1 / p) \phi(q) \\
& \geqslant \prod_{p \mid f} p(1-1 / p) \phi(q) \\
& \geqslant \phi(q) .
\end{aligned}
$$

Lemna 6.

In the statement and the note replace a by fq except in the first sentence and where it appears beneath a sumation sign (as in $q \underset{q}{ }{ }^{\circ}$). In the proof replace C_{1} by \quad Ci and reolace the calculation by:

$$
\begin{aligned}
q \leqslant Q(f q)^{-1} \phi(f q) & \geqslant f^{-1} q \leqslant q^{-1} \phi(q) \\
& =f^{-1}\left(q \sum_{Q} \Phi(q)\left(q^{-1}+(q+1)^{-1}\right)+Q^{-1} \Phi(Q)\right) \\
& >f^{-1} Q^{-1} \Phi(Q) \\
& \geqslant f^{-1} G q^{Q}=\sigma_{1} Q
\end{aligned}
$$

(where $\left.C_{1}=f^{-1} C_{1}\right)$.

Lemma 1.
suostitute fq for q except where it apoears as $\boldsymbol{\omega}(q)$, $\chi(q)$ or beneath a sumation sign.

30 change.
Proof of Mheorem I (divercence, $n=1$) (including Lemma 9).
Substitute Iq for q except where it appears as $\psi(q)$, $\tau(q), \omega(q), \beta_{q}, \gamma_{q}$ or beneath a suramation sign.

Inempa 10 and Lemma 11.
Substitute fa for q as above. Also substitute fr for 2 except where it appears as $\beta_{r}, \gamma_{r}, \gamma_{q r}$ or beneath a sumation sign. Do not substitute qf for f in $\gamma_{\text {qr }}$.

REFERENCES

 of the plane. Pund. Hath. 28 (1937), 61-65.
2. A.j. Зesicovitch, A problem on topological transformation of the plane. II. Proc. Camb. Phil. Soc. 47 (1951) 38-45.
3. J. I. J. Sassels, an introduction to Diophantine approximation. Cambridge University Press (1957).
4. J.P.Conze, Équirگpartition et ergodicite de trans:ormations cylindriques. Preprint, University of tennes (1976).
F. \therefore Denjoy, Les trajectoires à la surface du tore. C.Z. Aved. Sci. Earis 223 (1946) 5-8.
6. t. Gottschalk and ti.n. Hedelund, Topological dynamics. A.f. 3. Colloquium Publications 36 (1955).
7. G. I. ardy and m. .ifrignt, An introduction to the theory of̄ numbers, I'ourth edition. Oxỉord University Press (1959).
8. G.A. Fedelund, A class of transformations of the plane. Proc. Camb. Phil. Soc. 51 (1955) 554-554.
Q. A.B.ryyein, Examples of exgodic cylindrical cascades. Tatin. İotes 16 No. 6 (1974) 1180-1186 (translation of

10. A.B.irycin, An example of a cylindrical cascade with anomolous meiric proderties. Mosco: Univ. Vath. Bull. 30 :IO. 5 (1975) 20-24 (translation of Vestnik Noskov. Univ. Ser.I. rat. 30 No. 5 (1975) 26-32).

REFER TRCES

1．H．3．Зesicovitoh，A problem on topological transformation of the pisae．Fund．Fath． 28 （1937），61－65．
？．A．J．Zosicovitch，A problem on topological transformation of the plane．II．Proc．Camb．Phil．Soc．47（1951） 38－45．

3．J．．f．3．Dassels，An introduction to Diophantine approximation．Cambridge ：niversity Press（1957）．
4．T．P．Conze，Equirépartition et ergodicité de ちransEormations cylindriques．Preprint，University of Eennes（1970）．
ᄃ．\therefore Denjoy，Les trajectoires a la surface du tore． G．R．$\therefore 2 \pi$ ．Sci．Paris 223 （1946）5－3．

6．I．Fot Gotschalk and T．A．Hedelund，Topolozical dynamics． A．t．S．Collcquium Publications 36 （1955）．

7．G．I．Tardy ant E．ilrignt，in introduction to the theory ō numbers，Fourth edition．Oxīord University Press （1959）．

2．G．A．Fedelund，A class oi transformations of the plane． Proc．Camb．Phil．Soc．51（1955）554－564．
？．A．Prursin，Examples of ergodic cylindrical cascades． Nath．Votes 16 No． 6 （1974）1180－1186（translation of Kat．Lametki 16 No． 5 981－991）．
10．A．3．Sryein，in example of a cylindrical cascade with anomolous metric properties．Moscon Univ．Math．Bull． 30 ：io． 5 （1975）20－24（translation of Vestnik Moskov． Univ．Ser．I．！＂at． 30 ro．5（1975）26－32）．
11. ォ. .. ©xtoby, Ergodic sets. A.r.3. Bulletin 53 (1952) 116-136.
12. :i.Parry, Compact abelian group extensions of discrete dymamical systems. Z. wahrscheinlichiceitstheorie ver:t. gab. 13 (1969) 95-113.
13. K. Petersen, on a series of cosecants related to a problem in ergodic theory. Compositio Math. 26 (1973) 313-317.
14. K. Schmidt, A cylinder flow arising from irregularity of distribution. Preprint, Tniversity of Jarwick (1975).
15. K.Schmidt, Lectures on cocycles of ergodic transformation Eroups. Preprint, University of larwick (1976).
1万. E.A. Jiderov, Tonolagical transitivity of cylindrical cascades. rath. Totes 14 No. 3 310-316 (translation of inat. Zametki 11 No. 3 141-452).
11. J. c. Oxtoby, Greadic sets. A.f.j. Bulletin 53 (1952) 116-136.
12. i.Parry, Compact abelian group extensions of discrete dymamical systems. Z. wahrscieinlichiceitstheorie ver:I. gab. 13 (1969) 95-113.
13. K. Petersen, on a series of cosecants related to a problem in ergodic theory. Compositio Math. 26 (1973) 313-317.
14. K.Schmidt, A cylinder flow arising from irregularity of distribution. Preprint, Tniversity of larwic's (1975).
15. K. Schmidt, Lectures on cocycles of ergodic transformation Erouns. Dreprint, Jniversity of tarvick (1976).
10. E.f.Giderov, Tonological transitivity of cylindrical cascades. lath. Yotes 11 \%o. 3 310-316 (translation of litat. Zametki 11 No. 3 141-452).

