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ABSTRACT

As an essential processing step in many disciplines, signal denoising efficiently improves data quality without extra cost. However, it is
relatively under-utilized for terahertz spectroscopy. The major technique reported uses wavelet denoising in the time-domain, which has
a fuzzy physical meaning and limited performance in low-frequency and water-vapor regions. Here, we work from a new perspective by
reconstructing the transfer function to remove noise-induced oscillations. The method is fully objective without a need for defining a thresh-
old. Both reflection imaging and transmission imaging were conducted. The experimental results show that both low- and high-frequency
noise and the water-vapor influence were efficiently removed. The spectrum accuracy was also improved, and the image contrast was sig-
nificantly enhanced. The signal-to-noise ratio of the leaf image was increased up to 10 dB, with the 6 dB bandwidth being extended by

over 0.5 THz.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0002968

. INTRODUCTION

Spectroscopy at terahertz (THz) frequencies has been exten-
sively studied in the last three decades since the invention of THz
time-domain spectroscopy (TDS). The straightforward extraction
of material properties enables applications in physics,' chemistry,’
and biology.” To adapt to these applications, system developments
have been focused on improving the acquisition speed,” opera-
tional bandwidth,” and functional devices’ and reducing the cost.
Nowadays, a typical TDS system can provide a peak signal-to-
noise ratio (SNR) of 60-80 dB. Photoconductive antenna based sys-
tems typically provide a usable bandwidth below 4 THz, but this
can be greatly extended to over 30 THz using optical rectification
or air-plasma, reaching the mid-infrared regime.”” However, the
picosecond-short time-domain pulse dictates that the SNR must
exponentially decrease toward the lower and upper bandwidth.'""'
The actual effective bandwidth in a specific experiment could be a
lot shorter than the system’s spectral range, depending mainly on
the signal attenuation and the available integration time. A longer
integration time is essential to improve the SNR by suppressing the
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white noise. However, this is inefficient in TDS measurements as
the longer time-constant has to be applied for all sampling points
in the time-domain, instead of only the low SNR region. The SNR
and the effective bandwidth are especially limited in applications
where a fast acquisition is favorable or necessary, such as raster-
scan imaging or monitoring a fast dynamic process. In many other
studies, numerical signal denoising could be an efficient approach to
improve the SNR.'*"” Unfortunately, it has been left as a relatively
blank space for THz spectroscopy.

The simplest denoising techniques for TDS signals are time-
domain windowing and Fourier filtering. The former only removes
noise outside the main pulse region by smoothing the wings of
the signal to zero.'* The main pulse is not denoised and can even
be mis-shaped. The window function is subjectively selected and
restricts many applications, of which multiple reflections are con-
sidered. Fourier filtering usually applies a low-pass or band-pass
filter to remove noise outside the effective bandwidth."” It improves
the time-domain signal quality but has no improvement to the
useful spectrum at all. Wavelet denoising is almost the only use-
ful technique for THz spectroscopy. Unlike Fourier transform that
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represents a time-domain signal by infinitely long sinusoidal waves,
wavelet transform uses time-finite wavelets. The wavelets are shifted
and scaled to decompose a THz signal. The resulting wavelet coef-
ficients are distributed in a 2D wavelet-domain, representing the
frequency compositions varying with time. To denoise a signal, a
threshold value needs to be defined to set coefficients below the
threshold to zero. Using wavelet denoising for THz signals was first
proposed by Mittleman et al. for gas sensing.'® After that, success-
ful applications in tomography and imaging were also reported.’”'*
Apart from denoising, it has also been applied for THz deconvo-
lution.'””" The limitations of the wavelet technique, however, have
seldom been discussed. An obvious point is the abstract physical
meaning. Unlike Fourier coefficients, which stand for the physi-
cal properties of an electromagnetic wave, the processing of the
wavelet coefficients is mainly numerically based with little phys-
ical meaning. Furthermore, it also has a limited performance at
low frequencies and in the regions with dense water-vapor absorp-
tions. Low-frequency wavelet components are usually greater than
the threshold and are not filtered. Water vapors generate echoes
that weakly oscillate in the time-domain. Some of them could
be mistakenly classified as redundant noise in the wavelet coeffi-
cients and removed, altering the spectrum profile near the water-
vapor lines. These can be seen from the examples in the work by
Kim et al.”' and will also be demonstrated in our later compari-
son. From this point, wavelet denoising works better in the time-
domain, such as the ECG (electrocardiography) signals.”” Last, the
denoising performance also relies on the proper selection of the
wavelet function, decomposition level, and filtering threshold. They
should be carefully optimized to avoid shaping the signal or sup-
pressing peaks in the spectrum, which makes the processing very
subjective.”

Apart from direct denoising, Pupeza et al. proposed a Spatially
Variant Moving Average Filter (SVMAF) to reduce the influence of
noise. The material properties are smoothed with the restriction that
the transfer function falls within the confidence interval.”” Noise-
induced oscillations on the characterized sample properties were
efficiently removed. This also limits its versatility as it is not appli-
cable when the sample properties are not extracted in a measure-
ment. Another technique of autoregressive extrapolation reported
by Dong et al. extends the effective bandwidth by predicting val-
ues of the transfer function from a high-SNR region.”’ Although the
work is demonstrated for depth-resolution enhancement, it can be
viewed as a denoising approach to improve the data quality in the
low SNR region. The major limitation is that a continuous high-SNR
interval should be provided. A signal may need to be measured in
low humidity as noisy fluctuations induced by the water vapor, if
included in the utilized high-SNR bandwidth, will not be denoised
and may affect the prediction accuracy.

In this work, we propose a denoising method from a totally dif-
ferent perspective. Instead of directly processing the time-domain
or frequency-domain of a signal, we denoise by objectively recon-
structing the transfer function (i.e., the complex ratio between the
sample and reference signals in the frequency-domain). We remove
noise-induced spikes and oscillations in the transfer function by
using a genetic algorithm (GA). Both reflection imaging and trans-
mission imaging were conducted to verify the denoising perfor-
mance. Water-IPA (isopropanol) mixtures were imaged to show
a greatly enhanced contrast and reduced spatial variation, as well
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as the improved characterization accuracy. A fresh leaf was also
scanned by transmission to demonstrate the improvement in the
image quality and the effective bandwidth.

Il. METHOD

A typical THz-TDS measurement computes the transfer func-
tion M by comparing the sample signal to the reference signal in
the frequency-domain as the first step for further data processing.
Theoretically, this is expressed as

Esample(w) _ HiRi(w)Rsample(w)

My, w) = -
teory( ) Ereference(w) HiRi(w)R"?fere”w(w)
RsamplE(w)
_ _sample\™J _ n le> K. Jes- -+ )> (1)
Rrefei’cnm(w) g( Samp ‘ sump ‘ )

where Eggmpie(w) and Ereprence(w) are the detected sample and ref-
erence signals in the frequency-domain. R; may represent any sys-
tematic response that occurs in both the sample and reference mea-
surements, for example, the emitted signal, the detector response,
the reflection/transmission of any intermediate optical components,
and the water-vapor absorptions. Rgple(@) and Rygperence(w) are the
response from the sample and the reference medium, respectively,
with the latter already known for its optical properties. The divi-
sion removes all the common terms, and Mo, (w) only contains
the sample response normalized to the reference. By establishing
a proper optical model, M, (w) can be expressed by a series of
Fourier transmission and/or reflection coefficients, represented as g,
a function of the sample optical properties (e.g., refractive index n
and absorption coefficient ). In the case of no resonance arising
from the sample, Meory(w) should be smooth in the frequency-
domain without oscillations.””** Fabry-Perot resonance from a
thick substrate may generate periodic variations in Mo, (w). How-
ever, this can be mostly avoided in TDS by temporally removing the
secondary reflection pulses. Thin-film samples only produce mild
variations in the spectrum and do not affect the “smoothness.” In
a practical measurement, however, considerable oscillations would
occur to M(w) due to the existence of noise, especially in low SNR
regions. This can be seen from the following equation:

E;erple(w) _ EsamplE(w) + Nsample(w)
E:gfq;ence(w) Ereference(w) + Nreference(w)
o Esample(w) + Nsample(w)

Ereference ( w )

Miaw (w) =

, 2

where M,qw(w) represents the sample/reference ratio from the raw
data without denoising processing. Ngmpie(w) and Nyeperence(w) are
the noise in the sample and reference signals. In most cases, a long
integration time can be practically achieved for the reference sig-
nal, and thus, the equation can be simplified to the lower form by
neglecting the reference noise. Compared to Eq. (1), as Nappie(w)
randomly changes for every frequency, it makes Mw(w) oscil-
late around M ey (w), especially when N (@) is comparable to
Eample(w). Our denoising is based on the expectation that Maw(w)
should be smooth in the absence of noise. The algorithm recon-
structs a smooth transfer function Mj,,,,om(w) around M, (w). Of
course, not every Myoom(w) approximates Mo, (w). To ensure
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this, we compare the time-domain sample signal reconstructed from
M mootn(w) and the detected sample signal,
— Emw (t) _ Eremnstructed(t)

sample sample
= ;Z::t}ple(t) - iFFT(MSMOOth(w) : E:Zfz;emce(w))' (3)

Theoretically, if Msmooth = Miheory> We have Egif(t) = Nsample(£)-
In contrast, if any point of Mmoot deviates away from Mipeory, the
smooth profile will drag the neighboring +span region to be all away
from Mineory, resulting in a large Eqi(f). Therefore, the evaluation
function f,,, can be set to minimize the standard deviation of the
absolute difference,

Eqir (1)

fovar = std(Eag (). (4)

We optimize Mg,p0 until f,,, is below the noise level Ny,
= 5td(Nample(t)). Nsample can be estimated by many approaches, such
as by measuring the signal with the light being blocked. The above
optimization filters solutions M that are smooth, close to My, and
result in a reconstructed sample signal having difference from the
detected sample signal in a noise level. A solution satisfying these
criteria would have a high probability to approximate Mc,r,, which
is then regarded as the denoised version of M,4,. We point out that
a noiseless reference is ideal to support the above theory, but it is not
compulsory. In case the reference is noisy, Eg(t) by Eq. (3) (with
Mmooth = Miheory) is changed to

Ediﬁ(t) = Nsamp/e(t) - iFFT(Mtheary(w) . Nreference(w))
<2x Nsample(t)) if |Mtheory(w)| <1

In this case, the stopping criterion should be changed to f,,4
< std(2Ngample(t)). Mgnoorn can still be found theoretically, while the
accuracy could be reduced due to the weaker stopping criterion. In
addition, the reconstructed sample signal in the time-domain will be
as noisy as the reference signal.

As M(w) usually contains hundreds of complex data points to
be optimized, denoising is realized by using the GA. The GA is
powerful in multiple-domain optimization problems and can pro-
vide a fast convergence to approach the global minimum.”’ It mim-
ics the evolution in nature by following a major iteration process
of initialization-evaluation-crossover-mutation. The detailed steps
are shown in Algorithm 1.

In step 1, a band-pass filter is applied to the sample and refer-
ence signals to remove the useless noise outside the effective band-
width. M4, is calculated according to Eq. (2) and decomposed into
its magnitude |May| and phase Arg(May) for later processing.

ALGORITHM 1. Genetic algorithm steps.

Band-pass filter pre-processing. Calculate Ma(w)
Initialization. Randomly initialize M;(w), 0 <1 < NumPop
Evaluation. Calculate f,,, by Eq. (4) and rank

Crossover. Select the top half to generate new populations
Mutation. Mutate Py, percent of the crossover population
If fevar 1 < Nieyer OF Iteration > Numltp

Go to step 7 if yes. Go to step 3 if no.

7. Output the top ranked M; in the last iteration

S
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© Author(s) 2020

Step 2 initializes M;. To build M; with a higher chance of
approximating Meory» the key issue is to keep M; close to M4, and
smooth. The simplest example is directly applying a smooth function
to Maw. Mathematically, this is represented by

P Mo (P)
! raw _
21 s p—span<1
_ ) E M (p)
Smooth(me, SPWl) = W, 1+ span < p < Pmax - span
S Moo (p)
Ty — P +span > pmax.

®)

This Smooth function is the same as the one used in Mat-

lab. Here, p is the index and pmax denotes the length of My4,. The
Smooth function averages M4, in every +span. The span at the start
and the end of the M4, array was reduced to adapt to the available
data points. The length should be selected such that the smoothed
curve can maintain the dispersion profile. An example is shown
in Fig. 1. Here, Myaw is the ratio between a quartz-water (sample)
and a quartz-air (reference) reflection, with the magnitude | M|
shown as the gray curve. The dispersive properties of water result in
a frequency-dependent curve. Noise-induced oscillations are mostly
distributed in the high-frequency region where the SNR is low. The
span is set to be the length of 0.05 THz, and the curve is smoothed
for every 0.1 THz range, as shown in the black curve. The oscilla-
tions have been greatly suppressed, but the dispersion is maintained.
However, it may not approximate Meory. We initialize a large num-
ber of M; and find out the best one. This is done by randomly
sampling every 0.1 THz (=2span). At every sampled point, a value
was randomly assigned in-between | M,y | and |Smooth(Maw)|. Two
examples are shown as the red dots and blue triangles in Fig. 1.

0.8 ‘
7Mraw
\ ——smooth(Mraw)
0.71 4 Sampled M1
“ e Sampled M2
06+ —Interpolated M1 ||
— Interpolated M2
051
=
04r
031
0.2
0.1

0.5 1 1.5
Frequency (THz)

FIG. 1. An example of initializing |M;| from |Maw| and [smooth(Maw)|-
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A spline interpolation is applied to the assigned points to obtain val-
ues at all frequencies, shown as the red and blue solid curves. Such
initialization ensures curves have good smoothness and are close to
Maw. The values in the high-SNR regions are very close to My
because they have a narrow assigning range, while they have large
reconstructive flexibilities where noisy oscillations occur. Similar
initialization was also applied to Arg(May) to get the complex arrays
of M; = |Mraw|exp(i Arg(Mraw )). The number of populations (i.e.,
the total number of M;) was set as NumPop.

The initialized M; were substituted into Egs. (3) and (4) to cal-
culate f,,,;, and they were ranked from low to high in step 3. The top
half represents a higher chance to approximate Mieor,. They were
kept for crossover in step 4. The lower half is abandoned.

The crossover in step 4 calculates the average of every two adja-
cent populations. As the remaining populations could be close to
Mipeory> their averages may inherit some features from their par-
ent population and could also have a high chance to approximate
Mtheory-

To avoid being trapped in local minima, the mutation process
in step 5 is set to increase the optimization divergency. In detail, Ppus
percentage of the crossover populations was selected. A frequency
point in the effective bandwidth region of the selected population
was randomly picked, and the corresponding value was randomly
changed by less than 5%. Directly doing this generates a spike to
break the smoothness. Therefore, the values at a span distance [same
as the span in Eq. (5)] from the mutation point were abandoned,
with a spline interpolation used to reassign their values. This can be
expressed as

MM =y, = Interpolate(x, y, x';, spline’), ()
where

x=(1:p-span),p,(p+span),
y = Mi(x),

xi=1 : Pmax»

where p denotes the index of the point being mutated. The smooth-
ness was maintained by the spline interpolation. The mutation in
step 5 creates new genes to improve the optimization divergency and
accuracy.

Step 6 checks the iteration condition. fev, 1 represents the
top ranked evaluation value. If f,,; ; < Np,e, or the iteration has
reached the maximum iteration number Numltp specified, the pro-
gram stops and outputs the top ranked M; in the last generation in
step 7. Otherwise, steps 3-5 iterate to keep optimizing M;.

In our experiments, the GA parameters were set as NumPop
= 200, Numlitp = 50, and Py = 0.1. These parameters are differ-
ent from the thresholds in wavelet denoising that conclusively affect
the denoising results. They are adjusted only to balance the process-
ing speed and accuracy without affecting the objective evaluation
principle.

lll. EXPERIMENTS

Two measurements were conducted to verify the algorithm per-
formance. First, water-IPA mixture solutions of different volume
fractions were imaged in reflection under 70% relative humidity. The

ARTICLE scitation.org/journal/app

measurement was performed using the Menlo K15 reflection THz-
TDS system as described in our previous work,” with a quartz win-
dow above the scanning THz optics and samples being placed on top
of the window. In the second experiment, a fresh leaf was scanned
in a free-space transmission TDS system with a 4.5% relative
humidity.

A. Water-IPA imaging

In the first imaging experiment, we raster scanned a square area
of 30 x 30 mm? using a step of 0.5 mm in both directions. The THz
waveforms were acquired at a rate of 4 Hz, which in the frequency-
domain give an SNR = [40, 24, 12] dB at [0.4, 1.0, 1.4] THz, respec-
tively. Measurements were conducted in a relative humidity of 70%,
which introduces many water-vapor-absorption lines. Liquid sam-
ples were placed on the quartz window and contained by a rubber
ring, indicated by the circle in Fig. 2. At first, 1.5 ml pure water was
in the circular area. The THz optics started at the original point (x, y)
= (0, 0) and scanned along the y-direction to (0, 30). It then moved
to the next line to make a Z-route scan. Right before scanning the
line of x = 7.5 mm, 0.27 ml IPA was added and mixed with the water
in the circle, resulting in a solution with an IPA volume fraction of
15%. Similarly, right before the lines of x = 15 mm and x = 22.5 mm,
0.36 ml and 0.6 ml of IPA were mixed with the previous solution and
increased the IPA volume fraction to be 30% and 45%, respectively.
By doing this, we manually create three sharp boundaries in-between
the four mixtures, as shown in the four separated regions inside the

(@) 0.15THz 0.40 THz 1.16THz 1.30THz 1.41THz
1 2 2 2 2

o
®
3
S,
@
®
a

75 15 225 75 15 225 75 15 225 75 15 225 75 15 225
X (mm)

0.40 THz 1.16THz

0 100 200 300

1.30THz 1.41THz
0 100 200 300 0 200 400

(b) 0.15THz

50 50 100

pesiousg

75 15 225 75 15 225 75 15 225 75 15 225 75 15 225
X (mm)
FIG. 2. (a) Refractive index and (b) absorption coefficient images from the raw and
denoised data at 0.15 THz, 0.4 THz, 1.16 THz, 1.3 THz, and 1.41 THz. The labels
0,1, 2, 3, and 4 in (a) indicate the region of air and IPA-water mixtures with IPA
volume fractions of 0%, 15%, 30%, and 45%, respectively. The dot in (a) indicates

the data at (14, 15), which are shown as an example in Fig. 3.
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circle, labeled as 1, 2, 3, and 4 in Fig. 2(a). The area outside the circle
is ambient air and labeled as 0. # and « at different frequencies with-
out and with denoising processing are shown in the upper and lower
parts of Figs. 2(a) and 2(b), respectively.

The presented five frequencies have different SNRs. 0.15 THz
locates at the lowest effective bandwidth with a relatively low SNR.
The raw data have a certain level of noise but do not obviously
affect the image quality because the contrast among different vol-
ume fractions was very large at low frequencies. We can observe the
improvement by the algorithm from the more uniform color distri-
bution. 0.4 THz has the best SNR of the spectrum. The contrast of
the denoised images is only slightly improved. It is more important
that consistent colors are found for the raw and denoised images,
verifying that the accuracy was well maintained after denoising. 1.16
THz locates at a deep water-vapor line and thus is strongly attenu-
ated.”””* Both n and « of the raw data are very noisy and can barely
display the boundaries. Promisingly, denoising was able to retrieve
the noiseless values, and the four regions are clearly separated. 1.3
THz was less affected by water vapor but was closer to the upper
bandwidth limit. The boundaries of « are barely noticeable, while
they can still be clearly seen after denoising. 1.41 THz has a very
weak SNR due to both the system bandwidth and the water-vapor.
In addition, the difference among different volume fractions at high
frequencies is much smaller. The raw images are extremely noisy,
and « can even be negative. Even in this case, one can still easily dis-
tinguish the four regions in the denoised images. The comparison
demonstrates the efficient denoising in the full bandwidth. The suc-
cessful application to the four mixtures and the outside air regions
shows the good adaptability to various types of signals.

In Fig. 3, we show the denoising detail of the middle point at
(14, 15). The red curves in Fig. 3(a) show the magnitude and phase of

(@ os (b) 3
0.6
251 1
g 0.4 '\J o
—_ 2 [ i
0.2 3 — Eraw
8 —— Ereconstructed
——Reconstructed 3 ' - - =100 x std(Edifr)
= == -100 x Nievel
__100 E
o 1
—~ 50
2
o 0.5}
< O
50 0 . . .
0.5 1 1.5 0 20 40 60

Frequency (THz) Time (ps)

FIG. 3. Denoising example of the image point at (14, 15). (a) Magnitude and phase
of the reconstructed Mmoot and the detected M;ay. (b) Raw and reconstructed
sample signals in the time-domain (offset) and their absolute difference |E | mul-
tiplied by 100. The standard deviation of Ey is given to be compared with the
noise level.
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the reconstructed Mg,,,0, output from the algorithm. Compared to
M 4w shown in the blue curves, the noise-induced oscillations were
obviously removed. To evaluate the accuracy, Fig. 3(b) shows the
corresponding reconstructed and raw sample signals (they are off-
set for clarity). The greatly reduced noise can be clearly observed
from the flat region before the main pulse. Note that the raw signal
has been processed with the band-pass filter to remove the mean-
ingless spectrum range, and the improvement here is solely from
denoising the effective bandwidth. Their absolute difference |Egj|
multiplied by a factor of 100 is shown as the gray curve. The dashed
purple line calculates its standard deviation, which is slightly lower
than the noise level shown as the dashed black line. This indicates
that the optimization of this point was stopped by the condition of
feval_l < Nieyel-

To quantitatively compare the contrast enhancement, we plot
n and « at 1.16 THz and 1.41 THz along the x-direction with and
without denoising in Fig. 4. Each symbol represents the average of
the data in every three lines (Ax = 1.5 mm and y = 10-20 mm). The
error bars are given by their standard deviation. Figure 4(a) shows
that, at 1.16 THz, a clear stair-shape is resolved in the denoised data,
with the error bars of different regions separated from each other.
In contrast, the boundaries in the raw data cannot be recognized,
and the error bars of different regions are all vastly overlapped. We
can even observe a small increasing trend in each region from the
denoised results. This is due to slight IPA evaporation during the
image scanning, which can also be verified from the tiny color vari-
ation in Fig. 2. This tiny variation is not observable in the raw data.
Figure 4(b) gives the results at 1.41 THz. Due to the lower SNR and
sample contrast, we can only observe an overall decreasing trend
in the raw data. After denoising, the standard deviation was sig-
nificantly reduced by a factor of about 7, providing a stair-shape

(@) 1.16 THz (b) 1.41 THz
24 24
2.2
2.2 2
S S
1.8
2
1.6
1.8 Raw L 14 Raw
—4—Denoised 400 —#—Denoised
300
200 <200 w
§ §
S S
100 0
-200
7.5 15 225 7.5 15 22.5
x (mm) X (mm)

FIG. 4. n and « at (a)1.16 THz and (b) 1.41 THz from the raw and denoised
data varying in the x-direction. The error bars are calculated from the standard
deviation.
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distribution. For both frequencies, obvious changes in both n and
« are noticed after denoising. This is due to the inaccurate raw data
at these two frequencies affected by the intense water-vapor atten-
uation. The accuracy is greatly improved after denoising. This is
verified by the following full spectrum comparison.

We take n and « of the 30% IPA-water mixture (i.e., region 3 in
Fig. 2) as an example. The data in x = 15-22 mm and y = 5-25 mm
were averaged and are shown as a function of frequency in Fig. 5.
Figures 5(a) and 5(b) compare the raw data with the reported wavelet
denoising and the proposed denoising method, respectively. The
error bars stand for the standard deviation, and the bright green,
orange, and purple lines on the background indicate the water-vapor
absorption lines at 0.56 THz, 1.16 THz, and 1.41 THz, respectively.”
The raw data show increasing errors toward higher frequencies.
However, the errors in the water-vapor regions are much higher
than the neighboring values, indicating an extra influence by the
water vapor. This results in an accuracy that is greatly affected, as
evidenced by the abrupt spikes that are not expected as both water
and IPA contain no resonance in the studied frequency range.” The
wavelet denoising obviously reduces the standard deviations; how-
ever, the accuracy is also significantly affected. This is in line with our
discussion in the Introduction. In contrast, the denoised results are
all within the error bars of the raw data. The curves present reason-
able continuity without spikes. This is especially noticeable in water-
vapor regions, showing a consistent variation and unchanged error
bars with the neighboring values. The significantly improved accu-
racy by denoising well explains the change in n and « in Fig. 4. It is
an outstanding ability of being able to remove the influence of water-
vapor absorptions in the THz range, as this has barely been realized

a (b)
@ 25 25
2.25 2.25
= 2 A o= 2
1.75 1.75
1.5 |-+ Raw data 1.5 [|—+—Raw data
[T——Wavelet denoised [l—4—Algorithm denoised
300 300
< 200 <> 200
S € 1
) o
s 100 s 100
0 0
-100 -100
0.5 1 1.5 0.5 1 15

Frequency (THz) Frequency (THz)

FIG. 5. Average n and « of the 30% IPA mixture in the frequency-domain, with the
error bars given by the standard deviation. The raw data are compared with (a)
wavelet denoising and (b) the proposed algorithm. The bright green, orange, and
purple lines on the background refer to the water-vapor-absorption lines at 0.56
THz, 1.16 THz, and 1.41 THz.
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in an effective way. The only reported work on removing water-
vapor effects by using deconvolution” was done by Withayachum-
nankul et al. However, the method relies on an accurate water-
vapor model under the specific humidity, temperature, and pres-
sure and requires a high frequency resolution and SNR to resolve
the water-vapor lines. Here, the proposed denoising algorithm does
not depend on any physical circumstance or spectrum resolution,
providing a much better versatility.

B. Leaf transmission imaging

To demonstrate the practical application of the algorithm, we
scanned a fresh leaf in transmission under a low relative humid-
ity of 4.5%. As one of the first THz imaging examples, Hu and
Nuss demonstrated an impressive THz leaf image in 1995 show-
ing the capability of using THz to investigate the water-content in
biological samples.”’ Since then, many water-sensitive studies were
reported, such as skin and breast cancer detection.”’ The study of
leaves was also further extended to more practical applications such
as monitoring the water dynamics and exploring the leaf permit-
tivity model.”>”’ Here, we show how our algorithm can efficiently
improve the image SNR and extend the effective bandwidth to assist
these applications.

The leaf transmittance at 0.6 THz, 1.45 THz, 1.67 THz, 2.1 THz,
and 2.5 THz is shown in Fig. 6(a), with the raw and denoised images
shown in the upper and lower parts, respectively. A homogeneous
area of the leaf and air regions was labeled with red and blue rect-
angles, respectively. The SNRs of these two areas were calculated by
the ratio between their average E-field and their standard deviation,
represented by SNR = 20log,  |mean(E(w))/std(E(w))|. The results
of the raw and denoised data are given in Fig. 6(b). Due to the large
water content, the signals of the leaf region at high frequencies are
strongly attenuated, reflected by the darker color in Fig. 6(a) and the
low SNR of the red curves in Fig. 6(b). Both images at 0.6 THz pro-
vide a relatively high 20 dB SNR in the leaf region. The algorithm
only makes a little improvement in the SNR. The image resolution
was poor due to the diffraction limit at this long wavelength. The
raw images at 1.45 THz and 1.67 THz show obvious noise due to the
water-vapor absorption, as can be seen from the dashed red curves in
Fig. 6(b). The denoising algorithm fully eliminated the water-vapor
influence and reconstructed clear images to resolve the veins on the
leaf. This is also reflected by the red solid curve in Fig. 6(b) where the
SNR was improved by 6.5 dB and is smooth over these water-vapor
regions. These two examples show that water vapor still affects the
SNR at the humidity as low as 4.5%, and the ability to remove water-
vapor effects is important even in a dry-air environment. The raw
image at 2.1 THz only has a 6 dB SNR in the leaf region. The veins
are barely noticeable. The denoising algorithm reduces the noise to
4.4 dB and can clearly resolve the veins with a high resolution. The
last raw image at 2.5 THz has the SNR less than 0 dB in the leaf
region. Even the highly opaque stem was fully merged in noise. The
denoised image clearly displays the stem and some blurry features of
the veins by increasing the SNR to over 10 dB. We can also observe
the noise reduced in the air region, as the SNR was also obviously
increased from 17.3 dB to 24.2 dB. One may also notice the SNR
improvement outside of the effective bandwidth in Fig. 6(b) (e.g., >3
THz of the red curves). This is because the GA initializes Mj,,om ()
in between M (w) and Smooth(Maw(w)), making std(Muoem)
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FIG. 6. (a) Transmittance images of the leaf without and with denoising at
0.6 THz, 1.45 THz, 1.67 THz, 2.1 THz, and 2.5 THz. (b) SNR of the leaf
and air regions labeled with the red and blue rectangles in (a), calculated by
SNR = 20log,,|mean(E(w))/std(E(w))].

smaller than std(Myaw). With E = MeEyprnces Std(Egenoisea) is smaller
than std(Erw) to result in a higher SNR. However, the 0 dB SNR
indicates no useful information was provided. This is decided by
the denoising principle as even if My,,00, has deviated from My,
far outside of the effective bandwidth, the reconstructed signal is
not affected as the amplitudes in this region are extremely small.
Therefore, M0 cannot be optimized with great certainty. Here,
we set the 6 dB threshold to define the effective SNR, as indicated
in Fig. 6(b).

The cross points between the 6 dB line and curves also demon-
strate a broadened effective bandwidth. The upper frequency limit
of the leaf and air regions was extended from 2.075 THz to
2.6 THz and from 3.275 THz to 3.95 THz, corresponding to a
bandwidth extension of 0.525 THz and 0.675 THz, respectively.
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The broadened bandwidth effectively enriches the spectrum infor-
mation for spectroscopic studies.

IV. DISCUSSION

In this article, we propose a denoising method by recon-
structing the transfer function using the GA. The method is built
on the expectation that the transfer function should be smooth
over the effective bandwidth in the absence of noise and reso-
nance. The GA objectively optimizes the smooth transfer func-
tion by minimizing the difference between the reconstructed sig-
nal and the detected signal. Two experiments were conducted to
verify the performance and demonstrate the application capabili-
ties. The water-IPA reflection imaging shows the greatly enhanced
contrast and improved image quality. Further analysis shows that
both low- and high-frequency noise and the water-vapor effect
were successfully removed by the algorithm. The data accuracy
in both the spatial domain and frequency-domain was obviously
improved. The leaf imaging demonstrates the application in trans-
mission and low humidity. The SNR of the images was clearly
improved up to 10 dB. The water-vapor influence is still obvious
at the very low humidity and was fully eliminated by the algo-
rithm. The 6 dB bandwidth was extended by over 0.5 THz. The
demonstrated performance would be very helpful in THz imag-
ing, especially in biomedical studies, such as cancer,”’ scar,”” and
diabetic diagnosis.” It would also be very useful in many stud-
ies demanding a rapid data acquisition that cannot provide a high
SNR, for example, the degradation of perovskite,37 the skin occlu-
sion,” and the fast phase transition of vanadium dioxide.” Sim-
ilar to the autoregressive technique,z} the functionality of extend-
ing the effective bandwidth can also enhance the temporal reso-
lution in THz deconvolution, which may further benefit biomedi-
cal or industrial applications that demand a good depth-resolving
ability."""!

The denoising method is effective for white noise as it removes
the random oscillations in the frequency-domain induced by white-
noise. Statistical errors introduced by laser instability and tempera-
ture or humidity variations cannot be eliminated by this approach
because these errors modulate the whole spectrum without pro-
ducing random oscillations. However, such statistical errors can be
accounted for if the sample is placed on an imaging window rather
than in free space, as the initial reflection of the imaging window can
be used for calibration.”® Despite this, the proposed method objec-
tively and efficiently eliminates the noise in the whole effective band-
width. The ability of removing low-frequency and water-vapor noise
is superior than the existing technique of wavelet denoising. The
proposed method improves the SNR and extends the bandwidth,
which also allows a faster acquisition rate to be used. For example,
it may accelerate the imaging speed or increase the sampling rate in
monitoring a fast variation process. The processing of the transfer
function is independent of the system types and signal profile, mak-
ing it widely adaptive to all types of THz-TDS systems such as those
based on air-plasma that have bandwidths up to 30 THz. It may also
be applied in other interference based techniques such as Fourier-
transform infrared (FTIR) spectroscopy. This denoising algorithm
can therefore serve as a powerful tool in various photonics based
spectroscopy applications.
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