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Network models of disease spread play an important role in elucidating the impact of long-lasting infec-
tious contacts on the dynamics of epidemics. Moment-closure approximation is a common method of
generating low-dimensional deterministic models of epidemics on networks, which has found particular
success for diseases with susceptible-infected-recovered (SIR) dynamics. However, the effect of network
structure is arguably more important for sexually transmitted infections, where epidemiologically rele-
vant contacts are comparatively rare and longstanding, and which are in general modelled via the
susceptible-infected-susceptible (SIS)-paradigm. In this paper, we introduce an improvement to the stan-
dard pairwise approximation for network models with SIS-dynamics for two different network struc-
tures: the isolated open triple (three connected individuals in a line) and the k-regular network. This
improvement is achieved by tracking the rate of change of errors between triple values and their standard
pairwise approximation. For the isolated open triple, this improved pairwise model is exact, while for k-
regular networks a closure is made at the level of triples to obtain a closed set of equations. This improved
pairwise approximation provides an insight into the errors introduced by the standard pairwise approx-
imation, and more closely matches both higher-order moment-closure approximations and explicit
stochastic simulations with only a modest increase in dimensionality to the standard pairwise
approximation.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The spread of any epidemic can be conceptualised as a process
on a network, where individuals are represented as nodes and epi-
demiologically relevant contacts as edges between nodes. An
abundance of different network-based approaches to disease
spread have been developed over the years, varying in scope, appli-
cation, and sophistication. These range from, at one extreme,
Markovian state-based models, where the probability of a system
being in a certain state is given exactly by its master equations
(see Kiss et al., 2017 for an introduction to such methods), to expli-
cit stochastic simulations of epidemics on networks (see Goodreau
et al., 2017 and Whittles et al., 2019 for recent examples) at the
other. Both approaches have limitations. The exponentially
increasing state-space with network size for state-based models
mean these exact descriptions are computationally unfeasible for
most networks of real-world interest; and while stochastic simula-
tions can deal with networks of these sizes, such methods offer lit-
tle or no analytical tractability, making sensitivity to network
structure hard to quantify and the causal determinants of the
resulting dynamics hard to identify.

One network approach that aims to bridge this gap is moment-
closure approximation. In a population, the rate of change of the
number of infected individuals will depend upon how many
susceptible-infected pairs there are. The rate of change of these
pairs, in turn, depends upon the number of triples, and so on up
to the full size of the population. Moment-closure approximation
methods obtain a closed set of ordinary differential equations
(ODEs) for the disease dynamics by approximating the dynamics
of higher-order moments (e.g. triples) in terms of lower-order
moments (e.g. singletons and pairs). By doing so, one obtains a rel-
atively simple ODE model that retains much of the tractability of
mean-field approximation models (the standard approach to mod-
elling the spread of infectious diseases) but that also explicitly
accounts for some aspects of network structure. Hence, there has
been much interest and research into such methods, and into the
errors such approximations introduce into a model (Keeling
et al., 2016; Pellis et al., 2015; Sharkey, 2011; Taylor et al., 2012).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2020.110328&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jtbi.2020.110328
http://creativecommons.org/licenses/by/4.0/
mailto:T.Leng@Warwick.ac.uk
https://doi.org/10.1016/j.jtbi.2020.110328
http://www.sciencedirect.com/science/journal/00225193
http://www.elsevier.com/locate/yjtbi


2 T. Leng, M.J. Keeling / Journal of Theoretical Biology 500 (2020) 110328
There has been considerable progress in this moment-closure
method for diseases that can be modelled via the susceptible-
infected-recovered (SIR) paradigm: the determinants of errors in
such methods are detailed by Sharkey (2011); the exactness of a
closure at the level of triples for tree-like networks is proven by
Sharkey et al. (2015); this framework is extended by Kiss et al.
(2015) to more realistic network structures that include loops;
(Trapman, 2007) defines a reproduction number for pairwise
approximation; (House, 2015) provides an algebraic moment-
closure for such diseases based on Lie algebraic methods; while
(Pellis et al., 2015) explore the exactness of closures when infective
periods are of a constant duration.

By comparison, progress has been modest for diseases with
susceptible-infected-susceptible (SIS) dynamics, equivalent to the
network-based contact process (Liggett, 2013),where recovery from
infection does not lead to immunity. Despite its lower dimensional-
ity than the SIRmodel, the possibility of reinfection can cause corre-
lations between indirectly connected individuals to accrue over
time. Consequently, moment-closure approximations on networks
with SIS-dynamics are in general not exact, and their analytical
tractability is limited.Of theprogress thathas beenmade: important
formal results on their derivability from exact state-based models
have been achieved by Taylor et al. (2012), Taylor and Kiss (2014)
and Keeling et al. (2016) compare three systematic moment-
closure approximations against stochastic simulations; (House
et al., 2009) develop a motif-based approach that outperforms sim-
pler methods for particular network topologies; while (Simon and
Kiss, 2015) develop a compact pairwise approximation that agrees
well with ODE models of a much higher dimensionality.

Capturing network structure is at its most important when
edges between nodes are sparse but relatively long lasting. This,
alongside the more well-defined nature of epidemiologically rele-
vant contacts, means that moment-closure methods are poten-
tially most valuable for understanding the spread of sexually
transmitted infections (STIs). However, most STIs are modelled
using the SIS-paradigm (though notably not HIV). Thus, both
understanding the errors introduced by moment-closure approxi-
mations for diseases with SIS-dynamics, and improving upon these
approximations, is vital for the successful application of such
methods to public–health problems.

In this paper, we introduce improvements to the standard pair-
wise approximation for diseases with SIS-dynamics. In particular,
we do this for the isolated open triple and for k-regular networks,
by explicitly obtaining equations for the rates of change of the
errors between triples and their standard pairwise approximation.
By applying a closure to these equations, we obtain a closed set of
equations that better approximate the true dynamics of infection,
with only a modest increase in dimensionality. In the case of the
isolated open triple, such a model is exact, while for k-regular net-
works, closures at the level of order-four structures have to be
applied. Specifically, in Section 2 we discuss the isolated open tri-
ple, obtaining exact expressions for the appropriate errors and
their rates of change, thus obtaining an exact set of equations
describing the disease dynamics on this network topology. In Sec-
tion 3, we use the results from the isolated open triple to inform
our improved approximation on k-regular networks, i.e. networks
with no loops and where each individual has k neighbours. We
consider both higher-order moment-closure approximations and
explicit stochastic simulations for this type of network, to act as
benchmarks for our improved pairwise approximation. In Section 4,
we compare this improved approximation to the standard pairwise
approximation, to higher-order approximation models, and to
stochastic simulations. In Section 5, we discuss some of the limita-
tions to such an approach, and highlight some potential areas
where we believe further research could be fruitful.
2. The isolated open triple

In this section, we consider the errors introduced by performing
pairwise approximation on isolated open triples for a disease with
SIS-dynamics. We define an isolated open triple as a central indi-
vidual c connected to two neighbouring individuals x and y, where
x and y remain unconnected, as illustrated in Fig. 1. By investigat-
ing this topology, the errors introduced by a pairwise approxima-
tion are not obfuscated by errors introduced from any external
source, and exact results using the master equation approach
(Kiss et al., 2017) can be generated.

We consider a diseases with SIS-dynamics, that is, upon recov-
ery from infection (I) an individuals returns to the susceptible (S)
class. We can described this process on the 3-network in terms
of its states, of which there are eight - corresponding to whether
each individual belongs to the S or I class - so a particular state

A 2 fS; Ig3. We denote the probability of being in a certain state
Pðx ¼ X; c ¼ C; y ¼ YÞ as ½XxCcYy�, where X;C;Y 2 fS; Ig. If we con-
sider recovery from infection, c, and transmission across partner-
ships, s, to be Poisson processes, then the above situation is a
continuous-time Markov process, and can be fully described by
its Master equations (see Kiss et al., 2017, Chapter 2 for an intro-
duction to this approach).

We set initial probabilities of each state by assuming random
initial conditions, i.e. by taking I0 � Uð0;1Þ and setting
½IxIcIy�0 ¼ I0 � I0 � I0 and so on. Note, under this assumption, we
have the symmetries ½SxScIy� ¼ ½IxScSy� and ½SxIcIy� ¼ ½IxIcSy�. Thus,
the dynamics of the isolated open triple are fully and exactly
described by the following six ODEs:

Model 1 – The isolated open triple

_½SxScSy� ¼ cð2½SxScIy�þ ½SxIcSy�Þ ð1Þ
_½SxScIy� ¼ _½IxScSy� ¼ cð½SxIcIy�þ ½IxScIy�� ½SxScIy�Þ�s½SxScIy� ð2Þ
_½SxIcSy� ¼ cð2½SxIcIy�� ½SxIcSy�Þ�2s½SxIcSy� ð3Þ
_½SxIcIy� ¼ _½IxIcSy� ¼ cð½IxIcIy��2½SxIcIy�Þþsð½SxScIy�þ ½SxIcSy�� ½SxIcIy�Þ ð4Þ
_½IxScIy� ¼ cð½IxIcIy��2½IxScIy�Þ�2s½IxScIy� ð5Þ
_½IxIcIy� ¼�3c½IxIcIy�þ2sð½SxIcIy�þ ½IxScIy�Þ ð6Þ
Note that the disease-free state ½SxScSy� is absorbing, and so

given long enough this system will always evolve to this state.
Hence, without an external source of infection, a disease cannot
persist indefinitely with an isolated open triple (or indeed, within
any isolated graph of finite topology). If we wish to consider initial
conditions that do not assume randommixing, e.g. pure initial con-
ditions, eight equations are required. These are given in full in
Appendix A.
2.1. The pairwise approximation for the isolated open triple

We now introduce the pairwise approximation for the open tri-
ple. It is important to note that we are considering a local moment-
closure approximation, i.e. we are tracking the dynamics and errors
introduced for a particular subgraph, as opposed to a global
moment-closure approximation, where we apply closures at a pop-
ulation level.

We begin by considering equations for the probability of indi-
viduals (nodes of the open triple) being in a certain state
A 2 fS; Ig, where we denote Pða ¼ AÞ as ½Aa�. ODEs describing the
rate of change of these states can be obtained by summing the
rates of change from the appropriate triples, e.g.
_½Sx� ¼ _½SxScSy� þ _½SxScIy� þ _½SxIcSy� þ _½SxIcIy�. We observe that the state

of an individual depends on the probability of pairs of individuals
being in certain states: we denote Pða ¼ A; b ¼ BÞ as ½AaBb� and also



Fig. 1. Graphical representation of the isolated open triple. A central node c
connected to two other nodes x and y. For the SIS model such triples have eight
possible states.
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obtain these by summing the appropriate triples. We arrive at the
following equations:

_½Sx� ¼ _½Sy� ¼ c½Ix� � s½SxIc� ð7Þ
_½Sc� ¼ c½Ic� � 2s½IxSc� ð8Þ
_½SxIc� ¼ _½IcSy� ¼ cð½IxIc� � ½SxIc�Þ þ sð½SxScIy� � ½SxIc�Þ ð9Þ
_½IxSc� ¼ _½ScIy� ¼ cð½IxIc� � ½IxSc�Þ � sð½IxScIy� þ ½IxSc�Þ ð10Þ

where ½Ia� ¼ 1� ½Sa� and ½IaIb� ¼ ½Ib� � ½SaIb� ¼ ½Ia� � ½IaSb�. Thus, we
see that the rate of change of the probability of the infection status
of individuals depends on the infection status of certain pairs,
which themselves depend on the infection status of certain triples.
This set of equations is unclosed, as we do not have expressions rep-
resenting the time evolution of the disease status of these triples.
Typically, studies have obtained a closed set of equations by assum-
ing that the infection status of individuals x and y are conditionally
independent given the infection status of individual c (Sharkey,
2008; Sharkey, 2011; Pellis et al., 2015). That is, we make the fol-
lowing assumption:

½SxScIy� � ½SxSc�½ScIy�
½Sc� ½IxScIy� � ½IxSc�½ScIy�

½Sc� ¼ ½IxSc�2
½Sc� ð11Þ

Observing that ½SxSc � ¼ ½Sx� � ½SxIc�, and that ½Sc� ¼ ½SxSc� � ½IxSc �, we
obtain a closed set of three equations, which we refer to as the
pairwise approximation for the isolated open triple, given in full
below:

Model 2 – The pairwise approximation for the isolated open
triple
Fig. 2. Comparing exact and pairwise models for the isolated open triple. In (a), we se
approximation (red) captures the probability of an individual being infected (given by Itot
higher values of s (here s ¼ 3), the pairwise model evolves to a non-zero stationary prob
disease-free equilibrium. For all plots, we set c ¼ 1. (For interpretation of the references to
_½SxSc� ¼ _½ScSy� ¼ cð½IxSc� þ ½SxIc�Þ � s ½SxSc�½ScIy�½Sc� ð12Þ

_½SxIc� ¼ _½IcSy� ¼ cð½IxIc� � ½SxIc�Þ þ s ½SxSc�½ScIy�
½Sc� � ½SxIc�

� �
ð13Þ

_½IxSc� ¼ _½ScIy� ¼ cð½IxIc� � ½IxSc�Þ � s ½IxSc�2
½Sc� þ ½IxSc�

 !
ð14Þ
2.2. Quantifying errors

We can now compare the pairwise approximation model (Eqs.
12–14) to the exact model (Eqs. 1–6). The approximate model cap-
tures the dynamics of the system at low values of the transmission
rate s, but if s is sufficiently high, the approximate model behaves
qualitatively different to the exact model – there is no absorbing
state, and we have a non-zero stationary probability of individuals
being infected (Fig. 2). While in Model 1 ½SxScSy� never decreases, in
Model 2 its approximation ½SxSc�½ScSy�=½Sc� can decrease. This
decrease occurs because of the rate of change of ½Ic� to ½Sc�. In Model
1, this transition only affects ½SxScSy� from the state ½SxIcSy�, which
only ever increases the probability of ½SxScSy�. However, in Model
2 the decoupling of the two pairs and single means that this tran-
sition, with certain within pair correlations, can lead to a decrease
in ½SxSc�½ScSy�=½Sc�.

Comparing the exact value for triples with their approximation
at any given time, we observe this approximation underestimates
the probability of the state ½IxScIy�, and overestimates the probabil-
ity of the state ½SxScIy�. Indeed, the underestimate of ½IxScIy� is
exactly the overestimate of ½SxScIy� (Fig. 3).

To understandwhy, consider the quantitiesa½SxScIy � :¼ ½SxScIy�½Sc��
½SxSc�½ScIy� and a½IxSc Iy � :¼ ½IxScIy�½Sc� � ½IxSc�2, borrowing notation from
Sharkey et al. (2015), which quantify the difference between triples
and their approximations. By expanding ½Sc� ¼ ½SxScSy� þ 2½Sx
ScIy� þ ½IxScIy�; ½SxSc� ¼ ½SxScSy� þ ½SxScIy�; and ½ScIy� ¼ ½SxScIy� þ ½IxScIy�
and cancelling the appropriate terms, we arrive at the fact that both
quantities are equal but opposite in sign, and thus we now define aS

as:

aS ¼ a½IxSc Iy � ¼ �a½SxSc Iy � ¼ ½SxScSy�½IxScIy� � ½SxScIy�2 ð15Þ

Noting further that a½SxScSy � ¼ aS, while clearly a½IxScSy � ¼ a½SxSc Iy � ¼ �aS,
we observe that the difference between true and approximate triple
values for all triples with susceptible central individuals depends
upon one quantity aS. Similarly, the difference between true and
e at low values of transmission between connected individuals (s ¼ 1), the pairwise
¼ ð½Ix þ ½Ic � þ ½Iy�=3) of the exact model (blue) reasonably well. In (b), we see that for
ability of individuals being infected, while the exact model always proceeds to the
colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Comparing exact and approximated probability of isolated open triples. In (a), we see that the approximation overestimates the probability of being in state ½SxScIy�,
and underestimates the probability of an isolated open triple being in state ½IxScIy�. Similarly, (b) we see this approximation underestimates the probability of ½SxIcIy� and
overestimates the probability of ½SxIcSy�. In both cases, the overestimate of one is equal to the underestimate of the other. In both plots we set s ¼ 1; c ¼ 1.
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approximate triple values of all triples with infected central individ-
uals depends only on one quantity, which we denote aI:

aI ¼ ½IxIcIy�½SxIcSy� � ½SxIcIy�2 ð16Þ
2.3. Improving the pairwise approximation

If instead of using the approximations from Eq. (11), we let
½SxScIy� ¼ ð½SxSc�½ScIy� � aSÞ=½Sc� in Eq. (9), and let

½IxScIy� ¼ ð½IxSc�2 þ aSÞ=�Sc� in Eq. (10), we obtain the rates of change
of pairs in terms of singletons, pairs, and aS. To obtain a closed set
of equations, we must consider _aS, where the rates of change of tri-
ples can be obtained from the exact model.

_aS ¼ _½SxScSy�½IxScIy� þ _½IxScIy�½SxScSy� � 2 _½SxScIy�½SxScIy� ð17Þ
¼ cð/S � 2aSÞ � 2saS ð18Þ

where /S ¼ ½SxScSy�½IxIcIy� þ ½SxIcSy�½IxScIy� � 2½SxScIy�½SxIcIy� ð19Þ

¼ 1
½Sc�½Ic� ðð½SxSc�½IxIc� � ½IxSc�½SxIc�Þ2 þ aI½Sc�2 þ aS½Ic�2Þ ð20Þ

Thus, the rate of change of aS depends in turn on the rate of change
of aI , which is given by:

_aI ¼ _½IxIcIy�½SxIcSy�þ _½SxIcSy�½IxIcIy��2 _½SxIcIy�½SxIcIy� ð21Þ
¼�4caI þ2sð/I �aIÞ ð22Þ

where /I ¼2½SxIcSy�½IxScIy��2½SxScIy�½SxIcIy� ð23Þ

¼ 2
½Sc �½Ic � ð½SxIc �

2½IxSc �2�½SxSc �½IxSc �½SxIc �½IxIc �þ ½IxSc �½Sc �aI þ½SxIc �½Ic �aSÞ ð24Þ

We insist that /S and /I are 0 if either ½Sc� ¼ 0 or ½Ic� ¼ 0. Using the
above equations, we arrive at a closed set of equations that
describes exactly the disease dynamics of the open triple, without
any reference to the particular states of triples themselves, by track-
ing the error terms aS and aI . Model 3 below describes in full this
improved pairwise model, with /S and /I described as above:

Model 3 – Improved pairwise model of the isolated open
triple

_½SxSc� ¼ cð½IxSc� þ ½SxIc�Þ � s ½SxSc�½IxSc� � aS

½Sc� ð25Þ

_½SxIc� ¼ cð½IxIc� � ½SxIc�Þ þ s ½SxSc�½IxSc� � aS

½Sc� � ½SxIc�
� �

ð26Þ

_½IxSc� ¼ cð½IxIc� � ½IxSc�Þ � s ½IxSc�2 þ aS

½Sc� þ ½IxSc�
 !

ð27Þ

_aS ¼ cð/S � 2aSÞ � 2saS; with /S as in Eq:ð20Þ ð28Þ
_aI ¼ �4caI þ 2sð/I � aIÞ; with /I as in Eq:ð24Þ ð29Þ
By including aS and aI and their time-evolution in Model 3, we
obtain a system of ODEs that describes exactly the dynamics of
the open triple. However, it is worth noting that this new model
is of no lower dimensionality than Model 1. Despite this, we believe
this is still a valuable model to have obtained explicitly. There are
two principal reasons for this: firstly, by creating a system where
errors aS and aI are tracked explicitly, we can obtain results and
gain an understanding about the ways in which the standard pair-
wise approximation (which ignores the action of aS and aI) fails to
capture the disease dynamics of the isolated open triple; and sec-
ondly, the derivation of this model informs our strategy of how to
derive an improved pairwise approximation for k-regular networks,
where there is a significant reduction in dimensionality.

Upon numerical evaluation, interesting results about the error
terms aS and aI arise. When considering the whole state space,
both error terms can be either negative or positive (aS;aI 2 ½�1=4
1=4�). However, this is not the case when starting from either ran-
dom or pure initial conditions; in both scenarios, aS P 0 and
aI 6 0. This is numerically demonstrated in Appendix B. Conse-
quently, assuming random or pure initial conditions, we arrive at
the following bounds:
½SxSc �2
½Sc � 6 ½SxScSy� ½IxIc �2

½Ic � P ½IxIcIy�
½IxSc �2
½Sc � 6 ½IxScIy� ½SxIc �2

½Ic � P ½SxIcSy�
½SxSc �½ScIy �

½Sc � P ½SxScIy� ½SxIc �½Ic Iy �
½Ic � 6 ½SxIcIy�
Of these, the bound ½IxIc�2=½Ic� P ½IxIcIy� is of particular interest. In
previous moment-closure studies, it has been suggested heuristi-
cally that moment-closure models underestimate the probability of
½IxIcIy� triples (Taylor et al., 2012). This does hold if the system is
closed at the level of individuals, i.e. if we assume that the infection
status of neighbours are independent. The above result demon-
strates that the opposite is true if the system is closed at the level
of pairs: Pðx ¼ I; y ¼ Ijc ¼ IÞ 6 Pðx ¼ Ijc ¼ IÞ � Pðy ¼ Ijc ¼ IÞ.

For random initial conditions, aS and aI appear to be uniquely
defined by the pairs ½SxSc� and ½ScIy�, in other words aS and aI appear
to be functions of ½SxSc� and ½ScIy�. In theory, given values of ½SxSc�
and ½ScIy�, one could determine the values of aS and aI exactly, con-
sequently reducing the dimensionality of Model 3, as equations for
their time evolution would no longer be necessary. As aS and aI

appear to be functions of two variables, they can be represented
visually as surfaces, with ½SxSc� and ½ScIy� as x and y-axes, and with
aS or aI as the z-axis. Included in supplementary material are ani-
mations of the evolution of the shape of these surfaces as we
increase s. These animations confirm the above bounds.
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3. k-regular networks

In Section 2, we considered the accuracy of the standard pair-
wise approximation on the isolated open triple, and derived a
closed exact set of equations describing the errors such an approx-
imation makes. We could do so because we could compute exactly
the probability of the states of the open triple (Model 1), and work-
ing backwards we could derive expressions for _aS and _aI solely in
terms of ½SxSc�, ½ScIy�, aS, and aI - i.e. solely in terms of pairs and
errors terms. Informed by these results, we move on to consider
pairwise approximations for k-regular networks. k-regular net-
works are defined as networks in which each individual has k
neighbours. Here, we consider k-regular networks which are infi-
nite and contain no loops 1. Being infinite, the disease dynamics
on such a network cannot be described exactly by a closed set of
ODEs, unless a closure at some level is exact, as in Sharkey et al.
(2015) for diseases with SIR-dynamics. As stated previously, the pos-
sibility of reinfection induces correlations between distantly con-
nected individuals, meaning the method used by Sharkey et al.
(2015) is not successful for diseases with SIS-dynamics. However,
one can close the system at a higher level than pairs and by doing
so, we can obtain expressions for _aS and _aI solely in terms of pairs
and error terms. While these are still approximations to the true dis-
ease dynamics on a k-regular network, doing so makes a consider-
able improvement on the standard pairwise approximation. This is
the strategy we employ in this section.

While these k-regular networks are clearly idealisations far
removed from any real-world sexual network, we believe that they
are a useful example to study for a number of reasons. The impact
of a small number of contacts, and the resulting dynamical corre-
lations between non-adjacent individuals, is still relatively poorly
understood (Keeling et al., 2016). In these idealised networks, the
errors such correlations introduce into moment-closure approxi-
mations are at their most pronounced, and are not muddied by
errors introduced from other sources, such as clustering or hetero-
geneity. While heterogeneity in the number of contacts individuals
have is apparent in any real-world sexual network, and is impor-
tant to capture when modelling STIs, the effect of heterogeneity
has been studied extensively (Eames et al., 2002; Simon and Kiss,
2015), and can oftentimes be modelled by introducing multiple
risk-groups into a mean-field approximation model (e.g. Edwards
et al., 2010). Additionally, in the case of an infinite network, each
individual has exactly the same properties, allowing us to bridge
the gap from local to global moment-closure approximation.

In this section, we define global moment-closures for k-regular
networks. That is, we define a closure in terms of population-
level quantities rather than for the probabilities of particular indi-
viduals being in certain states. Accordingly, we use the notation ½S�
to represent the proportion of individuals who are susceptible, ½SI�
to represent the proportion of pairs where one individual is suscep-
tible and one individual is infected, and so on. While it is standard
within the moment-closure literature to refer to numbers of these
quantities, we find that dealing with proportions avoids much of
the combinatorial rigmarole involved, and has a more obvious cor-
respondence with the methods described in Section 2. The follow-
ing results hold true whether referring to proportions or numbers -
in Appendix C, we provide a conversion table to transform the
results from this section to numbers, and provide the model
derived in this section in terms of numbers.

While the derivation of this moment-closure is independent to
that of the previous section, and can be treated as a separate mod-
1 diseases with SIS-dynamics on k-regular networks have been studied before are
referred to in the theoretical literature as the contact process on the homogeneous
tree Tk�1 (Liggett, 2013).
elling exercise, we will observe that there are clear analogies
between the two. This correspondence occurs because k-regular
networks are isotropic - number of partnerships, as well as trans-
mission and recovery rates, are homogeneous across the popula-
tion. An alternative conceptualisation is that if we were to
randomly sample one individual (or a higher-order motif) from a
k-regular network, the probability of it being in a given state is
directly equal to the proportion of the population in that state.
Conversely, if we consider a population of infinitely many isolated
open triples from Section 2, then the proportion in a given state is
equal to the probability of one triple being in that state. Therefore
while Section 2 is formulated in terms of probabilities and Section 3
is formulated in terms of proportions, we are effectively modelling
interchangeable quantities.

3.1. Mean-field and pairwise approximations for k-regular networks

The following equation describes the rate of change of ½S� for
any network (Simon et al., 2011):

_½S� ¼ c½I� � k½SI� ¼ cð1� ½S�Þ � k½SI� ð30Þ
In the case of k-regular networks, k ¼ ks. By assuming the dis-

ease status of constituent individuals in pairs are uncorrelated,
i.e. ½SI� � ½S�½I�, we arrive at the mean-field approximation for the
k-regular network, which is equivalent to the standard SIS-model:

Model 4 – The mean-field approximation for k-regular
networks

_½S� ¼ c½I� � ks½S�½I� ¼ cð1� ½S�Þ � ks½S�ð1� ½S�Þ ð31Þ
If instead we want to close the system at a higher-order

moment, we must consider the rate of change of ½SI�:
_½SI� ¼ cð½II� � ½SI�Þ � s½SI� þ ðk� 1Þs½SSI� � ðk� 1Þs½ISI� ð32Þ
To close this system of equations, we must approximate the

proportion of triples ½SSI� and ½ISI�. We use the standard pairwise
approximation of Rand (1999) and Keeling, 1999, commonly
attributed to Kirkwood (1935). Using straight line brackets to
denote numbers of individuals, etc. this is expressed as:

jABCj � ðk� 1Þ
k

jABjjBCj
jBj () ½ABC� � ½AB�½BC�

½B� ð33Þ

When terms are expressed in terms of numbers this must be scaled
by the factor ðk� 1Þ=k; this scaling factor disappears for k-regular
networks when expressed in terms of proportions. This can be
shown by converting either formulation of the approximation to
the other using the conversion table provided in Appendix C. Using
this approximation, we obtain:

Model 5 – The pairwise approximation for k-regular
networks

_½SS� ¼ 2c½SI� � 2ðk� 1Þs ½SS�½SI�½S� ð34Þ

_½SI� ¼ cð½II� � ½SI�Þ � s½SI� þ ðk� 1Þs ½SS�½SI�½S� � ðk� 1Þs ½SI�
2

½S� ð35Þ

where ½S� ¼ ½SS� þ ½SI�, ½I� ¼ 1� ½S�, ½IS� ¼ ½SI�, and ½II� ¼ 1� ½SS� � 2½SI�.

3.2. Improving pairwise approximations for k-regular networks

Once again, we can look to improve the pairwise approximation
by considering the rate of change of triples. Reintroducing sub-
scripts (the position of individuals is illustrated in Fig. 4), the state
of x� c � y triples depend upon topologies consisting of four con-
nected individuals: line graphs of length 4 ½AaXxCcYy� and
½XxCcYyBb�, capturing the external force of infection acting upon
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individuals on the periphery of the triple, and star graphs with
three outer individuals, ½XxCcYyZz�, capturing the external force of
infection upon the central individual.

The rates of change for the triples in an infinite k-regular net-
work, derived from House et al. (2009), are given in Appendix D.
As before, we define a values as the difference between triple val-
ues and their standard pairwise approximation. Once again, the
following relations hold:

½S� ¼ ½SSS� þ 2½SSI� þ ½ISI� ð36Þ
½SS� ¼ ½SSS� þ ½SSI� ð37Þ
½SI� ¼ ½SSI� þ ½ISI� ð38Þ
Thus, as for the isolated open triple, the difference between triple
values and pairwise approximations depend only upon two quanti-
ties: aS and aI , which are as defined in Eqs. (15) and (16). We can
use the triple equations from Appendix D to obtain expressions
for _aS and _aI for this type of network:

_aS ¼ _½SSS�½ISI� þ _½ISI�½SSS� � 2 _½SSI�½SSI� ð39Þ
¼ cðUS � 2aSÞ þ sðbS � 2aSÞ ð40Þ

where bS ¼ 2ðk� 1Þð½IaSxScIy�½SS� � ½IaSxScSy�½SI�Þ ð41Þ
þ ðk� 2Þð2½SxScIyIz�½SSI� � ½SxScSyIz�½ISI� � ½IxScIyIz�½SSS�Þ

_aI ¼ _½III�½SIS� þ _½SIS�½III� � 2 _½SII�½SII� ð42Þ
¼ �4caI þ sðbI þ 2UI � 2aIÞ ð43Þ

where bI ¼ 2ðk� 1Þð½IaSxIcIy�½SI� � ½IaSxIcSy�½II�Þ ð44Þ
� ðk� 2Þð2½SxScIyIz�½SII� � ½IxScIyIz�½SIS� � ½SxScSyIz�½III�Þ

Despite being calculated for triples within a k-regular network, we
find that US ¼ /S and UI ¼ /I as previously defined for the isolated
open triple in Eqs. (20) and (24), and so use the /S and /I terms
henceforth. We therefore obtain a closed set of equations by once
again setting

½ABA� � ½AB�2 þ aB

½B� ½ABC� � ½AB�½BC� � aB

½B� ð45Þ

But now we must also make some approximation for order four
terms. We do this by making the following closures:

½AxScByIz� � ½ASB�½BSI�½ASI�½S�
½AS�½BS�½IS� ð46Þ

½IaSxAcBy� � ½ISA�½SAB�
½SA� ð47Þ

Thus, we can again express _aS and _aI as (complicated) functions of
½SS�; ½SI�;aS and aI . Using this, we arrive at a system of four ODEs,
which we call the improved pairwise approximation for k-regular
networks:

Model 6 – The improved pairwise approximation for k-
regular networks

_½SS� ¼ 2c½SI� � 2ðk� 1Þs ½SS�½SI� � aS

½S� ð48Þ
_½Si� ¼
0; i < 0
cð½Ii� þ ðiþ 1Þ½Siþ1�Þ þ sððk� iþ 1Þ½Si�1� � i½Si�Þ þ kSððk� iþ 1Þ½S
0; i > k

8><
>:

_½Ii� ¼
0; i < 0
cðiþ 1Þð½Iiþ1� � ½½Ii�Þ þ sððk� iþ 1Þ½Ii�1� þ i½Si�Þ þ kIððk� iþ 1Þ½Ii�
0; i > k

8><
>:
_½SI� ¼ cð½II� � ½SI�Þ � s½SI� þ ðk� 1Þs ½SS�½SI� � aS

½S� ð49Þ

� ðk� 1Þs ½SI�
2 þ aS

½S� ð50Þ
_aS ¼ cð/S � 2aSÞ þ sðbS � 2aSÞ ð51Þ
_aI ¼ �4caI þ sðbI þ 2/I � 2aIÞ ð52Þ

where /S and /I are defined as in Section 2.
3.3. Higher-order moment-closure approximations

To assess the accuracy gained bymodelling the error terms aS and
aI , we compareourmodel tohigher-ordermoment-closures. Thefirst
of these we refer to as a neighbourhood closure, previously described
by Lindquist et al. (2011) and Keeling et al. (2016), wherewemodel a
central individual and their number of infected neighbours explicitly.
This system is described by 2� ðkþ 1Þ ODEs. The second of thesewe
refer to as an extended triple closure, wherewe explicitlymodel a cen-
tral triple and every neighbour of this triple. This system is described

by 23k�1 equations (though its dimensionality can be reduced by
accounting for symmetries). In both cases,we approximate the exter-
nal force of infection onouter individuals by exploiting the symmetry
of the topology of the k-regular network.While eachmodel is still an
approximation towards the true dynamics of a k-regular network, in
virtue of closing the system at a higher order, these models are
expected tohave a greater accuracy. From thesehigher-ordermodels,
wecanalsoobtainestimatesof the termsaS andaI ,withwhichwecan
compare the a terms obtained from the improved pairwisemodel for
the k-regular network (Model 6).
3.3.1. The neighbourhood closure
For the neighbourhood closure, wemodel a central individual and

their number of infected neighbours explicitly. Visually then, we are
modelling a star topology. The rate of change of state of the ‘star’ will
depend upon both the internal configurations and the immediate
neighbours of the star. We show this visually in Fig. 5. To close this
system of equations, wemake the assumption that the configuration
of two overlapping ‘stars’ are conditionally independent given the
infection status of the two shared individuals of the combined config-
uration. As we only need to consider the effect of an external force of
infection if the relevant neighbour is susceptible (S), there are only
two quantities relevant to the external force of infection on that indi-
vidual, depending on the infection status of the original central indi-
vidual (S or I), which denote kS and kI accordingly. These terms are
constructed by summing all configurations of the external neigh-
bours including an infected individuals, multiplied by the number
of infected external neighbours in that configuration, divided by the
sum of all possible configurations of external neighbours. Denoting
a central individual in state A 2 fS; Ig with i 2 f0;1; . . . :; kg infected
neighbours as ½Ai�, the neighbourhood model can thus be described
by the following set of equations:

Model 7 – The neighbourhood approximation model for k-
regular networks
i�1� � ðk� iÞ½Si�Þ; 0 6 i 6 k ð53Þ

� ðk� iÞ½Ii�Þ; 0 6 i 6 k ð54Þ



Fig. 4. Dependence on order-four structures in a k-regular network. The state ½XxCcYy� of our triple of interest (shaded in blue) depends on the state of two order-four
network structures – length four line-graphs ½AaXxCcYy� and ½XxCcYyBb� and the ‘star’ graph with three outer individuals ½XxCcYyZz �. The positions of a, b, and z relative to the
triple of interest are shown visually here. N.B. that ½XxCcYyBb � � ½BaYxCcXy�, meaning only one length-four line graph term is necessary in the equations below.

Fig. 5. The external force of infection on a neighbourhood. Here we illustrate the
external force of infection on a neighbourhood in the neighbourhood approxima-
tion for k-regular networks, for the example of k ¼ 3. Shaded blue is our triple of
interest, shaded in orange are any additional individuals that are modelled
explicitly, while shaded in white are individuals not explicitly modelled who exert
a force of infection on the explicitly modelled neighbourhood. In this approxima-
tion, we model a central individual c, and the number of infected neighbours c as
(here shown by x, y, and z). The external force of infection on the explicitly modelled
neighbourhood will depend upon order-six structures: ½XxCcYyZzX0x0X1x1 �,
½XxCcYyZzY0y0Y1y1 �, and ½XxCcYyZzZ0z0Z1z1 �. To close the system, we make the
approximation that, e.g. ½XxCcYyZzX0x0X1x1 � � ð½XxCcYyZz� � ½XxCcX0x0X1x1 �Þ=½XxCc �.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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where kS and kI are given by:

kS ¼s

Xk�1

i¼0

iðk� iÞ½Si�

Xk�1

i¼0

ðk� iÞ½Si�
ð55Þ

kI ¼s

Xk�1

i¼0

iðiþ 1Þ½Siþ1�

Xk�1

i¼0

ðiþ 1Þ½Siþ1�
ð56Þ
To obtain estimates for aS (and aI) from this model, we must derive
the proportion of triples implied by the assumptions of the neigh-
bourhoodmodel. This can be calculated as follows. For a given triple
½XCY �, we let l indicate whether X and Y are infected. (If X ¼ Y ¼ S,
l ¼ 0. If X ¼ S and Y ¼ I, or X ¼ I and Y ¼ S, l ¼ 1. If X ¼ Y ¼ I,
l ¼ 2.) In the neighbourhood model we explicitly model a central
individual and the number of its k immediate neighbours who are
infected. ½XCY � will occur as subgraphs of configurations that com-
prise Cl to Ckþl�2. Assuming there are i additional infected
individuals surrounding c (in addition to those specified by X and

Y), there are k
iþl

� �
different configurations such that a central indi-

vidual C has iþ l infected neighbours. Of these, there are k�2
i

� �
con-

figurations once the position of the [XCY] subgraph is determined,
as there are k� 2 positions left to fill with i infected individuals.

Hence k�2
i

� �
= k

iþl

� �
of ½Ciþl� contain ½XCY�, and so we arrive at the

formula:

½XCY� ¼
Xk�2

i¼0

k�2
i

� �
k
iþl

� � ½Ciþl� ð57Þ
3.3.2. The extended triple closure
For the extended triple closure, we model a triple and each of its

neighbours explicitly, requiring 23k�1 equations. The state of this
system will depend on the infection status of the neighbours of
these neighbours, i.e. the rate of change of states in the extended
triple depend upon order 4k� 2 configurations (illustrated in
Appendix E). We approximate these external forces on the
extended triple by assuming that the state of these higher-order
structures amount to overlapping extended triple topologies con-
ditionally independent given the state of their shared individuals,
of which there are 2k. A detailed explanation of the extended triple
closure model is provided in Appendix E.
3.4. Stochastic simulations

We use explicit stochastic simulations as our final benchmark
for the accuracy of our approximate models. It is not computation-
ally possible to construct infinite loopless networks for simula-
tions. Instead, large random graphs where each individual has k
neighbours can be constructed using the Molloy-Reed algorithm
(Molloy et al., 1995), which should behave similarly for very large
network sizes. We use the methods outlined by Keeling et al., 2016
to remove short loops and to efficiently calculate the quasi-
equilibrium prevalence of infection.
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4. Comparing models

In this section, we compare the previous described k-regular
network models; in order of dimensionality, these are: the mean-
field approximation model (Model 4), the pairwise approximation
model (Model 5), the improved pairwise approximation model
(Model 6), the neighbourhood approximation model (Model 7),
and the extended triple approximation model. As we are consider-
ing a disease with SIS-dynamics, the models evolve to an endemic
prevalence of infection (given a sufficiently high transmission rate)
- we use this as the primary metric for model comparison. All of
these models are approximations of the true system, where there
are infinitely many individuals, but we expect as we increase the
dimensionality of approximation we also increase the accuracy of
the model. We compare all approximate models to explicit
stochastic simulations on networks of 10,000 individuals.

In Fig. 6, we compare the endemic prevalence generated by the
four models that do not explicitly model a to stochastic simula-
tions – the improved pairwise approximation (which utilises the
dynamics of a) is considered in Figs. 7 and 8. While we notice large
differences between mean-field and pairwise models, the differ-
ence in prevalence between models decreases as we increase the
dimensionality of the model. For k ¼ 3, there is little difference
between the neighbourhood and extended triple approximation
models, and there is excellent agreement between the extended
triple model and stochastic simulation. For k ¼ 4 and k ¼ 10, the
extended triple model is omitted, as the neighbourhood approxi-
mation models match closely to stochastic simulations. This indi-
Fig. 6. Comparing approximate models for k-regular networks. Here we compare en
neighbourhood (blue), extended triple (green) approximations for k-regular networks ag
k ¼ 10. For k ¼ 3 simulations are matched well by the extended triple model, while for k
models move closer to the mean-field approximation, and the difference in I� for a given k
calculated as the average of 150 runs, and error bars indicate 95% confidence intervals
referred to the web version of this article.)
cates that including further complexity into a model may be
unnecessary, or may not be worth the increasing complexity or
computational expense. For k ¼ 2, there is still a significant differ-
ence between simulation and the extended triple model. However,
this is unsurprising, as previous research (Keeling et al., 2016) has
shown that errors persist when much larger neighbourhoods are
modelled explicitly. Fig. 6 also illustrates that as we increase k,
models tend towards the mean-field approximation (which can
be considered the k ! 1 limit). In Appendix F, we provide a proof
of this for the pairwise model, and outline how this would be
proved in the general case. We also see that as we increase k, the
difference between pairwise and neighbourhood approximation
models decreases, although the pairwise model consistently pre-
dicts higher endemic prevalences.

Now, we turn our attention to the improved pairwise approxi-
mation (Model 6), which tracks the errors aS and aI explicitly. Here
we focus on the examples k ¼ 2 and k ¼ 3, though comparable
results are found for all higher values of k. The error in our pairwise
model depends on only one term: aS. This term captures the error
between the ‘true’ value of triples and the standard pairwise
approximation of their values. We can obtain estimates for aS from
each of our higher-order models, noting that the improved pair-
wise approximation (Model 6) is based on consideration of four
connected nodes. Comparing aS between models allows us to
assess the extent to which the improved pairwise approximation
is successful in capturing the errors introduced to the pairwise
approximation induced by dynamics of higher-order structures.
By plotting aS as a function of the pairs ½SS� and ½SI� we obtain
demic prevalence (I�) against k ¼ sk for mean-field (grey, dotted), pairwise (red),
ainst explicit stochastic simulations (points) for a) k ¼ 2, (b) k ¼ 3 (c) k ¼ 4, and (d)
> 3 simulations are matched well by the neighbourhood model. As k increases, all
between approximate models decreases. For stochastic simulations, each I� point is
. (For interpretation of the references to colour in this figure legend, the reader is



Fig. 7. Exploring the shape of aS for different approximate models. Here we compare the shape of the error term aS as a function of ½SS� and ½SI� for improved pairwise
models ((a) and (d)), and as a function of ½SxSc � and ½IxSc � for neighbourhood and extended triple approximations ((b) and (c)), for the example k ¼ 3. We observe that aS in the
improved pairwise (a) and the neighbourhood (b) approximation models are extremely similar, but that the improved pairwise approximation model underestimates this
error compared to the extended triple approximation (c). By assuming aI ¼ 0 and _aI ¼ 0 (d), the resulting aS surface more closely resembles that of the extended triple model.
In all plots, we set s ¼ 1; c ¼ 1.
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surfaces; their shape informing our intuition of the behaviour of aS

as we move through ð½SS�; ½SI�Þ-space. Firstly, we observe that the
numerical result aS P 0that was true for the isolated open triple
also holds true for each of these models (numerically demon-
strated in Appendix G). Hence, the bounds obtained for triples
½SxScSy�; ½IxScIy�; and ½SxScIy� in Section 2 for the isolated open triple
also hold for k-regular networks. Secondly, we observe the similar-
ity between aS surfaces obtained from the improved pairwise and
neighbourhood approximation models. We do, however, see these
are smaller than aS from the extended triple. In other words, mod-
els that include higher-order correlations, such as the extended tri-
ple, have higher values of aS than are obtained from the improved
pairwise model.

Comparing the prevalence of infection obtained from these
models, we observe only a minor difference between improved
pairwise and neighbourhood approximations. By including just
two more equations (for aS and aI), we arrive at a model with an
endemic prevalence much closer to results obtained from stochas-
tic simulation, with only a marginal increase in dimensionality.
Unlike the isolated open triple, aI can be positive when k > 2 in
each of the approximate models. However, this only occurs at very
high transmission rates - typically when endemic prevalence
I� > 0:8 (Appendix G).
In an attempt to further improve the accuracy, and to reduce the
dimensionality, of the model, we consider the effect of ignoring aI

on the shape of aS in the improved approximation; noting that
the values of aS from the extended triple approximation are consis-
tently larger than from the other lower-order approximations
(Fig. 7). We do this by setting aI ¼ 0, which is equivalent to using
the standard pairwise approximation for triples with infected cen-
tral individuals. This is in part justified by the fact that values of aI

are typically much smaller in magnitude than aS (Appendix H). This
assumption further reduces the dimensionality of the system, as we
have one less variable. Moreover, as aI is typically 6 0, ignoring it
will increase _aS, meaning wewill generate higher values of aS. (Pos-
itive values of aI can only occur at very high values of s; at such val-
ues, the disease dynamics on the k-regular network are alreadywell
approximated by the standard pairwise approximation). Indeed,
comparing shapes of aS (Fig. 7), we see this assumption provides
a closer match to the values from the extended triple. In Fig. 8,
we compare the endemic prevalence obtained using this aI ¼ 0
assumption against the extended triple approximation, as well as
against the improved pairwise approximation where aI is a
dynamic variable. Ignoring aI provides an estimate closer to the
extended triple approximation than accounting for aI explicitly,



Fig. 8. Comparing improved pairwise approximations against higher-order approximations for k ¼ 2 and k ¼ 3-regular networks. We compare endemic prevalence I�

obtained from improved pairwise model (full in orange; aI ¼ 0 in purple) against neighbourhood (blue) and extended triple (green) approximations, as well as against explicit
stochastic simulations (points), as we vary k ¼ sk, for (a) k ¼ 2 and (b) k ¼ 3-regular networks. In both (a) and b) I� obtained from the improved pairwise approximation is
very similar to I� obtained from the neighbourhood approximation. By assuming aI ¼ 0 and _aI ¼ 0, the dynamics of the improved pairwise approximation are closer to those
of the extended triple approximation, and match I� from stochastic simulations well for k ¼ 3. For all models we set c ¼ 1. For stochastic simulations, each I� point is
calculated as the average of 150 runs, and error bars indicate 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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which in the case of k ¼ 3matches stochastic simulations closely. In
Appendix I we consider the time evolution of these models.

5. Discussion

Whenever detailed information on underlying network struc-
ture is available, detailed stochastic simulation of an epidemic on
a network is always the ‘gold standard’ for any real-world applica-
tion. In the absence of such information, moment-closure approx-
imation methods for the spread of infections promise relatively
simple models that allow us to understand the effect of network
structure on the dynamics of an epidemic. The success of such a
method, however, depends upon understanding the errors intro-
duced by moment-closure approximations, and upon refinements
that minimise such errors. While this approach has been success-
fully applied to diseases with SIR-dynamics, the dynamic build-
up of correlations between distant individuals for diseases with
SIS-dynamics means success for infections with this natural history
has been more limited. However, as the dynamics of most STIs can
be well approximated by the SIS-paradigm, and given the impor-
tance of network structure in this case, further research into this
area is paramount. Indeed, there is already a considerable body
of literature concerning moment-closure approximations for SIS-
dynamics (Taylor et al., 2012; Taylor and Kiss, 2014; Keeling
et al., 2016; House et al., 2009; Simon and Kiss, 2015), as well as
other network approaches to diseases of this type (Floyd et al.,
2012; Lee et al., 2013; Wilkinson and Sharkey, 2013), demonstrat-
ing this as an active research area.

This study improves upon the standard pairwise approximation
by explicitly tracking the errors between the ‘true’ value of triples
and their estimate from this approximation. We show that these
errors are fully described by the quantity aS for triples with suscep-
tible central individuals, and by the quantity aI for triples with
infected central individuals. By tracking the time-evolution of
these error terms, we improve upon the standard pairwise approx-
imation by incorporating these terms into the modelling frame-
work. For the isolated open triple (just three individuals
connected in a line), both _aS and _aI are exactly described as func-
tions of ½SxSc�; ½IxSc�;aS and aI; hence, in this case, the improved
pairwise model is itself exact. For k-regular networks, _aS and _aI

depend upon order-four structures. However, by approximating
the prevalence of these structures via higher order moment-
closures, we obtain expressions for _aS and _aI solely in terms of
pairs, aS and aI . While such a model is not exact, explicitly mod-
elling the time-evolution of these errors markedly improves upon
the standard pairwise approximation for k-regular networks,
obtaining prevalence estimates comparable both to models closed
at even higher orders and to explicit stochastic simulations.

The findings of this paper contribute towards understanding the
shape and direction of errors introduced by pairwise approxima-
tions. We show that the errors between triples and their standard
approximation are quantified by just two values: aS and aI . Inter-
estingly, we find numerically that aS P 0 and aI 6 0, which inform
us as to whether the standard pairwise approximation underesti-
mates or overestimates the proportion of certain triples. While
both bounds hold for the isolated open triple, only aS P 0 holds
in general for k-regular networks. This result also appears to hold
for the constituent triples of all other investigated topologies (line
graphs up to length 10, star graphs with up to 10 neighbouring
individuals, the extended triple with no external force of infection),
while the result aI 6 0 only appears to apply when central individ-
uals in a triple have no other connections outside of the triple. We
hence believe that an analytical exploration of such bounds could
be fruitful, and would make an important contribution to this
research area if such bounds could be proven generally. A deeper
understanding of the shape, direction, and magnitude of such error
terms is not only of interest to those concerned with using the
improved pairwise approximation model described in this paper,
but to any researcher interested in applying the standard pairwise
approximation to a network model of a disease where recovery
from infection does not lead to immunity.

In this paper, we compare approximations to the dynamics of k-
regular networks closed at increasingly higher levels of complexity
– from individual, to pair, to neighbourhood, to an extended neigh-
bourhood. As we increase the dimensionality of a model, we expect
to obtain more accurate results. On the other hand, models of high
dimensionality are difficult to understand intuitively and are much
more computationally expensive. Whether including such com-
plexity is worthwhile depends on the task at hand. We believe that
our improved pairwise approximation provides a reasonable com-
promise between intuition and complexity - this model is still
described by a small number of ODEs, and has dynamics closely
resembling those from the model closed at the level of neighbour-
hoods, more closely matching prevalence estimates obtained from



T. Leng, M.J. Keeling / Journal of Theoretical Biology 500 (2020) 110328 11
stochastic simulations. An unexpected result is that by ignoring aI ,
i.e. using the standard pairwise approximation for triples with
infected central individuals, one appears to obtain a better approx-
imation to the true dynamics. It is important to establish if such a
result holds generally, and if so why, or whether this result is a
spurious convenience for k-regular networks.

The results here consider the two most ideal networks: the iso-
lated open triple is the simplest possible network topology includ-
ing three individuals, while in k-regular networks each individual
has exactly k neighbours and there are no closed loops within
the network. We consider these idealisations as it is in these net-
works that network structure is most dominant and the errors
introduced by moment-closure approximations are most pro-
nounced. But this means there is fertile ground for further explo-
ration on both local and global scales. On a local scale, a
taxonomy of the errors that occur for a variety of different small
topologies, as has been done by Pellis et al. (2015) for diseases with
SIR-dynamics, would be useful contribution to understanding the
impact of local moment-closures for diseases with SIS-dynamics.
On a global scale, understanding whether tracking the dynamics
of error terms explicitly would be worthwhile in heterogeneous
networks (building upon the work of Simon and Kiss (2015)),
and assessing whether the same techniques can be applied in the
presence of clustering, are important next steps.

This paper makes three assumptions common to the literature
on the mathematics on epidemics on networks: first, that epidemi-
ologically relevant contacts (the edges between nodes) are fixed
throughout the epidemic and not dynamic; second, that these con-
tacts are identical in kind, such that probability of infection for an
individual from any partner of theirs is equal to any other partner;
third, that individuals have exponentially distributed periods of
infection (the Markovian assumption). Each of these are in some
senses unrealistic: people’s sexual partnerships change over time
(it is a question of theoretical importance the extent to which
the dynamics of epidemics on dynamics networks can by approx-
imated by the dynamics of epidemics on static networks, which
has begun to be explored (Volz and Meyers, 2007; Bansal et al.,
2010)); for individuals in more than one partnership, the frequency
of sexual contact will be different for each partnership, hence the
probability of transmission across partnerships will also be differ-
ent; whilst periods of infection may be better modelled as having a
constant duration. For SIR-dynamics, a variety of dynamic network
models incorporating moment-closure approximations, or other
low-dimensional ODE models have been developed (Ball and
Neal, 2008; Volz, 2008). So too are there a variety of dynamic net-
work models for SIS-dynamics (e.g. Bauch and Rand, 2000; Leng
and Keeling, 2018). Incorporating improved moment-closure
approximations into such models, and exploring how the introduc-
tion of partnership formation and dissolution effects the errors
introduced, are important next steps. While studies into the contri-
bution of steady and casual partnerships to the spread of STIs has
been explored (Xiridou et al., 2003; Hansson et al., 2019), hetero-
geneity in edge type is an underexplored topic for moment-
closure approximations, even for diseases with SIR-dynamics.
Assuming constant periods of infection, instead of making a
Markovian assumption, can make closures exact for different net-
work topologies in the case of SIR-dynamics (Pellis et al., 2015).
Exploring this alternative assumption and its effect on errors aS

and aI may prove interesting avenues of research.
With regards to modelling the spread of STIs, it is clear that

research should continue to develop more realistic and more
sophisticated stochastic simulations. However, we believe that
approximate methods have an important role to play, in both
developing an intuitive understanding of the effect of network
structure on the fate of the spread of STIs, and as a benchmark to
compare such simulations against. It is in this context that improv-
ing the accuracy of such approximate methods is paramount, and it
is in this context that we believe we make a valuable contribution
to the literature.
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Appendix A. Appendices

A.1. Appendix A – An exact model for the open triple

Not assuming random mixing at initial conditions, eight ODEs
are required to describe the dynamics of the open triple exactly -
these are given below.

_½SxScSy� ¼cð½SxScIy� þ ½IxScSy� þ ½SxIcSy�Þ ð58Þ
_½SxScIy� ¼cð½SxIcIy� þ ½IxScIy� � ½SxScIy�Þ � s½SxScIy� ð59Þ
_½IxScSy� ¼cð½IxIcSy� þ ½IxScIy� � ½IxScSy� � s½IxScSy� ð60Þ
_½SxIcSy� ¼cð½SxIcIy� þ ½IxIcSy� � ½SxIcSy�Þ � 2s½SxIcSy� ð61Þ
_½SxIcIy� ¼cð½IxIcIy� � 2½SxIcIy�Þ þ sð½SxScIy� þ ½SxIcSy� � ½SxIcIy�Þ ð62Þ
_½IxIcSy� ¼cð½IxIcIy� � 2½IxIcSy�Þ þ sð½IxScSy� þ ½SxIcSy� � ½IxIcSy�Þ ð63Þ
_½IxScIy� ¼cð½IxIcIy� � 2½IxScIy�Þ � 2s½IxScIy� ð64Þ
_½IxIcIy� ¼ � 3c½IxIcIy� þ sð½SxIcIy� þ ½IxIcSy� þ 2½IxScIy�Þ ð65Þ
A.2. Appendix B – Demonstrating aS P 0 and aI 6 0 for different initial
conditions on the isolated open triple

See Fig. 9.

A.3. Appendix C – Converting the improved pairwise model from
proportions to numbers

While we find that considering proportions is a more conve-
nient way to express the results from Section 3, we appreciate that
others may prefer to use our results under the convention of terms
referring to numbers of motifs. In this appendix we provide a con-
version table to transform the terms from this section from propor-
tions to numbers, and derive the improved pairwise model in
terms of numbers. We stress that the improved pairwise model
presented here is equivalent to the model presented in Section 3.

First, to express the quantities in Section 3 in terms of numbers,
we must be able to count the number of motifs relative to every
individual. In a k-regular network, for every individual there are
k pairs, for every pair there are ðk� 1Þ triples, and for every triple
there are ðk� 1Þ line graphs of length 4 and ðk� 2Þ 4-stars. Using
straight line brackets jXj to denote the number of individuals in
state X etc. Table 1 below outlines equivalent terms:



Fig. 9. Numerical demonstration of the bounds aS P 0;aI 6 0 for the isolated open triple. We consider how minðaXÞ and maxðaXÞ, X 2 fS; Ig vary with the transmission
rate s for the isolated open triple, for a range of different initial conditions – both random (a–e) and pure (e–i). These plots demonstrate the bounds aS P 0 and aI 6 0 hold in
general for the isolated open triple. In all plots we set c ¼ 1.
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Using these conversions for example on Eqs. (30) and (32), we
obtain the formally derived equations obtained by Taylor et al.
(2012) (Theorem 1). We can also use these to convert our closures
fromproportions to numbers. Applying these,we obtain the unintu-
itive result that the closure ½XCY� � ½XC�½CY �=½C� in terms of propor-
tions is equivalent to the closure jXYZj � ðk� 1Þ=k�jXCjjCY j=jCj in
terms of numbers. Applying these conversions to this and to
Eqns. (46) and (47) we obtain:

jXCYj � k� 1
k

jXCjjCY j
jCj ð66Þ

jAxScByIzj � kðk� 2Þ
ðk� 1Þ2

jASBjjBSIjjASIjjSj
jASjjBSjjISj ð67Þ

jIaSxAcByj � jISAjjSABj
jSAj ð68Þ

To obtain the improved pairwise approximation in terms of num-
bers, we again consider the term a between a triple and its approx-
imation. Below we consider ajISIj:

ajISIj ¼ kjISIjjSj � ðk� 1ÞjSIj2 ð69Þ

¼ kjISIj jSSSj þ 2jSSIj þ jISIj
kðk� 1Þ � ðk� 1Þ ðjSSSj þ jSSIjÞ2

ðk� 1Þ2
ð70Þ

ajSj
k� 1

whereajSj ¼ jSSSjjISIj � jSSIj2 ð71Þ
As before, we find ajISIj ¼ ajSSSj ¼ �ajSSIj ¼ ajSj=ðk� 1Þ. Defining
ajIj as jIIIjjSISj � jSIIj2, we similarly find ajSISj ¼ ajIIIj ¼ �ajSIIj ¼
ajIj=ðk� 1Þ. By applying the conversions from the table to the equa-
tions from Appendix D, we can obtain expressions for the rate of
change of ajSj and ajIj:

_ajSj ¼ cð/jSj � 2ajSjÞ þ sðbjSj � 2ajSjÞ ð72Þ
where /jSj ¼ jSSSjjIIIj þ jSISjISIj � 2jSSIjjSIIj ð73Þ
and where bjSj ¼ 2ðk� 1ÞðjIaSxScIyjjSSj � jIaSxScSyjjSIjÞ

þ 2jSxScIyIzjjSSIj � jSxScSyIzjjISIj � jIxScIyIzjjSSSj ð74Þ
_ajIj ¼ �4cajIj þ sðbjIj þ 2/jIj � 2ajIjÞ ð75Þ
where /jIj ¼ 2jSISjjISIj � 2jSSIjjSIIj ð76Þ
and where bjIj ¼ 2ðk� 1ÞðjIaSxIcIyjjSIj � jIaSxIcSyjjIIjÞ

� 2jSxScIyIzjjSIIj þ jIxScIyIzjjSISj þ jSxScSyIzjjIIIj ð77Þ
Finally, rearranging Eq. (68) and its analogues, substituting in ajXj
we can obtain the closure for triples in the improved pairwise
approximation:

jABAj � ðk� 1Þ2jABj2 þ ajBj
kðk� 1ÞjBj jABCj � ðk� 1Þ2jABjjBCj � ajBj

kðk� 1ÞjBj ð78Þ
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Thus we arrive at the improved pairwise approximation for k-
regular networks, expressed in terms of numbers rather than
proportions:

Model 6 in terms of numbers – The improved pairwise
approximation for k-regular networks

_jSSj ¼2cjSIj�2s
ðk�1Þ2jSSjjSIj�ajSj

kðk�1ÞjSj ð79Þ

_jSIj ¼cðjIIj� jSIjÞ�sjSIjþs
ðk�1Þ2jSSjjSIj�ajSj

kðk�1ÞjSj �s
ðk�1Þ2jSIj2þajSj

kðk�1ÞjSj ð80Þ
_ajSj ¼cð/jSj �2ajSjÞþsðbjSj �2ajSjÞ ð81Þ
_ajIj ¼�4cajIj þsðbjIj þ2/jIj �2ajIjÞ ð82Þ
A.4. Appendix D – The rate of change of triples in a k-regular network

The state of triples in a k-regular network depend upon the
state of order-four network structures: line-graphs of length four
(½AaXxCcYy�; ½XxCcYyBb�) and star graphs with three outer individu-
als (½XxCcYyZz�). Assuming random initial conditions, by the sym-
metry of the system ½XxCcYyBb� ¼ ½BaYxCcXy�, meaning only one
length four line-graph term is needed in the equations below.
Given that ½SSI� ¼ ½ISS� and ½SII� ¼ ½IIS�, the rates of change of these
triples are described by six ODEs, which can be derived from the
system of Eqs. (12) described by House et al. (2009) by omitting
terms that include closed loops and by converting the equations
from numbers to proportions via the table in Appendix C.

_½SSS� ¼ cð2½SSI�þ ½SIS�Þ�sðk�2Þ½SxScSyIz��2sðk�1Þ½IaSxScSy� ð83Þ
_½SSI� ¼ cð½SII�þ ½ISI�� ½SSI�Þ�s½SSI�

�sðk�2Þ½SxScIyIz�þsðk�1Þð½IaSxScSy�� ½IaSxScIy�Þ ð84Þ
_½ISI� ¼ cð½III��2½ISI�Þ�2s½ISI��sðk�2Þ½IxScIyIz�

þ2sðk�1Þ½IaSxScIy� ð85Þ
_½SIS� ¼ cð2½SII�� ½SIS�Þ�2s½SIS�þsðk�2Þ½SxScSyIz��2sðk�1Þ½IaSxIcSy� ð86Þ
_½SII� ¼ cð½III��2½SII�Þþsð½SIS�þ ½SSI�� ½SII�Þ

þsðk�2Þ½SxScIyIz�Þþsðk�1Þð½IaSxIcSy�� ½IaSxIcIy�Þ ð87Þ
_½III� ¼�3c½III�þsð2½SII�þ2½ISI�Þþsðk�2Þ½IxScIyIz�þ2sðk�1Þ½IaSxIcIy� ð88Þ
A.5. Appendix E – The extended triple model

For this model, we model a triple and each of its neighbours
explicitly. Thus, for a k-regular network, 3k� 1 individuals aremod-

elled explicitly, meaning 23k�1 equations are required to describe
this model. By accounting for symmetries in the extended triple
topology, one could reduce the dimensionality of this system. How-
ever, the method constructing the set of ODEs algorithmically
described below models each state explicitly. Writing an algorithm
that accounts for such symmetries, while possible, would be some-
what cumbersome, and as suchwe did not decide to pursue this.We
approximate the external forces on this topology by assuming that
the higher-order structures that the rate of change of states depend
on can be approximated by conjoined extended triple topologies
conditionally independent on the state of shared individuals.

We construct the extended triple model in two steps. Firstly, we
construct a model with SIS-dynamics on the finite topology of the
extended triple. To construct this model, we provide an algorithm
for constructing SIS-models on graphs with any arbitrary finite
topology. Secondly, we add on external force of infection to this
model, which we achieve via relabelling.

E.1. An algorithm for constructing SIS-models on graphs with arbitrary
topology

In this section we outline an algorithm for constructing a model
with SIS-dynamics on networks of arbitrary topology. We can
rewrite the full equations for the open triple in matrix form as fol-
lows: if we let x ¼ f½SSS�; ½SSI�; ½SIS�; ½SII�; ½ISS�; ½ISI�; ½IIS�; ½III�gT . Then
dx
dt

¼ cRxþ sNx ð89Þ

States are ordered in this way so that they are interpreted as a bin-
ary string (e.g. ½SSS� as 000). For the open triple, these are given by:

R ¼

0 1 1 0 1 0 0 0
0 �1 0 1 0 1 0 0
0 0 �1 1 0 0 1 0
0 0 0 �2 0 0 0 1
0 0 0 0 �1 1 1 0
0 0 0 0 0 �2 0 1
0 0 0 0 0 0 �2 1
0 0 0 0 0 0 0 �3

2
66666666666666664

3
77777777777777775

N ¼

0 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0
0 0 �2 0 0 0 0 0
0 1 1 �1 0 0 0 0
0 0 0 0 �1 0 0 0
0 0 0 0 0 �2 0 0
0 0 1 0 1 0 �1 0
0 0 0 1 0 2 1 0

2
66666666666666664

3
77777777777777775

Thus, we need an algorithm to construct matrices R and N for an
arbitrary graph topology, defined by its adjacency matrix A. Such
an algorithm is detailed below:

1. Start with empty matrices R and N of size 2a � 2a, where a is
the length of A.
2. Convert the decimal numbers d representing each state into
binary vectors b of length l.
3. For each vector b, go through each entry i. If bðiÞ ¼ 1, then
Rðd; dÞ ¼ Rðd; dÞ � 1. Let e be the decimal number obtained by
changing bðiÞ from 1 to 0, and Rðe; dÞ ¼ Rðe; dÞ þ 1
4. For each vector b, go through each entry j. If bðjÞ ¼ 0, go
through each entry k of b. If bðkÞ ¼ 1 and Aðj; kÞ ¼ 1, then
Nðd; dÞ ¼ Nðd; dÞ � 1. Let e be the decimal number obtained by
changing bðjÞ from 0 to 1, and Nðe; dÞ ¼ Nðe; dÞ þ 1

Using this algorithm, we can construct a model with SIS-
dynamics on the finite topology of the extended triple.E.2. Rela-
belling – an example

To consider the external force of infecting acting upon a partic-
ular state of the external triple, we must consider the external
force of infection on the susceptible neighbours of that particular
configuration. To evaluate this, we must consider the states in
which this neighbour has no susceptible external partners, up to
the state in which this neighbour has all susceptible external part-
ners. We can achieve this by relabelling the system to give us equa-
tions describing the probability of being in said states.

Let us consider an example for a 3-regular network. Suppose we
want to consider the external force of infection on the state
A ¼ ½SxScSy; Sx0 Ix1 Ic0 Iy0 Iy1 �, with subscripts designating the positions
described in Fig. D1. We include the semicolon to distinguish
between the central triple and its neighbours. The only external
force acting on this topology will be upon x0, who is susceptible,
by any external infected neighbour of x0. Thus, the rate of change
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of ½SxScSy; Sx0 Ix1 Ic0 Iy0 Iy1 � will depend upon some order 10 terms:
½SxScSy; Sx0 Ix1 Ic0 Iy0 Iy1 ; Ix00Sx01 �, ½SxScSy; Sx0 Ix1 Ic0 Iy0 Iy1 ; Sx00 Ix01 �, and
½SxScSy; Sx0 Ix1 Ic0 Iy0 Iy1 ; Ix00 Ix01 �. We make a closure at this level by
assuming, to take the first of these as an example:

½SxScSy;Sx0 Ix1 Ic0 Iy0 Iy1 ; Ix00Sx01 � �
½SxScSy;Sx0 Ix1 Ic0 Iy0 Iy1 �� ½Sx0SxSc; Ix00Sx01 Ix1 Ic0Sy�

½SxScSy;Sx0 Ic0 �
ð90Þ

However, as we have not modelled x00 and x01 explicitly, the prob-
ability of state ½Sx0SxSc; Ix00Sx01 Ix1 Ic0Sy� remains undefined. However,
as we start from random initial conditions, and given that a k-
regular is isotropic, all extended triples within a k-regular network
are equivalent. Because of this, we have:

½Sx0SxSc; Ix00Sx01 Ix1 Ic0Sy� ¼ ½SxScSy; Ix0Sx1 Ic0 Iy0Sy1 � ð91Þ
Thus, we obtain an expression for this state by taking into account
the symmetry of a k-regular network, and by relabelling individuals
so that states containing individuals not explicitly modelled are
defined in terms of explicitly modelled individuals exclusively.

We can now arrive at an expression for the external force of
infection acting upon state A (kA), which is given by:

kA ¼

X
P;Q2fS;Ig

ð1P¼I þ 1Q¼IÞ � ½SxScSy; Px0Qx1 Ic0 Iy0Sy1 �X
P;Q2fS;Ig

½SxScSy; Px0Qx1 Ic0 Iy0Sy1 �
ð92Þ

where 1P¼I and 1Q¼I are indicator functions.E.3. Relabelling generally
The particular relabelling depends upon the particular state of

the external triple, andupon theparticular neighbouring individuals
Table 1
Conversion table between proportions and numbers.

Motif Ratio to # of
individuals

Term
(proportion)

Equivalent term (numbers)

Individual 1 ½X� jXj=N
Pair k ½XY� jXYj=kN
Triple kðk� 1Þ ½XCY� jXCYj=kðk� 1ÞN
Line graph

(length 4)
kðk� 1Þ2 ½AaXxCcYy� jAaXxCcYyj=kðk� 1Þ2N

4-star kðk� 1Þðk� 2Þ ½XxCcYyZz� jXxCcYyZzj=kðk� 1Þðk� 2ÞN

Table 3
Relabelling for general k.

Individual # xi ¼ S c0 ¼
x # Xi C0

c # X C
y # C Y
xi # fS; Ig fS; Ig
c0 # Xiþ1 X
cj # Xiþjþ1 Cj

y0 # Y Y0

yj # Cj�1 Yj

Table 2
Relabelling for k ¼ 3.

Individual # x0 ¼ S x1 ¼
x # X0 X1

c # X X
y # C C
x0 # fS; Ig fS; Ig
x1 # fS; Ig fS; Ig
c0 # X1 X0

y0 # C0 C0

y1 # Y Y
whose external force of infection you are considering. The requires
labellings for the k ¼ 3 case are given in Table 2, and the required
relabellings for a general k is given in Table 3. The header row gives
theneighbouring individualwhose external force of infectionweare
considering, while the leftmost column gives the new positions of
states in a given columnnowoccupy. External nodes that contribute
to the external force of infection always occupy the relabelled xi
positions.E.4. Constructing the extended triple model

To make the extended triple model, we begin by constructing
the model for the relevant finite topology with SIS-dynamics, as
outlined previously in this section. To construct a model approxi-
mating a k-regular network, we must add an external force of
infection to individuals neighbouring the central triple. The proce-
dure is as follows:
S ci ¼ S y0 ¼ S yi ¼ S

Ci Y0 Yi

C Y Y
Y C C
fS; Ig fS; Ig fS; Ig
X Y1 Yiþ1

Cjþ1 Cjþ1 Ciþjþ1

Y0 X X
Yj Cj�1 Cj�1

S c0 ¼ S y0 ¼ S y1 ¼ S

C0 Y0 Y1

C Y Y
Y C C
fS; Ig fS; Ig fS; Ig
fS; Ig fS; Ig fS; Ig
X Y1 Y0

Y0 C0 C0

Y1 X X

Fig. 10. A graphical representation of the extended triple approximation. Here
we visualise the extended open triple model for k ¼ 3. Shaded blue is our triple of
interest, shaded in orange are any additional individuals that are modelled
explicitly, while dotted lines show connections to individuals not explicitly
modelled that exert an external force of infection upon the topology. The state of
this topology will depend upon order 10 structures. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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1. Construct ODEs for the SIS-dynamics for a graph of the rele-
vant topology, with the central triple as the first three rows of
the adjacency matrix.
2. Express each state N as a binary b (of length l ¼ 3k� 1).
3. For each vector b, loop through entries i 2 f4; . . . ; lg. If bðiÞ ¼ 1
calculate the external force of infection on this node, Iext , by
relabelling.
4. Subtract this, multiplied by s and the state itself (i.e. sNIext),
to that state’s ODE (i.e. _N ¼ _N � sNIext).
5. Let e be the decimal number obtained by changing bðiÞ from 1
to 0, and let E be the state corresponding to this number. Add on
the sNIext to this ODE (i.e. _E ¼ _Eþ sNIextÞ.
11. Numerical exploration of aS and aI for different approximate models of the k
erent approximate models of the k-regular network: Improved pairwise (left colum
onstrate the bound aS P 0 holds for all approximations of the k-regular network, but
. These transmission rates correspond to high endemic prevalences - in all cases I�
A.6. Appendix F – Convergence to the mean-field approximation as
k ! 1

We believe that as k ! 1, all models converge to the mean-
field approximation. In this section, we show this is true for both
the pairwise and improved pairwise approximation models, and
outline how this would be approached in the general case.

For all models Eqs. (30) ( _½S�) and (32) ( _½SI�) hold exactly – only
beginning to differ at the level of triples. Our contention is that
as k ! 1, ½SI� ! ½S�½I�. First, we note that because ½SI� ¼ ½S� � ½SS�,
½SI� ¼ ½S�½I� () ½SS� ¼ ½S�2. We consider _½SS�,
_½SS� ¼ 2c½SI� � 2ðk� 1Þs½SSI� ð93Þ
-regular network.We consider howminðaXÞ andmaxðaXÞ, X 2 fS; Ig vary with sk for
n), neighbourhood (centre column), extended triple (right column). These plots

that aI 6 0 only holds for the case k ¼ 2. For k > 2,maxðaIÞ > 0 given s is sufficiently
> 0:8. In all plots we set c ¼ 1.
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Now, we introduce k ¼ sk, which remains constant as k

increases. We make the assumption that ½SS� ¼ ½S�2 initially and
consider their time evolution:

_ð½S�2Þ ¼ 2½S� _½S� ¼ 2c½S�½I� � 2k½S�2½I� ð94Þ
_½SS� ¼ 2c½S�½I� � 2

ðk� 1Þ
k

k½SSI� ! 2c½S�½I� � 2k½SSI�ask ! 1 ð95Þ

These equations are equal, and therefore the relationship

½SS� ¼ ½S�2 continues to hold, conditional on ½SSI� ¼ ½S�2½I�. In general

we need to show that the relationship ½SSI� ¼ ½S�2½I� continues, given
that it holds initially.F.1 – Convergence for the pairwise approxima-
tion model

Under the standard pairwise model, ½SSI� ¼ ½SS�½SI�=½S�. Assuming

that ½SS� ¼ ½S�2, it is clear that ½SSI� ¼ ½S�2½I�. Given that at

t ¼ 0; ½SS� ¼ ½S�2, and that ½SS� ¼ ½S�2 ) _½SS�2 the convergence of the
standard pairwise model is proved by induction.F.2 – Convergence
for the improved pairwise approximation model

Under this model ½SSI� ¼ ð½SS�½SI� � aSÞ=½S�, i.e. ½SSI� ¼ ½S�2½I� ()
ð½SS� ¼ ½S�2;aS ¼ 0Þ. Let us assume that ½SS� ¼ ½S�2, aS ¼ 0, and

aI ¼ 0. Then ½SSI� ¼ ½S�2½I� and by examining Eqns. (40) and (43), we

find that _aS ¼ 0 and _aI ¼ 0. Given that at t ¼ 0; ½SS� ¼ ½S�2;
Fig. 12. Exploring the shape of aI for different approximate models. Here we comp
pairwise model (a), and as a function of ½SxSc � and ½IxSc � for neighbourhood and extended t
in all three models are very similar, and that their magnitude is much smaller than the
aS ¼ 0;aI ¼ 0, and that ½SS� ¼ ½S�2;aS ¼ 0;aI ¼ 0 ) _½SS� ¼ _½S�;
_aS ¼ 0; _aI ¼ 0, the convergence of the improved pairwise model is
proved by induction.F.3 – Convergence in the general case

More generally, we believe that as k ! 1, spatial correlation at a
particular level is only introduced by spatial correlations at a higher
level. For example, correlations only enter the pairwise model if
there are correlations at the level of pairs, correlations only enter
the improved pairwise model if there are correlations at the level
of pairs and triples (a terms), etc. Given that by assumptionwe start
with no spatial correlation at any level, it follows that correlations
are never introduced. However, we believe that the proof of this
more general claim is beyond the remit of this paper.
A.7. Appendix G – Exploring aS and aI for different approximate models
of the k-regular network

Fig. 10,11
A.8. Appendix H – Exploring the shape of aI for different approximate
models

Fig. 12
are the shape of the error term �aI as a function of ½SS� and ½SI� for the improved
riple approximations ((b) and (c)), for the example k ¼ 3. We observe that aI surfaces
ir corresponding aS surfaces (Fig. 8). In all plots, we set s ¼ 1; c ¼ 1.



Fig. 13. Comparing the time-evolution of improved pairwise approximations against higher-order approximations for k ¼ 2 and k ¼ 3-regular networks. (a) and (b)
illustrate the performance of improved pairwise approximations compared to the higher-order neighbourhood (blue) and extended triple (green) approximations. We choose
values s s.t. I� ¼ 0:1 in the extended triple model ((a) s ¼ 1:4163, (b) s ¼ 0:5744). In both (a) and (b) there is little difference between the time-evolution of improved pairwise
(orange) and neighbourhood model. In (b), while the improved pairwise model with aI ¼ 0 (purple) matches the endemic prevalence of the extended triple approximation
closely, its evolution to this equilibrium state differs. In both plots we set c ¼ 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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A.9. Appendix I – Exploring the time-evolution of approximate models
for k ¼ 2 and k ¼ 3

Here, we present the time-evolution of improved pairwise mod-
els, as well as for the neighbourhood and extended triple approxi-
mation models, for k ¼ 2 and k ¼ 3. We note that the improved
pairwise approximation matches closely to that of the neighbour-
hood approximation models. We also see that while for k ¼ 3 the
improved pairwise model with _aI ¼ 0 matches the endemic preva-
lence of the extended triple approximation closely, the same can-
not be said about their time-evolution. Fig 13.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jtbi.2020.110328.
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